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Abstract 
This research is focussed on the development of new ways to perform on-line 

condition monitoring in mechanical systems. It is focused on technologies that 

have been quite scarcely investigated in this field, in particular, the use of 

lubricant oil viscosity monitoring and motor current signature analysis 

technologies for improving the condition monitoring in gearboxes. On the one 

hand, a new solution based on magnetoelastic materials is presented for the 

monitorization of lubricant oil viscosity. On the other hand, motor current 

signature analysis (MCSA) is presented as a counterpart to traditional 

accelerometers for the monitorization of mechanical anomalies. 

Broadly speaking, nowadays the most common maintenance practice for 

gearboxes is preventive maintenance. Lubricants and different mechanical 

parts such as gears and bearings are replaced on a periodic basis regardless 

of their health state. Steadily, condition based maintenance is gaining 

importance, as it offers several advantages over preventive maintenance. 

Still, one of the drawbacks of condition-based maintenance is the need to 

assess the health state of the component, either by adding sensors (on-line) 

or by making punctual measurements by qualified staff (periodic inspections). 

As the price of sensor technologies tends to go down and more electronics is 

incorporated to the machinery, the trend is to take advantage of the existing 

on-line monitoring options. 

Lubricant oil is similar to the blood that flows inside us. Problems in our 

body have their reflection in blood, and in an analogous manner, problems in 

the gearbox will be manifested in the lubricant oil. That is the reason why 

lubricant oil must be monitored., and among the main lubricant properties, 

viscosity is the most important one. If oil viscosity does not remain in the right 

interval, lubrication won’t accomplish its purpose, risking even a catastrophic 

failure of the mechanical component.  However, viscosity measurements are 

still made via off-line methods, using slow and costly equipment systems. 

Therefore, in this Thesis the concept of on-line lubricant oil viscosity condition 

measurement is examined. 

In particular, a magnetoelastic kinematic viscosity sensor for on-line or 

in-line measurements is designed, built and tested. The main advantage of 

the sensor prototype proposed is its capability to measure oil viscosity in a 

wide range of values (from 32 cSt up to 320 cSt), which is not known to any 

other sensor commercially available. 

Magnetoelastic materials exhibit an intimate coupling between their 

magnetic and elastic properties, in such a way that a magnetic excitation 

produces an elastic response of the material and vice versa. The principles 
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governing the magnetoelastic effects and their beneficial use for the design of 

the on-line magnetoelastic viscosity sensor are explained in the Thesis. 

Two different prototypes are presented. The first one is intended as a 

proof-of-concept of the technology, and the second as a prototype of a practical 

device for the measurement of the viscosity of different oils. The signal 

processing to correlate the magnetoelastic response with the viscosity of the 

oils is described, including the use of a new phenomenological model. 

Likewise, the relationship between the temperature and the measurements 

has been studied. 

Concerning motor current signature analysis (MCSA), the objective of the 

Thesis is to advance in the design of a system that can monitor a gearbox in 

normal operation. In this sense, the work is oriented towards the analysis of 

transients in speed, maintaining the load fixed. A gearbox test bench is used 

to reproduce different faults and acquire data in different operating 

conditions. With respect to the analysis of the current signals from the motor 

moving the gearbox, wavelet analysis is selected as the most convenient 

technique for the analysis of transients in speed. 

The Thesis describes the experimental part of the work, including the test 

bench, the design of experiments, the type of gearbox faults monitored, and 

the organization of the data pool. The procedures for data reduction, 

preprocessing and analysis are presented, which produce different sets of 

features describing the health state of the system. The performance of these 

features is assessed using different classification algorithms and the results 

are discussed and compared including the comparison with other pre-

processing techniques, such as dual level time synchronous averaging 

The techniques developed have been applied to both gears and bearings 

inside the gearbox. 

The investigation performed demonstrates that the combination of using 

transient information from the feeding current and the use of wavelets to 

analyze the data, maximize the value of motor current signal for condition 

monitoring in a gearbox, and enables its widespread deployment in 

maintenance procedures. 
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Resumen 
Este trabajo está centrado en el desarrollo de nuevas maneras de realizar la 

monitorización en línea del estado de salud de sistemas mecánicos mediante 

tecnologías poco utilizadas hasta ahora en este campo. En particular, se han 

investigado el uso de la monitorización de la viscosidad del aceite lubricante 

y la tecnología de análisis de las características de la corriente que alimenta 

el motor para mejorar la monitorización del estado de las cajas de engranajes. 

Por un lado, se presenta una nueva solución basada en materiales 

magnetoelásticos para la monitorización de la viscosidad del aceite 

lubricante. Por el otro, el análisis de la corriente alimentación del motor 

(MCSA por sus siglas en inglés) se presenta como alternativa de los 

acelerómetros tradicionales para la monitorización de anomalías mecánicas. 

En general, la práctica de mantenimiento más habitual hoy en día, para 

las cajas de engranajes es el mantenimiento preventivo. Los lubricantes y las 

diferentes partes mecánicas, como los cojinetes, se reemplazan 

periódicamente, independientemente de su estado de salud. El 

mantenimiento basado en el estado de salud (condition monitoring en inglés) 

está ganando importancia progresivamente, ya que ofrece varias ventajas 

sobre el mantenimiento preventivo. Aun así, uno de los inconvenientes del 

condition monitoring es la necesidad de evaluar el estado de salud del 

componente, ya sea agregando sensores (en línea) o haciendo mediciones 

regulares por personal calificado (inspecciones periódicas). A medida que el 

precio de las tecnologías de monitorización con sensores tiende a disminuir y 

se incorporan más dispositivos electrónicos a la maquinaria, la tendencia es 

sacar provecho las opciones de monitorización en línea existentes. 

El aceite lubricante es similar a la sangre que fluye dentro de nosotros. 

Los problemas en nuestro cuerpo tienen su reflejo en la sangre, y de manera 

análoga, los problemas en las cajas de engranajes se manifiestan en el aceite 

lubricante. Esa es la razón por la cual se debe monitorizar el aceite lubricante, 

y entre sus principales propiedades, la viscosidad es la más importante. Si la 

viscosidad del aceite no está en el intervalo correcto, no logrará su finalidad, 

incluso pudiendo crear un fallo catastrófico del componente. Sin embargo, la 

práctica habitual es realizar las mediciones través de sistemas de equipos 

fuera de línea, lentos y costosos. Por lo tanto, en esta Tesis se ha investigado 

el concepto de medición de la viscosidad del aceite lubricante en línea. 

En particular, se ha desarrollado un sensor magnetoelástico de viscosidad 

cinemática para mediciones en línea. La principal ventaja del sensor 

propuesto es su capacidad de medir en una amplia gama de valores de 

viscosidad (desde 32 cSt hasta 320 cSt). No se conoce ningún otro sensor 

equivalente comercialmente disponible con un rango similar. 
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Los materiales magnetoelásticos presentan un acoplamiento entre sus 

propiedades magnéticas y elásticas, de modo que una perturbación magnética 

da lugar a una respuesta elástica y viceversa. En la Tesis se explican los 

principios que rigen los materiales magnetoelásticos y su uso de manera 

eficiente para el diseño de un sensor de viscosidad magnetoelástica en línea. 

Se presenta el diseño de dos prototipos. El primero se concibe como una 

prueba de concepto de la tecnología, mientras que el segundo consiste en una 

implementación práctica para la medición de la viscosidad de diferentes 

aceites. Se describe así mismo el procesado de la señal obtenida para su 

correlación con la viscosidad de los aceites, incluyendo el uso de un nuevo 

modelo fenomenológico. Se analiza también los resultados de la medida de la 

viscosidad a diferentes temperaturas. 

Con respecto al análisis de las características de la corriente de 

alimentación del motor (MCSA), el objetivo de la Tesis es poder diseñar un 

sistema para monitorizar una caja de engranajes en funcionamiento normal. 

En este sentido, se ha abordado el análisis de transitorios de velocidad, 

manteniendo la carga fija. Se ha utilizado un banco de pruebas de cajas de 

engranajes para reproducir diferentes fallos y adquirir datos en diferentes 

condiciones de operación. Con respecto al análisis de la señal de corriente del 

motor que mueve la caja de engranajes, se ha seleccionado el análisis wavelet 

como técnica adecuada para el análisis de los transitorios de velocidad. En la 

Tesis se presenta la parte experimental del trabajo, describiendo primero el 

banco de pruebas, el diseño de experimentos, el tipo de fallos de la caja de 

engranajes monitorizadas y la organización del conjunto de datos. A 

continuación se presenta el proceso de reducción de datos, pre-procesamiento 

y análisis, lo que proporciona como resultado un conjunto de características 

que describen el estado del sistema. El rendimiento de estas características 

se evalúa utilizando diferentes algoritmos de clasificación, comparando los 

resultados con otras técnicas de pre-procesamiento existentes, como el 

promediado síncrono en el tiempo de doble nivel. Las técnicas desarrolladas 

se han aplicado a la monitorización tanto de engranajes como de rodamientos 

en el interior de las cajas de engranajes. 

Los resultados de esta investigación demuestran que la combinación del 

análisis de la corriente de alimentación del motor en régimen transitorio y el 

uso del pre-procesamiento basado en wavelets maximizará el valor de la señal 

de corriente del motor para determinar el estado de salud en una caja de 

engranajes, estableciendo la posibilidad de su despliegue generalizado en 

procedimientos de mantenimiento. 
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The advances in different fields of technology and their economic success 

deeply rely in the correct operation of the equipment and machinery, without 

unscheduled interruptions or unexpected failures. In this context, the 

growing interest in safety, higher quality, better sustainability and in the 

preservation of goods, together with the pressure to increase efficiency, boost 

the importance of system maintenance to guarantee the faultless 

performance of the assets during the maximum useful life. This situation has 

paved the way towards the emergence of more advanced maintenance 

strategies. 

The implementation of these advanced maintenance strategies involves 

moving from a preventive concept to a condition-based one [1.1]. In the first 

case, maintenance is done in scheduled and safe intervals regardless of the 

actual condition of the asset. This strategy cannot avoid unforeseen failures, 

since these time intervals are chosen according with the normal operation of 

the system, during which it is expected to function flawlessly. In contrast, 

condition based-maintenance takes into account the condition of the system 

by means of periodic inspections. Therefore, an unforeseen degradation of the 

asset or a malfunction can be detected and corrected by performing the 

maintenance operations, thus avoiding sudden failures. 

The supervision of the state of the system is usually called condition 

monitoring (CM)1 [1.2] and can be implemented in several ways. It can be 

performed manually, off-line in procedures also denominated non-destructive 

inspections2, carried out periodically. During the inspections, an operator 

with enough expertise needs to access the equipment inspected and makes 

the required measurements. The analysis and interpretation of the data is 

also manually driven, and may take from seconds to days depending on 

several factors.  

On the other hand, on-line is applied to condition monitoring scenarios 

where the sampling or measurement automatically generates a set of data. It 

can be sent to a processing system physically separated from the item 

monitored (remote analysis), or can also be locally analysed through 

embedded software systems. Finally, on-line information generated can be 

                                            
1 There are other terms that are closely related to Condition Monitoring and sometimes used 

equally. Health Monitoring (HM) has a similar meaning, often connected to aerospace 

applications and prognostic scenarios. 
2 Usually referred also as Non-Destructive Testing (NDT). NDT differs from other inspections 

where part of the component or system being tested is destructed in the inspections process 

- e.g. to cut and inspect a bearing with electronic microscope to find out root cause failure 

(e.g. changes in material mechanical properties). 
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used as support for human decision, as well as being part of an automated 

control system (e.g. halting mechanism depending on asset condition). 

As the demand for continuous asset management increases, it also pushes 

the search of reliable and cost-effective ways of on-line monitoring [1.3]. It is 

therefore understood that, in the implementation of more favourable 

maintenance strategies, the automation is key, limiting as much as possible 

the manual inspection processes, to minimize costs and assure the efficient 

maintenance and operation of the assets. Hence, it is mandatory to acquire, 

process and communicate in an adequate way all the potentially useful 

signals that can be extracted from the system [1.4]. Reciprocally, the change 

of maintenance strategies has been fostered in the last years by the increase 

in options and technologies at the various stages of health monitoring 

(acquisition, transmission and processing of information), which are 

rendering a decrease in cost, thus making such policies applicable in new 

fields. 

The development of new technologies continuously increases the level of 

automation in maintenance, but there is still considerable room for 

improvement, most of all in some specific domains. This is the case of 

gearboxes, a mechanical element that is essential and widely used in different 

fields such as manufacturing, energy, or transportation, to cite a few. The 

automation of the health monitoring process in gearboxes is, at least, 

challenging. As an example, the extraction of lubricant oil samples is not 

usually an easy task, and the installation of sensors to monitor vibrations 

may not be easy, not to mention the cost of the sensors. This affects the two 

areas of condition monitoring that are the focus of this thesis. 

Regarding the lubricant oil, nowadays the most common way to monitor 

its health state in a machine part as a gearbox, is to take samples manually. 

The process is quite demanding as it involves a large degree of manual work, 

because, for example, the sampling point may not be easily accessible. Besides 

the laboratory analysis of the oil sample can take several days, during which 

the risk of a fault happening increases.  

The vibration analysis can be more easily automated, but it still presents 

serious problems. The installation of sensors to monitor vibration may be 

cumbersome, since it may most probably involve shutting down the asset, 

while the suitable sensing points may not be easily reachable. In any case, a 

high mechanical knowledge of the system is needed for both the installation 

of the sensors and for the analysis of the gathered information. An operator 

with large expertise is needed for the analysis of the vibration signal no 

matter if it is performed manually or automatically, because the parameters 
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of the automated analysis must be set (i.e. initial conditions and limits). 

Another limiting factor, that in some cases prevents the deployment of 

vibration measuring sensors is the fact that their installation may reduce the 

reliability of the asset as a whole. Finally, the cost of the sensors, although 

steadily decreasing, constitutes sometimes a major drawback. 

In this work, we are proposing two strategies for the on-line health 

monitoring, and the proposal is to apply them in one of the most typical 

mechanical components that can be found in machinery, i.e. gearboxes. Both 

techniques can be combined or used separately. On the one hand, a proof of 

concept for an on-line magnetoelastic sensor to determine the oil viscosity is 

proposed. This address the part of the condition monitoring dealing with the 

state of the lubricant oil in gearboxes, since a viscosity in the correct range is 

one of its most important properties to correctly perform its intended task. 

On the other hand, the health state of the gears inside a gearbox in a specially 

designed test stand is analysed through the current signal feeding the motor 

that drives the system, focusing specially in non-stationary conditions. This 

technique avoids the addition of additional sensors, as the feeding current is 

usually readily available in the control panel of the motor. Advanced signal 

processing techniques, such as wavelet analysis, have been applied to extract 

information of transients during speed transitions. 

The organization of this thesis reflects the above structure. Following the 

introduction, there is a chapter dealing with the magnetoelastic viscosity 

sensor and another describing the motor current signature analysis. Both are 

quite independent from each other but share the effort to establish and on-

line monitoring of the health state of gearboxes to implement a condition 

based maintenance scheme. In the rest of this introductory chapter some key 

concepts are explained which help establishing the context of the research 

work presented in this Thesis. 
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1 Overview of industrial maintenance strategies 
The importance of maintenance is such that it represents an average 4 % of 

the fixed assets costs in various industries, varying from 2-6 % for oil industry 

to 6/8% for steel and discrete manufacturing industries [1.5]. There is an 

enormous potential to moderate this cost since it is estimated that the amount 

can be reduced up to 50 % while a decrease in unforeseen accidents of 55 % 

can be achieved by applying the appropriate maintenance strategies. 

Several attributes must be considered when selecting the type of 

maintenance [1.6]. The choice involves different aspects such as the 

investment required, possible safety and environmental problems, 

approximate failure costs, the reliability of the maintenance policy, the 

measured or estimated mean time between failures or the mean time to repair 

the facility in case of shutdown among others. Certainly, some of these factors 

are not easy to evaluate because of their intangible and complex nature. In 

fact, selecting the best maintenance strategy is usually a big challenge in 

itself. 

There are three main different maintenance strategies [1.7] : 

Corrective maintenance (CM): A faulty component is repaired (or 

adjusted, or changed) after the fault happened. It is still a very common 

strategy and, in fact, it can be very adequate in cases where failure is not 

frequent and does not have a great impact on the component operation (e.g. 

light bulbs within a factory). 

Preventive maintenance (PM): A component is repaired in fixed time 

intervals regardless of the health state, before it reaches its useful life (which 

is defined as the period of time for which the asset will be economically 

feasible for use in a business, i.e. the asset is accomplishing the mission for 

which it was designed). This strategy is mainly implemented dealing with 

components that are under direct wear as well as on those subjected to 

fatigue, corrosion, oxidation or chemical instability, for instance. (e.g. the 

maintenance performed in cars, with interventions at fixed time or distance 

covered). 

Condition based maintenance (CBM): The health state of the component 

is periodically (or even continuously) monitored so that it is repaired in the 

opportune moment, upon perceiving indications of a malfunction, but before 

the fault has happened. For instance, certain components produce 

measurable signals of the beginning of the deterioration process such as the 

increase of vibration, noise or heat, which indicate a potential fault that must 

be prevented. In this strategy, the interval between measurements of the 
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health state and the time for the adequate maintenance action must be 

smaller than the time to failure. 

It is to be noted that, according to the International Standard (Figure 1) 

[1.8], condition based maintenance is officially reported as a particular type 

of preventive maintenance, where the interval between maintenance actions 

is driven by the condition instead of scheduled by ‘time’ or other inputs 

(preventive predetermined maintenance). However, for the sake of simplicity, 

during this Thesis we will distinguish between the three maintenance 

strategies (corrective, preventive, condition-based) as described above. 

 

Figure 1. Overall view of the different maintenance strategies [1.8]. 

Additionally, some authors identify a fourth maintenance strategy 

denominated proactive maintenance [1.9]. It is defined as the set of actions 

aimed to identify, detect and correct the root causes that can potentially lead 

to a failure. The maintenance action is then executed to amend the conditions 

that could cause the deterioration of the system. Proactive maintenance 

strategies study the function and the degradation of the asset to discover 

incipient faults and correct them, before the performance is affected. 

Beneficially, proactive maintenance enlarges the life-time of the asset, due to 

the early detection of the root causes of the failures, and to the concomitant 

maintenance actions carried out. For instance, in the case of lubricant oil, if 

detected to be degraded before it causes a failure, and changed before the 

lubricated system suffer any damage, the expected life of the asset is 

enlarged. In definitive, proactive maintenance can be seen as an evolution of 

CBM, based in similar signal information brought about by the monitoring of 

the asset condition. 
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Figure 2. So-called P-F curve showing the time intervals were typically 

each type of maintenance strategy takes place. P indicates the moment 

where a potential failure starts developing and first symptoms appear. F 

indicates the moment where the failure develops and the asset is no longer 

able to perform the tasks in a normal manner. 

Although no modern asset has been designed to last forever, in normal 

working conditions and with the adequate maintenance, it may last longer 

than the nominal lifetime. Figure 2 describes how each type of maintenance 

strategy is related to the condition of the asset and the time at which the 

maintenance is performed. The condition of the asset, represented by a 

relevant health index, is at its maximum value at the beginning, but start 

decreasing with time and decline rapidly towards a catastrophic failure. In 

Figure 2, the point P symbolizes a potential failure, representing a condition 

in which a functional failure does not affect the health of the system yet, but 

starts emitting signals (symptoms) anticipating the failure. The preventive 

maintenance must be scheduled before this P point. The potential failure is 

not detectable until the system presents measurable symptoms. This is when 

condition based maintenance should be performed. The assets can still 

continue working when a failure has begun, but eventually it will evolve to a 

functional failure (F) if the convenient actions have not been taken, causing 

the system to fail. Corrective maintenance is then necessary. It is worthy to 

highlight that, in real systems, combinations of these maintenance strategies 

are also implemented. 
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2 Gearboxes and traditional condition monitoring 

approaches 
Gearboxes are the basic mechanical systems for controlled power 

transmission. They are conceived to transmit torque from an axis to another, 

by means of toothed wheels (gears). Gearboxes have been known to mankind 

since ancient times3[1.10]. Today, they are widely used in transportation, 

impulsion, elevation, movement and, in general, in any application that 

implies the transmission of movement and torque. 

A gearbox is basically composed by gears separated in different axis 

(shafts) that engage between them. The gears have teeth designed to ensure 

that the pitch circles of the engaging gears roll on each other without slipping, 

thus providing a smooth transmission of the rotary movement from one axis 

to the next. For its correct operation, a gearbox also includes other necessary 

components such as 

• Shaft: connecting the gearbox to the external mechanical systems (e.g. 

engines) and to support internally the different gears. 

• Bearings: required to support the shafts to the housing and to reduce 

friction.  

• Lubricant: mandatory to reduce friction and to refrigerate the engaged 

parts. 

• Seals: impeding the leaking of lubricant out of the gearbox. 

• Housing: to enclose and robustly support the mechanical parts and the 

lubricant. 

 

Figure 3. Main elements of gearboxes. GPS test bench. 

                                            
3 The earliest known geared artifact is the so-called “south pointing chariot”. Dating from ca. 

2600 BC, it is a chariot with a quite complex differential gear train that supposedly was 

designed to point south no matter the direction in which it was moving.  
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The design of the gearbox is determined by the application, the 

environment, and the physical constraints of the system in which it is to be 

used [1.11] Until the onset of the industrial revolution the requirements 

weren´t very demanding, since the power transmitted was not large, and the 

speeds were low. Gear design was then based on testing and specialized 

knowledge obtained by accumulated practical experience. The increasingly 

demanding needs of the industrial revolution fostered the design and 

fabrication of more complex gears with increased performance, while also 

providing improved tools for their manufacture. These developments have 

continued until present days where gears are commonplace. 

Essentially, the configuration of the gearbox is defined by four main 

parameters: 

• Power to be transmitted. 

• Gear ratio required for reduction or multiplication. 

• Speeds. 

• Arrangement of shafting. 

 

Figure 4. Types of gearbox regarding the input and the output of the 

shafts [1.11]. 

The main arrangements of input and output shaft configurations can be 

described as parallel offset, concentric and right angle, as depicted in Figure 

4.  
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Two diverse types of gears are commonly used: spur and helical gears. 

Their shape is described in Figure 5. 

 

Figure 5. Comparison of spur and helical gear teeth with the contact line 

depicted for each of the cases [1.11]. 

Spur gears are straight-toothed gears, having radial teeth. Helical gears 

have the teeth cut in angle, making the meshing between gears more smooth 

and gradual than in the case of spur gears, generating less noise and vibration 

than them. Spur gears transmit the load by one or two gears at any time. 

They do not generate axial thrust. Helical gears, on the contrary, have an 

overlap in the axial and transverse planes. The load is shared between a 

sufficient number of teeth to allow a smooth transfer of load and a constant 

elastic flexibility. As helical gears generate axial thrust, double helical gears 

are also used. However, they must be adjusted axially, making their 

installation more complicated and requiring the use of more sophisticated 

bearings. Besides, helical gears are more complicated to be machined, making 

them more expensive. These shortcomings make spur gears highly 

widespread. 

The design of gearboxes must consider not only the transmission 

requirements, but also its expected endurance and many other aspects such 

as efficiency, noise generation, space and weight limitation, to cite some. 
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Besides, the physical environment (i.e. dust, humidity, corrosive atmosphere, 

etc) must be taken into account, as they have implications in the design and 

maintenance of the gearbox. 

2.1 Common problems and failures in gears  

Generally, gearboxes are critical components of complex machinery and take 

up a major role in the assets layout. This implies that faults in the 

transmission train may have ruinous consequences in terms of cost, 

environment and even safety, since the life of people can be put at risk. 

Additionally, in most of the cases, the replacement of a gearbox is generally 

quite expensive, and may involve the shutdown of the complete asset.  

To overcome these problems, gearboxes are designed and manufactured 

to be robust and reliable, but still failures occur that can produce severe 

malfunctioning [1.12]. Among them, those caused by bearings and gear teeth 

account for about 41 % of the cases, constituting the dominant causes of fault 

in a gearbox, which is why it is very important to monitor these elements. 

Specifically, in the case of gears, both the manufacturer and the user must 

take a system approach to the specification, design, installation, operation 

and maintenance of a gearbox in order to avoid the main failure modes, which 

can be identified as: 

• Pitting: Is a fatigue phenomenon that occurs also in bearings. It occurs 

as a result of repeated stress cycles, which lead to surface and sub-

surface cracks. They eventually make particles from the gear to be 

detached, generating pits. It is also known as spalling or flaking. 

 

 

Figure 6. Macro-pitting on the surface of a gear [1.13]. 

• Breakage: The breakage of the gear teeth is caused by the root bending 

stress. Tooth breakage is more usually caused by bending fatigue 

rather than from overload exceeding the gear fracture strength. 
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Figure 7. The breakage of a tooth in a gear [1.13]. 

• Scoring: Is a form of surface damage on the tooth flanks, which occurs 

when the lubricant film fails in its protective function, allowing metal 

to metal contact resulting in a local welding that is subsequently 

broken apart by the relative motion of the meshing gear teeth. 

Component surface material is transferred in macroscopic patches. It 

can also be known as galling or adhesive wear. 

 

 

Figure 8. Scoring on helical gear teeth [1.13]. 

• Eccentricity: It is a failure mode usually related to an inadequate 

manufacturing processes leading to a misalignment between the centre 

of the shaft and the geometrical centre of the teeth corona. 

Apart from the failures enumerated above, there are a number of 

additional problems that can also appear, regarding the complete condition 
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monitoring of a gearbox system. These can be related to misalignment or 

unbalance problems in the shafts, inadequate housing conditions, improper 

or corroded sealing systems that lead to lubricant fluid leakages, etc. As 

already pointed out, the present Thesis is focused on the monitoring of 

problems that are related either to the health state of the gears or to condition 

of the lubricant oil, which are introduced in section 3 below. 

2.2 Maintenance and condition monitoring of gearboxes 

If designed properly and used within the operational range, an adequate 

maintenance plan will prevent failures and keep the gearbox performing in 

proper conditions. In fact, the objective of the maintenance plan is to ensure 

a satisfactory performance at all times, including maintaining the 

transmission in a state of readiness during the periods that it is not in 

operation. 

During the initial operation, there are several specific maintenance 

actions that must be performed. Typically, after some hours of operation (the 

actual period depends on the application), the coupling alignments of the 

shafts, the torque of the housing bolts, and the piping of the lubrication 

system must be checked. Besides, at this time the lubrication oil must be 

replaced, making sure that the oil reservoir is thoughtfully cleaned. During 

this process, every precaution must be taken to prevent foreign matter from 

entering the gearbox, since they can cause the degradation of the lubricant 

oil or the mechanical components. 

In normal operation, a typical maintenance plan of gearboxes includes 

regular preventive maintenance actions. They are usually complemented by 

a manual monitoring of operation and inspection of the gearbox condition to 

determine its health state. This is a very important point since, typically, 

failures don´t appear suddenly, but they present an evolution that produces 

the appearance of certain symptoms in the assets. Among these, the most 

common ones are the raise of temperature and the onset of vibration. 

According to Jantunen, the probability of a mechanical failure along the 

time follows a bathtub pattern (Figure 9) [1.14]. The evolution of the failures 

is as follows: there is an initial state where the failure rate is quite high but 

decays with time. In this stage, the dominant failure cause is the so-called 

early ‘infant mortality’ failure. After that, the dominant cause of failure 

becomes the constant (random) failures. Finally, in the last of the stages, an 

increase in the failure rate can be observed, with wear-out failures as the 

dominant ones. 
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Figure 9. A bathtub curve illustrating typical pattern of failure 

probability (hazard) in gearboxes along the life time [1.14]. 

The mayor causes of a gear unit failure are improper lubrication and 

overload, which usually lead to the tooth wear problems indicated in previous 

section 2.1. Hence, the health state of the gearbox as a whole can be assessed 

through lubricant oil monitoring and by appraising the health state of the 

gears. This is the reason behind the traditional way of equipment monitoring, 

using the vibration signal and lubricant oil sampling [1.15]. 

The gear state in particular, is traditionally linked to the identification of 

certain vibration patterns as the development of gear vibration inside the 

gearbox (spur gears) is dominated by two phenomena: 

1. Effects that are generated in the ‘meshing tooth pair’ – that is, the 

single tooth pair that is in full contact at each moment as the gears 

rotate. Typical effects are tooth deflection under load, uniformly 

distributed part of initial machining errors (also called ‘running in’), or 

wear. They manifest in the tooth meshing frequency and its 

harmonics4. 

2. Variations between the teeth, which can be localized or distributed 

more uniformly around the gears. They manifest at other harmonics 

related to each gear rotational speeds. That is, vibration appears on 

the harmonics of the gear on which the faults are located. In this 

category we can find cracks, localized spalls, etc. 

                                            
4 Harmonic is any member of the harmonic series, the divergent infinite series. Every term 

of the series (i.e., the higher harmonics) after the first is the "harmonic mean" of the 

neighbouring terms [1.16]. 

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
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Quantitatively, the basic vibration generating mechanism in gears is the 

so called “transmission error” [1.17]. It is the relative torsional vibration of 

the two gears, corrected by the gear ratio. In other words, it is the linear 

relative displacement along the line of action. In the initial phase of failures 

vibrations generate at high frequencies and low amplitudes. As the failure 

evolves, vibrations move to lower frequencies and higher amplitudes. In this 

transition they may become audible and, in the final stages, they can even be 

readily felt. 

As the same geometric shapes always mesh in the same way, even with 

faults, the signals produced are deterministic. This means that the vibration 

signal can be used to determine the fault in the case of faulty gears. 

The usual methods to monitor and measure vibrations involve the use of 

specific sensor devices (accelerometers) together with signal conditioning and 

data acquisition electronics that sample high frequency signals. The 

accelerometers, usually composed of piezo-resistive crystals, produce signals 

with specific frequencies and amplitudes depending on the existing failure, 

the stage of degradation or the operating conditions. The acquisition can be 

manual (through inspection activities where a portable device collects 

periodically samples) or on-line (where a specific acquisition infrastructure is 

continuously mounted to retrieve samples, usually within much shorter 

periods of time that in manual mode). Once the signal is acquired, two of the 

most typical analytic methods involve time-based analysis and frequency-

based analysis. 

Time based analysis relies in the use of statistical parameters obtained 

from the time domain signal. Typically, these parameters are root mean 

square, average, peak value, crest factor, skewness, kurtosis, median, 

minimum, maximum, deviation, variance, clearance factor, impulse factor, 

and shape factor [1.18]. 

In the case of the frequency-based analysis, the most common trend is to 

perform a fast Fourier transform (FFT). As the faults in a rotating machine 

often occur at a particular frequency, a frequency analysis is well suited. The 

problem with this type of analysis is to find the right compromise between the 

accuracy in frequency and the size of the frequency band studied. 

This Thesis deals with novel methods to assess condition (lubricant 

viscosity and current) that will complement future application of on-line 

condition monitoring.  
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3 Assessment of lubricant condition 
A lubricant is essentially a fluid composed by a base oil (from either a mineral 

or a synthetic origin) and a set of additives that enhance the base oil 

properties.  Lubricant oil plays a major role in the working conditions of a 

gearbox. Its task is to prevent friction and wear among the different 

mechanical components that form the gearbox. At the same time, it provides 

refrigeration. 

In normal operating conditions, lubricant oil forms a film between the 

mechanical components preventing direct contact [1.19]. This film must be 

the right thickness. If it is too thick, the mechanical components are subjected 

to extra stress, spoiling the work of the gearbox and, in the contrary, if it is 

too low, the mechanical components will contact, generating damage on them, 

excessive heat and general malfunction in the gearbox. Thus, viscosity 

directly determines the lubrication function. 

Apart from preventing friction and wear, lubricants can also work as 

coolants, cleaning agents, electrical insulation and rust preventives. 

3.1 Essential lubricant oil properties and degradation 

Fluid degradation can be responsible for many kinds of equipment failure. A 

lubricant is subject to various operating conditions that may degrade it. 

Working conditions often include heat, moister, contamination (both internal 

and external), radiation, accidental mixing with other lubricant, trapped air 

and/or incompatible gases, etc. 

The care of the lubricant oil and its selection is one of the principal 

objectives that must be achieved for the system to work in optimum conditions 

along its useful life. 

Broadly, lubricant oil is adequate for further use if it has the specified 

viscosity, is dry (no water dissolved nor in emulsion), free of contaminants 

and contains sufficient concentration of key additives [1.20]. As a 

consequence, the main properties that require analysis are: 

• Moist and water: Moist and water levels must be kept as low as 

possible, as they are harmful not only for the lubricant, but also for the 

mechanical components (gears, bearings…). Water ingress through 

sealings or condensations tend to create emulsions, which can be 

catastrophic to the asset. An amount of 0,1 % of water ingress can have 

disastrous effects.  

• Acid number: Acid number measures the amount of alkaline needed to 

neutralize acid components in the lubricant oil. The increase of acid 

number can be an indicative of oxidation or contamination of lubricant 
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oil. For unused lubricant oil, the acid number is determined by the type 

and concentration of additives. As the additives are depleted, the acid 

number will varies. Comparing it to the total acid number gives an idea 

of the additives left. The oxidation of the base oil generally results in 

degradation products, with usually have an acid behaviour. Therefore, 

they may be spotted in the acid number. The organic acids that are 

created during the oxidation of the lubricant oil provoke corrosion, the 

formation of undesirable by-products such as varnish, sludge, etc.  

• Additives: Lubricant oil additives are added to minimize oxidation of 

the oil, as well as to enhance the oil’s anti-wear and extreme pressure 

performance. The chemistry of the additives is usually an industrial 

secret. As a result, the analysis will be limited to assess the oxidation 

inhibitors and anti-wear properties. 

• Cleanliness: High level of particles indicates either an increase in 

wear, intrusion of external contaminants or improper function of oil 

filters in the circuit.  

• Wear particles: Trend analysis of wear particles is a very effective tool 

to track changes in wear patterns. Analysis of wear particles should 

comprise analysis of individual elements and analysis of ferrous debris. 

• Viscosity: This property is the most important property of any 

lubricant oil, as it determines oil film thickness, which affects directly 

the health state of the mechanical components, as it prevents 

components to have direct contact among them, causing mechanical 

degradation.  

3.2 On-line lubricant condition monitoring 

The control of the above properties during the lifetime of the lubricant is of 

crucial importance to assess the quality status of the lubricant during its use 

and to prevent failures and downtimes in mechanical systems, caused by 

lubricant degradation. Several other norms and recommendations can be 

applied, mainly depending on the type of application or the work environment 

of the asset. 

The most common way of monitoring the lubricant oil is by means of 

manual sampling. However, during the last 15 years, as lubricant function 

and lubricated systems become more critical and miniaturization enables 

cost-effective on-line systems, on-line lubricant sensors have appeared. In 

this way, costly and slow analysis (that involves manual operation to extract 

and deliver samples to a laboratory) can be done in a matter of 

minutes/seconds. The monitoring can evolve from a monthly into a daily 

frequency. Several systems can be mentioned here: 
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Table 1. Some sensors for online monitoring the quality of lubricant oil.  

Sensor Properties measured Measuring principle 

Oilhealth [1.21]  Health index – Is an 

aggregated index taking into 

account oxidation (acid 

number), additives and water  

Optical – Light 

passes through a 

RGB sensor array 

Oilwear [1.21] Wear particles - determining 

the origin and helping in the 

condition monitoring of the 

whole asset not just the 

lubricant oil 

Optical – count and 

shape of particles 

Fluidscan [1.22] TAN, TBN, oxidation, water 

nitration, sulphation, glicol, 

additives AO, AW 

Infrared analyser 

ANALEXrs 

[1.23] 

Water and acid numbers Dielectric sensing 

On-Line Metallic 

Wear Debris 

Sensor [1.24] 

Simultaneous quantification of 

metallic composition, size 

category and particle count. 

Not availeble 

Eaton chip 

detection system 

[1.25] 

Monitor cauntities of debris. 

Avility to burn off debris. 

Dielectric 

 

As introduced before and explained in detail in Chapter 2, viscosity 

reflects the dynamic (kinematic) and static properties of fluids.  

It is especially interesting to monitor lubricant oil viscosity, as it is 

directly related with the oil film thickness between the mechanical 

components, which in turn is the root to many faults that lead to catastrophic 

failures.  

However on-line viscosity measurement has not evolved as much as the 

monitoring of the rest of parameters. Two main types of devices exist for 

measuring viscosity: displacement-based and vibration- based [1.26]. Solid 

micro-displacement based sensors, which are based in methods used in 

laboratory conditions (capillary, rotary and dropping ball), are difficult to 

translate to on-line analysis. For on-line measurements, vibration based 

techniques, ranging from macro vibration mechanical methods to micro-

vibration methods are more suitable. It is in this last family (micro-vibration 

method) where magnetoelastic viscosity sensors are inscribed. 

In this Thesis, a magnetoelastic kinematic viscosity sensor for on-line or 

in-line detection is developed. The main advantage of the sensor proposed is 

the ability to measure in a wide range of viscosity values (32 to 320 cSt), which 

is not known to any other sensor commercially available. 
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4 Motor current signature analysis 
The health monitoring by means of vibration analysis is not widespread 

because it has several drawbacks. First, sensors must be installed in the asset 

to be monitored, often in small spaces and difficult places to reach. Therefore, 

high knowledge of the mechanical design of the asset is needed for the 

installation of the sensor in order to find the right location that will maximize 

the desired signal and minimize other noises. Additionally, the cost of sensor 

purchase and installation can also be an issue. Although the price of the 

sensors has dropped dramatically in the past years, they are still perceived 

as an expensive piece of equipment, not worth their potential benefits. 

In this Thesis, the use of internal signals is proposed for monitoring the 

health of the gearbox. In particular, it focuses on the current signal of the 

electric motor that drives the gearboxes. Current signal is already available 

in these systems where a control is used. Examples span from drivetrain 

connections between generator and gearbox in aerogenerators to actuation 

mechanisms in aircrafts (e.g. primary and secondary control systems in flaps, 

etc). The monitoring methods relying in current signals are especially focused 

on a first level of condition analysis related to ‘anomaly detection’ [1.2]: a 

‘screening’ mechanism that identifies anomalous patterns and triggers 

further monitoring and diagnosis actions. In principle, internal signals give 

an economical approach regarding condition monitoring since they avoid the 

expenditure and implementation problems of adding sensors, although they 

may require complex signal processing. 

Analysing the motor current signature is an indirect way of measuring 

the vibration generated by a mechanical fault. If a fault condition does exist, 

the effective load torque varies with the rotor position. Load fluctuations 

involve speed changes in electric motors. As a result of speed variations, 

adjustments in the per unit slip happen which consecutively cause shifts in 

the sidebands across the line frequency [1.27]. This is the principle in which 

the motor current analysis relies. 

Motor current signature analysis has been used traditionally for the 

diagnosis of electric motor condition [1.28]. The condition of the winding, 

broken rotor bars and the internal bearings has been assessed. However, the 

analysis the health state of gears trough motor current has been scarcely used 

before in research works. 

This Thesis assumes that the challenge in the identification of mechanical 

anomalies from current analysis may be related with the way that current 

signals are acquired and analysed. This is summarized in two aspects: The 

use transient operation intervals for data collection, and the analysis of such 



22 

data by traditional techniques (e.g. Time-domain, FFT) or by less traditional 

ones (i.e. wavelets) 

Concerning data collection, the analysis of mechanical faults, as 

traditionally done through vibration signals, is normally based on a repetitive 

collection of signal ‘samples’ under continuous operating conditions (e.g. load, 

speed) in order to average them and reduce noise [1.29].  

However, transients are commonplace in the life of assets, and especially 

in the case of gearboxes. In the normal basis operation, it is very difficult to 

find any moment were an asset is not working in transitory conditions, either 

in load or in speed. In the case of gearboxes, the most common strategy of 

condition monitoring is to avoid these variations and perform some specially 

designed tests, making the gearbox turn at constant speed and charge. This 

approach has two drawbacks: First, it implies an intrusive way of performing 

the data acquisition since the operator must set the machine to some specific 

working conditions where the continuous operation can be recorded. Second 

transient operations (especially when there is an increase in load or speed) 

can include important information about the machinery condition that can be 

unnoticed during continuous operation regimes. Thus, the idea of recording 

data in transient regimes seems very relevant to maximize information 

extracted from the current signal analysis.  

Concerning the analysis of the acquired, the most common trend in 

current signal analysis is the application of time domain analysis (using 

characteristic values) and frequency domain (spectrum) analysis, as well as 

Cepstrum analysis (the result of taking the inverse Fourier transform (IFT) 

of the logarithm of the estimated spectrum of a signal [1.30]). These signal 

analysis techniques are similar to the techniques used in the case of detecting 

problems in the motor itself and to the analysis of vibration data coming from 

accelerometers. 

However, the use of transients in the signal adds complexity to the 

analysis. Typical signal analysis techniques, such as FFT may not be 

adequate. Having this in mind, wavelet analysis has been suggested as more 

adequate method for the case of transient analysis [1.31]. The Fourier 

analysis consists in breaking up a signal into sine waves with different 

frequencies. Similarly, a wavelet analysis consists in the breaking-up of a 

signal into shifted and scaled versions of a function called the mother wavelet 

[1.32] which can be of different types as in [1.33]. Figure 10 displays two 

different mother wavelets of the types used in this work.  
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Figure 10. Haar and Daubechies 15 mother wavelets.  

As in the case of the Fourier transform with FTT, a discrete wavelet 

transform exists, that is more efficient computationally. 

The main advantage of the wavelet analysis over FFT is that transients 

can be analysed and that the resolution can be tuned depending on the 

frequency at high frequencies the resolution is higher in time and lower in 

frequency while, at low frequencies the inverse happens. 

5 Objectives and structure of this thesis 
This Thesis focuses on the analysis of novel technologies that can be utilized 

for on-line condition monitoring, and particularly for the monitoring of 

mechanical faults in gearboxes. The objective of the Thesis is to advance in 

the design of a system that monitors a gearbox in normal operation. The 

technologies presented measure two specific indicators of the health state: 

lubricant viscosity and motor current.  The Thesis analyses their suitability, 

monitoring performance and potential applicability. The signal acquisition, 

processing and maintenance decision support have been analysed for each of 

the particular indicators measured. 

Concerning lubricant viscosity, a magnetoelastic kinematic viscosity 

sensor for on-line or in-line measurements is developed. The main advantage 

of the sensor proposed is the ability to measure in a wide range of viscosity 

values (32 cSt up to 320 cSt), which is not known to any other sensor 

commercially available. 
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Concerning current analysis, being is a very novel tool for identifying gear 

anomalies, vibration analysis from accelerometers will be first used as a 

reference method to assess the performance of the novel current signals based 

analysis, as a tool for determining gear faults. Afterwards current signals are 

directly analysed using time-based and frequency based methods. 

A gearbox test bench is used to reproduce different faults and acquire data 

at different operating conditions. The analysis of transients in speed, 

maintaining the load fixed, is addressed. Wavelet analysis is selected as a 

technique for the analysis of transients in speed. It is expected that this 

combination (the use of transient information from motor current, and the 

use of wavelets to analyses this data) will maximize the value of motor 

current signal for condition monitoring in a gearbox, enabling thus its 

widespread usage. 

The structure of the chapters is as follows:  

Chapter 1 Introduction presents the context of the Thesis inside the 

subject of the condition monitoring of gearboxes. First, an overview of 

different maintenance strategies is done, what gives the frame for the 

condition monitoring techniques that will be disclosed in detail in chapters 2 

and 3. 

The traditional approaches for determining the health state of a gearbox 

are presented., introducing the most common causes of failure and how they 

have been avoided by condition monitoring up to date. 

The importance of lubrication is highlighted. Explaining the lubricant oil 

properties and how they change as the oil is degraded. Also, an overview of 

how lubricant oil is currently monitored is displayed. 

Last, an overview of current signature analysis is done, explaining 

shallowly the working principles, and how they will be applied in the context 

of this Thesis. 

Chapter 2 Magnetoelastic sensor for on-line monitoring of lubricant oil 

viscosity is centered in the development of a magnetoelastic sensor for the 

monitorization of lubricant viscosity. The principles of lubrication of a 

gearbox are introduced, with an explication of the different lubrications 

regimes that be found in gearboxes. The importance of viscosity for a correct 

lubrication is highlighted.  

The difference between kinematic and absolute viscosity is revealed, 

together with the classification of the different viscosity of lubricants oils as 

determined by the most used indexes (SAE, ISO and military specification 
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index). The main laboratory methods for viscosity measured are also 

introduced in this chapter. 

The importance of viscosity, and how an incorrect viscosity could affect 

the asset is accentuated, focusing on the causes for the inadequate viscosity. 

A state of the art of on-line viscosity sensors is displayed. Special 

attention is given to other on-line magnetoelastic viscosity sensors. After this, 

the principles governing magnetoelastic materials and how it is possible to 

take profit of them for their use in the design of an on-line magnetoelastic 

viscosity sensor are explained. 

The design of two prototypes is exposed. The first one is intended as a 

proof of concept of the technology, and another the second as a prototype of a 

practical device for the measurement of the viscosity of different oils. The 

signal processing to correlate the magnetoelastic response with the viscosity 

of the oils is described, including the use of a phenomenological model. 

Likewise, the relationship between the temperature and the measurements 

has been studied. 

Chapter 3 Motor current signature analysis describes the procedure to 

monitor the health state of a gearbox analyzing the current feeding the motor 

that drives the gearbox. 

The theoretical background is exposed, disclosing the mechanism that 

permits mechanical faults in the kinematic chain to be detected in the stator 

current. 

The techniques used to analyze the signal, for the case of transient speed 

of the motor, are presented. 

Then the experimental part of the work is explained describing the test 

bench, the modifications introduced, the design of experiments, the faults and 

how the data pool obtained is organized. The process for data reduction and 

analysis is explained. Finally, the results are examined and discussed. 

As a complement, a similar analysis is performed. 

Chapter 4 Conclusions resumes the main achievements of the work 

performed in this Thesis. 
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Magnetoelastic sensor for on-line 
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This chapter focuses on the development of a magnetoelastic sensor for the 

on-line determination of the viscosity of lubricant oils, as a proof of concept of 

the technology. The motivation and the objectives for measuring viscosity, the 

design of the magnetoelastic sensor, the development of the prototype, and 

the results achieved will be described in detail. 

The term lubrication is applied to the process and/or technique employed to 

reduce friction between, and wear of one or both, surfaces in proximity and in 

relative movement to each other [2.1]. This is accomplished by interposing a 

substance, called a lubricant, between the moving surfaces. When the 

lubrication of a moving machine is performed by a fluid, the load applied to 

the system is, most of the times, transmitted by the pressure generated 

within the liquid, due to the frictional viscous resistance to motion of the 

lubricating fluid between the moving surfaces of the system. This is the case 

occurring in the lubrication of gearboxes where the lubricant is normally in 

liquid state and is commonly referred as lubricant oil, in contraposition to 

lubricant ‘greases’, which have a denser appearance. Greases are usually 

employed in sliding mechanisms such as bearings, slides and guide ways. 

Concerning the maintenance of gearboxes, including their rotating parts, 

such as rolling bearings and gears, it is important to state that almost any 

problem appearing during their function will be reflected in the state of the 

lubricant oil, as it collects the particles and other strange substances that can 

be formed due to the malfunction. In addition, we must take into account that 

the health state of the lubricated parts impacts not only on the correct 

performance of the gearbox, but on the whole asset. That is why it is of 

paramount importance to monitor the health state of the lubricant oil in order 

to assess the health condition of the gearbox.  

The viscosity of the lubricant oil is one of the most important parameters to 

be monitored. Therefore, we have concentrated our efforts in establishing a 

method to determine the viscosity of the lubricant oil, which could be 

implemented as an on-line monitoring system for assessing the health state 

of gearboxes. 

The first part of this chapter presents a general overview of lubricants, where 

the role of lubricants and the different types of lubrication are described. As 

this investigation is centered on gearboxes, we focus on petroleum based 

lubricant oils, since it is the most suited type of oil and practically the only 

one in use in such application. Some information on its manufacturing 

process and common classifications in use are also given. The importance of 

viscosity as an oil parameter and the need to monitor it on-line is highlighted. 

https://en.wikipedia.org/wiki/Lubricant
https://en.wikipedia.org/wiki/Viscosity
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Next, the existing approaches for on-line viscosity measurement are briefly 

reviewed, highlighting the benefits and suitability of the magnetoelasticity-

based sensors for this task. The basic principles of magnetoelasticity and 

magnetoelastic resonance are examined, and the components and materials 

of a magnetoelastic viscosity sensor are presented. 

The chapter ends with the most important part in which the design and 

development of a laboratory prototype of on-line magnetoelastic viscosity 

sensor is described. The experiments performed to test the demonstrator, and 

the results obtained in various situations are presented and analyzed. The 

applicability of this prototype in an on-line, real-time system to assess the 

lubricant oil health state is examined. 
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1 Gearbox lubrication and viscosity monitoring 
The lubricant oil plays a major role in the working conditions of a gearbox. Its 

task is to prevent friction and wear among the different mechanical 

components that constitute the gearbox. Additionally, lubricants can also 

work as coolants, cleaning agents, electrical insulation and rust preventives. 

Historically, the first used lubricants were based on crude lumps of 

animal fat, in a time when the mechanical parts of early machinery were still 

made of wood [2.2]. Eventually, iron and brass we introduced in moving parts, 

needing new lubricants. Animal and vegetal oils and well as mixtures of both 

types of oils emerged for this second-generation of lubricants. Mainly tallow, 

olive oil, castor oil, peanut oil and rape oil were first used and after, about 

16th century, whale oil and porpoise oil started to be widely used. In 19th 

century petroleum-based lubricants came into play, rapidly dominating the 

lubricant scene. Considering that early machines were relatively simple, 

there was no need for lubricants more sophisticated than simple crude oil. As 

larger, faster and more sophisticated machines were developed, the 

lubricants evolved concomitantly. The development of superior quality 

lubricants, the use of special additives and the introduction of automatic 

dispensations systems have accounted for the major advances in the science 

of lubrication. 

1.1 Modern gearbox lubrication 

Today, there are basically five different types of lubricants, depending on 

their composition, origin, or nature: 

• Petroleum based oils. 

• Synthetic oils. 

• Vegetable based oils. 

• Grease. 

• Solid lubricants. 

• Gas lubricants. 

Petroleum-based oils and synthetic oils are commonly the preferred 

lubricants because they provide good resistance and superior lubricating 

capabilities, especially in comparison with vegetable and animal oils, and can 

be circulated to remove heat and contaminants, which is a big advantage over 

solid lubricants. They can also be easily cleaned by filtering and replaced, and 

are more adequate for small nearing clearances. Another benefit of liquid oils 

is that the quantity of lubricant can be monitored more precisely. Petroleum-

based oils are refined from crude oil. They are predominantly composed of 

hydrogen and carbon (thus the name hydrocarbon), even though lesser 

amounts of other elements can be found, such as sulfur, nitrogen, etc. 

Synthetic oils consist of chemical compounds that are also obtained from the 
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synthesis of petroleum or other raw materials, but they are made from highly 

refined products, and as a consequence the final product is more 

homogeneous. They are more adequate for applications under extreme 

conditions, that is, very high or very low temperatures and/or extended 

service life. 

Additionally, current lubricants also include diverse types of additives, 

chemicals that are added in quantities of a few weight percent to improve the 

lubricating capacity and durability of oils [2.3]. This practice gained general 

acceptance about 1940 and has since then been highly developed to provide, 

nowadays, an enormous range of different additives. The specific purposes of 

lubricant additives are: 

• Improve the wear and friction characteristics. 

• Enhance the resistance to oxidation, the control of corrosion, and the 

control of oil contamination by reaction products, wear particles and 

other debris. 

• Upgrade the characteristics of the lubricant by reducing the pour point 

(the temperature at which a liquid becomes semi-solid, and loses its 

flow characteristics) and inhibiting the generation of foam. 

• Prevent the excessive decrease of the viscosity of the lubricant at 

elevated temperatures. 

Carefully chosen additives are extremely effective in improving the 

performance of the lubricant oil. The manufactures of lubricant additives 

usually maintain secrecy on the composition and other details of their 

products. 

1.2 Lubrication regimes  

Petroleum-based and synthetic oils are liquids at room temperature. In 

normal operating conditions, the lubricant oil forms a film between the 

moving mechanical components preventing direct contact. This film must be 

of the right thickness as, if it is too thick, the mechanical components are 

subjected to extra stress, spoiling the work of the gearbox, and if it is too low, 

the mechanical components will be in direct contact, generating excessive 

heat, possibly damaging the components and producing, in general, a 

malfunction of the gearbox.  

There exist four generally accepted regimes (understood as ways for 

providing lubrication) that help obtaining the adequate film thickness [2.3]: 

1. Hydrodynamic lubrication or thick film lubrication: in which the oil liquid 

layer is kept between the moving surfaces by viscous drag, that is, by the 

effect of the relative movement itself. 
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2. Hydrostatic lubrication, in which the oiled surfaces are fully separated by 

a lubricating film of liquid or gas that is forced between the moving 

surfaces by an external pressure, generated by an external pump. If a 

continuous supply of pressurized lubricant is maintained, a complete 

lubrication film is present between the surfaces even at null relative 

speed. 

3. Elasto-hydrodynamic lubrication, which results from the combination of 

three effects: hydrodynamics, elastic deformation of the metal surfaces, 

and the increase in the viscosity of the lubricant oil under extreme 

pressures. These effects combine as follows: as pressure and charge on the 

mechanical components increase, the viscosity of the lubricant oil 

increases. As lubricant moves to the contact zone, both contact surfaces 

are elastically deformed due to the pressure created by the lubricant oil. 

In the contact zone, the hydrodynamic pressure developed in the lubricant 

oil causes an additional increase in viscosity, which is enough to separate 

both contact surfaces. Due to the high viscosity and to the small time 

between cyclic contact in the lubricated area, lubricant oil cannot escape, 

assuring the separation between the contact surfaces. 

4. Boundary and extreme pressure lubrication, in which the lubrication 

mechanisms involved are classified in terms of relative load capacity and 

limiting frictional temperature. In general, this lubrication regime 

involves complex phenomena and several specialized modes of lubrication 

such as adsorption, surface localized viscosity enhancement, amorphous 

layers and sacrificial films. 

In close relation with this, the way in which the lubricants are used in 

gearboxes also conditions the effectiveness of the lubrication. There are two 

basic modes of lubrication mainly employed in gearboxes: The most basic one 

is splash lubrication, one kind of hydrodynamic lubrication, which is the 

normal method for lubricating spur, helical, bevel and worm gears. In this 

mode, the gears simply dip into a bath of oil as they rotate. For higher speed 

units, hydrostatic lubrication is needed and normally spray lubrication is 

used. Engineered spray lubrication is generally provided using shaped 

nozzles with oil at a certain circulating pressure to ensure that the oil reaches 

the contacting surfaces, as centrifugal forces and escaping air flow will tend 

to deflect the oil jet from its objective. 

In any case, for the regimes that usually are present in the lubrication of 

the gearboxes, the control of the viscosity is of extreme importance to avoid 

damaging the lubricated asset. 
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1.3 Definition of viscosity 

The property of the lubricant oil that is directly related with the thickness of 

the oil film is the viscosity. The viscosity of a medium is defined as the 

resistance to the movement, or the change in shape of neighboring portions 

of such medium, relative to one another [2.4]. In plain words, viscosity 

denotes opposition to flow, which is caused because the part of a fluid that is 

forced to move carries along, to some extent, the adjacent parts. Viscosity can 

also be interpreted in terms of the internal friction between the molecules of 

the medium, which fight against the development of velocity differences in 

the medium. 

Quantitatively, the viscosity of a medium can be represented by two 

related quantities: the kinematic and the dynamic or absolute viscosity. The 

dynamic viscosity represents the tangential force per unit area required to 

move one horizontal plane of the medium with respect to another plane, while 

maintaining a unit distance apart [2.5]. This definition is exemplified in 

Figure 1. The kinematic viscosity is the ratio of the dynamic viscosity to the 

density of the medium. 

 
Figure 1. Definition of dynamic viscosity: it is the tangential force per 

unit area required to move one horizontal plane with respect to another 

plane, when maintaining a unit distance apart in the fluid [2.5]. 

The viscosity of the oil (both kinematic and dynamic) is determined 

mainly by the size of the molecules composing the lubricant: the larger the 

molecule structures are, the higher the viscosity is. In the case of the 

petroleum-based lubricants, the viscosity may vary depending on the method 

of refining, generating different viscosity rating lubricants (from 2000 cSt to 

10 cSt measured at 40 C). The viscosity and its dependence with the 

temperature can be largely modified by the incorporation of adequate 

additives. 

1.4 Viscosity measurement 

1.4.1 Kinematic and dynamic or absolute viscosity 

Although several engineering units are used to express viscosity [2.6], the 

most common by far for lubricant oils are the centistoke (cSt) for kinematic 

viscosity and the centipoise (cP) for dynamic (absolute) viscosity. The Stoke 

(St) is the measuring unit of the centime-gram-second (CGS) system of units 
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for measuring the kinematic viscosity. Therefore, one cSt corresponds to 1 

mm2/s:  

1 St = 1 cm2/s = 0.0001 m2/s     1 cSt = 1 St/100 = 1 mm2/s 

The Poise (P) is also a unit based in the CGS system. One centipoise (cP) 

corresponds to one mPa s: 

1 Poise (P) = 1 g/(s cm) = 1 dina·s/cm2 = 0.1 Pa s   1 cP = 1 P/100 = 1 mPa s 

Numerically, the kinematic viscosity expressed in cSt is related to 

absolute viscosity expressed in cP by the fluid’s specific gravity (SG), which is 

unit-less: 

cSt = cP/SG. 

1.4.2 Viscosity index 

The viscosity of any fluid changes with temperature, increasing as 

temperature is lowered, and decreasing as temperature is increased. The 

viscosity can also change with the variation of the specific operating 

conditions (e.g. effort, cutting speed, etc.). Additionally, as stated above, the 

use of additives can significantly improve the viscosity temperature behavior. 

These additives are usually high molecular weight polymers that are 

dissolved in the oil and can change its shape from spheroidal to linear as the 

temperature is increased. This effect partly offsets the decline in base oil 

viscosity with temperature. The advances in the quality and properties of 

additives gave way to the development of a completely new family of 

lubricants known as multigrade oils. 

The parameter viscosity index was introduced in 1929 with the intention 

of quantifying the variation of the viscosity of lubricant oils with temperature 

[2.7]. In those days, it was known that Pennsylvania crude oils were better 

than the Gulf Coast (Texan) crude oils [2.3]. Pennsylvania crude had the best 

viscosity temperature characteristics while the Gulf Coast crude had the 

worst, since its viscosity varied much more with temperature. Both oils have 

the same viscosity at 210 °F (98.9 °C) and they were initially selected as 

reference oils. 

The viscosity index is an entirely empirical parameter, which compares 

the kinematic viscosity of a given oil with the viscosities of those reference 

oils. The Gulf Coast oil, whose viscosity varied a lot with temperature, was 

assigned a viscosity index equal to zero (VI = 0) at 100 °F (37.8 °C). The 

Pennsylvania oil was assigned a viscosity index equal to one hundred 

(VI = 100) at the same temperature. The viscosity index of the oil is given 
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relative to these two extreme values. An explanatory graphic can be seen in 

Figure 2. 

 
Figure 2. Evaluation of viscosity index [2.3]. U is the viscosity of the oil 

of interest, L the viscosity of the 0 VI index oil and H is the H is the 

viscosity of the 100 VI oils. 

Today, the viscosity index of a petroleum-based oil is determined 

according to the ASTM D 2270 norm [2.8]. This norm generates a number 

used to characterize the variation of the cinematic viscosity of a petroleum 

product with temperature. The determination of the viscosity index is based 

on measurements of the cinematic viscosity to 40 °C and to 100 °C for oils of 

similar kinematic viscosity. The bigger the viscosity index is, the lower the 

effect of the temperature is. 

1.4.3 Classification of lubricant oils 

The most used indexes to classify the viscosity of lubricant oils are: the SAE 

(Society of Automotive Engineers); ISO (International Organization for 

Standardization); and military specification indexes [2.3]. These 

classifications are principally based on the viscosity of the oil, and are 

indirectly related to the quality of the oil, content of additives, performance 

or field of application. The most recent SAE viscosity grade classifications 

establish eleven engine-oil and seven transmission-oil grades [2.7]. 

Concerning engine oils, the so-called monograde oils only meet only one 

SAE viscosity grade. On the contrary, multigrade oils have low viscosities at 

low temperatures but higher viscosities at higher temperatures. This is 

achieved by adding viscosity improvers (polymeric additives) to the oil. The 

viscosity at low temperatures is noted with a W suffix, which stands for 

winter. For climates where the temperature regularly drops below zero 

Celsius, engine and transmission oils are formulated in such a manner that 
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they give low resistance at start, i.e. their viscosity is low at the starting 

temperature. For example, the nomenclature SAE 10W50 indicates the 

viscosities of the oil measured at -18 °C and at 100 °C. The oil behaves as a 

SAE 10 at low temperatures and as a SAE 50 at high temperatures. 

The SAE J306 classification for transmission (gearbox) oils is very similar 

to that of engine oils. The only difference is that the winter grade is defined 

by the temperature at which the oil reaches the viscosity of 150.000 cP. This 

is the maximum oil viscosity that can be used without causing damage to the 

gears. The classification also permits multigrading. 

It should also be noted that transmission oils have higher classification 

numbers than engine oils, simply to make it easier to differentiate between 

both types of oils. It does not mean that transmission oils are more viscous 

than the engine oils. The transmission oil viscosities for different SAE grades 

are shown in Table 1. 

Table 1. SAE classification of transmission oils [2.3]. 

 

The ISO (International Standards Organization) viscosity classification 

system [2.9]was developed in the USA by the American Society of Lubrication 

Engineers (ASLE) and in the United Kingdom by The British Standards 

Institution (BSI) for all industrial lubrication fluids. It is now commonly used 

throughout industry. Figure 3 displays an equivalence table of the different 

viscosity classifications, along with the corresponding values of the Kinematic 

viscosities and the Saybolt viscosities, called the Saybolt Universal second 

(SUS) and specified in the ASTM1 D2161 procedure [2.10]. 

 

                                            
1 ASTM stands for American Society for Testing Materials, now simply ASTM international. 
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Figure 3. Equivalence table of the ISO VG, AGMA Grade, SAE crankcase 

and SAE Gear viscosity classifications with their corresponding values 

of the Kinematic and Saybolt viscosities [2.11]. 

In definitive, a lubricant oil with the first number as low as possible offers 

a better protection at low temperatures, whereas for a better protection at 

elevated temperatures a high number in the second position is required. 

1.4.4 Measuring in laboratory 

To determine experimentally the viscosity of oil, the kinematic or the absolute 

viscosity can be measured. Kinematic viscosity is traditionally quantified by 

measuring the time that it takes a sample of oil to travel through the orifice 

of a capillary under the force of gravity. The procedure is schematized in 

Figure 4. The orifice of the kinematic viscometer tube produces a fixed 

resistance to flow. The time taken for the fluid to flow through the capillary 

tube can be converted directly to a kinematic viscosity using a simple 
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calibration constant provided for each tube. For fluids with different viscosity, 

capillaries with different range of sizes exist in different norms. The dominant 

procedure for performing kinematic viscosity measurements is ASTM D445 

[2.12]. The value of the kinematic viscosity, expressed in cSt, and measured 

at 40 °C, is the one established in the norm ISO 3448 (the international 

standard) for the kinematic viscosity grading system. 

 

Figure 4. Gravity Flow U-shaped Glass Tube Capillary Viscometer 

ASTM D445-97 [2.13]. 

Absolute viscosity is measured in relation to the resistance to flow when 

a controlled external force (pump, pressurized air, etc.) forces oil through a 

capillary (ASTM D4624). Alternatively, it can be determined by forcing the 

movement of a body through the fluid, such as a spindle driven by a motor. In 

either case, the resistance to flow (or shear) as a function of the input force is 

measured, reflecting its dynamic viscosity. 

There are several types and embodiments of absolute viscometers. The 

Brookfield rotary method depicted in Figure 5 is the most common. Absolute 

viscosity measurement has historically been used for research applications, 

quality control and grease analysis within the field of machinery lubrication. 

Procedures for testing absolute viscosity in the lab by the traditional 

Brookfield method are defined by ASTM D2983, D6080 and other norms. 



44 

 

 

Figure 5. Rotary (Brookfield) Viscometer conforming to the procedure 

ASTM D2983 [2.13]. 

The lubricant oils utilized in this work were characterized using 

laboratory equipment. The kinematic viscosity was measured as described 

before using the procedure ASTM D445 [2.12], in a CANNON CAV 2100 fully 

automated viscometer, shown in Figure 6. It has a nominal accuracy of 0.1 

cSt. 

 

Figure 6. CANNON CAV 2100 automatic viscosimeter [2.14]. 
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The density of oils was obtained using the norm ASTM D4052 [2.15]. A 

small volume (approximately 0.7 mL) of liquid sample is introduced into an 

oscillating sample tube and the change in oscillating frequency caused by the 

change in the mass of the tube is used in conjunction with calibration data to 

determine the density of the sample. 

1.5 Variation of viscosity with degradation 

Most mineral oils have molecules of an assortment of sizes. Oils with high 

viscosity have molecules with a predominantly large size while the contrary 

holds for low viscosity oils. The change in oil viscosity is caused by the 

modification of the average size of its molecules. 

Although small changes in viscosity may be normal (for example seasonal 

changes in oils with added viscosity index improvers [2.16]), usually the 

change in oil’s viscosity is the first indication of a more serious problem. 

Depending on the nature of the fault, the viscosity of the oil may increase or 

decrease. There are also malfunctioning situations in which the oil viscosity 

doesn’t change. 

1.5.1 Effects on the asset of inadequate viscosity of the lubricant oil 

An oil viscosity different than that recommended by the manufacturer may 

cause a problem in the asset. Low viscosity may open the way for contact 

between the surfaces that are prevented of doing so with the right viscosity, 

potentially producing undesired effects as wear, high mechanical friction, loss 

of energy, heat generation, oxidation, leakage, increase of sensitivity to 

particle contamination, and worse performance at high temperatures, high 

charges and low speed. On the contrary, an increase of viscosity may prevent 

the oil from arriving to the interfaces to be lubricated, generating problems 

as excessive heating, oxidation, generation of varnish and sludge, cavitation, 

inadequate flux for bearings and gears, higher energy consumption, lower 

anti-foam and anti-emulsification efficacy and lower capacity to be pumped, 

specially at low temperatures. 

1.5.2 Causes for inadequate viscosity 

Possible causes for a low viscosity value are: the mixing of fuel with oil; 

electrostatic removal of insoluble oxides; shear of improvement additives; 

lubricant cracking; inadequate SAE/ISO grade of the lubricant oil; or 

contamination. On the other hand, the causes for high viscosity are: addition 

of a more viscous make-up oil; refrigeration fluid contamination; presence of 

water; contamination by other lubricant oils; inadequate SAE/ISO grade 

lubricant oil; light boiling hydrocarbon fractions; together with other chemical 

phenomena as oxidation or polymerization. As mentioned before, a degraded 

oil can show no viscosity change, due to a compensation of two 



46 

 

counterbalancing effects happening simultaneously. This is the case in a 

lubricant oil contaminated by fuel and by soot: the presence of fuel decreases 

the viscosity, but soot increases it. 

In the case of an asset in good condition, and providing that the lubricant 

oil is not contaminated by water, the degradation process evolves as detailed 

in Figure 7. The degradation process is the oxidation of the molecules forming 

the lubricant oil in the case that it is not contaminated. It is measured with 

the Fourier transform infrared spectrometer (FTIR) oxidation number, 

depicted in blue in the image. There are three steps towards a normal 

degradation process of the oil (i.e. there is no external contamination, working 

conditions are normal, etc.). First, a depletion of the antioxidants is always 

occurring, but the viscosity of the oil is not affected, as the base lubricant oil 

is not being degraded. In a second step, after the antioxidants have been 

oxidized, other additives and the base oil start to react, causing an increase 

in viscosity. In the third stage, oil degradation produces varnishes and sludge, 

which can potentially cause damage to the asset and may have catastrophic 

effects. Therefore, the increase of viscosity is an excellent indication of the 

loss of the optimum properties of the lubricant oil. 

 

Figure 7. Viscosity variation with the oxidation of lubricant oil.  

The usual strategy to monitor the health state of the oil is to take samples 

in a predefined time basis and send them to analyze in a laboratory. This is 

made manually, involving a considerable economical cost and other 

inconveniences since the asset may be in a difficult access area (as it happens, 

for example, with offshore wind-turbines). Besides, this practice may be also 

risky because a catastrophic failure can take place before the results are 
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received, if the oil is already degraded. Therefore, there is a clear need of 

developing sensors capable measuring the oil viscosity in a wide range of 

values, producing information in near real time, to implement an on-line 

condition monitoring strategy to reduce the possibility of a catastrophic 

failure. This is especially important in the case of gearboxes, which are 

critical elements whose malfunction or failure may have dramatic economical 

and security consequences. 

1.6 Objectives 

According to the ideas exposed previously, the main objective of this part of 

the Thesis is to develop a sensor to measure the viscosity of the lubricant oil 

on-line, in-situ and in real time, within a wide range of viscosities. For that 

purpose, a review of the available technologies must be performed, in order 

to select the basic operating principle of the sensor. Then the materials to be 

used and the appropriate design must be implemented in a working 

prototype, which could be used to validate its operation. The performance of 

the prototype must be assessed in conditions resembling those of the real 

environment in which it is to be used, in particular, being able to measure a 

wide range of viscosities. The work performed to fulfill those objectives and 

tasks is described in the next section. 

2 Magnetoelastic on-line measurement sensors 
After a brief description of the available technologies for on-line viscosity 

measurement, the fundamentals of the magnetoelasticity and magnetoelastic 

resonance are introduced, since this is the principle used in the prototype of 

viscosity sensor that has been developed in this work. The design and the 

selection of materials are described, together with the results obtained in 

different test conditions using oils in a wide range of viscosities. A new 

analytical method based in the fitting of the complete resonance curve is 

proposed to analyze the data. The results demonstrate the excellent 

correlation of different features of the resonance curve, such as the amplitude 

and the width, with the viscosity of the oils under tests. The prototype is 

therefore validated as a functional candidate for the development of on-line 

systems to assess the health state of the lubricant oil in gearboxes. 

2.1 Types of viscosity sensors for on-line measurements 

There are currently different approaches proposed for on-line viscosimeters 

[2.17]: 

1. Methods relying in macro-displacement of a body in the fluid. 

2. Methods relying in vibration. 

3. Methods based in the propagation of mechanical waves (so-called acoustic 

viscometers). 
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In each approach, different methods can be used. They are summarized 

in Table 2 and explained in the following sections. 

Table 2. Different approaches used in on-line monitoring of viscosity, 

and the main methods used within them [2.18]. 

 

2.1.1 Macro-displacement on-line viscosity monitoring methods 

These methods are based on the laboratory measuring methods, but modified 

to be able to fit the requirements of an on-line monitoring device. These 

modifications make this family of sensors quite complex. Their size tends to 

be large in comparison with other sensors, and the existence of moving parts 

decreases the reliability of such sensors. Several devices using diverse 

working principles can be found under this category. The most common ones 

are: capillarity viscometer, rotational viscometer, and rolling-ball viscometer. 

In capillarity-based sensors, the viscosity is calculated from the pressure 

drop resulting at a known flow rate in a straight section of tubing [2.19]. The 

inconvenience of these types of viscometers is that the flow velocity is usually 

variable depending on the working conditions of the asset. Besides, the tubing 

section of the sensor tends to get blocked, reducing its reliability. 

  

Figure 8. In-line Capillary Viscometer PV100 from Brookfield [2.20]. 

In rotational viscometers, the viscosity is calculated form the torque 

necessary to rotate, at a known rate, a spindle of a known geometry immersed 

in the fluid. 
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Figure 9. Left, in-line rotational viscometer AST-INK [2.21]. Right, 

Rolling ball in-line viscometer TT-100 from Brookfield. [2.22]. 

Rolling ball viscometers, which are a modification of the falling ball 

laboratory viscometers, measure the travelling time of a piston (or a similar 

object) from one side to another of a tube. This time is directly correlated with 

the viscosity of the fluid were the piston is immersed [2.23]. 

2.1.2 Vibration viscometers 

Vibration methods are based on the measurement of the amplitude or phase 

shift of the oscillations of a probe immersed in a fluid. The presence of the 

fluid damps the response of the probe. They operate at frequencies of about 

102 to 106 Hz and function either by simple analysis of the displacement, or 

by analyzing the frequency difference in response to a given phase shift 

between excitation force and velocity near the resonant frequency. Generally 

speaking, vibration viscometers are robust, relatively small, simple to install 

(do not require additional flow loops or pumps), and provide continuous real-

time data (updated every 1 to 10 seconds). 

There are several types of viscometers that fall under this description. 

Viscometers based on torsional oscillation consist on a vibrator (tube, plate, 

etc.) situated at one end of a torsional tube with mechanisms mounted at the 

top to generate and measure vibration. These mechanisms usually rely in 

piezoelectric elements to generate and measure vibrations. Viscometers based 

on the use of a vibrating console cantilever use a cantilever beam with a 

permanent magnet fixed at its end. An electromagnet situated just under the 

beam creates short pulses to excite the movement of the beam. The response 

of the beam, affected by the viscosity of the fluid it is immersed in, is 

measured by the same electromagnet. Finally, tuning fork viscometers use a 

mechanical resonator made from piezoelectric elements operating at a 

frequency of about 75 kHz. Some of the elements are used to excite the fork 

and others to measure the answer. Immersed in a liquid, this answer depends 

on the viscosity of the surrounding medium. 
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2.1.3 Piezoelectric acoustic viscometers 

The working principle of this family of sensors relies on the variation of the 

propagation mode of elastic compressional waves (acoustic waves in the 

liquid) depending on the viscosity of the medium. The waves are usually 

generated by piezoelectric excitation and, after propagating through the oil, 

are detected by another or the same piezoelectric transducer. The detected 

variations of the amplitude and velocity of the waves are related with the 

viscosity of the lubricant oil. Different configurations based on this general 

principle have been proposed for commercial use.  Basically, there are two 

main types of acoustic on-line viscometers, which are denominated bulk and 

solid-state in accordance with other types of piezoelectric acoustic sensors 

[2.24]. In the bulk ones, the waves propagate through the medium, whereas 

in the solid-state ones, the acoustic waves propagate on the surface of the 

substrate. They are a special type of SAW (surface acoustic wave) sensors. 

Both types are schematized in Figure 10. 

 
Figure 10. (a) Bulk acoustic viscometer [2.25], (b) Solid-state viscometer 

[2.26]. 

Viscometers based on acoustic waves present a number of problems and 

limitations. First, the readings may not be accurate as high-molecular fluids 

behave like gels, due to the operating frequencies used, that coincide or are 

lower than the oscillation frequency of the large molecules. Besides, in the 

solid-state sensors, the device is only sensitive to a thin layer of oil in the 

interface area. In general, this type of devices presents quite an elevated price 

due to the materials and technology used, the sophisticated electronics and, 

most of all, for their scarce industrial implantation. 

2.1.4 Magnetoelastic viscometers 

Magnetoelastic viscosity sensors are an alternative type of acoustic vibration 

sensors in which the oscillations are not created piezoelectrically, but by the 

coupling between the magnetic and elastic properties of a magnetic material 

[2.27]. The excitation produced by the magnetoelastic material is generated 

by an alternating magnetic field that, depending on the frequency and the 

(a) (b) 
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characteristics of the material, produces forced mechanical oscillations or 

mechanical resonances. The presence of the dissipative force caused by the 

lubricant oil produces an attenuation of the forced oscillations or a reduction 

of the magnitude and quality factor of the resonance, which can be correlated 

to the viscosity of the oil. Since this is the working principle of the prototype 

sensor developed in this Thesis, the fundamentals of the detection will be 

explained in much more detail in following sections. 

The first reference of the use of the magnetoelastic effect for the in-

laboratory and on-line determination of the viscosity dates back to 1958 

[2.28]. The sensor consisted of a sheet of a magnetoelastic material, such as 

nickel, immersed partially in the fluid. At the other side of the sheet, the 

oscillations are produced by an excitation coil and their attenuation measured 

by detection one. A scheme of the working principle, as published in the 

original Patent document, can be seen in Figure 11. 

 
Figure 11. US Patent 2839915: Method and apparatus for measuring 

viscosity, etc., of fluid-like materials. 
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Two more patents that describe the use of the magnetoelastic effect to 

detect viscosity are dated in 1962 [2.29] and 1989 [2.30]. Both use a vibrating 

magnetoelastic element immersed in a fluid, and measure the damping of the 

vibration caused by the fluid being measured, to obtain an indication of 

viscosity. Neither one has been commercialized to the knowledge of the 

author. 

An online viscosity sensor based in similar principles has been developed 

at research level by the Fraunhofer ICT-IMM: a magnetoelastic pin is 

immersed in the lubricant oil, where it is magnetoelastically excited. The 

decay of the signal or the change in the resonance is measured and related 

with the viscosity of the oil [2.31]. 

 

Figure 12. Image of the magnetoelastic on-line sensor of the Fraunhofer 

- ICT IMM. 

A quite complete description of an on-line magnetoelastic sensor is 

provided by Markova and co-workers [2.18], in which a magnetoelastic 

amorphous ribbon is used as sensing element, immersed in lubricant oil. The 

ribbon is magnetically excited and queried to detect its resonant frequency. 

The resonant frequency of the ribbon in air is used as a reference while, when 

immersed in oil, the measured changes in the resonant frequency are 

correlated with the viscosity. An alternative detection schemes, based in the 

decay of the oscillation signal was additionally explored in this work. The 

system has been filed as a patent [2.32], although there is no commercial 

exploitation to the knowledge of the author. 

A schematic representation of the device, taken from the patent 

application, can be seen in Figure 13. The probe head consists of the 

magnetoelastic material, a 37 mm x 6 mm x 0.03 mm strip of a commercial 

amorphous alloy (Metglass 2826MB) and a coil for excitation and 

measurement. A thermocouple is included to measure the temperature of the 

oil. The magnetic strip, electromagnetic coil and temperature sensor are 

installed in nonmagnetic housing with two holes that let the oil flow into the 



53 

 

 

 

chamber where the measurements are performed. Mechanically, the 

viscometer probe can be screwed either in an oil tank or in a pipe and 

connected to an electronic module. 

 

Figure 13. Scheme of the magnetoelastic probe, obtained from patent US 

8521451 [2.32]. 

The published results, comparing the output of the sensor with laboratory 

measurements performed on synthetic and mineral lubricant oils with 

viscosities ranging from 17 cSt to 500 cSt showed a rather good correlation in 

the whole viscosity range [2.33]. 

2.2 Principles of magnetoelasticity and magnetoelastic resonance 

The coupling between the magnetic and elastic properties of ferromagnetic 

materials gives rise to a number of physical effects that can be used for 

applications [2.34]. The effect that accounts for the change of dimensions 

produced in a magnetic material upon magnetization is denominated 

magnetostriction. This effect was first described by J.P. Joule in 1842. The 

reverse effect, that is, the change in the magnetic state of a material caused 

by a mechanical stress, is known as the magnetoelastic effect, inverse 

magnetostrictive or Villari effect, after the scientist that first described it in 

1865. In this section, an introductory description of these effects, which are 

used in several sensor and actuator devices, is first presented. These effects 

are also the foundation of the existence of magnetoelastic waves and the 

magnetoelastic resonance phenomena that are described next. A brief review 
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of the more suited materials for magnetoelastic applications closes this 

introductory section. 

2.2.1 Magnetostriction and magnetoelastic effect 

Magnetostriction is defined as the phenomenon where a magnetic body 

shrinks or expands in the direction of magnetization as a function of the 

applied magnetic field. The fundamental physical origin relies in the spin-

orbit coupling but, at a macroscopic level, it depends heavily in the 

magnetization mechanisms of the material. An exhaustive treatment of 

magnetostriction and related phenomena can be found in the book by 

Trémolet de Laichesserie [2.35]. Basically, the magnetostriction causes the 

deformation inside the material of each magnetic domain according to its own 

magnetization, whose direction is essentially determined by the magnetic 

anisotropy. When an external magnetic field is applied, the local distortions 

caused by magnetostriction sum up to produce a macroscopic deformation. As 

the external magnetic field is increased, the macroscopic deformation 

increases until the material reaches the magnetic saturation and the 

deformation takes its maximum value. In its simplest formulation, the 

magnetostriction is quantified as the strain suffered by the magnetic 

specimen, that is, the relative increment of length λ = Δl/l. The maximum 

deformation λs = (Δl/l)sat, is denominated saturation magnetostriction or 

magnetostriction coefficient and is a characteristic of the material. Figure 14 

illustrates the typical magnetostrictive behavior that occurs in an elongated 

sample. The magnetostrictive strain can be positive or negative, depending 

on the nature of the material. For instance, the magnetostriction is positive 

for iron but negative for nickel and cobalt. Its magnitude is generally small, 

of the order of some parts per million, except for certain special alloys as 

Terfenol, as described below. 

 
 

 
Figure 14. Magnetostrictive coefficient λ versus magnetic field H [2.34]. 
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In crystalline samples, the magnetostriction is usually anisotropic, 

meaning that the deformation upon magnetization is different in each 

crystallographic direction. In the case of isotropic materials, the deformation 

in a certain direction can be expressed as [2.36] 

 𝜆 =
3

2
𝜆𝑆 (𝑐𝑜𝑠2𝜃 −

1

3
) (2.1) 

where  is the angle between the direction of magnetization and the direction 

in which the deformation is measured. This expression is also valid for 

polycrystalline and amorphous materials where the deformation is averaged 

over different regions. 

Magnetostriction is used in different types of actuators [2.37], some of 

them in quite a similar way that piezoelectric ones. In fact, the 

magnetostrictive properties of nickel were used to develop the first SONAR 

(sound navigation and ranging) devices during World War I. 

The inverse effect, magnetoelasticity, refers to the magnetization changes 

caused by the mechanical deformation of a ferromagnetic material. In 

particular, the magnetoelastic effect makes that the magnetic permeability of 

the material depend on the applied stress. Its fundamental advantage over 

other principles of sensing is its intrinsic non-contact nature, since the 

permeability of the sensing material is detected inductively. 

The magnetoelastic effect can be easily quantified in a simple, but 

interesting case: an isotropic material with an uniaxial magnetic anisotropy 

K defining an easy magnetization axis in a direction perpendicular to the 

applied magnetic field H and stress σ [2.34]-[2.36]. The equilibrium position 

of the magnetization vector Ms is the one that minimizes the total energy of 

the system ET = Em + Ea + Eme, being Em the magnetoelastic energy (Em = -μ0 

HMs cos 𝜑), Ea the anisotropy energy (Ea = Kcos2 𝜑) and Em the 

magnetoelastic energy (Eme = -3/2 λSσcos2 𝜑), where 𝜑 is the angle between Ms 

and H (and σ). The equilibrium angle of the magnetization is then given by: 

 cos 𝜑 =
𝜇0𝑀𝑆𝐻

2𝐾−3𝜆𝑆𝜎
, (2.2) 

and the magnetization of the sample (measured in the direction of the applied 

field) is then given by M = Ms cos 𝜑 𝑎𝑠: 

 𝑀 =
𝜇0𝑀𝑆

2

2𝐾−3λ𝑠𝜎
𝐻 = 𝜒σ𝐻, (2.3) 

where χσ is the magnetic susceptibility, related to the permeability by 

μ = 1 + χσ. The sensitivity of the permeability μ = M/H to the applied stress in 

this case is therefore, 
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𝑑𝜇

𝑑𝜎
=

𝑑χ𝜎

𝑑𝜎
=

𝜇0𝑀𝑆
2

(2𝐾−3λ𝑠𝜎)2 3𝜆𝑠, (2.4) 

which, for small values of the applied stress, reduces to 

 (
𝑑𝜇

𝑑𝜎
)

𝜎=0
=

3𝜒0
2

𝜇0𝑀𝑆
2 λ𝑠, (2.5) 

with χ0 = μ0 Ms2/2K. 

The expressions above demonstrate that the magnetoelastic effect in 

materials with high magnetostriction (λs) and low anisotropy (K) can be 

readily used to sense stress or any other related magnitude. For instance, the 

inductance changes caused by the magnetoelastic response to an applied 

strain can be directly implemented to construct a force sensor, as the one 

schematized in Figure 15, which has been commercialized by ABB under the 

name Pressductor for more than sixty years. Other examples of the 

application of the magnetoelastic effect into successful commercial devices are 

described elsewhere [2.34].  

 

 

Figure 15. Pressductor operating principle. Two coils are wound at right 

angles through holes perforated in the sensible magnetostrictive element. 

One of the coils is used to excite the sensing element, and as it is stressed 

it becomes magnetically anisotropic, therefore the flux distribution 

becomes distorted and a measurable electrical output is generated in the 

secondary coil [2.38]. 

The Pressductor belongs to the category of static magnetoelastic sensors, 

since the magnitude to be measured produces directly a magnetic output 

through the magnetoelastic coupling.2 The dynamic magnetoelastic sensors, 

in contrast, are based on the propagation of magnetoelastic waves through 

the magnetostrictive material. The sensors based on the magnetoelastic 

resonance are included in this last category. 

                                            
2 Despite their name, the working frequency of the magnetoelastic static sensors can reach 

up to some kHz. 
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2.2.2 Magnetoelastic waves and magnetoelastic resonance 

The magnetoelastic coupling makes that a stress perturbation (mechanical or 

sound wave) travelling through a magnetoelastic material, is accompanied by 

a corresponding magnetic perturbation, building up a magnetoelastic wave. 

Due to its dual nature, magnetoelastic waves can be generated either 

mechanically or magnetically and detected likewise. This has a direct 

application in sensing since the magnetic excitation and detection allows 

contactless position and distance measurement, configuring the so-called 

magnetostrictive delay line. As an example, Temposonics position sensors 

developed by the German company MTS Sensor Technologie GmbH utilize 

the measurement of the time of travel of a magnetoelastic wave in a 

magnetostrictive material to determine the distance between the place where 

the wave is generated and the point where it is detected. Surface acoustic 

wave (SAW) sensors coated with a magnetostrictive thin film (also called 

MSAW for Magneto-SAW) have also been proposed to measure any 

magnitude (such as force or temperature) that modifies the amplitude or 

velocity of the travelling wave [2.39]. 

When the magnetoelastic waves are excited in a bounded material, for 

instance in a thin ribbon of a given length, stationary waves can be produced 

if the wavelength of the mechanical oscillation matches the length of the 

sample. This situation produces sharp resonances at which large strains and 

magnetization changes takes place. The effect is called magnetoelastic 

resonance (MER) and is the basis of well-established technologies (as acoustic 

anti-shoplifting labels) and the core of the detection technology proposed for 

the detection of the oil viscosity. 

Mathematical description 

A magnetoelastic wave can be described by combining the wave equation of 

motion 

  (2.6) 

(where  is the density of the material, uz the displacement in the z direction, 

and t the time), with the coupled equations of state of the magnetoelastic 

effect. They mathematically express that the strain () and the magnetization 

(m) in the material are produced by both the applied stress () and magnetic 

field (h) 

  (2.7) 
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  (2.8) 

where d is the magnetoelastic coefficient that characterized the mechanical 

and magnetic coupling, EH the Young modulus at constant field, 0 the 

vacuum permeability, and  the magnetic susceptibility at constant stress. 

Note that this last equation implicitly contains several approximations and 

simplifications, and is only valid in the linear regime, implying that the 

amplitude of h and  are small. 

Let’s consider the case of a magnetoelastic wave excited by a harmonic 

magnetic field of frequency  = 2f, in a ribbon of length L oscillating with 

free ends. The boundary conditions impose that he stress must vanish at both 

ends of the ribbon: 

 . (2.9) 

If the wavelength of the exciting magnetic field matches the length of the 

sample, standing waves build up, giving rise to resonances. This is 

mathematically evident in the solution for m/h obtained from equations (2.6, 

2.7 and 2.8). These equations can be integrated along the length of the 

sample, to obtain the mean value of the magnetic susceptibility  [2.40] 

  (2.10) 

where  is the susceptibility at constant strain, that is to say, the pure 

magnetic susceptibility, without the magnetoelastic contribution. The n 

represent the frequencies of the different modes of oscillations or resonance 

frequencies and are defined below. The parameter k is the magnetoelastic 

coupling coefficient, defined as the ratio of the magnetoelastic energy to the 

mechanical and magnetic energies of the system 

  (2.11) 

that expresses the capacity of the system to convert from one type of energy 

to the other. 

The Q factor that enters in Equation 2.10 can be viewed as the quality 

factor of the resonance. It accounts for the energy losses, and is directly 

related with the width of the resonance peak. The losses can be mechanical 

as well as magnetic, mainly due to eddy currents in soft magnetic materials. 

If the sample is immersed in a viscous liquid the increased mechanical 
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damping makes that the amplitude of the resonance decreases while its width 

increases. 

The solution given by equation 2.10 reveals the existence of consecutive 

magnetoelastic vibration modes, that occurs at the resonance frequencies  

  (2.12) 

producing consecutive modes of mechanical oscillations, which are 

schematized in Figure 16. 

 

Figure 16. First oscillation modes of the magnetoelastic  resonance of a 

free ribbon. On the top row, the longitudinal vibration modes are depicted. 

Blue zones experience compression and red ones expansion. The solid and 

dotted lines represent the extreme values that the longitudinal 

deformation can take. The modes are more easily seen in transverse 

vibration as depicted below, although the magnetoelastic waves are 

longitudinal. 

The magnetic susceptibility expressed in equation 2.10 can be measured 

experimentally using, basically, a pick-up coil (the measuring system will be 

described in detail below, in section 2.2.5). Figure 17 shows a typical 

magnetoelastic signal measured in an amorphous ribbon 5 cm long, 

displaying four clear resonances (modes n = 1 to 4). 

 

Figure 17. Magnetoelastic resonance modes of a free amorphous ribbon 

showing the fundamental resonance frequency at 52 kHz (n = 1) and the 

subsequent overtone resonances (n = 2 at 104 kHz, n = 3 at 156 kHz, and 

n = 4 at 208 kHz). The inset reveals the main features of the first mode. 
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Figure 5: Top row: Longitudinal vibration modes of a free ribbon, corresponding to the MER. Blue zones experience compression and red 
ones expansion. The lines represent the extreme values of the longitudinal deformation. Transversal vibration modes are easier to visualize 

and are depicted below for analogy. 

 
The magnetic perturbation associated to the mechanical vibration can be picked up by a coil and the actual shape will depend 
on the configuration of the pickup coils. Figure 6 shows the signal measured in an amorphous ribbon 5 cm long. 
 

 
Figure 6: ME Resonance modes of a free amorphous ribbon measured at UPV/EHU with a laboratory set-up. The resonances shown in the 
figure are at the fundamental resonance frequency at 52 kHz (n=1), the subsequent overtone resonances (n=2 at 104, n=3 at 156 kHz, and 

n=4 at 208 kHz). The inset reveals the main features of the first mode. 
 
The first resonance mode is usually used for detection due to its larger amplitude compared to the other oscillation modes at 

higher frequencies. Its frequency is determined by the geometry (length L) and properties (elastic constant E and density ) of 
the resonator, according to equation (a). 

 
(a) 
 
 

In ME materials, the material property E depends on the magnetic state of the sample. This is known as the E (delta E) effect 

and implies that the resonance response can be changed and finely tuned by applying an external bias magnetic field. 
 
The main elements that the ME technology needs for making the detection are: 
 

i) ME resonators made from ribbons of ME materials their ME properties depending on the size and materials used. 
ii) Primary coil to produce excitation field. 
iii) Secondary coil or pick up coil to detect the signal induced by the magnetic response (measuring system). 
iv) Bias field coils or permanent magnetic (or a combination of both) to produce the optimum bias field 

 
 

MERIADOC project will demonstrate the applicability of this cheap technology for detection of protein clinical 
parameters opening the door for multiple analysis that will benefit from it. 
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The inset of Figure 17 shows an enlarged view of the first resonance mode, 

which is usually the one with larger amplitude and, consequently, the one 

used for detecting purposes. The resonance peak is characterized by the value 

of its resonance frequency (that is given by equation 2.12), its maximum 

amplitude, and its width, which is related to the quality factor Q. It is also 

noteworthy that there is a frequency at which the amplitude drops to zero, 

due to the out-of-phase coupling between the strain and the magnetization. 

The frequency at which this phenomenon takes place is usually called the 

anti-resonance frequency. 

Any change in the external conditions such as temperature, magnetic 

field, stress, humidity, pressure, etc., determines a variation in the amplitude 

or frequency of a magnetoelastic sensor in which a resonant stationary 

magnetoelastic wave is established [2.41]. Therefore, the measurement of the 

amplitude and/or the frequency of the resonance can be used to sensor these 

physical effects. 

2.2.3 ΔE effect 

In the magnetoelastic resonance, it is very important to emphasize that the 

resonant frequency is determined by the value Young’s modulus EH (equation 

2.12), that is, the Young modulus at given value of the applied magnetic field. 

Therefore, the resonant frequency can be varied at wish, within a certain 

range, by magnetically biasing the sample by a controllable magnetic field. 

The phenomenon behind this tuning capability is the so-called ∆E effect. It 

can be described as follows. 

The Young’s modulus E expresses the relation between the applied stress 

(σ) applied to a material and the concomitant elastic deformation (ϵel) that it 

generates. In magnetoelastic materials, however, the coupling between the 

strain and the magnetization makes that the applied stress generates an 

extra magnetoelastic deformation (ϵme). Besides, this extra contribution 

depends on the magnetic state of the material that can be greatly modified by 

an applied magnetic field H. Therefore, the Young Modulus in a 

magnetoelastic material depends on both H and σ: E(H,σ). When the material 

is magnetically saturated, no extra magnetoelastic deformation is generated 

and, therefore, the relation between the stress and the deformation is given 

by ES = σ/ϵel, were the subscript S stands for saturation. In any other magnetic 

state, Young’s modulus has a different (smaller) value. The ΔE effect 

expresses the difference between these values of the Young modulus and is 

quantified as 

 
𝛥𝐸

𝐸𝑆
=  

𝐸𝑆−𝐸(𝐻,𝜎)

𝐸𝑆
 (2.13) 
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The ΔE effect is very small in normal ferromagnetic materials (about 6 % in 

nickel, and about 1 % in iron), but it can very large in special materials as 

metallic glasses, most of all after a proper thermal treatment is applied. 

The functional dependence of the Young’s modulus can be expressed 

mathematically in the simple case analyzed in section 2.2.1 for a sample with 

transverse anisotropy. Using the expression in equation 2.1 for isotropic 

materials, the total deformation of a magnetoelastic material can be 

expressed as: 

 ϵ = ϵ𝑒𝑙 + ϵ𝑚𝑒 =
𝜎

𝐸𝑆
+

3

2
𝜆𝑆 (𝑐𝑜𝑠2𝜑 −

1

3
) (2.14) 

The equilibrium angle of the magnetization under the simultaneous action of 

a magnetic field H and a stress σ is given in equation 2.2, which is repeated 

here for clarity: 

 cos 𝜑 =
𝜇0𝑀𝑆𝐻

2𝐾−3𝜆𝑆𝜎
. (2.15) 

Thus, we can write 

 
1

𝐸(𝐻,𝜎)
=

𝑑ϵ

𝑑𝜎
=

1

𝐸𝑆
+

3

2
𝜆𝑆

𝑑(𝑐𝑜𝑠2𝜑)

𝑑𝜎
 (2.16) 

and, therefore, E(H,σ) becomes: 

 𝐸(𝐻, 𝜎) =
1

1+
9𝜆𝑆

2𝜇0
2𝑀𝑆

2𝐻2

(2𝐾−3𝜆𝑆𝜎)3 𝐸𝑆

 (2.17) 

Note that the magnetoelastic resonance frequency is directly coupled with 

Young’s modulus, as evidenced in Equation 2.12. Therefore, the field 

dependence of EH makes that the position of the resonance peak (that is, the 

value of the resonance frequency) also depends on the applied magnetic field. 

Figure 18, displays this dependence measured experimentally in an 

amorphous ribbon. 

 

Figure 18. Dependence of the resonance frequency of the first mode of a 

free amorphous ribbon on the applied magnetic field, illustrating the 

great influence of the ∆E effect in this type of samples. 
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Since the magnetic state of the sample affects the magnetoelastic 

coupling, not only the resonance frequency depends on the applied field, but 

also the amplitude of the resonance and the magnetoelastic coupling 

coefficient k. The largest values of these two magnitudes correspond to the 

field at which Young’s modulus is minimum (which is also the field at which 

the fr-H curve reaches the minimum value). In the case of a sample with 

transverse anisotropy, that point corresponds to an applied field close to the 

anisotropy field Hk = 2K/µ0Ms, at which the sample becomes magnetically 

saturated. 

2.2.4 Magnetoelastic materials 

Although all ferromagnetic materials exhibit a certain degree of 

magnetostriction, for sensing applications a combination of the best magnetic 

and elastic properties are required. In this sense, amorphous magnetic alloys, 

also called metallic glasses, are the best-suited materials for developing 

sensors based on the magnetoelastic resonance. Their characteristics and 

properties will be described in this section but, for completeness, a brief 

review of other magnetostrictive materials is presented before. 

Pure transition metals and alloys 

The first materials to be investigated were the three known magnetic 

materials at the time where the magnetostrictive effect was discovered, i.e. 

Fe, Co and Ni. Table 3 complies their magnetostriction constant values. As 

single crystals are anisotropic, their magnetostriction coefficients are 

different in different crystallographic directions. 

Table 3. Magnetostriction constant at room temperature for magnetic 

transition metals. 

 
λ100 ( 10-

6) 

λ111 ( 10-

6) 

Polycristal, λS 

( 10-6) 

bcc-Fe 21 -21 -7 

hcp-Co -140 50 -62 

fcc-Ni -46 -24 -34 

 

Piezomagnetic Ferrites 

Piezomagnetic ferrites are a class of magnetic ferrites with high resistivity, 

high magnetostriction, and very low magnetocrystalline anisotropy and, in 

general, good magnetoelastic properties. Cobalt ferrites are among the most 

suited materials of them all. In Table 4 some values of the magnetostriction 

constants are presented. However, their mechanical properties are, in 

general, rather poor. 
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Table 4. Magnetostriction constant at room temperature for 

piezomagnetic ferrites. 

 λS ( 10-6) 

Ni50Fe50 28 

Ni95Co5 -35 

Co49Fe49V2 -65 

Fe80B20 32 

Fe40Ni40B20 14 

Co80B20 -4 

 

Al-Co-Fe alloys 

Alcofer alloys are alloys containing 2 to 14 wt. % aluminum, 2 to 3 wt. % 

cobalt and 83 to 86 wt. % iron. They show high saturation values (μ0MS up to 

1.4 T), high Curie temperature (about 500° C) and high magnetostriction (λS 

above 40  10-6). The magnetoelastic coupling coefficient ranges between 0.3 

to 0.45. 

Giant magnetostriction materials 

The highest magnetostriction values correspond to compounds containing 

Rare Earth elements such as Tb, Dy and Sm at cryogenic temperatures and 

high applied magnetic fields. Alloyed with Fe, large strains (about 1500 ppm) 

at room temperature are achieved with fields of some kOe. The most popular 

of such alloys is Terfenol-D, with nominal formula Tb1-xDyxFe2. In particular, 

Terfenol with 0.7 ≤ x ≤ 0.73 presents an anisotropy compensation about room 

temperature, which allows to minimize the required magnetic field to achieve 

large deformations. Unfortunately, Terfenol displays rather poor mechanical 

properties, preventing its application in magnetoelastic sensors. 

Amorphous alloys 

Amorphous alloys combine excellent magnetoelastic and mechanical 

properties. They offer such a good combination of properties that many of the 

sensors relying in magnetoelastic materials use this category of materials. 

The lack of long-range order in the atomic arrangement is the reason for the 

good mechanical properties (high ductility and Young’s modulus) and 

magnetic properties (high permeability, low coercivity and null 

magnetocrystalline anisotropy). They are also called metallic glasses, since 

they are obtained by rapid quenching from the melt, achieving cooling rates 

of 106 degrees per second, that freezes the disordered state of the liquid phase 

when solidifying. However, to obtain the amorphous state, it is necessary to 

include non-magnetic atoms in the structure. Commercial amorphous alloys 

are typically composed of about 70 to 80 % transition metals (Fe or Co) and 
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20 to 30 % metalloids (Si, B or P), with occasional additions of other elements. 

Table 5 compiles some commercially available metallic glasses and their 

properties. 

Table 5. Magnetic and magnetoelastic properties of some commercial 

glasses. 

Name Composition 
μ0Ms 

(T) 

Tc 

(K) 

Ρ 

(g/cm3) 
E (GPa) λS ( 10-6) 

V
it

ro
v
a

ca
 7505 Fe81B13Si4C2 1.5 693 7.1 150 30 

4040 
Fe39Ni39Mo4Si

6B12 
0.8 533 7.4 150 8 

6025 
Co66Fe4(MoSi

B)30 
0.55 523 7.7 150 0.5 

M
e
tg

la
ss

b
 

2826 Fe40Ni40P14B6 0.87 520 7.5 147 11 

2605 Fe80B20 1.6 647 7.4 172 31 

2826

B 

Fe29Ni49P14Si2

B6 
0.49 408 7.5 135 4 

aFabricated by Vaccumschmeze GMBH, Hanau, Germany 

bFabricated by Metglas Inc. 

 

Small changes in composition affect the value of the saturation 

magnetostriction, which can even change its sign depending of the 

concentration of different components. Although the magnetoelastic 

properties can be excellent in the as-prepared state, thermal treatments 

under the influence of applied magnetic fields or stress allow enhancing and 

tailoring them. 

Nanocrystalline materials are obtained by adding small quantities of Cu 

and Nb to Fe-rich metallic glasses and processed by thermal treatments. The 

growth of Fe or Fe-Si precipitates is hindered by the presence of Cu and Nb 

atoms, and thus nanometric crystals of about 20 nm in size are embedded in 

the amorphous matrix. The magnetoelastic coupling is high, but they are 

extremely brittle and so they have not been used in magnetoelastic sensing 

to the knowledge of the author. 

The materials used in this work are the amorphous ribbons, as they 

provide a good balance between magnetoelastic properties and resiliency, 

making them ideal for the working conditions of a lubricant oil viscosity 

sensor. 

2.2.5 Measuring system 

The basic set-up for measuring the magnetoelastic resonance must have the 

capability to produce the magnetic excitation in the sample and to detect its 

magnetic response. This functionality is usually implemented using two sets 
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of coils: the primary coil which is feed with an alternating current and a 

secondary or pick-up coil in which the voltage related to magnetization 

changes is induced. This basic scheme is depicted in Figure 19. It can be 

advantageous to connect a compensation coil in series (but wounded in 

opposite direction) with the pick-up coil in order to suppress the voltage 

induced directly by the excitation, as well as any other background signal. In 

this way, the signal to noise ratio is considerably improved.  

 

Figure 19. Scheme of the exciting and measuring set-up. 

The system of coils is designed in such a way that the sample is placed 

inside them, making as large as possible the effect of the excitation and the 

level of the induced signal, therefore maximizing the performance of the 

measuring set-up. However, other arrangements are also possible, depending 

on the application. The emitter and the receiver can also be planar coils acting 

as antennas. This is the se-up implemented in anti-shoplifting systems, which 

are the most extended applications of the magnetoelastic resonance (Figure 

20). In this configuration, the coils ate situated in the posts at the 

interrogation zone, activating and detecting the response of the 

magnetoelastic label when it crosses the space between the posts. 

 

Figure 20. Anti-shoplifting system based in magnetoelastic materials.  
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There are commercial systems, using the magnetoelastic resonance as the 

sensing effect as in the integrated compact MERMAID system developed by 

ACREO (Figure 21) [2.42]. 

 

Figure 21. MERMAID system developed by ACREO. 

Alternatively, the magnetoelastic resonance can be detected using a 

single coil arrangement, which provides simultaneously the excitation of the 

sample and the detection signal. The resonance is measured in this 

configuration through the variation of the self-inductance L of the coil, which 

is directly dependent to the susceptibility of the sample L =L(µ0) ( is given 

in equation 2.10)3. The changes in the self-inductance can be easily measured 

as a function of the frequency using an impedance analyzer, obtaining the 

whole resonance curve in a single sweep. Alternatively, the curve can be 

recorded by feeding the coil with a signal generator and measuring the 

current in the circuit (through the voltage drop in a series resistance, for 

instance). The experimental set-up in this single-coil configuration is simpler 

and can be used if the amplitude of the resonance is large. If the resonance is 

highly damped, a two-coil set up is usually needed to improve the signal to 

noise ratio. 

In any measuring system using the magnetoelastic resonance, the set up 

must take into account that the ∆E effect modifies the resonance conditions, 

as explained in section 2.2.3. In this sense, not only the resonance frequency 

depends in the applied bias field, but also the amplitude of the resonance. For 

that reason, to maximize the detection capability, a bias magnetic field must 

be applied to magnetize the sample in the optimum operating point on the 

magnetization curve. Additionally, this operation point can also be selected 

as the one in which the temperature dependence of the magnetoelastic 

resonance is cancelled, as it will be explained in section 2.4.3. The suitable 

bias field can be provided either by additional coils or by a permanent magnet 

situated close to the sample (as in the case of the anti-shoplifting application). 

                                            
3 Note that in the conventional system using two coils described in Figure 19, the electrical 

quantity involved is the mutual inductance M. 
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The magnitude of the optimum bias field depends on the sample, but for the 

amorphous ribbons used in this work it is in the range of 1-10 mT. 

Finally, concerning the way in which the magnetoelastic resonance is 

used in sensor devices, there are two different approaches to determine the 

dynamic magnetic response of the resonators. In the first one, the response of 

the material is continuously measured while the excitation field is on. By 

sweeping the frequency of the excitation and measuring the magnetic 

response at the same frequency, the complete resonance curve is determined, 

from which the frequency, amplitude and width of the resonance can be used 

in the analysis of the signal. In the second approach, the response of the 

resonators can be measured during the ring-down period after a field pulse 

has been applied to the sample. During that period, the magnetoelastic 

sample keeps oscillating at its resonance frequency. From the time variation 

of the ring-down oscillations, the resonance frequency, the amplitude and the 

damping can be obtained. 

2.3 Prototype of magnetoelastic viscosity sensor 

We have designed, constructed and test two prototypes to evaluate the 

function and performance of the magnetoelastic approach in developing a 

sensor for the on-line monitoring of lubricant oil. The first one was conceived 

to be as simple as possible to function as a proof-of-concept prototype. In the 

second, a more elaborate design was implemented to fulfill some essential 

requirements, such as 

• Enhanced sensitivity. The design must permit a certain degree of 

flexibility in the configuration of the coil systems to optimize the 

magnetoelastic response. 

• Guarantee the repetitiveness of the measurement. The magnetoelastic 

resonators must operate in the same conditions even in test with 

different oils. 

• Easiness to change the oil probes. The design must allow for a easy 

access to the vessel containing the oil under test. 

Additionally, we sought a final prototype design that could be scalable to 

an actual sensor to be implemented in an on-line test facility. This implies to 

try to maintain a compact and economical design. Being a prototype, however, 

it contained parts that don`t satisfy this requirement. For instance, bulky 

Helmholtz coils were used to easily select the optimum bias field acting on 

the magnetoelastic sample. This is not a constrain for real systems since the 

bias field can be applied by a small magnet once the optimum value of the 

bias field has been determined for a given configuration. 
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In the following section, the different elements of both prototypes are 

described, starting from the magnetoelastic materials selected for them. The 

data acquisition and analysis strategies are also described. 

2.3.1 Materials 

Two different commercial amorphous ribbons were used in the experiments: 

• Vitrovac 4040, with a nominal composition Fe39Ni39Mo4Si6B12 

(material datasheet available at producer [2.43]). 

• Vitrovac 7600, with a nominal Fe64.5Co18Si1B12C0.5 (material datasheet 

available at producer [2.44]). 

In our prototype, the oil under test is contained inside a 4 ml glass vial 

with a plastic cap (the oils used in the experiments are described in the results 

section below). The magnetoelastic ribbons are made to oscillate submerged 

in the oil, where their response is modulated according to the viscosity of the 

medium. Therefore, the commercial magnetoelastic materials, supplied in 

6 mm wide and 23 µm thick ribbons, were cut to 30 mm long pieces, as shown 

in Figure 22. 

 

Figure 22. Magnetoelastic ribbons cut in 30 mm long and 6 mm wide 

pieces, together with the vial used to contain the oil under test.  

The magnetoelastic ribbons were precisely cut using a laser facility [2.45] 

that guaranties a precision in the micrometer range. Besides, the laser cut 

process prevents the crystallization of the amorphous magnetoelastic ribbon. 

Figure 23 shows scanning electron microscope images of the edges of the 

sample after the cutting process. 
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Figure 23. SEM images of the border of the Vitrovac 4040 

magnetoelastic ribbon. 

In the first set of experiments, using the proof-of-concept prototype, the 

magnetoelastic ribbons were simply inserted in the vial as shown in Figure 

24.  

 

 
Figure 24. Oil samples in the prove were they were measured in the 

experiments. 

In the second approach, the magnetoelastic ribbons were clamped to the 

cap of the vial, to assure the repeatability of the positioning of the ribbon in 

relation to the system of coils. The ribbons were glued to a glass rod. In one 

end of the rod, a portion was cut using a diamond saw to obtain a planar 

region in which one end of the sample (about two millimeters) was glued after 

a careful alignment with the rod. The ribbon is free to oscillate in the non-

clamped end. The cap of the vial was perforated to accommodate the rod with 

the sample. Figure 25 shows the final arrangement of the sample holder.  
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Figure 25. Magnetoelastic ribbon clamped on one end to a glass tube, 

enclosed in a plastic tap of the lubricant oil recipient.  

When the cap is secured in the vial, the sensing material is immersed in 

the oil as illustrated in Figure 26. 

 

Figure 26. The sensing element, attached to the cap of the vial, is 

completely immersed in the oil under test.  

According to equation 2.12, a clamped ribbon resonates at frequencies 

that are half of the ones corresponding to a free ribbon of the same length. 

This is graphically justified in Figure 27 for the first two modes: the 

oscillation of a clamped ribbon in each mode is the same of the one of a free 

ribbon of double length. 

 

Figure 27. Sketch comparing the oscillation modes in a clamped ribbon 

and in a free one of double length for the first two modes (n  = 1 and n = 2). 

According to equation 2.1, the resonance frequencies of a clamped ribbon 

are half of the free one of the same length. For clarity, the figure depicts 

transverse oscillations although the magnetoelastic oscillations are 

longitudinal. 



71 

 

 

 

2.3.2 Prototype design and experimental set-up 

As previously explained, the prototype for the on-line measurement of the oil 

viscosity was designed in two steps. First, a simple arrangement was 

developed, conceived as a proof-of-concept system. Then a more elaborated 

laboratory prototype was built, incorporating the information gathered 

during the previous stage. 

Proof-of-concept design 

The objective of this preliminary design was to verify the possibility of making 

an online sensor taking advantage of the properties of magnetoelastic 

materials. It uses a single coil for excitation and measuring, together with a 

pair of Helmholtz coils to set the bias field. The excitation and measuring coil 

is made of 170 turns of AWG28 copper wire (0.32 mm in diameter) wound in 

two layers over a plastic cylindrical support 6 cm long and 20 mm in diameter. 

The electrical characterization of the coil using a LCR meter yielded a self-

induction of 655 H at 1 KHz, and a resistance of 5.7  measured at 120 Hz. 

The oil-filled vial with the sample freely lying in the bottom was inserted 

horizontally inside the coil and positioned in its central part. For testing 

different oils, the magnetoelastic strips are changed from one vial containing 

one oil sample to another. In between, the strip was thoroughly cleaned using 

a jet of ether. 

The Helmholtz coils provide a uniform magnetic field in the central part 

of the excitation coil, where the sample is positioned. The Helmholtz coils 

shown in Figure 28 produce a magnetic field of 19.05 Oe/A (1520 Am-1/A).  

 

 
Figure 28. Proof-of-concept design with indication of the different 

components. 

An Agilent N5769A power supply was used to feed the Helmholtz coils. 

The excitation was provided by a Keithley 3390 function generator. The 
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detection was performed using a Yokogawa DLM2022 digital oscilloscope. 

Figure 29 presents a general overview of the complete experimental set-up. 

 

 
Figure 29. Laboratory set up of the proof-of-concept prototype, 

displaying the instrumentation and the computer running the control 

program. 

A dedicated LabView program was developed to perform the experiments 

and to analyze the measured signals. It is explained in section 2.3.3. 

Laboratory prototype 

This second prototype was designed after the possibility of measuring the 

viscosity of lubricant oil using magnetoelastic materials was successfully 

established using the proof-of concept design. This second prototype was built 

to be close to a functional on-line measuring system, demonstrating that the 

sensor could work in a wide viscosity range and with different lubricant oils. 

In addition, this prototype was also used to determine the variation of 

viscosity with temperature. 

The set-up was configured as a three-coil system, as schematized in 

Figure 19. The excitation was provided by a primary coil, whereas the 

detection was performed by two secondary coils connected in series but in 

opposition, one acting as pick-up and the other as compensation (see section 

2.2.5). Figure 30 shows a close view of the system of detection coils. The vial 

containing the oil is positioned vertically inside the detection coil, with the 

sample clamped to the cap of the vial as explained before. In this way, the 

changing of the vial was straightforward. Following the procedure developed 

in the proof-of-concept set-up, when changing from one oil to other, the 

magnetoelastic ribbons were cleaned using ether, to eliminate any trace of 

the previous lubricant oil. 

The system was designed to allow for a great degree of flexibility to 

displace the detection and compensation coils in order to optimize the signal. 

The measurements were performed by a Spectrum-Network Analyzer (HP 
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8714ET), which provided the excitation performing a frequency sweep and 

measured the amplitude of the induced voltage in the detection coils. 

 
Figure 30. Pick-up (top) and compensation coil (bottom) in the sensor 

prototype. 

In the prototype, the bias field was provided by a pair of large Helmholtz 

coils, fed by a power supply (Agilent N5769A). They produced a field of 19.41 

Oe/A (1548 Am-1/A). 

Figure 31 shows a general view of the prototype, together with an 

exploded scheme indicating its main parts. 

 
Figure 31. General view of experimental set-up (left) and explicative 

drawing (right). 

The viscosity sensor was also used to determine the variation of the 

viscosity with temperature. For that purpose, the complete measuring system 

(without the instrumentation) was introduced into a climate chamber 

(Angelantoni Industry Challenge 250). 
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A quite elaborated code was developed in LabView (National 

Instruments) to control the experiment and acquire the results. In particular, 

it was necessary to create a special communication protocol with the 

proprietary software controlling the climate chamber, as explained in next 

section. 

2.3.3 Data acquisition 

An important part of the development of the prototypes was dedicated to 

generate and improve the computer programs for the control and data 

acquisition. These programs were developed in LabView from National 

Instruments. The following sections explain the most important features of 

the two versions implemented, one for each prototype. 

Proof of concept prototype 

In this set-up, the signal generator provides the excitation. The measurement 

program commands it to perform a frequency sweep between 10 and 100 kHz. 

A DC power supply feeding the Helmhotlz coils provides the bias field. The 

DC current is varied from 0 to 0.5 A, in steps of 0.01 A (0 to 9.52 Oe in steps 

of 0.19 Oe; 760 Am-1 in steps of 15 Am-1). In each step, a full frequency sweep 

is performed. The voltage drop in the measuring coil is measured in the 

oscilloscope, which registers and displays its amplitude for each value of the 

frequency. 

First, the instruments are initialized and the conditions of the 

experiments are established. Then the program sequentially sets the 

corresponding current in the Helmholtz coils. After a fraction of a second, 

allowed to stabilize the current, the program starts the frequency sweep and, 

for each frequency, records the data registered by the oscilloscope. To improve 

the signal to noise ratio, the program averages the values taken in five 

consecutive measurements performed from the same value of the bias field. 

The recorded signal in then processed by the program to determine the 

amplitude of the response and the values of the resonance and anti-resonance 

frequencies. These results are stored in an output file together with the 

corresponding value of the bias field. 

For the series of experiments performed with this prototype, the first step 

was to determine the optimum bias point for which the measured amplitude 

of the resonance was the greatest. This was performed for the sample in air. 

In the case of the Vitrovac 4040, the greatest amplitude was obtained for a 

current in the Helmholtz coils of 22 A, corresponding to an applied magnetic 

field of 4.2 Oe (288 Am-1). This bias magnetic field was kept constant in the 

subsequent measurements with the sample immersed in different lubricant 

oils. 
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Laboratory prototype 

In the laboratory prototype the data is acquired using a Spectrum-Network 

Analyzer (HP 8714ET). The quality of the measured data is considerably 

improved over the previous proof-of-concept version. The Spectrum-Network 

analyzer is equipped with a built-in signal generator that is used to produce 

the excitation of the sample, performing a frequency sweep. It is also capable 

of measuring the amplitude of the induced voltage in the detection coils for 

each frequency and displays, in a single sweep, the complete resonance curve. 

For the measurements, a similar strategy is followed. According to the 

length of the samples, the frequency was swept from 20 to 40 kHz, range in 

which the first harmonic of the resonance is located. Note that, as the samples 

are clamped by one of their ends, the resonance frequencies are half than in 

the previous prototype. The bias field is swept in steps of 0.01 A (0.194 Oe; 

15.5 Am-1) and in each step the complete resonance curve is registered. For 

each sample, the optimum bias field is found, at which the amplitude of the 

resonance with the sample is air is the greatest. This bias field is kept 

constant when performing the measurements with different oils. 

The control program, also written in LabView, first initializes the 

instruments and sets the conditions of the experiment. Then, it sequentially 

changes the bias field and, for each value of the field, perform a frequency 

sweep. The Spectrum-Network Analyzer can be set to use averaging or 

different integration times to perform the measurements. These parameters 

are selected to obtain a good signal to noise ratio, making unnecessary to 

make several measurements programmatically. The complete resonance 

curve is saved in a data file, since the data analysis, explained in a section 

below, is performed after the acquisition, using a Matlab routine. 

This prototype was also used to determine the variation of the viscosity 

with temperature (section 2.4.3). A climatic chamber (Angelantoni Industry 

Challenge 250) was used for this purpose. The temperature was varied 

between 0 and 60 C in steps of 10 C. To control the climatic chamber, its 

own proprietary software (Winkratos) was used. It was programed to set the 

desired temperature and wait until the magnetoelastic measurements at that 

temperature were finished. It was necessary to synchronize the data 

acquisition program in LabView with the Winkratos control program. The 

only way to do it that we could find was to set different alarm status in the 

climate chamber when the target temperature was reached and stabilized. 

These alarms appeared as digital signals in a communications interface of the 

chamber, which the LabView program could read through a data acquisition 

board. Therefore, the main LabView program waited until the target 
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temperature was set, and then launched the magnetoelastic measuring 

program. There was no possibility of communicating back to the chamber 

when the acquisition at each temperature finished. Therefore, ample time 

was provided between temperature changes. In any case, the temperature of 

the chamber was continuously being recorded by the LabView program using 

the acquisition board, so it was possible to determine a posteriori if the 

acquisition was completely done at the prescribed temperature and finished 

before the chamber begun to change to the next set-point. Using this 

automated procedure it was possible to perform the experiments necessary to 

get the data for a plot such as that of Figure 51, that could last about 24 hours 

for a given oil. 

2.3.4 Data processing 

The data processing is designed to extract useful parameters from the 

acquired resonance curves. One or several of those parameters can be used to 

establish a calibration of the sensor as discussed in next section. 

Proof-of-Concept Prototype 

In the case of the proof-of concept prototype, the data processing is embedded 

in the data acquisition program. It extracts the amplitude and the frequency 

of the resonance from each curve measured. Before explaining the procedure 

to do so, we must make a remark about the shape of the resonance curve 

measured using this set-up. 

Figure 32 shows a typical resonance curve obtained using a Vitrovac 4040 

sample in air (without oil). Due to the special configuration of the detection 

circuit used in this prototype, the resonance curve doesn’t display the usual 

shape, which is the one represented in Figure 17. The measured curve 

presents a deep minimum at the resonance. It can be easily demonstrated 

that this response curve is the one to be expected with the detection circuit 

used. 

 

Figure 32. Typical resonance curve measured using the proof -of-concept 

prototype. It corresponds to a sample of Vitrovac 4040 in air. 
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The electrical model of the circuit used in this prototype is schematized 

in Figure 33. Vg and Rg (50 ) correspond to the excitation source that feds 

the measuring coil. The response VL is taken as the voltage drop in the coil. 

L and RL represent its self-inductance and resistance respectively. R is the 

resistance of the rest of the circuit. Let’s consider that the intrinsic response 

of the magnetoelastic material is represented by its relative permeability r 

as depicted in Figure 34 (a). It displays the typical resonant behavior of a 

magnetoelastic sample illustrated in Figure 17. We can impose that L = L0r, 

being L0 is the self-inductance of the coil when r = 1, that is, the self-

inductance of the coil without sample. It was measured to be L0 = 774.6 μH. 

The resistance of the coil was measured to be RL = 5.4 . The circuit of Figure 

33 can be modeled in Matlab and the frequency dependence of the measured 

voltage VL calculated. The result, displayed in Figure 34 (b) shows a clear 

resemblance with the actual curves measured (Figure 32). 

 
Figure 33. Model of the measuring circuit in the proof -of-concept set-up. 

  
Figure 34. (a) relative permeability of a magnetoelastic simple, displaying 

the typical resonance behavior. (b) Output voltage calculated in the circuit 

of Figure 33 using the permeability in (a). 

In the proof-of-concept prototype the data processing consists exclusively 

in subtracting the background from the measured data. The background 

should correspond to the signal measured by the system without sample. This 

signal is displayed in Figure 35.a. However, for simplicity, the background is 

calculated as a straight line joining by the first and the last point. In fact, as 

the data is quite noisy, ten points are selected in each extreme of the data 

array and their value averaged to determine the first and last points (Figure 

35.b). After the subtraction of the background, the amplitude and the 

frequency of the resonance are determined and saved in the output data file. 
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Figure 35. Background removal during the data analysis in the proof -of-

concept prototype. a) Signal measured by to the system without sample. 

b) The background is calculated using straight line between the first and 

the last measured points. 

Laboratory prototype 

In this set-up, the registered signal is the voltage induced in the pick-up coil, 

which is directly related to the permeability of the sample. Therefore, the 

measured resonance curve has the usual shape as displayed in Figure 36 for 

both types of magnetoelastic ribbons measured in air. 

 

 
Figure 36. Resonance curves measured with the Laboratory prototype 

corresponding to the types of magnetoelastic ribbons used in this work: 

left: Vitrovac 4040; right: Vitrovac 7600. 

Due to the use of a compensation coil, the background signal is nearly 

zero and the values of the amplitude and the resonant frequencies can be 

easily obtained from the resonance curves. However, much more information 

can be obtained by analyzing the complete resonance curve. For that purpose, 

we have developed a phenomenological approach to describe the frequency 

response of a magnetoelastic material [2.46]. 

Using the formalism of linear systems, we can derive an analytical 

expression for the transference function of a system displaying a resonance 

at a frequency r and an anti-resonance at a frequency a. The resonance 

imposes a couple of complex conjugated poles in the denominator, while the 

anti-resonance is described with a couple of complex conjugated zeros in the 

numerator. The transference function is then expressed as 
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  (2.18) 

δa and δr being damping parameters. In this formalism s = jω, where ω = 2f 

and 𝑗 = √−1 is the imaginary unit. 

Therefore, the experimentally measured resonance curve can be fitted to 

the following expression 

  (2.19) 

where A accounts for the amplitude of the curve, and a and b provide a linear 

contribution to deal with a possible remaining background. In this expression, 

the parameters to be fitted are the frequencies of resonance ωr = 2fr and anti-

resonance ωa = 2fa, the damping parameters δr and δa, the amplitude A, and 

the coefficients a and b. 

This expression reproduces very accurately the experimentally measured 

resonance curves and allows extracting the resonance parameters by means 

of a least squares fitting. This is demonstrated in Figure 37 for the case of 

37 mm long and 6 mm wide magnetoelastic ribbon resonating freely (both 

ends unclamped) in air. The best-fit parameters, which produces an excellent 

agreement with the measured curve, are fr = 56.73 kHz; δr = 0.0022; 

fa = 60.82 kHz; δa = 0.0121; A = 38.07 mV; a = 8.57 × 10−6 mV/Hz; b = −55.97 

mV. 

 
Figure 37. Resonance curve of a magnetoelastic ribbon and best fit to 

Equation 2.19. 

This data analysis approach represents a consistent method to rigorously 

obtain the resonance parameters. Most importantly, it produces an objective 

value for the damping parameter δr, which is related to the width of the 

resonance and intimately connected with the viscosity of the medium in which 

the sample is resonating. 
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2.4 Results 

In this section we will present the results obtained with both prototypes. In 

the first case, they are meant nearly exclusively to demonstrate that the 

resonance curve of the magnetoelastic material reflects important changes 

depending on the viscosity of the oils in which it is immersed. In the second 

prototype, using the analysis procedure describe in the previous section, a 

calibration curve will be determined. Also, a study of the viscosity as a 

function of the temperature will be presented. 

2.4.1 Origen of the oils 

Oils from different origins are used in this work. The goal is to test the 

prototypes using oils of different nature and, most of all, displaying a wide 

range of viscosities. These oils, together with the nomenclature used to 

identify them are: 

• A base oil without additives, denoted as H150NS. 

• A family of hydraulic oils specially created for modern transmission 

systems of power or control, where high work pressure, low tolerances 

and relatively high temperatures take place. They are denoted with the 

letter T (T32, T46, T68 and T100).  

• A family of lubricant oils for gear-boxes under extreme pressure, 

specially designed for gears under extreme loads and speeds (they can 

be used even for gears that withstand shock loads). They are 

represented with the letter O (O220 and O320). 

• Finally, to obtain viscosities that could not be obtained commercially, 

mixtures of O220 and T100 oils were performed. The resulting oils in 

this category are denoted as follows: 50/50 for a mixture of a 50 % (in 

volume) of both oils; 25/75 for a mixture containing a 25 % of O220; and 

75/25 for a mixture with a 75 % of O220. 

Some of these oils can be seen in the test vials in Figure 38.  

 

Figure 38. Some of the oil samples used to test the prototypes.  
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The oils were thoroughly characterized using standard laboratory 

procedures: the viscosity was measured using the ASTM D445 standard test 

method with an estimated accuracy of 0.1 cSt. The density was determined 

under the ASTM D4052 standard test method. The measured values are 

compiled in Table 6. 

Table 6. Laboratory results for the different oils tested. 

Oil code T32 T46 T68 T100 O220 O320 

H150N

S 25/75 50/50 75/25 

Density 

(Kg/m3) 
875 879 886 891 898 902 874.2 894.5 896.8 895.9 

Kinematic 

viscosity 

(cSt) 

32.41 46.3 67.12 108.6 218.2 325.9 31.65 139.7 136.2 174.6 

Absolute 

viscosity 

(Kg/m s) 

0.0284 0.0407 0.0595 0.0968 0.1959 0.2940 0.0277 0.1250 0.1221 0.1564 

2.4.2 Results 

Proof-of-concept prototype 

Only the magnetoelastic sample Vitrovac 4040 was used with this prototype. 

The 6 mm wide ribbon, cut in a piece 30 mm long, was inserted in the vial 

containing the oil. The optimum bias field, determined with the sample in air, 

was obtained with 0.22 A, corresponding to a magnetic field of 4.19 Oe 

(334 Am-1).  

The oils coded T32, T46, T68, T100, O220 and O320 displaying viscosities 

in the range from 32 to 326 cSt, were successively tested. The raw resonance 

curves, measured with this prototype are displayed in Figure 39. The 

resonance in air is also shown for comparison. Just from the observation of 

the curves, it is evident that the different viscosities of the oils cause 

important changes in the response. The amplitude and the frequency-position 

of the resonance vary significantly.  
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Figure 39. Resonance curves of Vitrovac 4040, in air and in oils of 

increasing viscosities. 

The processing of the measured curves produces quantitative values for 

these parameters, which are compiled in Table 7. It is to be noted that, for 

large viscosities, the amplitude of the resonance is quite small, which makes 

it difficult for the processing algorithm to determine accurately the values of 

the amplitude and the resonance frequency. 
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Table 7. Parameters of the resonance after processing the measured 

curves. 

Oil code 
Kinematic 

viscosity (cSt) 

Resonance 

Amplitude (mV) 

Resonance 

Frequency 

(kHz) 

Air  355 71.98 

T32 32.4 21 69.52 

T46 46.3 16 69.19 

T68 67.1 13 68.45 

T100 108.6 9 67.23 

O220 218.2 5 65.41 

O320 325.9 3 64.59 

 

The obtained data can be used to determine a calibration curve in terms 

either of the amplitude or the resonance frequency. Figure 40 displays the 

plot of the data and their corresponding least-squares fittings. The amplitude 

of the resonance as a function of the viscosity of the oil is given by the 

expression 

 V (mV) = 385.5  -0.82 (2.20) 

where the viscosity  is expressed in cSt. 

The obtained values of the resonance frequency are quite well represented 

by a second order polynomial in the measured viscosity range: 

 fr (kHz) = 70.67 - 0.04  + 5.51  10-5 2 (2.21) 

 

 

Figure 40. Resonance parameters as a function of the viscosity obtained 

in the proof-of-concept prototype using VitroVac4040 ribbon. a) 

amplitude of the resonance. b) resonance frequency. 
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Laboratory set-up 

With the final prototype, both the Vitrovac 4040 and 7600 amorphous ribbons 

were used as sensing elements. 

Using the samples in air, without introducing them in the oils, the bias 

field that produced the larger resonance amplitude was determined. For both 

samples, it resulted Hbias = 535 Am-1. 

The quality of the resonance curves obtained with this prototype is much 

greater that those obtained with the previous one. Figure 41 shown the 

resonance curves obtained for both sensing materials when inserted in oils 

with different viscosities. The plotted data represent the raw voltage 

measured by the system. Only a linear background has been subtracted to 

remove slight amplitude deviations among the different curves (that are 

inevitability produced by the process of extracting a reposition the test vial 

when changing the oil). 

 

Figure 41. Resonance curves obtanied in oils with diffferent viscosities 

using Vitrovac 4040 (left) and Vitrovac 7600 (right) ribbons. 

The curves display a clear variation of both the value of the resonance 

frequency and the amplitude of the resonance, when the viscosity of the oil in 

which they are inserted varies. The small shoulder that can be observed in 

the curved measured with the Vitrovac7600 sample is caused by an imperfect 

clamping of the sample to the supporting glass rod (see Figure 25), which 

allows exciting two different modes of resonance with close resonance 

frequencies. 

A simple data analysis that determine the value and the position of the 

maximum of the curves allows obtaining the calibration curves represented 

in Figure 42 and Figure 43. 
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Figure 42. Amplitude of the resonance curves shown in Figure 41 as a 

function of the oil viscosity for Vitrovac 4040 (left) and Vitrovac 7600 

(right). 

 

 
Figure 43. Value of the resonance frequency of the curves shown in Figure 

43 as a function of the oil viscosity for Vitrovac 4040 (left) and 

Vitrovac 7600 (right). 

Stoyanov and Grimes [2.27] proposed that the frequency shift follows a 

linear relation with the square root of the product of the viscosity and the 

density. Figure 44 demonstrated that the proposed dependence holds for our 

results obtained with Vitrovac 4040 and 7600 ribbons. 

 
Figure 44. The change in the resonance frequency of the curves shown in 

Figure 41 follows a linear dependence with respect to the square root of 

the product of the viscosity and the density of the oil, for both for 

Vitrovac 4040 (left) and Vitrovac 7600 (right). 
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We can apply the data analysis described in section 2.3.4.2 to the data 

measured for the sample Vitrovac 4040. The analysis is based on the fit to 

Equation 2.19 and allows determining not only the amplitude and the 

frequency of the resonance but also a damping parameter, which associated 

with the width of the resonance curve. This is a parameter that is directly 

influenced by the viscosity of the oil. 

Figure 45 shows the resonance curves obtained with the sample 

Vitrovac 4040, immersed in different oils, fitted to equation 2.19. The fitting 

has been performed in Matlab using the lsqcurvefit function from the 

optimization toolbox. The equation 2.19 is implemented in the fitting routine 

through the ft function of the Matlab control toolbox.  

 
Figure 45. Resonance curves of the sample Vitrovac 4040 in oils with 

different viscosity and best fits to equation 2.19.  

The best-fit values of the amplitude of the resonance, A, and the 

resonance frequency, fr, are plotted as a function of the viscosity of the oils in 

Figure 46. The values obtained from the fit are very close to those obtained 

directly form the maxima of the resonance curves. 

 
Figure 46. Amplitude (a) and resonance frequency (b) obtained from the 

fit of the resonance curves the sample Vitrovac  4040 in oils with different 

viscosity. 
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The obtanied values of the amplitude and the resonance frequency as a 

function of the viscosity of the oil can be used as calibration curves. Figure 46 

displays the best-fit curves to these values. The amplitude of the resonance 

as a function of the viscosity of the oil is given by the expression 

 A (mV) = 26.49  -0.69 (2.22) 

where the viscosity  is expressed in cSt. The resonance frequency is 

described by the equation: 

 fr (kHz) = 43.23  -0.08 (2.23) 

As stated before, the fit to equation 2.19 allows to determine the value of the 

damping parameter  of the magnetoelastic resonance. Figure 47 shows the 

values obtained for the different oils. It is noteworthy to observe that the 

hydraulic oils (from the family T, with viscosities up to 108.6 cSt) display a 

different slope that the oils from gearboxes lubrication (family O, with larger 

viscosities). This indicates that the damping parameter is very sensitive not 

only to the viscosity but also to the nature of the oil. 

 
Figure 47. Damping parameter obtained from the fit of the resonance 

curves. 

The linear trends are described by  

  = 0.035+4.2  10-4  (2.24) 

for oils of the family T ( ≤ 108.6 cSt), and 

  = 0.054+2.4  10-4  (2.25) 

for oils of the family O ( > 108.6 cSt). 

As seen in Figure 41, the resonance curves obtained with the ribbon 

Vitrovac 7600 present a small shoulder, indicating the existence of two 

different resonance modes. The excitation of two different modes is probably 

caused by an imperfect clamping of the sample to the glass rod. If we intend 

to apply the analysis procedure that uses the fit to equation 2.19, we must 

consider two different contributions, one for each of the resonance modes. 
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Figure 48 resume the results obtained by the fitting procedure for increasing 

values of the viscosity. In each plot, the sum of the resonance curves of the 

modes 1 and 2 reproduces perfectly the measured curve. It is very interesting 

to observe that the relative amplitude of the mode 2 decreases rapidly when 

the viscosity increases (see Figure 49.a where the amplitudes of each 

contribution are plotted against the viscosity). It seems that higher viscosities 

impose the existence of only one mode of oscillation (mode 1), damping the 

other one (mode 2). 

 
Figure 48. Fit of the measured resonance curve for Vitrovac 7600 to 

equation 2.19 using two different modes of oscillation. For each viscosity, 

the calculated resonance curves of mode 1 and mode 2 are displayed. The 

fit to the experimentally measured curve is the sum of both contributions. 

The fitting produces also the value of the damping parameters. They are 

represented in Figure 49.b. The damping parameter of the first mode is the 

one that reflects clearly the effect of the viscosity of the oil. It is interesting to 

observe that the damping presents different slope for T and O types of oils, as 

it happened with the Vitrovac 4040 sample.  

 
Figure 49. a) Amplitude of the two modes involved in the resonance of the 

Vitrovac 7600 sample as a function of the viscosity, as obtained in the 

fittings shown in Figure 48. The raw amplitude of the resonance curve as 

displayed in Figure 42.b is also plotted. b) Damping parameters obtained 

from the fits for both modes. 
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2.4.3 Results as a function of the temperature. 

The viscosity of oils is normally dependent on temperature. It is desirable that 

the on-line monitoring viscosity sensor can be used to determine the viscosity 

at different temperatures. However, the magnetoelastic effect is also 

temperature dependent, and the magnetoelastic resonance can be severely 

affected by temperature changes. This is evident in equation 2.17 (section 

2.2.3) that gives, for a simple model, the analytical expression of the young 

modulus of a magnetoelastic material: 

 𝐸(𝐻, 𝜎) =
1

1+
9𝜆𝑆

2𝜇0
2𝑀𝑆

2𝐻2

(2𝐾−3𝜆𝑆𝜎)3 𝐸𝑆

 (2.17) 

The materials parameters s (saturation magnetostriction), Ms (saturation 

magnetization) and K (anisotropy constant) are all temperature dependent. 

Therefore, the frequency at which the magnetoelastic resonance takes place 

fr changes appreciably with temperature, since fr and E are intimately 

coupled (see equation 2.12). In Ref [2.47] this dependence was established 

experimentally. Figure 50.a exemplifies the variation of the E curve with 

temperature in a Fe66Co18Si1B15 amorphous ribbon in air. As illustrated in 

Figure 50.b, the relative variation of the resonance frequency with respect to 

its value at 20 C can be as large as 13 %, depending on the bias field. The 

amplitude of the resonance curve is affected similarly. Therefore, any sensor 

relaying in the magnetoelastic resonance must take into account the 

temperature response of the magnetoelastic sensing material. Fortunately, 

Figure 50.b also reveals that there is a value of the bias field for which the 

variation of the resonance frequency is null. In the case of Figure 50, this 

compensation point takes place with an applied bias field of 827 A/m. The 

strategy is, therefore, to determine the compensation bias field in the samples 

used in our laboratory prototype. Then we can test the possibility of 

measuring the viscosity of the oils at different temperatures. 



90 

 

 

Figure 50. a) Dependence of the E curve with temperature in a 

Fe66Co18Si1B15 amorphous ribbon. b) Variation of the sensitivity of the 

resonance frequency to the field in the range of temperatures from -20 to 

100 C, relative to the value at 20 C. Adapted from [2.47]. 

The complete measuring system was situated inside a climatic chamber 

and the E curves of the sample Vitrovac 4040 in air (without oil in the vials) 

measured at different temperatures, from 0 to 60 C. Figure 51 compiles the 

results obtained. 

 

Figure 51. E curves of the sample Vitrovac 4040 measured in air at 

different temperatures, from 0 to 60 C. The compensation point occurs 

at a bias field of Hbias = 722 A/m (indicated by an arrow). 
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The E curves describing the variation of the resonance frequency with 

the applied field show a clear dependency on temperature. The compensation 

point, that is, the field at which the curves collapse and the frequency of 

resonance becomes insensible to temperature, takes place when the sample 

is biased at about 722 A/m. 

The complete resonance curves of the magnetoelastic sample 

Vitrovac 4040, inserted in oils of the T family with different viscosities were 

measured at different temperatures, with the sample biased at the 

compensation field of 722 A/m. The curve corresponding to the oil T46 

(46.3 cSt at 20 C) is shown in Figure 52 as an example. 

 

Figure 52. Resonance curves measured with the sample Vitrovac  4040 

inserted in the T46 oil, measured at different temperatures while biased 

at 722 A/m. 

The values of the resonance frequencies as a function of the temperature 

obtained from curves similar to that of Figure 52 for the oils of the T family, 

are represented in Figure 53. Since the resonance has been measured at the 

compensation point in which the magnetoelastic behavior is independent of 

the temperature, the variation in the resonance frequency must be caused by 

the changes in the viscosity of the oils due to temperature variations. 
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Figure 53. Resonance frequencies measured at different temperatures 

for the oils of the T family.  

From the measured resonance frequencies, we can determine the 

viscosity of the oils at each temperature using the calibration between the 

resonance frequency and the viscosity. This relation was established for the 

Vitrovac 4040 sample at room temperature in Figure 46.b and its 

corresponding Equation 2.23. Note that this calibration data was obtained 

with the sample biased at 533 A/m. Fortunately, it is not necessary to obtain 

a new calibration curve at room temperature biased at 722 A/m, since the 

resonance frequency at both bias fields (722 and 533 A/m) is approximately 

the same (see Figure 51).  

Figure 54 displays the values of the viscosity of the oils at different 

temperatures calculated through the calibration curve. Note that the oils with 

lower viscosity, T32 and T46, are close to the lower limit of the calibrated 

curve. When the temperature increases, the viscosity is reduced, and its value 

gets out of the calibrated range. Therefore, for these two oils, the values 

displayed in Figure 54 are calculated by extrapolating the calibration curve. 

The estimated values of the viscosity as a function of the temperature 

displayed in Figure 54 are affected by an undetermined uncertainty for all 

the reasons stated above. However, the presented results must serve as an 

example of the procedure that can be followed to use the viscosity sensor in a 

wide range of operating temperatures.  
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Figure 54. Viscosity as a function of the temperature as deduced from the 

measured resonance frequencies and the calibration performed at room 

temperature. 

2.5 Conclusions 

In this chapter we have shown that the magnetoelastic resonance is a useful 

technique to determine the viscosity of lubricant oils in a wide range. Both 

the frequency and the amplitude of the resonance can be used to determine 

the viscosity of the oils. A working prototype of a sensor based on this 

principle, with on-line and real-time operation, have been designed, 

constructed and tested. A new analytical method for extracting the relevant 

parameters from the resonance curves has been developed. Additionally, we 

have proved the possibility of determining the viscosity at different 

temperatures using the same principle.  
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This chapter focuses on proving the suitability of motor current signature 

analysis (MCSA) as a method for condition monitoring of gearboxes. 

The expression condition monitoring denotes the collection and analysis 

of the information that is associated to the health state of a system. 

However, the condition monitoring strategy is not free of imperfections. For 

instance, the analysis of the obtained information can take time, and a 

failure in unexpectedly degraded equipment may occur before the results 

are available. Additionally, the data collection and the analysis must often 

be done manually, by specifically trained personnel, with the associated 

increase of costs. Finally, the placement of the sensors needed to retrieve 

the required information on the system may not only be expensive but also 

difficult to implement in many cases. 

The key steps of condition monitoring are [3.1]: 

• Data acquisition: collecting information relevant to the health state of 

the system. 

• Signal processing: for handling and analysing the information 

collected in step one, for understanding and interpreting it. 

• Maintenance and decision-making: for recommending the most 

suitable maintenance action. 

In the present work, the focus is set in data acquisition and signal 

processing, with the objective of automating and enabling the application of 

these steps in MCSA, and ultimately validating the suitability of the 

method. The work includes two different testing scenarios: First, the testing 

is focused on distinguishing gears in good condition from gears with severe 

damage. The second testing is focused on the diagnostics of exact faults in 

the gearbox. 

The chapter is therefore divided in four mayor parts. 

In the first part of the work, the theoretical background of MCSA and of 

the signal processing techniques used is explained. Signal analysis mainly 

takes place from three points of view: Time domain analysis from the raw 

signal; pre-processing with dual level time synchronous averaging; and pre-

processing with wavelets analysis. After that, a feature selection is done, 

followed by a classification of the features using different techniques. Each 

of the techniques used are explained in detail. 

In the second part, the experimental set up is described. The test bench 

and its modifications are explained. Each of the components with certain 

importance for the work presented are gone through in detail (sensors, way 

of organizing the data pool, etc.). This includes the experimentation itself, 
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clearing up the design of experiments, and the faults tested. Finally, the 

procedure of data analysis, reduction and classification is shown. 

In the third section, the results are explained. Results from the concept 

proof as well as from the gear condition diagnostics are discussed, including 

the analysis of the different techniques. In particular, wavelet analysis and 

dual level time synchronous averaging are compared by mapping the results 

and studying their statistical significance. Different percentages of success 

and deviations are obtained from the classification of both approaches. This 

particular part of the work is a result of a collaboration performed during a 

research stage at the University of Cincinnati’s Intelligent Maintenance 

Systems Center, in Cincinnati, OH, in the United States of America. 

A fourth section is dedicated to analysing additional results of the 

application of MCSA, this time to bearing fault detection. 

Finally, the last section describes de concept of fingerprint, and some 

possible applications in different fields: machine tool, electro-mechanical 

actuators and electric vehicles. 
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1 Theoretical background 
Usually, the condition of a gearbox is assessed through the use of 

accelerometers [3.2]. This approach however, has inconveniences: 

accelerometers are quite expensive and their installation at the proper 

places within the gearbox may be cumbersome, requiring also a deep 

knowledge of the machinery to deploy the sensors and to interpret the data. 

The inconveniences of accelerometers can be avoided by using internal 

signals for monitoring. In the particular case of electric motors with 

gearboxes, the analysis of the current feeding the motor that moves the 

gearbox may be used. These signals are correlated with the health state of 

the gearbox, as it is evidenced in this work, and readily available without 

the use of additional sensors. In fact, motor current signature analysis is 

already used for the condition monitoring of electrical motors [3.3] although, 

to the best knowledge of the author, there is still no commercial product for 

the condition monitoring of the mechanical components situated 

downstream of the electric drive. 

1.1 Motor current signature analysis for mechanical faults 

The approach of examining the electrical current feeding the motor, as a 

mean for establishing the health condition of mechanical elements in 

rotating machinery, became known as Motor Current Signature Analysis 

(MCSA). Developed in the 80’s in the Oak Ridge National Labs [3.4], MCSA 

has been studied, applied end extended by many other authors both from a 

theoretical and an experimental point of view [3.5]-[3.6]. It relies on the fact 

that an electric motor driving a mechanical load operates as an efficient and 

permanently available transducer, capable of sensing mechanical load 

variations and converting them into induced currents generated in the 

motor windings. For example, as described in Ref. [3.7], the vibration caused 

by mechanical faults in downstream equipment induces changes in the 

magnetic field and, as a consequence, in the inductance of the motor. 

Mechanical (torsional) vibrations transmitted to the shaft of electric 

motors can be detected and analysed through the specific frequencies that 

appear in the feeding current as a consequence of modulation products 

between the power system frequency and the vibrating frequencies. 

Therefore, useful information about the torsional vibrations can be 

extracted from the analysis of the stator current using the theory of 

electrical machines. This can be shown mathematically, following the 

treatment given in [3.8]. 
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To analyse the influence on the feeding current of vibrations at a single 

frequency, it is necessary to derive the air-gap torque Te in the electrical 

machine, since it links the electromagnetic and mechanical behaviour of the 

system. In general, when a vibration of frequency f0 is present, the air-gap 

torque Te can be written as  

 𝑇𝑒 = 𝑇𝑒0 + 𝐴𝑇cos(2𝜋𝑓0𝑡 + 𝜑)  (3.1) 

constituted by two contributions: the average torque Te0 and the alternating 

torque (𝐴𝑇cos(2𝜋𝑓0𝑡 + 𝜑)) produced by the vibration. 

The torque is produced by the interaction between the magnetic field 

and the currents in the machine. In a balanced three phase machine, the 

flux linkage of the stator s has a constant magnitude and rotates at 

2πf rad/s, where f is the frequency of the electrical supply. The torque can be 

expressed as [3.9] 

 𝑇𝑒 =
3𝑃𝑝

2
𝜆𝑠𝑖𝑠𝑇 (3.2) 

where isT is the component of the stator current that produces the torque 

and Pp is the number of pole pairs. The total stator current is is composed by 

the magnetizing current isM, which is in phase with s, and the torque 

producing component isT, which is 90º ahead (see Figure 1). Therefore, 

according to equations (3.1) and (3.2), both components of the stator current 

can be expected to be composed of two terms: 

 𝑖𝑠𝑀 = 𝑖𝑠𝑀0 + 𝐴𝑠𝑀sin(2𝜋𝑓0𝑡 + 𝜑𝑀) (3.3) 

 𝑖𝑠𝑇 = 𝑖𝑠𝑇0 + 𝐴𝑠𝑇sin(2𝜋𝑓0𝑡 + 𝜑𝑇) (3.4) 

The stator current is can be measured when projected over the phase 

currents of the machine, with frequency f. For example, for the first phase 

(phase a), the phase current becomes (see Figure 1): 

𝑖𝑠
𝑎 = 𝑖𝑠0sin(2𝜋𝑓𝑡 + 𝜑𝑠0)

+
1

2
{𝐴𝑠𝑀cos[2𝜋(𝑓 − 𝑓0)𝑡 − 𝜑𝑀] + 𝐴𝑠𝑇cos[2𝜋(𝑓 − 𝑓0)𝑡 − 𝜑𝑇]}

−
1

2
{𝐴𝑠𝑀cos[2𝜋(𝑓 + 𝑓0)𝑡 + 𝜑𝑀] − 𝐴𝑠𝑇cos[2𝜋(𝑓 + 𝑓0)𝑡 + 𝜑𝑇]} 

 (3.5) 

where is0 is the magnitude of the stator current given by 

 𝑖𝑠0 = √𝑖𝑠𝑀0
2 + 𝑖𝑠𝑇0

2 , (3.6) 

and 0 is given by 

 𝜑𝑠0 = 𝑡𝑔−1 𝑖𝑠𝑇0

𝑖𝑠𝑀0
. (3.7) 
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Equation (3.5) clearly establishes that the effect of a vibration with a 

frequency f0 can be readily observed in the feeding current as sideband 

components of frequency f + f0 and f - f0. 

 

Figure 1. Vector diagram of the current components in the induction 

motor. Adapted from [3.8]. 

The data generated in the test bench used in this work, that will be 

explained in section 2.1, support the above theoretical concept. As an 

example, the analysis of the measured signal from a test performed at a 

1000 rpm proves the existence of mechanical frequencies (Figure 2). A 

discrete Fourier transform was applied to the data, and a specific 

mechanical frequency was searched. In this case, the mechanical component 

searched for was the rotational speed of the intermediate shaft (see Figure 

10 below for a detailed description of the gearbox). The rotational speed of 

the 2-pole electric motor is 33.32 Hz (2  16.66 Hz corresponding to 

1000 rpm). The relationship between the first and the second shafts is 2.5, 

so the rotation frequency is 13.33 Hz. The sidebands are therefore expected 

at 46.65 Hz and 19.99 Hz respectively. In Figure 2, the feeding current is 

33.6 Hz, with the top sideband at 48.8 Hz and the bottom sideband at 

18.33 Hz. The small discrepancies may come from small variations in the 

rotating speed and from the resolution of the DFT. 
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Figure 2. Single sided amplitude spectrum of U current channel of a test 

performed with the motor turning at 1000 rpm constant speed. (The data 

correspond to a test using a healthy gear, repetition number 12). 

1.2 Signal processing 

Signal processing serves to analyse the measurement signals obtained in 

the data acquisition step, using adequate techniques and methods [3.10]. 

The task of signal processing is to extract useful information that can reveal 

the health condition of the asset in which the signals were acquired. Several 

techniques have been proposed in the literature that can be roughly 

classified in three categories: time domain, frequency domain and time-

frequency domain. Figure 3 schematizes the process of signal analysis. 

 
Figure 3. Scheme showing the process of data analysis. 
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Signals are commonly divided between stationary and non-stationary. 

Stationary denotes that the statistical properties of the signal are invariant 

with time. Consequently, non-stationary refers to anything that doesn´t 

satisfy these conditions, and can be separated into two categories: 

continuous and transient. The signal that will be the focus of the analysis 

performed in the present work will be transient, non-stationary. The signal 

will be the result of the transients generated in speed changes, as will be 

explained in section 2.2.1. Therefore, the techniques selected for signal 

analysis in this Thesis will be valid for such conditions. 

Generally, fault characteristics are embedded in heavy background 

noise. This is especially true for early faults. That is why it is recommended 

an initial step of signal pre-processing. The most important pre-processing 

techniques are mean removal, trend removal and signal filtering. Mean and 

trend removal are based on eliminating the mean value carrying the signal, 

which doesn´t generally have any useful information. Signal filtering means 

removing unwanted frequency bands and eliminating the interference of 

noise. One method widely used nowadays is the time synchronous averaging 

(TSA), designed to extract periodic waveforms from noisy signals. 

The time domain signal processing category, involves dealing directly 

with the pre-processed time wave form. This category includes auto-

correlation (that captures the periodic characteristics of a signal) and cross-

correlation analysis (which measures the relevance degree between two 

different signals). Another important processing technique under this 

category is statistical feature extraction. These features reflect the 

statistical properties from the time-domain waveform. The most common 

ones include: mean value, root mean square, peak value, kurtosis and crest 

factor, among others. 

Time domain analysis only reflects the variations of the waveform of the 

signal, but is not able to disclose the distribution and the frequency 

components of it. To compensate the shortcomings of time domain analysis, 

frequency domain analysis was proposed, mainly through the frequency 

spectrum. Its fundaments rely on the Fourier transform that decomposes a 

periodic signal into the superposition of its sinusoidal components, which 

are projected in the frequency axis, creating the frequency spectrum. 

However, the Fourier transform can only process continuous signals, not 

discrete ones. The discrete Fourier transform was developed to process 

discrete signals with a computer. The Fast Fourier Transform (FFT) was 

developed to determine the frequency spectrum in a reduced computing 

time. 
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Considering that the Fourier transform is restricted to stationary 

signals and cannot reflect the changes in each frequency with time, 

alternative time-frequency domain processing techniques were developed. 

These techniques can reflect the change of the signal from time and 

frequency domain. Some of the techniques included in this category are 

short-time Fourier transform, Wigner-Vile distribution, Hilbert-Huan 

transform, continuous wavelet transform and the discrete wavelet 

transform. 

In this thesis, the time domain statistical feature extraction and discrete 

wavelet transform were used, as they provide an optimum manner to 

analyse transitory signals, with a reduced computational cost. After the 

signals are extracted from the discrete wavelet transform, time-domain 

descriptors are obtained. So, we have effectively used discrete-wavelet 

transform as a pre-processing technique. The process will be explained in 

depth in sections 1.2.1, 1.2.2, 1.2.3 and 2.3. 

Also, the dual level time synchronous averaging pre-processing 

technique was used to compare results with other well-known techniques. It 

will be explained more in depth in section 1.2.2. 

As it has been seen, there are several ways of obtaining descriptors, and 

nowadays computational power makes easier their acquisition. It is of 

common knowledge that, for a good diagnostic, the use of more than one 

descriptor is needed [3.11], [3.12]. The shortcomings encountered in some of 

the descriptors are overcome by others. As a result, the problem appearing 

after analysing the signal is the high number of descriptors generated, and 

the selection of the most interesting ones is a challenging task. 

For such, in the present work, four feature selection methods were used: 

a one-way analysis method; the correlation feature selection method; 

information gain method; and the relief method. They will be described in 

section 1.3. 

In an effort to quantify the impact of both techniques and the feature 

selection methods, four different classification methods were used; Bayesian 

network; sequential minimal optimization; lazy instance based learning; 

and trees J48. The t-test was used to compare the results. They will be 

described in section 1.4. 

1.2.1 Time domain analysis 

Time domain analysis is the most straightforward technique as statistical 

values are calculated directly from the time-domain signal [3.10]. It is based 

on the assumption that, when a fault occurs in the mechanical component, 
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the stiffness of the mechanical structure around it changes. This variation 

can produce impulse or shock that will be reflected in the vibration of the 

component. The amplitudes and distribution of the measured signals may be 

affected. Typically, time domain methods have been used for the analysis of 

signals coming from accelerometers, but as mechanical faults generate 

vibrations in the stator, motor current signature analysis is an indirect way 

of measuring them [3.13]. 

Common statistical features in the time domain are compiled in Table 1. 

They include the mean value, reflecting the average of the signal, and the 

root mean square and peak value, which are related with the vibration 

amplitude and energy in the time-domain. These are generally good fault 

indicators as the mechanical fault excites mechanical vibrations, uplifting 

the values of these descriptors. They specially work better the more severe 

the fault becomes, being able even to distinguish the severity of the fault. 

On the other hand, kurtosis value, crest factor, clearance factor and impulse 

factor are more adequate descriptors for incipient faults. They are related 

with the impulse in the signal. 

Table 1. Table with the main descriptors used in the present work, 

where x(n) is a signal series for n = 1,2..., N data points. 

Mean Standard deviation Peak value 

𝑋𝑚 =  
∑ 𝑥(𝑛)𝑁

𝑛=1

𝑁
 𝑋𝑠𝑑 = √

∑ (𝑥(𝑛) − 𝑋𝑚)2𝑁
𝑛=1

𝑁 − 1
 𝑋𝑝𝑣 =  max|𝑥(𝑛)| 

Kurtosis Skewness Impulse factor 

𝑋𝑘 =
∑ (𝑥(𝑛) − 𝑋𝑚)4𝑁

𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
4  𝑋𝑆𝐾 =

∑ (𝑥(𝑛) − 𝑋𝑚)3𝑁
𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
3  𝑋𝐼𝑚 =  

𝑋𝑝𝑣

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 

Clearance factor Shape factor Root mean square 

𝑋𝐶𝑙𝑓 =
𝑋𝑝𝑣

(
∑ √|𝑥(𝑛)|𝑁

𝑛=1

𝑁 )

2 
𝑋𝑆𝑓 =  

𝑋𝑟𝑚𝑠

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 
𝑋𝑟𝑚𝑠 = √

∑ (𝑥(𝑛))2𝑁
𝑛=1

𝑁
 

 Crest factor  

 
𝑋𝐶𝑟𝑓 =

𝑋𝑝𝑣

𝑋𝑟𝑚𝑠
 

 

1.2.2 Dual level time synchronous averaging 

Time Synchronous Averaging (TSA) is a signal pre-processing technique 

especially designed to extract periodic waveforms from noisy signals. It is 

especially adequate for rotational machinery, as the signals generated are 

periodical. In essence, and applied to shaft vibration analysis, the technique 

consists on averaging the vibration signal measured in the shaft for one 

rotating period according to the phase information, by calculating the mean 
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of waveform samples that have been measured for a number of rotations. 

The phase information is extracted from the tachometer readings using a 

zero-crossing technique, by determining the time instants where one 

rotation starts and another ends. To have an equal number of data points in 

each revolution, maintaining the same angular separation between each 

point, angular re-sampling techniques are used after acquisition. 

In the case of current signature analysis, the TSA technique faces 

several difficulties. First, the vibration information is embedded in the line 

current signal, which is far more intense than the vibration signal itself. 

Besides, line and shaft frequencies are very close together. This, in addition 

to the motor slip, makes it difficult to separate the shaft signal from the line 

current. Additionally, the motor slip is not constant but depends on speed 

and/or load changes, which affects the ergodicity and stochasticity of the 

noise components. 

The Dual-level Time Synchronous Averaging (DLTSA) method, proposed 

in [3.14], is conceived to overcome these problems, using a data analysis 

whose steps are schematized in Figure 4. It is explained more deeply in the 

Thesis of H.D. Ardakani [3.15]. Initially, the phasor for the first level TSA is 

generated using an adaptive band-pass filter centred at the line frequency. 

Then, a usual TSA is performed on the raw signal with respect to the line 

frequency phasor. The useful information appears in the residual signal 

extracted during the TSA process. In our case, the residual is obtained by 

removing the synchronous component of the original signal, which is a 

different approach from the usual residual definition [3.16],[3.17]. It is to be 

noted that the residual signal contains the gearbox related harmonics and 

stochastic signals. At the same time, the original time stamp is not 

discarded, as it is used to interpolate the residual signal back to its original 

time domain. The second level TSA is applied to the residual signal with 

respect to the tachometer signal phasor, obtaining the final signal 

containing the shaft related harmonics. The signature analysis of this X() 

signal is then performed in both angle and order domains. 
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Figure 4. Scheme of the signal analysis using the DLTSA method [3.14]. 

Figure 5 graphically describes again the process, showing the result of 

the different steps of DLTSA on the current signal. Using the zero-crossings 

of the filtered current signal, the current signals are averaged. After 

replicating the averaged signals and constructing signals with the original 

length, tachometer signal is used to perform the final step of the averaging. 

 

Figure 5. Motor current signal through the different steps of DLTSA.  

After performing DLTSA, features in both angle and order domains are 

extracted from the signal data. The extracted features include standard 

deviation, kurtosis, peak-to-peak and crest factor in the angle domain, and 

magnitude of the signal at different orders in order domain. The same 

features were also extracted from classical residual and difference signals. 

Classical residual signal refers to the averaged signal having the 
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fundamental shaft frequency components removed from it. The classical 

difference signal refers to the averaged signal having the fundamental shaft 

frequency and the first order sidebands removed from it. From the whole set 

of extracted features, seven of them with the most discriminative power 

were selected for further steps of the process, using an analysis of variance 

(Fisher criteria), as described in section 2.3.2 afterwards. 

1.2.3 Wavelets decomposition 

As a pioneer attempt to overcome the limitations of windowed Fourier 

transform to analyse signals, i.e. fixed resolution in the time and frequency 

domains [3.18], Grossmann and Morlet proposed an analysis procedure 

based on the signal decomposition into a family of functions [3.19]. The 

evolution of this approach gave place to wavelet analysis, which consists 

basically on expressing the signal as a linear combination of a particular set 

of functions, obtained by shifting and dilating one single function called a 

mother wavelet [3.20]. 

The most prominent and convenient feature of the wavelet analysis is 

the variation of the time-frequency aspect ratio, giving good frequency 

localization at low frequencies, and good time location at high frequencies. It 

demands fewer processing resources than windowed Fourier transform for 

the analysis. Besides, the segmentation produced by this variation of the 

time-frequency aspect ratio makes the wavelet analysis particularly suited 

for transient signals. 

In the continuous wavelet transform, the result is the sum over time of 

the signal multiplied by scaled and shifted versions of the wavelet. This 

process produces wavelet coefficients that are a function of scale and 

position [3.21]. However, an alternative approach is used commonly, 

denominated discrete wavelet transform, in which a discrete set of 

orthogonal wavelets are employed, associated to orthonormal bases of 𝐿2(ℝ) 

[3.22]. In this base, the wavelet transform is performed only on a discrete 

grid of the parameters of dilation and translation. Within this framework, 

from a given mother wavelet 𝜓(𝑡), the base of orthonormal functions is 

constructed by dilation and translation as 

 𝜓𝑛
𝑚(𝑡) =  2

𝑚
2⁄ 𝜓(2𝑚𝑡 − 𝑛), (3.8) 

where m and n are the dilation and translation indices, respectively.  

An arbitrary signal x(t) of finite energy can be written in this wavelet 

basis as 
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 𝑥(𝑡) =  ∑ ∑ 𝑑𝑛
𝑚

𝑛

𝜓𝑛
𝑚(𝑡)

𝑚

, (3.9) 

where the coefficients of expansion are given by: 

 𝑑𝑛
𝑚 =  ∫ 𝑥(𝑡)𝜓𝑛

𝑚(𝑡)𝑑𝑡
∞

−∞
. (3.10) 

Each dilation index m designates a particular wavelet level. The 

contribution of the original signal x(t) to each level is obtaining by summing 

over the translation indices as 

 𝑑𝑚(𝑡) =  ∑ 𝑑𝑛
𝑚𝜓𝑛

𝑚(𝑡)

𝑛

. (3.11) 

The usefulness of the wavelet analysis is that different wavelet 

decomposition levels provide information on the time behaviour of the 

original signal within different scale bands. 

In order to implement a computationally efficient method to perform the 

wavelet decomposition, the so-called multi-resolution analysis was 

developed, which is the basis of the Fast Wavelet Transform algorithm used 

habitually [3.23]. Basically, the method constructs iteratively the wavelet 

functions using scaling functions and scaling coefficients 𝑎𝑛
𝑚 defined in such 

a way that the coefficients of expansion at a given decomposition level m, 

can be calculated from the ones at the previous level m-1: 

 𝑎𝑛
𝑚 =   ∑ ℎ[𝑙 − 2𝑛]𝑎𝑙

𝑚−1

𝑙

 (3.12) 

 𝑑𝑛
𝑚 =   ∑ 𝑔[𝑙 − 2𝑛]𝑎𝑙

𝑚−1

𝑙

 (3.13) 

where h and g are called low-pass and high-pass filters from the associated 

filter bank. These coefficients allow determining the different wavelet 

decomposition levels (see Figure 6) 
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Figure 6. Discrete wavelet decomposition. 

In Figure 7, the process of analysing the current signal by means of 

discrete wavelet decomposition is exemplified. Starting from the raw 

current signal, it is submitted to a high pass filter and to a low pass filter. 

The resulting signal from the high pass filtering is then obtained and time 

domain descriptors are generated from it. They are stored in a vector. At the 

same time, the resulting signal from the low pass filtering is submitted to 

low pass filtering and to high pass filtering. In an analogue way to the 

analysis made in the first stage of the wavelet decomposition, the 

descriptors obtained from this second level are saved in a vector and 

attached to the previously generated one, creating a result matrix. The 

process is repeated until the last of the levels is reached where the signal 

resulting from the low pass filtering is also obtained. At each of the levels 

that is gone down, the number of points of the generated signal is reduced to 

half of the one in the previous level. At the end of the process, a matrix with 

the descriptors linked with each of the decomposition levels is obtained. 
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Figure 7. Discrete wavelet decomposition through different steps.  

1.3 Feature selection 

Not all the indicators will produce useful information, although each of 

them will be a better fit for different faults [3.24]. So, it is necessary to make 

a selection between the most suitable indicators and the rest. Feature 

selection or variable selection consists of reducing the available features to a 

set that is optimal or sub-optimal and capable of producing results which 

are equal or better to that of the original set [3.25]. Reducing the feature set 

scales down the dimensionality of the data which, in turn, reduces the 

training time of the induction algorithm selected and the computational 

cost, improves the accuracy of the final result, and makes the data mining 

results easier to understand and more applicable. 

In this Thesis four feature selection methods were used: a one-way 

analysis method; the correlation feature selection method; information gain 

method; and the relief method. 

1.3.1 ANalysis Of VAriance – ANOVA 

The analysis of variance [3.26] is a collection of statistical models, and their 

associated procedures, that are used to analyse the differences among group 

means [3.27]. They were first developed by statistician Ronald Fisher [3.28]. 

Particularly one-way analysis of variance is a technique that can be used to 

compare means of two or more samples. 

The F-test or Fisher criteria, in one-way analysis of variance, is the tool 

to assess how much the expected values of a quantitative variable within 
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several pre-defined groups differ from each other. The result is a F number 

associated with each of the descriptors.  

The equation to calculate the one-way ANOVA F-test statistic is: 

 
𝐹 =

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

∑ 𝑛𝑖(�̅�𝑖∙ − �̅�)2/(𝐾 − 1)𝐾
𝑖=1

∑ ∑ (𝑌𝑖𝑗 − �̅�𝑖∙)
2

/(𝑁 − 𝐾)
𝑛𝑖
𝑗=1

𝐾
𝑖=1

 
(3.14) 

where �̅�𝑖∙denotes the sample mean in the ith group, ni is the number of 

observations in the ith group, �̅� represents the overall mean of the data, K is 

the number of groups, 𝑌𝑖𝑗 is the jth observation in the ith out of K groups and 

N is the overall sample size. 

The F number will be large if the between-group variability is large 

relative to the within-group variability, i.e. the dispersion between the same 

descriptor relative to the dispersion between the descriptors of the rest of 

the health states. As a result, the bigger the F number for the studied 

descriptor is, the better it distinguishes between health states of the gear. 

1.3.2 Correlation Feature Selection (CFS) 

The correlation feature selection measure evaluates subsets of features 

under the hypothesis that good feature subsets contain features highly 

correlated with the classification, but uncorrelated to each other. 

If the correlation between each of the components in a test and the 

outside variable is known, and the inter-correlation between each pair of 

components is given, then the correlation between a composite test 

consisting of the summed components and the outside variable can be 

predicted from [3.29]: 

 
𝑟𝑧𝑐 =

𝑘𝑟𝑧𝑖̅̅ ̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑖�̅�

 
(3.15) 

where rzc is the correlation between the summed components and the 

outside variable, k is the number of components, 𝑟𝑧𝑖̅̅ ̅ is the average of the 

correlations between the components and the outside variable, and 𝑟𝑖�̅� is the 

average inter-correlation between components. 

The above obtained correlation is known as the merit. The merit is used 

in the so-called first search algorithm. It starts calculating the merit of all 

the variables individually, selecting the biggest one. After this, it adds the 

variables one by one, selecting the variable that provides the biggest merit, 

and in case that the merit lowers that variable is discarded. In the case that 

it doesn´t find a bigger merit in five attempts, the algorithm starts again but 
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it selects another set of variables. The solution is the set of variables with 

the biggest merit. 

1.3.3 Information Gain 

Information gain algorithm compares the reduction in the entropy that is 

archived by adding a feature to the feature set F [3.30]. It is expressed by: 

 
𝐼𝐺(𝑭) = 𝐻(𝑆) − ∑

𝑆𝑖

𝑆
𝐻(𝑆𝑖)

𝑖

 
(3.16) 

where S is the data group, H(S) is the entropy of the given dataset and H(Si) 

is the entropy of the ith subset generated by partitioning S, based on all 

features in the joint set F. 

Usually a feature with high information gain should be ranked higher 

than other features because it has a stronger power in classifying the data. 

It is necessary to explain the concept of entropy to fully understand this 

technique. In information theory, entropy measures the amount of 

information that is missing before reception. The entropy we will use to 

identify feature interactions is Shannon Entropy. For a data group S with n 

class labels, the Shannon Entropy is a measure of its unpredictability or 

impurity: 

 
𝐻(𝑆) =  − ∑ 𝑝(𝑖) 𝑙𝑜𝑔 𝑝(𝑖)

𝑛

𝑖=0

 
(3.17) 

where p(i) is the probability of class i in the data group S. 

1.3.4 Relief 

The classical relief algorithm estimates the quality of attributes according to 

how well their values distinguish between instances that are near to each 

other [3.31], [3.32] and [3.33]. An instance is the set of the values of all the 

features that conform a label. In this work, a modification of the classical 

algorithm is implemented, where more than one hit/miss pairs are 

compared [3.34].  

Given a randomly selected instance Ri, relief searches for its k nearest 

neighbors, from the same class, called nearest hits H, and the others from 

the different class, called nearest miss M. Here, k was set to 10. It updates 

the quality estimation W[A] for all attributes A depending on their values 

for Ri, M, and H. If the instances Ri and H have different values of the 

attribute A, then the attribute A separates two instances within the same 

class, which is not desirable, so the quality estimation W[A] is decreased. On 

the other hand, if instances Ri and M have different values of the attribute 
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A, then it separates two instances with different class values, which is 

desirable, so the quality estimation W[A] is increased. The whole process is 

repeated m times, where m is a user defined parameter. In our case the 

parameter was set to fulfill all of the labels, i.e. m = 45. In each repetition 

the starting instance in Ri is different.  

1.4 Feature Classification 

After the selection of the features, the obtained feature sets must be tested 

and classified according to their performance to discriminate the different 

types of faults. This is done using different algorithms denominated 

classifiers. The way of testing the performance of the feature sets is the 

following: from all the experimentally obtained data, a small part is used to 

train a classifier, that is, to generate a model, and then the trained classifier 

examines the rest of the data according to that model, trying to identify the 

fault to which the data corresponds. The test determines for each classifier 

and feature set the percentage of hit rate with its standard deviation. 

Four different classifiers are used in this Thesis: bayesian network; 

sequential minimal optimization; lazy IBk instance based learning; and 

trees J48. The process of training the classifier and testing the model 

generated is performed for all of them by a technique denominated cross-

validation. 

It is important to highlight that the hit-rate results obtained by the 

classifiers cannot be directly used to decide which of the analysis methods, 

Wavelet or DLTSA, is better. This is because the feature sets selected from 

the Wavelets analysis and DLTSA are different. The number of elements 

used and their expected distribution must be considered to determine if the 

differences produced by the classifiers are statistically relevant of not. This 

study was performed with the help of the Student’s t-test. 

All the methods enumerated above are described briefly in the following 

paragraphs.  

1.4.1 Cross-validation 

Cross validation is a technique for assessing how the results of a statistical 

analysis will generalize to an independent data set [3.35]. It is used to 

estimate how accurately a predictive model will perform in practice. 

In k-fold cross-validation process [3.36], the original sample is randomly 

partitioned into k equal size subsamples. A single subsample is retained as 

the validation data for testing the model, and the remaining k-1 subsamples 

are used as training data. The cross-validation process is repeated k times 

(each time is called a fold), using each of the different k subsamples as the 
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validation data. The k results from the folds can then be averaged (or 

otherwise combined) to produce a single estimation. The advantage of this 

method is that all observations are used for both training and validation, 

and each observation is used for validation exactly once. 

For classification problems, one typically uses stratified k-fold cross-

validation, in which the folds are selected so that each fold contains roughly 

the same proportions of class labels (in our case, the class labels are the 

different faults of the gears). 

In repeated cross-validation, the cross-validation procedure is repeated 

n times, yielding n random partitions of the original sample. The n results 

are again averaged (or otherwise combined) to produce a single estimation. 

In this Thesis we use ten fold cross-validation repeated ten times, 

because it has become a de-facto standard and is well-suited to the case 

studied. 

1.4.2 Bayesian Network 

A Bayesian network is a combination of two different mathematical areas: 

graph theory and probability theory. It is a representation of a joint 

probability distribution defined on a finite set of random variables that can 

be discrete or continuous.  

The representation is a directed acyclic graph [3.37], [3.38], that is, one 

in which all of the edges in the graph are directed (i.e. they point in a 

particular direction) and there are no cycles (i.e. there is no way to start 

from any node and travel along a set of directed edges in the correct 

direction and arrive back at the starting node). 

The graph is formed by nodes, usually discrete, and arcs. Nodes 

correspond to random variables, and arcs represent probabilistic 

dependencies between the variables. A Conditional Probability Table (CPT) 

is associated with each node and describes the dependency between the node 

and its parents. This CPT is converted into a conditional probability 

distribution (CPD) in case of continuous nodes. To derive the probability of a 

node, the probabilities of its parent nodes and conditional probability 

distribution functions on their connecting edges are computed [3.39]. 

Figure 8 shows an example of Bayesian network structure for a 

classification task, where x1; x2; x3; x4; x5 are the variables (nodes) of 

prediction and C the class to be predicted [3.40]. 
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Figure 8. Example of Bayesian network structure for a classification 

task. 

Even though the combination of graph and probabilistic theories is one 

of the key benefits in Bayesian networks, a wide application of this 

technology would have not been possible without the development of 

efficient inference methods to calculate the posterior probabilities, also 

called belief updating. Exact inference methods (such as enumeration and 

variable elimination algorithms) are feasible tools for low dimension 

unconstrained networks. However, computational complexity of probability 

inference becomes intractable in large and multiply connected networks 

[3.41]. Therefore, it has been of special relevance the development of 

approximate inference methods, where there is normally a trade-off between 

time and accuracy (normally linked to the space of solutions that can be 

sought). Different approaches are used today, such as direct sampling, loopy 

belief propagation and changeable methods, though stochastic simulation 

(e.g. probabilistic logic sampling, likelihood weighting, Gibbs sampling...) 

may be the preferred choice in most cases. These algorithms generate 

samples of data sets from random configurations of the existing Bayesian 

network, and estimate the posterior probabilities from the sampled 

configurations. Here, the issue is to construct a database with enough case 

samples as to have a valid distribution of probability over the variables, 

which follows the probability distribution specified in the CPTs (or CPDs). 

Jensen and Nielsen [3.42] provide a good introduction to these methods. 

In the case considered in this Thesis, a simple Bayesian network 

classifier learning algorithm, implemented by Weka, has been used and 

applied in data set under study in order to classify the state of the 

component from the set of features extracted from signals. Some of the 

relevant characteristics of this algorithm are: K2 hill climbing algorithm has 

been selected as a search algorithm to search and learn the structure of the 

network; BAYES score metric has been utilized to measure and judge the 

quality of the structure; and finally, Simple Estimator method from data 
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has been used once the structure has been learning to estimate the 

conditional probability tables of the network. 

1.4.3 Sequential minimal optimization 

Sequential minimal optimization is a modification of the support vector 

machine technique [3.43], which in turn is a supervised learning algorithm. 

It uses supervised learning to generate a map. A map is a low-dimensional 

discretized representation of the input space, useful for visualizing low-

dimensional views of high-dimensional data. Multi-class problems, as the 

one considered in this Thesis, are solved using pairwise classification (i.e. 

one versus another) [3.44].  

The algorithm gets a set of training examples, labeled with the category 

to with they belong. With this information, it generates a model that, when 

new examples are added, assigns them to one of the categories. The 

categories are separated by a gap, which will be as wide as possible. 

However, support vector machine techniques have inconveniences: they 

are slow and training algorithms are complex, subtle and sometimes 

difficult to implement [3.45]. The training of a support vector machine 

requires the solution of a very large quadratic programming optimization 

problem. In the sequential minimal optimization technique, the problem is 

broken into a series of the smallest possible problems, enabling to solve 

them analytically, saving time and computational resources. 

1.4.4 Lazy IBk instance based learning  

Lazy learning is a method in which the learning, beyond that done with the 

training data, is done after the system is questioned. The opposite would be 

eager learning where the system tries to generate a classification model 

before receiving new data. [3.46] , [3.47]. 

Instance based learning algorithms are derived from the nearest 

neighbor pattern classifier [3.48], [3.49]. In the nearest neighbor classifier, 

the object is assigned to the class most common among its nearest 

neighbors. It is a type of lazy learning where the function is only 

approximated locally, and all computation is deferred until classification. It 

works by assigning a weight to the contributions of the neighbors, being 

bigger the contributions of the nearer neighbors and lower as they get 

distant. 

Unfortunately, it has also drawbacks: if the search for the nearest 

neighbors is done exhaustively, it is time consuming, and the storage of all 

instances can take a big space of memory. They also present problems to 

work with noisy datasets. 
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To overcome these drawbacks instance based learning algorithm was 

developed. It works with a partial dataset, which is used as training, and 

fits the new data to that dataset. In this way, a smaller space is taken inside 

the memory. The training dataset is selected so that there is no noise in it. 

1.4.5 Trees J48 

It is a type of decision tree. Decision trees are a type of decision support tool 

that uses a graph similar to a tree [3.50]. They can be represented as a 

compilation of If and Then rules.  

 

Figure 9. Example of a decision tree [3.51]. 

As can be seen in Figure 9, the tree starts from a single entity from 

which branches grow. The branches are generated in function of the values 

taken by one or various variables of the tree. Each of the nodes that is not a 

leave (the end of a branch, where no other branches grow from), represents 

a variable (in the case of the image they would be the circles). Each of the 

leaves is a value of classification (in our case the health state of a gear), 

represented by a triangle in the figure. Each of the branches that leave a 

node with an attribute represent the possible values of that attribute (in our 

case a variable). 

Decision tree J48 is an open source Java implementation of the C4.5 

algorithm in the Weka data mining tool. At each node of the tree, C4.5 

chooses the attribute of the data that most effectively splits its set of 

samples into subsets enriched in one class or the other [3.52]. The splitting 

criterion is the normalized information gain. Information gain measures the 

amount of information contained in a set of data [3.53]. It gives the idea of 

the importance of an attribute in a dataset. Thus, the attribute with the 

highest normalized information gain is chosen to make the decision. The 

C4.5 algorithm then recurs on the smaller sub-lists. 

1.4.6 Student’s t-test 

As explained before, the values from the classification of the Wavelets 

analysis and DLTSA cannot be compared as such. The number of elements 

in the study and their expected distribution must be considered to be able to 
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quantify if the difference in the hit-rate obtained by the classifiers is 

statistically significant or not. A technique that considers these parameters 

for the comparison is the Student’s t-test. [3.54] The t-test is used to 

determine if two sets of data are significantly different. The comparison was 

made using R language [3.55]. 

In the case studied in this Thesis, the unpaired t method is the most 

appropriate. It is used to test if the population means related to two 

independent, random samples from an approximately normal distribution 

are equal. 

The confidence interval and variances are calculated assuming unequal 

variances, to be later compared with the quantile function. The quantile 

function is the value at which the probability of a variable is less than or 

equal to the given probability. 

Assuming unequal variances, the test statistic is calculated as: 

 
𝑡 =

𝑥1̅̅̅ − 𝑥2̅̅ ̅

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

  
(3.18) 

where 𝑥1̅̅̅ and 𝑥2̅̅ ̅ are the sample means, 𝑠2 is the sample variance, 𝑛1 and 𝑛2 

are the sample sizes, t is a Student t quantile with 𝑛1+ 𝑛2- 2 degrees of 

freedom. (Note that in this work 𝑛1 and 𝑛2 are 10, as the cross-validation 

was done with a ten fold). 

2 Experimental 

2.1 Test bench 

The test stand used for this work is the gearbox prognostic simulator (GPS) 

from the Spectra Quest Company [3.56], which is displayed in Figure 10. It 

is designed to mimic the real working conditions of actual machinery while 

providing great versatility for implementing specific experiments with easy 

access to the mechanical and electrical parts. The original software and 

hardware were modified to fit better experimental needs. In particular, 

software and monitoring set-up were modified to include new sensors and 

the gears were changed for others made from harder steel. 

2.1.1 General description 

The test rig is composed by two confronted electrical motors, one acting as 

drive and the other as load, and two gearboxes, complemented with sensors 

and couplings. The drive and load motors have the same characteristics. 

Both are 10 Hp (7.35 kW), three-phase, induction motors having two pair of 
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poles. The monitored electrical signals are the ones feeding the driving 

motor. The two gearboxes are also quasi-identical, having three shafts and 

four gears as described in Figure 11. In our configuration, the first gearbox 

after the drive motor is the one under test, in which gears in different 

health states are inserted. The second gearbox works as a reducer and load 

motor protector in this set-up. The load motor protector has a bigger safety 

coefficient that prevents it to be damaged. 

 

Figure 10. Detail of the Gear Prognostics Simulator test rig.  

(Figure from [3.57]). 

The monitored gearbox is composed by four spur gears (Figure 11). They are 

built by Martin company [3.58]. The first gear, as it comes from the motor 

that drives the test bench, has 32 teeth. It is the one substituted by gears in 

different health state, leaving the rest un-changed. It is followed by a gear 

with 80 teeth. In the same axle, a gear with 48 teeth is found, connected to a 

gear with 64 teeth, resulting in a global transmission relationship of 3.33. 

Several tests were performed, and in experiments performed in a second 

stage, gears manufactured by Juaristi Engranajes [3.59] were used. These 

were built with F-155 steal, and underwent a cementation treatment. 
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Figure 11. Scheme of the gear disposition inside the monitored gearbox.  

2.1.2 Variator descriptor 

The basic scheme of the electrical configuration of the test rig is displayed in 

Figure 12. The drive motor is fed by a power converter unit, connected to the 

grid and constituted by a rectifier and an inverter. The power converter 

delivers the current to the motor with the amplitude and frequency 

determined by the control unit that drives the motor at the desired speed 

[3.60],[3.61]. The GPS test rig use a scalar “voltage-frequency” open-loop 

control in which the magnetic flux in the motor is keep constant by using a 

value of the ratio amplitude to frequency which is fixed by design, and 

remains unchanged regardless of the load of the motor. 

 

Figure 12. Elements of the power configuration of the experimental test -

stand. * represents the speed command for the motor from which the 

control unit produces the corresponding voltage V* and frequency f* for 

the power converter. m is the real speed of the motor. 

It is important to note that the inverter is constituted by thyristors that 

work at a fixed frequency, typically in the 3-6 kHz range. Thus, the effects of 

the load perturbations may only be seen in the current at frequencies up to 

the fixed frequency at which the inverter works. 
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2.1.3 Sensors 

The test bench used in the present work has a computer to govern the data 

acquisition equipment and the control of the two motors. Several sensors are 

used in the test bench. Two uni-axial piezoelectric accelerometers (PCB 

piezotronics, model 608A11 [3.62]) are accommodated perpendicularly in the 

intermediate shaft of the monitored gearbox to measure transverse 

vibrations. An additional accelerometer is situated on the top of the gearbox. 

A torque sensor (Kistler, model 4502A100RA [3.63]) and a speed encoder 

(Scancon, model SCH68B [3.64]) in the input shaft, outside the gearbox, 

determine the mechanical input to the gearbox. A supplementary encoder is 

situated after the reducer gearbox in front of the load motor. Figure 13 

shows the actual position of the sensors in the test rigs. 

Table 2. Sensors installed in the GPS test bench, and their 

characteristics. 

Sensor 
Manufacturer / 

Model 

Sensitivity / 

Resolution /Accuracy 

Measurement 

range 

Accelerometer 
PCB 908A11 

100 mV/g (10.2 

mV/(m/s2)) 

±50 g (±490 m/s2) 

0.5 to 10000 Hz 

Torque sensor KISTLER 

4502A100RA 
0.2 class* 100 Nm 

Encoder Scancon 

SCH68B 
± 0.8 arc-min 1 to 10000 ppr 

Current 

sensor 
Lem HTA 100S ± 1 % 100 A rms 

*0.2 class as specified by IEC designates that the highest permissible 

percentage current error shall not exceed 0.2% for current values from 100% 

to 120%.  

 
Figure 13. Position of the sensors on the test rig.  

The current sensors LEM HTA 100 S [3.65] are used for the 

measurement of the feeding current. They were selected because of their 

optimum characteristics: good linearity, good accuracy, low temperature 

drift, wide frequency bandwidth, immunity to external interference and 
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wide dynamic range. Additionally, they are robust enough to be installed in 

the electric cabinet of the test rig, as can be seen in Figure 14. There are two 

installed, for the measurement of U and V electrical lines, but only the 

measurements from the U line are analysed in the present work. The 

studied motor is an equilibrated motor, so U and V are equal signals, with a 

difference in phase of 120º. Figure 15 shows a typical example of the raw 

current signal obtained from the LEM HTA transducer during operation. 

 

Figure 14. LEM HTA 100 S sensor installed in the test rig’s electrical 

cabinet. 

 

Figure 15. Motor current signal from the U channel, for the case of 1.500 

rpm, and 0 % axle load. 

Current 

transduce

r 
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2.1.4 Data acquisition 

The data was recorded using a computer with a National Instruments 

acquisition card (NI 4472 series). It offers 24-bit resolution, with a 

maximum sampling rate of 102.4 kilosamples per second and up to 8 

acquisition channels. 

A data acquisition and control program has been developed using 

Labview from National Instruments [3.66]. It provides the necessary control 

over the data acquisition process requested by this work. In particular, the 

objective of the program was to synchronize the control of the test rig with 

the acquisition providing, at the same time, an automatic way of generating 

a comprehensive data pool. It is also important to underline that it was 

designed to make each of the repetitions statistically independent, by 

making the machine to stop after each test has been completed. 

Additionally, it allows some seconds for the signal to stabilize before 

starting to measure. 

Essentially, the program works in the following way. First, an input test 

file with different lines is generated. In those lines, each of the tests is 

programmed. Different parameters describing the tests are recorded: the 

range of speeds, the running time, the time it takes to achieve the designed 

speed, the stabilization time allowed before the measure, the axle load, the 

acquisition frequency, and the number of repetitions. After one test line has 

been performed, the program saves the results, and passes to the next one, 

until the input test file is finished. The program flow is described in Figure 

16. The data is recorded at periodic intervals, with a selected length. The 

organization of the measured data is explained in detail in section 2.2.3, 

organization of the data pool. 
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Figure 16. Diagram of the way that the data acquisition takes place. 

2.2 Experimentation 

One of the advantages of the test rig is the possibility of mimicking the 

working conditions or real machinery, such as spindles, electro-mechanical 

actuators and so on, which is done by selecting the most appropriate 

working conditions. A design of experiments is performed, fitting it to the 

requirements of the machine to be modelled to analyse the footprint of the 

different faults in the signals generated. In this Thesis, the focus has been 

on the spur gears, so faulty gears have been inserted in the monitored 

gearbox of the GPS. The faults could have been generated by degradation in 

the proper test rig, but it is hard to generate an isolated and controlled fault 

in the gear under study, and it would have been very costly in time, as 

safety coefficients and superior design in mechanical components make it 

difficult to produce degradation. In section 2.2.1 the design of experiments 

performed in the present work is described in depth. 

On the other hand, a big data pool is generated during the tests, so a 

good file naming strategy and organization is needed to be able to process 

the data in an efficient way. The time invested in this will save later a lot of 

effort, as it will permit to analyse the data in an organized way. 
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2.2.1 Design of experiments  

Condition monitoring is generally performed by making determined tests 

where the assets are put to work in known conditions, for example at 

constant speed. So, the performance of the test requires the asset to stop the 

production process and pass to a testing mode, sometimes referred as 

fingerprint [3.67]. The challenge of eliminating these tests is high since 

usually there are variables that are not under control and is hard to 

replicate the exact working conditions during the activity of the asset. For 

instance, in machine-tool it is hard to replicate loads conditions, as 

machined materials can be different each time. 

The rationale behind this Thesis and the design of experiments is to 

permit the condition monitoring of gearboxes to avoid dedicated tests or, at 

least, to make the tests in the most repetitive conditions. For that reason, 

the focus is set in analysing speed transitions and especially in the no-load 

condition. The speed gain (acceleration) of the asset before operation is an 

action that is replicated in similar conditions, allowing the comparison 

between the signals generated each time. For example, looking into the 

machine-tool field, we can easily observe these speeding up phases, during 

which the tool is still not cutting material. Another application may be in 

the electro-mechanical actuators in aerospace. In this case, the tests can be 

performed in ground, without aerodynamic charge. Besides, the movements 

of the actuators are generally short enough so that transitory signal 

analysis techniques are more convenient. Both cases, machine tool and 

electro mechanical actuators, are just two examples of many others where 

the research performed in this Thesis can be applied. 

The theory and application of MCSA have been mainly developed for the 

case of constant speed, while transients have only been considered in terms 

of load variations [3.68], [3.69]. In fact, the implementation of transient 

analysis in MCSA is still a big challenge. In this work, we purposely employ 

transients of speed to assess the health status of the gearbox using MCSA. 

The speed ramps are applied to the motor driving the gearbox in the no-load 

condition (as a particular case of constant load). 

The maximum speed that the GPS test bench can reach is 1500 rpm. 

Different speeds were selected for the test to implement the transitory, 

within the limitations of the test bench. The minimum selected speed is 

250 rpm. Two more intermediary speeds were selected, 500 and 1000 rpm. 

The variations were implemented among these speeds: 

• 0-250 rpm 

• 250 rpm - 500 rpm 

• 500 rpm - 1000 rpm 

• 1000 rpm - 1500 rpm 
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The time length of the transitory test was set differently in each test 

round. In the first round, each test was done with a length of 15 seconds in 

order to allow the slowest gear in the gearbox to be able to perform at least 

10 revolutions. In the second round the time was set to 30 seconds. 

Each test condition is repeated 15 times to enable statistical robustness. 

Each repetition is independent to the rest as, between two repetitions, the 

speed is set to zero before the following test is launched. All the tests were 

performed in the same speed and load conditions, thus eliminating the 

influence of these two parameters. This was true for both rounds of tests. 

Note that, as the motor in the GPS test rig has two pair of poles, to 

convert to frequency, the speeds (in frequency) for feeding the motor must 

be multiplied by two, apart from being translated into hertz. The signal that 

the current sensor is going to measure displays then the following carrying 

frequencies: 

• 250 rpm  8.33 Hz 

• 500 rpm  16.66 Hz 

• 1000 rpm  33.33 Hz 

• 1500 rpm  50 Hz 

Together with the carrying frequency, the characteristics of the faults 

are within the signal. But different gears with dissimilar faults cannot be 

distinguished at naked eye, as was made obvious in Figure 17. 

 
Figure 17. U channel raw signal, form gears with eccentricity in the 

bore, with pitting and in healthy state.  The image corresponds to the 

10th repetition of the 500 rpm constant speed signal.  
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2.2.2 Faults 

The GPS stand is used to test gears in different fault conditions. During the 

experiments, only one gear is the subject of the test, the one inserted in the 

position of the gear 1 of the first gearbox (the 32 teeth gear in Figure 11). 

Gears from two manufacturers have been used in the tests: from Martin 

Company [3.58] and from Juaristi Engranajes [3.59]. The gears from Martin 

were made of steel (lacking more specification) without any heat treatment, 

while the gears from Juaristi were made from F-155 steel and suffered a 

cementation treatment. Martin gears were notably softer. 

Two different rounds of tests were performed, using a separate set of 

faulty gears in each one. The first round was conceived as a proof of concept, 

to see how motor current signature analysis compares to vibration signal 

analysis, whereas in the second round the objective was to directly perform 

the diagnostic of the health state of the gears through MCSA. 

For the first-round testing the faults were generated initially by 

machining, but the gears were afterwards intensively used in the GPS and, 

as a result, they were further degraded. At this state, a health assessment 

using the signal form the accelerometers was performed and three distinct 

fault categories were identified using the accelerometer data mapping: 

severe damage, moderate damage and little damage. There are two 

exceptions: the first one is the gear numbered 0001G, whose surface has 

been degraded (machined) on purpose, and the gear numbered 0006G which 

has an eccentricity, but no degraded surface. Each of the tested gears was 

assigned a unique code, which is revealed in Table 3. The code was engraved 

on the side of the gears by mechanical means. The turning sense was 

engraved as well. The fault categories were validated by the tribological 

laboratory in IK4-Tekniker [3.70]. 

Table 3. Code and health assessment of the gears used.  

Gear number Health assessment Manufacturer 

0001G Degraded surface Martin 

0003G Severe damage Martin 

0005G Severe damage Martin 

0006G Eccentricity Martin 

0007G Severe damage Martin 

0010G Severe damage Martin 

0011G Little damage Juaristi 

0012G Moderate damage Martin 

0013G 
Moderate damage 

and little damage 
Martin 

0014G Little damage Martin 
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In a second-round testing new faulty gears were used. In particular, 

three gears were used in this part of the study: one in a healthy state 

manufactured by Juaristi, which is used as reference; one with pitting in the 

teeth manufactured by Martin; and one with eccentricity in the shaft hole 

from Juaristi. Figure 18 displays photographs of these gears highlighting 

their representative health features. The pitting of the second gear was 

generated from intensive use in the gearbox. The eccentricity was 

intentionally produced by machining the gear. 

 

Figure 18. Images of the representative characteristics of the gears 

tested in the second round of the tests. (a) healthy gear. (b) gear with 

pitting. (c) gear with eccentricity.  

2.2.3 Organization of the data pool 

In order to store the tests in a clear way, avoiding undesired data mixing 

and helping to make the signal analysis more competent, a test codification 

was defined. The tests are saved in a directory tree, so they are classified 

and saved in a known, ordered way. The objective is to facilitate further 

analysis. 

The directory tree and the filename codification provide the way to 

automate the signal analysis since an algorithm was developed to search the 

files in the directories and automatically perform the analysis to extract the 

selected features of the signals sequentially from each test. 

The directory tree is organized in this way: All data is saved in a 

directory named Test data. Under this directory, the data corresponding to 

each gear under test is saved in a folder with the coded name given to each 

of the gears.  

The name of each data set was uniquely selected so that it provides 

information on the test conditions. If the working conditions are the same 

for different test, they use the same filename, together with a counter 

growing with each of the tests performed. The codification of the data sets 

was done in the next way: 

X_YR_AZPCT_REKN_Irpm_AHz, 
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where: 

• X is the codification of the gear (for redundancy). 

• Y represents the number of the repetition of the test condition and 

gear. 

• Z is the axle charge in percentage. 

• E is the radial load in kN. 

• I is the speed in rpm. 

• A refers to the acquisition frequency, in Hz. 

For example, in the case of testing the G0005 gear, 1st repetition, with 

an axle load of 50 % at a speed transitory between 500 rpm and 1000 rpm, a 

radial load of 0 kN and an acquisition frequency of 50000 Hz, the filename 

would be 

0005G_1R_A50PCT_R0KN_500-1000RPM_50000HZ. 

2.3 Data reduction and analysis 

For the analysis, the data set is divided by the variables present in the test. 

These variables are: 

• Speed 

• Axle charge 

• Radial charge 

• Gear 

Each combination of these variables is denominated an experimental 

condition. That is, the experiment condition is represented by one unique set 

of variables: one speed, one axle charge, one radial charge and one gear. The 

results of the analysis are stored in a results file for each experiment 

condition. The different repetitions of the test under the same experimental 

conditions are saved in the same result file. 

For the signal analysis, an algorithm was coded on Matlab. Two 

toolboxes were used, the Signal Processing Toolbox and the Wavelet 

Toolbox. The code worked in steps. According to the organization and 

structure of the data pool, the algorithm goes through the data tree opening 

the folder of each of the tested gears. There, following the name pattern 

explained in 2.2.3, the algorithm searches each of the data sets generated, 

opens them, perform the data analysis and save the result in an output file. 

The details are given in the next section. 
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2.3.1 Signal analysis implementation 

To exemplify the process of analysing the data, only time domain analysis 

and the pre-processing using wavelet analysis are described. The DLTSA 

analysis follows a similar procedure. The code in this last case was 

implemented at University of Cincinnati’s Intelligent Maintenance Systems 

Center. 

Signal pre-processing and processing 

The analysis is centred in obtaining a set of descriptors from the time 

domain analysis without any pre-processing and using the wavelet 

decomposition as a pre-processing technique and after obtaining statistical 

descriptors from each of the decomposition levels. Table 4 complies the 

descriptors obtained in the time domain analysis, and on the processing 

performed after decomposing the signal using wavelet, together with the 

Matlab function used to obtain each of them (the corresponding formulas 

were collected in Table 1). 

Table 4. List of descriptors calculated in the analysis and Matlab 

functions used for obtaining them. y represents the analysed signal. 

Descriptor Matlab Function 

Root mean 

square 
Rms = sqrt (mean (y.^2)) 

Average Avg = mean(y) 

Peak value Pv= (1/2) * (max(y)-min(y)) 

Crest factor Crf= Pv/Rms 

Skewness Sk = skewness (y) 

Kurtosis ku = kurtosis (y) 

Median Median = median (y) 

Minimum Mini = min(y) 

Maximum Maxi = max(y) 

Deviation Devi = std(y) 

Variance Vari = var(y) 

Clearance factor Clf = Pv/(mean(sqrt(abs(y)))) ^2 

Impulse factor Imf = Pv/(mean(abs(y))) 

Shape factor Shf = Rms/(mean(abs(y))) 

Beside these descriptors, in the case of the wavelet pre-processing the 

ratio of the absolute mean values of adjacent sub-bands, which represents 

the difference between one level and the next [3.71], is also calculated using 

the Matlab code 

ratio = abs(mean(y1))/abs(mean(y2)), 

where y1 is the wavelet decomposition of the level being analysed, and y2 is 

the wavelet signal from a superior level.  
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The flow of the pre-processing and processing code for the signals is 

described in Figure 19.  

 

Figure 19. Signal wavelet analysis process flow. 
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It starts with the selection of the experiment condition (speed, charge, 

etc.) that are going to be analysed. The files containing all the repetitions 

corresponding to that experiment condition are sequentially scanned. The 

algorithm accounts for the possibility that the repetition numbers are not 

consecutive. The descriptors are evaluated first in the time domain, and 

then the wavelet decomposition is performed, obtaining the descriptors right 

after. The descriptors obtained in each decomposition level are saved in the 

temporary variable, which is sequentially appended with the results from 

the subsequent levels. When all the repetitions of the experimental 

condition have been analysed, the results are saved in a file. Each result file 

then corresponds to a unique experimental condition. 

It is to be noted that in the first-round experimentation, a unique 

wavelet decomposition was performed, using always the same mother 

wavelet. In the second round, several decompositions were performed using 

different mother wavelets. In this second round, we made the decision of 

separating the result files corresponding to diverse types of mother wavelet, 

since this simplified the comparison of the results. Therefore, for each 

experimental condition in the second run, there are several results files, one 

for each wavelet decomposition. 

2.3.2 Feature selection 

After the analysis, the useful information among the huge data set 

generated must be selected. For this purpose, a feature selection analysis is 

carried out, as described in section 1.3. Four feature selection methods were 

used: a one-way analysis method, the correlation feature selection method, 

information gain method and the relief method. The analysis was performed 

using Weka data mining software [3.72]. Weka is a collection of machine 

learning algorithms for data mining tasks. It contains tools for data pre-

processing, classification, regression, clustering, association rules, and 

visualization. One of the feature selection methods (one-way analysis) was 

made on Matlab software, as it is not provided as so in Weka. 

The correlation feature selection method searchs for the variables that 

provide additional information. The result is a set of independent variables, 

but it doesn´t discriminate which one of them is the most or less useful. On 

the other hand, the result of the one-way analysis, information gain and 

relief is a score chart with a parameter calculated and related with each 

feature. The highest the number, the best that the feature works to 

distinguishing the health stage of the gears. 

In the case of the one-way analysis, it was noticed that some of the 

features reflect bigger differences for one of the gears in comparison to the 
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other two gears. It was masking the results, as the features that 

differentiated the other two gears would not appear among the best ones. To 

solve this, the one-way analysis was relaunched, but in this case the gear 

that was most obviously differentiated was kept out. In this way, the 

features obtained from the first analysis will provide valuable information 

for the difference of one the gears, and the remaining two will be 

differentiated with the features obtained in the second stage analysis. The 

final features selected from the one-way analysis were a mixture from both 

analysis. 

2.3.3 Feature classification 

After the selection was done, the results were four different sets of features. 

To be able to quantify the adequateness of such sets, some feature 

classification algorithms were used, using Weka data mining [3.72]. The 

classifiers used in this Thesis are Bayesian network, sequential minimal 

optimization, lazy instance based learning and trees J48, as explained in 

section 1.4. 

The classification models selected in this Thesis work all in a similar 

way: A subset of features is selected to generate the model, the so-called 

training set, and the rest of the data pool is classified, normally called the 

validation dataset. The classification is then compared with the labels on 

each of the instances and a hit rate is obtained. 

The models that are used, at some point, have a heuristic step, i.e. one 

or more of the parameters are selected randomly. Thus, the result may 

differ from the same data set and model. Another factor to be taken in mind 

is that the data pool is limited (it has 45 instances). If the data pool would 

be validated conventionally (for example using 70% of the data set for 

training and the remaining 30% for validation), a significant validation or 

training capability would be lost. Therefore cross-validation is used in the 

process of training. It was explained in detail in section 1.4.1. 

The results obtained from the cross-validation study were the mean of 

the classifications linked with the standard deviation. The values from the 

classification of the Wavelets analysis and DLTSA cannot be compared as 

so. The number of elements in the study and their expected distribution 

must be considered, to be able to quantify if the difference is significant or 

not. This was done with the help of the Student’s t-test. It was done using R 

[3.55], as explained in detail in section 1.4.6. 
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3 Results and discussion 
As explained above, the tests were performed in two different rounds. In the 

first one, the faulty gears were classified according to the results of the 

vibration signal analysis. This set of tests was conceived as a proof of 

concept, to assess the performance of motor current signature analysis 

compared to vibration signal analysis. In the second round of test, the 

objective was to obtain the diagnostic of the health state of three gears with 

different faults directly from the analysis of the motor current signature. 

For conciseness, the results that will be presented here correspond to 

only one set of working conditions. They, for both round of tests, are no-load 

condition, and speed transitory from 1000 rpm to 1500 rpm. 

3.1 First round testing 

As the objective is to see how the motor current signature analysis compares 

with the analysis from the vibration signal, the reading from both sensors, 

hall (current) sensors and accelerometers were recorded from the same 

tests. The vibration analysis produced the fault classification that is 

resumed in Table 3.  

The current sensor data processed comes from the U line of the drive 

motor. Time domain analysis and wavelet analysis was performed as 

described in section 2.3.1. The mother wavelet in this round of test was 

always a daubechies 44 [3.73]. The 14 features compiled in Table 4, together 

with the ratio between successive levels were obtained in the original signal 

and in each level of the wavelet decomposition. As explained before, a one-

way analysis of the variance was performed to reduce the number of levels 

and the number of features for further analysis. 

The highest value of the F number obtained is plotted in Figure 20. It is 

observed that the analysis of the first decomposition (level 1) produces 

meaningful results, being levels 4 and 14-15 the next ones with high F 

numbers. 
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Figure 20. The maximum level of the F value in each of the 

decomposition levels. 

The most interesting values of the variables in level 1 are the shape 

factor, the variance and the crest factor. For the case of level 4 

decomposition, the skewness, the average and the ratio are the most 

interesting. In levels 14 and 15, the ratio, the clearance factor and the 

median provide the information. 

From these pre-selected features, a further analysis allows to select the 

ones that provide the most accurate and useful information. For instance, in 

Figure 21, we can see that the values corresponding to the variance 

obtained in level 15 of the wavelet decomposition are grouped in two ranges 

for the different gears. The highly damaged gears appear in the upper 

range. The gears with lower values of variance include 0011G and 0014G 

which are the ones in good state. However, gear 0013G and 0006G are in the 

same area as the low damage gears. As compiled in Table 4, they are 

somehow peculiar. The gear 0013G has a number or repetitions classified as 

moderate damage and other as low damage. The gear 0006G has a 

machined fault but doesn´t show a big level of superficial pitting. It is 

somewhere between the low-level damage and the high-level damage. In 

Figure 22 compiling the results of the shape factor in decomposition level 1, 

the gear 0006G appears grouped with the high damage gears. However, in 

Figure 23, corresponding to the skewness in decomposition level 4 it is again 

classified among the low damaged gears. 
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Figure 21. Variance of the signal obtained in the level 15 wavelet 

decomposition. 

 
Figure 22. Shape factor of the signal obtained in the level 1 wavelet 

decomposition. 
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Figure 23. Skewness of the signal obtained in the level 4 wavelet 

decomposition. 

3.2 Second round testing 

In the second-round two faults were tested. The objective was to be able to 

detect the two different health states from the healthy one. Considering the 

results from the first-round testing, a new set of tests was performed, 

focusing on the different health states. The analysis was performed in two 

different ways. On the one hand, a wavelet analysis was performed. On the 

other hand, a DLTSA analysis was used. The results were compared using 

several classifications methods. 

3.2.1 Wavelet analysis 

The selection of the mother wavelet conditions greatly the results obtained. 

Habitually, it is selected according to a criterion of similarity between the 

shapes of the mother function and the fault signal, because in this way, the 

result of the convolution of both functions is reinforced. However, this 

strategy is not always a guarantee of success [3.73]. Our approach has been 

to test a wide range of mother wavelets from Haar, Daubechies, Symlets, 

Coiflets, BiorSplines, ReverseBior and DMeyer families summing a total of 

106 different mother wavelets. In each case, 16 decomposition levels were 

obtained, and for each decomposition level, as explained in section 2.3.1, 14 

parameters were calculated: rms, average, peak value, crest factor, 

skewness, kurtosis, median, minimum, maximum, deviation, variance, 

clearance factor, impulse factor, and shape factor. In total, 23744 descriptors 

were calculated for each one of the data sets. 
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To deal with such a big number of descriptors, a preliminary analysis 

was performed to disclose the ones that reveal greater differences between 

gears. Four different techniques were used for the selection of the most 

relevant features: analysis of variance, correlation feature selection, 

information gain and relief. They have been explained in section 1.3. 

Analysis of Variance 

An analysis of the variance through the F-number [3.26] was performed 

in two stages. First, using the descriptors for the three gears, a selection 

was made that is collected in Table 5. This analysis, however, resulted 

somehow biased, since the descriptors of the data from the gear with 

eccentricity appeared much more clearly distinguished than the ones from 

the other two gears. To better discriminate between healthy and pitting 

gears, a second analysis of the variance was performed, this time using only 

the descriptors of those two gears, with the results shown in Table 6. Top 

ranking descriptors from both tables were then used to distinguish the 

faulty gears. 

Table 5. Data descriptors ranked by variance analysis, including the 

three gears. 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(kHz) 

Variance F 

value 

DMeyer Average 1 12.8-25.6 72.4 

Daubechies 41 Average 1 12.8-25.6 63.7 

Daubechies 42 Average 1 12.8-25.6 61.4 

Daubechies 36 Average 1 12.8-25.6 50.8 

Daubechies 43 Average 1 12.8-25.6 49.1 

Symlets 24 Average 1 12.8-25.6 47.5 

Symlets 22 Average 1 12.8-25.6 44.8 

Daubechies 33 Average 1 12.8-25.6 43.8 

Symlets 25 Average 1 12.8-25.6 43.8 
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Table 6. Data descriptors ranked by variance analysis for healthy and 

pitting gears. 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(kHz) 

Variance 

F value 

Symlets 10 Impulse factor 15 0.78-1.56 x103 17.9 

Symlets 10 Variance 16 0.39-0.78 x10-3 17.8 

Symlets 10 Median 4 1.6-3.2 18.7 

Symlets 8 Impulse factor 15 0.78-1.56 x10-3 17.3 

Symlets 8 Variance 16 0.39-0.78 x10-3 17.3 

Symlets 8 Median 4 1.6-3.2 17.0 

Daubechies 8 Median 7 0.2-0.4 8.0 

Symlets 19 Kurtosis 8 0.1-0.2 7.0 

Figure 24 displays a representative collection of the results obtained. 

The values of the selected descriptors for the 15 data sets obtained for each 

gear are compared. As expected, the data descriptors selected from Table 5, 

allow to distinguish the gear pitting, whereas, the descriptors from Table 6, 

separated the faulty gears from the healthy one. It can be observed that the 

value of each descriptor presents a large fluctuation along the data sets 

corresponding to the same gear. The differences between gears must be 

established within these fluctuations, and this can be done by visual 

inspection in Figure 24. In the two plots at the top, which correspond to data 

descriptors selected from Table 5, it is possible to distinguish clearly the 

gear with eccentricity, but the other two gears produce descriptor values 

that cannot be separated within the fluctuation of the values. (This was 

expected according to the way that these descriptors were selected). In the 

two plots at the bottom of Figure 24, the three types of gears can be visually 

distinguished, even with the great fluctuation of values, because of the 

different mean level of the descriptor for each gear. 
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Figure 24. Selected results from wavelet analysis. For the sake of easier 

comparison between descriptors, their values have been normalized.  

Correlation feature selection (CFS) 

In this case the algorithm searches for the features that add information on 

the difference between the labels. It also discards features that are related, 

i.e. don´t add information. The method was described in section 1.3.2. 

The results of the algorithm are a selection of features. It selected 62 

features, although this method doesn´t rank them. The first 8 are 

represented in Table 7. 

Table 7. Some of the features obtained from the correlation feature 

selection method (Wavelet analysis). 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(kHz) 

Raw signal Impulse factor - - 

ReverseBior 2 RMS 16 0.39-0.78 x10-3 

Daubechies 5 Median 4 1.6-3.2 

DMeyer Average 1 12.8-25.6 

Daubechies 41 Average 1 12.8-25.6 

Daubechies 42 Average 1 12.8-25.6 

Daubechies 27 Median 7 0.2-0.4 

Symlets 7 Kurtosis 8 0.1-0.2 
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Information Gain 

Information gain algorithm compares the reduction in the entropy (related 

with information theory) that is achieved by adding a new feature to the 

feature set. The features that contribute to the reduction of entropy achieve 

a higher information gain number. The result is a ranked set of features. It 

is described in detail in section 1.3.3. 

In this work, 62 features were used for the classification. The first 8 

with the highest information gain number are presented in Table 8. 

Table 8. Data descriptors ranked by information gain method, including 

the three gears (Wavelet analysis). 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(kHz) 

Inf. Gain 

value 

DMeyer Average 1 12.8-25.6 1 

Symlets 18 Average 1 12.8-25.6 1 

Daubechies 43 Average 1 12.8-25.6 1 

Daubechies 42 Average 1 12.8-25.6 1 

Symlets 24 Average 1 12.8-25.6 1 

Daubechies 38 Average 1 12.8-25.6 0.875 

Daubechies 45 Average 1 12.8-25.6 0.875 

Daubechies 36 Average 1 12.8-25.6 0.875 
 

Relief 

The classical relief algorithm estimates the quality of attributes according to 

how well their values distinguish between instances that are near to each 

other. The features are ranked according to that quality estimation. 

In this work, 62 features were used for the classification. The first 8 

features ranked are presented in Table 9. 

Table 9. Data descriptors ranked by relief method, including the three 

gears (Wavelet analysis). 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(KHz) 

Quality 

estimation 

DMeyer Average 1 12.8-25.6 0.243 

Daubechies 41 Average 1 12.8-25.6 0.236 

Raw signal  Crest factor - - 0.228 

Raw signal  Impulse factor - - 0.225 

Raw signal  Clearance 

factor 

- - 0.221 

Raw signal  Kurtosis - - 0.216 

Daubechies 42 Average 1 12.8-25.6 0.203 

Daubechies 44 Average 1 12.8-25.6 0.203 
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3.2.2 DLTSA analysis 

The DLTSA approach described in section 1.2.2 was applied to the same 

data sets analysed in section 3.2.1 by the wavelet method. First, to extract 

the supply line current component, a second-order Butterworth low-pass 

filter with cut-off frequency of 500 Hz was applied to the current signals. 

Note that this a simplified approach from the general scheme displayed in 

Figure 4, where a band-pass filter is used. In our case, the line frequency is 

limited to 50 Hz, whereas the gear fault related component frequency (such 

as amplitude modulation effect to Gear Mesh Frequency) is at much higher 

frequency range, above 800 Hz. Therefore, it is reasonable to use low-pass 

filter to the original signal to extract the supply line current component. 

After performing DLTSA, features in both angle and order domains 

were extracted from signal data, as explained in section 1.2.2. The extracted 

features included standard deviation, kurtosis, peak-to-peak and crest factor 

in the angle domain, and magnitude of the signal at different orders in order 

domain. The same features were also extracted from classical residual and 

difference signals.  

As explained in section 1.3, the selection of the most relevant features 

was performed by four different techniques: analysis of variance, correlation 

feature selection, information gain and relief. 

Analysis of variance 

Figure 25 shows the first four selected features with the Fisher criteria for 

different classes of the faults. As it can be observed in Figure 25, features 

extracted from signals during the presence of eccentricity fault are 

significantly different from healthy and pitting conditions. Although 

compared to eccentricity, healthy and pitting gear faults are not 

significantly different, their values are easily distinguishable. This trend is 

observable among all of the features selected from the different methods. 



150 

 

 

 

 

Figure 25. Selected results of the DLTSA analysis. For the sake of easier 

comparison between descriptors, their values have been normalized.  

The features selected by all the selection techniques are compiled in 

Table 10, together with the index that rank them (note that CFS, don’t 

provide a ranking index). 
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Table 10. Data descriptors obtained from the different selection methods 

from DLTSA analysis. 

Fisher 

criteria 
Ranking CFS 

Information 

gain 
Ranking Relief Ranking 

Sum of 

signal 

below 

Order 5  

506,3 Kurtosis 

of 

residual 

RMS of 

TSA   

1 Max. of 

signal 

below 

Order 5 

0.447 

Order 1  298 Peak to 

peak of 

residual 

Peak to 

peak of 

residual 

1 Order 1 0.446 

Max. of 

signal 

below 

Order 5  

295.3 Crest 

factor of 

difference 

signal 

Kurtosis of 

difference  

1 Sum of 

signal 

below 

Order 5 

0.406 

RMS of 

residual 

231.43 Order 1 RMS of 

residual 

1 RMS of 

residual 

0.38 

RMS of 

TSA   

229.1 Sum of 

signal 

below 

Order 5 

RMS of 

difference 

1 RMS of 

TSA   

0.356 

Order 3 146.1 Max. of 

signal 

below 

Order 5 

Kurtosis of 

TSA 

1 RMS of 

difference 

0.322 

Kurtosis 

of 

residual 

123.7      

3.2.3 Wavelet and DLTSA analysis 

Although we wish to determine which of the two analysis procedures 

(wavelet or DLTSA) yield better results, it is also interesting to examine the 

results that can be obtained by combining all the features obtained from 

both analysis methods. Therefore, both feature sets, obtained from the 

wavelet and DLTSA analysis, were added in a common data set, in which 

the feature selection and classification methods were applied. 

The same four selection methods used with the separated feature sets 

were applied to the combined set. The results are compiled on Table 11. 
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Table 11. Data descriptors obtained from the different selection methods 

in the combined feature set from wavelet and DLTSA analysis.  

Fisher 

criteria 
Ranking CFS 

Informati

on gain 
Ranking Relief Ranking 

Sum of 

signal 

below 

Order 5  

506,3 RMS.of.TS

A 

RMS.of. 

TSA 

1 Max. of 

signal 

below 

Order 5 

0.457 

Order 1  298 Kurtosis.of

.TSA  

Dmey 

Level 1 

Average 

1 Order 1 0.457 

Max. of 

signal 

below 

Order 5 

295.3 Raw signal 

Crestfactor 

Kurosis of 

difference 

1 Sum of 

signal 

below 

Order 5 

0.433 

RMS of 

residual 

231.43 Raw signal 

Kurtosis 

Db43 

Level 1 

Average 

1 RMS of 

residual 

0.418 

RMS of 

TSA   

229.1 Haar Level 

11 Median 

Sym24 

Level 1 

Average 

1 RMS.of.

TSA 

0.395 

Order 3 146.1 Haar Level 

5 Ratio 

Sym18 

Level 1 

Average 

1 RMS of 

differenc

e 

0.368 

Kurtosi

s of 

residual 

123.7 db3 Level 4 

Median 

RMS of 

difference 

1 Peak to 

peak of 

TSA 

0.356 

Crest 

factor of 

raw 

signal 

72.7 db4 Level 4 

Ratio 

Db42 

Level 1 

Average 

1 Order 3 0.306 

 

3.2.4 Mapping of the results 

To classify and allow an easy evaluation and interpretation of the 

parameters extracted from both types of analysis (wavelet and DLTSA), 

different classification algorithms (classifiers) were used; Bayesian network, 

J48 tree, intense based learning and sequential minimal optimization, as 

explained in section 1.4. Weka data mining software [3.72] was used for this 

purpose. The best features obtained from wavelet and DLTSA analysis have 

been previously selected using the analysis of variance, correlation feature 

selection, information gain and the relief algorithms, as explained in 

section 1.3. The features selected by each one of these methods constitute 
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the feature vectors that will be given as input to the classifiers. For the 

wavelet method, these vectors contain: 23 features from the analysis of 

variance, 62 features from the correlation feature selection, 62 features from 

information gain and 62 from relief. For the DLTSA method, the feature 

vectors consisted of 7 features from the analysis of variance, 23 from the 

correlation feature selection, 23 from the information gain method, and 23 

from the relief methods. 

Each feature vector represents one stream of experimental signals 

collected from the test-stand. Remind that there are 15 repetitions, or 

labels, from each class of fault, i.e. 15 labels from the healthy state, 15 

labels from the eccentricity fault and 15 labels from the pitting fault. The 

classifiers were tested using the cross-validation method, which was 

explained in section 1.4.1. It divides the data set in 10 parts and uses one of 

them for testing and the rest for training. Each of the parts contains an 

approximately equal number of labels from each class. It does it 10 times, 

and the result is the mean and deviation of the testing. 

Corresponding to the analysis based on wavelets, Table 12 compiles the 

results obtained. The classification accuracy is shown, along with the 

deviation linked with the feature selection and classification method used. 

The results are highly dependent on the feature selection algorithm and on 

the classifier used. But the overall results are quite high, having the lowest 

classification rate at 87.80 % and the highest at 100.00% 

Table 12. Results from the cross validation of the features selected for 

the Wavelet analysis. 

Wavelet analysis 

 Classifier 

 Bayesian 

Network 

Sequential 

minimal 

optimization 

Intense based 

learning 

J48 tree 

  (%) σ (%) σ  (%) σ  (%) σ 

Anova 85.05 14.49 88.65 15.60 90.85 13.01 72.95 19.68 

CFS 100.00 0.00 97.25 8.05 86.90 13.78 90.30 12.98 

Gain 88.00 16.13 90.20 14.30 90.05 12.72 90.80 13.35 

Relief 87.80 16.10 92.35 13.38 95.50 10.58 89.30 14.32 

 

The classification results for the case of the DLTSA are shown in Table 

13. The results again show that there is a high dependence on the methods 

used for feature selection and classification. The lowest mean in this case 

corresponds to 59.60 %, and the highest to 94.75 %. 



154 

 

 

 

Table 13. Results from the cross validation of the features selected for 

the DLTSA analysis. 

DLTSA analysis 

 Classifier 

 Bayesian 

Network 

Sequential 

minimal 

optimization 

Intense based 

learning 

J48 tree 

  (%) σ (%) σ  (%) σ  (%) σ 

Anova 92.05 10.76 74.55 16.56 94.75 9.88 91.05 12.54 

CFS 94.70 9.56 63.75 17.87 84.90 15.36 91.60 11.26 

Gain 59.60 9.58 61.55 14.83 58.35 18.18 64.20 14.66 

Relief 94.45 9.74 69.20 19.88 94.00 10.00 92.50 10.98 

 

As explained before, we cannot say which analysis method (wavelet or 

DLTSA) is better based on the results complied in Tables 12 and 13. To 

determine if the differences in the results from each method are statistically 

relevant, a Student’s t-test was performed, as explained in section 1.4.6. The 

values obtained from the tables are used to calculate the t value using 

equation 3.18. The critical value for t is searched in R, using the qt 

command, corresponding to the 95 % of certainty (the degrees of freedom 

𝑛1+ 𝑛2- 2 is, in this case, 10 + 10 - 2 = 22). This critical value is 2.100922. 

The differences in the results form tables 12 and 13 are statistically sound 

when the calculated t value (complied in Table 14) are larger (in absolute 

value, since a two-tailed distribution is used) than the critical value 

2.100922. 

As can be seen in Table 14, the results from the analysis of variance 

show significant differences only for the case of J48 classifier. In the case of 

the CFS selection method, sequential minimal optimization classifier is the 

only one to show significant differences. For the cases of the Gain feature 

selection method, all the classifiers show significant results. With the relief 

method the significant differences come from sequential minimal 

optimization classifier and the intense based learning classifier. The rest of 

the results don’t show significant differences and can be denoted as being 

statistically equal. 
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Table 14. Results from the Student’s t-test analysis. 

Student’s t-test analysis 

 Classifier 

 Bayesian 

Network 

Sequential 

minimal 

optimization 

Intense based 

learning 

J48 tree 

 t value t value t value t value 

Anova 1.226490 -1.959858 0.754938 2.452777 

CFS 1.753145 5.405058 0.306491 -0.239240 

Gain 5.107274 4.607240 2.651491 2.918252 

Relief -0.530402 2.544566 -2.367907 -1.078985 

 

Finally, the cross-validation method was applied to the classifiers using 

the combined set of features obtained from wavelet and DLTSA analysis. 

The same feature selection methods and classifiers as the above cases were 

used. The results obtained showed that the lowest mean is 87.75 % and the 

highest is 100 % for this case, they can be seen in Table 15. These results 

are better than the ones obtained from each of the data sets separately 

(shown in Tables 12 and 13). 

Table 15. Results from the cross validation of the features selected for 

the sum of Wavelet and DLTSA analysis. 

Wavelet +DLTSA analysis 

 Classifier 

 Bayesian 

Network 

Sequential 

minimal 

optimization 

Intense based 

learning 

J48 tree 

  (%) σ (%) σ  (%) σ  (%) σ 

Anova 96.05 8.54 92.50 12.34 85.25 14.27 81.80 15.71 

CFS 100.00 0.00 98.25 6.64 95.70 8.99 87.15 13.62 

Gain 95.35 9.14 92.30 12.58 90.25 12.72 87.15 12.84 

Relief 87.80 16.10 93.70 11.21 98.40 5.90 88.00 11.98 

 

In summary, we can conclude that, in general, motor current signature 

analysis is readily capable of experimentally of distinguishing between 

gears in different health states with a good percentage of accuracy. Some of 

the results appear to be better when using wavelet decomposition and 

others when using DLTSA, but the results from both types of analysis are 

strongly dependent on the feature selection and classification methods 

selected. The combination from both pre-processing techniques, wavelet and 

DLTSA, provides an improvement of the results. 
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4 Application of motor current signature analysis 

to bearing defect detection 
Along with gears, bearings are one of the principal elements present in 

gearboxes. And, similarly to gears, it is important to monitor their health 

state. As the faults in bearings generate characteristic frequencies, the 

classical way of detecting them has been vibration analysis. Motor current 

signature analysis technique has also been used by some authors for the 

monitoring of such elements outside of the electric motor [3.74]-[3.75]. The 

transmission of the characteristic frequency of the fault to the stator current 

is identical to that explained in section 1.1: the fault frequencies affect the 

torque, which is related to the stator current. 

In the present section, the experimental work performed in two different 

test benches to detect faults injected in bearings is explained. The motor 

current signal is analysed, and related with the health state of the bearing 

tested. One of the experiments was developed in collaboration with IK4-

Ikerlan Technological Center. The second one was performed in 

collaboration with the German Aerospace Center (DLR). 

4.1 Experimental 

The experiments were carried out in two different test benches, one of them 

being the GPS test bench already explained in section 2.1. The second one is 

the Multi-Specimen Test Machine from Falex [3.76]. Unlike the work done 

with the gears, this time the signal analysed comes from stationary speeds, 

and the tests were performed under load conditions, that is, charges were 

applied to the gearbox during the experiments. Besides, the tests done in 

each of the machines differ in speed, charge and size of the tested specimen. 

4.1.1 Experimental set 1 

Test bench 

The first series of experiments used the GPS test bench explained in 

section 2.1. In this case, the gears in good condition were used and remained 

unaltered during the tests. The only change that was performed in the 

gearbox was the bearing being tested. 

The bearing under test is an ER16k bearing form the Rexnord 

manufacturer [3.77]. It is a radial ball bearing with a shaft of 1 inch in 

diameter. It is classified as standard duty. It has a seal and its own 

lubrication by grease. The dimensions of the monitored bearing are shown 

in Table 16, and an image is displayed in Figure 26. 
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Table 16. Specifications of the REXNORD ER16K bearing.  

Parameter Value 

Number of balls, 

Z 
9 

Ball diameter, 

Dw 
7.94 mm 

Inner race 

diameter, di 
31.38 mm 

Outer race 

diameter, do 
47.26 mm 

Pitch diameter, 

dm 
39.32 mm 

Race groove 

radius, r 
4.1 mm 

Material density, 

ρ 
7750 kg m-3 

Elastic modulus, 

E 
210 MPa 

Poisson’s ratio, ν 0.25 

 

 
Figure 26. Image of the bearing installed in the test bench.  

The bearing was inserted in the intermediary shaft, in the position 

marked with a blue circle in Figure 27. Note that two accelerometers are 

installed in this shaft, in radial position, near the bearing although they 

were not used in the present analysis. 
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Figure 27. Position of the bearing under test in the gearbox. 

Design of experiments 

Four different levels of the speed of the drive motor were used: 250 rpm, 500 

rpm, 1000 rpm, and 1500 rpm. Three different values of the axle load were 

applied by the second motor in the test bench: no load, 30 % of the load 

applied by the drive motor, and 60 %.  

For statistical robustness, the duration of the tests was enough to allow 

at least sixty revolutions of the intermediate shaft in the gearbox. As a 

result of this condition and the speed used in the tests, the time span of the 

acquired data is 36, 18 and 10 seconds long, respectively. Each test 

condition is repeated 24 times. To make each repetition independent, the 

speed was brought to zero before launching the following test. 

Faults 

Four bearings in different conditions were tested in this study: a healthy 

bearing and three damaged ones. The damages have been seeded to the 

outer ring of the bearing by a drilling process from its outer surface to its 

raceway, taking care of not damaging any other component of the bearing. 

The seeded damages have different diameters: 0.6 mm, 1 mm and 2 mm, 

and have been denoted as F1, F3 and F5 respectively, whereas the healthy 

state is denoted as H. Figure 28 shows the tested bearing with the F3 

damage. 
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Figure 28. Bearing with F3 damage. 

Results 

The same approach used and explained in section 2.3 is employed for the 

case of this dataset. Only the wavelet analysis was performed, using the 

descriptors and mother wavelets described in section 1.2, and the feature 

selection and classification techniques used in sections 1.3 and 1.4. For this 

case the data was obtained at 50 kHz, and the wavelet decomposition was 

performed until the 16th level. 

Figure 29 displays, superimposed, two different signals from a faulty 

and a healthy bearing. The small differences are barely appreciable at 

naked eye, but the signal analysis is performed to make these subtle 

differences comparable one with each other. 

 

Figure 29. Healthy and faulty signal comparison. 

 

1 mm. diameter 

outer race 

damage  
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In a first attempt, the analysis was performed using the same procedure 

used in the analysis of the gears. The results, displayed in Table 17, show 

that the obtained hit ratios range from 62 % to 96 % depending on the 

feature selection and classification method used. In general, the hit rates 

are smaller than the ones obtained in the case of the gear analysis. 

Table 17. Results from the cross validation of the features selected from 

the experimental set 1 and the Wavelet analysis. 

Experimental set 1 - Initial 

 Classifier 

 Bayesian 

Network 

Sequential 

minimal 

optimization 

Intense based 

learning 

J48 tree 

  (%) σ (%) σ  (%) σ  (%) σ 

Anova 72.10 13.33 75.94 13.59 75.91 12.54 68.26 13.76 

CFS 95.79 12.93 85.88 11.44 81.51 10.59 71.36 16.03 

Gain 68.20 12.93 73.63 12.61 79.91 12.50 65.89 14.38 

Relief 67.88 13.81 78.86 12.95 62.54 13.62 67.49 14.44 

 

The low hit rate was understood by a detailed analysis of the feature sets 

that have been used, which made it clear that they were not appropriate. On 

the one hand, the features couldn’t distinguish between the healthy bearing 

and the one with the smallest fault (F1). On the other, they couldn’t 

differentiate between bearings with larger faults (F3 and F5), although 

clearly separated them from the healthy one and the bearing with F1 fault. 

In consequence, a new analysis was launched in which the original data set 

was separated in two, one for the healthy bearing and the one with the F1 

fault, and the second for the bearings with F3 and F5 faults. In the second 

data set, new features were selected again using the analysis of variance, 

correlation feature selection, information gain, and relief methods, compiled 

in Table 18, Table 19, Table 20 and Table 21 respectively.  
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Table 18. Data descriptors ranked by the analysis of variance. 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(Hz) 

Variance 

F value 

ReverseBior 2.2 Shape factor 9 48.83 - 97.66 225.3 

Daubechies 2 Shape factor 9 48.83 - 97.66 134.7 

Symlet 2 Shape factor 9 48.83 - 97.66 134.7 

Coiflet 1 Shape factor 9 48.83 - 97.66 118.1 

ReverseBior 2.4 Impulse 

factor 

9 48.83 - 97.66 115.0 

BiorSplines 2.4 Impulse 

factor 

9 48.83 - 97.66 93.0 

ReverseBior 4.4 Impulse 

factor 

9 48.83 - 97.66 89.0 

BiorSplines 2.2 Shape factor 9 48.83 - 97.66 87.8 

 

Table 19. Some of the features obtained from the correlation feature 

selection method. 

Mother wavelet Descriptor 
Decomposition 

level 
Band range (Hz) 

ReverseBior 2.2 Shape factor 9 48.83 - 97.66 

Daubechies 2 Shape factor 9 48.83 - 97.66 

Symlet 2 Shape factor 9 48.83 - 97.66 

ReverseBior 2.4 Impulse factor 9 48.83 - 97.66 

BiorSplines 2.4 Impulse factor 9 48.83 - 97.66 

ReverseBior 4.4 Impulse factor 9 48.83 - 97.66 

BiorSplines 2.2 Shape factor 9 48.83 - 97.66 

Daubechies 8 Peak value 10 24.41 - 48.83 
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Table 20. Data descriptors ranked by information gain method . 

Mother 

wavelet 
Descriptor 

Decomposition 

level 
Band range (Hz) 

Inf. Gain 

value 

ReverseBior 

2.2 

Shape 

factor 

9 48.83-97.66 0.75 

Symlet 2 Shape 

factor 

9 48.83-97.66 0.622 

Daubechies 2 Shape 

factor 

9 48.83-97.66 0.622 

Coiflet 1 Shape 

factor 

9 48.83-97.66 0.507 

ReverseBior 

2.4 

Impulse 

factor 

9 48.83-97.66 0.445 

Daubechies 8 Peak value 10 24.41-48.83 0.425 

BiorSplines 

2.4 

Shape 

factor 

9 48.83-97.66 0.413 

Daubechies 15 Peak value 1 12.5 x103–25 x103 0.411 

 

Table 21. Data descriptors ranked by relief method 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(Hz) 

Quality 

estimation 

ReverseBior 2.2 Shape 

factor 

9 48.83 - 97.66 0.244 

Symlet 2 Shape 

factor 

9 48.83 - 97.66 0.198 

Daubechies 2 Shape 

factor 

9 48.83 - 97.66 0.198 

Coiflet 1 Shape 

factor 

9 48.83 - 97.66 0.155 

Daubechies 8 Minimum 8 97.66- 195.31 0.14 

Daubechies 25 Minimum 8 97.66- 195.31 0.137 

Daubechies 28 Minimum 8 97.66 - 95.31 0.136 

BiorSplines 2.4 Impulse 

factor 

9 48.83- 97.66 0.135 
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Using the new selected features much-improved hit rates were obtained 

from the classifiers as evidenced in Table 22. The hit rates were comprised 

between 81.82 % as the lowest, and 99.79 % as the highest, improving 

significantly the ones obtained before. 

Table 22. Results from the cross validation of the grouped features 

selected from the Wavelet analysis. 

Experimental set 1 - Grouped 

 Classifier 

 Bayesian 

Network 

Sequential 

minimal 

optimization 

Intense based 

learning 

J48 tree 

  (%) σ (%) σ  (%) σ  (%) σ 

Anova 88.98 9.53 98.04 4.49 94.01 7.66 93.32 7.47 

CFS 99.79 1.49 96.10 5.65 92.47 8.68 90.02 9.11 

Gain 87.40 10.21 95.42 6.27 87.48 10.37 91.58 7.10 

Relief 81.82 14.03 95.34 6.01 88.92 9.79 91.97 8.43 

4.1.2 Experimental set 2 

Test bench 

The multi-specimen test machine used in the second series of experiments 

was built by the Falex Company [3.76] (Figure 30). It was designed for 

several types of analysis, including bearing tests, and offers the possibility 

of producing different axle forces (up until 10.000 N) and rotation speeds (up 

to 10.000 rpm). It is capable of isolating the effects of the defect in the 

bearing from other mechanical defects. 

 

Figure 30. General view of FALEX Multi Specimen Test Machine.  
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The test rig, illustrated in Figure 31, is composed by a motor that 

provides de movement, a transmission belt to transmit the movement from 

the motor to the test probe, and the test probe itself that include the bearing 

in the middle. 

  

Figure 31. Setting to test the bearing in the FALEX test rig [3.78]. 

For the monitorization, a computer was used with an acquisition CDAQ-

9189 chassis. For the control and the data acquisition, a program with 

Labview from National Instruments was developed, providing the 

synchronization between the control and the acquisition. The sampling rate 

used for the measurements is 25600 Hz. 

Several sensors were installed. Vibration was measured by a 356A32 

PCB PIEZOTRONICS accelerometer. The current consumed by the motors 

was monitored using two LEM HTA 100 sensors (as the system is 

equilibrated, a third one is not needed). A thermocouple was used for 

measuring the temperature in the upper surface of the bearing. A Dynapar 

encoder (model H220300022509) was used for measuring the speed. The 

axial load was measured with a load cell, which can measure up to 

10.000 N. 

In this case, the bearing under test was a FAG QJ212TVP (Figure 32). It 

is an angular contact ball bearing (35 of contact angle), featuring a single 

row, open, with a polyamide/nylon cage and normal clearance. The size of 

the bearing is 60 mm of internal diameter, 110 mm of outer diameter and 

22 mm wide. The nominal maximum rotational speed is 6300 rpm. The 

maximum loads that can be applied are 94300 N in static mode and 96080 N 

in dynamic force. 
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Figure 32. The bearing from FAG opened. 

Design of experiments 

Two different speed levels were tested, 60 rpm and 600 rpm, together with 

two different axle charge levels, 5000 N and 8835 N. Each test was repeated 

three times. 

Faults 

In this experiment, the faults consisted in pits created in the inner and 

outer races of the bearing. Overall, four different health states were 

considered: A healthy bearing, a bearing with an outer race fault, a bearing 

with inner race fault and a bearing with both inner and outer faults. Both 

inner and outer race pits were ellipses machined in the surface using 

electrical discharge, a technique providing good machining precision (see 

Figure 33). The depth of the faults was 0.40 mm and the large diameter of 

the ellipse was for both 6.80 mm. The small diameter of the inner fault was 

4.00 mm, while the one of the outer fault was 4.40 mm.  

 

 

Figure 33. Detail of the inner race fault. 
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Results and discussion 

Just three repetitions were made of each health state. But experience 

showed that they were not enough for a good analysis of the signals 

generated. Thus, each repetition was sliced in three, generating three times 

more signals, thirty in this case. At least 10 turns of the bearing were 

contained in each of the repetition slices. Although this partially 

compromises the independence of each of the repetitions, the benefits of 

having a bigger data pool, outweigh the drawbacks. 

The descriptors (features) and mother wavelets used for the analysis are 

the same as the ones explained in section 1.2. The rest of the analysis is the 

one explained in section 2.3. The wavelets decomposition in this case is 

performed until the 8th level, as the acquisition frequency is 25600 Hz. The 

descriptors generated, were selected and classified as explained in section 

1.3. The sets of features selected by the distinct methods are collected in 

Table 23 to Table 26. All of them correspond to the test case of 60 rpm and 

5000 N charge. 

Table 23. Data descriptors ranked by variance analysis.  

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(Hz) 

Variance 

F value 

BiorSpline 5.5 Impulse 

factor 

4 800 -1600 53731.8 

Daubechies 3 Impulse 

factor 

4 800 -1600 36375.0 

Symlet 3 Impulse 

factor 

4 800 -1600 36375.0 

BiorSplines 3.1 Peak value 3 1600 -3200 26153.1 

Daubechies 21 Impulse 

factor 

4 800 -1600 24846.2 

Daubechies 12 Impulse 

factor 

4 800 -1600 19835.5 

Daubechies 22 Impulse 

factor 

4 800 -1600 18933.3 

Symlet 22 Impulse 

factor 

4 800 -1600 16502.8 
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Table 24. Data descriptors ranked by the correlation feature selection 

method. 

Mother wavelet Descriptor 
Decomposition 

level 
Band range (Hz) 

Daubechies 39 Crest factor 8 50 -100 

Haar Kurtosis 3 1600 -3200 

Symlet 1 Impulse factor 3 1600 -3200 

Haar Kurtosis 8 50 -100 

Raw signal RMS - - 

Daubechies 1 Kurtosis 8 50 -100 

Daubechies 8 Variance 3 1600 -3200 

BiorSplines 3.3 Ratio 4 800 -1600 

 

Table 25. Data descriptors ranked by information gain method. 

Mother 

wavelet 
Descriptor 

Decomposition 

level 
Band range (Hz) 

Inf. Gain 

value 

Coiflet 5 Clearance 

factor 

4 800 -1600 1 

Daubechies 41 Variance 1 6400 – 12800 1 

BiorSplines 

6.8 

Skewness 2 3200 –6400 1 

Daubechies 39 Kurtosis 8 50 -100 1 

Daubechies 39 Skewness 8 50 -100 1 

Daubechies 39 Crest 

factor 

8 50 -100 1 

Daubechies 39 Shape 

factor 

6 200 -400 1 

Daubechies 41 Deviation 1 6400 – 12800 1 
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Table 26. Data descriptors ranked by relief method. 

Mother wavelet Descriptor 
Decomposition 

level 

Band range 

(Hz) 

Quality 

estimation 

Daubechies 1 Ratio 8 50 -100 0.521 

ReverseBior 1.1 Ratio 8 50 -100 0.521 

Symlet 1 Ratio 8 50 -100 0.521 

BiorSplines 1.1 Ratio 8 50 -100 0.521 

Haar Ratio 8 50 -100 0.521 

Haar Kurtosis 3 1600 -3200 0.518 

Daubechies 1 Kurtosis 3 1600 -3200 0.518 

Symlet 1 Kurtosis 3 1600 -3200 0.518 

 

The classifiers, using the correlation variation method, produced the hit rate 

values and deviations compiled in Table 27. The worst result is 70.47 % and 

the best is a 100.00 %. The features selected by the correlation feature 

algorithm offer particularly good results. 

Table 27. Results from the cross validation of the features selected for 

the Wavelet analysis of the second experimental set.  

Experimental set 2 

 Classifier 

 Bayesian 

Network 

Sequential 

minimal 

optimization 

Intense based 

learning 

J48 tree 

  (%) σ (%) σ  (%) σ  (%) σ 

Anova 70.47 15.15 66.67 7.34 83.07 16.86 77.17 16.84 

CFS 100.00 0.00 100.00 0.00 100.00 0.00 94.10 10.66 

Gain 99.80 2.00 99.80 2.00 100.00 0.00 94.70 8.71 

Relief 94.03 9.36 98.20 5.45 98.20 5.45 94.17 8.92 

 

In summary, we can state that the results obtained from the motor 

current signature analysis for the analysis of bearings in gearboxes are very 

promising, probing that the technique is a valid approach for the condition 

monitoring of such elements. 
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5 Example of practical implementation of 

fingerprint based on motor current signature 

analysis 
As was mentioned before in chapter one, condition monitoring has the 

potential to reduce maintenance costs and upgrade the uptime of the assets. 

The most common strategy to implement it so far, has been periodic 

inspection by an expert, but this is slow and may not be cost effective. In 

other cases, where the benefits of adding sensors were clearer, they have 

been added, but it is not widespread mainly for two reasons, the cost and 

the complexity of the installation. Therefore, the motor current signature 

analysis is proposed as a cost effective continuous monitoring method. 

In this context, the fingerprint concept is taken into consideration [3.67]. 

The asset in a good health state is monitored as a set of pre-defined 

operating conditions. The monitorization can be triggered during the whole 

asset’s life-time in the same pre-defined operating conditions. As a result, a 

reference value is taken which accounts for normality. This value will be 

compared with measurements made throughout the life. The goal is to be 

able to detect and determine the appearance of abnormalities. 

The process for the implementation of the condition monitoring tool 

consists in four steps and it is depicted in Figure 34. 

 

Figure 34. Scheme of the application of the fingerprint concept.  
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First, the principal potential faults of the asset must be identified. For that, 

the recommended tool is an analysis of failure mode and effects analysis 

(FMEA). The analysis provides a ranked set of faults that become the focus 

of the condition monitoring due to their higher potential to generate a 

failure. 

In step two, the boundary conditions (i.e. speed, charge…) are analysed, 

with the goal of them being comparable. The most convenient strategy is to 

set the asset in a monitorization mode, where main operating conditions are 

kept fixed. 

In step three an experimental campaign is launched. The asset in good 

state is monitored, to establish the baseline of the health indicators. With 

this information deviations on the original signal can be monitored and 

abnormalities can be detected. Additional experience can provide further 

insight on specific faulty conditions. 

The ideal situation for the experimental campaign is to be able to test 

the asset through the process of generating the fault, but this is an 

extremely demanding situation, as the quantity of data needed is very high 

and the possibility of obtaining the desired isolated fault is quite low. Thus, 

faults can be simulated, either by setting a seed from where the fault will 

arise or by machining the fault directly. The parameters measured with the 

fault will set the limit until it is safe to use the asset, additionally providing 

information about the fault indicators. 

In step four, the condition monitoring prototype is deployed. The 

parameters measured before are monitored periodically to control their 

evolution. If there is an anomaly they should inform before it becomes a 

catastrophic failure. 

Motor current signature analysis (MCSA) can play a key role in the 

implementation of the fingerprint concept. Condition monitoring is 

becoming more and more popular, and MCSA can be the element to 

overpass barriers that stop it, such as the cost, the difficulty of installation 

and the decrease in reliability for the addition of elements. 

Wavelet signature analysis will help in the implementation of MCSA, as 

the most common situations that are found in real-life applications are 

transients. The monitorization must be adapted to fit the asset monitored, 

and reduce as much as possible the downtime. Ideally it should enter 

monitorization mode seamlessly, without interrupting the normal operation 

of the asset. 

In this section, some examples of implementation will be discussed. 
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5.1 Machine tool monitorization 

The components that cause most of the trouble in machine tool industry are 

the gears in the spindle. Incorrect maintenance of the gears can have an 

impact in quality, cost and, more generally, in productivity. 

The use of condition monitoring could contribute to improve the 

situation, although there are several obstacles that prevent its adoption. 

The main one is that they may not be cost effective. Although machine tool 

manufactures are steadily adding sensors to their equipment so that it can 

be monitored, they normally charge a premium for such capability, which 

prevents it from wide spreading. 

The fingerprint concept combined with motor current signature analysis 

is especially suited for spindle monitoring. Following the steps above 

mentioned, a FMEA will point out the faults to monitor, and a fingerprint of 

the asset in the healthy state will be measured. 

The comparison of the signal in the fingerprint and in the different 

health states will serve to select the most important parameters to be 

monitored. It is here where the importance of motor current signature 

analysis comes to life, as it is a particularly suited technique for spindle 

monitoring. The signal is readily available in the control scheme, and can be 

extracted and analysed without the introduction of additional sensors. 

The implementation of the fingerprint requires comparable boundary 

conditions for the measurements. During the work of the spindle it is very 

hard to do this due to high number of different operations that can be 

performed with a single spindle. Even the material and the crystallographic 

plane where it is working have an effect in the vibration signal and the 

current consumed by the spindle. 

So, the most convenient strategy would be to set the spindle in a 

monitorization mode, where the speed and charges will be kept equal. It 

seems that the most convenient strategy is to monitor the transient 

moments were the machine tool is gaining speed, but it is still not 

machining (load is zero). This way we may enter seamlessly into a 

monitorization mode, upgrading the up-time of the machine. 

5.2 Electro-mechanical actuator for aerospace monitorization 

Nowadays, large aeronautical multinationals, aircraft Original Equipment 

Manufacturers (OEMs) and their suppliers are immersed in the concept 

called More Electric Aircraft, where traditional hydraulic and pneumatic 

systems are being replaced by electrically driven systems [3.79].  
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In this context, the development and the implementation of advanced 

actuation systems has increased, as many factors are driving the migration 

from hydraulic actuators to electro-mechanical actuators (EMAs). EMAs 

provide significant advantages in complex applications because they 

increase the controllability of the system (shortening changeover times), 

provide re-configurability, and maintain functionality during faults 

(improving the accuracy and reliability). 

EMA technologies are already being used in aeronautics, but for safety 

reasons they are limited to Secondary Flight Controls or military 

aircraft [3.80]. Their application to Primary Flight Controls will allow 

reductions in the weight of drives, gas consumption, and polluting 

emissions. The major step in moving from EHAs to jam-free EMAs is the 

prevention of potential jamming cases by appropriate technology and 

monitoring, thus giving the system aircraft availability for dispatch and 

failure sizing cases. 

The drawback of EMA’s is that the reliability is not high enough to be 

airworthy. One possible solution is to implement condition monitoring. The 

problem is that the addition of more elements reduces the overall reliability, 

what makes the inclusion of accelerometers (traditionally used element for 

condition monitoring of screwballs) undesirable. But as actuators are 

electrically driven, and the current signal is readily available in the 

command module, motor current signature analysis can avoid the addition 

of accelerometers, and in combination with the fingerprint concept it is ideal 

for this application. 

EMA have a particularity regarding their function. The amount of work 

done at stationary speeds is limited or doesn´t exist. And again, the 

transient signal analysis is the only mode to monitor and the wavelet 

technique is particularly suited. The test should be designed so that 

repetitive conditions are achieved, so the boldest strategy would be to 

perform the tests, grounded in the pre-flight check phase. Additionally, 

simpler in-flight monitorization could be performed, for example triggering 

an alarm as certain parameters overpass a set limit. 

The fingerprint process should be replicated, performing the FMEA 

analysis, enabling the realization of tests in good health condition and in 

faulty condition. The ideal indicators will be pointed out by this analysis, 

opening the door to the development of a prototype and further 

implementation. 
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5.3 Electric car mechanical parts monitorization 

As this Thesis is written we are facing the dawn of the electric car. It is a 

new paradigm that will change the habitudes of millions of people. 

Furthermore, the trend is towards the servitization of the car. This is true 

especially for the electric car. Particularly, both of these facts will have a big 

impact in the maintenance of the cars, as there are less mechanical 

components, and the servitization requires having a live-time 

monitorization of the car [3.81]. The approach taken in this Thesis is 

especially appropriate for the monitorization of the drive train, as the 

current feeding the driving motor is readily available in the control module. 

It will avoid adding additional sensors, which, in a mass-produced asset like 

the car, provides high cost savings. The wavelet analysis may be a technique 

of choice, as it will be hard to obtain a signal of continuous speed and 

charge. 

The process of condition monitoring of the drive train starts with the 

generation of the FMEA that will provide the elements to be monitored. The 

implementation of this technique is particularly tricky as it can be hard to 

obtain a situation where the car has comparable boundary conditions. The 

high range of speeds and charges, added to the irregularities of the 

pavement to which the car is submitted, represent a challenge. But making 

use of speed and other sensors that are of standard use, such as 

accelerometers in the traction control, equivalent conditions can be found. 

The information recorded in those conditions can be used to identify the 

fingerprint and later assess the health conditions pointed out in the FMEA 

analysis. 

Another advantage of monitoring a mass market product as a car, is the 

availability of a bigdata base that will help provide a refined condition 

monitorization product, with a low number of false positives, and false 

negatives. 
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As stated in the first chapter, section 1.5, the primary objective of the thesis 

was to analyse the potential of two novel technologies to monitor the health 

state of a gearbox, the first one by means of screening the quality of the 

lubricant oil (viscosity), and the second by monitoring vibrations of the 

gearbox by examining the current signal feeding the electric motor. We 

consider that, to a considerable extent, these objectives were satisfactorily 

fulfilled. 

The conclusions obtained regarding the potential of the techniques used, are 

summarized below, mostly organized along the two main subjects of research 

that constitute the work. 

The most convenient strategy to prevent failures in a gearbox is the combined 

monitoring of the lubricant oil and the vibrations generated in the system. 

Replacing the lubricant before degradation works as a protection for failures, 

whereas vibration monitoring screens existing faults, and prevent them from 

becoming catastrophic. 

A) Concerning the oil viscosity monitoring, using the magnetoelastic sensor 

concept developed in this work, the main results and conclusions are: 

A.1 The parameters of the lubricant oil were studied, and viscosity was 

selected as the most important one for the correct function of the gearbox. 

The relationship between the variation in viscosity and the problems in the 

lubrication oil was displayed, and linked with the faults generated in the 

gears when working with such broken-down oil. 

A.2 The magnetoelastic effect in suitable materials offers a good base to 

develop an on-line viscosity sensor capable of a wide measuring range. 

The on-line viscosity measurement concept has been focused on 

magnetoelastic sensors. The mechanical oscillations in the sensing probe are 

created by means of the coupling between the magnetic and elastic properties 

of a magnetoelastic material. The excitation is produced by an alternating 

magnetic field that, depending on the frequency and the characteristic of the 

material, produces forced mechanical oscillations and eventually resonances. 

The dissipative force caused by the viscosity of the lubricant oil, produces an 

attenuation of the oscillations, and changes in the frequency, the magnitude 

and the quality factor of the resonance. All these parameters can be correlated 

to the viscosity of the oil. 

A.3 These concepts have been experimentally verified in a proof-of-concept 

prototype, in which we were able to observe measurable differences between 
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the magnetoelastic response of the sensing material in the presence of 

lubricant oils with different viscosities. 

Especially, the relation between the amplitude and the frequency of the 

resonance for different oil viscosities was determined. 

The suitability of amorphous ribbons for the magnetoelastic measurement 

was confirmed. They were used in the form of strips, free to oscillate in the 

bottom of a vial containing the oil under test. Although oils with high 

viscosities present quite small amplitudes, which makes it difficult to be 

analyzed by the processing algorithm, calibration curves were established for 

the change in amplitude and resonance frequency as a function of the 

viscosity. 

A.4 A second, more elaborated prototype, was designed to overcome 

limitations of the first one, considerably improving the results and the 

measuring range. 

The new prototype permits much cleaner and repetitive results, easing the 

change of sample and adjusting the coil system for maximum sensitivity. It 

was tested with two different magnetoelastic materials which are now used 

in a cantilever configuration (clamped by one end). The amplitude and the 

value of the resonant frequency were confirmed to be linked with the viscosity 

of the lubricant oil tested. Both Vitrovac 4040 and 7600 amorphous ribbons 

showed a clear dependence between the amplitude and the frequency of the 

resonance with the viscosity of the lubricant oils, in a wide range from 32 to 

326 cSt. It was confirmed that the frequency shift with respect of the 

resonance in air follows a linear relation with the square root of the product 

of the viscosity and the density of the oils. 

A.5 A new phenomenological model for the magnetoelastic resonance has 

been proposed, which permits the detailed analysis of the experimental 

results by a least-squares fitting procedure.  

The curve fitting of the data obtained with the magnetoelastic sample 

Vitrovac 4040 was used to determine new calibration curves. The amplitude 

of the resonance as a function of the viscosity of the oil is given by the 

expression A (mV) = 26.49  -0.69, where the viscosity  is expressed in cSt. 

The resonance frequency is described by fr (kHz) = 43.23  -0.08. 

The fitting procedure allows for the determination of the damping parameter 

 of the magnetoelastic resonance. It was found that the damping parameter 

is very sensitive not only to the viscosity but also to the nature of the oil. 

Hydraulic oils (from the family T, with viscosities up to 108.6 cSt) display a 

linear trend with different slope that the oils from gearboxes lubrication 
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(family O, with larger viscosities). These dependencies are described by 

 = 0.035+4.2  10-4  for oils of the family T ( ≤ 108.6 cSt), and  

 = 0.054+2.4  10-4  for oils of the family O ( > 108.6 cSt). 

The curve fitting in the case of the data obtained using the sample 

Vitrovac 7600 was complicated by the presence of two overlapped resonant 

modes (probably caused by an imperfect clamp of the sample). Both resonant 

modes are fitted simultaneously. It is observed that the amplitude of the 

second mode decreases rapidly when the viscosity increases, implying that 

higher viscosities favours the existence of only one mode of oscillation. The 

damping parameter extracted from the fitting for the first mode reflects 

clearly the effect of the viscosity of the oil. It presents different slope for T and 

O types of oils, as it happened with the Vitrovac 4040 sample. 

A.6 The evolution of the oil viscosity with the temperature in the range from 

0 to 60 C was determined using the magnetoelastic sample Vitrovac 4040 

biased in its temperature compensation point. 

The on-line monitoring viscosity sensor must be able to determine the 

viscosity at different temperatures. In principle, the magnetoelastic 

resonance itself can be severely affected by temperature changes, but when 

the sample is biased at a specific compensation point the frequency of 

resonance becomes insensible to temperature. For the sample Vitrovac 4040 

oscillating in air this has been found to happen when it is biased at about 

722 A/m.  

The viscosity of the hydraulic lubricant oils (T family) was measured at 

different temperatures, from 0 to 60 C using a climatic chamber. Biased at 

the compensation point, the observed changes in the resonance frequencies 

are originated by changes in the viscosity of the oils. They were translated to 

viscosity values using the calibration curve determined at room temperature. 

The results indicate that the most viscous oils display larger variations of 

viscosity with temperature. 

B) Regarding the motor current signature analysis (MCSA) for the 

monitorization of the health state of the gears, the main conclusions are: 

B.1 MCSA is not as accurate as accelerometers for vibration data analysis. 

But it provides other important advantages, it is more economical to 

implement, there is no need to install additional sensors in hard to reach 

areas and the reliability of the monitored system is not compromised by the 

addition of new equipment. 

Vibration analysis by means of accelerometers is nowadays the standard 

practice in industry. A new technology as motor current signature analysis 
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must be benchmarked against it. In general terms MCSA is not as accurate 

as accelerometer vibration analysis, especially when the fault monitored is in 

its initial stages and it is not large enough. For example, we have shown that, 

for the case of bearings, MCSA hardly distinguishes faults consisting of pits 

below 1 mm of diameter (comparable results were reported in the literature). 

For larger faults, MCSA successes in detecting them and distinguish among 

different types of faults. Additionally, MCSA may need more advanced signal 

processing and larger computational resources than vibration analysis based 

on accelerometer data. However, MCSA provides important benefits. As no 

additional hardware is needed for the monitoring (the current signal is 

available from the control governing the movement), apart from the clear 

economic advantage, the overall reliability of the system is not compromised 

by additional elements. Besides, MCSA is also most convenient when the 

gearbox to be monitored is not easily reachable. 

B.2 Motor current signature analysis, combined with wavelet analysis, is 

especially convenient for transitory working conditions and for the so-called 

fingerprint concept in the monitorization and screening of faulty states of a 

great variety of assets (machine tools, electro-mechanical actuators, electric 

cars among others). 

Transient speeds are present in the working parameters of many of the assets 

present in industry, transport or energy sectors. For example, in certain 

actuators the constant speed regime may too short for monitoring under 

steady conditions. Also, in machine tools, the transient until reaching the 

working speed may be considered a much more repeatable condition than the 

constant speed regime used in machining the material. In these and similar 

cases, it is enormously interesting to adequately monitor, the transient 

regime. However, the data analysis of transitory speeds presents some 

challenges over the one with constant speed. The signal processing techniques 

must be more carefully selected, and the data acquisition sampling rate must 

be adapted to the transient generated. In the case of gear-boxes this implies 

that, for each physical revolution of the mechanical components, a sufficient 

number of points must be obtained to have enough signal information, which 

depends on the number of teeth of the gears and their interaction. This may 

be changeling if the transient is very fast. 

B.3 Discrete wavelet analysis technique provides good results, and is 

confirmed as an adequate technique for its use with motor current signature 

analysis when transitory speed changes are to be analysed. 

Different signal analysis procedures were critically evaluated for the desired 

working conditions (speed transitions). According to the literature, it was 
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decided to use wavelets as a pre-processing technique, and statistical 

parameters as a processing technique. The use of computer resources was 

minimized using the discrete wavelet transform. The adequateness of the 

approach was backed up by the results obtained. 

B.4 The concept of motor current signature analysis implemented through 

the discrete wavelet analysis was validated experimentally. It has been 

proved to be useful for the condition monitoring of the health state of gears in 

a gearbox under transitory speeds. 

As a proof of concept, a set of gears with different health states were used. 

They were grouped in three categories attending to a classification performed 

using accelerometer data. The objective was to see how the motor current 

signature analysis compares with the analysis from the vibration signal. 

Signals from both current sensors and accelerometers were obtained from the 

same tests. 

The analysis performed shows the viability of capturing and extracting 

variations in motor current. The main conclusion of the wavelet analysis and 

feature selection procedure is the production of observations correlating with 

the health state of gears. The results from the feature selection indicate that 

the health condition of the gears cannot be determined unambiguously using 

only one descriptor, but when diverse of them, wisely selected, are combined, 

the diferent faulty conditions can be clearly indetifyied. It is to be understood 

that here the term descriptor is used in an ample sense, meaning the result 

of the analysis of the data obtained using a given mother wavelet and 

decomposition level, and a given statistical measure (average, variance, 

mean, etc). 

B.5 Motor current signature analysis combined with discrete wavelet analysis 

is proved experimentally to distinguish between gears in three different 

health states with a good percentage of accuracy. 

A healthy gear and gears with two faults (pitting and eccentricity) were 

tested. Two different strategies, discrete wavelet analysis and dual level time 

synchronous averaging (DLTSA), were compared as pre-processing 

techniques to analyse the experimental data acquired. From each analysis, 

the relevant features of the signals are extracted and catalogued using a self-

organizing map. The resulting classification allows for an easy discrimination 

of the diverse health states of the gears, which is successful in both 

approaches.  

Comparing the results from both techniques, using the results of the 

Student’s t-test, some of the results appear to be better for the Wavelet 
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technique and others for the DLTSA, but both are strongly dependent on the 

feature selection and classification methods selected. Therefore, with the 

present data set, no clear differences exist in the performance of both 

techniques (although the wavelet analysis provides a 100% accuracy in one of 

the instances). The combination from both pre-processing techniques, wavelet 

and DLTSA, provides an improvement of the results. 

B.6 Faulty conditions on bearings outside the electric motor can also be 

detected using motor current signature analysis combined with wavelet 

decomposition. 

Additional experimentation was performed to assess the health state of 

bearings, in this case under steady speed conditions. The experimental work 

was performed in two different test benches to detect faults injected in the 

bearings. In the case of the bearings tested in the first bench, the analysis 

was performed in a similar way that in the case of the gears using the discrete 

wavelet transform as pre-processing technique. The first results only 

differentiate between bearings with big faults and bearings with small or no 

faults (it could not separate the bearing with the smallest faults from the 

healthy state, nor differentiate between bearings with the bigger faults). In a 

new analysis the original data set was separated in two, one for the bearings 

with larger faults and the other for the bearing with small faults, obtaining 

new features that provided much-improved discrimination.  

In the second experimental test, using bearings with different faults, both a 

discrete wavelet decomposition and a traditional time domain statistical 

analysis were employed. The selection of the features and the classification of 

the schemes used in the case of the testing of the gears provided results that 

allowed to differentiate each of the health conditions of the bearings. 

 The results obtained were very promising, probing that motor current 

signature analysis is a valid technique for the analysis of bearings in 

gearboxes moved by electrical motors. 


