
Supplement
Appendix: Physical background1

The aim of this section is to describe with detail the preliminaries on
Statistical Mechanics needed to explain the Boltzmann distribution and its
derivation. These studies help to understand the way a physical system at a
given time t found �out of equilibrium�approaches �equilibrium state�with
time.

� The Statistical Basis of Thermodynamics

In order to provide us some ground for a statistical interpretation of
thermodynamics, general considerations regarding the statistical nature of
the macroscopic system shall be introduced. We will be considering that the
system under study is on state of equilibrium, unless otherwise stated.

i) Macroscopic and microscopic states

The macrostate of the given system is de�ned by parameters N , V and
E: under the following frame: the system formed by N identical particles
enclosed in volume V . We consider the case where N is of order 1023, which
carries us into the thermodynamic limit of the system with both N and V
in�nite where particle density n = N

V
remains �xed at a preassigned value.

Within the thermodynamic limit, we may de�ne extensive and intensive prop-
erties of the system. The extensive ones are directly proportional to the size
of the system, thus proportional to N or to V . On the contrary, the intensive
ones remain independent.
We consider the case where the i�particles composing the system are

independent as they do not interact with each other, with ni particles with
individual energy "i. The total energy E of the system is the sum of the
individual particles:

E =
P

i ni"i given N =
P

i ni (1)

In agreement with quantum mechanics, individual energies "i are discrete
and their values depend on the volume V the particles are con�ned. There-
fore, the possible values of the total energy E are also discrete. Nevertheless,
for the case in which container V is large and thus the spacing of the di¤er-
ent energy values is so small compared to the total energy of the system, E
might be considered a continuous variable.

1Sources: Kittel (1969), Ortin et al. (2006) and Pathria RK (1996).
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The macrostate of the given system (N; V;E) can be realized in a large
number of di¤erent ways, which implies that at a molecular level many pos-
sibilities exist. For the particular case of non-interacting particles, by means
of expressions in (1), there will be a large number of di¤erent ways in which
the total energy E of the system can be distributed among the N particles
constituting it. Each of these di¤erent ways de�ne a microstate of the given
system. We assume by means of the �equal a priori probabilities�postulate
for all microstates that the system is equally likely to be in any one of these
microstates at any time t with a given macrostate.

(N; V;E) symbolizes the number of all possible microstates, as a func-

tion of N , V and E. The dependence on V is due to the reason that possible
values "i of the individual particle energy " are a function of V by the nature
of the system, such as the relativistic distinction of the system which has
an impact on the physical dimensions of the container that appear in the
boundary conditions imposed on the wave functions of the system.2

Regarding the evaluation of the number 
, we shall explicitly assume
the particles to be distinguishable, so that if a particle in state �i� gets
interchanged with a particle in state �j�the resulting microstate is counted
as distinct.
Complete thermodynamics of the given system can be derived from the

number 
, and from its dependence on the parameters N , V and E. First we
are going to discuss how this number 
 relates to thermodynamic quantities
by bringing out the true nature of the number 
 so that we can carry out
further derivations from it. That way, we can then discuss the ways in which
the number 
(N; V;E) can be computed.

ii) Physical signi�cance of the number 
(N; V;E): �thermal contact�prob-
lem between two physical systems.

We consider physical systems A1 and A2 separately in equilibrium. Ai
(for i = 1; 2) system with macrostate (Ni, Vi, Ei) and 
i(Ni; Vi; Ei) possible

2The explicit dependence of the number 
(N;V;E) on V and thus to the equation of
state of all classical systems of non-interacting particles must be remarked. If there is no
spatial correlation between the particles, the number of ways in which the N particles can
be spatially distributed in the system will equal to the product of the numbers of ways
in which the individual particles can be accommodated in the same space independently
of one another. Thus the probability of any particle to be found in a particular region
of the available space is completely independent of the location of the rest of them. This
will only be true when the mutual interactions among particles are negligible, and the
quantum e¤ects are negligible. With N and E �xed, each of these numbers will be directly
proportional to V , the container�s volume. Therefore, the total number of ways will be
directly proportional to the N -th power of V .
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microstates. The two systems are brought into thermal contact with each
other. The wall that separates them is rigid (constant volumes Vi), impen-
etrable (�xed particle number Ni) and conducting so systems are able to
exchange energy between the two. Energy of interaction between systems is
neglected. The composite system (A(0) � A1 + A2) has energy E(0):

E(0) � E1 + E2 = constant (2)

Given Postulate 1, sub-system Ai is equally likely to be in any one of the

i(Ei) microstates at any time t. Therefore, the composite system A(0) is
equally likely to be in any one of the 
(0)(E1; E2) microstates. By means of
the restriction condition (2), it is easy to see the number 
(0) varies with E1.


(0)(E1; E2) = 
1(E1) �
2(E2) = 
1(E1) �
2(E(0)�E1) = 
(0)(E0; E1) (3)

The aim is to calculate the value of the variable E1 at which the composite
system A(0) will be in equilibrium. That is, to calculate the energy exchange
for the sub-systems A1 and A2 to be in mutual equilibrium. Mathematically,
it is the value that maximizes the number 
(0)(E0; E1).
When a physical system is left to itself, its natural behavior is to increase

the number of microstates progressively until it �nally settles down in a mi-
crostate that handles the largest possible number of microstates. Within
the statistical frame, we seek for a macrostate with a larger number of mi-
crostates as the most probable one. In general, the number of microstates
belonging to any macrostate that di¤ers even slightly from the most probable
macrostate, is �orders of magnitude�smaller than the number of microstates
belonging to the latter. Hence, the most probable state of a system is the
state in which the system spends the most of its time: the equilibrium state
of the system.
Let us de�ne E1 as the equilibrium values for Ei. Regarding (2) and (3),

we maximize 
(0):


2(E2) �
�
@
1(E1)

@E1

�
E1=E1

+ 
1(E1)
@E2
@E1

�
�
@
2(E2)

@E2

�
E2=E2

= 0 (4a)

while from (2),
@E2
@E1

= �1 (4b)

We substitute (4b) into (4a),

1


1(E1)
�
�
@
1(E1)

@E1

�
E1=E1

=
1


2(E2)
�
�
@
2(E2)

@E2

�
E2=E2

(4c)
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and now rearrange considering the derivative of the logarithm, we �nally
obtain, �

@ (ln
1(E1))

@E1

�
E1=E1

=

�
@(ln
2(E2))

@E2

�
E2=E2

(4d)

Parameter � is de�ned as,

� =

�
@(ln
(N; V;E))

@E

�
N;V;E=E

(5)

By relating equations (4d) and (5) we might conclude that the equality of
the parameters �1 and �2 simpli�es as equilibrium condition for sub-systems
A1 and A2 respectively.
Thus when two physical systems are brought into thermal contact allow-

ing energy exchange between them, the energy exchange happens and goes
on until the equilibrium values E1 and E2 of the variables E1 and E2 are
reached. Net exchange of energy between the two sub-systems ends once Ei
equilibrium values are reached (so �1 = �2) and that is when the system
happens to have achieved the state of mutual equilibrium 3. We call up
thermodynamic entropy S of the system�

@S

@E

�
=
1

T
(6)

Equations (5) and (6) can be transformed as�
@S

@E

�
=
1

T
�! �S =

1

T
and

�
@ ln


@E

�
N;V;E

= � �! � ln
 = � (7)

Quotient between them leads us to

�S

� ln

=

1
T

�
=

1

�T
= constant (8)

From which it is concluded there is a relation between thermodynamic
quantity S and statistical quantity 
 such as

S = k ln
 (9)

3As an analogy to this result we may �nd the �zero law of thermodynamics�, which
stipulates the existence of a common parameter T for two or more physical systems in
mutual equilibrium, so we somehow expect that the parameter � is somehow related to
the thermodynamic temperature T of a given system.
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that determines the absolute value of the entropy of a given physical
system as a function of the total number of accessible microstates to it in
conformity with a given macrostate. Relation in (9) is of extreme importance
for the fact that establishes the link between the microscopic and the mac-
roscopic. The �unique con�guration�is the state with entropy zero as there
only one microstate accessible (
 = 1). Also, the entropy of a system may be
de�ned as a measure of the disorder or chaos dominating in the system, thus
relation (9) can be interpreted as the microscopical increase of disorder. The
larger the disorder, the larger the number of microstates the system can have.
The larger the choice of microstates, the lesser the degree of predictability or
the level of order in the system. So the unique state (
 = 1; S = 0) is where
complete order prevails.
By (8) and (9), we write

� =
1

kT
;where k = kB (10)

where the universal kB is the Boltzmann constant.
We now examine a more complex exchange between sub-systems A1 and

A2, with movable, impenetrable and conducting separating wall Thus, apart
from the exchange of energy, volumes V1 and V2 also become variable while
the total volume remains constant.
By means of analogous procedure, it is easy to demonstrate how the

equilibrium conditions between the A1 and A2 are indeed the same as before.
Now 
(0)(V (0); E(0);V1; E1) is maximum when�

@ ln
1
@E1

�
N1;V1;E1=E1

=

�
@ ln
2
@E2

�
N2;V2;E2=E2

(11a)

�
@ ln
1
@V1

�
N1;V1;E1=E1

=

�
@ ln
2
@V2

�
N2;V2;E2=E2

(11b)

We get two parameters for each subsystem, �i and �i which relate again
with physical meaning by means of thermodynamics formula

dE = TdS � PdV + �dN (12)

where P is the thermodynamic pressure and � the chemical potential.
This takes us to the new equilibrium conditions,

T1 = T2 and P1 = P2 (13)
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In addition, if we take the exchange between the two sub-systems a step
forward, and the wall between them allows variation in all three paramet-
ers (energy E, volume V and particles N) the thermodynamic equilibrium
conditions are indeed

T1 = T2; P1 = P2 and �1 = �2 (14)

These conclusions are identical with the ones following from statistical
considerations.
Results from above demonstrate how Thermodynamics can be derived

from statistics: for macrostate (N; V;E) of a system, the number of all
possible microstates 
(N; V;E) accessible to the system can be determined
related to the entropy of the system S(N; V;E) by means of fundamental
formula (9).

� Elements of the Ensemble Theory: The Canonical Ensemble

Now that we have gone through the establishment of the relation between
thermodynamics and statistics, we pick up the discussion from before: prin-
cipal goal is the determination of the number 
(N; V;E) of distinct micro-
states accessible to the system in order to then derive complete thermody-
namics from these numbers. The calculation of these numbers is quite of a
challenge for the majority of physical system. The ensemble theory must be
developed in order it provide an alternative approach to the calculation of

.
Let us consider a large number of systems, as if they were �mental copies�

of the given system at a certain time. The original macrostate outlines these
�copies�somehow in all kind of possible microstates. An ensemble is de�ned
as the average behavior of any system in this collection, which is assumed
to be identical to the averaged behavior of the given system at a certain
time. In the ensemble theory, we may �nd microcanonical, canonical and
grandcanonical ensembles. We are going to study our systems within the
canonical ensemble, where the macrostate of the systems is de�ned as a
function of parameters N , V and T .4

Given energy levels Er (independent of the temperature of the system),
probability Pr is the probability for a system to be found in one of the states
characterized by the energy value Er in the ensemble at any time t. The
dependence of Pr on Er can be determined in two ways. One consists of
studying the statistics of the energy exchange between the system regarded

4We choose T and not energy E (as in microcanonical) of a system because in principle
energy is variable that can take values between zero and in�nity.
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in equilibrium with a heat reservoir at a common temperature T. The other
one consists in regarding the system as a member of the canonical ensemble
(N; V; T ) and study the statistics of the process in which the N identical
systems of the ensemble share energy. Within the thermodynamic limit, we
expect the �nal result in either case to be the same. Once probability Pr is
determined, the rest easily comes out.

i) Equilibrium between a system and a heat reservoir

We consider system A immersed in a very large heat reservoir A0 at any
time with energy values Er and E 0r respectively. Composite system A(0)(�
A+A0) has energy E(0) These systems achieve a state of mutual equilibrium
when they have the same temperature T . At any time t, their energies can
take values from 0 to E(0), thus restrictive condition becomes

Er + E
0
r = E

(0) = constant (15)

Due to the fact that reservoir A0 is much larger than system A, any E(0)

is much larger that any Er value. In consequence,

E(0) � Er �!
Er
E(0)

� 1 (16a)

Er
E(0)

=
E(0)

E(0)
� E 0r
E(0)

= 1� E 0r
E(0)

� 1 (16b)


0(E 0r) represents the large number of states of the reservoir A0 compatible
with energy value E 0r once the state of system A is speci�ed5. Probability
grows with the number of states available to the reservoir. From Postulate
1 the various possible states are equally likely to occur; as a consequence,
probability is directly proportional to this number:

Pr � 

0(E 0r) = 


0(E(0) � Er) (17)

Given (16b) and (15) we expand the logarithm (for convergence) of (17)
around the value E 0r = E

(0) so Er = 0:

ln
0(E 0r) = ln
0(E(0) � Er) =

= ln
0(E(0)) +

�
@ ln
0

@E 0

�
E0=E(0)

(E 0r � E(0)) + ... '

' constant� �0Er (18)

5The prime on the symbol 
 emphasizes the fact that its functional form depends on
the nature of reservoir A0.

7



Note that from de�nition (5)

� =

�
@(ln
(N; V;E))

@E

�
N;V;E=E

�!
�
@ ln
0

@E 0

�
N;V

� �0 (19)

and we recall equilibrium condition along with (10) �0 = � = 1
kT
to �nally

get:
Pr = C � exp(��Er) (20)

C is the normalization constant determined so the total number of particles
that occupy the accessible levels is N .

Pr =
exp(��Er)P
r

exp(��Er)
(21)

The sum in the denominator in (21) is for all states accessible to the
systemA. Note that it does not depend on the physical nature of the reservoir
A0 at all.

ii) A system in the canonical ensemble

Let us analyze the same situation but from the ensemble point (canon-
ical ensemble (N; V; T )) of view which of course at the thermodynamic
limit we expect the �nal result in either case to be the same.

The process under study consists of N identical systems of the ensemble
(which may be labeled as 1; 2; 3; : : : :;N ) that share a total energy E . Energy
eigenvalues of the systems are represented by Er(r = 0; 1; 2; : : :). U =

E
N is

the average energy per system in the ensemble, and nr the number of systems
which, at any time t, have the energy value Er. Clearly the set of numbers
fnrg satisfy the restrictive conditionsP

r

nr = N and
P
r

nrEr = E = NU (22)

Any set fnrg that satis�es conditions (22) represents a possible way of
distribution of the total energy E among the N members of the ensemble.
So between those members of the ensemble for which the energy values are
di¤erent, we may rearrange and get a di¤erent state from the original one.
This can be realized in a Wfnrg di¤erent number of ways:

Wfnrg =
N

n0!n1!n2!:::
(23)
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Again, all possible states of the ensemble compatible with restrictive con-
ditions (22) are equally likely to occur. Distribution set fnrg may appear
with a frequency directly proportional to number Wfnrg. The �most prob-
able�mode of distribution fn�rg is in theory the one for which number W is
a maximum. By analogous procedures

lnW = ln(N !)�
P
r

ln(nr!) (24)

Stirling formula6 in applied to (24) as the �nal goal is treated under
the thermodynamic limit where N ! 1 so values of nr will also tend to
in�nitive.

lnW = N ln(N !)�
P
r

nr ln(nr!) (25)

Set fnrg is now transferred to a slightly di¤erent set fnr + �nrg. So
expression (25) becomes

�(lnW ) = �
P
r

(lnnr + 1)�nr (26)

As set fnrg is maximal, variation �(lnW ) should vanishes. In addition,
restrictive conditions (22), regarding variations on the set convert into andP

r

�nr = 0 and
P
r

Ernr = 0 (27)

Altogether by the method of Lagrange multipliers7 seeking set fn�rg is
determined by the following conditionP

r

f�(lnn�r + 1)� �� �Erg � �nr = 0 (28)

where � and � are the Lagrangian undetermined multipliers that obey
conditions (27). The variations �nr in (26) are completely arbitrary, so the
only way to satisfy (28) is that all its coe¢ cients must vanish

lnn�r = �(�+ 1)� �Erg for all r (29)

In other words,
n�r = C � exp�(�Er) (30)

6Stirling formula: ln(n!) � n lnn� n
7The method of Lagrange multipliers, is a strategy for local maximum and minimum

of a function subject to equality constraints �we have the case of 2 (multiple and not
single) constrains.
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where C is an undetermined parameter. For C and � to be determined,
we subject (30) to conditions (22), with the �nal result that

n�r
N =

exp(��Er)P
r

exp(��Er)
= Pr (31)

with parameter � as a solution of the equation

U =
E

N =

P
r

Er � exp(��Er)P
r

exp(��Er)
(32)

that combining statistical considerations with thermodynamic ones, it
comes out that parameter � = 1

kT
.

iii) Physical signi�cance of statistical quantities in the canonical ensemble

We now recall some thermodynamic relations involving the Helmholtz
free energy A(= U � TS) with the aim of getting information about the
various macroscopic properties of the system on the basis of the preceding
statistical results. For this,

dA = dU � TdS � SdT = �SdT � PdV + �dN (33)

S = �
�
@A

@T

�
N;V

; T = �
�
@A

@V

�
N;T

; � = �
�
@A

@N

�
V;T

(34a)

U = A+TS = A�T�
�
@A

@T

�
N;T

= �T 2
�
@

@T
(
A

T
)

�
N;T

=

��
@(A=T )

@(1=T )

��
N;T

(34b)

From all these, follows the correspondence between statistical and thermo-
dynamics quantities as

� =
1

kT
and ln

�P
r

exp(��Er)
�
=
A

kT
(35)

where k is indeed the Boltzmann constant. Equations (35) build the most
fundamental result of the canonical ensemble theory:

A(N; V; T ) = �kT lnQn(V; T ) (36)

where

QN(V; T ) =
P

r exp

�
� Er
kBT

�
and Pr = Q�1 exp(��Er) (37)
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which is the partition function of the system. Since Pr = Q�1exp(��Er)
it follows

S = �k < lnPr > since S = �k
P
r

Pr lnPr (38)

The importance of this relation is that it shows that the entropy of a
physical system is exclusively and completely determined by the probability
values Pr (of the system being in di¤erent dynamic states accessible to it).
From (38), we might conclude that if the system�s ground state (T = 0K) is
unique, then the system can only be found in this particular state and in no
other as probability Pr is equal to 1 for this state (and 0 for the rest). This
implies that entropy S = 0. Thus null entropy and full statistical order go
together: complete predictability of the system. As the number of accessible
states increases, (more and more of the Pr become nonzero) the entropy of the
system increases. As the number of states becomes extremely large, most of
the Pr values become exceedingly small (and their logarithms assume larger
negative values). The result is that the entropy becomes extremely large
along with the high degree of statistical disorder (or unpredictability) in the
system.
By application of (38) in the microcanonical ensemble where for each

member system of the ensemble we have a group of 
 states, all equally
likely to occur. The value of Pr is 1



for each of these states and 0 for the rest.

As a consequence, we obtain the main result in the microcanonical ensemble
theory:

S = �k
�


P
r

1



ln(
1



)

�
= k ln
 (39)

REFERENCES

Kittel C (1969) Thermal Physics. Chapters 2,3,4 and 6. John Wiley & Sons
Inc
Ortin J y JM Sancho Herrero (2006) Curso de Física Estadística. Capítulos
1,2,3 y 4. Universitat de Barcelona
Pathria RK (1996) Chapters 1,2 and 3 Statistical Mechanics Butterworth-
Heinemann

11


