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Doctor of Philosophy

On Adomian Based Numerical Schemes for Euler and Navier-Stokes
Equations, and Application to Aeroacoustic Propagation

by Imanol García de Beristain

Abstract
In this thesis, an Adomian Based Scheme (ABS) for the compressible Navier-

Stokes equations is constructed, resulting in a new multiderivative type scheme
not found in the context of fluid dynamics. Moreover, this scheme is devel-
oped as a means to reduce the computational cost associated with aeroacoustic
simulations, which are unsteady in nature with high-order requirements for the
acoustic wave propagation. We start by constructing a set of governing equa-
tions for the hybrid computational aeroacoustics method, splitting the problem
into two steps: acoustic source computation and wave propagation.

The first step solves the incompressible Navier-Stokes equation using Chorin’s
projection method, which can be understood as a prediction-correction method.
First, the velocity prediction is obtained solving the viscous Burgers’ equation.
Then, its divergence-free correction is performed using a pressure Poisson type
projection. In the velocity prediction substep, Burgers’ equation is solved us-
ing two ABS variants: a MAC type implementation, and a “modern” ADER
method. The second step in the hybrid method, related to wave propagation,
is solved combining ABS with the discontinuous Galerkin high-order approach.
Described solvers are validated against several test cases: vortex shedding and
Taylor-Green vortex problems for the first step, and a Gaussian wave propaga-
tion in the second case.

Although ABS is a multiderivative type scheme, it is easily programmed with
an elegant recursive formulation, even for the general Navier-Stokes equations.
Results show that its simplicity combined with excellent adaptivity capabilities
allows for a successful extension to very high-order accuracy at relatively low
cost, obtaining considerable time savings in all test cases considered.
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Resumen
La aeroacústica es la ciencia que estudia el sonido generado por un fluido en

movimiento (aerodinámica en el caso del aire). De esta manera, se encuentra
entre la dinámica de fluidos y la acústica. A pesar de no ser una ciencia recien-
te, su actividad ha aumentado considerablemente durante las últimas décadas
debido a un mayor interés por parte de la industria (con más de 64 proyectos
financiados por la Comisión Europea con los términos “Aeroacoustic noise” en
ellos [1]), y por el acceso a recursos computacionales más potentes. El estudio
de la aeroacústica mediante herramientas computacionales se lleva a cabo por la
Aeroacústica Computacional (CCA por sus siglas en ingles), que emplea méto-
dos numéricos para simular la formación y propagación de las ondas acústicas.

Históricamente, la aeroacústica fue promovida mediante diversos informes
publicados por la agencia medioambiental Norte Americana, NEPA, la cual se-
ñalaba la necesidad de proteger a la ciudadanía de la contaminación auditiva,
principalmente de la aviación [46]. Hoy en día la reducción del ruido sigue sien-
do una de las principales utilidades de la aeroacústica, empleándose en sector
automovilístico, ferroviario, ventilación, molinos eólicos, diseño de edificios, etc.
Todos estos sectores operan, a diferencia de la aviación, en números de Mach
bajos. Siendo de entre todos probablemente el de los molinos eólicos el más pro-
lifero en investigación, con un máximo de 40 artículos en 2017 sobre un total
250 en la última década (de acuerdo con una búsqueda en Sciencedirect). Esto
se debe, por una parte, a la madurez en los simuladores y conocimientos fluido
dinámicos para aspas y geometrías alares [84, 99]. Y por otra parte, también
al creciente interés que ha tenido el sector energético ante una demanda de
energías renovables [120]. A pesar de ello, la aeroacústica computacional sigue
siendo una herramienta relativamente novedosa, sin estar aún tan integrada en
la industria como los simuladores aerodinámicos. La principal reticencia es el
alto coste de simulación para la formación y propagación de las ondas acús-
ticas, de naturaleza intrínsecamente no estacionaria y con altos requisitos de
precisión. La precisión es requerida por la minúscula amplitud de las ondas, ne-
cesitando esquemas numéricos muchos más costosos que los tradicionales. Por
lo tanto, la aeroacústica computacional sigue siendo un área aún en desarrollo.
La reducción del coste computacional para la aeroacústica computacional es el
principal interés de esta tesis.

Se distinguen dos principales métodos para realizar simulaciones en aero-
acústica: los métodos directos, que obtienen los valores acústicos directamente
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de la simulación del fluido en movimiento, sin suposiciones acústicas; y los méto-
dos híbridos, que descomponen el problema en dos pasos, el cálculo aerodinámico
seguido del acústico. En este último caso, la separación de la física tiene como
desventaja una limitación en la capacidad de representación del problema [123].
De modo que un problema con acoplamiento acústico - aerodinámico, como es
el sonido de batimiento de una ventana de coche por la autopista, no puede ser
adecuadamente reproducido. Por otro lado, la ventaja radica en la modularidad
y flexibilidad de poder usar sólveres independientes para cada uno de ellos, per-
mitiendo usar el más adecuado para cada caso. En la práctica, el método híbrido
es el más usado, especialmente para problemas con bajos valores de número de
Mach. También lo emplearemos en esta tesis, describiendo a continuación las
propiedades de cada parte.

En la parte aerodinámica es común suponer que el fluido es incompresible, de
modo que no existan ondas acústicas en la simulación y no causen limitaciones
en la estabilidad. Esta es una ventaja especialmente beneficiosa para los pro-
blemas con números de Mach bajos y discretizaciones explicitas, donde existe
una marcada diferencia entre la velocidad de propagación de las ondas acústi-
cas y la del fluido [132]. Por lo tanto, el problema pasa a ser matemáticamente
elíptico, cuya interpretación física es que la propagación de la presión es lo su-
ficientemente rápida como para considerarse instantánea. Esto se refleja en la
desaparición de la derivada temporal en la ecuación de la energía, pasando a ser
una restricción (divergencia de la velocidad nula). Es la ecuación del momento,
junto con esta restricción, la que implícitamente fuerza a una relación entre la
velocidad y la derivada de la presión [106]. Para desacoplar esta relación emplea-
remos el método de la proyección, de tipo predictor-corrector [72, 21]. En este
método, una primera velocidad es estimada considerando la presión de forma
explicita. En concreto, en esta tesis utilizamos la idea original de Kim y Moin
en la que la presión es completamente ignorada, convirtiendo las ecuaciones de
Navier-Stokes en las ecuaciones de Burgers, más simples y rápidas de resolver
[87]. Al ignorar la presión, el campo de velocidades obtenido no necesariamente
satisface la condición de divergencia de nula para las velocidades, de modo que
se corrige en un segundo paso. Para construir la ecuación de corrección, se di-
ferencia la divergencia de la velocidad respecto al tiempo, y se substituyen las
ecuaciones del momento, obteniéndose así una ecuación escalar conocida como
la ecuación de presión-Poisson (PPE). Resolver esta ecuación es la parte más
costosa de todo el proceso, empleándose normalmente métodos iterativos [151].
De la solución se obtiene la presión a emplear en la corrección de los términos
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de velocidad obtenidos previamente. Este mecanismo se describe mediante el
teorema de Hodge. Este segundo paso es conocido como proyección, refiriéndose
a un espacio de divergencia cero. Desgraciadamente, los métodos de proyección
parecen estar limitados a segundo orden en el tiempo, como consecuencia del
desacoplamiento entre velocidad y presión; aún es un problema de investigación
abierto.

Por otro lado, en la parte acústica, las ondas se consideran matemática-
mente como perturbaciones del fluido, obteniéndose mediante una linearización
invíscida de las ecuaciones de Navier-Stokes en torno a un valor nominal [46,
11]. Es decir, obtenemos las ecuaciones de Euler linearizadas. De esta manera
se pueden utilizar esquemas numéricos más simples y robustos. Independien-
temente del sistema a resolver, se requiere de alta precisión en el cálculo de
la propagación con poca dispersión y disipación [93]. Para dicho fin se suelen
emplean métodos de alto orden, que se demuestra tienen una mayor eficiencia
comparado con métodos de bajo orden [92]. En concreto, utilizamos de Galerkin
Discontinuo con orden elevado para preservar la calidad de la acústica durante
la propagación [33, 35].

En el método híbrido descrito obtenemos derivadas temporales tanto en pre-
dicción de la velocidad aerodinámica, como en el la propagación de las ondas
acústicas. La discretización de estos términos pueden clasificarse en tres grandes
categorías en la terminología clásica de las ecuaciones diferenciales ordinarias:
los multipaso, multietapa y de derivadas-sucesivas [22]. Los primeros utilizan la
información de los pasos anteriores para estimar la solución en la nueva itera-
ción. Los multietapa emplean cálculos intermedios, obteniendo el orden elevado
de integración al combinar las variables auxiliares obtenidas de forma adecuada.
Runge-Kutta es sin lugar a dudas el más conocido de esta familia. Por último,
los métodos con derivadas-sucesivas expanden la solución en términos de Tay-
lor. A causa de la aparición de derivadas espaciales de orden superior, así como
un número apabullante de términos, los métodos en derivadas-sucesivas no son
agradecidos y son por lo tanto evitados [131]. En el campo de las ecuaciones
diferenciales parciales, este método también se conoce de tipo Lax-Wendroff,
por ser Peter Lax y Burton Wendroff los que obtuvieron una expansión de se-
gundo orden usando el teorema de Cauchy-Kowalewski [131, 95], siendo el único
método de este tipo que es ampliamente utilizado. Excepcionalmente, en la úl-
tima década, Toro [140] ha creado una familia de esquemas llamada ADER que
está aumentando su uso. Este método se basa en resolver los problemas de Rie-
mann generalizados (con más de dos derivadas espaciales no nulas), empleando
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el mencionado procedimiento de Cauchy-Kowalewski (equivalente a las series
de Taylor para derivadas parciales). Este proceso es también relativamente te-
dioso, existiendo publicaciones que intentan amainar este problema. Aun así, se
puede decir que los métodos de derivadas-sucesivas no gozan de popularidad,
quedando excluidas en favor de los predominantes métodos multietapa y los
multipaso. Para órdenes de integración bajos o moderados, ambos métodos son
usados indistintamente. Pero para órdenes elevados, típicamente mayores que
tres, el método Runge-Kutta es el más utilizado. A pesar del triunfo de Runge-
Kutta existe un potencial beneficio en la combinación de las distintas categorías,
formando por ejemplo los métodos multietapa-multipaso. Seal [131] propone la
combinación de Runge-Kutta con derivadas-sucesivas de segundo orden, como
método para optimizar la memoria y numero de operaciones en los ordenadores
con arquitectura moderna. Este análisis es valido para la aplicación de méto-
dos explícitos, que son útiles en la propagación de ondas y la resolución de las
ecuaciones incompresibles de Navier-Stokes para valores de Reynolds modera-
dos, donde el tamaño del paso no está limitado por la rigidez de los términos
viscosos (stiff) [116]. Los métodos explícitos también son utilizados cuando la
viscosidad no es constante, donde el sistema es puramente no lineal.

Por otro lado, para abaratar el coste computacional en el método híbri-
do, deseamos que el método a desarrollar tenga propiedades adaptativas. Estos
métodos permiten ajustar la precisión del cálculo en cada región del dominio,
optimizando así los recursos disponibles. Las estrategias adaptativas se pueden
plantear tanto en el dominio espacial como en el temporal. A pesar de ello, es en
el plano espacial donde se centran la mayoría de los esquemas disponibles, dada
la gran variedad de alternativas existentes: volumen finito, Galerkin disconti-
nuo, métodos espectrales, etc. En el plano temporal hemos visto como son los
métodos multipaso y multietapa los predominantes. Pero son, sin embargo, los
métodos en derivadas-sucesivas los que tienen las mejores propiedades adaptati-
vas, necesitando los otros dos el conocimiento a priori del orden de integración.
Por ejemplo, existen antecedentes para ajustar el orden de métodos multietapa
implícitos con formulas de diferenciación hacia atrás (BDF). Así, Nigro propone
usar periódicamente un algoritmo de estimación del error, para elegir el orden
a emplear que maximice el tamaño de paso para un error dado [114]. Hay tam-
bién propone la adaptación de orden mediante el empleo de un indicador de
inestabilidad [79]. Y es que su principal motivación es asegurar que el método
BDF empleado está dentro de la región estable, ya que los ordenes altos de
esta familia se vuelven inestables [79]. En ambos casos se requiere un método
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de estimación del error, y se obtiene el orden adecuado mediante ensayo/error,
requiriendo en algunas situaciones la eliminación de pasos ya computados. Por
lo tanto, muchos programas se dedican exclusivamente a modificaciones en el
tamaño del paso temporal y evitan así una programación más elaborada. Es
esta otra razón por las que los métodos adaptativos suelen basarse en caracte-
rísticas espaciales. Identificamos por lo tanto una falta de investigación en los
métodos adaptativos en el tiempo.

Planteamos en esta tesis el novedoso método en derivadas-sucesivas, que lla-
maremos ABS. Nos basaremos en el algoritmo de Adomian para conseguir un
esquema de fácil implementación y programación. Adomian formuló una des-
composición de los operadores no lineales en los conocidos como polinomios de
Adomian. Las variables también son descompuestas en una suma de términos
a resolver, para las que se demuestra en la aplicación “estándar” del algoritmo
una expansión equivalente a la serie de Taylor. Sin embargo, en esta serie se
obtendrán las variables de forma iterativa y secuencial, teniendo cada uno de
los términos como dependencia todos aquellos calculados en las iteraciones an-
teriores. Se construye así una expresión mucho más simple y elegante que en el
caso de Taylor, condicionado por el almacenamiento de todos los términos de
Adomian calculados en cada paso. Utilizando el nuevo esquema ABS en el caso
general de Navier-Stokes compresible, veremos que el número de operaciones a
realizar es muy parecido al obtenido con Runge-Kutta.

La contribución principal de la tesis se encuentra en los capítulos tercero
y cuarto, donde el esquema ABS es descrito e implementado para la parte
aerodinámica y acústica.

Para la parte aerodinámica se han desarrollado dos métodos que modifican
la estimación de la velocidad inicial, usando el nuevo esquema ABS. El primero
de los métodos emplea una discretización de tipo volumen finito (ABS-FV), con
una distribución de las variables semejantes al método MAC. El segundo méto-
do es una modificación del método HEOC [24], de la familia de métodos ADER
(ABS-ADER). La modificación obtenida con ABS no solamente simplificará de
forma considerable el algoritmo, sino que además se desarrolla de forma que el
inicio del método coincida con el de ABS-FV, permitiendo considerarlo como
una extensión del segundo. Ambos desarrollos son comparados con esquemas
clásicos para problemas con derivadas continuas (curvas suaves). En el caso de
ABS-FV, los resultados indicarán una reducción en el tiempo, mayor precisión
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y estabilidad, permitiendo así tamaños de paso más amplios. El segundo mé-
todo, ABS-ADER, no obtiene por si solo mejores resultados que los métodos
clásicog. Sin embargo, cuando la ecuación de Burgers forma una onda de choque
(con derivadas discontinuas), el método ABS-FV resulta inestable a diferencia
del ABS-ADER. Este resultado nos anima a proponer la siguiente metodología
para una optimización de los recursos computacionales: primero se resuelve la
ecuación de Burgers empleando el esquema ABS-FV y, en presencia de discon-
tinuidades (o limitadores activos), se empleará ABS-ADER con esquemas de
Riemann adecuados. Se recuerda que, al poder usarse ABS-ADER como una
extensión de ABS-FV, este paso adicional no requiere operaciones extra.

En la parte acústica, ABS es combinado con el método de Galerkin Dis-
continuo para discretizar las ecuaciones de Euler linearizadas, obteniéndose así
un método de alto orden en el espacio y el tiempo. Como consecuencia de la
linearización, el algoritmo de ABS se simplifica notablemente, pasando a alma-
cenar el mismo número de variables independientemente del orden de integra-
ción deseado. El esquema obtenido es comparado con el método de integración
de Runge-Kutta (RK-DG) [34] mediante la propagación de una Gaussiana. En
los resultados se muestran órdenes de convergencia y precisión favorables para
ABS, con costes hasta 20 veces menores comparando con RK. Al tratarse de un
método adaptativo, este valor dependerá del problema en cuestión.

En resumen. En esta tesis se ha desarrollado un método en derivadas-
sucesivas nuevo, llamado ABS. Sus propiedades son una formulación elegante
basada en el algoritmo de Adomian, sencillez de implementación, y capacidad
de adaptación de forma natural para cada una de las celdas del problema,
obteniendo directamente estimaciones del error al obtener la magnitud de los
términos calculados. Comparado con métodos explícitos clásicos, como Runge-
Kutta o el método de Euler, ABS posibilita una mejora en robustez y precisión
del cálculo, mientras se minimiza el coste computacional. Al tratarse de un mé-
todo adaptativo, su mayor beneficio se encuentra ante problemas con requisitos
computacionales desproporcionales en el dominio. El esquema ha sido proba-
do con métodos de discretización espacial como Galerkin discontinuo, volumen
finito y como modificación de un método de la familia ADER.
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Chapter 1

Introduction

Aeroacoustics is an interdisciplinary field that lies between acoustics and
fluid dynamics. It studies the noise generated via aerodynamic forces, involving
turbulence and fluid-structure interaction. As we shall see, simulations are
extremely expensive with high accuracy demand. However, there is still room
for research.

1.1 Historical background

Although research in aeroacoustic has recently gone through a sudden in-
crease in activity, it already has a long tradition in the fluid mechanic’s commu-
nity. Among the earliest efforts we find the paper by Gutin [74] who published
the first contribution in Russia in 1936. However, modern aeroacoustics is based
mostly on the shoulders of Sir James Lighthill’s work [96, 97], who published
what are certainly the most influential and therefore the most cited papers in
the field. His contributions targeted the aircraft industry in the context of
the first noise regulations from hands of the “National Environmental Policy
Act” (NEPA). Noise regulations started to flourish in the middle of the 20th
century, with the exploitation of transport technologies in the United States.
Several health studies showed the need to protect citizens from noise pollu-
tion, especially aircraft transportation noise. A fact that strongly boosted the
aeroacoustic field [46].

More recently, regulations for maximum noise levels have become more rig-
orous. Not only in aircraft transportation, but also in urban environments such
as: the automotive industry, railway transportation, wind turbine, building de-
sign, ventilation and house appliances, etc. However, opposite to the aircraft
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flight conditions, these new areas are usually low Mach number applications,
with new difficulties not present at higher Mach numbers. Consequently, the
recent interest for low Mach number aeroacoustics has increased. Among all
mentioned industries, turbine and fan noise have been one of the hot topics
in aeroacoustics. Especially wind turbine manufacturing in order to satisfy
an ever-increasing energy demand. Environmental and social studies showed a
need for their noise reduction, and consequently funding for its research and
innovation was destinated. There is, therefore, a niche for research in low Mach
number aeroacoustics, in particular for wind turbine industry. As an indicator
of its success, we can find more than 64 projects in the “Aeroacoustic noise”
area financed by the European Commission [1].

A big step in the aeroacoustic field has been the use of supercomputers.
Whereas in the 20th century aeroacoustic methods were based on analytical
developments, and thus limited to simple geometry and test cases, computa-
tional technologies allow today solving problems accurately in real geometries.
Computational Aeroacoustics (CAA) is the branch of aeroacoustics that studies
the application of computational methods.

Despite all the recent advances in the last decades, CAA technology has not
yet been widely adopted in the industry due to the cost of its simulations. CAA
is inherently unsteady with high accuracy requirements, and its use is confined
mainly to research and prototype testing. There is a clear demand for reducing
the cost of CAA simulations.

One of the main ways to speedup acoustic simulations is by employing hybrid
methods [67], where aerodynamic and acoustic calculations are split into two
consecutive steps. This has several advantages. First of all, a dimensional
analysis shows low Mach number applications are better described with hybrid
methods. Additionally, having a split solution step, different solvers can be
used for each part. For the aerodynamic part, long-time validated numerical
schemes can be used; whereas researchers can focus on developing efficient codes
for the acoustic part. This methodology also helps to perform safety backups
from the generated intermediate aerodynamic solutions, an important asset in
time-constrained projects.

The most common assumption for the acoustic part is the linear wave prop-
agation, potentially described by the linearized Euler equations (LEE). As a
linear PDE, theoretical and numerical developments are well-established. On
the numerical side spatial and frequency based methods have been widely used
[5, 93, 19]. It also scales well in high performance computing environments.
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Moreover, finely tuned linear solvers with accurate and excellent “dissipation
relation preserving” (DRP) methods are available [136, 134]. Finally, build-
ing boundary conditions for linear conditions is easier and more efficient [82,
147]. Drawbacks for the use of linearized Euler equations are related to the
worse physical representation. In this sense, when high accuracy is needed, or
nonlinearities are relevant (in high amplitude waves), these are no longer valid
equations [147]. Additionally, vorticity waves are nonphysically excited in shear
flow problems due to the linearization process [5], causing stability problems.
Several solutions have been proposed in literature [11].

Comparing the alternative methods available, using spatial and temporal
high-order methods is usually the best strategy for unsteady problems with
high accuracy demands [92]. And so, there is a very active research effort
around high-order methods in modern computational architectures.

Many options for high-order spatial discretization exists. For example, dis-
continuous Galerkin (DG) is among the most popular methods [7, 133, 35]. It
can be used for many problems, from elliptic to hyperbolic [9, 8], and from
linear to nonlinear. Other methods such as flux reconstruction [6] or compact
finite volume methods are also popular.

On the temporal side, in classical ODE methods three categories are distin-
guished: multistep, multistage and multiderivative. The first family combines
previously computed timestep solutions with the current step to obtain a higher-
order extrapolation. They are often used for second-order or lower requirements.
Multistage methods are extremely popular, being Runge-Kutta (RK) the ref-
erence scheme [22]. They use multiple intermediate calculations (stages) in
order to construct a higher-order approximation. They are very simple to im-
plement and self-starting. Finally, multiderivative schemes expand variables
in Taylor series using higher-order derivatives, which yields mixed spatial and
temporal derivatives in the case of PDEs expansion. Multiderivative family is
also called Lax-Wendroff when applied to PDEs, since it was Peter Lax and
Burton Wendroff who first built a second-order scheme using this methodology
[95, 131]. Its benefits are a small memory footprint and one-step calculations.
Unfortunately, it requires more FLOPS, and the Cauchy-Kowalewski proce-
dure becomes very tedious for high-order derivatives. Therefore, most of the
high-order legacy codes use Runge-Kutta implementations. Mixed alternatives
such as multistage-multiderivative methods have also been proposed. Seal gives
the procedure to construct them, proposing the combination of second-order
multiderivative and second-order Runge-Kutta scheme as the best choice [131].
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Multistep-multistage methods can also be found [20, 69]. Finally, in the last
decade, ADER family schemes have been developed by Toro [110, 140]. Algo-
rithms in this family are based on the resolution of generalized Riemann prob-
lems, obtaining high-order convergence in time. As a multiderivative scheme,
its application is elaborated, and efforts have been done to simplify it. ADER
schemes are not yet largely used. All the previous discussion is applicable for
explicit schemes, which are useful in wave propagation and medium Reynolds
valued Navier-Stokes equations, where timestep is not limited by stiff viscous
terms. Less frequently, explicit discretization is also employed in non-constant
viscosity fluids, which turns the problem fully nonlinear [116].

The continuous improvement in simulation technology is not only due to
the access to more powerful computers. Mathematical advances such as multi-
grid [105], iterative solvers [91], or adaptivity methods have contributed as
much as hardware. Adaptive methods are very popular because of its flexibil-
ity and implementation “simplicity”. This property allows adjusting accuracy,
and hence cost, to the local needs of the problem, maximizing accuracy to cost
ratio. Adaptivity in spatial discretization is probably the most popular choice
due to the massive variety of spatial schemes available. Best known methods
are refinement (or coarsening) and order adaptivity, also known as h and p

adaptivity in the finite element community [145]. In finite difference and finite
volume methods we find AMR or subdivision as the h type adaptivity equiv-
alent, and stencil variations as the p type. In the temporal side, we stated
multistep and multistage methods to be the predominant time discretization
families. They are, nevertheless, multiderivative type schemes the ones with
best adaptive properties. Multistep methods may seem a good candidate for
order adaptivity since they only require storing extra history terms (only one
new stage has to be computed in any case). Nigro provides an example for an
adaptive “backward differentiation formula” (BDF) implicit method. He peri-
odically runs an error estimate on the solution to adjust the order, such that
the timestep is maximized for a given error tolerance [114]. Hay uses a similar
approach, but his indicator is a stability estimate, on account of BDF being un-
stable for high-orders (and multistep methods in general). In both cases error
measurements with trial and error tests are required for the order adaptation,
sometimes discarding already computed steps. Given correct order adaptation
is not straightforward, most codes consider only timestep size modifications to
satisfy an accuracy constraint. Thus, needs for time-order adaptation methods
in multiderivative schemes are detected.
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From the previous discussion on CAA simulations, we conclude that there
is a need for time-order adaptation methods in multiderivative schemes, with
potential speedup and simulation robustness benefits.

1.2 Objectives

During the introduction of this thesis, the reader should have understood
that CAA is a growing technology with a huge computational cost, were avail-
able resources should carefully be optimized. Consequently, using a hybrid
strategy was decided, with two additional benefits: the convenience for effi-
ciently solving growing low Mach number applications, and the possibility to
use two separate solvers allowing higher flexible on each part. We aim at im-
proving existing time schemes by developing a time-adaptive method that allows
reducing the computational cost while staying robust against simulation failure.

The developed algorithm is an Adomian based scheme (ABS). Adomian
algorithm is an existing method that easily converts any nonlinear operators
into a series of the so-called Adomian polynomials [3, 4, 55]. Its application will
result in an elegant and fast computation of the Taylor series, providing a tool
to build simpler multiderivative type schemes.

Adomian has already been used in the computation of the convection-diffusion
equation using finite differences [130, 111]. However, it never became popular in
the computational fluid dynamics (CFD) community. Its main use in literature
is as an analytical tool to easily obtain closed explicit expressions.

This thesis has been carried out within a group with interest in low Mach
number turbomachinery applications. The following achievements were ob-
tained:

• Study CAA hybrid methods to select the most suitable numerical schemes
for the low Mach number turbomachinery applications, weighting pros and
cons for each of them.

• Development of a new Adomian based scheme (ABS), with strengths such
as time adaptivity, robustness, easy setup, and simple programming. ABS
has been used with different spatial discretizations, including:

– ABS-DG: discontinuous Galerkin to solve acoustic wave propagation.
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– ABS-FV and ABS-ADER: finite volume and ADER schemes to solve
incompressible simulations and wave propagation.

• Development of an acoustic module, compatible with in-house “BBIPED”
platform. The module contains Runge-Kutta time discretization, plus the
new ABS-DG scheme.

1.3 Contents of the thesis

The thesis outline is as follows:

• General background: In chapter 2, the background for the ABS devel-
opment is included. Starting with fluid flow and acoustic wave governing
equations, then computational acoustic methods are exposed, and finally
the basics for all employed numerical methods are explained.

• Adomian based schemes (ABS): In chapter 3, The ABS algorithm
is obtained for the Navier-Stokes equations, its combination with discon-
tinuous Galerkin is developed, and finally linearized Euler equations are
solved for acoustic wave propagation.

• ABS for low Mach number flows: In chapter 4, ABS scheme is used
altogether with finite volume and ADER numerical methods for incom-
pressible Navier-Stokes, necessary for the acoustic sources computation in
hybrid CAA methods.

• conclusions: In chapter 5, conclusions and future work are written.



Chapter 2

General Background

2.1 The physics

Waves are ubiquitous in nature, and are defined according to several prop-
erties. When waves are created by adiabatic compression and dilation of a
medium, and they travel longitudinally at the speed of sound, they are called
acoustic waves. These waves can be found in both fluid and solid media, al-
though in this thesis we only study the first case. More specifically, “acoustic
pressure waves” are pressure perturbations taking place over an ambient fluid
p′ = p − p∞, for which human audible levels (also called noise) are the most
interesting ones for acoustic engineers. The range of pressure levels that a
human can distinguish ranges [2× 10−5 Pa , 200 Pa ], and human audible fre-
quency f ∈ [20 Hz, 20 kHz]. The main application is not only the well-known
“acoustic pollution”, but many additional fields of interest exist. For example,
the improvement of audio hall acoustic quality, musical instrument design or
combustion stability.

To deal with such a wide range of possible amplitude values, the Sound
Pressure Level (SPL) measure is used, being its unit the “decibel” (dB) named
after Alexander Graham Bell. The SPL compares the root mean square of
an “acoustic pressure wave” amplitude (p′rms), to a reference value (pref ) in
logarithmic scale:

SPL = 20
p′rms

pref
.

Reference value pref = 2× 10−5 Pa is the human hearing threshold at 1 kHz. In
decibels, the range of human hearing ranges [0 dB , 140 dB ].
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To have an insight on the small amplitudes involved, 140 dB is the wave am-
plitude generated by a Formula 1 car at full throttle, which is 500 times smaller
than the atmospheric pressure. Based on this estimation acoustic waves are
assumed to be governed by the linearization of the fluid dynamics equations.
Experience has shown this approximation to be good enough for most applica-
tions. Nevertheless, for very high intensities and high accuracy needs, the use
of nonlinearity might be necessary.

Another common simplification is inviscid wave propagation. It turns out
to be a reasonable assumption for short propagation distances, and medium
to low-frequency waves. These approximations are supported by the following
nondimensional analysis.

Consider wavelength (λ) and frequency (f) as spatial and temporal charac-
teristic parameters. The following nondimensional variables are obtained,

x∗ =
x

λ
t∗ = tf u∗ =

u

λf

p∗ =
p

ρref (λf)2
ρ∗ =

ρ

ρref
e∗ =

e

(λf)2

µ∗ =
µ

ρ0λ2f

Using the stated human audible frequency levels, the corre-
sponding wavelengths are λ = [17m − 1.7 m] at ambient conditions
(ρ0 = 1.225 kg/m3). This is equivalently a nondimensional viscous range
µ∗ = [10−11, 10−3]. Hence, in the worst case, nondimensional viscosity is orders
of magnitude smaller than convection, proving its inviscid behavior.

If both linear and inviscid conditions are applied to the Navier-Stokes gov-
erning equations, the linearized Euler equations and its variations are obtained.
Those are by far the most commonly used governing equations in wave propaga-
tion simulations. Other alternatives are Euler equations or Linearized Navier-
Stokes equations, which consider non-linearity and viscosity effects correspond-
ingly.

In acoustics, another distinction is done between tonal and broadband noise.
A sound is referred as “tonal” when a certain pitch can be assigned to it. This
is the type of noise found in musical instruments. The classical reference for
aerodynamic tonal noise is the wind blowing around a pole, such as ships shaft
in a harbor. On rotating machinery tonal noise is also found when the blade is
impinging on a fluid element with a periodic frequency, such as shed vortices,
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or the interaction between the rotor wake and the stator. Broadband noise on
the other side does not have a distinctive pitch and is composed of multiple
frequencies. But it does have some defining characteristics such as “bright-
ness”. During Aircraft takeoff and landing strong broadband noise is emitted
by engines propulsion and fluid/airframe interaction. For the last case, when
the uncorrelated wing suction and pressure sides meet at the trailing edge, it
generates a local strong non-stationary pressure spike [46, 62].

For most aerodynamically generated noise applications, noise sources can
be explained by two phenomena [144]. The first is known as impulsive noise
and results from the surface movement within a non-uniform flow. The fluid
displaced by the immersed body generates a non-stationary aerodynamic load
on the solid surface, which produces pressure fluctuations that are radiated as
sound. This kind of noise has spatial and temporal resolution scales similar
to the aerodynamic requirements. Therefore, it can be obtained “easily” from
specifications for aerodynamic simulations. It is often the primary type of noise
in rotating systems such as helicopter rotors, wind turbines, turbine engine
fans, and ventilators. It is, in fact, this impulsive noise that gives the periodic
tonal component to turbomachinery, with a frequency function of the rotating
speed, and blade number. The second noise source mechanism is the result
of turbulence, and therefore, arises in nearly every engineering application as a
chaotic stream of eddies with a wide range of frequencies and velocities. Thus, a
broadband type frequency spectrum is generated. As a matter of facts, acoustic
radiation from turbulent energy occurs most efficiently in the vicinity of sharp
edges (e.g., at the trailing edge of an aircraft wing), and therefore both types
of noise sources tend to gather near solid surfaces and edges. Often, noise is
referred as a broadband type sound with some narrow-band tonal components.
In multiphysic problems additional noise sources might be found, probably being
the combustion noise the most popular one. This is a complicated problem with
stiff sources, caused by the result of chemical reactions and the corresponding
sudden energy release.

According to theory, sound power emanating from turbulence will be pro-
portional to the eighth power of flow velocity, and low Mach number flows will
be extremely inefficient with orders of magnitude smaller than the turbulent
structures ([81], p. 31). On the other side, generated waves are inversely pro-
portional to the Mach number and have long wavelengths. For computational
applications one might find wavelengths being too long for a specific computa-
tional domain, causing a scaling disparity problem. In fact, scaling disparity
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are the main problems arising in CAA applications as reported by Tam [135].

1. waves are compressible and unsteady in nature. Acoustic timescales
are very small compared to turbulence evolution in low Mach number
problems and introduces a computational difficulty to capture both of
them. If one would be interested only in the aerodynamics, it could solve
the stationary problem, filtering acoustic waves out. However, to simu-
late the full problem with acoustic waves, unsteady (or frequency domain)
simulations are required, where the aerodynamic evolution is constrained
by the acoustic waves resolution. Developing numerical methods that
successfully overcome this problem is a challenging task.

2. Large Spectral Bandwidth. When interest is in broadband noise, mul-
tiple frequencies must be computed. It is then necessary to use a mesh
discretization fine enough to capture the highest frequency waves. At
the same time, simulation time must be long enough such that the waves
of smallest frequencies are captured. The combination of both require-
ments need from huge data storage resources. Alternatively, one might
use frequency-based solvers. In that case, multiple frequency simulations
need to be done.

3. Length Scales. Aeroacoustic problems are multiscale.

A problem related to the large spectral bandwidth above, is when acoustic
sources are gathered in shear layers and turbulent eddies, which are orders
of magnitude smaller than the acoustic waves. The required mesh must be
fine enough to resolve the source terms, resulting in timestep limitations.

Another length scale disparity is the (pressure) wave amplitude to mean
flow values. Recall, an acoustic wave at a maximum human audible pres-
sure is of 200Pa (140 dB), whereas the atmospheric pressure is 105Pa.
This is a ratio of 500.

Finally, the propagation distance of an acoustic wave might be orders of
magnitude bigger than the effective aerodynamic propagation. In com-
bination with extremely fine grids for the aerodynamic region, very long
simulations runtimes are needed for the acoustic waves to arrive the far-
field.

4. Radiation conditions. Acoustic solutions are very sensitive to numeri-
cal noise introduced during simulation. Boundary conditions must avoid
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noise accumulation by forcing outgoing waves not to reflect back, includ-
ing acoustic, entropic or vorticity waves.

5. Nonlinearity and Wave Steepening. It has been demonstrated that
most of the acoustic waves are weak enough and are governed by linear
wave equations. Most of the numerical schemes make use of this simpli-
fication, although for stronger waves (taking 120 dB as a reference value)
steepening might become important. In some cases even shock waves are
formed. For example, in brash instruments [66].

6. Wall Boundary Conditions. Acoustic waves are very sensitive to
wall boundary conditions. In general, accurate high-order conditions are
needed to successfully capture noise. Especial care is required in curved
domains, where problems can arise during runtime, and also for fitted
grids construction.

It is around these numerical difficulties where most of the aeroacoustic re-
search is carried out. In this thesis, the approach known as the hybrid method-
ology is followed. It works by splitting the problem into an aerodynamic and
an acoustic part, which decouples involved scales and successfully solves some
of the mentioned problems.

2.2 Governing equations

The governing equations for fluid dynamics, known as Navier-Stokes, are
the set of conservation laws for mass, momentum, and total energy conserva-
tive variables. Conservation laws state how conservative variables in an isolated
physical system do not change as the system evolves. These equations can be ob-
tained by different approaches. A common procedure is computing the balance
of the conserved variable over a finite control volume, relating transportation
through the boundaries, chemical reactions, or external forces acting on the
volume. Thereupon, they require the continuum principle, where variables are
macroscopically defined in a continuous media.

Conservative variables are evaluated using directly measurable fluid primi-
tive variables such as pressure, temperature, velocity and density. Navier-Stokes
equations can be manipulated to be used either in primitive or conservative vari-
ables, if variables are smooth enough [104, 141]. In many cases, it boils down
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to the experience and personal preference of the researcher. Nonetheless, primi-
tive variables usually yield simpler equations and workflows with a vast number
of applicable methods [125, 86]. Particularly for multiphysic problems such as
combustion. Unfortunately, the use of governing equations in primitive vari-
ables (primitive equations) does not correctly represent conservation variables
near discontinuities, or more precisely its Riemann invariants. For this reason,
governing equations in primitive form might be favored for low Mach number
problems and multiphysics, whereas conservative variables are best suited for
high Mach number flows with possible shock formations. Nevertheless, nowa-
days techniques to deal with most situations using either conservative or prim-
itive variables exist.

2.2.1 Compressible case

When fluid density is function of pressure, then it is governed by the com-
pressible Navier-Stokes equations. Equations can be cast in different forms:

∗ Conservative form

∂ρ

∂t
+

∂

∂xj

(ρuj) = Sm,

∂ρui

∂t
+

∂

∂xj

(ρujui + pδij − τij) = Si, i = 1, 2, 3

∂ρE

∂t
+

∂

∂xj

(ρHuj − τijui + rj) = Se

(2.1)

where ρ, ui, p, E and H are the density, velocity components, pressure, total
energy, and total enthalpy respectively. j is the index for the dimension of
the problem (j = 3 for three-dimensional problems). rj represents the heat
convection per unit mass. δij stands for the Kronecker delta function. Sm, Si

and Se are the mass, momentum and energy sources; they can also be seen as
a mass injection, external body force, and heat addition respectively.

The most common fluid to be simulated is air, and it can be considered as
a calorically perfect gas:

p = ρRT = (γ − 1)ρe

e = cvT
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Where T is temperature, e is the internal energy, R is the “specific gas constant”,
E the total energy and H the total enthalpy. The “specific gas constant” R can
be obtained from the specific heat at constant pressure cp and constant volume
cv with the well-known formula R = cp − cv. At least for diatomic gases.
Additionally the total energy E is related with internal energy e by:

ϕ2 =
Dim∑
k=1

uk

E = e+
ϕ2

2

H = E +
p

ρ

A useful definition is the speed of sound, which for the isentropic case (valid if
a disturbance is small enough) is,

c2 =

(
∂p

∂ρ

)
s

= cst (2.2)

which for a perfect gas relation (p/ργ = cst),

c2 = γ
p

ρ

Heat conduction is assumed to follow Fourier’s law:

rj = −k
∂T

∂xj

Being k the heat conductivity coefficient.
Finally, for Newtonian fluids, the Stokes hypothesis can be used for the

stress tensor:

τij = τji = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
∂τij
∂xj

= µ
∂2

∂x2
j

ui +
1

3
µ

∂

∂xi

(
∂uj

∂xj

)
.

(2.3)

Rewriting equations in primitive form:

∗ Primitive variables
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∂ρ

∂t
+

∂

∂xj

(ρvj) = S ′
m

∂ui

∂t
+ uj

∂ui

∂xj

+
1

ρ

∂

∂xj

(pδij − τij) = S ′
i i = 1, 2, 3

∂p

∂t
+ uj

∂p

∂xj

+ γp
∂uj

∂xj

+ (γ − 1)

[
∂rj
∂xj

− τij
∂ui

∂xj

]
= S ′

e

(2.4)

Euler equations in vectorial form

Euler equations are a simplification of the Navier-Stokes equations for no
heat conduction and no viscosity (τij = rj = 0). With this simplification,
vectorial notation is possible.

∗ Conservative (vectorial) form

∂Q

∂t
+

∂Fj

∂xj

= S j = 1, . . . , Dim (2.5)

Q =


ρ

ρui

ρE

 =


q0

qi

q4

 Fj =


qj

qiqj
q0

+ pδij

qj
q0
(q4 + p)

 p =
R

cv

(
q4 − ϕ2

)

∗ Primitive (vectorial) form

∂W

∂t
+Aj

∂W

∂xj

= S ′ j = 1, . . . , Dim (2.6)

W =


ρ

ui

p

 Aj =



uj ρδ1j ρδ2j ρδ3j 0

0 uj 0 0 δ1j/ρ

0 0 uj 0 δ2j/ρ

0 0 0 uj δ3j/ρ

0 γpδ1j γpδ2j γpδ3j uj
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Conservative and primitive relation

The relation between the two forms is better observed in the quasilinear
form. To get the conservative quasilinear form

∂Q

∂t
+ Aj

∂Q

∂xj

= 0 (2.7)

we start by applying the chain rule to the flux derivative in (2.5), for a three-
dimensional problem uj = {u, v, w}.

∂Fj

∂Q
= Aj

∂Q

∂xj

Aj =



0 δ1j δ2j δ3j 0

a1ϕ
2/2δ1j − uuj uj − a2δ1ju uδ2j − a1δ1jv uδ3j − a1δ1jw a1δ1j

a1ϕ
2/2δ2j − vuj vδ1j − a1δ2ju uj − a2δ2jv vδ3j − a1δ2jw a1δ2j

a1ϕ
2δ3j − wuj wδ1j − a1δ3ju wδ2j − a1δ3jv uj − a2δ3jw a1δ3j

uj(a1ϕ
2 −H) a1δ1j − a1uuj a1δ2j − a1vuj a1δ3j − a1wuj γuj


Being, a1 = (γ − 1) and a2 = (γ − 2).

Now, perform a change of variables with another chain rule,

∂U

∂W

∂W

∂t
+ Aj

∂U

∂W

∂W

∂xj

= 0.

Multiplying from the left by
(

∂U
∂W

)−1, the primitive form (2.6) is recovered by
realizing,

Aj =

(
∂U

∂W

)−1

Aj
∂U

∂W

with

∂U

∂W
=



1 0 0 0 0

u1 ρ 0 0 0

u2 0 ρ 0 0

u3 0 0 ρ 0

ϕ2/2 ρu1 ρu2 ρu3 1/a1
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∂W

∂U
=



1 0 0 0 0

−u1/ρ 1/ρ 0 0 0

−u2/ρ 0 1/ρ 0 0

−u3/ρ 0 0 1/ρ 0

a1ϕ
2/2 −a1u1 −a1u2 a1u3 a1


In this thesis no source terms are considered.

Sm = Si = Se = S ′
m = S ′

i = S ′
e = 0

Riemann invariants

A hyperbolic one-dimensional problem in the form of,

Ut + AUx = 0,

being A a linear matrix of n× n size, can always be converted to an uncoupled
diagonal form by using its left L and right R eigenvectors,

LUt + LARLUx = 0

(LU)t + LAR(LU)x = 0

Vt + ΛVx = 0

(2.8)

where Λ is the diagonal eigenvalues matrix. This is equivalent to a three plane-
wave propagation system. V is also known as the characteristic variables or the
Riemann invariant. Dependence between U and V variables can be found by
the inverse of the identity V = LU ,

U = RV

This solution means that any change in the solution U is composed off the sum
of the characteristic variables, each of them proportional to the corresponding
right eigenvector value. Unfortunately this analysis requires matrix A to be
linear. If this is not the case, as for Euler and Navier-Stokes equations, only
the linearized case can be proved.

L∂U = ∂V
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Solution for the primitive variables Euler equations is [104],

L∂W = ∂W c =


∂u− 1

ρc
∂p

∂ρ− 1

c2
∂p

∂u− 1

ρc
∂p

 Λ =


u− c 0 0

0 u 0

0 0 u+ c



Where W c denotes the characteristic variables of the primitive W system. The
system for W c becomes,(

∂u

∂t
− 1

ρc

∂p

∂t

)
+ (u− c)

(
∂u

∂x
− 1

ρc

∂p

∂x

)
= 0(

∂ρ

∂t
− 1

c2
∂p

∂t

)
+ u

(
∂ρ

∂x
− 1

c2
∂p

∂x

)
= 0(

∂u

∂t
+

1

ρc

∂p

∂t

)
+ (u+ c)

(
∂u

∂x
+

1

ρc

∂p

∂x

)
= 0

(2.9)

Since from equation (2.2), the second variable is constant for an isentropic
process, its evolution is related to entropy change. It is thus known as the
entropic wave. The other two equations correspond to acoustic waves traveling
at the speed of sound c. For an adiabatic isentropic flow, the characteristic
variables can be analytically integrated,

∂W c =


∂u− 1

ρc
∂p

∂ρ− 1

c2
∂p

∂u− 1

ρc
∂p

 =


∂

(
u− 2

γ − 1
c

)
∂s

∂

(
u+

2

γ − 1
c

)


Nondimensional analysis

It is always a good practice to work with equations in nondimensionalization
form. By this procedure, fluid variables are scaled to reference parameters, loos-
ing their physical units. The main computational benefits are floating numbers
rescaling, getting better round-off errors control; and on the mathematical side,
negligible variables discrimination.
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Consider the following reference parameters: xref , uref , ρref , and cref . Then,
variables are nondimensionalized by,

x∗ =
x

xref

t∗ = t
uref

xref

u∗ =
u

uref

p∗ =
p

ρref c2ref
ρ∗ =

ρ

ρref
e∗ =

e

c2ref

(2.10)

Notice that two velocity reference values are being used uref and cref . The
first is a suitable characteristic variable, such as far-field flow velocity. Whereas
the second is the specific sound of speed. The use of two reference velocities
is of interest for the low Mach number fluid analysis, as it will be shown next.
Substituting all variables (2.10) in the primitive Navier-Stokes equations (2.4)
and extracting µ from τij as in equation (2.3) to form the Reynolds term, the
following system of equations is obtained [106, 73] (‘∗’ sign was dropped for
convenience).

∂ρ

∂t
+

∂

∂xj

(ρvj) = 0

∂ui

∂t
+ uj

∂ui

∂xj

+
1

ρM2

∂

∂xj

(pδij) =
1

ρRe

∂τij
∂xj

i = 1, 2, 3

∂p

∂t
+ uj

∂p

∂xj

+ γp
∂uj

∂xj

= −γ − 1

Pe

∂qj
∂xj

+
M2 (γ − 1)

Re

(
∂τijui

∂xj

− ui
∂τij
∂xj

)
(2.11)

Where all variables are now nondimensional. Some well-known “nondimensional
numbers” have been defined: Mach (M), Reynolds (Re), and Peclet (Pe).

M =
uref

cref
Re =

uref xref ρref
µ

Pe =
xrefuref

qref

The Mach number appears in the formulation in the form of 1/M2, introducing a
singularity when Mach number tends to zero. Additionally, the nondimensional
energy relationship becomes,

E = ρe+
M2

2
ρu2

k.

2.2.2 Incompressible case

Incompressibility condition is a simplification made when compressible Navier-
Stokes equations are ill-conditioned. The most common case is for fluids with
low-density variations with respect to pressure changes, such as liquids. But it
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can also appear in other situations such as low Mach number flows, where the
appearance of singularities was shown in the nondimensional analysis.

For the low Mach number case, the ill-conditioning stems from the speed
difference between acoustic wave and aerodynamic modes propagation. Nor-
malization of time with respect to the aerodynamic characteristic times, yield
stiff pressure waves, which are no longer appropriately represented by time-
derivatives. The incompressibility assumption solves all pressure fluctuations
as instantaneously balanced in the domain, and thus no acoustic waves are sim-
ulated. A low Mach number asymptotic study will show that nondimensional
equations (2.11) behave, in fact, as the incompressible equations [106, 73].

An excellent solution to compute acoustic waves in low Mach number ap-
plications is the usage of the hybrid formulation, where the aerodynamic part
is solved first, and then the acoustic part. In other words, acoustic waves are
removed from the compressible equations.

Performing a Mach number power expansion for system variables,

ρ (x, t) = ρ(0) +M ρ(1) +M2 ρ(2) + . . .+O(Mm)

u (x, t) = u(0) +M u(1) +M2 u(2) + . . .+O(Mm)

p (x, t) = p(0) +M p(1) +M2 p(2) + . . .+O(Mm)

Where each coefficient ρ(i), u(i), and p(i) on the series is function of space and
time. Expanded variables are substituted into equations (2.11), and gathered by
equal Mach powers. For continuity and energy equations M (0) are the smallest
power terms. Whereas momentum equations include M (−2) and M (−1) terms,
which are simplified to

∂p(0)

∂xj

(x, t) = 0

∂p(1)

∂xj

(x, t) = 0.

Therefore, p(0) and p(1) need to be spatially independent (but function of time).

p(0) = p(0)(x)

p(1) = p(1)(x).
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From the M (0) energy equation condition (2.11) we have

∂p(0)

∂t
+ γp(0)

∂u
(0)
j

∂xj

= −γ − 1

Pe

∂q0j
∂xj

.

Which after integrating over the whole domain (Ω) and making use of the Gauss
theorem (with p(0) being independent of space), we obtain

∂p(0)

∂t

∫
Ω

dΩ + γ p(0)
∫
∂Ω

u(0) · n dΓ =
γ − 1

Pe

∫
∂Ω

q(0) · n dΓ. (2.12)

Where n is the outward normal vector over the boundary (∂Ω). If we further
assume no boundary compression,∮

∂Ω

u(0) · n = 0 dΓ,

which is in fact a necessary condition when the fluid is not allowed to exit the
domain (as is demonstrated in the next section), then (2.12) integral vanishes
and p(0) is proven to be constant in time: p(0) = cst.

Finally, gathering all zeroth order M (0) expansions we recover the incom-
pressible Navier-Stokes equations with variable density,

∂ρ(0)

∂t
+ u

(0)
j

∂ρ(0)

∂xj

= 0,

∂u(0)

∂t
+ u

(0)
j

∂u
(0)
i

∂xj

+
1

ρ(0)
∂p(2)

∂xj

=
1

ρ(0)Re

∂τ
(0)
ij

∂xj

, (2.13)

∂u
(0)
j

∂xj

= 0.

For homogeneous initial density problems, equation (2.13) is trivially zero, and
density is constant everywhere.

From this development it follows p(2) in the incompressible Navier-Stokes
equations does not hold to the thermodynamic interpretation any longer; barely
referred (in literature) as a Lagrangian multiplier which enforces divergence-free
condition. A rigorous mathematical analysis for the asymptotic study can be
found in [102, 88].

Considering the propagation medium as an isotropic Newtonian fluid in
incompressible flow (with velocity divergence-free conditions), stress tensor in
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equation (2.3) is simplified to [115],

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
.

Substitution in equations (2.13) and assuming initial homogeneous density con-
ditions, the final system of equations is obtained (superscripts (0) and (2) are
dropped for clarity).

∂ui

∂t
+ uj

∂ui

∂xj

+
1

ρ

∂p

∂xi

=
1

ρRe

∂2ui

∂x2
j

(2.14)

∂uj

∂xj

= 0 (2.15)

These two equations represent the simplest general incompressible flow.

Initial velocity and normal to boundary velocity distributions are required
for the well-posedness of the problem. Being the imposition of tangential veloc-
ity unnecessary, except for specific cases such as no-slip wall conditions. Under
this conditions the problem is still well-posed, although the solution belongs to
a higher regularity space ([118], p 4). On the other side, pressure should not
be imposed within the domain nor on the boundary, since it can be computed
(up to a constant) from the velocity distribution. Exceptions are the usage of
certain boundary conditions such as moving walls. Imposed velocity boundary
conditions are denoted with b,

b = u(t, x|∂Ω).

A global incompressible condition on the boundary is obtained from the
divergence theorem and equation (2.15),∮

∂Ω

bj · nj dΓ = 0. (2.16)

Initial condition uj(0, x) = u0(x) is given by

∂u0

∂xj

= 0 in Ω.

From the combination of both equations we obtain a continuity condition

u0(x|∂Ω) · nj = bj · nj in ∂Ω (2.17)
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Because of the velocity/pressure coupling, there is no available explicit equations
for pressure, and the system is not easily solved. Fractional methods using the
“pressure Poisson equation” are a popular way to uncouple both variables and
reduce computational cost.

2.2.3 Pressure Poisson equation

The pressure Poisson equation (PPE) is introduced as a means to replace
the incompressibility constrain (2.15), by obtaining an explicit equation for
pressure. It is obtained applying the divergence operator to the momentum
equation [151],

∂2p

∂xj

=
∂

∂xj

(
−ρ

∂uj

∂t
− ρ ui

∂uj

∂xi

+
1

Re

∂2uj

∂x2
i

)
. (2.18)

The use of the PPE is not entirely equivalent to the original system of in-
compressible equations (2.14 - 2.15). First of all, since higher derivatives are
used, a more regular solution space (with higher smoothness) is required. An-
other challenging problem is setting new boundary conditions. Opposite to the
original set of equations, this system needs from pressure boundary conditions.
Gresho and Sani gave a good review on many of the alternatives proposed in
literature, and studied which conditions are required such that the problem is
well-posed [71]. Many of the methods are based on the idea that the PPE being
an scalar equation, so the boundary condition should be. Therefore, the normal
and the tangential scalar products on the (vectorial) governing equations are
commonly used. Unfortunately, solutions are not unique since the use of one
or the other results in different equations. Today, most of the authors use the
normal scalar product,

∂p

∂n

∣∣∣∣
∂Ω

=

(
−ρ

∂uj

∂t
− ρ ui

∂uj

∂xi

+
1

Re

∂2uj

∂x2
i

)
· nj = ξ.

Although for smooth enough solutions both methods are correct [129, 71, 48].
Another condition is also required from equation (2.18). Rewriting it as,

∂2p

∂x2
j

= f in Ω
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and using the Gauss theorem for p,∫
Ω

∂2p

∂x2
j

dΩ =

∮
∂Ω

∂p

∂xj

· nj dΓ,

we get the solvability condition (p 225. [48]),∫
Ω

f dΩ =

∮
∂Ω

ξ dΓ.

When the system is discretized, Ax = ξ, the solvability condition becomes
ξT l = 0. Where l is the left eigenvector for matrix A. This is equivalent to
the sum of ξ over all equations to be zero, and is a direct result of having a
conservative divergence operator (p. 226 [48]).

In some cases, one of the following equations might also be required (p.
1116, 6 [71])

∂uj

∂xj

∣∣∣∣
∂Ω

= 0 (2.19)

∂

∂xi

∂uj

∂xj

· ni

∣∣∣∣
∂Ω

= 0.

The first equation, known as the Kleiser condition, avoids harmonic solutions
of the solenoidal condition (p. 150 [129], [118], [89]).

2.2.4 Turbulence

When considering best practice guidelines in CAA or CFD, turbulence res-
olution needs to be considered. In this section, we will provide a summary of
common turbulence methods.

The best case scenario is a direct numerical simulation (DNS), where no
modeling is introduced and all vortex scales and frequencies involved are re-
solved. Energy spectra for quantities of interest are monitored to judge fully
resolved turbulence structures. In fully resolved problems high-frequency en-
ergy contents must tend to zero. Equivalently, two-point correlations in time
and space should tend to zero. However, no real problem is solved by DNS due
to the extreme computational cost. Computational cost reduction is achieved
by modeling smallest flow structures of high-frequency content. This is achieved
by averaging or filtering the governing equations, obtaining smoother solutions.

Large eddy simulation (LES) performs a spatial filtering on the “subgrid
scale” structures, which are then modeled. This modeling introduces errors
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that can strongly interact with the acoustic field and cause relevant errors in
aeroacoustic applications [143]. In general, the spectral content of a solution
should be kept fixed at the desired filter level [101]. To remove some filter
errors statistical data processing and correlation can be employed. LES results
are very accurate, but still expensive.

A less expensive simulation is obtained using the Reynolds Averaged Navier-
Stokes equations (RANS). It is probably the most widely used turbulence mod-
eling for aerodynamic applications due to its cheap computational cost, long-
standing history, and thoroughly validated test cases. In this method, flow
variables are split into a fluctuating and a mean part. The fluctuating part
should contain frequencies orders of magnitude faster than the mean part. Ap-
plying appropriate “Ensemble” or “Favre” averaging, the so-called Reynolds
Stress tensor is obtained, which requires further modeling to be fully deter-
mined. Usually transport equations for the turbulent mean kinetic energy and
turbulent dissipation rates are constructed. This is known as the “turbulence
closure problem”. The mean part is usually assumed stationary, although it can
also be unsteady if flow timescales are similar to the averaging timescales (see
URANS below).

From RANS results fluctuating velocity components can be reconstructed,
and therefore the noise caused by the unsteady field. This method is known as
Stochastic Noise Generation (SNGR) or Synthetic turbulence, and is an active
research field due to its interest in low-cost results [144]. Batten made this
method popular in aeroacoustics by reconstructing coherent turbulent velocity
fluctuations from a given dissipation rate and second-order moments [12].

For tonal noise problems, good results might be obtained using URANS
simulations. Based on the RANS equations, it includes time dependency at a
cost slightly higher than pure RANS simulations. Although it cannot accurately
recover turbulence information, it captures the evolution of the biggest eddies
in the flow. If those eddies are responsible for a periodic tonal sound, such as
von Karman vortex shedding, the tonal noise might be successfully captured.

An increasingly popular strategy for turbulence resolution is the use of hybrid
approaches. Here, different methods are blended on the domain, or a domain
decomposition is applied. Hybrid RANS/LES techniques are probably the most
common hybrid approach. For example, in surface interaction problems small
turbulent structures are fully resolved near solid surfaces, whereas RANS mod-
eling is used far from the surface. Hybrid methods are a growing research area,
as an optimal solution for both RANS and LES. A significant challenge is the
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information exchange between both regions. Since the RANS region only pro-
vides filtered mean quantities, the fluctuating data at the LES interface needs to
be reconstructed. Typically synthetic turbulence reconstruction is performed,
as Battens did in SNGR. Another popular hybrid method in CAA is the Non-
linear Acoustic Solver (NLAS). Not as popular as hybrid RANS/LES solver, it
has the advantage of not having an interface between both filters. The method
first requires a RANS computation of the full domain over which a perturbation
simulation is performed.

2.2.5 Riemann problem

An initial value problem with two piecewise-continuous functions separated
by a discontinuity is called a Riemann problem.

∂u

∂t
+

∂f(u)

∂x
= 0, (2.20)

u0(x) = u(x, 0) =

{
uL if x < 0

uR if x > 0

The solution to this problem is of great interest to understand governing equa-
tions behavior, and to construct suitable numerical methods.

When one talks about the Classical Riemann problem, it refers to the well-
known Cauchy problem: piecewise-continuous functions with constant left and
right states.

By understanding the behavior of the flux function f(u), and the related
characteristic speed, nonlinearity phenomena such as wave steepening can be
studied. Assume a one-dimensional conservation equation in the form of (2.20).
Using the chain rule, the quasilinear form is obtained,

∂u

∂t
+ λ(u)

∂u

∂x
= 0. (2.21)

where

λ(u) =
d

du
f(u)

is the characteristic speed.
If one applies the same procedure to a system of hyperbolic equations, λ(u)

becomes the Jacobian matrix (not to be confused with the Jacobian determi-
nant). This is equivalent to the Riemann invariant from section 2.8. Therefore,



34 Chapter 2. General Background

solution is given by the solution of characteristics, which is the curve through
which the total derivative of u is zero. Consider the characteristic curve s(t)

which satisfies,

ds

dt
= λ(u), s0 = s(0). (2.22)

Then we compute the total derivative of u through the constructed characteristic
line. Using the chain rule,

d

dt
u
(
s(t), t

)
=

∂u

∂t
+ λ(u)

∂u

∂s
= 0.

This equation satisfies the original PDE, and hence the total change of u
(
s(t), t

)
must be zero. In other words, u is constant along the characteristic curve s(t),
and equal to the initial condition u(s0, 0). Since u is constant along λ(u), the
characteristic curve is also a straight line in a x − t representation. Equation
(2.22) can be integrated to obtain

s(t) = s0 + λ
(
u0(s0)

)
t.

Which can be converted to an implicit analytical solution,

u(s(t), t) = u0

(
s− λ

(
u0(s0)

)
t
)

(2.23)

= u0

(
s− λ

(
u(s)

)
t
)
. (2.24)

The previous solution has the form of a linear advection equation, where
initial data u0(x) is transported at a constant velocity λ

(
u0(s(t))

)
. However,

each characteristic line will have different velocity propagation, distorting the
shape of the initial condition. This is the nonlinear effect.

Locations where two adjacent characteristic curves collide or diverge from
each other will, develop expansion or compression regions. The first case leads
to shock waves, and the later to rarefraction waves. In figure 2.2 both cases are
represented. Its formation can be understood by the convexity property of the
characteristic speed, λ(u). Convexity means characteristic speed increases with
an increasing u: λ′(u) = f ′′(u) > 0. If uL is bigger than uR, the characteristic
curves will intersect each other at the shock location S, as can be seen in figure
2.2 (I). The opposite will occur if uR is bigger than uL, a region with no crossing
characteristics is created, and an expansion area will happen as in figure 2.2 (II).
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Figure 2.1: Characteristics based solution representation

(I) (II)

Figure 2.2: shock wave (I) and rarefraction shock (II) repre-
sentations for Burgers’ equation, from [141].

Equation (2.20) with a discontinuity is not well-posed, in terms of the clas-
sical differential-integral definitions. This framework should be cast in a more
general weak formulation, or distribution. Selected notes on this topic will be
introduced at the end of this section. However, an informal analysis of the
classical problem will be done first. Take the integral of the balance law over
a big enough domain (which includes the discontinuity), say [xL, xR]. Integrals
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are then split around discontinuity s(t),

f
(
u(xL, t)

)
− f

(
u(xR, t)

)
=

d

dt

∫ s(t)

xL

u(x, t) dx+
d

dt

∫ xR

s(t)

u(x, t) dx

f
(
u(xL, t)

)
− f

(
u(xR, t)

)
= [u(sL, t)− u(sR, t)]S+∫ s(t)

xL

ut(x, t) dx+

∫ xR

s(t)

ut(x, t) dx.

Where SL and SR are the left and right limits of the discontinuity, function of
time S(t). Taking both xL and xR infinitely close to s(t), both integrals vanish
and the Rankine-Hugoniot condition is deduced.

∆f = S∆u. (2.25)

∆f = f
(
u(xR, t)

)
− f

(
u(xL, t)

)
∆u = u(xR, t)− u(xL, t).

It can be formally derived that a solution to the balance equation must
satisfy the Rankine-Hugoniot condition. Unfortunately, multiple solutions can
be obtained, from which only one can be the physically correct case. Extra
solutions are called “spurious solutions”. In order to obtain the correct result,
additional conditions are required. In fluid dynamics this condition is the well-
known entropic condition, which enforces systems to evolve such that entropy
always increases. Different mathematical formulations can be constructed which
satisfy the entropic condition, being the Lax entropy condition for shocks prob-
ably the simplest one: a shock can only be formed if the following condition is
met.

f ′ (uR
)
< S < f ′ (uL

)
.

The rarefraction shock in figure 2.2 (II) is therefore physically not correct: a
continuous solution must be obtained.

A way to correctly construct the expansion zone is by using the Riemann
invariants, since we know they hold constant along the characteristic lines. If
uR is bigger than uL, there exists a unique solution to (2.20) given by [56],

u =


u− x

t
< f ′(u−)

G f ′(u−) < x
t
< f ′(u+)

u+ x
t
> f ′(u+)

. (2.26)
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Where G(x/t) is the auxiliary function,

G = G(x/t) = (f ′)−1.

A discontinuity exists only at the origin for t = 0. For t > 0 no discontinuity
(shock) is formed:

ut + [f(u)]x = G′ (−x/t2) + f ′(G)Gx

= G′ (−x/t2) + f ′ ((f ′)−1
)
G′ (1/t)

= G′ (−x/t2) +G′(x/t2)

= 0.

One of the properties of this solution is the self-similarity, where the solution
follows a scaling rule in the form of x/t. This property is very useful since it
allows obtaining a solution using the ratio between space and time.

The physically correct representation of the rarefraction zone is now depicted
in figure 2.3

Figure 2.3: Entropic condition satisfying rarefraction wave
[141].

A formal development to the previous results is obtained using the weak
formulation approach. A function u(x, t) is a weak solution of the conservation
law (2.20) - note the conservation form - if for any sufficiently smooth with
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compact support test function ϕ(x, t), it satisfies,∫ ∞

0

∫ ∞

−∞
u(x, t)

∂

∂t
ϕ(x, t) dx dt+

∫ ∞

0

∫ ∞

−∞
f(x, t, u)

∂

∂x
ϕ(x, t) dx dt = 0.

This definition will be the basis for many modern numerical methods. How-
ever, in practice, the integral is defined over a bounded space, in which case
boundary terms are added to the previous equation, stemming from the inte-
gration by parts.∫ ∞

0

∫ b

a

u(x, t)
∂

∂t
ϕ(x, t) dx dt+

∫ ∞

0

∫ b

a

f(x, t, u)
∂

∂x
ϕ(x, t) dx dt−

−
∫ ∞

0

[
f(x, t, u)ϕ(x, t)

]b
a

= 0. (2.27)

Terms within square braces represent evaluation at boundary locations x = a

and x = b.

Inviscid Burgers’ equation

Inviscid Burgers’ equation is a convex equations which can be described by
(2.20) and the specific characteristic speed

λ(u) = u

f(u) =
1

2
u2

The shock discontinuity jump is obtained from the Rankine-Hugoniot relation,

S =
1

2

(
uL + uR

)
. (2.28)

And the solution to the rarefraction wave is obtained from the Riemann in-
variant (2.26). Alternatively, since Burgers’ equation is a simplification of the
Navier-Stokes equation, one might consider solving the viscous version of the
equation and approach the zero viscosity limit. In fact, equivalence between
both methods has been proven.

u(x, t) = lim
ε→0

uε(x, t)
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for

∂uε

∂t
+ uε

∂uε

∂x
= ε

∂2uε

∂x2
.

Burgers solution for Classical Riemann problem is:

• if uL > uR

u(x, t) =


uL if x− St < 0

uR if x− St > 0

S = 1
2
(uL + uR)

 (2.29)

• if uL < uR

u(x, t) =


uL if x/t < uL

x/t if uL < x/t < uR

uR if x/t > uR

 (2.30)

Hyperbolic system of equations

In the case of a hyperbolic system of equations, a similar set of Rankine-
Hugoniot relations are constructed. However, it is not possible to directly solve
for Si as was done for the scalar case.

By solving the Riemann invariants, m − 1 differential relations are con-
structed using the eigenvalues (λi) and eigenvectors (K(i)) of the system of m
equations [141].

dw1

k
(i)
i

=
dw2

k
(i)
2

= · · · = dwm

k
(i)
m

.

An appropriate solution to the Riemann problem has been an essential step
in the comprehension of flow dynamics in supersonic conditions, where shock
and rarefraction waves are formed. Solutions have been validated against ex-
perimental tests, such as the well-known “Shock tube” problems. In this tests
a diaphragm which initially separates two states (uL and uR) is removed, and
flow evolution is tracked.
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Higher-order Riemann problem

Recall the Classical Riemann problem as the system with two piecewise
constant states on both sides of a discontinuity. Equivalently, when the Riemann
problem has piecewise linear values, it is known as the Generalized Riemann
Problem. Whereas extension to fully nonlinear initial conditions is known as
the Derivative Riemann Problem (DRP ). Figure 2.4 illustrates the last two
situations.

(I)

x

x

t

q

qL(x)

qR(x)

QL(x) QR(x)

x=0

x=0

QLR(τ)

(II)

Figure 2.4: (I) Classical GRP problem (piecewise linear) and
(II) DRP problem. Sources [25] and [141] with modifications.

The notation DRPk is used to refer to the problem where space derivatives
of order higher than k are zero. Hereafter, one can simply refer to the Classical
Riemann problem as the DRP0, since derivatives of order 1 are zero. Similarly,
Generalized Riemann problems are represented by DRP1.

In the previous section, analytical studies for DRP0 were given, and explicit
solutions for the Burgers’ equation provided. Solutions to the Euler equations
can also be found in literature [108]. And even solutions for Navier-Stokes
equations [141]. But finding analytical solutions to DRP1 problems is much
more complicated. Finally, no relevant solution exists for higher-order problems
(DRPk). In fact, most of the finite volume schemes use solutions to the Classical
Riemann problem. In this thesis, we will review the ADER family of numerical
schemes, which are designed to numerically solve DRPk problems.
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2.3 Computational aeroacoustics

As introduced at the beginning of this chapter, many computational diffi-
culties exist around acoustic simulations despite physics are well understood.
Numerical techniques are found in two main CAA families: Direct Noise Sim-
ulation and Hybrid Methods.

Direct Noise Simulation (DNS) is the most straightforward since it directly
simulates the flow using compressible governing equations, from which acous-
tic information is directly extracted. It requires no mathematical modeling
for the acoustic part, but some turbulence or other physical properties may
be modeled. DNS also stands for Direct Numerical Simulation in the CFD
community. In that context turbulence is fully resolved, not modeled. In prin-
ciple, common CFD methods could be applied for DNS. In practice, results
obtained by traditional methods are very poor, since the stabilizing excess of
numerical dissipation tends to smear off an already low energy content acous-
tic wave. Moreover, many numerical schemes are devoted to dump “spurious”
acoustic waves. Hence, DNS methods use high-order schemes to capture the
tiny acoustic waves, becoming extremely expensive simulations. Despite the
huge cost, modest Reynolds number problems can be studied for sufficiently
high Mach number flows, including the transonic regime. Higher Mach number
is associated with bigger acoustic amplitudes and better conditioning number.
DNS simulations can provide a validation benchmark and help understanding
complex physics since no acoustic assumptions are done. This was the case of
screech tones in a supersonic jet studied by Manning [103]. He found waves
were emanating from the interaction between shear-layers and a jet-trapped
wave-system. Other problems such as jet problems [64, 63], cavity flows [127]
or vortex rings [121] have been computed using DNS.

For low Mach number problems DNS is not well suited due to the equation
stiffness and small acoustic wave amplitudes. Hybrid methods are used instead,
splitting aerodynamic and acoustic fields in two steps [42, 46]. In the first step,
the aerodynamic field is obtained and injected into the acoustic simulation,
which is solved in the second step. The splitting will cause flow-acoustic inter-
actions to be lost, although some modifications can be done to partially recover
them. For example, Lilley successfully modified Lighthill’s equation to include
jet convection effects [98]. On the other hand, the uncoupling allows using
tailored solvers for each step. This way, little or no modifications are needed
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for already existing aerodynamic codes, and specific high-order methods can
be developed for the acoustic part. Nevertheless, high-order methods are also
employed for the aerodynamic part, as noise creation and propagation is very
sensitive to it. Additionally, different grids are used for each part. Acoustic
grids do not include boundary layers because they are acoustically stable and
do not emanate sound. They are also coarser than aerodynamic grids since
wavelengths are typically larger than the turbulent structures.

Generally hybrid methods are the appropriate tool for industrial environ-
ments, where fast production cycles and low computational resources are simu-
lation constraints. Particularly if they work under low Mach number conditions.

2.3.1 Hybrid methods

Hybrid methods are obtained from flow decomposition or acoustic analogy
methods. Flow decomposition methods provide mathematical operations to ex-
tract the “disturbance” from the “mean” flow field. Different decompositions
lead to different methods, such as the viscous/acoustic splitting, linearized Eu-
ler, and acoustic perturbation methods. Acoustic analogy, on the other side,
rearranges the full Navier-Stokes equations to construct an inhomogeneous wave
equation for pressure or density. The inhomogeneous part is moved to the right-
hand side of the equation, and they are known as acoustic sources. Classically,
this method requires all acoustic sources to be included in the acoustic near-field
or source region, and the listener to be located in a quiescent far-field. These
methods are often used in external aeroacoustic problems.

2.3.2 Acoustic analogy

Based on the rearrangement of the Navier-Stokes terms, the full physical
meaning of the governing equations is kept in this analogy. As mentioned,
wave propagation is represented by a wave operator, whereas all inhomogeneous
“acoustic sources” on the right-hand side provide the noise creation mechanisms.
Sound sources can be obtained by experimental testing, modeling, or by CFD
simulations. In any case, an accurate representation of sound sources is critical
for the analogy.

Lighthill came up with this methodology in 1952 [96]. His formulation was
limited to unbounded domains, a difficulty that was solved in the following
decades by authors such as Curle, or Ffowcs Williams and Hawkings [46].
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Curle added immersed static walls to the flow field in the mid-fifties [43], a
method that was further extended by Ffowcs Williams and Hawkings [148] by
considering solid surfaces in motion. Up to these days, this is one of the most
cited articles in CAA.

Lighthill’s acoustic analogy

Starting from the conservative form of the compressible Navier-Stokes equa-
tions (2.1), take the time derivative of the continuity equation

∂

∂xi

(
∂ρui

∂t

)
=

∂2ρ

∂t2
, (2.31)

and the divergence of the momentum equation

∂

∂xi

(
∂ρui

∂t

)
=

∂2

∂xj ∂xi

(ρuiuj + pδij − τij) . (2.32)

For incompressible flows with homogeneous density initial conditions, di-
vergences ∂xi

ui and ∂xi
ρui are zero. And from nondimensional analysis, they

are expected to be small for low Mach number flows. Despite all, it turns out
∂xi

(∂tρui) cannot be neglected and that noise strongly depends on its measure.
Lighthill proposed combining equations (2.31) and (2.32) to obtain,

∂2ρ

∂t2
− ∂2p

∂x2
i

=
∂2

∂xi ∂xj

(ρvivj − τij) .

subtracting c2∞∂2
x2
i
ρ from both sides we derive Lighthill’s final form.

∂2ρ

∂t2
− c2∞

∂2ρ

∂x2
i

=
∂2Tij

∂xi ∂xj

(2.33)

Where c∞ is the speed of sound at listeners location (far-field). And Tij is the
second-order Lighthill’s stress tensor

Tij = ρvivj + (p− ρc2∞) δij − τij.

This tensor is composed of a nonlinear convective terms ρuiuj that reminds of
the Reynolds stress tensor, a term that measures the deviation from the isotropic
condition by means of equation (2.2), and the viscous effects which are generally
negligible. Acoustic generation and phenomena such as refraction, diffraction,
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and scattering are included in this tensor. It behaves as a quadrupole type
source.

Lighthill provided the integral solution to his equation for an unbounded
flow,

(ρ− ρ∞) (x, t) =
1

4πc2∞

∂2

∂xi∂xj

∫
Ω

Tij
1

|x− y|
dy (2.34)

In this equation, (x, t) represents the observer spatial and time coordinates.
Whereas (y, τ) are the coordinates for sound emission. Both time variables are
related by τ = t− |x− y|/c∞, which is the time required for the wave to travel
from y to x. τ is thus called the “retarded time”.

When listeners position x is far enough, the solution in (2.34) can be sim-
plified to,

(ρ− ρ∞) (x, t) = 1

4πc2∞x

∫
Ω

∂2T xx
ij (y, τ)

∂τ 2
dy. (2.35)

In this case, T xx
ij denotes the stress tensor in the direction given by the vector

x to y.

When wall boundaries are present in the simulation, Lighthill’s analogy
cannot be used, and a more advanced acoustic analogy is required.

The most common choice is the Ffowcs Williams-Hawkings approach (FW-
H) [107, 147, 23, 47], although other analogies exist in the literature. A detailed
description of the formulation is given by [61, 67]. FW-H formulation has other
additional benefits. First of all, only surface integrals are necessary. Addi-
tionally, the so-called permeable or open boundaries can be used, accounting
for the exiting fluid structures noise contribution. Both conditions allow faster
algorithms in smaller domains, yielding faster and cheaper computations.

Solutions to Lighthill’s equation (2.33) and for FW-H can be constructed via
Green’s functions. Many aeroacoustic codes use this approach since it reduces
computational time and numerical errors. For simple domains analytically solu-
tions can be obtained. Unfortunately, for non-trivial domains, Green’s function
must be numerically obtained.

2.3.3 Flow decomposition methods

Flow decomposition methods consider sound as a disturbance around a nom-
inal or base flow-field. Mathematically speaking, a perturbation (commonly
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linearization) is performed. All decomposition formulations available in litera-
ture have a perturbed and a mean flow part. Typical methods are nonlinear
disturbance equations, acoustic/viscous splitting, linearized Euler equations and
acoustic perturbation equations. All these methods are based on a linearization
of the base flow.

NLDE

Nonlinear disturbance equations (NLDE) are probably the most general lin-
earization decomposition.

ρ = ρ+ ρ′

ρui = ρui + ρ′ui + ρu′
i

ρE = ρE + ρ′E + ρE ′

Overbar terms denote averaged quantities, and primed terms perturbations.
After substitution in the Navier-Stokes equations (2.1), and assuming no heat
convection (rj = 0), the following system is obtained,

∂Q′

∂t
+

∂F ′
j

∂xj

+
∂F̃ ′

j

∂xj

= Sj + S ′
j −

∂Q

∂t
− ∂Fj

∂xj

(2.36)

Q′ =


ρ′

ρ′ui + ρu′
i

ρ′E + ρE ′

F ′
j =


ρu′

i + ρ′ui

ρ′uiuj + ρ uiu
′
j + ρ uju

′
i + p′δij − τ ′ij

u′
i (e+ p) + ui (e

′ + p′)− (u′
kτ

′
ki + ukτ

′
ki)

F̃j
′
=


ρ′u′

i

ρ′u′
iuj + ρu′

iu
′
j + ρ′u′

iu
′
j

u′
i (e

′ + p′)

F
′
j =


ρ ui

ρ u2 + p− τ ji

ui (p+ e)− ukτ ki
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Q =


ρ

ρui

ρE

Primed flux F ′
j is composed of linear perturbation terms, F̃j

′ contains non-
linear terms while Fj represents averaged values. Q represent mean conserva-
tive variables and Q′ the perturbation part. Source terms are treated accord-
ingly. As a matter of facts, if time-averaging is applied to NLDE equations the
Reynolds Averaged Navier-Stokes equations (RANS) are recovered.

The use of NLDE equations in aeroacoustics was first introduced by Morris
[113]. He included a further variable decomposition to include subgrid scales
in the form of a Smagorinsky LES model. His methodology consisted of an
initial RANS simulation using k − ϵ turbulence modeling, from which mean
flow quantities were extracted into a coarser acoustic mesh, better suited for
DRP scheme wave propagation. Morris pointed out his methodology faced some
difficulties to deal with high amplitude unsteady perturbations, in which case
the method might fail. In a similar work by Batten [13], some acoustic inten-
sities were predicted on several geometries using the nonlinear acoustic solver
(NLAS). As for Morris, the first step consisted of a RANS simulation. How-
ever, in NLAS method the sub-grid scales are not solved as LES, but eddies are
constructed through synthetic turbulence from available fine RANS statistical
information. Reconstruction is done from well-known turbulence models itself,
and values are introduced in the computation of the flux terms. Then acoustic
source information is interpolated to the coarser acoustic grid, and acoustic field
is solved. For both NLDE and NLAS solvers, explicit time stepping methods
for the acoustic part are very popular. As opposite to the acoustic analogy,
since the full Navier-Stokes is being solved, the interaction between acoustic
and aerodynamic fields are included.

LEE

For very small perturbations, the use of linearization is enough to capture
acoustic waves. For this case equation (2.36) is simplified by removing all non-
linear terms.
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Additionally, if averaged terms are assumed to satisfy the “averaged govern-
ing equations”

∂Q

∂t
+

∂F j

∂xj

= Sj (2.37)

Then NLDE are simplified to the linearized Navier-Stokes equations.

∂Q′

∂t
+

∂F ′
j

∂xj

= S ′. (2.38)

Recall,

Q′ =


ρ′

ρ′ui + ρu′
i

ρ′E + ρE ′

F ′
j =


ρu′

i + ρ′ui

ρ′uiuj + ρ uiu
′
j + ρ uju

′
i + p′δij − τ ′ij

u′
i (e+ p) + ui (e

′ + p′)− (u′
kτ

′
ki + ukτ

′
ki)

Condition (2.37) is particularly true if averaged terms are obtained from a
steady RANS simulation.

Finally, linearized Euler equations are obtained if viscous term contributions
are neglected, τij = 0.

The equivalent primitive variables system can be obtained with W = (ρ, ui, p)

and assuming isentropic gas,

∂W ′

∂t
+Aj

∂W ′

∂xj

+A′
j

∂W

∂xj

= S′

Aj =



uj δ1jρ δ2jρ δ3jρ 0

0 uj 0 0
δ1j
ρ

0 0 uj 0
δ2j
ρ

0 0 0 uj
δ3j
ρ

0 γδ1jp γδ2jp γδ1jp uj



A′
j =



u′
j δ1jρ

′ δ2jρ
′ δ3jρ

′ 0

0 u′
j 0 0 −δ1j

ρ′

ρ2

0 0 u′
j 0 −δ2j

ρ′

ρ2

0 0 0 u′
j −δ3j

ρ′

ρ2

0 γδ1jp
′ γδ2jp

′ γδ1jp
′ u′

j


.
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As before, overbar denotes exclusive dependency to mean flow values, whereas
a prime means evaluation using perturbed variables. Assuming small perturba-
tions and smooth enough mean values, the product A′ with the gradient of the
mean flow are negligible, getting the approximated solution,

∂W ′

∂t
+Aj

∂W ′

∂xj

= S′ (2.39)

Numerical instabilities

LEE equations can be solved using numerically cheap and efficient methods.
Unfortunately, it is well-known that some instabilities might arise which cannot
be dumped since no viscous or nonlinear mechanisms are contained in the LEE
equations. Thus, instabilities tend to grow and cause the simulation to fail, or
at least pollute acoustic results.

Instabilities can be studied from perturbation theory using the linearized
Navier-Stokes equations, as with the Riemann invariants. For a one-dimensional
problem three waves are emanated: acoustic, entropic and vorticity waves, also
known as modes in the dedicated analysis by Chu [32]. An eigenvalue decompo-
sition reveals acoustic waves propagate at the speed of sound, whereas vorticity
and entropic waves are convected at the flow speed. It is the interaction be-
tween acoustic and vorticity modes what causes the first to grow unbounded
during a simulation. More precisely, it is the gradient of the vorticity mean
flow what causes the instability [18]. Consequently, instabilities are typically
encountered in shear flows, where gradients are strong.

Significant research efforts were dedicated to understand and stabilize LEE
simulations. Some authors included nonlinear terms to add damping mecha-
nisms to the system [100]. However, this strategy increases the cost and com-
plexity of the numerical method. A more popular approach is to reduce the
convection operator by removing the mean flow gradient effects. Although this
solution does, in fact, limit the vorticity mode amplification, it does not com-
pletely remove it, and instabilities still occur in strong shear-flows. Another type
of stabilization for the LEE equations is by solving the frequency domain prob-
lem [5]. Nevertheless, note this method requires “direct solvers” since iteration
methods still excite the vortical instability. Some formulations further stabilize
the simulation by completely removing the vorticity mode from the solution,
and filtering source terms to keep only acoustic mode exciting terms. Acous-
tic perturbation equations (APE) [57, 59] and linearized perturbed compressible
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equations (LPCE) [132] are the most known methods. With this formulation
the problem is transformed into a Poisson equation.

Acoustic sources

LEE formulation can be transformed into a wave type equation. Starting
from the conservation form (2.38), subtract to time-derived continuity equation
the divergence of the momentum equation,

∂2ρ′

∂t2
− ∂2

∂xi∂xj

(
̂(ρuiuj)

′
+ p′δij

)
=

∂S ′
m

∂t
− ∂S ′

i

∂xi

.

̂(ρuiuj)
′
= ρ ūi u

′
j + ρ̄ u′

i uj + ρ′ ūi ūj

Then subtracting

c2∞
∂2ρ′

∂xi∂xi

from both sides, the wave equation for density is obtained,

∂2ρ′

∂t2
− c2∞

∂2ρ′

∂xi∂xi

=
∂2

∂xi∂xj

(
̂(ρuiuj)

′
+ (p′ − c2∞ρ′)δij

)
=

∂S ′
m

∂t
− ∂S ′

i

∂xi

.

where c∞ is the speed of sound at listener’s location.
Obtained wave equation has a clear resemblance with Lighthill’s equation

(2.33), although in this development velocity momentum terms (gathered under
a wide hat) are composed of linear perturbation products, whereas Lighthill’s
equation contains full nonlinear terms. In fact, conservation of meaningful phys-
ical properties during linearization is desired, including main flow features such
as turbulence effects. This is not always satisfied since dropped perturbations
might be necessary. In such case, those extra terms can be kept as source-terms.
In a well-known case by Bailly [10], he decomposed linear perturbations into
acoustic and turbulent contributions Q′ = Q′

ac+Q′
tur, and then he included the

turbulent-turbulent interactions rising in the NLDE process, S+
i . Those terms

are found to be very strong in shear-flow problems. Indeed, one can recover
Lilley’s wave equation adding this term, which is a very popular formulation in
sheared flows, such as jet simulation.

S+
i = −u′

turi

∂u′
turj

∂xi

+ u′
turi

∂u′
turj

∂xi

.
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Bailly was able to reconstruct the turbulent terms Q′
tur from RANS simulations,

using synthetic turbulence techniques.
Finally, Billson [16] gathered in the source terms the full nonlinear Euler

equations. He then proposed different simplifications for each appropriate type
of flow condition.

Acoustic/viscous splitting

The Acoustic/viscous Splitting method was initiated by Hardin and Pope
[76], with low Mach number applications in mind. Here sound radiation can be
seen as an expansion around an (inviscid) incompressible flow. Therefore, the
following flow decomposition is performed,

ui = Ui + u′
i

p = P + p′

ρ = ρ0 + ρ1 + ρ′

(2.40)

where Ui, P and ρ0 are respectively the incompressible velocity, pressure and
density. u′

i, p
′ and ρ′ are the acoustic perturbations. Whereas ρ1 is the “in-

compressibility correction”, which includes low Mach number compressibility
effects, much bigger than the tiny acoustic waves. Although incompressible
values are obtained from incompressible simulations, the decomposition is done
for compressible flows, and hydrodynamic pressure corrections are computed
assuming isentropic compression,

c2ρ1 = P − lim
T→∞

1

T

∫ T

0

P dt (2.41)

Introducing system (2.40) into the compressible Navier-Stokes equations and
subtracting the incompressible ones, the following first-order nonlinear-equations
are yielded.

∂ρ′

∂t
+

∂fi
∂xi

= −∂ρ1
∂t

− Ui
∂ρ1
∂xi

∂fi
∂t

+
∂

∂xj

[
fi
(
Uj + u′

j

)
+ (ρ0 + ρ1)Uiu

′
j + p′δij

]
=

− ∂ (ρ1Ui)

∂t
− Uj

∂ (ρ1Ui)

∂xj

(2.42)
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where,

fi = (ρ0 + ρ1)u
′
i + ρ′ (Ui + u′

i)

In summary, to compute an acoustic/viscous splitting the procedure requires
first to obtain an incompressible simulation, on which the compressibility cor-
rections are based. Finally, we obtain the acoustic field by solving the system
(2.42) [58].

2.3.4 Extension to the far-field

Expensive numerical schemes and required grid refinement make the com-
putation of sound sources very demanding for both direct and hybrid methods.
Additionally, for direct methods, acoustic wave propagation might inadequately
limit the overall simulation timestep, due to problems in scale differences as ex-
plained in the introduction and referenced by Tam [135].

In order to optimize costs, the use of extension to far-field methods can be
employed [42]. The main idea is the limitation of expensive methods to reduced
spatial subdomains (also known in this context as near-field), while extending
the information to the rest of the domain (far-field) with lower cost algorithms.
Two main techniques can be distinguished: extension of information into the
whole far-field, or a point-wise calculation.

In the full far-field extension, cost reduction is achieved by using simpler
governing equations and numerical schemes. For example, wave equation or
LEE formulations. URANS methods are also possible for large eddies tracking.
This was the case in the work by Quéméré and Sagaut [119, 144]. A common
approach in the frequency domain is using Helmholtz equation in the far-field,
which can be combined with a near-field time domain solution. With the new
governing equations and conditions, timestep and grid spacing modifications
should be studied. In which case, a correct near-field to far-field information
transfer should be guaranteed through a domain “interface”; good interpolation
methods are indispensable.

In the point-wise information extension, solutions are constructed by ex-
ploiting the analytical nature of the wave equation [42], in a principle similar to
Lighthill’s original work. Acoustic information in the far-field location is com-
puted with Ffowcs Williams and Hawkings [149] or Kirchhoff equation [60], with
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information from the near-field. Since no far-field grid is necessary, Boundary
Element Method techniques are often used.

Finally, combinations of the previous ideas are possible. For example, LES
simulation can be used in a near-field, whose modes can be propagated through
a middle-field LEE extension, and acoustic data is then computed in the far-field
using Kirchhoff equation.

2.4 Numerical methods

In literature, a plethora of numerical methods for fluid dynamics can be
found, from which most popular schemes usually share good high performance
computing (HPC) scaling properties, are robust to errors, and are simple to im-
plement. Those qualities can be checked “a posteriori”, but are vague enough to
be impractical during new algorithm design. However, satisfying the following
better-defined properties, the outcome usually leads into the same results.

• Locality: Keeping a small stencil, the number of cells involved in a
computation is reduced and intercell communication is minimized. Ac-
cordingly, parallelization is improved by reducing the exchanged multi-
processor data.

• Geometric flexibility: The numerical method can run in unstructured
complex geometries, and even in low “condition number” cells. By reduc-
ing mesh quality, the user meshing effort is simplified.

• Adaptivity: A method has adaptive properties when it modifies to some
local needs. For example, if a solution develops a discontinuity, involved
cells will adapt and employ limiters, stability preserving time-stepping, or
apply cell subdivision. Adaptivity is a useful approach to optimize solvers
cost to accuracy ratio.

• Stability: A method is stable when round-off errors are not amplified,
and the solution stays the same under small initial conditions pertur-
bations. The need for strong stability is especially beneficial for large
industrial problems, where simulation breakdowns cause time and mon-
etary losses. Furthermore, some time-constrained projects will trade-off
accuracy for successfully obtaining a solution.
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The finite volume method satisfies the previous conditions, and is, in fact, the
most popular method for low-order aerodynamic simulations at an industrial
level. Nevertheless, FV becomes less popular as a higher than second-order
method, mainly because of its longer stencil use, loosing its locality, and hin-
dering the geometric flexibility and parallelization.

For higher-order methods alternative schemes such as compact schemes,
discontinuous Galerkin, flux reconstruction, or spectral techniques are more
common; being discontinuous Galerkin (DG) one of the most popular. Most of
these methods solve nonlinear systems of conservation laws employing solutions
to the Riemann problem, being Godunov the pioneer who gave the first solution
to a hyperbolic nonlinear system [68].

One of the most important characteristics of the first-order Godunov method
is the preservation of monotonicity, a property essential to guarantee no ar-
tificial oscillations are formed around discontinuities. Godunov also demon-
strated the following theorem: “a scheme that is linear and monotone, is at
most first-order accurate”. A theorem that is the founding pillar of higher-order
schemes. First-order accuracy limitation is overcome by introducing constraints
and nonlinearities into the interpolation, with the consequent monotonicity loss.
Hence, other stability measures are employed, such as Total Variation Diminish-
ing (TVD). TVD methods control the “variation” of reconstructed polynomial
derivatives, such that the oscillations do never increase. Its theoretical back-
ground is only developed for one-dimensional homogeneous scalar equations,
being second-order accurate at maximum when extended to multidimensional
domains [24].

Many spatial reconstruction schemes are used in FV and FD methods. It
is especially worth mentioning the ENO/WENO family, very popular today.
ENO methods perform multiple reconstructions with different stencils, from
which the smoothest one is taken as the final solution. ENO schemes are Total
Variation Bounded (TVB), a stability condition weaker than the TVD property.
WENO is a “weighted” combination of ENO polynomials.

Classically, temporal discretization is performed after spatial discretization.
With Runge-Kutta (RK) being the most successful scheme for high-order time
integration, benefiting from simple and convenient evaluations over several
stages. However, it requires high storage values to save all intermediate stages,
especially for methods of order higher than four, where the number of required
coefficients grow exponentially. In order to reduce storage, “low-storage Runge-
Kutta” schemes were designed. Another drawback of the RK method is the
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lack of order adaptivity; one cannot easily change the order of integration for a
unique cell without restarting the step.

At the beginning of this century, an alternative approach for high-order
methods was developed by Toro: ADER family of methods [140]. Here, the
Cauchy-Kowalewski procedure is used to solve higher-order Riemann problems,
a procedure by which time derivatives are converted into spatial derivatives
using the original PDE. ADER schemes belong to the multiderivative category,
such as Taylor derivatives. Multiderivative methods are not popular strategies
in the CFD community since they fast become overwhelming calculations for
the multidimensional Navier-Stokes equation. However, as will be proven during
this thesis, using Adomian method they are drastically simplified.

2.4.1 Finite volume

From the hyperbolic conservative PDE in equation (2.20), perform a spatial
and temporal integration, and apply the Gauss divergence theorem to obtain,

i+1/2∫
i−1/2

u(x, tn+1) dx =

i+1/2∫
i−1/2

u(x, tn) dx−
tn+1∫
tn

f(xi− 1
2
, t) dt+

tn+1∫
tn

f(xi+ 1
2
, t) dt.

(2.43)

Given cell i in figure 2.5, define ũi as the average of u(x, t) over the entire cell,

ũi =
1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, t) dx.

It can be proven ũi is a second-order approximation to u(xi, t): ũi = u(xi, t) +O(∆x2).
Therefore, it is often depicted in the center of the averaged cell. Injecting ũi

into equation (2.43), it simplifies to,

ũn+1
i = ũn

i +
1

∆x

(
f̃i− 1

2
− f̃i+ 1

2

)
(2.44)

with

f̃i+ 1
2
=

∫ tn+1

tn
f(u(xi+ 1

2
, t)) dt f̃i− 1

2
=

∫ tn+1

tn
f(u(xi− 1

2
, t)) dt

Since each fi±1/1 is used in its corresponding left and right cells, the sum of
all ũi is conserved in time (except boundary conditions) from telescopic effects.
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Figure 2.5: 1D mesh representation

This is a very desired property which keeps the system mass, momentum, and
energy constant. The method is said to be conservation preserving.

The main problem in finite volume methods is the evaluation of the flux
at the cell boundaries, f̃i± 1

2
. Other properties as maximal relation preserving,

or mentioned TVD methods, can also be achieved through appropriate flux
manipulations. The same principle holds for multidimensional unstructured,
although the flux evaluation becomes much more elaborated.

In the last decade, interest in higher-order methods has increased for high-
accuracy demanding applications, since it is known to be more efficient than
the use of finer grids and shorter timesteps with low-order schemes, for which
the following difficulties arise. First of all, more FLOPS are needed to achieve
the same accuracy levels. Data storage is also increased, especially if multiple
timesteps are saved. Using explicit schemes might not be possible since strong
mesh refinements will induce too severe timestep reductions. Hence, implicit
schemes are forced even if explicit schemes are very well suited for high-accuracy
needs. With the intense research in high-order methods, classical Riemann
techniques have been extended in both space and time. Although (mixed)
simultaneous space and time discretization can be done, more often the spatial
discretization is applied first and temporal discretization to a set of ODEs later.
In the following section the ADER type of time integration method is studied.

2.4.2 ADER solver

ODE integration can be divided into three classical categories. The multi-
step family, where previously computed timesteps are used to construct higher-
order results, such as the well-known Rosenbrock methods. Multistage schemes,
based on a similar idea, compute intermediate stages within each timestep and
constructs higher-order solutions using an appropriate weight combination of
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the stages. In this group belongs the outstanding Runge-Kutta method. Fi-
nally, the Multiderivative schemes use higher-order derivatives, as in a Taylor
expansion, to construct a higher-order extrapolation. In the PDE community,
they are also known as Lax-Wendroff type, after Peter lax and Burton Wendroff,
who first used a second-order time expansion. No big contributions in this fam-
ily of methods were made until the last decade, probably due to the difficulty of
expanding higher-order time derivatives for nonlinear PDEs, or even worse, for
a system. This approach is neither well suited for eigendecomposition methods
used in stabilization, such as in flux difference schemes [131]. Seal has recently
proposed using a mixed multiderivative-multistage approach (potentially mul-
tiderivative Runge-Kutta methods) to build more efficient higher-order schemes
[131], although he limits the numerical study to second-order multiderivative
approximations. Therefore, no higher than second-order multiderivative meth-
ods have been successful.

Recently, Toro has introduced a new multiderivative approach known as
ADER [110, 140]. As a multiderivative method, the solution is expanded in a
series expansion. Take the following Taylor (Lax-Wendroff) expansion,

u(t) = u(0) +
K∑
k=1

[
∂k

∂tk
u(0)

]
tk

k!
. (2.45)

Where each of the high-order time derivatives are obtained by the Cauchy-
Kowalewski procedure.

Cauchy-Kowalewski procedure

Cauchy-Kowalewski is the procedure by which PDE time derivatives are
expressed in terms of spatial derivatives. For example, consider the viscous
Burgers’ equation

∂u

∂t
= u

∂u

∂x
+

∂2u

∂x2
. (2.46)
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After computing time derivatives on both sides, the right-hand side time deriva-
tive is replaced with the original PDE, obtaining the second-order time-derivative,

∂2u

∂t2
=

∂

∂t

(
u
∂u

∂x

)
+

∂

∂t

∂2u

∂x2

=

(
∂u

∂x

∂u

∂t
+

∂u

∂x

∂2u

∂t ∂x

)
+

∂3u

∂t ∂x2

= u2∂
2u

∂x2
+ u

∂u

∂x

∂2u

∂x2
+ 2u

((
∂u

∂x

)2

+
∂3u

∂x3

)
+

∂4u

∂x4
. (2.47)

With the same procedure, third-order time-derivative is obtained,

∂3u

∂t3
= 18

(
∂u

∂x

)2
∂2u

∂x2
+ u3∂

3u

∂x3
+ 16

∂2

∂x2

∂3u

∂x3
+ 9

∂u

∂x

∂4u

∂x4

+ 3u2

(
3
∂u

∂x

∂2u

∂x2
+

∂4u

∂x4

)
+ 3u

(
2

(
∂u

∂x

)3

+4

(
∂2u

∂x2

)2

+ 6
∂u

∂x

∂3u

∂x3
+

∂5u

∂x5

)
+

∂6u

∂x6
(2.48)

Cauchy-Kowalewski can be extended to any arbitrary order It is observed the
third-order derivative is an already cumbersome expression, becoming intractable
for higher-orders [150]. The expression gets more complicated for multi-spatial
and multidimensional problems. Additionally, higher spatial-derivatives ap-
pear, requiring long stencils with appropriate interpolation functions and mak-
ing the implementation more elaborated, especially in unstructured grids. This
operation is well defined only for smooth initial conditions away from the inter-
face.

Montecinos [112] performed some tests on several ADER schemes. In the
following section two methods are explained: TT and HEOC methods [140,
142, 24, 112].

I. Toro and Titarev (TT)
Toro and Titarev used the series (2.45) to compute the evolution at the flux

point xi+1/2 [142].

ui+ 1
2
(t) = ui+ 1

2
(0) +

K∑
k=1

[
∂k

∂tk
ui+ 1

2
(0)

]
tk

k!
. (2.49)
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The leading term is obtained solving the associated Riemann problem (or a
Godunov scheme type scheme), whereas for higher-order terms Cauchy-Kowalewski
procedure is used to construct the time derivatives.

1. ui+1
2

leading term

The authors used first-order Godunov method to compute the leading
term ui+ 1

2
. Using, for example, the upwind method for the Burgers’ equa-

tion (recall solution is given by (2.29) and (2.30)), solution is

• if uL > uR

ui+ 1
2
(t) =


uL if S > 0

uR if S < 0

S = 1
2
(uR + uL)

 (2.50)

• if uL < uR

ui+ 1
2
(t) =


uL if uL > 0

0 if uL < 0 < uR

uR if uR < 0

 (2.51)

2. High-order time derivatives

For higher-order terms, take the original PDE in quasi-linear form,

∂u

∂t
+ λ(u)

∂u

∂x
= 0. (2.21)

and perform k number of space-derivatives. The solution can be rear-
ranged as:

∂

∂t

(
∂ku

∂xk

)
+ λ(u)

∂

∂x

(
∂ku

∂xk

)
= H(u)k. (2.52)

Where H(u)k includes a number of spatial derivatives. In the case of the
viscous Burgers’ equation (2.46),

∂2u

∂t ∂x
= u

∂2u

∂x2
+

∂3u

∂x3
+

(
∂u

∂x

)2

(2.53)

= u
∂2u

∂x2
+

∂3u

∂x3
+H1(u) (2.54)
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∂3u

∂t ∂x2
= u

∂3u

∂x3
+

∂4u

∂x4
+ 3

∂u

∂x

∂2u

∂x2
(2.55)

= u
∂3u

∂x3
+

∂4u

∂x4
+H2(u) (2.56)

With this procedure a set of non-conservative governing equations are
obtained for the high-order space-derivatives. Each equation will have a
characteristic speed function λ(u), or a Jacobian matrix for a system of
equations. It can be easily proved the characteristic speed, or Jacobian
matrix, for the higher derivatives is the same as for the original PDE.

Toro and Titarev simplified equation (2.52) by neglecting H(u)k terms and
linearizing λ(u) around a solution point, obtaining a constant coefficient
λ
(0)
LR = λ(ui+ 1

2
(0)). Consequently, the set of equations are transformed

into classical linear homogeneous Riemann problems,

∂

∂t

(
∂ku(x, t)

∂xk

)
+ A

(0)
LR

∂

∂x

(
∂ku(x, t)

∂xk

)
= 0.

∂ku(x, 0)

∂xk
=


∂kuL(x, 0)

∂xk
if x < 0

∂kuR(x, 0)

∂xk
if x > 0.

whose self-similar solution is given by the solution to the advection equa-
tions in (2.23),

∂k

∂xk
ui+ 1

2
(t) =


∂k

∂xk
uL if 0 < A

(0)
LR

∂k

∂xk
uR if 0 > A

(0)
LR

(2.57)

From those spatial derivative evolution equations, high-order time deriva-
tives are computed with the Cauchy-Kowalewski relation,



60 Chapter 2. General Background



• ui+ 1
2
(0) = equation (2.50) and (2.51) evaluated at t=0

• ∂

∂t
ui+ 1

2
(0) = ui+ 1

2
(0)

∂ui+ 1
2
(0)

∂x
+

∂2ui+ 1
2
(0)

∂x2

• ∂2

∂2t
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2
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(0)
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2
(0)

∂x2
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2
(0)

∂ui+ 1
2
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(0)

∂x2
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(0)
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2
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2
(0)

∂x3
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∂4ui+ 1

2
(0)

∂x4

• · · ·
(2.58)

3. solution construction

In the last step, the flux term f̃ is constructed using the series terms (2.49)
and evaluations (2.58),

ũn+1
i = ũn

i +
1

∆x

(
f̃i− 1

2
− f̃i+ 1

2

)
(2.44)

with

f̃i+ 1
2
=

∫ tn+1

tn
f
(
u(xi+ 1

2
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)
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≈
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f̃i− 1
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(
u(xi− 1

2
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≈
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(
ui− 1

2
+

∂ui− 1
2

∂t
t+

∂2ui− 1
2

∂t2
t2 + · · ·

)
dt

II. HEOC

We introduce here the second ADER scheme based on the work by Castro
[24, 26], who reinterpreted the original scheme from Harten, Engquist, Osher
and Chakravarthy [78] to include source terms and series expansions on both
sides of the interface.
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In this method, two Taylor expansions in time (2.45) are constructed: one
for left and one for right sides of the interface,

uL(τ) = uL(0) +
K∑
k=1

[
∂k

∂tk
uL(0)

]
τ k

k!
(2.59)

uR(τ) = uR(0) +
K∑
k=1

[
∂k

∂tk
uR(0)

]
τ k

k!
. (2.60)

Hence, conceptually differs from the TT method, where a unique expansion
was done with the solution to a DRPk on the interface. Rather, the series
expansion in this method is employed on the construction of multiple classical
Riemann problems (DRP0) at several time intervals τi. Then, the final solution
is constructed using quadrature on the multiple Riemann problems,

f̃i± 1
2
=

∫ tn+1

tn
f
(
u(xi± 1

2
, t)
)
dt ≈

N∑
i

ωi f
(
ui± 1

2
(τi)
)
. (2.61)

1. High-order time derivatives

To obtain the time derivatives, the Cauchy-Kowalewski procedure is com-
puted with the left and right spatial interpolations. No Riemann problem
is solved,

• uL(0) = uL(0)

• ∂

∂t
uL = uL∂u

L

∂x
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∂2uL

∂x2

• ∂2
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∂2uL

∂x2

+2uL
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+
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∂x3

)
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• · · ·

(2.62)
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• uR(0) = uR(0)

• ∂

∂t
uR = uR∂u

R

∂x
+

∂2uR

∂x2

• ∂2

∂t2
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(
uR
)2 ∂2uR

∂x2
+ uR∂u
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∂x

∂2uR
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∂uR
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+
∂3uR

∂x3
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∂4uR

∂x4

• · · ·

(2.63)

Twice as many spatial interpolations are needed in comparison to TT
method. For this reason it is more appropriate for ENO and WENO
type spatial interpolations, where multiple interpolations are performed
anyway.

2. Solving multiple classical Riemann problems

Once Taylor series (2.59) and (2.60) are constructed on each side of the
discontinuity, multiple Riemann problems are constructed for different
time levels, τk. Note, given the Taylor coefficients, obtaining multiple in-
termediate timesteps is straight forward. For example, assuming τi =

∆t
2

,

uL/R

(
∆t

2

)
= uL/R +

K∑
k=1

[
∂k

∂tk
uL/R

]
tk

2kk!
. (2.64)

Then, self-similar solutions to the Riemann problems are obtained,

ui+ 1
2
(τk) = RP

(
uL(τk), u

R(τk)
)

(2.65)

In figure 2.6 a representation of HEOC stages are given.

Figure 2.6: HEOC stages representation. Di+ 1
2

represents a
self-similar solution
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3. High-order numerical flux evaluation

From the previous intermediate Riemann solutions (ui+ 1
2
(τi)), the high-

order numerical flux is constructed using quadrature. Using finite volume
nomenclature, the form (2.44) becomes,

ũn+1
i = ũn

i +
1

∆x

(
f̃i− 1

2
− f̃i+ 1

2

)
(2.44)

with

f̃i+ 1
2
=

∫ tn+1

tn
f
(
u(xi+ 1

2
, t)
)
dt

≈
N∑
i

ωi f
(
ui+ 1

2
(τi)
)

f̃i− 1
2
=

∫ tn+1

tn
f
(
u(xi− 1

2
, t)
)
dt

≈
N∑
i

ωi f
(
ui− 1

2
(τi)
)

Where ωi are the weights used for a particular numerical integration.

2.4.3 Discontinuous Galerkin

Research on numerical methods for wave propagation has made huge ad-
vances over the last decades. In 1985, the first finite difference method for
the wave equation was constructed with second-order centered schemes both
in space and time, providing proper stability and accuracy solutions. Unfortu-
nately, that discretization makes the solution decay rapidly for very long waves,
starting the race for higher-order methods [39]. After three decades, its study
has not yet ended due to its huge applicability in problems solving. In fact, it
is the base for any hyperbolic problem, which can be decomposed into a sum of
propagating waves.

The biggest research effort has been devoted to the development of spatial
higher-order methods, in view of high-order time schemes tending to be unsta-
ble. Only Dablain [44] successfully obtained a higher-order time discretization
using a modified equation approach.

On top of this, finite difference methods are known to have difficulties adapt-
ing to complex geometries, hindering its use among researchers. A possible
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solution is developing high-order finite volume or finite element type technolo-
gies, having each of these methods their own benefits and disadvantages. Finite
volume method relies on reconstructing the flux values at cell interfaces by us-
ing neighboring data, whereas finite element method minimizes the error using
test and trial functions with arbitrary polynomial orders. The main benefit of
finite volume over finite element is the natural adaptation to discontinuities,
its strong stability for hyperbolic problems, the simplicity of implementation,
cell characteristic functions non-overlapping, and solver uncoupling at cell level
in explicit schemes. Finite element on the other side is easier to extend for
higher-order methods, especially in three-dimensional unstructured grids, and
minimizes the L2 error by solving a coupled system of overlapping trial and test
functions.

Discontinuous Galerkin (DG) is a blending between both finite volume and
finite element methods. As in the finite volume case, two adjacent cells are
discontinuous and Riemann solvers are typically employed. At the same time,
within each cell, trial functions are used to minimize L2 error as in the finite
element method. Discontinuous Galerkin has been for a long time a popular
method for solving hyperbolic PDEs. In particular for wave propagation appli-
cations, were super-convergence results have been reported [83]. It has several
useful mathematical properties studied in a series of papers by Cockburn [36,
38, 34, 37], including the possibility of using higher-order TVD Runge-Kutta
time integration, and the use of limiters. DG methods are constructed using
the weak formulation of a PDE. For conservative governing equations, a multi-
dimensional variant of equation (2.27) is used.

One of the drawbacks of DG is the need of more unknowns compared to
FE or FV methods, for the same grid and order. However, the overhead of the
extra unknowns is balanced out by the bigger sparsity of the system compared
to FE. The higher the order of the method, the smaller the overhead.

In this thesis, the DG method known as “quadrature-free” is employed for
the primitive variables, W . Developed by Shu and Atkins [133] it is computa-
tionally cheaper than quadrature based schemes, at least for linear PDEs. The
reader is referred to bibliography [133, 17] for an extended description. For the
rest of this section, the tensorial notation will be used.
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DG for Euler equations

When radiated acoustic waves are strong enough, nonlinear phenomena such
as wave steepening and shock formation are observed. For example, in brash
musical instruments, shock wave formation has been found at “fortissimo” lev-
els [80]. Since shock formation cannot be captured by linear PDEs such as
LEE, solving the full Euler equations is required. Typically, the conservative
form of the equations is employed to appropriately capture the discontinuities
propagation. However, since the work by Dal Maso et al. [45] (also known as
DLM theory), advances in the non-conservative direction have been done. We
highlight the work by Dumbser in mixed time-space discontinuous Galerkin and
finite volume cases [53, 54, 52, 51], the applications by Rhebergen [124], and
the work by Hulsen for smooth cases [85]. Finally, mention the limitations in
the non-conservative formulation as shown by Abgrall [2], and its extension by
Chalons [27].

Let V be the space of L2 functions defined over the domain Ω. And T the
equivalent for the time domain,

V ≡ {w ∈ L2(Ω)} (2.66)

T ≡ {τ ∈ L2(It)}. (2.67)

Then, solution W is required to belong to

W ∈ (V × T )

and satisfy the weak formulation (in DMS sense) constructed by multiplying the
non-conservative governing equation (2.6) with a test function ω ∈ V (Galerkin
approximation), and integrating over the domain.∫

Ω

∂ W

∂t
ω dΩ +

∫
Ω

Aj
∂ W

∂xj

ω dΩ =

∫
Ω

Sω dΩ. (2.68)

To numerically solve the previous equation, domain Ω is approximated by
Ne non-overlapping elements,

Ω =
Ne∑
i=1

Ωi. (2.69)
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Additionally, variables defined on those elements are approximated with the set
of polynomials Pp. i.e. V is replaced by

Vh ≡ {bk ∈ Pp(Ωi) : i ≤ Ne} ⊂ V . (2.70)

Hence, both test and trial functions are approximated,

Wh ∈
(
Vh × T

)

Whj =



N∑
k=1

αρ k(t)bk(x, y)

N∑
k=1

αu1 k(t)bk(x, y)

N∑
k=1

αu2 k(t)bk(x, y)

N∑
k=1

αp k(t)bk(x, y)



=


αρ 1(t) + αρ 2(t)x+ αρ 3(t)y + αρ 4(t)x

2 + · · ·
αu1 1(t) + αu1 2(t)x+ αu1 3(t)y + αu1 4(t)x

2 + · · ·
αu2 1(t) + αu2 2(t)x+ αu2 3(t)y + αu2 4(t)x

2 + · · ·
αp 1(t) + αp 2(t)x+ αp 3(t)y + αp 4(t)x

2 + · · ·


(2.71)

and, 

ωh ∈ Vh

ωh =



N∑
m=1

bm(x, y)

N∑
m=1

bm(x, y)

N∑
m=1

bm(x, y)

N∑
m=1

bm(x, y)



(2.72)

where αvar k are time dependent coefficients for variables in var = {ρ, u1, u2, p}.
The total number N of k and m terms in the expansion gives the desired

order of the method, p. Both k and m values need to be the same for the system



2.4. Numerical methods 67

to be determined. For a two-dimensional problem, their relation is,

N =
1

2!

2∏
k=1

(p+ k) . (2.73)

Substituting previous approximations into the weak equation (2.68), we get
the discrete version. Assuming a smooth non-conservative solution, Hulsen
formulation can be used [85], and a surface integral needs to be computed for
H, ∑

Ωi

{∫
Ωi

∂ W h

∂t
ωh dΩ +

∫
Ωi

Aj
∂ W h

∂xj

ωh dΩ +

∫
∂Ωi

Hωh dΓ

}

=
∑
Ωi

{∫
Ωi

Shωh dΩ

}
.

H
(
W (i),W (l), n

)
=

∫ W (l)

W (i)

Aj nj dW

Where W (i) denotes the cell variables evaluated on the boundary, and W (l) the
evaluation of the adjacent element on the same boundary. n is the outward
pointing vector.

At this point h notation is dropped since provides no relevant information
for the numerical scheme. Additionally, the system will only be studied for a
single grid cell, and the linear summation operator is also dropped. Finally, no
source terms are considered in this work, S = 0. Simplifying the weak form of
non-conservative variables to,∫

Ωi

∂ W

∂t
ω dΩ +

∫
Ωi

Aj
∂ W

∂xj

ω dΩ +

∫
∂Ωi

Hω dΓ = 0. (2.74)

The reader is referred to the series of papers by Dumbser [52, 53, 54, 51]
and Hulsen [85] to solve this system.

DG for LEE equations

When linearized Euler equations (2.39) are solved, recall matrix Aj is com-
posed of the time-invariant mean values Aj, and therefore only needs to be
(pre)computed once. As in this thesis, it can also be considered constant in
space, in which case it becomes a scalar matrix and is pulled out from the
integral.
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After this procedure the weak formulation becomes conservative, and the
boundary integral turns into the numerical flux for conservative equations (to
be defined later) applying the divergence theorem, (H → H).∫

Ωi

∂ W

∂t
ω dΩ +Aj

∫
Ωi

∂ ω

∂xj

Wj dΩ +

∫
∂Ωi

Hω dΓ = 0. (2.75)

This gives an N × N system of equations for each variable var, per cell.
The system is thus uniquely determined. In tensor notation,

M
∂αvar

∂t
= Fvar −Hvar (2.76)

where,

αvar k = (αvar,1, αvar,2, . . . , αvar,N )T

bm = (b1, b2, · · · , bN )T

M =

∫
Ω

bk bm dΩ

Fvar = αvar′ k Aj var var′

∫
Ωi

bk
∂bm
∂xj

dΩ

Hvar =
∑
l∈Ij

∫
Γjl

Hil bm dΓ

Since αvar is the only time-dependent variable, one can analytically precompute
and store all integrals.

The Lax-Friedrichs numerical flux scheme is selected to solve the Riemann
problem [126],

H(W (i),W (l), nl) =
1

2

(
fn
(
W (i)

)
+ fn

(
W (l)

))
− 1

2
α
(
W (l) −W (i)

)
(2.77)

which for the linear equations involved it becomes,

Hil =
1

2

(
Ân
(
W (i) +W (l)

) )
− 1

2
α
(
W (l) −W (i)

)
(2.78)

Ân =
Aj

(l)
+Aj

(i)

2
nj (2.79)

The scalar α needs to be larger than the largest Ân
j matrix eigenvalue. Recall

W (i) denotes the cell variable evaluated into the boundary, while W (l) is the
evaluation of the adjacent element into the same boundary. n is the outward
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pointing vector. Then, H in equation (2.76) becomes,∫
∂Ωil

Hil bm dΓ =
1

2

[
Ân + αI

]
var var′

α
(i)
var′ k

∫
∂Ωil

b
(i)
k b(i)m dΓ+

+
1

2

[
Ân − αI

]
var var′

α
(l)
var′ k

∫
∂Ωil

b
(l)
k b(i)m dΓ

(2.80)

In order to simplify DG implementation, integrals are performed on a ref-
erence element and are then mapped into the real elements. We denote the
mapping by Mi : Ω̂ → Ωi, and it is represented in figure 2.7. The reference
element is an equilateral triangle, with unit side length.

Let xj = (x, y) denote the real element coordinates, and ηl = (η, ξ) the
reference element. A transformation matrix between both coordinates is given
by, (

xj

yj

)
=

(
x0j

y0j

)
+ |J |

(
η

ξ

)
(2.81)

Being |J | the Jacobian,

|J | =

∣∣∣∣∣∂x∂η ∂x
∂ξ

∂y
∂η

∂y
∂ξ

∣∣∣∣∣ . (2.82)

Computing integrals in equation (2.76) with reference element coordinates,

(1,0)(0,0)

(0,1)

(x1, y1)

(x2, y2)

(x3, y3)

Figure 2.7: reference element mapping representation
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• M term

M =

∫
Ω

bk(x, y) bm(x, y) dΩ

= |J |
∫
Ω̂

bk(η, ξ) bm(η, ξ) dΩ̂

= |J | M̂

• F term

Fvar = αvar′ k Aj var var′

∫
Ωi

bk(x, y)
∂bm(x, y)

∂xj

dΩ

= αvar′ k Aj var var′

∫
Ω̂i

bk(η, ξ)

(
∂bm(η, ξ)

∂η

∂η

∂xj

+
∂bm(η, ξ)

∂ξ

∂ξ

∂xj

)
d Ω̂

Since we are working with a linear mapping Mi, all partial derivatives
are constant (and available in the Jacobian), and are therefore pulled out
from the integral

Fvar = αvar′ kAj var var′ |J | (Jjl)−1

∫
Ω̂i

b(η, ξ)k
∂b(η, ξ)m

∂ηl
d Ω̂

= |J | (Jjl)−1 F̂

• H term

Hvar =
∑
l∈Ij

∫
∂Ωil

Hil bm dΓ

=
1

2

[
Ân + αI

]
var var′

α
(i)
var′ k

∫
∂Ωil

b
(i)
k b(i)m dΓ+

+
1

2

[
Ân − αI

]
var var′

α
(l)
var′ k

∫
∂Ωil

b
(l)
k b(i)m dΓ

(2.80)

When working with two-dimensional problems, surface integrals become
line integrals. Using s ∈ (0, 1), we parametrize the integration path as
c(s) = {x(s), y(s)}. Then, both integrals in H are obtained by restriction
to the boundary, ∂Ωil(x(s), y(s)).∫

∂Ωil

b
(i)
k (x, y) b(i)(x, y) dΓ =

∫
ljl

b
(i)
k (s) b(i)(s) |c(s)| ds∫

∂Ωil

b
(l)
k (x, y) b(i)(x, y) dΓ =

∫
ljl

b
(l)
k (s) b(i)(s) |c(s)| ds
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where |c(s)| is the boundary arclength,

|c(s)| =

√(
∂x

∂s

)2

+

(
∂y

∂s

)2

. (2.83)

It can also be computed in the reference element using the chain rule,

|ĉ(s)| =

√(
∂x

∂u

∂u

∂s
+

∂x

∂v

∂v

∂t

)2

+

(
∂y

∂u

∂u

∂s
+

∂y

∂v

∂v

∂s

)2

. (2.84)

For a linear mapping, it is constant and it can be pulled out from the
integral. In practice, H is computed using reference coordinates, but
|c(s)| is obtained from real coordinates.

2.4.4 Adomian algorithm

The power of Adomian method relies on decomposing nonlinear operators
into a sum of Adomian polynomials, denoted by Ai. The unknown variable is
then computed as the sum of a convergent infinite series. The original algorithm
has been studied and modified by several authors [49], but we only consider the
original algorithm reviewed by Adomian himself [3]. In the following, a short
description is given. For more details, we refer to [50].

The first step consists in identifying the differential equations in the following
form,

L(u) +R(u) +N(u) = 0

Where L and R are the linear parts of the differential operator, with L being
easily invertible. N is the nonlinear part. In the context of this thesis, L is a
time-derivative, and hence the inverse operator L−1 a time integral. Rewrite
this equation by inverting the Linear operator L,

u = u(0)− L−1R(u)− L−1N(u) (2.85)

Then, variables decomposition is applied as,

u =
∞∑
n=0

un N(u) =
∞∑
n=0

An(u) (2.86)
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where nonlinear operator N(u) is decomposed into a series of Adomian polyno-
mials An, evaluated by the explicit recurrence algorithm

An =
1

n!

dn

dλn

[
N

(
n∑

k=0

λkuk

)]
λ=0

. (2.87)

This particular Adomian decomposition yields a Taylor expansion: un = ∂n
t u(t)/n!,

and the final form of the solution is given,

∞∑
n=0

un = u0 + L−1R

(
∞∑
n=0

un

)
− L−1

∞∑
n=0

An (2.88)

with

un = −L−1R(un−1)− L−1An−1. (2.89)

When u is smooth, un terms are proof to converge [28] for big enough n.

Higher-dimensional Case

The multidimensional case is a direct extension to the one-dimensional prob-
lem [49]. Consider the following two-dimensional variables, u and v.

L1(u) +R1(u, v) +N1(u, v) = g

L2(v) +R2(u, v) +N2(u, v) = q.
(2.90)

Decompose the variables in a series of sums,

u =
∞∑
n=0

un v =
∞∑
n=0

vn

and build N1(u, v) and N2(u, v) operators with the corresponding Adomian
polynomials A(i),n,

N1(u, v) =
∞∑
n=0

A(1),n(u, v) N2(u, v) =
∞∑
n=0

A(2),n(u, v)

A(1),n =
1

n!

dn

dλn

[
N1

(
n∑

k=0

λkuk,
n∑

k=0

λkvk

)]
λ=0

(2.91)

A(2),n =
1

n!

dn

dλn

[
N2

(
n∑

k=0

λkuk,

n∑
k=0

λkvk

)]
λ=0

. (2.92)
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The solution for each ui, vi expansions is constructed with,

∞∑
n=0

un = u0 + L−1
1 R1

(
∞∑
n=0

un,

∞∑
n=0

vn

)
− L−1

1

∞∑
n=0

A(1),n

∞∑
n=0

vn = v0 + L−1
2 R2

(
∞∑
n=0

un,
∞∑
n=0

vn

)
− L−1

2

∞∑
n=0

A(2),n

being

un = −L−1
1 R1(un−1, vn−1)− L−1

1 A(1),n−1

vn = −L−1
2 R2(un−1, vn−1)− L−1

2 A(2),n−1

(2.93)

Generalization to higher-dimensional spaces is straightforward, defining vari-
ables {u1, u2, . . . , uN},

Li(u1, . . . , uN) +Ri(u1, . . . , uN) +Ni(ui, . . . , uN) = 0

ui =
∞∑
n=0

ui,n

Ni (u1, . . . , uN) =
∞∑
n=0

A(i),n (u1, . . . , uN)

A(i),n =
1

n!

dn

dλn

[
Ni

(
n∑

k=0

λku1,k, . . . ,
n∑

k=0

λkuN,k

)]

and solution for each ui,n is given by

ui,n = −L−1
i Ri (u1,n−1, . . . , uN,n−1)− L−1

i Ni (u1,n−1, . . . , uN,n−1)





Chapter 3

Adomian Based Schemes (ABS)

3.1 ABS: derivation

We here derive a time integration method using the Adomian algorithm for
the general case of Navier-Stokes equations.

To apply the Adomian decomposition technique described in section 2.4.4
to Navier-Stokes equations (2.4), we propose to set

L =
∂

∂t
and then L−1 =

∫ t

0
(3.1)

Applying decomposition (2.86) to the primitive variables W in vector notation,

W =

∞∑
k=0

Wk (3.2)

The Adomian coefficients from (2.87) can be written as

An =
1

n!

∂n

∂λn



∂x
(
(
∑n

k=0 λ
kρk)(

∑n
k=0 λ

kuk)
)
+ ∂y

(
(
∑n

k=0 λ
kρk)(

∑n
k=0 λ

kvk)
)
= 0

(
∑n

k=0 λ
kuk)∂x(

∑n
k=0 λ

kuk) + (
∑n

k=0 λ
kvk)∂y(

∑n
k=0 λ

kuk)+(
1∑n

k=0 λ
kρk

)
∂x
(∑n

k=0 λ
kpk
)
−µ
(
∂x2(

∑n
k=0 λ

kuk) + ∂y2(
∑n

k=0 λ
kuk)

)
− µ

3

(
∂x
(
∂x(
∑n

k=0 λ
kuk) + ∂y(

∑n
k=0 λ

kvk)
))

= 0

(
∑n

k=0 λ
kuk)∂x(

∑n
k=0 λ

kvk) + (
∑n

k=0 λ
kvk)∂y(

∑n
k=0 λ

kvk)+(
1∑n

k=0 λ
kρk

)
∂y
(∑n

k=0 λ
kpk
)
− µ

(
∂x2(

∑n
k=0 λ

kvk) + ∂y2(
∑n

k=0 λ
kvk)

)
−µ

3

(
∂y
(
∂x(
∑n

k=0 λ
kuk) + ∂y(

∑n
k=0 λ

kvk)
))

= 0

(
∑n

k=0 λ
kuk)∂x(

∑n
k=0 λ

kpk) + (
∑n

k=0 λ
kvk)∂y(

∑n
k=0 λ

kpk)+

γ(
∑n

k=0 λ
kpk)

(
∂x(
∑n

k=0 λ
kuk) + ∂y(

∑n
k=0 λ

kvk)
)

−(γ − 1)
∑

ij

(
(
∑n

k=0 λ
kτk)ij∂xj (

∑n
k=0 λ

kuk)i
)
= 0


λ=0

(3.3)
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Where Stokes’ hypothesis (2.3) has been applied in the momentum stress tensor
τij. In the energy equation τij is kept in tensorial notation. Wn+1 terms are
computed recursively by (2.93),

Wn+1(x, y, t) =

∫ t

0

An(x, y, t). (3.4)

3.2 ABS: a recursive formula

Now let’s develop the expression for vector An = (A(ρ),n, A(u),n, A(v),n, A(p),n)
t,

corresponding each component to an Adomian coefficient for each equation of
the Navier-Stokes system. We will first derive the term An corresponding to
the continuity equation. Then A(u),n, A(v),n, A(p),n will be obtained in a similar
way.

From formula (3.3), A(ρ),n(x, y, t) is given by:

A(ρ),n =
1

n!

∂n

∂λn

[
∂

∂x

(
(

n∑
k=0

λkρk)(
n∑

k=0

λkuk)

)
+

∂

∂y

(
(

n∑
k=0

λkρk)(
n∑

k=0

λkvk)

)]
λ=0

Let’s develop the first term in the summation. Start by exchanging the order
of the derivative,

1

n!

∂n

∂λn

[
∂

∂x
(·)
]
λ=0

=
1

n!

∂

∂x

[
∂n

∂λn
(·)
]
λ=0

.

Using the Leibniz formula we get

∂n

∂λn

(
(

n∑
k=0

λkρk)(
n∑

k=0

λkuk)

)
=

n∑
j=0

(
n

j

)
∂n−j

∂λn−j

(
n∑

k=0

λkρk

)
∂j

∂λj

(
n∑

k=0

λkuk

)

with

∂n−j

∂λn−j

(
n∑

k=0

λkρk

)∣∣∣∣∣
λ=0

= (n− j)! ρn−j

(
n

j

)
=

n!

j! (n− j)!

∂j

∂λj

(
n∑

k=0

λkuk

)∣∣∣∣∣
λ=0

= (j)!uj (3.5)
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Then

1

n!

∂

∂x

[
∂n

∂λn

(
(

n∑
k=0

λkρk)(
n∑

k=0

λkuk)

)]
λ=0

=
n∑

j=0

∂

∂x
(ρn−juj) (3.6)

Similarly, for the second summation term we have,

1

n!

∂

∂y

[
∂n

∂λn

(
(

n∑
k=0

λkρk)(
n∑

k=0

λkvk)

)]
λ=0

=
n∑

j=0

∂

∂y
(ρn−jvj). (3.7)

Substituting both equations (3.6 - 3.7) into A(ρ),n equation, we get the final
formula

A(ρ),n =
n∑

j=0

(∂x(ρn−juj) + ∂y(ρn−jvj)). (3.8)

A similar formula for A(p),n is obtained. Even the stress tensor and veloc-
ity divergence yield the same form, since the stress tensor is composed of a
summation of velocity (derivative) products, according to (2.3).

∑
ij

(
(

n∑
k=0

λkτk)ij ∂xj
(

n∑
k=0

λkuk)i

)
=

n∑
k=0

∑
ij

(
(τk)ij ∂xj

(un−k)i
)

For A(u),n and A(v),n, 1∑n
k=0 λ

kρk
is first developed in power series (note that λ

can be considered close to zero since we are concerned by the limit)

1∑n
k=0 λ

kρk
=

∞∑
k=0

λkρ̂k.

That is,

1 = (
n∑

k=0

λkρk)(
∞∑
k=0

λkρ̂k)

= ρ0ρ̂0 +
∞∑
k=1

(
k∑

j=0

ρj ρ̂k−j)λ
k.
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Then we obtain the following recursive formula

ρ̂0 =
1

ρ0

ρ̂k =
−1

ρ0

k∑
j=1

ρj ρ̂k−j, for k = 1, . . . ,∞

Notice ρ̂k is an infinite sum regardless the maximum degree of (λkρk). However,
the series will converge if (

∑n
k=1 |ρk| < ρ0). Nevertheless, as it will be proven,

each term in ρ̂k will be multiplied by ∆tk, making the order of ρ̂k ∼ O
(
∆tk

)
,

and accurate even for diverging ρ̂ as far as t < 1. We can consider using
“mean squares” to approximate ρ̂ when the not satisfied by the algorithm above,
although in this thesis is not further studied. Obviously ρ̂ will converge only if
ρ converges. An important property is that modifying ρk term will only modify
ρ̂k′ terms, with k′ > k. Finally, for the rest of this thesis, we consider ρ̂K a
series with a number of expansions equal to ρK series.

We can now perform a change of variables in the system (3.3) by setting,

(
1∑n

k=0 λ
kρk

)
∂x

(
n∑

k=0

λkpk

)
=

(
n∑

k=0

λkρ̂k

)
∂x

(
n∑

k=0

λkpk

)
(3.9)

(
1∑n

k=0 λ
kρk

)
∂x

(
n∑

k=0

λkpk

)
=

(
n∑

k=0

λkρ̂k

)
∂x

(
n∑

k=0

λkpk

)
. (3.10)

Then, the same deduction and simplification as for A(ρ),n is done. For the
viscous terms the first term in the x-momentum equation is used as an example,
assuming constant µ. After exchanging the second-order and λ derivatives, use
identity (3.5). Here the procedure for the x-derivative,

∂n

∂λn

(
∂2

∂x2
(

n∑
k=0

λkuk)

)∣∣∣∣∣
λ=0

=
∂2

∂x2

(
∂n

∂λn
(

n∑
k=0

λkuk)

)∣∣∣∣∣
λ=0

=
∂2

∂x2
n!un
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Computing the same for all viscous derivatives in both momentum equations,
we finally obtain the following formula for An(x, y, t)

An =



A(ρ),n =
∑n

j=0(∂x(ρn−juj) + ∂y(ρn−jvj))

A(u),n =
∑n

j=0(un−j∂xuj + vn−j∂yuj + ρ̂n−j∂xpj)

−µ (∂x2un + ∂y2un)− µ
3
(∂x (∂xun + ∂yvn))

A(v),n =
∑n

j=0(un−j∂xvj + vn−j∂yvj + ρ̂n−j∂ypj)

−µ (∂x2vn + ∂y2vn)− µ
3
(∂y (∂xun + ∂yvn))

A(p),n =
∑n

j=0(un−j∂xpj + vn−j∂ypj + γpj(∂xun−j + ∂yvn−j))

−(γ−1)
∑n

k=0

∑
ij

(
(τk)ij ∂xj

(un−k)i
)

(3.11)

3.3 ABS: exact time integration formula

Time integration (3.4) is not easy to compute with computer methods (ex-
cept for symbolic software). Indeed, Adomian series coefficients are polynomials
in time whose computed coefficients need to be stored. In the following, we will
prove a Theorem that by simple multiplications of time t, it provides a system-
atic way to compute the integration.

Theorem: In formula (3.11), An can be expressed as

An(x, y, t) = tnAn(x, y) (3.12)

Where An(x, y), is an expression depending only on spatial coordinates x and
y.

Proof : We establish the proof by induction. We will do it only for the first
momentum equation terms (A(u),n), following the others a similar deduction.

Note that if equation (3.12) is fulfilled, a similar relation holds for field
variables,

Wn+1(x, y, t) = −
∫ t

0

An(x, y, t) dt = − tn+1

(n+ 1)
An(x, y) = −tn+1W n(x, y).

Note also that in the recursive formula of ρ̂k the sum of the indexes is always
equal to k, this implies ρ̂k will satisfy formula (3.12) as long as ρk satisfies it.

ρ̂k(x, y, t) = tkρ̂k(x, y) (3.13)
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Now, to initialize the recursive proof, let’s verify the relation for A(u),0 and
A(v),1. From (3.11) We have

A(u),0(x, y, t) = u0∂xu0 + v0∂xu0 + ρ̂0∂xp0 − µ
(
∂x2u0 + ∂y2u0

)
− µ

3 (∂x(∂xu0 + ∂yv0))

= t0A(u),0(x, y).

Then a new state variable term is computed with (3.11),

W1(x, y, t) = −
∫ t

0

A0(x, y) dt = −t A0(x, y). (3.14)

And therefore a new Adomian polynomial,

A(u),1(x, y, t) = (u1∂xu0 + u0∂xu1 + v1∂xu0 + v0∂xu1 + ρ̂1∂xp0 + ρ̂0∂xp1)

−µ(∂x2u1 + ∂y2u1)− µ
3
(∂x(∂xu1 + ∂yv1)).

Recall from (3.13),

ρ̂1 = t ρ̂1(x, y).

Substituting ρ̂1 and W1 into the expression of A(u),1, it is easy to verify that
A(u),1(x, y, t) = t A(u),1(x, y).

Now assume relation (3.12) is valid till index n and lets proof it for n + 1.
We proceed exactly as for A1, since the relation is valid for order n we have

An(x, y, t) = tnAn(x, y) (3.15)

Then

Wn+1(x, y, t) = −
∫ t

0

An(x, y, t) dt = − tn+1

n+ 1
An(x, y) = −tn+1W n(x, y). (3.16)



3.3. ABS: exact time integration formula 81

By substituting this expression in equation (3.11) we obtain for the first mo-
mentum A(u),n+1.

A(u),n+1 =
n+1∑
j=0

(un+1-j ∂xuj + vn+1-j ∂yuj + ρ̂n+1-j ∂xpj)

− µ(∂x2un+1 + ∂y2un+1)− µ
3
(∂x(un+1 + ∂yvn+1))

=
n+1∑
j=0

[(
tn+1-jun+1-j

) (
∂xt

juj

)
+
(
tn+1-jvn+1-j

) (
∂yt

juj

)
+
(
tn+1-j ρ̂n+1-j

) (
∂xt

jpj
)]

− µ(tn+1∂x2un+1 + tn+1∂y2un+1)− µ
3
(∂x(t

n+1∂xun+1 + tn+1∂yvn+1))

= tn+1
( n+1∑

j=0

[
un+1-j∂xuj-1 + vn+1-j∂yuj + ρ̂n+1-j∂xpj

]
− µ(∂x2un+1 + ∂y2un+1)− µ

3
(∂x(∂xun+1 + ∂yvn+1))

)
Which is a monomial of degree n + 1 in time, with an (overbar) coefficient
depending only on x and y. Therefore A(u),n+1 can be written as

A(u),n+1(t, x, y) = tn+1A(u),n(x, y) (3.17)

Which completes the proof.

The ABS formula

Using equation (3.16) we can derive a formula for Wn+1 that simplifies time
integration,

Wn+1(x, y, t) = −
∫ t

0

An(t, x, y) dt = −
∫ t

0

tnAn(x, y) dt (3.18)

= − tn+1

n+ 1
An(x, y) = − t

n+ 1

[
tnAn(x, y)

]
(3.19)

= − t

n+ 1
An(t, x, y) (3.20)
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Substituting the expression of An we obtain

Wn+1 =



−t

n+ 1

[∑n
j=0

(
∂x(ρn−juj) + ∂y(ρn−jvj)

)]
−t

n+ 1

[∑n
j=0

(
un−j∂xuj + vn−j∂yuj + ρ̂n−j∂xpj

)
−µ (∂x2un + ∂y2un)− µ

3
(∂x(∂xun + ∂yvn))

]
−t

n+ 1

[∑n
j=0

(
un−j∂xvj + vn−j∂yvj + ρ̂n−j∂ypj

)
−µ (∂x2vn + ∂y2vn)− µ

3
(∂y(∂xun + ∂yvn))

]
−t

n+ 1

[∑n
j=0

(
un−j∂xpj + vn−j∂ypj + γ(∂xun−j + ∂yvn−j)pj

)
−(γ−1)

∑n
k=0

∑
ij

(
(τk)ij∂xj

(un−k)i
)]

(3.21)

As it can be seen, once {W1, . . . ,Wn} are calculated Wn+1 is obtained without
explicitly computing any integrals.

3.4 ABS-DG

Using Adomian, a recursive formulation only depending on initial conditions
has been obtained, according to (3.18). Some literature can be found where
Mathematica is used to directly obtain an analytical solution to a simple initial
condition (see for example [50, 111]). Nevertheless, using symbolic software
to obtain a real problem solution is, if possible, very expensive in terms of
computational cost. Moreover, calculating the derivatives in a strong sense
requires the initial condition to be smooth enough, which is not always the
case.

We hereby propose considering space derivatives in the weak sense with
numerical methods. Specifically, Shu’s quadrature free discontinuous Galerkin
(DG) is employed in this work [133], although any method can be used. We
refer to the obtained (fully discretized) scheme ABS-DG.

3.4.1 Application to LEE

For the LEE case, and taking the two-dimensional form of equation (2.39),
with Aj = {A0,B0} and xj = {x, y}, formula (3.21) is simplified in vector
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notation to,

Wn+1(x, y, t) =
−t

n+ 1

[
A0(x, y)

∂

∂x
Wn(x, y, t) + B0(x, y)

∂

∂y
Wn(x, y, t)

]
. (3.22)

If we apply DG space discretization for each ABS series term, an equivalent
formulation to (2.76) is obtained without time derivative. In tensor notation it
writes,

M αn ; var =
−t

n+ 1
(Fvar −Hvar) (3.23)

WN =
N∑

n=0

Wn =
N∑

n=0

αn ; var k bk (3.24)

A semicolon is used in α to separate Adomian iteration number from tensor
variables. WN is the approximated solution, and N corresponds to the index
for which |WN | is smaller than a given tolerance. A system (3.23) is constructed
for each Adomian iteration n.

Order Zero The stability analysis of the formulation will depend on the whole
Adomian terms summation, which is a power sum of multiple DG solutions. In
order to have an insight into its properties, the zeroth order stability will be
studied (equivalent to finite volume scheme). In such case, only b1 = 1 exists,
and its derivative becomes zero: the cell has a constant value.

Computing discontinuous Galerkin matrices for order zero, they reduce to a
scalar value,

M = |Ωi|

Fvar = 0

Hvar =
∑
l∈Ij

∫
∂Ωil

Hil dΓ =
∑
l∈Ij

Hil |c(s)|

with the Lax-Friedrichs numerical flux Hil being,

Hil =
1

2

(
Â0

n (
W (i)

n +W (l)
n

)
+ B̂0

n (
W (i)

n +W (l)
n

))
− 1

2
α
((

W (l)
n −W (i)

n

)
nx +

(
W (l)

n −W (i)
n

)
ny

)
.

Ân
0 =

A(l)
0 +A(i)

0

2
nx B̂n

0 =
B(l)
0 + B(i)

0

2
ny
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Recall |c(s)| is the arclength (or edge length) of the (constant) boundary inte-
gral, (2.83). |Ωi| is the cell area. W

(i)
n and W

(l)
n are respectively the current cell

and the neighboring cell boundary values for the Adomian iteration n.
From previous results, dividing equation (3.23) by scalar M we get the final

algorithm,

(ABS-DG)0



W i
0 = W (x, y, 0)

Wn+1 =
−t

n+ 1

|c(s)|
| Ωi |

∑
l∈Ij

Hil

WN =
N∑

n=0

Wn

.

Being Wn constant in all the cell, its value can be represented by the value
at the cell center with no loss of generality, and the formulation can be written
with more traditional finite volume/difference notation, as used in the following
section.

3.4.2 Stability analysis

We study stability for the one-dimensional linear wave propagation equation,

∂u

∂t
+ a

∂u

∂x
= 0, (3.25)

using a zero order spatial ABS-DG formulation. For the rest of this section, the
spatial discretization index i is written as a superindex, and Adomian iteration n

as a subindex. This non-standard notation is intended to differentiate Adomian
iterations from classical finite difference time levels, where n usually represents
current time level and n+ 1 is the time level after a time increment. Adomian
iteration terms (un) are given by the following discretization,

ui
0 = u(xi, 0)

ui
n+1(t) =

−t

n+ 1

1

2h

(
a
(
ui+1
n − ui−1

n

)
− α

(
ui+1
n − 2ui

n + ui−1
n

))
.

(3.26)

Where the final solution is obtained by the sum of all the un contributions,
namely; u =

∑
n un. In fact, round-off errors for each term (εn) are also governed

by the same equation. After applying a Fourier decomposition for each error
term, εin(t) = βn(t)e

JKnxi , the error modes evolution is obtained,

εin+1 =
−t

n+ 1

βn

2h

(
a
(
ei+1
n − ei−1

n

)
− α

(
ei+1
n − 2ui

n + ei−1
n

))
. (3.27)
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From standard stability procedures, the solution is stable respect to round-
off errors as long as their growth is kept bounded. Von Neumann stability
approach is used for this study, with a growth rate amplification Gn =

ein+1(t)

ein(t)
.

When equation (3.27) is plugged in, the following equation is obtained,

Gn =
−t

n+ 1

1

2h

1

βneJKn(xi)

(
a
(
βne

JKn(xi+h) − βne
JKn(xi−h)

)
− α

(
βne

JKn(xi+h) − 2βne
JKn(xi) + βne

JKn(xi−h)
))

=
−t

n+ 1

1

2h

(
a
(
eJKn(h) − eJKn(−h)

)
− α

(
eJKn(h) + eJKn(−h) − 2

))
.

(3.28)

But with α =
1

2

h

t
,

Gn =
−1

2(n+ 1)

(
t

h
a
(
eJKn(h) − eJKn(−h)

)
− 1

2

(
eJKn(h) + eJKn(−h) − 2

))
.

On the other hand we have

(
e

JKn(h)
2 − e−

JKn(h)
2

)2
= −4 sin

(
JKn(h)

2

)2

= eJKn(h) + eJKn(−h) − 2

= 2j sin(JKn(h))− 2

By substitution in expression (3.28) for Gn, and setting r = |at
h
| and θn = Knh

Gn =
−1

2(n+ 1)

(
2rj sin (θ) + 2 sin

(
θ

2

)2
)

=
−1

2(n+ 1)

(
4rj sin

(
θ

2

)
cos
(
θ

2

)
+ 2 sin

(
θ

2

)2
)

−2 sin
(
θ

2

)
n+ 1

(
rj cos

(
θ

2

)
+ 0.5 sin

(
θ

2

))
.

Then

|Gn| =
2

∣∣∣∣sin(θ

2

)∣∣∣∣
n+ 1

√r2 cos
(
θ

2

)2

+ 0.25 sin
(
θ

2

)2
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Now assume that r2 <
(n+ 1)2

2
meaning that |r| < n+ 1√

2
, we have

|Gn| < 2

∣∣∣∣sin(θ

2

)∣∣∣∣
√
0.5 cos

(
θ

2

)2

+
0.25

(n+ 1)2
sin
(
θ

2

)2

≤ 2

∣∣∣∣sin(θ

2

)∣∣∣∣
√
0.5 cos

(
θ

2

)2

+ 0.25 sin
(
θ

2

)2

In figure 3.1 the curve of H
(
θ
)
= | sin

(
θ̄
)
|
(√

0.5 cos
(
θ
)2

+ 0.25 sin
(
θ̄
))

as a

function of θ is depicted for 0 ≤ θ ≤ 2π.

Figure 3.1: H(θ) function numerical evaluation

We deduce that

r =

∣∣∣∣ath
∣∣∣∣ < n+ 1√

2
implies |Gn| < 1.

We conclude that a classical CFL condition is necessary to stabilize the first
Adomian term (u1) in the decomposition series (3.2). For the next terms, as n

grows, the condition becomes less restrictive. Note that the first term requires
1/
√
2 instead of the classical 1/2 for finite volume with Lax-Friedrichs fluxes,

which implies a slight improvement in stability.

3.4.3 Connection of ABS to RK

In this section we will establish a connection between the proposed ABS and
the Runge-Kutta (RK) schemes for the linear case to solve the ODE

X ′ = f ′(t, x)
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the general form of RK scheme is given by

Xn+1 = Xn + h
∑n

i=1 ciki

where

k1 = f(tn, Xn)

k2 = f(tn + α2h,Xn + hβ21k1(tn, Xn))

k3 = f(tn + α3h,Xn + h(β31k1(tn, Xn)) + β32k2(tn, Xn)))

...

km = f(tm + αmh,Xn + h(
m−1∑
j=1

βmjkj)

Setting ci = 1/i and αj = 0 for all j = {2, . . . ,m} and βkj = 0 for all
j = {1, . . . ,m − 1} and k = {2, . . . ,m} in the general Runge-Kutta formula
we get the ABS scheme. Note that this is not true in the nonlinear case, it
can be easily checked for the Burgers’ equation for instance. The ABS for
linear problems appears to be an efficient and a practical way of applying RK
thanks to its recursive formula. Moreover, the order is dynamic and adaptive
for each point of the domain at each timestep, function of the remainder of the
Adomian series. Therefore, there is no need to fix the order as for the classical
RK formulation in advance, and accuracy can be adjusted for an optimal cost.

3.5 Validation: propagating wave test case

To assess the performance of the proposed ABS-DG scheme, two test cases
are used. First a wave propagation is considered, where the simulation is
stopped before the wave reaches the boundary. Hence boundary effects are
avoided. With this appropriate condition, grid convergence is studied, verifying
that the expected spatial order for discontinuous Galerkin methods is achieved.
In the second test, non-reflecting and wall boundary conditions are tested to
verify aeroacoustic applications are properly solved.
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3.5.1 Free-boundary conditions case

The test case consists of a Gaussian pulse centered at the origin, being prop-
agated for three seconds. The simulation is stopped before the wave reaches do-
main boundary. Results are compared to second-order Runge-Kutta (RK-DG)
simulations, and validated by comparison to the analytical solutions available
from [136] (see B1− B11 for details). Grid dimensions are 30× 30 with a cell
edge size of 0.19. Exact solution for pressure is,

p(x, y, t) =
ε1
2α1

∫ ∞

0

[
e−ξ2/4α1cos(ξt)J0(ξη)ξ

]
dξ

Where η = [(x−Mt)2 + y2]
1/2 and J0 is the zero order Bessel function. α1 =

1/2 ln (2b), b being the half-with of the Gaussian function. For the performed
simulations we set α1 = 1 and ε1 = 10−5.

Timestep for reference method (RK-DG) is ∆t = 0.02 (CFL = 0.1). This
value is small enough to get high accuracy, required for aeroacoustic applica-
tions. For ABS-DG on the other side, a different strategy was adopted. From
the fact that high-order methods are more efficient for high accuracy demands
[92], a high CFL was selected and a small truncation error set to stop Adomian
iterations (|Wn| < 10−8). The algorithm is expected to use a high number of
Adomian iterations, yielding a high-order result. Stable timesteps were found
with values as high as ∆t = 0.5 (CFL = 2.5). In summary, Adomian algorithm
in equation (3.22) was computed with t = 0.5, and iterations stopped when
|Wn| < 10−8.

Next, obtained results are discussed regarding accuracy and cost-effectiveness.
A grid convergence is also performed for ABS-DG, to ensure high-order conver-
gence is obtained.

Accuracy assessment The relative L2 error to the exact solution for both
RK-DG and ABS-DG schemes are summarized in table 3.1 for different spatial
orders. Results show that ABS-DG has smaller error values than RK-DG. For
instance, error for the first spatial order ABS-DG is comparable to second-
order RK-DG. This is probably explained by the high accuracy of ABS-DG in
time, where the Adomian order is dynamically set to satisfy certain tolerance.
Figure 3.2 shows some results for ABS-DG and RK-DG, compared to the exact
Gaussian pulse propagation. We can see that ABS-DG fits better the exact
solution.
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RK order 0

(I) Comparison of the first-order ABS-DG and RK-DG results to the exact so-
lution

RK order 2

RK order 1

(II) Comparison of the second and third-order ABS-DG and RK-DG results to
the exact solution

RK order 1

RK order 2

(III) Zoom on ABS-DG, RK-DG and exact solution

Figure 3.2: ABS-DG and RK-DG results comparison for 2D
Gaussian propagation
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Table 3.1: Relative L2 error for DG vs ABS-DG

Order RK-DG Method ABS-DG Method
1 2.75E-001 6.28E-002
2 2.18E-002 2.45E-002
3 2.28E-003 1.26E-003

Cost-effectiveness assessment Evaluation of computational cost is done
by comparing the number of computed stages for both RK-DG and ABS-DG,
since they both have a similar cost per stage. In table 3.2 the values for three
seconds of flow simulation are given. For ABS-DG, the worst case scenario is
reported by showing the cell with the maximum number of stages; each cell
has a different number of Adomian iterations from adaptivity. Results indicate
that ABS-DG requires (at least) six times fewer evaluations for the first-order
method, which in real time turns out to be a speedup of twenty. In the same way,
the third-order case requires halve the evaluations at maximum. The total cost
of ABS-DG is therefore smaller than RK-DG for the selected test case. This is
mainly possible because of two reasons. First, the use of high CFL values implies
that despite Adomian generally requires more stages per time iteration, a less
restrictive CFL condition (CFL = 2.5) reduces the overall number of stages.
Recall the total cost of the method is given by the product between the total
number of timesteps with the number of stages per step. Second, the important
adaptive property of the ABS-DG scheme allows each cell to compute only the
required number of iterations to satisfy a tolerance threshold, and in this test
many cells required only one Adomian term. Hence, big savings are obtained
by avoiding irrelevant computations on the fly. This property has an important
effect on the speedup and, as in any adaptive method, it is case dependent.

Table 3.2: Number of RK-DG, and ABS-DG stage-iterations
for 3 seconds simulation. For ABS-DG, the maximum number

of iterations over all cells are reported.

Order RK-DG ABS-DG (max over all cells)
1 300 50
2 300 90
3 300 170
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Grid convergence To study ABS-DG grid convergence, four different meshes
with different “edge sizes” are generated in SALOME, a tool for mesh genera-
tion used on the current work [15]. Simulations are stopped after two seconds
flow simulation, and the relative (to the exact) error is computed. Table 3.3
shows the errors for different h sizes, and in figure 3.3 their logarithmic curves
are plotted. For clarity, each curve is separately shown in figure 3.4. In dash
line the theoretical order of convergence is plotted. The solid line represents the
numerical solution. These results demonstrate that we get the right convergence
values.

Table 3.3: Relative error magnitude for several Adomian or-
ders at different Mesh sizes

Order h = 1.4 h = 0.7 h = 0.5 h = 0.26

1 5.49E-001 2.80E-001 1.87E-001 8.36E-002
2 2.49E-001 7.69E-002 4.08E-002 1.10E-002
3 7.79E-002 8.36E-003 3.66E-003 3.49E-004

Figure 3.3: Discontinuous Galerkin grid convergence study for
Gaussian propagation
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(I) Grid convergence order 0 (II) Grid convergence order 1

(III) Grid convergence order 2

Figure 3.4: Individual orders representation of discontinuous
Galerkin grid convergence results

3.5.2 Tests with boundary conditions

The objective of this test is to show how to appropriately impose boundary
conditions to the ABS-DG method. Two relevant in aeroacoustic boundary
conditions are considered: slip wall and non-reflective conditions. To make the
solution fulfill the imposed boundary conditions, we force each of the ABS-DG
series terms to satisfy them. The slip wall BC are implemented in a weak sense
by nullifying the normal to the boundary component of the momentum flux.
Non-reflective BC is achieved according to the standard procedure based on the
characteristics for boundary conditions. To estimate the accuracy of the ABS-
DG and since an exact solution is not available, a 5th order RK-DG simulation
is run on a fine grid (mesh size of 0.1) and its solution is considered as the
reference. The ABS-DG test is run on a mesh with 0.19 edge size. Simulations
are run till 6 seconds flow time. Table 3.4 shows the relative (to reference DG
solution) error for different ABS-DG orders. Very good agreement is found with
errors comparable to those obtained in the case of boundary-free tests. Figures
3.5 and 3.6 show the solutions obtained by the reference, and 1st, 2nd, and 3rd
order (in space) ABS-DG schemes. These tests demonstrate that imposing the
boundary conditions on each term of the series for the ABS-DG scheme is an
appropriate approach.
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Table 3.4: ABS-DG results compared to reference DG solution
(relative error)

Order Wall condition Non-reflective condition
1 9.39E-002 9.97E-002
2 3.78E-002 2.27E-002
3 3.50E-003 1.22E-003

(I) Reference solution (II) P0 Adomian solution

(III) P1 Adomian solution (IV) P2 Adomian solution

Figure 3.5: RK-DG Reference and ABS-DG solutions after 6
seconds, for wall boundary conditions
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(I) Reference solution (II) P0 Adomian solution

(III) P1 Adomian solution (IV) P2 Adomian solution

Figure 3.6: RK-DG Reference and ABS-DG solutions after 6
seconds, for non-reflective boundary conditions



Chapter 4

ABS for Low Mach Number
Flows

Although every fluid is physically compressible, the use of compressible gov-
erning equations becomes singular and numerically stiff in cases such as liquids
or low Mach number flows. The stiffness increases the computational cost and
hinders the accuracy and convergence of numerical methods. As studied in chap-
ter 2, the source of the singularity is the eigenvalues difference between acoustic
and entropic or vorticity waves. It is generally accepted that for aerodynamic
simulations of gases under 0.1 Mach number the incompressible Navier-Stokes
equations are better suited. For such cases, acoustic results can be obtained by
post-processing aerodynamics results using hybrid CAA methods.

The computation of sound sources in the first hybrid method step is the most
computationally demanding task for high Reynolds broadband noise problems
[42]. In this chapter, the ABS method developed in chapter 3 is proposed to
alleviate the computational cost of such aerodynamic simulations.

4.1 Incompressible Navier-Stokes simulation

There are several ways to solve incompressible Navier-Stokes momentum
equations. However, a straightforward solution of equations leads to pres-
sure and velocity coupling, resulting in extremely expensive solvers. Therefore,
methods that uncouple pressure and velocity have been largely debated in the
literature, still being an active area of research in engineering and mathemat-
ical analysis. Among the most popular methods, we fined the use of pressure
Poisson equation (PPE) introduced in section 2.2.2. The proposed formulation
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allows obtaining an explicit expression for pressure which enforces divergence-
free conditions. Unfortunately, this might not be enough to uncouple velocity
and pressure when naive methods are used.

Consider the incompressible Navier-Stokes equations (2.13) with constant
density ρ = 1. Then discretize momentum equations with b Dirichlet boundary
conditions on ∂Ω:

un+1 − un

∆t
+

∂pn+1

∂xj

=
1

Re

∂2un+1
i

∂x2
j

− un
j

∂un
i

∂xj

(4.1)

u |∂Ω= b (4.2)

Take divergence and rearrange to obtain the following PPE,

∂

∂xi

(
un+1
i

∆t
− 1

Re

∂2un+1
i

∂2xj

)
+

∂2pn+1

∂2xj

=
∂

∂xi

(
un
i

∆t
− un

j

∂un
i

∂xj

)
(4.3)

This new equation (altogether with
∫
b · n dΓ = 0 condition) enforces incom-

pressibility. Gathering all equations,

un+1 − un

∆t
+

∂pn+1

∂xj

=
1

Re

∂2un+1
i

∂x2
j

− un
j

∂un
i

∂xj

(4.4)

∂2pn+1

∂2xj

=
∂

∂xi

(
un
i

∆t
− un

j

∂un
i

∂xj

)
(4.5)

un+1
∣∣
∂Ω

= b (4.6)
∂un+1

i

∂xi

∣∣∣∣
∂Ω

= 0 (4.7)

Since two boundary conditions are set for velocity and none for pressure, it is
not possible to uncouple equations, and they need to be solved simultaneously.

Historically Chorin [31, 30] and Temam [137, 138] introduced what today
are known as Projection Methods, which can be seen as a category of Fractional-
Step Methods. In the rest of this chapter, we will use the second terminology,
to avoid any confusion with the projection operator P . Before Chorin’s con-
tribution, pressure and velocity coupling was successfully split by Harlow and
Welch in Los Alamos with a method known as the MAC scheme. Today, this
method is considered as a fractional-step case, although this was first unno-
ticed. Fractional-step methods are probably the most popular for unsteady
incompressible simulations since they effectively reduce the cost of the simula-
tion. Diverse formulations can be found in [118, 146, 72].
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In the following section, the general description of the fractional-step solver
is given, in particular for applications with MAC type grid.

4.2 Standard fractional-step method

This methods are based on the projection operator P, by which a vector
field U is made solenoidal Ud. The projection operation is denoted as,

Ud = P(U) (4.8)

The mathematical ground is based on the Hodge decomposition.

Theorem 1. Hodge decomposition: Any vector field U in Ω admits a unique
orthogonal decomposition

U = Ud +
∂ϕ

∂xj

(4.9)

where Ud is a solenoidal field (zero divergence) with zero normal component on
the boundary Γ. And ∂xj

ϕ is an irrotational (curl-free) field.

Taking the divergence of the Hodge-decomposition the solenoidal part is
vanished,

∂Uj

∂xj

=
∂2ϕ

∂x2
j

(4.10)

From where ϕ variable is computed. Hence, solving for Ud, the exact continuous
projection operator is found to be (for constant unit density),

P(U) =

[
δij −

∂

∂xi

(
∂2

∂x2
j

)−1
∂

∂xj

]
U. (4.11)

This projection operator is stable with ∥P (U) ∥2 ≤ ∥U∥2. Projections satisfy
the idempotent property P2 = P [122]. That is,

P (P(U)) = P(U). (4.12)

This property is useful since it implies once the velocity field is projected into
the solenoidal space, further projections have no effect.
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A fractional-step method consists of two steps

• Prediction step, an evolved velocity field is guessed:

Un → U∗.

• Correction step, the new state is projected into the divergence-free field

U∗ → P (U∗) = Un+1.

In bibliography it is sometimes referred as a prediction-correction method.

Multiple fractional-step schemes for the incompressible Navier-Stokes have
been developed during the past decades [72]. Among them, the pressure-
correction methods, including “incremental-pressure schemes”. They are par-
ticularly useful when pressure needs to be accurately computed, being the
most popular category in the fractional-step family. Explicit pressure terms
(if any) can be used in the velocity prediction step, while in the correction
the pressure is updated using a pressure-update equation. Another class is
the velocity-correction schemes, which follows the same idea as the pressure-
correction schemes, but switches the role of velocity and pressure in the algo-
rithm. Meaning viscous terms can be potentially ignored in the prediction (or
included in explicit schemes), and then velocity field is corrected. Finally, we
have the Consistent-splitting methods, which by taking the L2-inner product of
the momentum equation with ∂xi

q and using (∂tui, ∂xi
q) = − (∂xi

ui, q) = 0, a
weak formulation equation is obtained,∫

Ω

∂p

∂xi

∂q

∂xi

dΩ =

∫
Ω

(
f +

1

Re

∂2ui

∂x2
j

)
∂q

∂xj

dΩ. (4.13)

Another concern is whether fully explicit, implicit [72] or semi-implicit [48]
schemes should be used. The choice will yield different stability and accuracy
properties. A recent formulation considers using the intermediate velocity u∗ in
the nonlinear advection term. Furthermore, three type of semi-implicit methods
can be obtained: skew-symmetric, divergence form and rotational form. The
three methods are stable whether one uses u∗ or un [72].

The main drawback of fractional-step methods is the difficulty to obtain
higher pressure convergence orders. It is even not clear if higher than two or-
ders can be obtained. Additionally, one needs to compute expensive Poisson
type problems to enforce incompressibility, the bottleneck of the whole pro-
cess. Despite all, it is still one of the best approaches available for unsteady
incompressible flow simulation.
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As introduced in section 2.2.2, a compatibility conditions must be satisfied
for the incompressible equations. Recall, equations (2.16, 2.17), and optionally
(2.19):

• Continuity between initial and boundary conditions

uj|Γ · nj = bj · nj in ∂Ω (2.17)

• zero net flux through boundary∮
∂Ω

b · n dΓ = 0 (2.16)

• divergence-free boundary condition

∂

∂xi

∂uj

∂xj

· ni

∣∣∣∣
∂Ω

= 0. (2.19)

We now describe the explicit pressure-projection family of methods.

4.2.1 Fully explicit fractional-step

The fractional-step method can be applied before or after discretization.
In this thesis the fractional-step is performed first, obtaining split governing
equations, and then time and space discretizations are computed.

Lets start rearranging (density simplified) Navier-Stokes momentum equa-
tion (2.14) into the following form,

∂ui

∂t
+

∂(p̂+ φ)

∂xj

=
1

Re

∂2ui

∂x2
j

− uj
∂ui

∂xj

. (4.14)

Notice pressure is substituted by p = p̂+ φ. For a fully explicit fractional-step
method, we can summarize the algorithm as follows,

• STEP 1: Initial data for velocity (u) and pseudo-pressure (p̂) are pro-
vided at time n. Density (ρ) is also needed for inhomogeneous problems.

• STEP 2: velocity data might be modified such that divergence-free values
are obtained at cell face edges. MAC grid schemes automatically satisfy
this condition if appropriately discretized.
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• STEP 3: Solve for intermediate velocity u∗

∂u∗
i

∂t
=

1

Re

∂2un
i

∂x2
j

− ∂p̂n

∂xj

− un
j

∂un
i

∂xj

(4.15)

• STEP 4: if needed, density ρ and other scalar values can be advanced in
time.

• STEP 5: Compute the correction term using the PPE,

∂2φn+1

∂x2
j

=
1

∆t

∂u∗
j

∂xj

(4.16)

• STEP 6: Update velocity estimation u∗
i to get a solenoidal solution un+1.

un+1
i = u∗

i −∆t
∂φn+1

∂xj

(4.17)

• STEP 7: Update pseudo-pressure. For a fully explicit STEP 3,

p̂n+1 = p̂+ φ (4.18)

• STEP 8: Start next time iteration

Chorin’s projection method is used in order to obtain the pressure Poisson
equation in STEP 5. Chorin realized that the incompressible equation could be
seen as a Hodge decomposition in the form of equation (4.9), where temporal
evolution ut is the solenoidal part and pressure gradient the irrotational field,

Ud
i =

∂ui

∂t
(4.19)

Ui =
∂u∗

i

∂t
=

1

Re

∂2ui

∂x2
j

+
∂p̂

∂xj

− uj
∂ui

∂xj

(4.20)

∂ϕ

∂xj

=
∂φ

∂xj

(4.21)

The Poisson equation is constructed from equation (4.10) and the previous
relations. Taking a first-order in time discretization for u∗

t , and assuming un is
divergence-free from the last iteration,

∂

∂xj

(
u∗
j − un

j

∆t

)
=

∂2φ

∂x2
j

(4.22)
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simplifies to equation (4.16).
Solving the Poisson equation for pseudo-pressure is usually the bottleneck

of the fractional-step method. It is an elliptic type equation which needs to
be solved simultaneously in all the domain. Many techniques have been de-
veloped to increase accuracy and reduce computational cost for the Poisson
equation. Indeed, practice has shown the solution is very sensitive to the solver
employed and to boundary conditions. In this thesis, our interest is the solu-
tion of the advection-diffusion equation (prediction step), and therefore a basic
Gauss-Seidel method is used for the Poisson.

To achieve a correct updating formula in STEP 7, replace equations (4.19 -
4.21) into equation (4.15) (STEP 3), and subtract the original equation (4.14)
to obtain equation (4.21). Making the approximation p̂ = pn, equation (4.18)
is obtained. p̂ is also called pseudo-pressure, and φ pressure-correction term for
obvious reasons. If instead we take p̂ = 0 (as in Kim and Moin method), then
φ = pn+1. For the first case, the following relationship can be proven [87, 70],

p = p̂+O
(

k

Re

)
. (4.23)

Pressure update formula is easy to obtain when fully explicit methods are
used. However, it is not the case for implicit or semi-implicit methods.

4.2.2 MAC scheme

The use of traditional collocated grids in finite volume, where both veloc-
ity and pressure values are stored at the same spatial coordinate, is known to
be a source of instability for the incompressible Navier-Stokes equations. It is
a consequence of the pressure and velocity data uncoupling during discretiza-
tion, creating effectively four independent grids that do not interact with each
other. It is particularly notorious the instability leading to the checkerboard
problem. One of the most effective strategies to overcome this difficulty was
already introduced by Harlow and Welch [77], with what is known as the MAC
grid in finite differences schemes. Here, pressure values are stored at cell cen-
ters, whereas velocity values are located at cell faces. Alternatively, a staggered
grid can be used where pressure is typically stored at cell centers and velocity
at cell nodes. Both MAC and staggered grids produce a pressure and velocity
coupling, yielding a stable numerical scheme; especially with the first method.
Additionally, MAC scheme is conservative, and no creation or destruction of
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variables happen. A sketch for all three grid types are shown in figure 4.1, and
a more detailed MAC representation for finite volume in figure 4.2. Three over-
lapping local cells are appreciated in the MAC grid, where each of them has been
constructed around the corresponding variable being solved. Unfortunately, im-
plementation of MAC type schemes for non-Cartesian or unstructured meshes
is somewhat complicated. And in the Cartesian case, data reconstruction is the
price to pay for the staggering. Especially velocity data for Godunov-type meth-
ods. Despite all, it is known to give accurate results. In fact, it has extensively
been used for DNS simulations with turbulent and/or multiphase applications
[90, 94].

Collocated MAC Vertex or Node

i,j i+1/2,j

i,j+1/2 i+1/2,j+1/2

Figure 4.1: Collocated, MAC-staggered and standard-
staggered mesh discretizations. Taken from [48]

In its origins, the classical MAC scheme was proposed by Harlow and Welch
as a fully explicit finite-difference scheme for multiphase applications. Never-
theless, nowadays is considered as a fundamental fractional-step method. We
now proceed to give a more detailed review of a general MAC type scheme, by
analyzing the STEPs for the general fractional-step method above. The original
MAC scheme is given in [77].

The formulation of boundary conditions is not included in the STEPs, and
its discussion is given in a separated subsection.

NOTE: For an accurate description of the MAC scheme, Cartesian co-
ordinates tuple (i, j) will be used. And tensor notation will be avoided for
clarity. u will denote the x component of velocity and v the y component.

• STEP 3: we first compute the intermediate velocity u∗ and v∗ using
equation (4.15), with no pressure term, p̂ = 0. Note, velocity is no longer
centered around (i, j) coordinates, and local cells are constructed around
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Figure 4.2: Detailed MAC scheme grid layout. Each momen-
tum and the pressure variable is stored at a different staggered
location: “\” bars for u variable momentum equation, “/” for v
variable and “|” for Pressure variable. Black points denote pres-
sure locations, stars u velocity variables locations and pentagons

v velocity locations

velocity variables.
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Convective terms are obtained from an appropriate Godunov type up-
winding.

• STEP 5: Pressure is again obtained from a PPE involving the velocity
divergence. However, calculations are now done in the MAC grid, and
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discretization for velocity divergence is given by,

∂u∗
i,j

∂x
+

∂v∗i,j
∂y

=
u∗
i+1/2,j − u∗

i−1/2,j

∆x
+

v∗i,j+1/2 − v∗i,j−1/2

∆y
. (4.26)

Equivalently, pressure is computed by,

pi+1,j − 2pi,j + pi−1

∆x2
+

pi,j+1 − 2pi,j + pi,j−1

∆y2
=

1

∆t

(
∂u∗

i,j

∂x
+

∂v∗i,j
∂y

)
(4.27)

• STEP 6: Finally, predicted velocity is corrected using centered finite
differences,

un+1
i+1/2,j = u∗

i+1/2,j −∆t
pi+1,j − pi,j

∆x
(4.28)

vn+1
i+1/2,j = v∗i,j+1/2 −∆t

pi,j+1 − pi,j
∆y

(4.29)

If the gradient of a scalar stored at u-variable location is needed, it can be
obtained by,

Gi+1/2,j =



ϕi+1,j − ϕi,j

∆x[
ϕi,j+1 − ϕi,j

4∆y
+

ϕi,j − ϕi,j−1

4∆y
ϕi+1,j+1 − ϕi+1,j

4∆y
+

ϕi+1,j − ϕi+1,j−1

4∆y
+

]


. (4.30)

For v-variable,

Gi,j+1/2 =



[
ϕi+1,j − ϕi,j

4∆y
+

ϕi,j − ϕi−1,j

4∆y
ϕi+1,j+1 − ϕi,j+1

4∆y
+

ϕi,j+1 − ϕi−1,j+1

4∆y
+

]
ϕi,j+1 − ϕi,j

∆x


. (4.31)

The scheme only requires a five-point stencil to compute the Laplacian and the
gradient of a two-dimensional flow, strongly simplifying the algebra involved
and increasing the efficiency of linear solvers.

Nowadays, when a method refers to a MAC scheme, it usually means a
staggered grid is used together with a Poisson type solution for pressure. And
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it doesn’t necessarily satisfy the original multiphase scheme. In this thesis, we
build a new solver for the incompressible Navier-Stokes equations based on a
MAC grid type.

Boundary conditions

Despite its essential impact on the overall performance of the method, de-
scription of boundary conditions has been avoided because of its complexity and
huge research background. Nevertheless, in this section some considerations are
pointed out.

Without considering any specific boundary condition, it was mentioned in
section 2.2.2 Dirichlet conditions for velocity are the appropriate way to set
the problem. Recall that pressure is implicitly computed from the PDE sys-
tem. Then a PPE was deduced to obtain an explicit equation for pressure, and
additional Neumann pressure boundary conditions were included.

With the fractional-step method however, new nonphysical variables appear:
u∗, p̂ and φ. It should be then considered if boundary values are required for
them, and if so, what are their appropriate values.

p̂ is a function involving previous timestep pressure values and does not
require any boundary condition for STEPs 3 and 7. Velocity u∗ does require
boundary conditions, but its correct definition depends on the approximation
of other terms in the equation: if second-order methods are used for advec-
tion, diffusion and p̂, then u∗ = un+1 +O(∆t2) (p. 103 [75], [14]). In this case
boundary condition can be approximated as,

u∗|∂Ω = un+1
∣∣
∂Ω

. (4.32)

Kim and Moin [87] also obtained an overall second-order method, but they used
p̂ = 0. This is possible with the appropriate selection of boundary conditions
(p. 105 [75])

Eu∗
j · nj

∣∣
∂Ω

= 0 (4.33)

u∗
j · τj

∣∣
∂Ω

=

(
un+1
j +

∂φ

∂xj

)
· τj
∣∣∣∣
∂Ω

. (4.34)

Where E represents an extrapolation from the domain interior.
Alternatively, for p̂ = 0, a first-order scheme is also built by selecting more

simple boundary conditions (which will in fact get second-order accuracy for
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certain cases)

u∗
j · nj

∣∣
∂Ω

= un+1
j · nj

∣∣
∂Ω

(4.35)

u∗
j · τj

∣∣
∂Ω

=

(
un+1
j +

∂φ̃n+1

∂xj

)
· τj
∣∣∣∣
∂Ω

(4.36)

Here ∂φ̃n+1

∂xj
needs to be approximated. The following first-order method seems

to work.

∂φ̃n+1

∂xj

=
∂φn

∂xj

(4.37)

Independently from STEP 3, boundary conditions for φ are required at
elliptic Poisson equation in STEP 5. This boundary condition is obtained from
the compatibility condition imposed through equation (4.17) in the fractional-
step method. Taking its normal derivative on the boundary,(

∆t
∂φn+1

∂xj

)
· nj

∣∣∣∣
∂Ω

=
(
u∗
j − un+1

j

)
· nj

∣∣
∂Ω

. (4.38)

Which from approximation in (4.32), it simplifies to(
∂φn+1

∂xj

)
· nj

∣∣∣∣ ≈ 0. (4.39)

For the second-order Kim and Moin method, equations (4.33 - 4.34) are com-
plemented with(

∂φn+1

∂xj

)
· nj

∣∣∣∣
∂Ω

=
(
u∗
j − un+1

j

)
· nj

∣∣
∂Ω

. (4.40)

Whereas for the first-order case, equations (4.35 - 4.36) need the homogeneous
boundary condition for the Poisson equation,(

∂φn+1

∂xj

)
· nj

∣∣∣∣
∂Ω

= 0. (4.41)

In this thesis, the MAC discretization is used as described in the previous
section, with p̂ = 0. Since no extrapolation for the gradient of u∗ is implemented
(to satisfy equation (4.33)) boundary conditions are expected to resemble first-
order Kim and Moin equations (4.35 - 4.36) and (4.41). Which for nonslip wall
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boundary conditions (un+1
i = 0) simplifies to

u∗
j · nj

∣∣ = 0 (4.42)

u∗
j · τj

∣∣ = (
∂φ

∂xj

)
· τj
∣∣∣∣
∂Ω

(4.43)(
∂φn+1

∂xj

)
· nj

∣∣∣∣
∂Ω

= 0 (4.41)

Studies for high-enough (but not too high) Reynolds values reveal that a
good approximation for wall pressure is obtained setting the normal derivative
to zero (p. 1119 (9) [71]).

uj(t) · nj = 0 (4.44)

uj(t) · τj = 0 (4.45)(
∂p

∂xj

)
i

· ni = 0. (4.46)

It resembles a second-order boundary condition for variables u∗ and φ, except
in the tangential direction.

Additionally, when a first-order explicit scheme is used to discretize pres-
sure with Neumann type boundary conditions, no Gaussian points are required
outside the domain (u|∂Ω Gaussian points). This is in fact representative of the
real continuous situation, where no extra pressure boundary conditions were
required for the PPE. In the discrete case, this is possible from the cancellation
between the Poisson equation and the imposed Neumann boundary conditions
(p. 160 [117]). Lets demonstrate it by assuming a vertical boundary is located
at i− 1

2
in figure 4.2. That means point Pi,j belongs inside the domain, whereas

Pi−1,j is an external Gauss point. Take the pressure discretization at (i, j) given
by STEP 5 in the MAC section. Merging both equations (4.26) and (4.27) it
can be written in the following form.

1

∆x

(
pn+1
i+1,j − pn+1

i,j

∆x
−

pn+1
i,j − pn+1

i−1,j

∆x

)

+
1

∆y

(
pn+1
1,j+1 − pn+1

1,j

∆y
−

pn+1
1,j − pn+1

1,j−1

∆y

)
(4.47)

=
1

∆t

(
u∗
i+1/2,j − u∗

i−1/2,j

∆x
+

v∗1,j+1/2 − v∗1,j−1/2

∆y

)
.
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Additionally, discretization of boundary condition in the general form (4.38) is
given by

1

∆x

(
pn+1
i+1,j − pn+1

i,j

)
= − 1

∆t

(
un+1
i−1/2,j

)
. (4.48)

Which by direct substitution into (4.47), boundary term u∗
i−1/2,j is canceled.

Thus, the solution is independent respect to the boundary value u∗|∂Ω, and no
Gaussian point for pressure is required. A side effect is that no control over the
tangential direction of the boundary is possible, and therefore equation (4.43).

An important phenomena of incompressible projection is the growth of an
artificial numerical boundary layer from pressure not fully satisfying forced
boundary conditions, triggered by the operator splitting. This layer is found
from the beginning of the simulation since pressure propagates infinitely fast.
Consequently, it is very hard to obtain higher than second-order convergences
for pressure since it pollutes all the domain [72].

Some alternative pressure boundary condition approaches have been devel-
oped. For example, a rotational formulation was proposed by [139] where the
rotational formulation is used. It is a consistent and improved normal boundary
condition, although it still contains tangential direction errors [72, 21]. Overall,
significant research efforts have been made in the scientific community to obtain
appropriate boundary conditions.

4.2.3 Convergence and stability

Accuracy and stability for incompressible Navier-Stokes method depend on
multiple factors involving space and time derivatives. For example, combining
equations (4.24) in STEP 3 and (4.28) in STEP 6, a first-order in time method
is reconstructed for u-variable.

un+1
i+1/2,j − un

i+1/2,j

∆t
= −

(
ũn∂ũ

n

∂x
+ ṽn

∂ũn

∂y

)
− pi+1,j − pi,j

∆x
(4.49)

+
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2
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2
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∆x2
+
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i+ 1

2
,j+1

+ un
i+ 1

2
,j
+ un

i+ 1
2
,j−1

∆y2

)
= 0

The stability of the projection scheme is the stability of the associated equation
(4.49) (p. 162 [117]). Although not considered in the steps above, implicit
methods can also be used. Implicit methods are more stable, whereas explicit
methods are easier to be implemented and require less computational memory.
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A combination of both can be found in many semi-implicit methods, where
convection terms are solved explicitly while keeping viscous terms implicit. A
stability and accuracy study for semi-explicit Navier-Stokes equations can be
found in [87]. Stability range is strongly Reynolds value dependent. For low
Reynolds number values, viscous terms play the predominant stability role,
while for the higher Reynolds numbers it is the convective term.

In the fractional-step method, accuracy is not only function of the discretiza-
tion schemes selected, a second-order barrier appears from the induced numeri-
cal boundary layer. Consequently using higher-order numerical schemes doesn’t
follow up as one would expect. Reduction of timestep size is nevertheless an
effective way to increase accuracy. Explicit methods are thus preferred for ac-
curate simulation since they are cheaper per timestep iteration compared to
implicit methods. Unfortunately, for high Reynolds values, extremely thin grid
cells are required to capture the tiny boundary layers. The effect of timestep
size in turbulent applications has been extensively analyzed [29, 65]. One should
make a careful assessment in order to appropriately select implicit or explicit
time discretization.

4.3 New formulation of the fractional-step meth-
ods using ABS approach

In the previous section it was shown how fractional-step method splits time
advancement into two steps. In the first step the intermediate velocity estima-
tion is performed, whereas in the second step the elliptic nature of the problem
is solved. In this section a new formulation of the fractional-step method is pro-
posed. This is achieved by modifying the scheme using ABS method developed
in chapter 3 to solve the advection-diffusion equation,

∂u∗

∂t
= −∂ (uu)n

∂x
− ∂ (vu)n

∂y
+

1

Re

(
∂2un

∂x2
+

∂2un

∂y2

)
∂v∗

∂t
= −∂ (uv)n

∂x
− ∂ (vv)n

∂y
+

1

Re

(
∂2vn

∂x2
+

∂2vn

∂y2

)
.

(4.50)

This equation appears in the STEP 3 of the fractional-step method described.
Bear in mind, that since a first-order projection method is used, the final conver-
gence order will be formally first-order in time regardless of the velocity scheme.
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Highlight again that the motivation of this modification is not to increase the
order, but to improve accuracy, speedup and, stability of the scheme.

Since expected results are first-order in time, first-order boundary approx-
imations are used. When solving advection-diffusion equations in a MAC grid
with first-order approximations in space and time, equations (4.24-4.25) are
recovered. Therefore, Dirichlet boundary conditions are used,

u∗ |∂Ω= b1 (4.51)

v∗ |∂Ω= b2 . (4.52)

The ABS scheme developed in section 3.1 for the Navier-Stokes equations
was (µ = Re−1)

Wn+1 =



−t
n+1

[∑n
j=0

(
∂x(ρn−juj) + ∂y(ρn−jvj)

)]
−t
n+1

[∑n
j=0

(
un−j∂xuj + vn−j∂yuj + ρ̂n−j∂xpj

)
−Re−1 (∂x2uk−1 + ∂y2uk−1)

]
−t
n+1

[∑n
j=0

(
un−j∂xvj + vn−j∂yvj + ρ̂n−j∂ypj

)
−Re−1 (∂x2vk−1 + ∂y2vk−1)

]
−t
n+1

[∑n
j=0

(
un−j∂xpj + vn−j∂ypj + γ(∂xun−j + ∂yvn−j)pj

)]
.

(3.21)

which for constant homogeneous density and no pressure influence, p = 0 and
ρ = 1, they reduce to the advection-diffusion equations (or viscous Burgers’
equations).

Spatial discretization (ABS-FV)

The ABS scheme for viscous Burgers’ equations (3.21) is discretized in space
using finite volume technique on a MAC grid. As in chapter 3, we refer to the
obtained method by ABS-FV.

To obtain the maximum computational cost speedup, the use of high-order
interpolation and flux estimation is only done for the first Adomian stage,
whereas simple yet accurate centered schemes are used for the subsequent stages.
Obtained results show that this strategy still improves accuracy while maintain-
ing a low computational cost of the method. In the following, some details about
the discretization are provided, and Taylor-Green vortex and vortex shedding
test cases are performed to demonstrate the efficiency of the proposed ABS-
fractional-step method.
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For 0th order Adomian iteration reconstruction is done using upwinded
parabolic interpolation from Colella [41, 40, 109, 128]. Which is third-order
accurate (in one dimension), or fourth-order if cells are equally spaced. For the
MAC grid a simplification was done for the velocity terms,

in the x-momentum equation: vi− 1
2
,j+ 1

2
=

vi,j+ 1
2
+ vi,j+ 1

2

2

in the y-momentum equation: ui+1,j− 1
2
=

ui+ 1
2
,j + ui− 1

2
,j−1

2

The flux was computed with the Lax-Friedrich scheme (2.78).

For higher-order Adomian iterations all interpolations are reduced to
simple central second-order methods, and fluxes are computed by algebraic
averaging.

(I) x-momentum (II) y-momentum

Figure 4.3: MAC type grid, local cell discretization

Boundary conditions

In this section, we will review boundary conditions implemented for ABS-
FV. For the pressure Poisson equation, a standard Helmholtz decomposition is
used: null normal pressure and velocity derivatives. Further description is given
by Weinan [146], but no further details are given here since is not the objective
of this thesis.

• Inlet boundary conditions: Constant in time (per time iteration) Dirichlet
boundary condition (uD, vD) are assumed. The value is matched by the
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zeroth Adomian expansion for every inlet boundary node xi.

u0(xi) = uD ; v0(xi) = vD

uj(xi) = 0 ; vj(xi) = 0 ; ∀j ≥ 1

• Outlet boundary conditions: Continuative outlet boundary conditions are
given by

∂u

∂n = 0
∂v

∂n = 0

This is achieved by introducing ghost points, xG, in the outlet boundary
xo. Ghost points are also implemented for pressure solution. Extrapola-
tion of first-order is done.

uj(xG) = uj(xo) ; vj(xG) = vj(xo) ; ∀ j ≥ 0

• Nonslip wall boundary condition: Nonslip boundary conditions are strongly
imposed at wall boundaries, xw. Velocity and normal to boundary pres-
sure derivative are zero. Ghost points, xG for pressure are used

uj(xG) = 0 ; vj(xG) = 0 ; ∀j ≥ 1

p(xw) = p(xo)

• Slip wall boundary conditions: Slip boundary conditions imply no flow
normal to the wall. Implementation is done removing the normal to the
wall velocity and pressure derivatives. Again ghost points, xG are used.

4.4 Validation

4.4.1 Taylor-Green vortex test case

In order to study the accuracy of the modified fractional-step with ABS-
FV, simulations are compared to an exact solution of the incompressible NS
equations for the Taylor-Green vortex test case. The exact solution in time is
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Figure 4.4: Taylor-Green test case x-component velocity field
representation

given by,

u = − cos(kx) sin(ky) e−2k2t/Re (4.53)

v = sin(kx) cos(ky) e−2k2t/Re (4.54)

p = −1

4
[cos(2kx) + cos(2ky)] e−4k2t/Re (4.55)

In figure 4.4 the solution pattern is given. This pattern is constant, although
its amplitude evolves depending on the fluid viscosity and time.

In this test case, ABS-FV has been tested for Re = 2000 and k = 20, in
a periodic 1 × 1 square. Three different mesh sizes with two CFL conditions
have been tested. In table 4.1, relative errors are reported for both first-order
forward Euler method (FE) and ABS-FV simulations after 10 iterations.

ABS-FV simulations required from four to six Adomian iterations to con-
verge within all the domain. Nevertheless, the predominant error in the finest
grid is not of temporal source since no difference is found between FE and Ado-
mian results. These errors might come from space discretization, or the pro-
jection step for example. The second option would mean ABS-FV can, in fact,
approximate better the intermediate velocity u∗, but the error improvement is
meaningless in fine grid projection simulations. Similar results are found for the
medium mesh with smallest timesteps: both Adomian and FE based schemes
produce the same errors. Indeed, the error size is linearly proportional to the
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Table 4.1: Taylor-Green test case relative error for FE and
ABS-FV after 10 iterations.

ABS-FV Relative Error (×10−3)
N=100 N=200 N=400

CFL 0.25 2.5 1.2 0.35
CFL 0.5 4.8 1.8 0.70

FE Relative Error (×10−3)
N=100 N=200 N=400

CFL 0.25 3.1 1.3 0.34
CFL 0.5 6.2 2.4 0.70

timestep size, which is explained by the first-order condition in fractional-step
methods.

However, for the coarsest mesh (but also the case with CFL = 0.5 in the
average mesh), Adomian scheme yields better results than FE although being
in the same order of magnitude. It is expected the error produced during the
intermediate velocity computation influenced the projection error.

Further analysis is required to fully understand this test case error results.
Nevertheless, an overall positive result is obtained from the ABS-FV method,
improving the error produced by forward Euler alternative.

4.4.2 Vortex shedding test case

In order to test the ABS-FV projection in a real test case, a two-dimensional
square-cylinder vortex shedding example was selected. This test case has been
extensively used to validate turbulence models. It presents multiple complex
flow behaviors such as vortices and wall detachment. However, since accu-
racy has been tested in the previous section (and no exact solution exists for
this problem), here focus is set on the computational cost and performance of
the algorithm. Therefore, no boundary layer, turbulence or boundary condi-
tions studies are included. Nevertheless, ABS-FV simulations are again run
and compared to forward Euler time discretization for the Reynolds values
Re = {500, 2000, 5000}.

The test case is set as follows: a cylinder is located in a domain of 1 m

height, and 3 m length. Cylinder sides are 0.1 m length, and its center is
located at 1 m distance from the inlet. A structured uniform mesh is used
with equidistant cell edges of 7 mm length. Inflow is forced with inlet boundary
conditions with a velocity and pressure values 1.0. Exit on the right boundary
is a outlet boundary condition. Cylinder walls are set to nonslip walls, whereas
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top and bottom domain walls are slip walls. The mathematical definition of
this boundary conditions can be found in section 4.3.

In table 4.2 computational costs are reported. Solutions were obtained after
simulating one second flow evolution from an already evolved common result.
Adomian speedup ratios are given compared to FE case, and maximum stable
CFL for the FE scheme are also reported for which results have been taken.
ABS-FV was always computed with a constant (and stable) CFL = 0.5.

An average speedup of two was obtained, but bigger speedups are obtained
with increasing Reynolds values. Two main reasons are found. First, gradients
in high Reynolds values are better defined, such that large Adomian expansions
are only needed in few cells. Second, a substantial decrease in the stable CFL
value of FE involves more timesteps, and hence more computational effort. In
fact, for high enough Reynolds values it is well-known centered FE scheme is
unstable, whereas Adomian (and high-order RK schemes) are linearly stable
[22]. Stability for ABS-FV is achieved by increasing the number of Adomian
iterations.

Figure 4.5 shows an example for Re = 2000 after 0.2 seconds simulation. In
(I) the horizontal velocity is displayed, and (II) shows the number of Adomian
expansion terms required to achieve convergence using ABS-FV. As mentioned,
most of the Adomian expansions are located at steep gradients, next to wall
boundaries and vortices.

A maximum number of 10 expansions were needed at the cylinder corners
to achieve the desired accuracy. This order would be impossible by standard
Taylor series expansions, and one would need to decrease the overall timestep
value.

On top of that, more robust simulations are obtained with Adomian. As
previously shown, and practice confirms, using Adomian yields big stability
ranges, which increase by adding further iterations. Hence, when a theoretically
stable timestep becomes unstable, adding extra Adomian terms can stabilize the
solution at a small cost. In other words, timestep size can be pushed to optimize
computational cost with smaller safety margins, while for non-adaptive methods
a rule of thumb is using smaller than theoretically stable timestep size.
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(I) x component of the velocity field

(II) number of Adomian expansions to get con-
verged solution

Figure 4.5: Square cylinder vortex shedding after 5000 itera-
tions using ABS-FV and a tolerance of 10−2

Re ABS − FV Speedup FE CFLmax

500 1.4 0.5
2000 2.1 0.2
5000 3.2 0.1

Table 4.2: ABS-FV vs FE speedup values.

4.5 Modified ADER-HEOC

ADER has been introduced in chapter (2.4.2) as a modern high-order al-
ternative to the standard finite volume method. The described HEOC algo-
rithm performs a time series expansion, which based on Cauchy-Kowalewski
procedure, it reduces to spatial derivatives. When solved with finite volume
discretizations long stencils are expected for high-order derivatives.

Since an Adomian expansion represents an alternative Taylor series expres-
sion, it can be used to construct a new type of ADER scheme, known as ABS-
ADER. More precisely, a modified HEOC scheme is constructed.

This successful approach gives a simpler and compact (short stencil) ADER
scheme. For clarity, spatial coordinate subindex (e.g., ui+1) are replaced with
Adomian indexes.

The steps for the modified HEOC ABS-ADER scheme are given next.
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1. Time series expansions: For convenience, the algorithm is subdivided
in two substeps.

(a) Adomian terms computation: First, the Adomian expansions are
computed,

uL =
∞∑
k

uL
k uR =

∞∑
k

uR
k (4.56)

In contrast to the original method in equations (2.59) and (2.60),
they represent Adomian and not Taylor expansions, with the ABS
algorithm given by equation (3.21) for ρ = 1 and p = 0. For example,
take the second x-momentum Adomian stage,

u2 = u0
∂u1

∂x
+ u1

∂u0

∂x
+

∂2u1

∂x2
.

When left and right approximations are done, two options can be
considered. Individually computing each term, for example

u
L/R
2 = u

L/R
0

∂u
L/R
1

∂x
+ u

L/R
1

∂u
L/R
0

∂x
+

∂2u
L/R
1

∂x2
,

which resembles the original approach of HEOC method (equations
(2.62) and (2.63)). Or reconstructing left and right sides after the
Adomian algorithm is applied. Hence, only one interpolation per
Adomian step is required.

u
L/R
2 =

(
u0

∂u1

∂x
+ u1

∂u0

∂x
+

∂2u1

∂x2

)L/R

(4.57)

In this thesis, the second option is adopted.

Remark: To solve this substep, exactly the same number of opera-
tions as ABS-FV in section 4.3 are needed. Therefore, the modified
HEOC ABS-ADER is understood as an ABS-FV extension.

Although the referenced ABS-FV was developed for a MAC grid
type, it can be easily adapted to collocated grids, particularly for
1-D problems.

(b) Left and right interpolations: After Adomian terms are computed, uL
i

and uR
i terms in equation (4.57) are reconstructed. In this particular
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example, linear and parabolic reconstructions are used. Limiters
such as minmod or Van Leer can be added.

2. Solving multiple classical Riemann problems:

Following the original method, multiple classical Riemann problems are
constructed for specific time values (τi) using obtained series expansions.

Then, each Riemann problem is solved using an appropriate method.

3. High-order numerical flux evaluation:

As in the original method, numerical quadrature is employed to interpo-
late a high-order numerical flux. In this thesis, a third-order Runge-Kutta
scheme is used.

Experience has shown that using a strongly stable Riemann solver in the first
step with purely centered schemes in higher Adomian terms give stable solu-
tions.

4.5.1 Validation: one-dimensional Gaussian

In order to compare the performance of different numerical methods, ad-
vection and Burgers’ equations have been solved using finite volume with three
different time schemes: standard RK (RK-FV), Adomian (ABS-FV) and the
Modified HEOC scheme (ABS-ADER). Accuracy is studied for all cases, and
some considerations on dispersion and dissipation.

In this test case an amplitude one Gaussian pulse is advected over a unit
length periodic mesh. The mesh is composed of 50 elements, and the timestep
corresponding to CFL = 1.0 is set.

u(t = 0) = exp
[
−100 (x− 0.5)2

]
(4.58)

We recall centered schemes are unstable when combined with low-order time
interpolation schemes, but linearly stable for smooth solutions and high-order
time integration methods such as RK4. The following conditions were satisfied
in the setup:

• Second and fourth-order centered schemes are used for flux reconstruction.

• In ABS-FV and RK-FV methods four steps/stages are used, yielding in
both cases fourth-order time integration schemes.
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• For the ABS-ADER, the solution from ABS-FV is taken for the first sub-
step in section 4.5, and the spatial reconstruction for the second substep
is done with the same order as used in ABS-FV step (such that ABS-FV
and ABS-ADER match in order).

For example, if the following orders are used in the ABS-FV formulation:
[4, 4, 2, 2], the same orders are used in the reconstruction process of
modified HEOC.

• Numerical flux is computed with Lax-Friedrichs scheme, and fourth-order
Simpson’s rule is used for high-order integration in step (3),

f̃i+ 1
2
=

N∑
i

1

8

(
f
(
ui+ 1

2
(0)
)
+ 3f

(
ui+ 1

2

(
2

3
∆t

))

+ 3f

(
ui+ 1

2

(
1

3
∆t

))
+ f

(
ui+ 1

2
(∆t)

))

Advection equation

The advection equation is a linear PDE used in acoustic wave propagation.
It advects initial condition without shape modification. In figures 4.6 the final
solution is represented for the employed solvers. In table 4.3 the L2 errors are
reported.

Despite the fact that ADER method has worse L2 error compared to both
RK and Adomian methods, figures show good wave amplitude preservation.
Error is introduced by oscillations and wiggles which pollute the solution. As
expected, the bigger the interpolation orders, the lower the L2 error.

Comparing Adomian and RK, equivalent accuracy results are obtained at
fully second or fourth-order simulations. However, when stage orders are mixed,
for example orders [4, 4, 2, 2], Adomian algorithm have better results. In fact,
small differences exist between orders [4, 4, 2, 2] and [4, 4, 4, 4] for the Adomian
case.

Although not formally studied, this behavior can be explained by the weight
each Adomian stage has in the final Taylor expansions. Because Runge-Kutta
method uses weighted sums to construct the solution, each term in the Taylor
series will be a combination of respective weights. Therefore, a combination of
second and fourth-order methods will give a combination of second and fourth-
order terms. Whereas in Adomian and Taylor (multiderivative) methods, terms
are computed in order, and lower terms do not depend on the higher ones.
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Hence, each term order can be arbitrarily selected in a monotonically decreasing
condition. As a particular multiderivative type, Adomian does indeed have this
behavior, where higher-order terms are conditioned by lower-order’s accuracy.

(I) Fully second-order scheme (II) Orders of stages: 4, 2, 2, 2

(III) Order of stages: 4, 4, 2, 2 (IV) Fully fourth-order scheme

Figure 4.6: Adomian (ABS-FV), ADER (ABS-ADER), and
RK (RK-FV) results after a periodic advection cycle.

Table 4.3: Advection test case error summary

Reconstruction scheme order RK-FV ABS-FV ABS-ADER
2, 2, 2, 2 0.46 0.46 0.49
4, 2, 2, 2 0.39 0.14 0.49
4, 4, 2, 2 0.25 0.08 0.34
4, 4, 4, 4 0.092 0.092 0.144
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Burgers’ equation

As known, solving Burgers’ equation is more complicated than the advection
equation due to nonlinearity. In this test, the three methods are compared to
a Gaussian shape propagation, both when solution is smooth and after shock
formation.

smooth solution

Solutions are compared after four time iterations at CFL = 1.0, with a
combination of second and fourth-order centered schemes. A representative
figure 4.7, and a detailed errors table 4.4 are reported.

Figure 4.7: Adomian (ABS-FV), ADER (ABS-ADER), and
RK (RK-FV) smooth results for Burgers’ equations after four

time iterations

Table 4.4: Smooth Burgers test case error summary

Reconstruction scheme order RK-FV ABS-FV ABS-ADER
2, 2, 2, 2 0.056 0.055 0.058
4, 2, 2, 2 0.053 0.044 0.056
4, 4, 2, 2 0.047 0.038 0.052
4, 4, 4, 4 0.038 0.037 0.044

Similar to the advection case, modified HEOC scheme shows comparable or
worse results compared to both Adomian and RK schemes. Also, comparison of
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RK and Adomian case reveals the same accuracy for fully second or fourth-order
solutions. However, far better results are obtained for the Adomian case when
mixed order stages are considered. The same reasoning as in the advection case
is expected.

shocked solution

Solution is taken after 20 iterations with CFL = 1.0. At this point, a shock is
formed, and centered schemes are unstable. Hence slope limiters and upwinding
are introduced.

For ABS-FV and ABS-RK an upwinded parabolic reconstruction is used.
For ABS-ADER fully second-order ABS-FV is used in the first substep [2, 2,
2, 2], and the conditions used in ABS-FV and ABS-RK are applied in the
second substep (upwinding and limiters included). Parabolic reconstruction
with limiters can be found in [109].

In figure 4.8 can be seen both ABS-ADER and ABS-RK schemes are stable,
whereas ABS-FV is unstable despite upwinding and limiters. Indeed, limiters
and upwinding methods were developed for first-order time discretizations, and
its extension to higher-order methods is elaborated (see strong stability pre-
serving methods (SSP)). Further study should be done to stabilize Adomian
expansions. In the summary, a possible Adomian and HEOC combination is
proposed to overcome this difficulty.

Summary

When solving smooth problems, ABS-FV and RK-FV methods are faster
and more accurate than ABS-ADER. However, for shocked problems ABS-FV
is unstable, and ABS-ADER needs to be used. We propose exploiting the
substepping of the modified HEOC scheme, by using the following combination
(although it was not tested in this thesis):

1. Apply full ABS-FV algorithm in all computational domain

2. Compute slope limiters

3. For cells with active limiters, further compute the second substep of the
ABS-ADER scheme.

4. Advance timestep and restart in step 1.
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Figure 4.8: Adomian (ABS-FV), ADER (ABS-ADER), and
RK (RK-FV) shocked results for Burgers’ equations with lim-

iters.





Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis a new multiderivative type explicit time-integration method
has been developed, and its performance to solve several fluid dynamics and
acoustic related equations has been assessed. Its development is based on the
Adomian decomposition method, and we refer to it as ABS standing for Ado-
mian Based Scheme. New solvers have been derived by combination with pop-
ular space discretization schemes, such as finite volume (leading to ABS-FV
scheme), discontinuous Galerkin (ABS-DG), and more recent ADER method
(ABS-ADER).

In chapter 3 a recursive formula for the new approach is proved, rendering
an easy to use and implement scheme. A theorem for the time dependency is
proved turning the time integration exact. In the linearized Euler equations case
the ABS reduces to a particular case of the Runge-Kutta method, with a clear
advantage when using ABS. Indeed, the proven recursive formula makes ABS
much easier to implement and the time-order selection dynamic (no need to set
the order in advance as for RK), changing for each timestep and domain location
on demand. These mechanisms are controlled by the Adomian series reminders,
hence automatically, becoming a time-adaptive scheme. As a consequence, the
accuracy is improved at a minimum cost. A stability result is proved as well.

The ABS-DG and ABS-FV are assessed by comparison to the classical RK-
DG and analytical solution of a propagating pulse. The tests showed that ABS-
DG is more accurate and up to 20 times faster than the RK-DG method. This is
essentially due to the time-adaptive property of ABS. Indeed, the method time
order is given by the number of computed Adomian terms, which is different
for each timestep and space location.
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In chapter 4 the well-known fractional-step method for incompressible Navier-
Stokes equations is modified, where the intermediate velocity field in the predic-
tion step is obtained using the ABS scheme developed in chapter 3, ABS-FV.
In this work Kim and Moin’s approach is adopted, and an explicit method
with no pressure terms is considered in the velocity prediction step. There-
fore, a two-dimensional viscous Burgers’ equation is obtained, also known as
the convection-diffusion equation. Discretization is performed on a MAC type
grid.

The obtained ABS-FV scheme is validated for the Taylor-Green vortex case
and a square cylinder vortex shedding by comparison to an exact solution and
a forward Euler in time finite volume method. For the Taylor-Green case, the
proposed method shows better accuracy in coarse grids compared to classical
fraction-step methods. In fine grids equivalent results are obtained. For the
vortex shedding, the proposed method was up to three times faster than forward
Euler thanks to its time-adaptive capability.

In the same chapter, an ADER scheme is constructed based on the ABS
algorithm (ABS-ADER) as a higher-order alternative to the previous fractional-
method method ABS-FV. Precisely, the Taylor series in HEOC-ADER is sub-
stituted by an Adomian series. New ABS-ADER method is tested on the advec-
tion and Burgers’ equations, and solutions compared to standard second-order
Runge-Kutta and finite volume (RK-FV), and to ABS with finite volume meth-
ods (ABS-FV). Results show ABS-FV is the fastest and the most accurate
method for smooth conditions, but becomes unstable for the shocked Burgers’
equation. Fortunately, the ADER-ABS method gives stable solutions equiva-
lent to RK-FV.

To sum up, the proposed ABS method is demonstrated to be a potential
strategy to build time-adaptive solvers. It can be used together with DG, FV,
and ADER methods among others. The adaptive property and the recursive
formulation makes obtained schemes highly accurate and easy to implement.

5.2 Future work

Further studies and deeper analysis are necessary to fully understand ABS
properties. In the following some of them are listed:
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• The effect of boundaries in Adomian iterations should be better under-
stood. Especially in nonlinear equations.

• Numerical flux methods for higher-order time derivatives of conservation
laws need to be studied in order to stabilize Adomian methods in the
presence of shocks.

• Application of limiters to Adomian formulation.

• In ABS time discretization is converted to space-type operations. Its
relation to accuracy and error needs to be carefully analyzed.
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