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Abstract

An in depth analysis of the atmospheric branch of the water balance and daily pre-
cipitation downscaling is presented for the Iberian Peninsula during the period 2010-
2014.

The closure of the balance was studied internally according to the model results
after applying di�erent configurations. To do so, two numerical integrations at 15 km
horizontal resolution were developed by means of the WRF model nested in ERA-
Interim. Both simulations spanned the period 2009-2014, but the first year was
considered as a spin-up for the model. The first experiment (N) was configured as
in standard numerical downscaling runs, where the boundary conditions drive the
model. The same parameterizations were applied to the second experiment (D), but
it also included a 3DVAR data assimilation step every six hours. Each term of the
water balance was firstly validated against the ERA-Interim reanalysis and several
observational datasets: radiosondes and MODIS data for precipitable water, EOBS,
ECA&D, TRMM and GPCP for precipitation and GLEAM for evaporation.

The verification showed that the scores obtained by the D experiment were better
than those from N, and similar to the results obtained by the driving reanalysis
(better in some cases). Thus, the most reliable water balance was provided by the D
experiment. According to it, the leading terms are the tendency of the precipitable
water, the divergence of moisture flux, evaporation and precipitation. No spatial
patterns were recognizable for the annual accumulated evaporation. In contrast,
high values of precipitable water were observed in summer near the Mediterranean
and Cantabrian coasts. In precipitation, the influence of the Atlantic fronts was
recognizable. The transboundary moisture fluxes through the contour of the Iberian
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Peninsula vary seasonally. During winter, a net moisture import is measured. In
contrast, during spring, summer or autumn, the moisture is exported towards the
Mediterranean, and only during midday are the breezes able to reverse this feature.

The comparison of daily precipitation downscaled via statistical and dynamical
downscaling was carried out by comparing the above mentioned both WRF simu-
lations with the outputs from an statistical model (SDSM) at twenty-one stations
evenly spaced over the Iberian Peninsula. The most similar configuration to that used
in WRF was developed for SDSM: ERA-Interim data at 0.75¶ resolution provided pre-
dictor variables necessary to calibrate SDSM from 1979-2009. Apart from comparing
downscaled daily precipitation with ERA-Interim, some observational datasets were
included for the evaluation period 2010-2014: ECA&D, TRMM, GPCP and E-OBS
datasets. The twenty-member ensemble created by the SDSM was not only analysed
according to its mean, but also as if each individual member was an independent
experiment.

Both WRF experiments and SDSM achieved verification scores similar to the ones
obtained by those from observational datasets, but again, the D experiment outper-
formed N. Comparable correlations were obtained by the SDSM ensemble mean, D
and ERAI in four regions of the Iberian Peninsula, but poor results were obtained
by the ensemble members. Focusing on precipitation amount indices, the ensemble
members outperformed D and particularly the ensemble mean. However, changing to
precipitation occurrence indices, the D experiment was the best experiment. Similar
results to those from D were obtained by the ensemble mean for wet-day occurrence
and consecutive dry days, but not for the maximum five-day precipitation where the
ensemble members were better. The Linear Error in Probability Space score showed
that the ensemble members outperformed D and SDSM mean, but the Brier Skill
Score stated that no added value was produced by the members of the ensemble.
Thus, di�erent verification indices lead to di�erent assessments on which is the best
downscaling method. However, even if the D experiment does not show the best
scores for every calculated index, its results were more stable than those from the
SDSM experiment.

The spatial and temporal resolution of our simulations makes them attractive
to several kind of projects. In the thesis, the applicability of our WRF simulations
was explored, validating the simulated wind field against observed measurements in
the West Mediterranean. The o�shore wind resources from two potential areas were
wind farms could be installed in the Western Mediterranean were thus evaluated.

Additionally, as a direct consequence of the programming codes created during
the thesis, the R-package aiRthermo was developed and publicly shared in CRAN
repository. It includes several functions for the calculation of atmospheric thermo-
dynamic variables, instability indices and Stüve diagrams.
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Resumen

El objetivo de esta tesis es analizar el balance de humedad sobre la Península Ibérica
simulado mediante diferentes configuraciones del modelo WRF (con y sin asimilación
de datos), pero también comparar la capacidad predictiva de una técnica de downsca-
ling estadístico (SDSM) y dinámico (WRF) aplicados a la precipitación. Esta zona de
estudio es muy interesante puesto que en un mismo entorno confluyen muchos factores
importantes para el balance de humedad. Particularmente, una compleja topografía,
varias regiones climáticas (climas Árido, Mediterráneo, Oceánico y Alpino) y dife-
rentes fuentes de precipitación (Atlántica y Mediterránea). Por ello, en un mismo
dominio podremos analizar el comportamiento de ambas técnicas de downscaling
y el efecto que produce la asimilación de datos en las simulaciones del balance de
humedad.

El modelo numérico WRF será el encargado de llevar a cabo el downscaling
dinámico, mientras que el SDSM será utilizado para realizar el downscaling estadís-
tico. Ambos modelos han sido ampliamente utilizados en la literatura. Por un lado,
el modelo WRF permite generar campos meteorológicos con mayor resolución que la
de los modelos globales, y ha sido clave en el estudio de la evaporación, precipitación
y humedad sobre la Península Ibérica. Incluso ha sido utilizado para identificar posi-
bles efectos en temperatura y precipitación asociados al cambio climático. Por otro
lado, SDSM es un modelo estadístico basado en las relaciones entre una variable ob-
servada y diferentes predictores en un lugar en concreto. Diferentes estudios prueban
que este modelo es capaz de predecir correctamente la temperatura y precipitación
observadas. Hasta el momento, tras revisar la literatura, no se ha llevado a cabo
una comparación directa entre ambos modelos para una región compleja como la
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Península Ibérica, y tampoco se ha simulado numéricamente el balance de humedad
de esta región incluyendo la asimilación de datos. De ahí la novedad y el interés de
ambos estudios.

En la primera parte de la tesis, se estudiaron las diferencias observadas en el
balance de humedad simulado mediante dos simulaciones generadas con WRF. La
configuración básica del modelo fue la misma para ambas simulaciones, actualizando
la temperatura de la superficie del mar diariamente en el modelo e incluyendo las
parametrizaciones para la radiación (esquema RRTMG), la fracción de nubes (es-
quema Xu-Randall), los cúmulos (esquema Tiedtke), la capa límite planetaria (es-
quema PBL) y la microfísica de las nubes (esquema WSM5). El modelo de suelo uti-
lizado ha sido el NOAH. En el primer experimento (N), las condiciones de contorno
son proporcionadas al modelo para su correcto funcionamiento tras la inicialización
en el primer ciclo. En el segundo experimento (D), se incluye un paso adicional en
el que se lleva a cabo la asimilación de datos 3DVAR cada seis horas (00, 06, 12 y
18 UTC). La resolución espacial del dominio es la misma en ambos casos (rejilla de
15 x 15 km2) y los campos generados por el modelo se almacenan cada tres horas.
Esta resolución (tanto espacial como temporal) es apropiada para este tipo de es-
tudios. Mediante la comparación de ambas simulaciones hemos podido determinar
las ventajas y desventajas del uso de la asimilación 3DVAR en WRF, además de
poder evaluar cuán bien es capaz el modelo de cerrar el ramal atmosférico del ciclo
del agua en una región como la Península Ibérica, caracterizada por una compleja
topografía. El reanálisis ERA-Interim y otros conjuntos de datos observacionales
(MODIS, EOBS, ECA&D, TRMM, GPCP, GLEAM y radiosondeos proporcionados
por la Universidad de Wyoming) fueron incluidos en la validación de cada uno de los
términos del ciclo hidrológico.

Cada uno de los elementos del balance de humedad fueron validados independien-
temente. Los resultados de la validación del contenido de vapor de agua precipitable
mostraron que el experimento D es capaz de mejorar sistemáticamente la correlación,
desviación estándar y RMSE obtenidos por el experimento N en ocho radiosondeos
distribuidos uniformemente sobre la Península Ibérica. Este experimento (D) fue
capaz incluso de mejorar los resultados del propio reanálisis ERA-Interim. Com-
parado con datos del conjunto MODIS, los resultados obtenidos fueron parecidos a
los obtenidos con radiosondeos. En este caso, los valores de correlación obtenidos por
D fueron mejores que los del experimento N y similares a los de ERA-Interim.

La validación de precipitación contra datos de EOBS mostró que ambas simu-
laciones de WRF y ERA-Interim producían valores bajos de correlación en la costa
Mediterránea y en la cuenca del Ebro. Los peores resultados fueron producidos por
el experimento N, pero el experimento con asimilación de datos fue capaz de corregir-
los. Resultados parecidos fueron observados para el experimento D y ERA-Interim,
pero el experimento D es también capaz de mejorar los resultados obtenidos por
el reanálisis en el sur de la Península. Resultados similares a los observados con
EOBS fueron obtenidos al comparar con el resto de conjuntos observacionales de
precipitación (ECA&D, TRMM y GPCP). También en estos casos, el experimento
D genera valores similares a los producidos por ERA-Interim y mejora los obtenidos
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por el experimento N.
Centrándonos en la validación de la evaporación, se observó que el modelo WRF

no es capaz de generar valores realistas de esta variable en aquellos puntos de malla
cuyo uso de suelo haya sido definido como zona urbana dentro del modelo de suelo
NOAH. En esos puntos, se obtienen correlaciones cercanas a cero (o incluso negativas)
puesto que la evaporación generada por WRF no muestra variabilidad y sus valores
son cercanos a cero. Por ello, todos estos puntos problemáticos fueron eliminados de
la validación contra datos de GLEAM (versiones v3.0b y v3.0c). Resultados similares
fueron obtenidos entre el experimento D y ERA-Interim. Sin embargo, en ambos
casos se observaron valores bajos de correlación cerca de la costa Mediterránea y en
el noroeste de la Península. Además, aunque los valores de correlación obtenidos
entre el experimento D y ERA-Interim fueron parecidos, el ratio de evaporación
simulado por ERA-Interim sobre toda la Península es superior al simulado tanto por
el conjunto observacional GLEAM como por ambas simulaciones de WRF.

Después de haber evaluado cada término del ciclo hidrológico, se procedió al
estudio del residuo generado por ambas simulaciones de WRF y ERA-Interim. El
análisis de los residuos mostró que los términos con mayor importancia dentro del
balance de humedad son la tendencia del contenido de vapor de agua precipitable
( ˆW

ˆt ), la divergencia de los flujos de humedad (Ǫ̀ · Q̨), la evaporación (E) y la
precipitación (P ). Por lo tanto, los términos relacionados con los condensables no
son importantes. El efecto de la asimilación de datos es perceptible en los residuos. Se
observaron fuertes cambios en el valor de los residuos a lo largo del día (especialmente
a las 18 UTC), relacionados principalmente con la asimilación de observaciones de
humedad y/o temperatura en niveles bajos de la atmosfera. Ningún patrón espacial
fue observado en estos resultados, ni en los valores de evaporación. Sin embargo, los
patrones espaciales de la precipitación anual acumulada muestran una clara influencia
de los frentes asociados a ciclones Atlánticos en la zona norte de la Península Ibérica.

Los flujos de humedad que atraviesan el contorno de la Península también fueron
estudiados. Éstos mostraron una gran variabilidad entre estaciones. Durante los
meses de invierno, gran cantidad de humedad entra en la Península a lo largo del
día. Sin embargo, los flujos exportan de forma neta humedad durante los meses de
primavera, verano y, a menor escala, otoño a través de la costa Mediterránea. Sin
embargo, durante las horas centrales del día, las brisas cerca de la zona del Mar de
Alborán (sur de la Península) invierten esta situación y facilitan la importación de
humedad en la zona.

En la segunda parte de la tesis se llevó a cabo la comparación de la precipi-
tación simulada gracias al downscaling estadístico calculada mediante SDSM y al
downscaling dinámico mediante las simulaciones ya generadas con WRF. Esto nos
permitió evaluar ambas técnicas y determinar cuál de ellas produce mejores resul-
tados. El modelo SDSM se calibró con una configuración similar a la utilizada en
las simulaciones con WRF. Para ello, se utilizaron como predictores datos proce-
dentes del reanálisis ERA-Interim a una resolución de 0.75¶. De esta forma, puede
llevarse a cabo una justa evaluación de los puntos fuertes y débiles de cada técnica de
downscaling. Por defecto, el modelo SDSM genera un ensemble de veinte miembros.
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Por tanto, para poder comparar este producto probabilístico con las simulaciones de-
terministas de WRF, estudiamos la media del ensemble, pero también cada miembro
como si de un experimento independiente se tratara.

Veintiún estaciones distribuidas a lo largo de la Península fueron elegidas para
este estudio. La precipitación observada en cada una de estas estaciones, definida
como predictando dentro del modelo estadístico, se obtuvo a partir de la base de
datos ECA&D. Cada estación fue calibrada independientemente en el modelo SDSM,
siguiendo una metodología basada únicamente en los indicadores producidos por el
propio modelo. De esta forma, el usuario no necesita tener ningún conocimiento pre-
vio sobre los fenómenos atmosféricos predominantes en cada estación. Los resultados
muestran que tanto las simulaciones creadas con WRF como por el SDSM producen
resultados similares a los obtenidos por los conjuntos de datos observacionales (EOBS,
TRMM y GPCP). Esto indica que ambas técnicas tienen habilidades predictivas si-
milares a los datos observacionales.

La media del ensemble generado por SDSM, el experimento D y ERA-Interim ob-
tuvieron valores de correlación similares en cuatro regiones definidas sobre la Penín-
sula Ibérica. Sin embargo, los miembros del ensemble produjeron resultados que no
eran comparables a los anteriores. Por tanto, estos resultados no fueron suficientes
para determinar qué técnica de downscaling era superior. Por ello, muchos mas
índices tuvieron que ser calculados.

Para poder evaluar los puntos fuertes del experimento D, la media del ensemble
y los miembros de ensemble más allá de los indicadores incluidos en los diagramas de
Taylor, también se calcularon los índices LEPS (Linear Error in Probability Space)
y BSS (Brier Skill Score). Estos índices nos ayudarán a determinar si los modelos
son capaces de realizar una buena predicción de lluvia y si mejoran los resultados
producidos por el reanálisis ERA-Interim. Por un lado, los miembros del ensemble
obtuvieron los mejores resultados en cuanto al índice LEPS en un total de dieciséis
estaciones, mientras que en las cinco estaciones restantes fue el experimento D el
que se impuso. Sistemáticamente, el experimento D y los miembros del ensemble
mejoraron los resultados producidos por la media del ensemble. Por el contrario,
según el índice BSS, la media del ensemble y el experimento D fueron los experimentos
que consiguieron mejorar la predicción de referencia (de ERA-Interim en este caso)
y muestran valor añadido. Los miembros del ensemble no consiguen añadir valor al
modelo global de baja resolución del reanálisis puesto que este índice tiene en cuenta
la simultaneidad de la lluvia y no sólo la cantidad de precipitación medida.

Por último, además de los índices LEPS y BSS, se calcularon varios índices de
precipitación con el fin de comprobar si ambas técnicas de downscaling son capaces
de reproducir el comportamiento de la precipitación observada. Empezando por los
índices relacionados con la cantidad de precipitación observada, se observó que el
experimento D, la media del ensemble y los miembros del ensemble producen una
media de precipitación similar. Sin embargo, los miembros del ensemble superan a
los otros experimentos en cuanto a la intensidad de precipitación y el percentil 90.
La media del ensemble produce los peores resultados en esos casos. Cambiando a los
índices asociados a la ocurrencia de precipitación, los resultados cambian de un índice

vi



a otro. La media del ensemble sobreestima el número de días secos consecutivos
y la probabilidad de que ocurra un día húmedo, mientras que el experimento D
y los miembros del ensemble los subestiman. Por el contrario, los miembros del
ensemble sobreestiman el máximo de precipitación en 5 días consecutivos, pero el
experimento D y la media del ensemble lo subestiman. Aunque el experimento D no
presente los mejores resultados en estos indicadores, presenta unos resultados mucho
más estables que los obtenidos por el SDSM, que varían según el índice estudiado.
Por ello, sólo podemos afirmar que dependiendo del índice que estemos analizando,
obtendremos una técnica más favorable para la obtención de mejores resultados.
Esto no es arbitrario, sino que simplemente refleja que dependiendo de qué tipo de
predicción se precise (determinista o probabilista), de los recursos técnicos (CPU y
disco) disponibles y del tipo de ejercicio que se desarrolle, se elegirán unas u otras
como óptimas.

También se ha explorado la potencial aplicabilidad de los experimentos numéricos
llevados a cabo durante esta tesis a otros campos. La alta resolución de la malla
utilizada en ambas simulaciones de WRF y la frecuencia de almacenamiento de salidas
es muy atractiva para un amplio rango de proyectos. Estos datos permiten llevar a
cabo estudios sobre el balance de humedad en otras regiones de Europa (incluso
en zonas del océano Atlántico o mar Mediterráneo), pero también son aplicables a
otro tipo de proyectos como estudio de brisas o modelización de eventos extremos
pasados. Además, ambas técnicas de downscaling pueden aplicarse también al estudio
de extremos de precipitación o inundaciones. Incluso para estudios sobre toma de
decisiones, ya que el SDSM es capaz de generar resultados parecidos a los producidos
por el downscaling dinámico, pero con menor coste computacional y para periodos
mucho más largos.

En esta tesis, ambas simulaciones creadas con WRF han sido validadas con datos
puntuales en boyas y conjuntos observacionales como el CCMPv2 sobre la región
occidental del mar Mediterráneo. Resultados similares a los medidos sobre la Penín-
sula Ibérica fueron observados en esta región, puesto que el experimento D produce
resultados parecidos a los de ERA-Interim y mejores que los de N. Además, gracias
al cálculo de varios estadísticos, se pudo determinar que el experimento D produce
los resultados más realistas en esa región del Mediterráneo. Por ello, el viento a
10 m simulado por este experimento fue utilizado para el cálculo del factor de ca-
pacidad (CF) y la producción de energía anual en dos zonas de potencial instalación
de parques eólicos flotantes, localizadas al este del Cabo Begur y al norte de Menorca.

La mayoría de los cálculos realizados durante la tesis fueron llevados a cabo me-
diante el lenguaje de programación R. Combinando estos programas con códigos en
C para el cálculo de variables termodinámicas, se construyó el paquete aiRthermo.
Este paquete fue publicado en Agosto de 2017 y actualmente está disponible para
su descarga (gratuita) en el repositorio CRAN. Este paquete cubre un hueco entre
los paquetes de R que pueden encontrarse en ese repositorio, puesto que los pocos
paquetes meteorológicos disponibles hasta la creación de aiRthermo se centraban
únicamente en el cálculo de algunas variables atmosféricas. Gracias a aiRthermo, el
rango de funciones meteorológicas disponibles en R se ha ampliado, incluyendo ahora
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funciones para el cálculo de índices de inestabilidad, ascensos y descensos adiabáticos
de parcelas de aire, o incluso para el dibujo de diagramas de Stüve.

Por último, cabe decir que algunas preguntas surgidas durante el desarrollo de
esta tesis se han dejado para llevar a cabo en proyectos futuros. Estos son algunos
ejemplos. Se deben identificar qué mecanismos físicos pueden explicar la poca ha-
bilidad para simular una evaporación realista que presenta WRF en aquellos puntos
definidos como zona urbana en el modelo de suelo NOAH. Se deben explorar qué efec-
tos producirían en las simulaciones el aumento de la resolución espacial y/o temporal
de las condiciones de contorno suministradas al modelo WRF. Se pueden estudiar
aquellos flujos de energía que toman parte en generar el sesgo frío observado en el
sur de la Península durante los meses de verano. Se debe estudiar cuán bien están
representados los diferentes tipos de precipitación (de gran escala o convectivos) en
ambas técnicas de downscaling, o cómo es la variabilidad interanual o estacional de
la precipitación simulada por WRF y SDSM.
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1 INTRODUCTION

1 Introduction

T HE Iberian Peninsula (IP) is an attractive region for the study of the atmo-
spheric branch of the water cycle and where di�erent downscaling techniques

can be tested. The IP is surrounded by the Atlantic Ocean to the north and west,
and by the Mediterranean Sea to the east. This distribution influences every ele-
ment of the hydrological cycle in the region. The IP is influenced by the large-scale
moisture transports associated to the sea level pressure patterns over the Atlantic
Ocean (Fernández et al., 2003; Gimeno et al., 2010; Gómez-Hernández et al., 2013),
but also by the development of convective precipitation in the south-eastern corner
of Spain (Zorita et al., 1992; Rodríguez-Puebla et al., 1998; Fernández et al., 2003).

Besides these sources of moisture, the IP is also a�ected by some teleconnection
patterns, whose e�ects can be observed in the atmospheric circulation near North
Atlantic area (Rodríguez-Puebla et al., 2001). The precipitation extremes in Europe
are particularly influenced by the North Atlantic Oscillation (NAO) (Haylock and
Goodess, 2004; Zveryaev et al., 2008), and the East Atlantic oscillation (EA) deter-
mines the location of the storm tracks of the region (Rodríguez-Puebla et al., 1998;
Sáenz et al., 2001; Zveryaev et al., 2008). The blockings are also responsible of the
observed precipitation regimes (Sousa et al., 2017). According to the literature, tele-
connections with the El Niño - Southern Oscillation (ENSO) have also been reported
in the IP, but its e�ects are not stationary (López-Parages and Rodríguez-Fonseca,
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2012) and they are restricted to di�erent regions of the IP (Kiladis and Diaz, 1989;
Rodó et al., 1997; Frías et al., 2010; Vicente-Serrano et al., 2011; Lorenzo et al.,
2011). However, the inter-annual variability of precipitation cannot be explained by
these factors, and additional factors such as the air temperature or humidity must
be taken into account (Goodess and Jones, 2002).

Some contrasting climatic regions can be found in the IP, delimited by the com-
bination of the aforementioned mechanisms and the strong topography of the zone.
According to recent climate classifications, three big climatic areas are predominant
in the region (Kottek et al., 2006; Peel et al., 2007; Lionello et al., 2012; Rubel et al.,
2017): Arid, Warm Temperature and Snow Climates (B, C and D groups of the
Köpen-Geiger climate classification respectively). However, depending on the humid
and dry seasons, the Warm temperature group can be divided into two subgroups
(Cf and Cs respectively). Then, four climate regions can be defined: (1) Arid climate
mainly in the south of the IP, but also near the Ebro basin; (2) Mediterranean, in
the southwestern corner; (3) Oceanic, observed mainly in the north of Spain and
Portugal; Finally, (4) Alpine, in some mountain ranges such as the Pyreness, Sierra
Nevada or Picos de Europa.

As a result of all of these factors, the observed precipitation patterns over the
IP change from one season to another. During winter, the north and the west re-
ceive great amounts of precipitation. In contrast, the most important season for the
east and south is autumn (Rodríguez-Puebla et al., 1998; Esteban-Parra et al., 1998;
Romero et al., 1999). According to Tullot (2000), the precipitation a�ects the cen-
tre of the IP mainly in spring. Nowadays, a decrease in the amount of precipitation
measured in the IP has been reported by some studies (Rodríguez-Puebla et al., 1998;
Paredes et al., 2006), but it can be extended to the entire Mediterranean basin (Trigo
et al., 1999; Quadrelli et al., 2001). Vicente-Serrano et al. (2014) stated that this
reduction is also significant in the relative humidity, but not in the specific humidity.

The distribution of the Precipitable Water (PW) also varies along the year and
the region. During winter, the largest values are located near the oceanic or marine
regions. In contrast, the most remarkable values are observed near the Mediterranean
coast in summer (Zveryaev et al., 2008). Furthermore, Ortiz de Galisteo et al. (2011)
pointed out that the diurnal cycle of the PW can be modified by local e�ects such
as the breezes.

These precipitation and PW studies can be included inside an evaluation of the
water balance over a certain region. Nowadays, this topic has become really pop-
ular in the field as a result of the scarcity of water predicted by climate change
simulations (Iglesias et al., 2007; Bangash et al., 2013; Gampe et al., 2016). During
the last decades, a growing number of studies have been carried out focusing on the
study of the water balance over di�erent regions and following di�erent methodologies
(Gutowski Jr. et al., 1997; Trenberth and Guillemot, 1998; Berbery and Rasmusson,
1999; Trenberth et al., 2007; Yeh and Famiglietti, 2008). Over the IP, Vérant et al.
(2004) studied the terrestrial water balance for di�erent resolutions of regional sim-
ulations. Thus, it is clear that the resolution of the actual reanalyses is not enough
to carry out this kind of studies and that high-resolution regional simulations must
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1 INTRODUCTION

be created.
Regional Climate Models (RCM) were firstly developed during the 1990s in order

to improve the coarse spatial resolution of Global Climate Models (GCMs). Nowa-
days, two main techniques coexist: the statistical and the dynamical downscaling.
The first is based on empirical relationships between local weather and large-scale
scale variables (von Storch et al., 1993). The later is based on the numerical integra-
tion of the equations driving the energy, momentum, mass and moisture balances of
the atmosphere (Giorgi, 2006; von Storch, 2006).

On the one hand, several statistical downscaling methods exist, and they are
known to have limitations on their performance. Some studies suggest that highly
non-linear techniques such as the Radial Basis Function (RBF) Neural Networks
(NN) can perform equally to the linear models (Weichert and Bürger , 1998; Trigo
and Palutikof , 2001). A search of analogues in the space of the canonical correlation
coe�cients showed good results in Fernández and Sáenz (2003), and the analogues
technique followed by a bias-correcting heuristic formula were used for precipitation
downscaling in Timbal and Jones (2008). According to Goodess et al. (2007), some
statistical models are more skilful at reproducing the persistence of rainfall more
than the frequency of rain, but sometimes they cannot even reproduce extreme daily
precipitation amounts. However, the performance of the models is better in the mid-
latitudes (Cavazos and Hewitson, 2005) and during winter (Timbal and Jones, 2008;
Yang et al., 2010). Normally, the correlations between the observed and predicted
precipitation is about 0.5 if the daily amount is taken into account, but they can
reach 0.7 for monthly data. Over the IP, these scores were obtained by the ana-
logues technique, outperforming the NN (Zorita and von Storch, 1999). Over the
Ebro Valley (Ibarra-Berastegi et al., 2011), a comparison of di�erent precipitation
downscaling techniques such as machine learning algorithm random forest (RF), a
classical Multiple Linear Regression (MLR) model and analogues showed that the
RF and the MLR cannot significantly improve the results obtained by the analogues.
The Statistical DownScaling Model (SDSM) (Wilby et al., 2014), which combines
a MLR model and an Stochastic Weather Generator (SWG), shows good estimates
of daily temperature (Liu et al., 2007), total precipitation (Wetterhall et al., 2006,
2007) and areal rainfall (Hashmi et al., 2011). However, the extreme precipitation
events are less reliable during the dry seasons (Wilby and Dawson, 2013).

On the other hand, the dynamical downscaling is performed by the RCMs. It is
generally accepted (Jones et al., 1995; Foley, 2010; Rummukainen, 2010; Feser et al.,
2011; Önol, 2012) that a RCM, a dynamical model nested within a Global Climate
Model (GCM), is able to generate more accurate climate simulations than the GCM
itself. In addition, some studies (Rockel et al., 2008; Leung and Qian, 2009) have
stated that even if the RCMs are only fed by the coarse boundary conditions from a
GCM, they are able to simulate the small-scale features related to the surface such
as floods or orographic precipitation. One of the most popular RCM is the Weather
Research and Forecasting Model (WRF, ARW) (Skamarock et al., 2008), and it has
been widely used in several kind of studies. For example, WRF was used for the study
of daily precipitation after changing the resolution of the domain in Cardoso et al.
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(2013) or for the analysis of evapotranspiration and precipitation over the IP during
spring (Rios-Entenza et al., 2014; Eiras-Barca et al., 2016). The moisture recycling
was also studied with WRF in Rios-Entenza et al. (2014). As part of the EURO-
CORDEX initiative, an ensemble of regional models were used to identify possible
impacts on temperature and precipitation under the climate change conditions over
Europe (Dosio, 2016), Portugal (Soares et al., 2015) or Spain (Domínguez et al.,
2013).

Nevertheless, many of the current studies developed with WRF still do not include
the data assimilation technique. Focusing on the IP, the number of studies including
this methodology is very small. Apart from our group in previous studies (Ulazia
et al., 2016, 2017), the most similar integration that has been found in the literature
for this region is that carried out by the Spanish Meteorological Agency (AEMET)
using the HIRLAM model (Navascués et al., 2013). The 3DVAR data assimilation
step is included every six hours, showing a positive e�ect on the forecast quality.
However, it has not been applied to the study of any term of the water balance, or
even compared to another simulation created with the same configuration but without
the data assimilation scheme. Furthermore, the resulting products include better
resolution than the actual reanalyses and comparable resolution to other precipitation
products such as Spain02 (Herrera et al., 2012, 2016).

Additionally, a large number of comparisons between dynamical and statistical
downscaling can be found in the literature (Fowler and Wilby, 2007; Schmidli et al.,
2007; Gutmann et al., 2012; Casanueva et al., 2016). These studies show that com-
parable skill at simulating the present climate is observed for both downscaling tech-
niques (Wilby et al., 2000; Haylock et al., 2006; Osma et al., 2015; Casanueva et al.,
2016), but there is still considerable scope to further research about this topic, partic-
ularly on the decisions involved in the set-up of the downscaling models. This could
include the di�erent sources and spatial resolutions for the driving boundary condi-
tions used in the numerical models or for the predictors included in the statistical
models; The optimal set of predictor variables or the record length used during the
calibration of the statistical model on a site-by-site basis; whether to use or not the
data assimilation scheme while simulating past climates; the diagnostics for assessing
downscaling model skill and value-added to coarser resolution GCM inputs. As far
as the authors know, there has been only one previous direct comparison between
SDSM and WRF for China (Tang et al., 2016), and the WRF simulations created
for that study did not include data assimilation.

1.1 Objective
Taking all of the above mentioned information into account, our main objectives are
to extend the previous studies to a full analysis of the whole atmospheric branch of
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1 INTRODUCTION

the water cycle over the IP, and to analyse the daily precipitation downscaled by
the statistical model SDSM and by two di�erent configurations (with and without
3DVAR data assimilation) of the dynamical Model WRF.

In particular, an evaluation of the ability to simulate a realistic water balance
over the IP by WRF model will be tested. The advantages or disadvantages of in-
cluding the 3DVAR data assimilation step while running the WRF model will be
also evaluated. To do so, two simulations were carried out for period 2009-2014: one
of them was configured so that only the boundary conditions drive the model after
the initialization (the N experiment). The same configuration was used on the sec-
ond one, but included 3DVAR data assimilation every six hours (the D experiment).
Neither the climatology nor the interannual variability of both experiments will be
studied as five years of simulations are not enough to do so. Firstly, each term of
the water balance was independently compared against observational datasets (par-
ticularly PW, precipitation and evaporation). Secondly, the closure of the balance
was calculated according to the model results in order to check the consistency of the
fields. Thirdly, the comparison between both WRF simulations was carried out. In
all of these phases, the results for the ERA-Interim reanalysis (hereafter, ERAI) (Dee
et al., 2011) were included in order to check if the high-resolution products created
are able to outperform the driving reanalysis, thus adding value to it.

In order to be able to fairly compare both statistical and dynamical downscaling
techniques, a configuration as similar as possible to that used in WRF was designed
for the SDSM. ERAI data were used for the creation of the predictor variables nec-
essary for the calibration of the SDSM model. The analysis was carried out on a
site-by-site basis, on twenty-one stations evenly spaced over the IP and represen-
tative of the di�erent climates observed in the region. Data from ERAI and some
observational datasets were included on the comparison of both downscaling tech-
niques. As the SDSM produces a twenty-member ensemble, this probabilistic output
cannot be compared directly with the deterministic data from WRF. Thus, for the
comparison, the mean of the ensemble will be taken as an independent experiment,
but also each member of the ensemble. Several metrics and precipitation indices were
calculated for the evaluation of the best downscaling technique.

1.2 What you will find in this thesis
This thesis is structured in eight main chapters. In chapter two, a detailed description
of the main characteristics of every dataset used in this thesis is provided. The
domain and the physics parametrizations used to configure the WRF model are also
presented there, along with a description of the postprocesing applied to the model’s
raw output. Every tested configuration of the SDSM is listed in this chapter, but
also the predictor variables created from the ERAI data. It also includes a detailed
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description of every metric and precipitation index used in the evaluation of the water
balance and both downscaling techniques.

In chapter three, the evaluation of the water balance over the IP for period 2010-
2014 is presented. Firstly, the validation against observational datasets of the PW,
precipitation and evaporation is carried out. The closure of the water cycle is eval-
uated by means of the residual of both WRF simulations. The calculation of the
analysis increments produced by the data assimilation step are also studied in this
chapter. It concludes describing the main features observed in the water balance
simulated by the best experiment.

In chapter four, the statistical and dynamical downscalings are compared on a site-
by-site basis in twenty-one stations over the IP. This work was carried out during two
placements of three-and-a-half and two months long in the Department of Geography
at Loughborough University, under the supervision of Prof. Robert L. Wilby. Firstly,
di�erent experiments designed to determine the optimal configuration of the SDSM
are evaluated. Once the similar configuration to that from WRF is determined,
both downscaling techniques are compared to some observational datasets. The
evaluation is not only carried out taking into account correlation-based metrics, and
some precipitation amount and occurrence indices are also included.

In chapter five, a direct application of both WRF simulations is presented. An
evaluation of both simulations and ERAI over the Western Mediterranean sea is
carried out, comparing the simulated wind field at 10 m with that measured in the
region. Once the best experiment is determined, it is applied to the calculation of
some metrics related to wind farms.

In chapter six, a detailed description of the methodology followed and the func-
tions included in an R-package created as a result of the calculations made during
this thesis is presented. This package is publicly available on the Internet and it can
be used for the calculation of thermodynamic variables or for plotting the evolution
of air parcels.

In chapter seven, the discussion about some results presented in this thesis is
carried out. It will focus on the set-up of both downscaling models and in some
issues observed with the observational datasets. It will also provide further insight
on the results.

Finally, the last chapter will provide a summary of the key findings of this thesis,
along with future perspectives that could follow the topics developed in this thesis.
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2

Data and Methodology

T his chapter presents a detailed description of every dataset that was used in
the di�erent studies included in the thesis. They can be separated in three big

groups: (1) data downloaded from the Internet for validation purposes, (2) data
created by using the WRF model and (3) data created by making use of the SDSM.
The raw data created by the dynamical and statistical downscaling models were
also postprocessed. How this step was carried out is also detailed here. Finally, a
description of every validation technique applied in the thesis is presented.

2.1 Datasets
Every dataset used in this thesis is listed in this section:

• ERA-Interim Reanalysis: Two di�erent versions of ERAI data were down-
loaded from the Meteorological Archival and Retrieval System (MARS) reposi-
tory at ECMWF, according to its spatial resolution: one at 2.5¶ and another at
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0.75¶. Its vertical levels are defined as a terrain-following hydrostatic-pressure
coordinate, spanning the atmosphere from 0.1 to 1012.05 hPa in 60 model
levels. The data are provided every 6 hours, but most of the times they are
aggregated to daily or monthly values. Some data at the original model levels
were used for the creation of the predictors for the SDSM. However, the data
were also interpolated to several vertical levels in order to provide the boundary
and initial conditions in both WRF simulations. This interpolated data was
also used for the validation of the experiments.

• PREPBUFR data: This dataset includes observations from the NCEP ADP
Global Upper Air and Surface Weather Observations. Particularly, it is refer-
enced as ds337.0 1. Reports from di�erent sources such as aircrafts, wind profil-
ers, land (Synoptic and Metar), ships, buoys and scatterometers are included.
This dataset is used as the provider of observations for the data assimilation
step within the WRF model.

• SST data: High-resolution (0.25¶◊0.25¶) daily sea surface temperature (SST)
fields from NOAA OI SST v2 (Reynolds et al., 2007) were included in both
simulations.

• ECA&D dataset: The European Climate Assessment & Dataset project
(ECA&D) (Klein Tank et al., 2002) includes daily precipitation data from land
stations. Twenty-one stations evenly spaced over the IP and representative
of the di�erent climatic areas were selected (coloured red in Figure 2.1), but
without oversampling over some areas (such as Catalonia) where the density
of available stations is much higher than in the rest of the domain. Fourteen
stations were available for Portugal, but only Lisbon had records during the
validation period (2010-2014, same period as for our both WRF simulations).
The precipitation amount observed on these stations were used as predictands
for the SDSM and as validation for precipitation.

• NCEP/NCAR Reanalysis: The NCEP/NCAR Reanalysis 1 data are in-
cluded in the thesis as the source of predictors for the SDSM. A postprocessed
version of the data were downloaded from the SDSM portal2. Once a latitude
and longitude is given, the predictor set available for the nearest point in the
reanalysis grid is returned by the website.

• Radiosonde data: Atmospheric radiosondes were obtained from the server of
the University of Wyoming3 in order to validate the PW. Only eight stations
were available for the IP (see Figure 2.2). In these stations, data are collected
twice per day (at 00 UTC and 12 UTC), except for Lisbon station where it is
only available once per day (at 12 UTC).

1
Available in https://rda.ucar.edu/datasets/ds337.0/

2
Downloadable from: http://co-public.lboro.ac.uk/cocwd/SDSM/data.html

3
Publicly available in: http://weather.uwyo.edu/upperair/sounding.html
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Figure 2.1: Location of all available stations in the ECA&D dataset for the IP (blue dots)
along with the chosen twenty-one stations in the study (red squares).

• MODIS data: Moderate Resolution Imaging Spectroradiometer (MODIS)
data (Gao and Kaufman, 2003) were used as PW validation dataset. The
MODIS data are collected every one to two days in many spectral bands by
a spectroradiometer aboard the Aqua and Terra satellites. For our validation,
Level-2 PW from both satellites were combined and used in order to improve
the temporal resolution of the data. 5x5 km2 spatial resolution was defined in
a domain centred over the IP (34¶-46¶N, 12¶W-6¶E).

• ENSEMBLES Observations: The version 12.0 of the ENSEMBLES OB-
SERVATIONS (EOBS) dataset (Haylock et al., 2008; van den Besselaar et al.,
2011) was downloaded. This dataset presents a 0.25¶ grid and a daily tempo-
ral resolution. It was used as a precipitation validation dataset for WRF and
SDSM.

• TRMM dataset: The Tropical Rainfall Measuring Mission (TRMM) data
(Wang et al., 2014) were used as a validation dataset for precipitation. Three-
hourly precipitation data are included at a 0.25¶ spatial resolution. In order to
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Figure 2.2: Location of all available radiosondes in the server of the University of Wyoming
for the IP (orange squares).

compare them with the other precipitation datasets, the data were aggregated
to daily values.

• GPCP data: The Global Precipitation Climatology Project (GPCP) (Hu�-
man et al., 2001) data were included in our study to validate the precipitation
obtained by WRF and SDSM. It includes daily precipitation data at a 1¶ hor-
izontal resolution.

• GLEAM dataset: Version 3.0 of the Global Land Evaporation Amsterdam
Model (GLEAM) dataset (Martens et al., 2017; Miralles et al., 2011) was used
in our study. This dataset is based on observations such as radiation, air
temperature, precipitation, snow water equivalent, vegetation optical depth and
surface soil moisture from satellites, reanalysis and other observational fields.
Three independent GLEAM datasets were available, but only two of them
were selected for this study: v3.0b and v3.0c. GLEAM v3.0a dataset was not
included in the validation because the net radiation and air temperature used as
forcings on it are provided by ERAI. Both selected versions were driven only by
satellite data, and the main di�erence between them was that v3.0c retrieved
vegetation optical depth and surface soil moisture from SMOS-observations.
Both datasets covered the same domain (50¶N-50¶S) using a 0.25¶x0.25¶ regular
grid. GLEAM data are available with daily temporal resolution, and they were
used to validate WRF’s evaporation.
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Figure 2.3: Location of the six buoys used for the validation of wind at 10 m over the west
Mediterranean.

• Buoy data: Wind speed (direction and magnitude) data measured by buoys
operated by the Spanish State Ports Authority (Puertos del Estado) were down-
loaded from their public website1. The six chosen buoys are presented in Fig-
ure 2.3. The data are provided hourly and at a height of three meters above
the sea level. They were used for the validation of simulated wind over the
West Mediterranean region in chapter 5.

• CCMPv2 dataset: The second version of the Cross-Calibrated Multi-Platform
(CCMPv2) dataset (Atlas et al., 2011) was included in our study for the evalu-
ation of the spatial wind outputs created by both WRF simulations (see chap-
ter 5). This dataset was created combining radiometer-measured wind speeds,
scatterometer wind vectors and moored buoy data by means of a variational
data assimilation algorithm that uses ERAI wind fields as background or first
guess. It includes six-hourly data at a 0.25¶ horizontal resolution.

1
Data publicly available at this website: http://www.puertos.es/en-us/oceanografia/Pages/

portus.aspx
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2.2 Dynamical Downscaling Simulations

2.2 Dynamical Downscaling Simulations
Two simulations spanning the period 2010-2014 were created using version 3.6.1 of
the WRF model, released on August 14, 2014. Both runs were started in 2009, but
this first year was designed as spin-up for the Land Surface Model (LSM), as done
in previous studies such as Argüeso et al. (2011) and Zheng et al. (2017). The WRF
model was nested inside ERAI, which provides the boundary and initial conditions
every 6-hours. These boundary conditions drive the model after the initialization in
the first simulation (hereafter, the "N" experiment). The second experiment (here-
after, "D") is configured the same way as N, but 3DVAR data assimilation (Barker
et al., 2012) is run every six hours using observations from the PREPBUFR dataset.
Only the observations included inside a 120-minute window centered at these analysis
times (00, 06, 12 and 18 UTC) are included in the 3DVAR data assimilation step.

The domain is centered on the IP but it also covers much of north-west Africa
and western Europe (20¶-60¶N, 25¶W-15¶E) (Figure 2.4). Being quite large, the
literature for similar cases (Jones et al., 1995; Rummukainen, 2010) indicates that
the results should not be a�ected by border e�ects and that meteorological features
are allowed to develop freely over the region. A mask over the IP (coloured in red in
Figure 2.4) was defined in order to select the points that were included in the analysis
of the water balance (2108 grid points in total). Normal vectors were also defined at
its boundary, so that positive vectors are defined outwards the mask. Both N and
D simulations had 51 vertical levels and 15x15 km2 horizontal resolution. With this
resolution, the WRF model is able to reproduce the topography of the IP in a better
way than ERAI. The distribution of the mountain ranges in the WRF grid is quite
similar to that in the GLOBE dataset (bottom right and left panels of Figure 2.4
respectively).

An important part of the design of a experiment to be run by any RCM is to
choose the parameterizations that will impose the physics of the model. A good
simulation will be intrinsically conditioned by how these parameterization schemes
work together, as some variables (e.g. precipitation or surface fluxes) depend on
their interactions (Figure 2.5). In both simulations, the NOAH LSM (Tewari et al.,
2004) calculates the soil temperature and moisture in four soil layers, but also the
fractional snow cover and the frozen soil. The long-wave radiation scheme RRTMG
(Iacono et al., 2008) is used to compute the clear-sky and cloud upward and downward
radiation fluxes in the model, considering each layer in the atmosphere and the surface
emissivity according to the land-type in the LSM. The short-wave radiation scheme
RRTMG (Iacono et al., 2008) computes the clear-sky and cloudy solar fluxes, and
includes the annual and diurnal solar cycles. Both radiation schemes interact with
the model’s cloud field, and the cloud fraction is calculated by Xu-Randall method
(Xu and Randall, 1996), based on relationships between stratiform cloud amount and
its large-scale predictors. The SST is updated daily and the monthly albedo value
is also taken into account. The purpose of the MYNN2 Planetary Boundary Layer
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Figure 2.4: Top: Domain of both simulations marked with grey dots. The mask defined for
the IP is plotted in red. Bottom left: topography of the IP taken from GLOBE dataset (at 1
km resolution; (Hastings and Dunbar , 1999)) and bottom right: topography as represented
in our WRF simulations (15 km resolution).
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Figure 2.5: Direct interactions between the parameterization schemes inside the WRF
model. Taken from the slides presented at the July 2015 Basic WRF Tutorial in Boul-
der, Colorado (Retrieved on September 17, 2015 from http://www2.mmm.ucar.edu/wrf/

users/tutorial/tutorial_presentation_summer_2015.html).

scheme (Nakanishi and Niino, 2006) is to distribute surface fluxes with the boundary
layer eddy fluxes, where the horizontal di�usion acts along model levels. The cumulus
are parameterized by the Tiedtke scheme (Tiedtke, 1989; Zhang et al., 2011), which
redistributes the air in the surface until the top of the column and allows both deep
and shallow convection. Finally, the WRF five class microphysics (WSM5) scheme
(Hong et al., 2004) is used, which simulates the interactions between water vapour
and di�erent cloud particle types (cloud water, ice crystals, raindrops and snow).
Hail is not included as it is not necessary for spatial resolutions higher than 10 Km.

Before starting the D experiment, its background error covariance matrices were
generated. These matrices describe the covariances of the forecast errors of the
numerical weather forecast model, and determine how the information provided by
the observations is going to be spread to the nearby grid-points and levels of the
model. They were generated for the region and the physical parameterizations used
by means of the CV5 option in WRFDA (Parrish and Derber , 1992). To do so, a 13-
month long run from January 2007 until February 2008 was created. The background
error covariances vary monthly and were always built using 90 days around the
corresponding month. Integrations used during this 90 day period were initialized
either at 00 UTC or at 12 UTC in order to properly sample day and night. For
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example, the background error covariance matrix for January was created using the
data from December to February, and so on for the rest of the monthly varying
background error covariance matrices.

The structure of both simulations is the final key aspect of modelling. On the
one hand, the N experiment is created by running six-hour long segments that are
restarted from the restart file produced by the previous segment (top panel of Fig-
ure 2.6). This methodology is equivalent to a continuous WRF run where boundary
conditions feed the model every 6-hours after the initialization of the model in Jan-
uary 1st, 2009. The outputs are saved every three hours. On the other hand, the data
assimilation experiment (D) is run during twelve hours starting from every analysis
time (00, 06, 12 and 18 UTC) (bottom panel of Figure 2.6). For this simulation,
there is only a cold start in January 1st, 2009. The analyses are produced by using
the output from the model at a six-hour forecast step from the previous segment as
first guess in a 3DVAR data assimilation scheme where observations from PREP-
BUFR files are used. The same recording frequency for outputs is used for the D
experiment, which means that analysis (00, 06, 12 and 18 UTC) and 3-hour forecasts
(at 03, 09, 15 and 21 UTC) are included in our results.
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Figure 2.6: Structure of the segments created for the N experiment (top) and for the D
experiment (bottom). The orange ellipses mark the recording frequency of the outputs that
are used in the postprocessing.
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Apart from these two WRF runs, another two were created. One of them, called
the S experiment, includes the same configuration as the N experiment but without
the NOAH LSM. The other one is called the C experiment and it includes the same
configuration as the D experiment, that is, including the data assimilation step but
without the Noah LSM. These both experiments would help us to understand the
e�ect of the LSM in the WRF simulations. However, the results of these experiments
will not be included in this thesis.

2.3 Postprocessing the Model Outputs
Once both WRF runs were finished, the raw output from the model was postpro-
cessed. The variables cannot be used directly as they are stored by the model since
most of them are calculated on model’s vertical levels and not on pressure levels.
Moreover, some other diagnostic variables must be calculated as they are not included
by default in model’s output (e.g. evaporation). Depending on their characteristics,
the postprocessing will be di�erent. These are the variables that were created during
the postprocessing:

• Temperature [T]: The temperature field was calculated at 850, 700, 500, 300
and 200 hPa in degrees Kelvin. It was derived from potential temperature and
pressure at model’s levels according to the definition of the potential temper-
ature in Tsonis (2002) and then, interpolated to that pressure levels using the
NCAR Command Language (NCL).

• Specific humidity [SHUM]: The specific humidity was calculated from the
water vapour mixing ratio [QVAPOR] in kg/kg and transformed into the above
mentioned pressure levels by NCL.

• Zonal and meridional wind [U, V]: Zonal and meridional components of
wind were calculated at mass points of the original vertical levels in m/s and
then, extrapolated to the selected pressure levels by NCL.

• Geopotential height [Z]: The geopotential height corresponding to 850, 700,
500, 300 and 200 hPa is calculated in m using NCL.

• Vertically integrated zonal and meridional moisture transport [Qx,
Qy]: The zonal and meridional components of the moisture transport were
obtained by means of the vertical integration of the specific humidity and
zonal/meridional wind product (calculated in mass points). Both are measured
in kg/(ms).

• Vertically integrated zonal and meridional condensed moisture trans-
port [Qcx, Qcy]: The zonal and meridional components of the condensed
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moisture transport were obtained by calculating the product between spe-
cific humidity of the condensed particles (cloud water [QCLOUD], ice crystals
[QICE], rain drops [QRAIN] and snow [QSNOW]) and zonal/meridional wind
in mass points, and then, integrating along the vertical axis. Both are measured
in kg/(ms).

• Precipitable water column [PW]: The precipitable water column was cal-
culated by the vertical integration of the specific humidity at the original model
levels, and it is measured in kg/m2.

• Condensed precipitable water column [PWc]: The condensed precip-
itable water column (in kg/m2) was calculated by the vertical integration of
the specific humidity of the condensed particles at the original model levels.

• Total precipitation [Rain]: The total precipitation in kg/(m2s) was cal-
culated by the sum of the convective precipitation [RAINC] and the non-
convective precipitation [RAINNC]. It is an accumulative field, so the value
on each time-step is computed as the di�erence between the next time-step
minus the current one.

• Evaporation [EVAP]: The evaporation from the surface was calculated from
the latent heat flux [LH] from the model surface. This is also an accumulative
field, so it is calculated by means of a forward di�erence. It is measured in
kg/m2s.

• Surface heat flux [SHFX]: The surface heat flux in W/m2 is calculated as
the di�erence between a time-step and its previous one of the accumulated
upward sensible heat flux at surface [ACHFX].

• Mean Sea Level Pressure [MSLP] The mean sea level pressure is calculated
by NCL in Pa.

• Other variables: The terrain height [HGT] in m, the water vapour mixing
ratio at 2 m [Q2] in kg/kg, the temperature at 2 m [T2] in Kelvin degrees, the
surface pressure [PSFC] in Pa and the zonal and meridional wind at 10 m [U10
and V10] in m/s were taken directly from model’s output.

2.4 Statistically Downscaled Model Data
The SDSM model is an statistical downscaling model whose algorithm can be de-
scribed as a conditional weather generator, as regional variables (called predictors)
are used to calculate time-varying parameters in a specific site. The relationships be-
tween the local predictand (in our case, daily precipitation amount) and the regional
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predictors are determined by a least squares calibration. In this case, the transforma-
tion applied to the predictand in order to better match a normal distribution is the
fourth root transformation, and the missing variance is replicated by adding white
noise. Finally, a 20-member ensemble is generated by the SDSM in order to show its
uncertainty. The detailed methodology can be found in Wilby and Dawson (2013).

In order to run the model properly, a series of steps must be followed (Figure 2.7).
Each calibration must start by selecting a specific site and by retrieving the longest
observed time-series available. Then, the longitude and latitude of that station must
be used to select the predictor variables from the nearest reanalysis grid cell. The
standard predictor variable set includes: downward shortwave radiation flux, mean
sea level pressure, precipitation, near-surface specific humidity, mean temperature
at 2 m and geostrophic wind strength, both wind components, geopotential height,
vorticity, divergence and relative humidity (all at 500 and 850 hPa). These are the
predictor variables typically used in statistical downscaling models (Cavazos, 2000;
Wilby and Wigley, 2000; Schoof and Pryor , 2001). Once the predictand and the
predictor set are calculated, the relationships between them must be explored during

Figure 2.7: Architecture of the SDSM showing every step of it. The color of the boxes
shows if inputs are needed (green boxes), if results will appear on the screen (red boxes) or
if internal processes are carried out (black boxes). This image is an edited version of that
published in Wilby et al. (2014).
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a calibration period previously stated. According to those results, the predictors that
will be used to calibrate the model must be selected. Finally, the model will create
the 20-member ensemble.

During this study, a consistent strategy was adopted to reduce the e�ect of opera-
tor judgements when calibrating the SDSM. First, candidate predictor variables with
explained variance (R-squared, R2) greater than 0.1 (for each month of the monthly
analysis calculated by the model) were listed. Second, those with statistically in-
significant partial correlation (p > 0.05) were eliminated. Finally, the predictor with
weakest partial correlation was removed until no predictors with statistically insignif-
icant partial correlation are reported by the SDSM. That means that only predictors
with relatively high explanatory power and without multi-co-linearity are chosen.
This methodology for the calibration of SDSM is similar to some methods available
in the literature (Wilby et al., 1998, 2002; Gulacha and Mulungu, 2017). Some of
the technical aspects of the calibration have been already largely discussed in other
studies such as Wilby and Wigley (2000); Hanssen-Bauer et al. (2005); Huth (2005);
Crawford et al. (2007); Mahmood and Babel (2013, 2014).

We will focus on the previously stated twenty-one stations from the ECA&D
dataset (see section 2.1 and Figure 2.1). Daily precipitation totals at these sites were
used as the predictand for SDSM. The longitude and latitude of the stations were used
to select the predictor variables from the nearest reanalysis grid cell. The predictors
from NCEP were downloaded from the SDSM portal. However, the predictors from
ERAI were created directly from the reanalysis’ raw data.

Both versions of ERAI (at 2.5¶ and 0.75¶ horizontal resolution) were postpro-
cessed the same way. Most of the variables were publicly available, but some were
created during this postprocessing:

• Airflow strength at surface, 500 hPa and 850 hPa: The airflow strength
in m/s was calculated as the magnitude of the vector defined by both wind
components at each vertical level [U10, V10, U, V].

• Precipitation: The precipitation in mm was calculated as the sum of the
convective precipitation [CP] and the large-scale precipitation [LSP], as stated
by ERAI’s developers1.

• Near surface relative vorticity: The near surface relative vorticity is not
directly available from ECMWF. In our case, the vorticity [VO] was taken from
the level 59 of ERAI’s original vertical sigma-levels (according to Berrisford
et al. (2011), approximately 0.994 if surface is defined as 1).

• Near surface divergence: The near surface divergence was defined as the
divergence [D] at the original 59th vertical level.

• Near surface relative humidity: The near surface relative humidity was
calculated from the 2 m dew point temperature [D2] and 2 m temperature

1
see How are Large Scale Precipitation, Convective Precipitation and Snowfall defined in the

ECMWF model? in ERAI’s Frequently Asked Questions (https://www.ecmwf.int/search/faqs)
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[T2], taking into account the definition of the water vapour pressure (eq. 7.5)
in ECMWF (2015).

• Near surface specific humidity: The near surface specific humidity was
calculated from the 2 m dew point temperature [D2] and surface pressure [SP],
taking into account the definition of the specific humidity (eq. 7.4) in ECMWF
(2015).

Di�erent strategies were used to calibrate the version 5.2 (Decision Centric) of the
SDSM during the thesis, resulting in four di�erent experiments (Table 2.1). These
options are based on the use of NCEP and ERAI for downscaling predictor variables.
Two calibration periods were selected according to reanalyses’ characteristics: 1948-
2009 and 1979-2009. Additionally, two di�erent grid resolutions were used with
ERAI, namely 2.5¶ and 0.75¶. Configuring the SDSM model in this way allowed us
testing the sensitivity of the results to di�erent calibration periods, predictor sets
and resolutions of the coarse-model data. Additionally, the results of the comparison
of SDSM versus WRF are more reliable since using di�erent datasets and resolutions
for calibration but the same validation period allows deeper understanding of the
consequences of the various calibration decisions.

We use a consistent nomenclature to aid comprehension of the large number of
model configurations and input permutations. The first letter of the experiment
code defines the reanalysis used to create the predictor variables ("N" for NCEP and
"E" for ERAI). The following two numbers represent the year when the calibration
period begins ("48" for 1948 or "79" for 1979). A final character "r" (as in experiment
"E79r") denotes that the spatial resolution of the ERAI data is at 0.75 degrees instead
of 2.5. Even if the SDSM was run using two calibration periods (depending on each
experiment), the validation period was always the same (2010-2014, the one available
in both WRF simulations).

Table 2.1: Characteristics of the experiments used for the analysis of the e�ect of calibration
period, predictors and resolution in the SDSM model.

Experiment Model Predictors Resolution Calibration Validation

N48 SDSM NCEP R1 2.5¶x2.5¶ 1948-2009 2010-2014

N79 SDSM NCEP R1 2.5¶x2.5¶ 1979-2009 2010-2014

E79 SDSM ERA Interim 2.5¶x2.5¶ 1979-2009 2010-2014

E79r SDSM ERA Interim 0.75¶x0.75¶ 1979-2009 2010-2014
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2 DATA AND METHODOLOGY

2.5 Validation Datasets and statistical indicators employed
Several datasets described in section 2.1 were used for validation purposes in this the-
sis: Atmospheric radiosondes and MODIS data for PW; EOBS, TRMM, GPCP and
ECA&D datasets for precipitation (simulated by WRF or by SDSM); and GLEAM
v3.0b and v3.0c for evaporation. However, it must be said that the number of datasets
that can be used for validation is not very high because at the same time they must
cover the period 2010-2014 and they must ideally have a comparable resolution to
that used in the model runs.

Since most of the chosen datasets presented a daily temporal resolution, the data
from ERAI and both WRF experiments were aggregated to daily values. Di�erent
validation techniques and validation scores were used in this study, depending on the
characteristics of the analysed variables. If the validation focuses on a single site,
Taylor diagrams were used to plot the standard deviation (SD), root mean squared
error (RMSE) and Pearson’s correlation (r), as it is a really visual way to interpret
the results (Taylor , 2001). However, if the validation focuses on a field (e.g. PW
or evaporation), the nearest neighbour to each point at WRF’s mask for the IP was
calculated in the other grids. This methodology has been regularly used in previous
studies such as Borge et al. (2008); Jiménez et al. (2010); Jiménez and Dudhia (2012);
Önol (2012); Soares et al. (2012). Then, the results were plotted in coloured maps
representing the correlation, the bias or the RMSE.

Not only for accurately representing the sampling errors of the observed data, the
bootstrap technique with resampling was also used to calculate the significance of our
results. Particularly to determine the di�erence between di�erent verification scores
for alternative models. To do so, 1000 time series were created with replacement and
compared against the validation datasets. The results of these new time series are
also included in the Taylor diagrams. All the corresponding points plotted delimit
a shaded region around the results for the full sample (represented by a big point).
This region shows the variability of the scores and if the shaded regions of two
di�erent experiments do not overlap each other, the results are taken as significant.
However, while comparing both downscaling techniques (in chapter 4), the results of
the bootstrap technique will not be included in the Taylor diagrams and the scores
reached by this technique will be studied in a separate figure in order to improve the
clarity of the Taylor diagrams.

Additionally, an empirical orthogonal function (EOF) analysis was carried out.
This methodology will help us to identify and extract the independent patterns (the
normal modes) that would reconstruct the original data. Following the nomenclature
described by Hannachi et al. (2007), the spatial patterns are typically called EOFs,
and their associated temporal projections are the principal components (PCs).

Particularly for the dynamically and statistically downscaled precipitation com-
parison study (chapter 4), some statistical indicators were derived from the results of
the SDSM and WRF experiments. To test the ability of the SDSM experiments fore-
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2.5 Validation Datasets and statistical indicators employed

casting the observed precipitation, the Area Under the Curve (AUC) of the Relative
Operating Characteristic (ROC) curve (Mason, 1982) was calculated. These curves
plot the hit rate versus the false alarm rate by means of several probability thresh-
olds (from 0.05 to 0.95 by 0.05 in our case). The diagonal line of the plot delimits
if the forecast is able to discriminate between events and non-events. If the curve
goes above the diagonal, the forecast is skilful, but if it goes below the diagonal, the
forecast is not skilful at all. In our case, the AUC perfect score would be 0.5, and 0
would represent no skill.

As the SDSM creates a 20-member ensemble by default, we need to compare
a deterministic product as WRF with a probabilistic one. To do so, the results
from SDSM experiments will be studied focusing on the mean of the ensemble, but
also studying each member of the ensemble independently as if they were di�erent
experiments. An evaluation of the SDSM ensemble was evaluated by means of the
Linear Error in Probability Space (LEPS) (Ward and Folland, 1991). It measures the
error in probability space as opposed to measurement space, and the perfect score
would be 0 (with values ranging between 0 and 1).

Additionally, the added value of both downscaling techniques was analysed by
means of the Brier Skill Score (BSS). In this case, the precipitation from ERAI was
used as a reference forecast. The definition given by Storch and Zwiers (1999) was
followed, commonly used in the literature (Winterfeldt et al., 2011; García-Díez et al.,
2015). It was applied to the D experiment, SDSM mean and each ensemble member.
The values of the score range between -1 and 1. The studied experiment outperforms
the reference forecast if positive values are obtained, but the reference forecast is
better if negative values are returned.

Finally, several precipitation indices were calculated. However, as our validation
period (2010-2014) is not really long, there is not enough data to reliably calculate
extreme precipitation indices such as the number of heavy events or the fraction of
total from heavy events. Thus, only indices related to the precipitation amount and
occurrence were included in this study:

• Absolute mean daily precipitation (pav): average precipitation of all days.

• Wet-day intensity (pint): average precipitation of days above 1 mm.

• 90th percentile wet-day total (pq90): 90th percentile of precipitation of days
above 1 mm.

• Maximum consecutive dry days (pxcdd): number of consecutive days with pre-
cipitation below 1 mm.

• Wet-day probability (pwet): number of days with precipitation above 1 mm
divided by the number of days of the analysed period.

• Maximum five-day total precipitation (px5d): maximum precipitation amount
measured in five consecutive dry days.

These indices have previously been used to analyse precipitation in studies such as
Haylock et al. (2006), Wilby and Yu (2013) and Nicholls and Murray (1999).
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2 DATA AND METHODOLOGY

2.6 Analysis of the Water Balance
In order to analyse the atmospheric water budget over the IP simulated by both WRF
simulations and ERAI, the moisture conservation equation for vertically integrated
quantities and surface fluxes (equation 12.9 from Peixoto and Oort (1992)) is used:

ˆW

ˆt
+ Ǫ̀ · Q̨ + ˆWc

ˆt
+ Ǫ̀ · Q̨c = E ≠ P (2.1)

where W is the PW, Ǫ̀ · Q̨ is the divergence of moisture flux, and E and P are the
evaporation and precipitation respectively. The subscript c denotes the terms related
to the condensates simulated by model’s microphysical scheme.

Starting from equation 2.1, the residual ÷ of the water conservation equation was
defined for each grid point as follows:

÷ = ˆW

ˆt
+ Ǫ̀ · Q̨ + ˆWc

ˆt
+ Ǫ̀ · Q̨c ≠ E + P (2.2)

The most important terms in Equation 2.1 (W , Ǫ̀ · Q̨, E, P ) were quantitatively
verified against observations, namely precipitable water (in section 3.1), precipitation
(in section 3.2) and evaporation E (in section 3.3). In other cases, direct observations
do not exist (such as is the case for divergence of moisture transports Ǫ̀ · Q̨) and
the verification was carried out by checking the closure of the water conservation
equation. The spatial pattern of the residual ÷ was studied for both WRF simulations
and ERAI, particularly for the annual and seasonal means. Additionally, annual and
seasonal accumulation maps were calculated for each term of the water balance,
together with areal mean plots when showing time series of evaporation.
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3

Analysis of the Water Balance

T he main objective of this chapter of the thesis is to study the moisture balance
over the IP using both simulations created with WRF. The closure of the at-

mospheric hydrological cycle will be studied focusing on the moisture balance within
the model, but also on how each element of it is simulated (by comparing with ob-
servational datasets).

Several sections are included in this chapter. The first three of them focus on
the validation of elements of the water balance: PW in section 3.1, precipitation
in section 3.2 and evaporation in section 3.3. Afterwards, the residual (defined fol-
lowing equation 2.1) and the e�ect of the data assimilation step are analysed in
sections 3.4 and 3.5 respectively. Finally, the most important features observed on
the hydrological cycle are presented in section 3.6.

3.1 Validation of Precipitable Water
As previously stated in section 2.5, two di�erent datasets were used to validate
the PW over the IP: Radiosondes downloaded from the server of the University

25



3.1 Validation of Precipitable Water

of Wyoming and data from MODIS.
The radiosonde data are based on eight stations evenly spaced across the IP. For

each station a Taylor diagram was created, including both WRF experiments and
ERAI. Figure 3.1 shows the results for the comparison of these data with the observed
PW. The experiment with data assimilation (D) was the one with the best scores in all
the available stations (r between 0.98 and 0.99 for daily data) with a 95% confidence
level. The D experiment (including data assimilation) improved the results of the N
experiment (r between 0.8 and 0.85). Furthermore, it was able to outperform ERAI
(r between 0.93 and 0.97). The SD produced by both WRF experiments is closer
to that observed, and in five stations (Madrid, A Coruña, Santander, Zaragoza and
Murcia), its value is better than the one for ERAI. The same distribution of the
experiment as for correlation is observed for RMSE. The D experiment produces
the best score (RMSE smaller than 2 mm in every station), followed closely by
ERAI (RMSE ranging between 2 mm and 4 mm). The N experiment, without data
assimilation, produced the worst RMSE in every station (RMSE higher than 3.5
mm).

By means of the bootstrap technique with resampling, 1000 time-series were cre-
ated for each experiment and compared with the observations. Their results are
included on each Taylor diagram as points that are arranged as shaded regions.
Since the shaded regions of the experiments do not overlap each other, our results
are shown to be significant.

Scatterplots between both simulations and ERAI with observations showed that
the slope obtained from the regression line was really well reproduced by both WRF
runs (N: from 0.82 to 0.98, D: from 0.92 to 1.00). Particularly for the D experiment,
which was able to beat ERAI (from 0.79 to 1.01). However, the bias was larger for
the N experiment (between 1.96 mm to 4.09 mm), whilst for D and ERAI the spread
of the values was smaller (between -1 mm and 1 mm). The results for every station
can be found on Table 3.1.

The correlation coe�cient of each experiment after removing the seasonal cycle

Table 3.1: Characteristics of the regression lines between the observed PW and N, D and
ERAI.

Experiment A Coruña Santander Zaragoza Barcelona
Slope Intercept Slope Intercept Slope Intercept Slope Intercept

ERAI 0.97 0.17 0.79 ≠0.29 0.92 ≠0.69 0.79 0.97
N 0.98 1.96 0.95 1.76 0.92 2.46 0.82 3.441
D 0.98 0.35 0.96 0.49 1.00 0.00 0.93 0.55

Experiment Murcia Gibraltar Lisbon Madrid
Slope Intercept Slope Intercept Slope Intercept Slope Intercept

ERAI 0.82 0.39 0.94 ≠1.07 1.01 0.99 0.91 0.53
N 0.82 3.67 0.82 3.57 0.91 4.09 0.90 2.888
D 0.93 0.55 0.92 ≠0.01 1.00 0.66 0.99 0.37
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3.1 Validation of Precipitable Water

Figure 3.2: Correlation for both WRF simulations and ERAI compared to PW data collected
by MODIS aboard Aqua and Terra satellites. The spatial average of the points included in
the IP is presented in the right bottom corner of the map.

was also calculated. The D experiment is the one with the best score (r between 0.97
and 0.99). Worse scores were obtained for ERAI (r between 0.86 and 0.96), but not
as bad as those for the N experiment (r between 0.67 and 0.78).

The verification results for mixed Level 2 data measured by MODIS aboard Aqua
and Terra satellites are presented in Figure 3.2. Poor correlations for the N ex-
periment were observed, particularly in the southern and northwestern IP. The D
experiment is able to improve the results obtained for N. Not only in the problematic
areas of the N experiment, but also on the northern plateau and the Ebro basin. The
correlation pattern observed for the D experiment is quite similar to that obtained by
ERAI. Both datasets (D and ERAI) reached the same area-averaged r (0.66), while
the N experiment obtained 0.53. It is clear that the agreement between satellite and
model PW is lower than between soundings and model data.

The bias between both WRF simulations and ERAI with MODIS L2 data is
presented in Figure 3.3. The mountain ranges across the IP were clearly recognizable
in both WRF simulations. The N experiment presented the poorest results near the
final stretch of the Tagus, Guadiana and Guadalquivir rivers, but also in the Ebro
basin. The D experiment was able to slightly improve these results, obtaining closer
values to those obtained with ERAI (D: -14.84 mm and ERAI: -14.25 mm). The

Figure 3.3: Same as Figure 3.2, but for PW bias (mm).
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3 ANALYSIS OF THE WATER BALANCE

Figure 3.4: Same as Figure 3.2 and 3.3, but for PW RMSE (mm).

results of the experiments are di�erent at a 95% confidence level. The resolution of
the spatial grid used in WRF allows a better representation of the results, suggesting
that the physical features of the IP delimit the distribution of the PW.

The RMSE maps corresponding to daily data between WRF experiments and
ERAI with MODIS data were also calculated (Figure 3.4). Similar results to those
for bias were obtained. The best results for both WRF simulations are obtained near
the mountain ranges of the IP, and the highest values are located near the coasts
of it. However, the D experiment is able to slightly improve the results from the
experiment without data assimilation (N: 15.68 mm and D: 15.47 mm). Again, the
results of the experiments are di�erent at a 95% confidence level. For ERAI, the
highest values are observed in the southwestern and Mediterranean coasts of the IP.
The areal mean RMSE observed for this experiment is 14.91 mm.

Both validation datasets showed that the D experiment improved the results ob-
tained by the N experiment, and that these results are comparable to those obtained
by ERAI. However, the 15 km resolution at WRF’s domain allows a better under-
standing on the spatial distribution of the PW.

3.2 Validation of Precipitation
Many datasets were selected for the validation of precipitation. As stated in sec-
tion 2.5: EOBS, TRMM, GPCP and twenty-one stations from ECA&D.

We will start by showing the validation of precipitation against the EOBS dataset.
Figure 3.5 shows the correlations between this dataset and both WRF simulations
and ERAI. The northwestern IP is the best region reproduced by WRF and ERAI.
Poor correlation values are observed in the Ebro basin and southeastern Spain, par-
ticularly for the N experiment (mean r value 0.53). However, the experiment with
data assimilation is able to improve r in these regions, making it comparable to
ERAI as both reach similar areal mean r values: 0.64 and 0.63 respectively. Di�erent
correlation patterns are observed for these two similar experiments: while the D ex-

29



3.2 Validation of Precipitation

Figure 3.5: Precipitation correlation maps between EOBS dataset and both WRF simula-
tions and ERA. The mean r value for correlations against EOBS is presented in the right
bottom corner of the maps.

periment has problems reproducing the rain in the west side of the mountain ranges,
ERAI presents major problems in the southern coast of Spain and in the Ebro basin.

The bias for EOBS (Figure 3.6) showed large di�erences for the N experiment
in the northwestern part of the IP, the Pyrenees and in the Central and Baetic
mountain ranges. The D experiment shows better agreement with EOBS, with some
discrepancies remaining mainly in the north of the IP. A similar pattern is observed
for ERAI, especially in the northwestern IP. Mean biases of -0.18, 0.07 and -0.02
mm/day are measured for N, D and ERAI respectively.

The RMSE (Figure 3.7) showed that the N experiment presented major discrep-
ancies with EOBS near the mountain ranges of the IP, but also near the mouth of
the Ebro river. The experiment with data assimilation is able to reduce them and
only in the northwestern IP can be found high values of RMSE. A similar pattern
is observed for ERAI. The areal RMSEs obtained for N, D and ERAI are 4.62, 3.75
and 3.49 mm/day respectively.

Focusing on the correlations of the twenty-one stations selected from the ECA&D
dataset (Figure 3.8), the N experiment obtained the poorest results. Particularly near
the Mediterranean coast, where values below 0.3 can be found. The D experiment
improves these results in the center and southern regions of Spain, but the poorest

Figure 3.6: Same as Figure 3.5, but for bias (mm/day).
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Figure 3.7: Same as Figure 3.5 and 3.6, but for RMSE (mm/day).

results can still be found near the Mediterranean coast. The areal mean correlations
improved from 0.44 to 0.54 with the data assimilation step. The experiment with
data assimilation is able to outperform ERAI in some stations of the southern IP,
but ERAI’s areal mean correlation (0.5) is quite close to that from D.

The biases are better for the inland parts of the IP for both WRF simulations
and ERAI (Figure 3.9). For the N experiment, the largest biases are obtained in A
Coruña, Lisbon, Córdoba and Barcelona stations. This experiment underestimates
the precipitation in A Coruña, but overestimates it in Lisbon and Barcelona. The D
experiment is able to improve the results for A Coruña and Barcelona, but not those
for Lisbon and Córdoba. However, this experiment is that with the largest mean bias
(0.3 mm/day). Lisbon is also problematic for ERAI, along with Vigo and Santander,
where largest biases can be found. The best score is obtained for the N experiment,
followed by ERAI (0.08 and 0.12 mm/day respectively)

Focusing on the RMSE, a northwest-southeast dipolar pattern can be observed
on the three experiments (Figure 3.10). For both WRF experiments, the largest
RMSE is found in Vigo and the smallest in Murcia. For ERAI, the smallest RMSE
is obtained inland, in Madrid. The largest areal mean RMSE is obtained for the N
experiment, followed by ERAI and D, with 5.09, 4.56 and 4.43 mm/day respectively.

Figure 3.8: Precipitation correlation maps between ECA&D dataset and both WRF simu-
lations and ERAI. The mean r value for each one of the chosen twenty-one stations from
ECA&D is presented in the right bottom corner of the maps.
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Figure 3.9: Same as Figure 3.8, but for bias (mm/day).

Similar maps to those from EOBS are obtained for TRMM, where the best cor-
relation values are obtained for the northwestern IP (see Figure 3.11). However,
compared to TRMM, the poorest results are obtained also in the east Cantabrian
coast apart from the Mediterranean coast. Again, the D experiment is able to im-
prove the correlation of these problematic zones. The correlation pattern for D and
ERAI is similar, and also their areal mean correlation: 0.47 and 0.48 respectively
(0.36 for N).

Focusing on the bias between WRF precipitation and TRMM, similar di�erences
to those in GPCP are also observed here near the Cantabrian coast (see Figure 3.12).
Both WRF simulations overestimate the precipitation in that region, particularly
the N experiment. The data assimilation reduces these di�erences. The areal mean
bias is reduced from -0.65 to -0.4 mm/day changing from N to D. Similar pattern
is observed over the IP for ERAI (areal mean bias is -0.48 mm/day). The three
experiments highly underestimate the precipitation near the Pyrenees.

The RMSE pattern observed for both WRF experiments is similar to that ob-
tained with EOBS (see Figure 3.13). Again, the largest values are obtained near the
mountain ranges of the IP, particularly in the northwestern zone. However, the D
experiment manages to reduce this RMSE from N (the areal mean RMSE is reduced
from 5.58 to 4.72 mm/day). For ERAI, the largest values appear near the Pyrenees
and in Sierra Nevada. The areal mean RMSE for ERAI is 4.3 mm/day, smaller than

Figure 3.10: Same as Figure 3.8 and 3.9, but for RMSE (mm/day).
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Figure 3.11: Precipitation correlation maps between TRMM dataset and both WRF sim-
ulations and ERAI. The mean r values obtained by each experiment are presented in the
right bottom corner of the maps.

that for D.
Finally, the scores for GPCP were calculated. Focusing on the correlation (Fig-

ure 3.14), the highest values are obtained over Portugal and the Pyrenees on the
three experiments. The poorest correlations are observed for the N experiment, near
the Mediterranean and east Cantabrian coasts along with the Ebro basin. The data
assimilation experiment improves the results from N. ERAI’s pattern is similar to
that from D, but the poor resolution of ERAI influences the results. The areal mean
correlations are 0.46 mm/day for both D and ERAI, but 0.39 mm/day for N.

Changing from correlation to bias (see Figure 3.15), it is clear that the same
pattern observed on the other gridded datasets is also here. Both WRF simulations
overestimate the precipitation near the mountain ranges of the northwestern IP, par-
ticularly the N experiment. Precipitation is underestimated near the Mediterranean
coast and Ebro basin. ERAI underestimates the precipitation in the east Cantabrian
and Catalonian coasts. The areal mean biases for N, D and ERAI were 0.24, 0.49
and 0.4 mm/day respectively.

The largest RMSEs for both WRF experiments (Figure 3.16) are located in the
above mentioned mountain ranges. However, the data assimilation is able to improve
the results and the RMSE is highly reduced in those places (areal mean RMSE is
reduced from 6.02 to 5.41 mm/day from N to D). For ERAI, the results are smoothed
by the poor resolution of the reanalysis, but a similar pattern to D is observed. In

Figure 3.12: Same as Figure 3.11, but for bias (mm/day).
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3.2 Validation of Precipitation

Figure 3.13: Same as Figure 3.11 and 3.12, but for RMSE (mm/day).

this case, the areal mean RMSE is 5.06 mm/day.
Once every experiment was validated against the observational datasets, in order

to summarize the r and bias results, a quantile-based analysis is presented in Ta-
bles 3.2 and 3.3. Taking into account these four validation datasets, the correlations
obtained by the N experiment against each of them were worse than those for ERAI
and the D experiment. The D experiment obtained better (or at least similar against
GPCP and TRMM) results to those for ERAI on each validation. The highest results
for the D experiment were obtained while comparing to EOBS dataset, with values
ranging from 0.53 to 0.76 across the IP. However, the largest di�erences between D
and ERAI are obtained while comparing to ECA&D datasets. In this case, the corre-
lations for D range between 0.69 and 0.45, while for ERAI the values range between
0.60 and 0.38.

Focusing on the bias (Table 3.3), the spread of the results was bigger for the N
experiment, particularly comparing with TRMM. Comparable results were observed
for ERAI and the D experiment. However, the spread of the D experiment was better
when comparing to ECA&D. Then, it is clear that the D experiment improves the
results from the N experiment (without data assimilation) and that similar results
are obtained for D and ERAI.

Figure 3.14: Precipitation correlation maps between GPCP dataset and both WRF simu-
lations and ERAI. The mean r value for GPCP is presented in the right bottom corner of
the maps.
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Figure 3.15: Same as Figure 3.14, but for bias (mm/day).

3.3 Validation of Evaporation
Analysing the static geographical data used by WRF for our domain, the predominant
types of soil and land uses over the IP can be studied. The soil type in the region
is mainly loam, with the exception of the Guadalquivir basin that is made of clay.
Conversely, the land uses over the IP are more varied (see Figure 3.17). Evergreen
and mixed forests are detected in the mountain ranges of the IP and in the northern
Spain. The plateaus are full of croplands, mixed with woody savannas and open
shrublands in the southern Spain. A clear relationship with the climatic areas arises
from this distribution of land uses.

Focusing on the Urban and Built-Up category in the model soil type, three di�er-
ent urban sites can be clearly spotted: Barcelona, Madrid and Porto. These urban
points of the grid must be removed since WRF is not able to simulate correctly their
evaporation (Figure 3.18) due to the mismatch between the real land use and the
simulated one. The correlation of these points with their nearest points in GLEAM
grid was zero or negative, with values between 0 and -0.4. As this was a problem
related to the LSM, all these points were eliminated from the validation.

As previously stated in section 2.5, two versions of the GLEAM dataset were
selected as validation datasets for evaporation: GLEAM 3.0b and 3.0c. Mean daily

Figure 3.16: Same as Figures 3.14 and 3.15, but for RMSE (mm/day).
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Table 3.2: Spatial quantile-based analysis of the correlations obtained for precipitation in
both WRF experiments and ERAI with the validation datasets: EOBS, ECA&D, GPCP
and TRMM. The best results were highlighted with orange boxes.

evaporation of both GLEAM versions was calculated for 2011-2014 (Figure 3.19),
the period when both versions overlap. The largest values of evaporation (above
1.5 mm/day) are found in the northwestern IP, near the Pyrenees and near the
Portuguese and Mediterranean coasts in both datasets. The poorest results (below 1
mm/day) are found in the southeastern corner of the IP and in the northern plateau.
The most remarkable di�erences between GLEAM 3.0b and 3.0c are concentrated
in the north-western and eastern sides of the IP. The highest values of the di�erence
were located in this last region, reaching 0.20 mm/day. Taking into account that
the di�erences between both versions are not really large and that the year 2010
is not available for version 3.0c, only the correlation, bias and RMSE maps against
GLEAM v3.0b were included here with the aim of showing a validation for the same

Table 3.3: Same as Table 3.2 but for bias (mm/day).
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Figure 3.17: The surface of the IP coloured according to the Modified MODIS 20 Land Use
Categories, defined by the NOAH LSM in both WRF simulations.
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Figure 3.18: Eliminated points from the validation of evaporation because of the lack of
ability to simulate observed evaporation by Noah LSM depending on their land uses. The
same colorbar to that in Figure 3.17 is used here.
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Figure 3.19: Left panel: Mean daily evaporation for GLEAM 3.0b (top) and 3.0c (bottom).
Right panel: Di�erences between both datasets for period 2011-2014.

period as that for both WRF experiments (2010-2014). However, a summary table
comparing both versions of GLEAM dataset is included at the end of this section.

The correlation map for the comparison of evaporation with GLEAM v3.0b is
presented in Figure 3.20. For the N experiment, poor results appear near the Ebro
basin and the Mediterranean coast. The D experiment is able to improve these
results, as showed by the areal mean values obtained for N and D (0.34 and 0.48
respectively). The values obtained by the experiment with data assimilation are
similar to those for ERAI (0.51). A similar pattern is observed in both experiments,
showing their poorest results for the Mediterranean coast and the northwestern IP.
Similar results (and patterns) were obtained if comparing to GLEAM v3.0c dataset,
with 0.33, 0.47 and 0.51 as mean values for N, D and ERAI respectively.

Results for the evaporation bias are presented in Figure 3.21. For the N exper-
iment, the best results were observed inland. Near the southern and south-eastern
coasts of the IP some points with large biases appeared. However, the areal mean
bias was only -0.01 mm/day for this experiment. Both the D experiment and ERAI
showed a negative bias, being more remarkable for ERAI (-0.26 mm/day and -0.82
mm/day respectively). No clear pattern was observed for the D experiment, but
some grid cells with large biases were observed again. For ERAI, large positive bi-
ases appeared near the Pyrenees, contrasting with the large negative biases near the
coasts of the IP. Similar results were obtained for GLEAM v3.0c, with -0.05, -0.32
and -0.86 mm/day biases for N, D and ERAI respectively.
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3 ANALYSIS OF THE WATER BALANCE

Figure 3.20: Evaporation correlation maps between GLEAM (version 3.0b) for both WRF
simulations and ERAI. The problematic points presented in Figure 3.18 were eliminated
and the mean correlation values are presented in the right bottom corner of the maps.

The RMSE maps of both WRF simulations and ERAI against GLEAM v3.0b are
presented in Figure 3.22. For the N experiment, the best results appeared inland
of the IP. The largest values are located in the northwestern IP, but particularly in
some grid points of the southern and Mediterranean coasts. The D experiment is
able to reduce the big RMSE at these points, but it also produced larger RMSEs
in other regions of the IP. However, the areal mean RMSE obtained by both WRF
experiments is quite similar: 0.73 mm/day for N and 0.77 mm/day for D. The poorest
results for ERAI are obtained near the coasts of the IP (not in the Cantabrian coast)
and the mean RMSE is 1.08 mm/day. Similar patters were obtained for GLEAM
v3.0c, with 0.71, 0.79 and 1.11 mm/day for N, D and ERAI respectively.

The e�ect of removing all urban points in the validation was observed particu-
larly in the correlation and bias measured for both WRF experiments and ERAI.
Those results are presented along with the summary tables of the correlations and
biases of both GLEAM versions (Tables 3.4 and 3.5). A quantile analysis of the
values before and after removing these problematic points can help us to quantify
its e�ect. Focusing on the correlation, the worst results were always obtained by the
N experiment (with and without the Urban points). The D experiment and ERAI
obtained similar results if the Urban points are included or not. Same features are
observed for the correlations with GLEAM v3.0c. It is clear that if the problematic
points are removed, the correlations are improved below the 50th percentile for both

Figure 3.21: Same as Figure 3.20 but for bias (mm/day).
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mm/day

Figure 3.22: Same as Figures 3.20 and 3.21 but for RMSE (mm/day).

versions of the GLEAM dataset.
If we change to the bias (Table 3.5), the N experiment is the one with the best

scores in both datasets, followed by D and ERAI. The biases are highly reduced
in both WRF experiments when the problematic points are eliminated (above the
50th percentile). However, no substantial changes a�ect ERAI and only the 95th
percentile changed when removing the urban points. Therefore, we can assume that
the results are quite robust in the central part of the probability distribution function
of the verification scores (correlation, bias and RMSE).

Finally, as a result of the negative biases observed for ERAI, the areal mean of the
monthly evaporation was calculated. Figure 3.23 showed a similar spatially averaged
evaporation rate for GLEAM and both WRF experiments. However, an intensified
behaviour was observed for ERAI over the IP. The bias between ERAI and GLEAM
v3.0b varied from 0.59 in winter to 1.11 mm/day in summer. For GLEAM v3.0c, a
bias of 0.6 in winter and 1.30 mm/day in summer were measured.

Table 3.4: Spatial quantile-based analysis of the correlations obtained for evaporation in
both WRF experiments and ERAI with version 3.0b and v3.0c from GLEAM, with and
without the problematic urban points. The best results were highlighted with boxes (in
orange for v3.0b and in blue for v3.0c).
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Table 3.5: Same as Table 3.4 but for Bias (mm/day).
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Figure 3.23: Areal mean evaporation simulated by di�erent datasets for 2010-2014. GLEAM
v3.0b in blue, GLEAM v3.0c in magenta, the N experiment in red, the D experiment in
green and ERAI in orange.
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3.4 Analysis of the Residual
The most important terms of equation 2.1 were determined by analysing the spread
of their areal mean values. Figure 3.24 shows the distribution of the areal mean
monthly data for ERAI and both WRF simulations. It was found that the terms
relative to condensates can be disregarded, as previously found by other studies
(Peixoto and Oort, 1992; Snider , 2000; Hirschi et al., 2006), and that the leading
terms of the water balance were the tendency of the PW, the divergence of moisture
flux, evaporation and precipitation.

The distribution of the residual was also calculated for Figure 3.24, and the largest
residual during 2010-2014 was obtained by ERAI. Both WRF experiments showed
a similar spread of the residuals but with opposite signs. It was positive for N
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Figure 3.24: Areal mean precipitation (MArealRAIN), evaporation (MArealEVAP), diver-
gence of moisture flux (MArealDivQ), tendency of the PW (DerivQ) and residual, according
to di�erent experiments: ERAI in orange, the N experiment in red and the D experiment
in green (in mm/day).
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3 ANALYSIS OF THE WATER BALANCE

and negative for D. Both WRF experiments were configured the same way, so the
change in sign from one to another must be attributed to the e�ect of the 3DVAR
assimilation step. Additionally, the D experiment showed a better agreement with
observations during the verification. It has also proved to be the experiment with
better or similar results to ERAI for each term of the water balance. Taking this
feature in mind, only the residual of the D experiment was deeply analysed.

Figure 3.25 shows the distribution of the areal mean values of the residual ac-
cording to the hour and season for the D experiment. The di�erences between the
values were bigger during summer (JJA) and smaller during winter (DJF). No re-
markable di�erences were observed between spring (MAM) and autumn (SON). A
similar behaviour of the six-hourly residuals was noticed on every season. At 00
and 06 UTC, comparable values were obtained. Then, at 12 UTC, the residual was
always reduced. Finally, at 18 UTC, the largest values were observed.

An analysis by means of PCs of the area averaged terms
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[P ] showed that the leading PC explains 72% of the total variance with anomalies
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Figure 3.25: Areal mean of the residual over the IP according to the D experiment stratified
by season (winter DJF, spring MAM, summer JJA, autumn SON) and hour (00 UTC, 06
UTC, 12 UTC and 18 UTC in blue, red, green and orange respectively).
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sign in the anomalies corresponds to
Ë
Ǫ̀ · Q̨

È
. The second PC explains 20% of the

total variance, and it basically represents the variability of [P ] with a much weaker
contribution (with opposite sign) of [E] and

#
ˆW
ˆt

$
. Finally, the third PC represents

only 6% of the total variance. It projects almost exclusively onto [E], and its time-
series shows a clear seasonal pattern with higher values during summer. It explains
77% of the variability of [E]. However, since neither of these PCs nor the original
variables are strongly linearly related with the residual, there is no simple explanation
for their area-averaged values.

3.5 Analysis of the Analysis Increments
It seems reasonable to think that the data assimilation step is the main cause of the
six-hourly changes of the residual. In order to analyse its role in the structure of the
residual, Figure 3.26 shows the distribution of the analysis increment of the specific
humidity at 2 m during the data assimilation process at di�erent times and seasons.
Large analysis increments in moisture at 12 UTC and 18 UTC for each season were
observed. During winter, the analysis increment occurs mainly at 12 UTC and not at
18 UTC. As stated by the box and whiskers, the spatial pattern at 12 UTC was more
intense than that at 18 UTC. In both cases, great values in the south of Madrid,
southeastern IP and Ebro and Guadalquivir basins can be found. It is clear that the
di�erences between seasons were highlighted, with strong increments in summer, but
less during winter. However, the spatial pattern was constant in every season.

The distribution of the analysis increments of the specific humidity at model’s
averaged 6, 7 and 8 vertical levels (near surface, approximately at 875 hPa) is pre-
sented in Figure 3.27. The data assimilation systematically removes moisture at this
level, particularly when data from the soundings across the IP are available. As
stated in section 2.1, the radiosondes are available at 00 UTC and 12 UTC (except
for Lisbon that is only available at 12 UTC). Their e�ect is clearly visible as the
bull-eye structure appear in those locations at the same time. At 06 UTC, when no
sounding is available, the e�ect of the data assimilation is strongly reduced as the
pressure is reduced. Above 100 hPa (averaged 30, 31 and 32 model’s vertical levels),
small increments in moisture (smaller than 1 ◊ 10≠7 kg/kg) appear particularly at
00 UTC and 12 UTC.

Regarding the analysis minus background of the temperature at 2 m, according to
Figure 3.28, the most remarkable increments were observed at 00 and 12 UTC of every
season. They occurred particularly in the south of the IP during winter, reaching
the Cantabrian Range in summer. The assimilation substantially corrects the well
known cold bias in summer temperatures observed in the IP for WRF simulations
(Fernández et al., 2007; Argüeso et al., 2011; Jerez et al., 2012).
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Figure 3.26: Left: Areal mean over the IP of the analysis minus background of the specific
humidity at 2 m (in 1 ◊ 10≠3 kg/kg) according to the season (winter DJF, spring MAM,
summer JJA, autumn SON) and hour (00, 06, 12 and 18 UTC in blue, red, green and orange
respectively). Right: Spatial distribution of the analysis minus background during summer
at 12 UTC (top) and 18 UTC (bottom).

Figure 3.27: Spatial distribution of the analysis minus background of the specific humidity
near 875 hPa at 00 UTC, 06 UTC and 18 UTC during winter (top) and summer (bottom).
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Figure 3.28: Left: Areal mean over the IP of the analysis minus background of the tem-
perature at 2 m according to the season (winter DJF, spring MAM, summer JJA, autumn
SON) and hour (00, 06, 12 and 18 UTC in blue, red, green and orange respectively). Right:
Spatial distribution of the analysis minus background during winter at 00 and 12 UTC
(top), and during summer at those same hours (bottom).

3.6 Description of the main features of the hydrological cycle
The D experiment accurately simulates the structure of the hydrological cycle over
the IP. This section focuses on the main features of this cycle described by this
experiment. The accumulated annual values of evaporation did not show a clear
pattern over the IP. However, checking the mean daily values of evaporation for
winter and summer (Figure 3.29), some interesting features can be observed. The
evaporation of the IP is really small during winter (0.67 mm/day on average). The
largest values are located in the south of Portugal for that season. During summer,
conversely, remarkable values (above 4 mm/day) are observed in the north and north-
western IP, the areas where the soil has the highest moisture content in that season.
No special structures were observed for the evaporation during spring and autumn.

The influence of the Atlantic sources of moisture was recognizable in the precipi-
tation (Figure 3.30). The D experiment obtained a similar pattern to that obtained
by AEMET for period 1971-2000 (AEMET , 2011). In both cases, the smallest values
appeared in the southeastern IP and the largest in the northwestern region and near
the mountain ranges. This pattern was not so recognizable for the EOBS dataset,
as the mountain precipitation is not captured by its coarse spatial resolution. A
good agreement between the D experiment and ECA&D dataset was observed. The
precipitation is underestimated by the D experiment only in some stations of the
southwestern IP, probably related to the di�culties simulating the convective pre-
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Figure 3.29: Mean daily evaporation (mm/day) simulated by the D experiment over the
IP for winter (left) and summer (right). The mean value of the evaporation over the IP is
presented in the right bottom corner of the maps.

cipitation regimes that dominate this region.
The seasonal variability of the PW was also analysed in Figure 3.31. The PW

showed higher values in the Mediterranean coast and the Ebro basin during sum-
mer. Remarkable values were also observed near the Bay of Biscay. During the other
seasons, especially spring and autumn, the PW values were higher in the most impor-
tant basins of the IP: Guadalquivir, Guadiana, Tagus and Ebro basins. The smallest
values were located near the mountain ranges during winter, as could be expected

Figure 3.30: Accumulated annual precipitation (mm) over the IP taken from the Spanish
Meteorological Agency atlas (AEMET , 2011) for 1971-2000 (left), compared to those from
the D experiment (top right) and from ECA&D and EOBS (bottom right).
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Figure 3.31: Mean daily PW (mm) simulated by the D experiment over the IP for winter
(top left), spring (top right), summer (bottom left) and autumn (bottom right).

from the lower temperatures at low levels of the atmosphere and the smaller height
of the troposphere at those places.

An advantage of using a model such as WRF is that new fields that cannot be
estimated from observations alone can be studied. This is the case of the moisture
that crosses the boundaries of the IP. Figure 3.32 shows the transboundary moisture
fluxes across the boundaries of the IP during winter as simulated by the D experiment.
According to the net values of each studied hour (00 UTC, 06 UTC, 12 UTC and 18
UTC), the IP imports a great amount of moisture during this season. The overall
net flux is always negative, in the range of -34.35 Pg/mon and -12.7 Pg/mon for day
and night respectively. The moisture enters the IP mainly through the Portuguese
coast and exits the peninsula through the Mediterranean coast. During spring, the
IP exports moisture at night (30 Pg/month), but imports it during the day (-27
Pg/mon).

During summer (Figure 3.33), the IP exports moisture during the whole day
(net flux always positive ranging from 48 to 68 Pg/mon) except at 12 UTC and 15
UTC that the IP moisture flux is negative (-0.34 and -8 Pg/mon respectively). At
those times, moisture is imported specially because of the breezes in the Alboran Sea
(southern Spain) (see 06 UTC versus 18 UTC plots). This breeze reaches its maxi-
mum intensity slightly later than 12 UTC. During Autumn, the IP mainly imports
moisture, with the net flux ranging from -31 Pg/mon to 4 Pg/mon. As stated by
Berbery and Rasmusson (1999), a similar behaviour to that for the IP was observed
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Figure 3.32: Transboundary moisture fluxes analysis at 00 UTC (top left), 06 UTC (top
right), 12 UTC (bottom left) and 18 UTC (bottom right) during winter. The reference bar
is labelled at 6.5 Pg/month. The green bars represent an inland flux, while the blue bars
refer to an outward flux.

in the United States.
The discussion of these results will take place in chapter 7. The discussion will

focus mainly on di�erent topics such as the length of the spin-up in our experiments,
the e�ect of the data assimilation on the results, the representativeness problem,
the coarse resolution of the validation datasets, the urban or built-up grid points
discovered during the validation of evaporation and the breezes.
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Figure 3.33: Same as Figure 3.32 but for summer.
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4

Comparison of Downscaling

Precipitation Models

T his chapter focuses on the optimal calibration of the Statistical DownScaling
Model (SDSM) and the comparison of the daily precipitation downscaled by

this model and both WRF simulations (N and D experiments).

As di�erent strategies were used to calibrate the SDSM, some comparisons be-
tween SDSM experiments were carried out in order to study the predictor suites
created for each of them, the e�ect of reducing the calibration period, changing the
source of the predictors or enhancing the resolution of the reanalysis used as source
of the predictors on the downscaled precipitation. These results are presented in sec-
tions 4.1 and 4.2. Finally, the most similar SDSM experiment to the configuration
used in WRF was compared to both WRF simulations in section 4.3, with our main
objective here being to determine the best downscaling model.
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4.1 Analysis of the predictor suites
As previously stated in Table 2.1 from chapter 2, four SDSM experiments were car-
ried out with SDSM. In order to create a fair comparison between them, four di�erent
predictor suites were created1. Taking into account that 21 stations were selected
over the IP and that there are 16 permutations of experiment-predictor suite, 336
downscaled precipitation time series would be created using SDSM. Hence, 672 com-
parisons would be needed to carry out with both WRF simulations. The potential
dimensionality of an exhaustive analysis would be very large so, in order to manage
the degrees of freedom, two representative predictor suites were selected.

The four predictor suites were evaluated as follows: the N48 suite was compared
to that from N79. The number of selected input predictors reduces by 6% from 125
predictors in N48 to 118 in N79. Fourteen stations retain the same predictors sets in
both suites. In the remaining cases, di�erences between suites are due to reductions
in the number of predictors used for calibration (e.g. Murcia, Albacete and Castellón
de la Plana) or changes between predictors at di�erent vertical levels. For example,
Tarifa uses the wind strength at 850 hPa in the N48 predictor suite instead of 500
hPa in N79.

There is also a reduction in the number of input predictors when comparing the
E79 and E79r suites. In this case, 132 predictors are used in E79 predictor suite
and 113 in E79r suite (-14%). Nine stations have the same predictors in both suites.
In the other stations (e.g. A Coruña, Santander, Tarifa, Cáceres and Albacete),
there are fewer input predictors. Only Barcelona station has a new predictor in E79r
compared to E79. This suggests that improving the resolution of the reanalysis,
reduces the number of predictors needed to calibrate SDSM.

There is more than 85% overlap between the various predictor suites. In order
to maximise the parsimony of the input predictors (Wilby and Wigley, 2000) and
consistency in the reanalysis resolution, suites N48 and E79 were selected. Hereafter,
both suites are named after the reanalysis used on their corresponding experiments:
the predictor suite based on the N48 experiment refers to the ‘NCEP predictor suite’
and E79 to the ‘ERA predictor suite’.

4.2 Comparison of SDSM experiments
The R2 values obtained by SDSM for each experiment when applying both NCEP
and ERA predictor suites are presented in Figure 4.1. For the N48 experiment, where

1
All of the predictor suites created can be found on the Appendix A.
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SDSM is calibrated for period 1948-2009 using inputs from NCEP, a similar pattern is
observed for both predictor suites. The best scores are obtained in the northwestern
and southern IP, while the worst appeared near the Mediterranean sea (particularly
in Barcelona). However, according to the mean values of the 21 stations, the ERA
predictor suite produced slightly better scores than NCEP predictor suite (15.23%
and 16.13% respectively, but not significant at 95% confidence level).

If the calibration period is reduced (1979-2009) but the inputs from NCEP are
maintained (N79 experiment), the R2 achieved for NCEP and ERA predictor suites
are 17.16% and 18.31% respectively. In other words, the use of the more recent
predictors yields higher validation skill scores. There are only three occasions when
R2 improves for the longer (i.e. 1948 onwards) calibration period: Madrid, Huelva
and Almería stations for the NCEP predictor suite; Lisbon, Madrid and Almería for
the ERA suite. Overall, the improvements in R2 appeared near the Mediterranean
Coast. The stations in the northwestern (Cantabrian) coast yield the best scores.

Changing the inputs from NCEP to ERAI but keeping the same calibration pe-
riod as in previous experiment (1979-2009), E79 obtained a mean R2 of 17.96% and
19.87% when using the NCEP and ERA predictor suites respectively. Some inter-
esting features are observed in the southwestern zone, particularly for Huelva and
Córdoba where significant improvements appeared. There are declining R2 values in
stations such as Lisbon, Barcelona and Tarifa when using the NCEP predictor suite.

Using the best resolution of ERAI as inputs for SDSM (E79r experiment), the best
R2 scores are reached. For both predictor suites, the best R2 values were obtained
in northwestern Spain, particularly in A Coruña and Gijón. However, values above
15% are observed on each station of the IP using both predictors suites (with the
exception of Lisbon and Barcelona when using the NCEP suite).

Then, it seems clear that the best calibration scores are obtained for the E79r
experiment using the ERA predictor suite. However, the significance of these dif-
ferences must be evaluated. To do so, the bootstrap technique with resampling was
applied to each experiment. Two stations from the twenty-one available were selected
to show the results: Lisbon and Cáceres.

The Taylor diagrams for each SDSM experiment on Lisbon station are presented
in Figure 4.2. Small improvements are observed between experiments when reducing
the calibration period, changing to ERA inputs or enhancing the resolution of the
reanalysis, particularly for the E79r experiment. The E79r experiment improves the
correlation and SD if the ERA predictor suite is used (r=0.6), but the correlation
is reduced while using the NCEP suite (r=0.5). The mean of the ensemble created
by SDSM (SDSM mean) improves always the correlation obtained by each member
of the ensemble independently (between 0.3 and 0.5), but not the SD. The RMSE is
also better for the SDSM mean on each experiment. The bootstrap technique shows
that di�erences between both predictors suites arise for E79 and E79r experiments.
Apart from Lisbon, no overlapping shaded regions of the bootstrap technique are
observed for Huelva, Albacete, Barcelona, Castellón de la Plana or Lleida.

On the other stations, as shown for instance using Cáceres, no significant di�er-
ences between experiments are observed on the results from the bootstrap technique
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4.2 Comparison of SDSM experiments

Figure 4.1: Spatial distribution of the R2 (expressed in %) obtained by SDSM for N48,
N79, E79 and E79r experiments (first, second, third and fourth rows respectively) calibrated
following the NCEP and ERA predictor suites (left and right respectively). The mean R2
value is presented in the right bottom corner of each map.
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Figure 4.2: Taylor diagrams for Lisbon station showing the di�erences between applying
the NCEP (red) and ERA suite (green) on N48 (top left), N79 (top right), E79 (bottom
left) and E79r experiments (bottom left). In each panel, the SDSM ensemble mean (big
dot), SDSM ensemble members (light dots) and the observed station data (grey diamond)
are shown. The results for the 1000 new time-series created by the bootstrap technique
with resampling are also plotted with small diamonds.

(Figure 4.3). Small improvements in correlation and RMSE (not SD) are still ob-
served for the experiments when changing to ERA predictor suite, particularly when
the E79r is selected, but there are no significant di�erences between them.

The significance of the results was also studied by means of the ROC curves of
the ensembles created by SDSM for each experiment and station. The ROC curves
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Figure 4.3: Same as Figure 4.2 but for Cáceres.

for the ensemble means at Lisbon are presented in Figure 4.4. Small di�erences on
the central part of the ROC curves appear for both predictor suites. For the NCEP
suite, the best AUC score is obtained by the N79 experiment (0.391), but for the
ERA suite it is reached for the E79r experiment (0.393). In both cases, the worst
results are obtained by the E79 experiment. Di�erences between the ROC curves are
observed for other stations apart from Lisbon, such as Albacete, Tarifa, Barcelona,
Gijón, Madrid and Daroca.

For the rest of the stations, no significant di�erences between the ROC curves
are observed, such as for Cáceres (Figure 4.5). In this station, the best AUC scores
are obtained by the E79 experiment when using the NCEP (0.404) and ERA suites
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Figure 4.4: ROC curves for the ensemble mean of each experiment at Lisbon stations while
using the NCEP (left) or ERA (right) predictor suites. The N48, N79, E79 and E79r are
coloured by red, green, orange and magenta lines respectively. The AUC of each experiment
is stated in the right bottom corner of the plots.

(0.406). However, the E79r is close to that experiment in both cases (0.401 and 0.405
respectively).

The distribution of the AUC scores obtained by the 21 stations over the IP was
also studied by means of a box and whisker chart (Figure 4.6). The best scores
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Figure 4.5: Same as Figure 4.4 but for Cáceres.
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Figure 4.6: Distribution of the ROC curves for the 21 stations over the IP according to the
SDSM experiment and predictor suite used (NCEP in red and ERA in green).

are obtained by the E79r experiment, followed by the E79 experiment. However,
the di�erences are not significant enough and there is no proof that this experiment
outperforms the others systematically and with enough statistical confidence.

4.3 Analysis of statistical and numerical downscaling models
For the comparison of statistical and numerical downscaling models, both WRF sim-
ulations were compared to the E79r experiment. It was calibrated on the SDSM with
its own predictor suite as no statistical significance was found for the E79r experi-
ment when applying the NCEP or ERA predictor suites. This way, the results are
produced after calibrating the model with the optimal predictor suite designed for
that experiment. This experiment is the most similar one to that configuration used
in both WRF runs. That is, ERAI at 0.75¶ grid resolution is used as the boundary
conditions on both WRF simulations and as the source of the predictors for SDSM.
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The chosen twenty-one stations were divided into four regions according to the sim-
ilarities between those included on each of them: Northern, Central, Mediterranean
and SouthWestern regions (in blue, green, pink and orange respectively in Figure 4.7).
These regions are similar to those defined by Serrano et al. (1999) and to the spatial
patterns of annual precipitation obtained by Rodríguez-Puebla et al. (1998) from the
analysis of the spatial variability in long observed series.

Figure 4.8 shows the predictor suite created for the E79r experiment. Precipita-
tion was the only predictor used for every station. The downward shortwave radiation
flux was used on twenty sites, and 850 and 500 hPa geopotential height on sixteen
and ten stations respectively. Nine stations used as predictors the relative humidity
at 500 hPa and the mean sea level pressure. Finally, both components of wind at 850
hPa were used on five stations, followed by meridional wind at surface and at 500
hPa on four stations and zonal wind at surface and at 500 hPa on three sites. Hence,
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Figure 4.7: Location of the four regions defined according to the similar properties of the
stations: Northern, Centre, Mediterranean and SouthWestern regions (in blue, green, pink
and orange) respectively.
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Figure 4.8: SDSM predictor suite for the experiment using inputs from ERAI at 0.75 degrees
(E79r). The color used to define each station represents the region where they belong,
namely: Northern (blue), Centre (green), Mediterranean (pink) and SouthWestern regions
(orange). The colours are the same to those used in Figure 4.7. Acronyms of the predictors
are defined as in Wilby and Dawson (2013).

the state of the atmosphere, the incident radiation and the atmospheric moisture are
taken into account by the SDSM during the calibration step.

A relationship between the region and the predictors used can be noticed in the
predictor suite. According to Table 4.1, the favoured predictors for the northern
region are the downward shortwave radiation flux, precipitation, geopotential at 850
hPa and zonal wind, relative humidity and geopotential at 500 hPa. For the centre
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Table 4.1: Number of times that each predictor was used on each region. The most impor-
tant values are highlighted using the color associated to each region of the IP: Northern in
blue, Centre in green, Mediterranean in pink and SouthWestern region in orange. The same
nomenclature as in Figure 4.8 was used here for naming the predictors.

of the IP, the downward shortwave radiation, precipitation and relative humidity
at 500 hPa are important predictors along with the mean sea level pressure and
meridional wind at 500 hPa. The radiation, precipitation, zonal wind at 500 hPa
and geopotential at 500 and 850 hPa seemed to be important for the Mediterranean.
Finally, in the southwestern IP, radiation, geopotential at 850 hPa and precipitation
must be included, but also the meridional wind at surface, geopotential at relative
humidity at 500 hPa and zonal wind at 850 hPa.

The predictors included in the predictor suite for the E79r experiment were di-
vided in three groups according to the latitude, longitude, elevation and annual
precipitation during 1980-2010 in order to check the dependency of the frequency
of predictor variable selection on these variables by means of a ‰-squared test. No
statistically significant site-dependencies in the predictor suite were identified. This
finding suggests that the optimum predictor set cannot be inferred from this kind of
properties and that each station has to be calibrated independently.

After running the SDSM with the above mentioned predictor suite, the explained
variances (R2) reached at the stations for calibration period were saved. The spatial
distribution of the R2 is presented in Figure 4.9. The R2 varied between 15% and
40% and the mean value is 22%. Two stations are highlighted in the map because
of their scores: Vigo and Córdoba, with 39% and 32% respectively. These values
of R2 were similar to those gathered by Gulacha and Mulungu (2017) for di�erent
domains and periods. The poorest results were observed in the Mediterranean coast
of the IP, particularly near the Ebro basin and in Barcelona. Conversely, the best
results appeared near the Cantabrian coast. A northwest-southeast dipolar pattern
is highlighted in these results, related to how well the precipitation types (large-scale
or convective, that is, Atlantic or Mediterranean) are simulated by RCMs over the
IP. These results are similar to those obtained by Goodess and Palutikof (1998).

Starting by the Northern region, it includes four stations, namely: A Coruña,
Vigo, Gijón and Santander. The Taylor diagram for Gijón is presented in Figure 4.10.
This station is the one representative of the results for the region1. The correlation

1
The Taylor diagrams for the other stations can be found in Figure B.1 from the Appendix B.
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R2 values for E79r
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Figure 4.9: Explained variance (in %) achieved for the calibration period by the SDSM for
the experiment including predictors from ERAI at 0.75 degrees (E79r). The mean value is
presented in the bottom right corner of the figure.

obtained by the SDSM mean and D range between 0.6 and 0.8. However, the D
experiment outperforms SDSM mean in the SD. Similar results are measured for
ERAI and N, but not as good as those for SDSM and D as their correlation ranges
between 0.4 and 0.65. The EOBS dataset reaches the best correlation score (0.95),
but TRMM and GPCP (observational datasets too) range between 0.3 and 0.4 and
their RMSE is much worse than those for the downscaling experiments. The ensemble
members overestimate the SD and their correlation range between 0.3 and 0.5 in every
station of the Northern region, while the ensemble mean underestimates the SD but
improves the correlation and RMSE.

The centre of the IP comprises five stations: Pamplona, Soria, Madrid, Valladolid
and Daroca. The most representative stations of the region are Soria and Madrid,
and their Taylor diagrams are presented in Figure 4.111. Similar correlations for D,
ERA and SDSM mean were observed, ranging between 0.5-0.7, 0.4-0.6 and 0.5-0.6
respectively. The SD is underestimated by D, ERAI and SDSM mean in Soria and
Pamplona, but it is correctly simulated only by D and ERAI in Madrid, Valladolid
and Daroca. The EOBS dataset outperforms the other datasets and achieves correla-
tions above 0.9 in every station. The TRMM achieved better results than the GPCP,
but not as good as our downscaling experiments. Some ensemble members are able
to reproduce the observed SD, but usually they overestimate it. Additionally, their
correlation is worse than the one obtained by the ensemble mean.

1
Every Taylor diagram for the Central IP can be found in Figure B.2 from the Appendix B.
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Figure 4.10: Taylor diagram for Gijón Station, representative of the Northern Region. Five
experiments can be found on it: WRF N (red), WRF D (green), ERAI (orange), the SDSM
ensemble mean (magenta), EOBS (grey), GPCP (violet) and TRMM (brown). Observed
station data (grey diamond) and the members of the ensemble created by SDSM (blue
squares) are also shown.

The Mediterranean region consists of five stations: Lleida, Barcelona, Murcia,
Almería and Castellón de la Plana. Here, the most representative stations of the
region1 are Lleida and Murcia, and their corresponding Taylor diagrams are presented
in Figure 4.12. The correlations for D, ERAI and SDSM mean range between 0.4 and
0.6, but the RMSE is better for D and SDSM mean compared to the other datasets.
Again, the EOBS dataset obtained the best correlation, contrasting the results shown
by the other observational datasets (TRMM and GPCP). The correlations of the
ensemble members range between 0.3 and 0.5, but they tend to overestimate the
SD in most of the stations, with the exception of Lleida and Barcelona where the
observed SD is quite well reproduced.

Seven stations belong to the Southwestern region of the IP: Lisbon, Ciudad Real,
Cáceres, Albacete, Córdoba, Huelva and Tarifa. Figure 4.13 shows the Taylor dia-
grams for Lisbon and Albacete stations, representative of the region2. The correla-

1
The Taylor diagrams of each station in the region can be found in Figure B.3 from the Ap-

pendix B.

2
The Taylor diagrams for the region can be found in Figure B.4 from the Appendix B.
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Figure 4.11: Same as Figure 4.10 but for Soria (top) and Madrid (bottom) stations, repre-
sentative of the Central IP.

tions for D, ERAI and SDSM mean range between 0.5 and 0.6, but the D experiment
reaches 0.7 in Tarifa while the others obtained 0.55. Surprisingly, the N experiment
obtained comparable correlations (0.6) to D, ERAI and SDSM mean in Lisbon. Ad-
ditionally, most of the experiments and datasets underestimate the measured SD,
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Figure 4.12: Same as Figure 4.10 and 4.11 but for Lleida (top) and Murcia (bottom) stations,
representative of the Mediterranean Region.

particularly in Lisbon, Córdoba and Albacete. The ensemble members underesti-
mate the observed SD and their correlations range between 0.3 and 0.5. As in the
other regions, the EOBS dataset obtains the best scores and the TRMM and GPCP
the worst. However, in this region, these two observational datasets are closer to the
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Figure 4.13: Same as Figure 4.10, 4.11 and 4.12 but for Lisbon (top) and Albacete (bottom)
stations, representative of the Southwestern region of the IP.

other studied experiments and datasets.
The significance of these results was studied by means of the bootstrap technique

(with resampling). The distribution of the correlations obtained by 1000 new time-
series is presented in Figure 4.14. As previously stated, the EOBS dataset is the one
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Figure 4.14: Correlations between each experiment/dataset and the corresponding observed
precipitation amount. 1000 time-series with daily temporal resolution were created by the
bootstrap technique with resampling. The results are plotted according to the region. As
in previous figures, WRF N, WRF D, ERAI, the SDSM ensemble mean experiments and
EOBS, GPCP and TRMM datasets are coloured in red, green, orange, magenta, grey, violet
and brown respectively.

with the best scores on each region of the IP. Conversely, the GPCP and TRMM
(alternative observational datasets) obtained the worst results. These observational
datasets delimit the values of the correlations as the remaining experiments are found
between them. Additionally, comparing both WRF datasets, the D experiment (with
data assimilation) outperforms the N experiment (without data assimilation), par-
ticularly in the Mediterranean region. Similar correlation values are obtained by D,
ERAI and SDSM ensemble mean on each region, but the spread of the values for
ERAI tend to be a little bit lower than those for SDSM and D, particularly in the
northern region.

According to these results, it is clear that the Taylor diagrams and the bootstrap
technique are not enough to di�erentiate which downscaling experiment (the D exper-
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4.3 Analysis of statistical and numerical downscaling models

iment or the SDSM mean) would be the best at simulating the precipitation measured
over the IP. Then, the LEPS, the BSS and some commonly used precipitation indices
were calculated at each station in order to determine the best experiment.

The LEPS for D, SDSM mean and ensemble members compared to the observed
precipitation at each station (D-STAT, SDSM-STAT and Ensemble-STAT respec-
tively) is presented in Figure 4.15. Comparing D and SDSM mean, the D experiment
outperforms the SDSM mean in every station with the exception of Vigo where D
obtains 0.0125 and SDSM mean 0.0093. Conversely, the members of the ensemble
outperform the D experiment in most of the stations. The D experiment is able to
beat the ensemble members only in five of the twenty-one chosen stations: Santander
(from northern region), Castellón de la Plana (included in the Mediterranean region),
Tarifa, Córdoba and Lisbon (from the southwestern IP).

Figure 4.16 shows the BSS for D, SDSM mean and ensemble members. Both D
and SDSM mean present added value compared to ERAI, particularly the SDSM
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Figure 4.15: LEPS scores for WRF D (green), SDSM mean (magenta) and each member of
the ensemble (light pink boxes) computed at each station. The names of the stations are
coloured according to the region were they belong: Northern, Central, Mediterranean or
Southwestern region (in cyan, green, magenta and orange respectively).
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4 COMPARISON OF DOWNSCALING PRECIPITATION MODELS

Figure 4.16: Left: The spatial distribution of the BSS for the D experiment (top) and
SDSM mean (bottom) experiments. Their corresponding areal mean BSS is displayed in
the bottom right corner of the maps. Right: BSS of the twenty-one stations over the IP for
the D experiment (green), SDSM mean (magenta) and the members of the ensemble (blue).

mean. According to the box and whisker, it is clear that the ensemble members
do not present any added value by themselves. The areal mean value measured for
D is 0.05 and 0.11 for SDSM mean, but for both experiments added value is not
observed on every station over the IP. For the D experiment, no improvement in
the prediction is observed in eight stations: one in the North (A Coruña), three in
the Centre (Valladolid, Madrid and Daroca), two in the Mediterranean (Murcia and
Barcelona) and three in the Southwest (Cáceres and Albacete). For the SDSM mean,
three stations do not show any added value compared to ERAI: one of them in the
Centre (Pamplona) and two in the Mediterranean region (Murcia and Barcelona).
The best results for D are obtained near the Mediterranean coast (with the exception
of Barcelona and Murcia), while for the SDSM mean are obtained in Almería, Lleida
and Valladolid.

Additionally, some precipitation indices were calculated for each station. On the
one hand, the amount of precipitation simulated by the downscaling experiments was
tested by means of the mean precipitation (pav), precipitation intensity (pint) and
precipitation 90th quantile (pq90). On the other hand, the occurrence of precipi-

69



4.3 Analysis of statistical and numerical downscaling models

tation was studied by maximum consecutive dry days (pxcdd), wet-day probability
(pwet) and maximum five-day precipitation (px5d). The scores obtained by the D
experiment, SDSM mean and ensemble members are shown in Figure 4.17.

Starting by the precipitation amount, it is clear that the SDSM mean and the
members of the ensemble outperform the D experiment (the corresponding medians
are 1.55, 1.48 and 1.24 mm respectively) compared to the stations (1.53 mm). The
spread of both SDSM products is really similar to that for the stations. The mean
precipitation is underestimated by the D experiment.

The precipitation intensity is quite well simulated by the ensemble members. In
that case, the median of the spread is 8.03 mm and 7.92 mm for the stations. The
D experiment underestimates it (6.43 mm), but not as much as the SDSM ensemble
mean (5.03 mm).

The 90th quantile of precipitation is underestimated particularly by the ensemble
mean. The median of its spread is 10.46 mm, and 18.04 mm for the stations. How-
ever, the spread of the SDSM ensemble members is similar to that for the observed
precipitation (17.64 mm). The D experiment, even if it is closer to the observations
than the SDSM mean, underestimates also the 90th quantile of precipitation (14.63
mm).

Changing to occurrence indices, the median of the values of maximum consecutive
dry days measured at the stations is 9 days. This number is overestimated by the
SDSM mean (11 days), but underestimated by both D and the members of the
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Figure 4.17: Precipitation diagnostics (pav, pint, pq90, pxcdd, pwet and px5d) produced
by the observed data, WRF D, SDSM mean and each member of the SDSM ensemble (in
blue, green, magenta and light pink respectively). The results of the twenty-one stations
over the IP are included on each box and whisker.
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ensemble (7 days in both cases). Additionally, the spread of the SDSM mean implies
that this experiment tends to overestimate the maximum dry days in several stations.

A similar behaviour to that for maximum consecutive dry days is observed for
the wet-day probability. In this case, the probability is highly overestimated by the
ensemble mean (0.27) compared to that for the stations (0.18). Conversely, it is
slightly underestimated by the D experiment and the members of the ensemble (0.16
and 0.17 respectively).

The maximum five-day precipitation, compared to the median of the stations (99.8
mm), was overestimated this time by the members of the ensemble (118.46 mm) and
underestimated by both D and SDSM mean (78.19 and 77.37 mm respectively).

According to this long analysis of both downscaling techniques (dynamical - WRF
and statistical - SDSM), it is clear that there is no best downscaling technique and
that it depends on the verification statistic that is studied. The discussion of these re-
sults will be carried out in chapter 7, particularly the di�erences that appear between
the SDSM ensemble mean and each member of the ensemble. Moreover, it will also
focus on some aspects of the protocol followed to calibrate the SDSM, particularly
the use of precipitation as a predictor.
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5

Applications

B esides the main uses of the integrations performed with the WRF model that
have been presented so far for the analysis of the Iberian atmospheric moisture

budget or precipitation downscaling, both WRF simulations can be applied in many
more studies as the chosen domain is represented by 15x15 km2 spatial resolution
and the outputs have been stored every three hours. The validation and study of
the atmospheric branch of the water balance was presented in chapter 3, but further
research can be carried out focusing on the variability of the transboundary moisture
fluxes or the breezes. The applications are not restricted to land, and they can be
extended to regions over water such as the Bay of Biscay or west Mediterranean.
For example, the surface wind data from the simulations can be used to reconstruct
missing data from radial surface current datasets or to estimate the o�shore wind
energy potential at floating wind farms where previous in-situ wind measurements
do not exist.

This chapter focuses on the validation of model outputs over water and on o�shore
wind energy potential results for two regions in the west Mediterranean where wind
farms could be created in the future. These results were obtained in collaboration
with the members of our group as a direct application of the numerical model runs
produced for this thesis, and they are published on Ulazia et al. (2017). In this case,
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5.1 Validation of wind at 10 m over water

I provided both WRF simulations and I took part in the validation of the data over
water, but not in the calculation of the o�shore wind energy potential estimation.

5.1 Validation of wind at 10 m over water
An accurate estimation of wind at 10 m is needed in order to properly calculate the
o�shore wind energy potential. To do so, the wind at 10 m obtained by both WRF
simulations was validated against the observations of six buoys in the region and
against the CCMPv2 dataset, at 0.25 degrees resolution.

The chosen buoys are located in the area delimited by the Cabo Begur in the north
and the Cabo de Palos in the south (see section 2.1). However, the anemometer of
these buoys is located at 3 m and not at 10 m as the wind simulated by WRF. In
order to fairly compare the data from di�erent sources, the wind speed at 10 m for
each buoy was calculated by means of the logarithmic law of vertical wind shear1 after
calculating the instantaneous roughness of the sea with Hsu’s equation (Hsu, 2003).
The nearest points in both WRF simulations, ERAI and CCMPv2 were compared
to buoy data by means of Taylor diagrams. The significance of the results was also
addressed applying the bootstrap technique (with resampling), showed in the Taylor
diagrams by shaded regions as explained in section 2.5.

The Taylor diagrams obtained for each buoy can be found in Figure 5.1. According
to the results, the correlation coe�cient changes locally. For the D experiment, the
correlations are observed around 0.8 in Cabo Begur, Mahon and Cabo de Palos, near
0.7 in Tarragona and Dragonera, and 0.6 in Valencia. These correlations are similar to
those obtained by ERAI in Tarragona, Valencia and Cabo Begur. Also the RMSE is
similar for both experiments in those buoys. The N experiment scores higher RMSE
and a lower correlation than ERAI and D. No major di�erences between ERAI, D
and CCMPv2 are found in the results, indicating that D and ERAI are close to the
observational error measured between in-situ and gridded (assimilated) observational
datasets.

The comparison with buoys does not allow us to evaluate how well both WRF
simulations capture the spatial variability of wind. Thus, N and D experiments and
ERAI were evaluated versus CCMPv2. However, it must be taken into account that
this dataset was created by the combination of wind speed measured by radiome-
ters, scatterometers and moored buoys with ERAI wind fields. This means that the
CCMPv2 dataset will be biased towards ERAI.

The correlation, RMSE and SD ratio maps for N and D experiments and ERAI
against CCMPv2 are presented in Figure 5.2. Starting by the correlation maps, it is
clear that the N experiment obtains the worst results. The D experiment improves

1
This methodology is explained in the Appendix C.1.
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Figure 5.1: Taylor diagrams showing the standard deviation, r and RMSE results for the
D and N experiments, ERAI and CCMPv2 dataset compared to buoy data (coloured in
green, red, blue and black respectively). The shaded regions delimit the results obtained
by the bootstrap technique, while the big dots correspond to the results obtained from the
full sample of buoy data.
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Figure 5.2: Correlation, RMSE and SD ratio maps for both WRF experiments and ERAI
compared to CCMPv2. The results obtained for each buoy are presented by coloured
diamonds.

the correlation obtained by the N experiment, but the values are not as good as those
obtained by ERAI. However, even if ERAI obtains the best scores compared to the
gridded dataset, the same is not observed while comparing to observed buoy data.
Remarkable di�erences are observed in those locations for ERAI. The D experiment
obtains a much closer agreement with the data measured by buoys.

Changing to the RMSE maps, the smallest values are reached by ERAI, while the
largest values are observed for the N experiment. Again, the D experiment improves
the results obtained by N. No spatial patterns are observed in those maps, but the
areal mean for D is around 2.5 m/s and 1.5 m/s for ERAI. In this case, the di�erences
between the results for the gridded datasets and buoys are remarkable for ERAI.

The SD map for the N experiment shows an overestimated region near the Ebro
delta and in the north of the Balearic islands. The map for D improves the results
for that region, but shows an underestimation of the variability in the rest of the
domain. A really good agreement between ERAI and CCMPv2 is observed in the
corresponding SD map. However, the discrepancies between ERAI and buoy data
are again remarkable.

Then, all of the statistical indicators calculated support the idea that the CCMPv2
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is biased towards ERAI and that the D experiment produces more reliable data thor-
ough the whole domain. Additionally, this WRF experiment includes a higher spatial
resolution. This is a valuable characteristic for the estimation of o�shore wind energy
potential over coastal areas where substantial spatial gradients can exist.

5.2 Measurements of offshore wind energy potential
Two potential wind farm sites were selected, taking into account some legal criteria
as the minimum distance from coastline and the bathymetry of the domain, as it is
not possible to anchor wind turbines when the sea bed is deeper than 1000 m. The
two areas delimited by these criteria are presented in Figure 5.3. The bigger one
is located in the Cabo Begur and it spans an area of 2318 km2. The other one is
located to the north of Menorca and its area is of about 576 km2.

Figure 5.3: Detailed map of the studied region showing the potential wind farm zones. The
land is coloured in orange, and the protected coastal area is coloured in blue. The isobaths
taken from the ETOPO1 model (Amante and Eakins, 2009) are plotted by red lines, and
that corresponding to -1000 m is marked by a bold dotted red line. The ERAI grid is
marked by big green points, while that for both WRF experiments is represented by pink
squares. Finally, the regions suitable for the construction of wind farms are delimited by
light blue squares.
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Three di�erent types of turbines were chosen for this study: (1) MWT-92/2.4:
a low turbine created by Mitsubishi Heavy Industry with the hub at 70 m and a
diameter of 92 m. (2) Siemens-90/2.3: A medium high turbine with the hub at
130 m and a diameter of 90 m. (3) Siemens-160/6.0: A high turbine with the hub at
178 m.

Wind speed, and pressure and virtual temperature for the density of the air
were interpolated from model original vertical levels (in ÷ coordinates) to the three
possible hub heights (92 m, 130 m and 178 m). These values are used to calculate
the normalized wind speed. Then, the Capacity Factor (CF) is calculated from the
average wind speed for the five-year period simulated with WRF (2010-2014), the
rated power and the diameter of the turbine. Finally, the turbine’s Annual Energy
Production (AEP) is calculated. The detailed methodology for the calculation of
these variables is explained in the Appendix C.2.

In order to evaluate the wind energy potential at those regions, the corresponding
wind roses must be known. As no measured data for those specific regions was
obtained, the wind roses of the nearest buoys to the potential wind farm regions
were studied. Those corresponding to Cabo Begur and Mahon buoys are presented
in Figure 5.4. It is clear that the prevailing wind direction changes from one buoy to
another. However, strong northern winds are more important than those from the
east or west.

The seasonal and annual CF maps for the MWT-92/2.4 turbine are presented
in Figure 5.5. The hub of this turbine is at 70 m, so the variables needed for the
calculation of the CF are interpolated from the corresponding ÷ levels from WRF.
Focusing on the annual CF map, it is clear that the D experiment obtains similar
values to that for ERAI, but with a relevant improvement in resolution. Compared
to the N experiment, the results obtained by D are lower. However, the same pattern
is observed in the three experiments, with higher values towards the open sea.

Figure 5.4: Wind roses for the Cabo Begur and Mahon buoys.
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Figure 5.5: Seasonal and annual spatial distribution of the CF for the MWT-92/2.4 turbine
(with the hub at 70 m).

79
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Table 5.1: Summary table for the AEP (in TW h) at the largest wind farm near Cabo
Begur.

Bathymetry (m) N. turbines at 70 m at 130 m at 180 m
0-200 1190 9.71 10.96 11.45
200-400 1790 14.31 16.17 16.88
400-600 1980 16.12 18.21 19.02
600-800 920 7.53 8.5 8.88
800-1000 960 8.11 9.16 9.56
Total 6840 55.78 63.03 65.82

The di�erences between seasons are remarkable. Winter is the most intense sea-
son, followed by autumn, spring and summer. The high values observed during winter
near the Cabo Begur are related to the northern Tramontana winds, typical in this
region.

Focusing only in the most reliable experiment (the D experiment), the annual
CFs obtained in the potential wind farm regions are above 30%. Particularly, the
annual CF is around 49% in the largest potential wind farm (near Cabo Begur),
varying from 60% during winter and 38% in summer. The annual CF for the second
potential wind farm in the north of Menorca is around 32%, reaching 44% in winter
but only 16% during summer.

The AEP on both potential wind farms depends on the type of turbine chosen
and its corresponding hub height. Starting by the largest region near Cabo Begur
(Table 5.1), 6840 turbines could be built, producing 55.78 TW h for a hub at 70 m
(MWT-92/2.4 turbine) according to the results obtained by the D experiment. Using
taller turbines the results would reach the 63.03 TW h for Siemens-90/2.3 (at 130 m)
and 65.82 TW h for Siemens-160/6.0 (at 180 m).

According to the results obtained by the D experiment, 1700 turbines could be
built in the second wind farm at the north of Menorca (Table 5.2), producing 8.79
TW h using the turbines with the hub at 70 m (MWT-92/2.4). The AEP would reach
the value of 9.93 TW h using the turbines with the hub at 130 m (Siemens-90/2.3)
and 10.36 TW h for those with the hub at 180 m (Siemens-160/6.0).

Table 5.2: Same as Table 5.1 but for the smallest wind farm at the north of Menorca.

Bathymetry (m) N. turbines at 70 m at 130 m at 180 m
0-200 0 0.0 0.0 0.0
200-400 140 0.72 0.81 0.85
400-600 510 2.68 3.02 3.16
600-800 550 2.85 3.22 3.35
800-1000 500 2.54 2.85 2.99
Total 1700 8.79 9.93 10.36
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6

aiRthermo

N owadays many research communities are increasingly adopting the R soft-
ware as a tool for scientific research and data analysis, including environmen-

tal sciences (Thyer et al., 2011) and modelling (Wu et al., 2014; Humphrey et al.,
2017). After all the diagnostics and statistics calculated by means of R during
this thesis, and making use of old version of programming codes for the calcu-
lation of atmospheric thermodynamic variables, we realized that there was room
for an R package dedicated to the analysis of atmospheric soundings and the sta-
bility of the atmosphere between the community of atmospheric scientists using
R. This led to the development of the package aiRthermo, publicly available on
https://CRAN.R-project.org/package=aiRthermo since August 2017.

The analysis of the stability of an air parcel or a whole atmospheric column in-
volves the computation of many variables that a�ect the density of the atmosphere at
di�erent pressure levels and the analysis of the heating rates of air parcels as they as-
cend from one level to another following dry-adiabatic or pseudo-adiabatic evolutions,
depending on the saturation of the air parcel. Some R packages as RadioSonde, hu-
midity and meteogRam are dedicated to the calculation of some of these atmospheric
variables. However, aiRthermo extends the functionality o�ered by them, incor-
porating additional functions for the calculation of moisture indices, condensation
processes, vertical evolutions of air parcels or even the production of Stüve diagrams.
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6.1 Key points of the methodology

Additionally, not only in-situ observations (soundings) can be computed accurately
by the package, but also model data.

Hopefully, aiRthermo will have an impact in many practical applications of en-
vironmental forecasting at di�erent scales such as statistical downscaling for climate
analysis or forecast, and the diagnosis of flash floods or storms (de Coning et al.,
2011; Chaudhuri et al., 2013; VujoviÊ et al., 2015; Czernecki et al., 2015). The anal-
ysis of the climatological distribution of atmospheric instability (Siedlecki, 2009), its
interannual variability and even its expected future distribution under global change
conditions (Viceto et al., 2017) is another field that can benefit from this package.

Most of the theory and methods used in these functions can be found in the ba-
sic atmospheric thermodynamic literature (Rogers and Yau, 1989; Emanuel, 1994;
Djuric, 1994; Bohren and Albrecht, 1998; Tsonis, 2002; Wallace and Hobbs, 2006;
Petty, 2008; North and Erukhimova, 2009). However, some key points will be ex-
plained in section 6.1 as some of the methods are not documented the same way or
covered in detail in these references. Finally, a brief explanation of the most impor-
tant routines contained in the package will be presented in section 6.2. The functions
will be divided into groups according to their purpose.

6.1 Key points of the methodology
In every case, the state of an air parcel is defined by means of its pressure P , tem-
perature T and mixing ratio w. As every variable defined in the package, their units
must be expressed in the standard units from the International System. In this case,
they are expressed in Pascals (Pa), degrees Kelvin (K) and kg/kg respectively.

The calculation of saturation pressure of water varies according to the tempera-
ture of the surface below the air parcel. For ice and water below 30¶ the definitions
in pages 197-200 from Bohren and Albrecht (1998) are used, while for water above
30¶C Buck’s equation (Buck, 1981) is followed. The dew-point temperature is cal-
culated from given pressure and mixing ratio following the equation 5.68 in Bohren
and Albrecht (1998).

Moist specific heats are computed following Tsonis (2002). The moist specific
heat at constant pressure is defined as

cpm = cpd (1 + 0.87q) with cpd = 1005 JK-1 (6.1)

At constant volume, the moist specific heat is defined as

cvm = cvd (1 + 0.97q) with cvd = 718 JK-1 (6.2)

The values of cpd and cvd are taken from Bohren and Albrecht (1998) and Petty
(2008). While using the package, the values corresponding to the specific heats for
dry air can be also obtained by specifying a mixing ratio of 0 kg/kg.
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An approximate expression for the calculation of the latent heat of evaporation of
water is used within aiRthermo as no reliable analytic definition exists. Two empirical
methods were defined within the package, and the use of one or the other depends
on the temperature of the water. The first method, typically defined for liquid water
(between 233.15 and 313.15 K), is a cubic polynomial expansion based on tabulated
values from Rogers and Yau (1989) that yields an absolute residual smaller than
1 J/kg with all the terms statistically significant to a 99% confidence level. In this
case, it is considered that super-cooled water can coexist with ice up to the Schaefer
point (about -40¶C). The second method is used typically when temperatures range
between 210 and 273.15 K and it is a quadratic fit to the values measured for ice from
Feistel and Wagner (2006), characterized by residuals smaller than 0.05 J/kg. As
the values are not the same in the overlapping gap between both methods, a linear
combination of ice’s (Li) and water’s (Lw) latent heats is computed in that range of
temperatures (T œ [253.15, 273.15]) by means of

L = wiLi + (1 ≠ wi)Lw with weight wi = 1 ≠ T ≠ 253.15
20 (6.3)

Below 253.15 K, the latent heat corresponding to ice is applied, while that corre-
sponding to water is used above 273.15 K.

As the vertical evolutions are considered in the pressure vertical coordinate and
they are computed assuming hydrostatic balance, the dry adiabatic and pseudo-
adiabatic vertical derivatives with z (�d and �s) are not used in aiRthermo. In our
case, the vertical evolutions in pressure levels are calculated as �ú

d =
!

dT
dP

"
d

= �d
flg

and �ú
s = �s

flg , transformed for the expressions in z vertical coordinates from the
literature assuming hydrostatic equilibrium. Thus, the vertical evolution of an air
parcel defined by the initial values of P0, T0 and w0 is computed by numerically
solving the ordinary di�erential equation given by

dT

dP
= �ú

i (P, T, w) (6.4)

with i depending whether the particle is saturated or not (i = d or i = s respectively).
The equation is solved by means of a Runge-Kutta scheme of fourth order and the
mixing ratio changes according to whether the parcel achieves saturation against its
environment or not. Additionally, it is assumed that the parcel is kept at w = ws

after arriving at the Lifting Condensation Level (LCL). For the vertical ascents, �d

is assumed whilst the parcel remains below the LCL.
If the initial state of the air parcel (P0, T0 and w0) is not provided to the functions

that calculate the instability indices, a vertical average of the lower pressure levels
provided is necessary. However, this is a key step on the calculation of the indices as
the results are very sensitive to the initial values of pressure and moisture (Craven
et al., 2002; Letkewicz and Parker , 2010). Within the package, the vertical width of
the parcels is defined as

�Z = Rd

g

⁄ Ps

Pt

Tv

P
dP (6.5)
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Thus, the accumulated value of the quantity X(P ) in the vertical is given by the
expression

X̄ = 1
�Z

Rd

g

⁄ Ps

Pt

X · k · Tv

P
dP (6.6)

where k(P ) plays the role of a normalizing function that is used to get the vertically
accumulated values. This function is not always used and it varies depending on
the variable that is going to be average. For example, for temperature it will be
k(P ) = 1, while for moisture the specific humidity k(P ) = q(P ) will be used. The
vertical integration is computed by aggregating the values of the discrete slabs defined
in the data. A linear or logarithmic profile can be used. Additionally, in order to
boost the performance of these computationally demanding functions, their core was
programmed inside a C extension.

Finally, a routine for the production of Stüve diagrams was included in aiRthermo.
It can plot the data from soundings or even the trajectory of the lifted air parcel
computed with the function for the calculation of CAPE and CIN. The routine
plots the equivalent potential temperature lines, constant mixing ratio lines and
dry adiabatic lines, all of them calculated by aiRthermo in order to maintain the
consistency between the results. The user can modify the axis of the Stüve diagrams
without restriction and more than one line can be plotted at once.

6.2 Included functions
The package is made of 46 functions, but they can be separated into six big groups
according to their utility. The functions are related to the density of the moist/dry air
and their virtual temperature, to the conversion of moisture indices, to the saturation
mixing ratios or pressures, to the state of the parcel after adiabatic processes, to
instability indices or to plotting the Stüve diagram. A brief description of each
set of functions is presented here, but for a full description of the functions and
the parameters needed in order to run them, the manual of the package1 must be
checked.

• Density of dry/moist air and virtual temperature
Depending on the pressure, temperature and mixing ratio of an air parcel,
alternative methods to calculate its density can be found in our R package. It
can be calculated directly with the corresponding function (densityMoist), or
by means of intermediate functions for the calculation of the density of dry air
and the density of water vapour independently (densityDry and densityH2Ov).

1
The manual of the package can be found in the web-page corresponding to aiRthermo in

the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/

aiRthermo/aiRthermo.pdf
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6 AIRTHERMO

The virtual temperature of an air parcel can be also calculated directly mak-
ing use of the function virtual_temperature. Additionally, some functions
for the conversion between di�erent variables are included. For example, any
temperature can be converted from Celsius to Kelvin or vice versa with C2K
and K2C, or from partial pressure of water vapour to mixing ratio with e2w.

• Conversion of moisture indices
Several functions that allow the conversion between moisture indices as dew
point temperature, mixing ratio and specific or relative humidity are included
in aiRthermo. Amongst others, the most important functions of this category
are those converting from relative humidity to mixing ratio (rh2w), from rela-
tive humidity to specific humidity (rh2shum), from mixing ratio to dew point
temperature (w2Td) and from mixing ratio to specific humidity or reverse (w2q
and q2w).

• Saturation mixing ratios or pressures
In this class are included all the functions that use the Clausius-Clapeyron
equation to calculate saturation mixing ratios or pressures. The most important
functions are the saturation_mixing_ratio and saturation_pressure_H2O,
computing the saturation mixing ratio ws in kg/kg and the saturation pressure
es in Pa respectively.

• State and evolution of an air parcel
The package is able to calculate the state of a parcel from given pressure,
temperature and mixing ratio with the function parcelState. However, to
calculate the evolution of an air parcel, aiRthermo determines which function
is better depending on the state of the particle and the environment. A general
ascent from a given initial pressure to the final one is computed by the function
adiabatic_ascent. It selects the type of evolution that the air parcel is going
to follow on each step, and if the mixing ratio must be conserved or set to ws.
A downwards evolution can be also computed with AnyAdiabaticDown, but it
needs the amount of water available in the cloud for evaporation (in kg/kg) in
order to work properly.
Conversions between potential temperature, temperature and pressure can be
calculated making use of PT2Theta, PTheta2T and TTheta2P. These functions
are useful if adiabatic processes are taking place.

• Instability indices
Several functions compute the most common instability indices of the literature,
such as K index, the Total-Totals index, the Showalter index and the Lifted
index (functions Kindex, TTindex, Sindex and LIindex respectively).
However, the most computationally demanding function is CAPE_CIN. It cal-
culates the values of CAPE and CIN, but also the LCL, the Level of Free
Convection (LFC), the End Level (EL) or even the trajectory followed by the
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lifted parcel until reaching the top of the sounding. For the optimal perfor-
mance of the function, some control attributes must be also provided. For
example, the PlowTop attribute provides an initial average over the bottom
layer of the sounding, precoolType determines if a precooling must be applied
or not to the initial conditions of the air parcel and upToTop requests if the
lifted particle should continue or no after the first time crossing the ambient
sounding. Additionally, if the attribute getLiftedBack is set to TRUE, the evo-
lution of the lifted particle until the top level of the sounding is returned as a
set of vectors for P, T and w.

• Stüve diagrams

The stuve_diagram function is included in the package in order to create fully
editable Stüve diagrams. They can optimally show the trajectory followed by
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Figure 6.1: Example of a Stüve diagram plotted with aiRthermo. The temperatures and
dew point temperatures measured by the sounding are plotted in black and magenta lines.
Whilst the blue line represents the evolution of the lifted air parcel until the moment when
it crosses for the first time the ambient sounding, the red line represents its evolution until
the top of the sounding.
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any ascending air parcel. Thus, this function is related to CAPE_CIN, as that
function is the one that can provide the state of the parcel at each slab of the
ascent.
Figure 6.1 shows a Stüve diagram created for the data measured in Davenport,
USA (station ID 74455), where the balloon was released on 1997/06/21 at 00
UTC. This sounding illustrates a case with a strong convective instability, and
it was taken from Tsonis (2002). The importance of a good calibration of
the function CAPE_CIN is remarkable, as major di�erences in the estimation of
CAPE for the sounding can appear if the upToTop attribute is set to TRUE
or FALSE (red and blue lines of the sounding respectively).
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7

Discussion

O ur objective was to study the e�ect of the 3DVAR data assimilation step on
the simulation of the atmospheric branch of the water balance over the IP, and

to compare the precipitation downscaled by di�erent techniques: dynamically with
WRF and statistically with SDSM. In this chapter, the methodologies and results
presented in chapters 2, 3 and 4 are discussed and compared to previous studies.

The discussion will be divided in three di�erent sections taking into account
three key aspects of the study that has been carried out. Section 7.1 will focus on
the configuration of both models (WRF and SDSM), section 7.2 on some issues with
the validation datasets used, and finally, section 7.3 will provide further insight into
the results.

7.1 Configuration of the models
We begin by discussing the configuration designed for the WRF model. Even if both
simulations span the period 2009-2014, the first year (2009) was designed as spin-up
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period for the model. As our intention is to analyse the atmospheric branch of the
water cycle, the aim of using this year as a spin-up was to reduce the errors in the
land-atmosphere fluxes and not to initialize every layer defined in the land surface
model. Several years of spin-up are needed to achieve a full initialization of soil’s
deep layers (Lim et al., 2012; Stacke and Hagemann, 2016). According to Giorgi and
Bi (2000), the RMSD reaches the equilibrium after five to fifteen days of simulation.
However, Christensen (1999) stated that few months would be enough to initialize
correctly the soil variables. According to recent studies over the EUROCORDEX
region (Montávez et al., 2017), six months would be the optimal length of the spin-
up period for water-related studies. During the last years, di�erent lengths of the
spin-up used on this kind of studies can be found: one month (Angevine et al., 2014),
four months (Jerez et al., 2010, 2012, 2013), seven months (Argüeso et al., 2011) or
one year (Zheng et al., 2017). The results presented in this thesis are robust and do
not vary if longer spin-up periods are defined. The spread of the residuals of both
WRF simulations compared to those from ERAI do not vary when two, three, four
or five years long spin-up periods are defined in our simulations.

The length of the simulations (five-years without the spin-up) is similar to those
commonly used in the field when running the WRF model (Jiménez and Dudhia,
2013; Rios-Entenza and Miguez-Macho, 2014; Rios-Entenza et al., 2014). It is clear
that these simulations cannot be used for the study of the climatology or the inter-
annual variability of the most important terms of the water balance. However, the
results were studied in order to find any possible relationship with low frequency
variability sources as NAO or ENSO. The e�ect of the NAO is perceptible in the
precipitation regimes over the IP (Rodríguez-Puebla et al., 2001), but the e�ect of
the ENSO is not stationary (López-Parages and Rodríguez-Fonseca, 2012) and it is
restricted to di�erent regions of the IP (Kiladis and Diaz, 1989; Rodó et al., 1997;
Frías et al., 2010; Vicente-Serrano et al., 2011; Lorenzo et al., 2011). The monthly
residuals of the moisture equation from both simulations were classified into low or
high values of NAO and ENSO (below the 25th percentile or above the 75th per-
centile), according to the indices downloaded from the Climate Prediction Center.
The values of the residuals do not change from one phase to another.

Finally, this study highlighted WRF’s inability to simulate a realistic evaporation
in some points of the IP. In these points, the corresponding evaporation time-series
were flat most of the time. Thus, the correlation between the simulated and measured
evaporation was rather low (or even negative). In order to determine the cause of
this problem, the static data included in the NOAH land surface model were studied,
particularly the soil type and the land uses defined on each point. According to these
data, the IP is mainly made of loam, while the Guadalquivir Basin is made of clay.
As similar soil types were defined all over the IP, it is reasonable to think that the
built-up or urban category in the land uses of the model is the reason why this is
happening.

Changing to the configuration of the SDSM model, we begin by discussing an
aspect that departs somehow from convention. In our study, the precipitation from
reanalysis was also included in the initial predictor variables for the calibration of
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the model. The reason why it was included is that the dynamical models simulate
precipitation based on large-scale and convective processes (precipitation from fronts
or cumulonimbus clouds for example), but they are not completely taken into account
by other grid-scale predictors. Then, precipitation from reanalyses provides impor-
tant information for the statistical models, adding some explanatory power. This
is not the first time that it has been done in the literature. Schmidli et al. (2006)
showed that precipitation can be helpful in statistical downscaling, and Wilks (1992)
conditioned the selection of the parameters of a stochastic daily weather generator
based on the monthly precipitation from coarse resolution models. Others as Fealy
and Sweeney (2007) based the selection of predictors of a statistical technique for the
prediction of rain on the correlation between those predictors with precipitation.

The number of predictors included in the calibration of the SDSM is also impor-
tant. According to previous studies (Wilby and Wigley, 2000; Hanssen-Bauer et al.,
2005), a model should not include less than three or more than six predictors. The
statistical model can su�er from over-fitting if more predictors are included (Huth,
2005). In our case, the SDSM was calibrated including six predictors in most of the
stations of the IP.

It was also found that the stations must be calibrated individually and that no
predictor suites based on the latitude, longitude, elevation or annual precipitation
can be defined for the stations of the IP. Similar results were obtained in a study
focusing on Northern Ireland (Crawford et al., 2007), where the predictor suite varied
even seasonally.

7.2 Issues with the validation datasets
Some problems arise from the use of several datasets for validation. The main one is
that the lack of high resolution datasets complicates the interpretation of the results,
particularly if the datasets are not available for the same period and domain used in
our both WRF simulations.

Our results showed that the validation of our results against datasets with coarser
resolution can generate misleading interpretations at first. Particularly, this is what
happens with the precipitation validation datasets as EOBS. Figures 3.5 and 3.6
showed that major di�erences between EOBS and both WRF simulations appeared in
the mountains located in the northwestern corner of the IP. However, focusing on the
accumulated annual precipitation in Figure 3.30, it is clear that the spatial pattern for
the D experiment presents much more similarities with that generated by the observed
precipitation than that from EOBS. Thus, the geographical distribution of the field
produced by WRF is similar to those produced by high resolution datasets but for
a di�erent period. These similarities in the spatial pattern are not only observed for
the atlas created by the Spanish Meteorological Agency (AEMET , 2011), but also
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for the accumulated precipitation from Belo-Pereira et al. (2011) (Figure 6 of their
paper). The Iberian dataset with a resolution of 0.2¶ (Belo-Pereira et al., 2011),
created by merging the Spain02 (Herrera et al., 2012, 2016) and the PT02 datasets
(for Portugal), would be the most similar dataset to our simulations available in the
literature. However, again, its period does not cover ours, so a direct comparison
is impossible (if it is not qualitative). This means that the interpretation of the
verification results would be optimal only if finer resolution and real datasets existed.
Previous studies such as Rummukainen (2010) and Gómez-Navarro et al. (2012) have
also identified this problem.

During this thesis, comparisons between point and gridded measurements have
been carried out. This could be a problem as the representativeness error is intro-
duced in the validation results. It is a non-zero scale-dependant error, independent
of the model performance (Tustison et al., 2001). However, in order to compare
two di�erent datasets, the nearest neighbour or the bilinear interpolation techniques
are commonly followed in the literature. On the one hand, the nearest neighbour
technique does not smooth the fields when downscaling to higher resolution grids (Ac-
cadia et al., 2003), so it is suitable when comparing non-linear fields as precipitation
(Casati et al., 2008; Moseley, 2011). On the other hand, the bilinear interpolation
reduces the maxima and increases the minima of the field (particularly when it is
applied to precipitation) (Accadia et al., 2003), so it is favoured only when the values
do not vary too much on scales larger than the spatial resolution (Moseley, 2011).
Taking this information into account, the use of the nearest neighbour technique was
found suitable for our validations. As previously stated, several previous studies have
followed the same methodology (Borge et al., 2008; Jiménez et al., 2010; Jiménez and
Dudhia, 2012; Önol, 2012; Soares et al., 2012).

Finally, poor correlation values were observed for precipitation near the Mediter-
ranean region (see Figure 3.5). This feature is related to the sources of precipitation
a�ecting the IP and how they are represented in the validation datasets. The ob-
served precipitation over the Atlantic facade is mainly produced by frontal systems
associated to cyclones in the northern Atlantic ocean. In contrast, the Mediter-
ranean coast and the Ebro valley is characterized mainly by very scarce annual
precipitation concentrated in severe small-scale (subgrid) convective events. It is
known that the observational datasets are not always able to detect these high-
precipitation events (Herrera et al., 2012), and the spatial pattern of this precipita-
tion type has been widely studied in the literature (Rodríguez-Puebla et al., 1998;
Esteban-Parra et al., 1998; Fernández et al., 2003; Muñoz-Diaz and Rodrigo, 2004;
García-Valdecasas Ojeda et al., 2017). Therefore, that the performance of the mod-
els over the IP is better in the Atlantic region than near the Mediterranean Sea is
frequently found in the literature (Domínguez et al., 2013; Jiménez-Guerrero et al.,
2013).

Poor correlation values for evaporation were also obtained by both WRF simu-
lations and ERAI in the Mediterranean region (see Figure 3.20). According to the
literature, this would be the first time that the GLEAM datasets have been validated
over the IP, and taking into account the limited availability of evaporation measure-
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ments, why really small correlation values are concentrated in this region is an open
question for the future.

7.3 Further insight on the results
This section focuses on providing further insight on the results obtained in this thesis.
We will start by studying the results presented in section 3.4 for the residual of the
water balance in both WRF simulations. The spread of the results showed that
the N experiment (without data assimilation) produced a positive residual, while
the D experiment (with data assimilation) and ERAI produced a negative residual.
This change in the sign of the residual appears as a result of the data assimilation
step in the D run. The data assimilation produces accurate initial fields in order to
reproduce better the state of the atmosphere measured by observations by correcting
any existing bias in the model. This is a key point for the moisture conservation
equation as the moisture cannot be preserved since the analysis increments of the
data assimilation are not physical terms of the equations that simulate the behaviour
of the atmosphere. In our study, the D experiment is able to produce closer results
to the observations despite the lack of complete balance as a result of the data
assimilation step. Additionally, the D experiment improves the representation of the
atmospheric branch of the hydrological cycle made by the N experiment as shown by
sections 3.1, 3.2 and 3.3. It is able to obtain similar or better results than the forcing
reanalysis ERAI. Thus, the data assimilation improves the quality of the variables
simulated, as also found by previous studies (Navascués et al., 2013; Ulazia et al.,
2016, 2017).

The robustness of the results presented for the residuals was further tested by
means of a bootstrap analysis. Even if these results are not presented in section 3.4,
1000 time series with resampling were created from the full sample of the residuals
from both WRF experiments and ERAI. The medians of these new residuals showed
that the seasonal cycle is more intense than the interannual variability over the IP.
The Median Absolute Deviation (MAD) between them and the full sample is really
small for both WRF simulations compared to ERAI’s, and the spread of the values do
not overlap each other. As stated in Ulazia et al. (2016), similar results are obtained
for wind over the ocean for period 1990-2001 when comparing di�erent configurations
of WRF with 3DVAR data assimilation every six and twelve hours or without data
assimilation.

The impact of the data assimilation is also remarkable at the seasonal analysis of
the areal mean of the residuals (see Figure 3.25), where the most remarkable values
appeared during the afternoon (around 18 UTC). This suggests that the assimila-
tion of temperature and/or moisture observations has an e�ect particularly in the
planetary boundary layer (PBL).
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The breezes in the coasts of the IP seem to be a triggering factor for the water
balance over the IP especially during summer. According to Figure 3.26, important
changes in the analysis increments take place during the afternoon for the specific
humidity at 2 m, particularly near the Ebro and Guadalquivir basins. These changes
are related mainly to the coastal breezes near the Mediterranean Sea. These results
are similar to those obtained by Cardoso et al. (2013), as they found that the moisture
enters the IP through the basins of the rivers. Additionally, Ortiz de Galisteo et al.
(2011) stated that the breezes are also relevant for the annual and seasonal diurnal
cycles of PW based onto observed GPS data.

In addition, remarkable high values of PW near the Mediterranean and Cantabrian
coasts during summer (Figure 3.31) were triggered by the breezes of these regions.
A similar e�ect was reported by Zveryaev et al. (2008), as they found that local
convectiveness and summer heatings can produce positive PW anomalies even if the
moisture transports are reduced. The spatial pattern of the mean daily values of PW
resemble the findings by Zveryaev et al. (2008), where remarkable values of PW are
observed near the coasts in winter, but even larger near the Mediterranean during
summer.

Changing the topic to the comparison of both downscaling techniques (carried out
in chapter 4), our experiments showed that their results systematically range between
the results obtained by the observational datasets (EOBS, TRMM and GPCP). Not
only on a site-by-site basis, but also on the defined four regions over the IP. This
implies that both downscaling experiments (dynamical and statistical) produce simi-
lar results to their counterparts computed from di�erent observational datasets, even
if the correlation or RMSE scored by our experiments are not perfect. Thus, the
error in the estimation of precipitation by di�erent downscaling models is similar to
the estimations of precipitation that are derived from the commonly used observa-
tional datasets. Additionally, these di�erences cannot simply be attributed to the
representativeness error, as more reasons can a�ect these discrepancies between ob-
servational datasets, such as how the dataset is created or what kind of observations
is made of. In this case, GPCP and TRMM are created by merging estimations of
precipitation made by satellite and rain-gauge data, while EOBS does not include
satellite-measured data.

Some remarkable features arise from the comparison of the SDSM mean and each
member of the ensemble. The Taylor diagrams calculated for each station (see Ap-
pendix B) showed that the correlation and RMSE is improved by the ensemble mean,
while the SD is deteriorated. Thus, the SD is better simulated by the ensemble mem-
bers. Changing to the precipitation amount indices, the mean precipitation does not
change from the SDSM mean to the ensemble members, but there is an important
decrease in precipitation intensity and 90th percentile for the ensemble mean. Focus-
ing on the precipitation occurrence indices, the maximum consecutive dry-days and
the wet-day probability is overestimated by the ensemble mean, while the maximum
five-total precipitation is overestimated by the members of the ensemble. Then, it is
clear that in order to decide which downscaling method is better, these di�erences in
the performance must be taken into account. However, the SDSM is able to produce
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comparable (or even better) results to WRF, something that agrees with previous
studies. Over flat terrain, similar results were obtained by both downscaling tech-
niques (Schmidli et al., 2007). A comparison of a statistical model with WRF in
the mountain regions of Colorado (Gutmann et al., 2012) showed that the statistical
downscaling improved the results of the original model, but showing di�erences in
the spatial pattern. Over the continental Spain, a comparison of eight RCMs with
five statistical downscaling methods was carried out as part of the EURO-CORDEX
project (Casanueva et al., 2016). The statistical methods outperformed the RCMs
in terms of seasonal mean precipitation.

However, even if these results have been found for the comparison of both down-
scaling techniques, it must be considered that this is true for seasonal-forecast or
climate-change like downscaling exercises where data assimilation cannot be consid-
ered because of the lack of observations, and only simulations as the N experiment can
be carried out. Additionally, in these comparisons with di�erent statistical downscal-
ing techniques, the correlation coe�cient is not a proper verification index as these
methods will always outperform the numerical downscaling because of the method-
ologies they followed. The temporal occurrence of precipitation must also be checked
in order to create a fair comparison between the dynamical and statistical experi-
ments for applications not oriented to climate change such as operational weather or
quantitative precipitation forecasts.

Finally, it must be noticed that the high-resolution inputs created from reanal-
ysis data and the use of the precipitation as a predictor means that the statistical
downscaling model (in our case, SDSM) is getting closer to the configuration of the
dynamical downscaling models. Then, and as stated in some other studies (Díez
et al., 2005; Fernández-Ferrero et al., 2009), maybe we should start using both tech-
niques in combination and not in opposition. The dynamical modelling can provide
the spatial coverage and occurrence, while the statistical downscaling can improve
the local precipitation amount.
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8

Conclusions

T HIS thesis focuses on how the atmospheric balance over the IP is simulated by
di�erent configurations of the WRF model (with and without data assimilation),

but also explores the possibilities of the dynamical and statistical downscaling applied
to the precipitation.

In the first part of this thesis, the di�erences in the water balance simulated by
two WRF simulations were studied. The main configuration of both simulations was
the same. However, one of them included an additional 3DVAR data assimilation
step (the D experiment), while the other did not (the N experiment). A spatial reso-
lution of 15 km x 15 km was used in both simulations, an appropriate resolution for
an atmospheric water balance study like ours. The comparison of both experiments
allowed us to evaluate the advantages and disadvantages of using the data assimila-
tion and to check how well WRF is able to close the water balance over the complex
terrain of the IP. ERAI and several observational datasets (Radiosondes, MODIS,
EOBS, ECA&D, TRMM, GPCP and GLEAM) were included in the validation of
the terms of the water balance equation.

In the second part of the thesis, a comparison of daily precipitation downscaled
dynamically by the above mentioned WRF simulations and statistically using the
SDSM model was carried out in order to determine which technique produces better
results. The SDSM was fed with predictors created from ERAI data at 0.75¶ in order
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to design the closest configuration to that used for WRF. This way the advantages
and disadvantages of each downscaling method can be determined.

This chapter is made of two sections. Section 8.1 will summarize the main results
obtained in our study, contributing this way to the improvement of the state of
knowledge. Then, section 8.2 will present some interesting lines of investigation left
for future work following the topics covered by this thesis.

8.1 Conclusions
1. Chapter 3 includes the independent validations carried out for the most impor-

tant terms of the water balance equation (equation 2.1). The validation of PW
showed that the D experiment outperforms the N experiment, obtaining bet-
ter correlation, SD and RMSE values for eight radiosondes evenly distributed
over the IP. The D experiment is also able to improve the results from ERAI.
Compared to MODIS data, similar results are obtained. The correlation values
obtained by D are better than the results obtained by N and similar to those
from ERAI.

2. The validation of precipitation against EOBS showed that both WRF simula-
tions and ERAI presented poor correlation values in the Mediterranean coast
and the Ebro basin. The poorest results were obtained by the N experiment,
but the D experiment is able to correct them. Comparable results between
ERAI and D are measured, but the D experiment outperformed ERAI in the
south of the IP. Compared to the other observational datasets of precipitation
(ECA&D, TRMM and GPCP), the D experiment obtains similar results to
ERAI.

3. The validation of evaporation showed that the WRF model cannot simulate
a realistic evaporation in every grid point whose land use is defined as urban
or built-up in the NOAH land surface model. After all of these points were
eliminated from the validation against GLEAM v3.0b and v3.0c datasets, com-
parable results between ERAI and the D experiment were measured. However,
both ERAI and D presented really poor correlation values near the Mediter-
ranean coast and in the northwesten corner of the IP. Even if the correlation
values were comparable, the evaporation rate of ERAI overestimates the rate
simulated by both GLEAM datasets, but also those from both WRF experi-
ments.

4. The analysis of the residual calculated for both WRF simulations and ERAI
showed that the leading terms of the balance were the tendency of the PW, the
divergence of moisture flux, evaporation and precipitation. The terms related
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to the condensates are not important. The e�ect of the data assimilation was
perceptible in the residuals. They present remarkable changes within a day
(especially at 18 UTC), related mainly to the assimilation of moisture and
temperature observations in low levels. The residuals do not follow any easily
recognizable pattern.

5. The D experiment is able to improve the results obtained by the experiment
without data assimilation (N), and its results are similar to those obtained by
ERAI. Thus, the most representative features of the water cycle simulated by
this experiment (D) were studied. No recognizable patterns are observed for the
evaporation. Nevertheless, the influence of the large scale precipitation in the
Atlantic facade of the IP is recognizable in the annual accumulated precipitation
maps. Remarkable high values of PW were observed in the coastal zones of
Spain, particularly in summer.

6. The transboundary fluxes through the limits of the IP vary seasonally. A great
amount of moisture enters the IP during the whole day in winter. However,
the IP mainly exports moisture through the Mediterranean coast in spring,
summer and, to a lesser extent, in autumn. Only during midday this tendency
is reversed and moisture is imported due to the breezes, particularly in the
southern coasts of Spain.

7. In chapter 4, twenty-one stations evenly spaced over the IP were chosen for the
comparison of statistical and dynamical downscaling techniques. Each station
was calibrated independently on the SDSM, following a methodology based only
on the statistical scores provided by the model itself. That way, the knowledge
about the climate of the region or the operator skill are not necessary.

8. The scores obtained by both WRF experiments and SDSM for correlation,
standard deviation and RMSE are similar to those obtained from di�erent
observational datasets (EOBS, TRMM and GPCP). That means that both
downscaling techniques have comparable skill to that between observational
datasets. However, no downscaling technique was found superior to the other
one across all the verification metrics. Depending on the metric studied, the
most suitable technique varies.

9. Our results showed that the mean of the SDSM ensemble, D and ERAI pro-
duced similar correlation in four regions defined over the IP (Northern, Central,
Mediterranean and Southwestern regions). If each member of the SDSM ensem-
ble is checked, the scores are not comparable to those from the D experiment.

10. In order to check the strong points of the D experiment, SDSM mean and
ensemble members, the LEPS and BSS scores were also studied. The members
of the ensemble obtained the best LEPS scores in sixteen stations. In the
remaining five stations, the best values were obtained by the D experiment.
Systematically, the members of the ensemble and D outperformed the SDSM
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mean. Conversely, according to the BSS score, the ensemble mean and D
presented some added value when compared to the data used to drive those
models, that were taken as the reference forecast (ERAI). The same feature
was not observed for the ensemble members. The reason why the members of
the ensemble do not present any added value is because the BSS also takes into
account the temporal occurrence of the precipitation, as was also in the case
of correlation. This feature is not arbitrary, and it only reflects the idea that a
downscaling technique will be optimal for a particular experiment depending on
the forecast needed (deterministic or probabilistic) and the technical computer
resources available.

11. Several precipitation indices were calculated. Starting by the precipitation
amount indices, similar average precipitation is measured for D, SDSM mean
and the ensemble members. However, the ensemble members outperformed
the other experiments simulating the precipitation intensity and the 90th per-
centile. The SDSM mean is the one with the worst scores. If we change to the
precipitation occurrence indices, the results change from one index to another.
The observed maximum consecutive dry days and the probability of a wet-day
is overestimated by the SDSM mean, while the D experiment and the members
of the ensemble underestimate them. In contrast, the members of the ensem-
ble overestimate the maximum five-days precipitation, but D and SDSM mean
underestimate it. Overall, the D experiment presented a stable behaviour on
every studied index, while the results for the SDSM experiment vary depending
on the index.

12. The potential applicability of our WRF simulations in other fields was also
explored in this thesis. The resolution of the domain (15 x 15 km2) and the
storage frequency of the outputs (every three hours) make these simulations
suitable for a wide kind of studies. Water balance studies over land can be car-
ried out in other regions included in our domain, but the studies can be carried
out also over the Atlantic Ocean or the Mediterranean Sea. Both downscaled
products could be also useful for extreme events and flood studies, but also
for decision-making. It has been proved that the SDSM can produce similar
results at site scales to those from the dynamical downscaling, but for longer
periods and with less computational cost.

13. In chapter 5, our WRF simulations were validated against buoys and the
CCMPv2 gridded dataset over water in the West Mediterranean. Similar re-
sults to those over land were observed, as the D experiment obtained similar
scores to ERAI, but better than N. The wind field of the D experiment was also
applied for the calculation of the CF and AEP in the region. Two potential
regions for the creation of wind farms were detected near cabo Begur and in
the north of Menorca.

14. All of the calculations done during the thesis were carried out using the R
software. Combining them with some programming codes for the calculation of
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atmospheric thermodynamic variables, the aiRthermo package was created. It
is publicly available on the CRAN repository since August 2017. Amongst the
several functions included on it, the most important ones are those created for
the calculation of the state of an air parcel, moisture indices, vertical evolutions
and fully editable Stüve diagrams.

8.2 Future perspectives
Some open questions arisen during this study were left for future work. Here, some
logical research projects that could follow this thesis are presented, taking into ac-
count the results obtained and everything learnt during this three-year period.

• The e�ect of enhancing the spatial and/or temporal resolution of the boundary
conditions provided to WRF can be studied. For example, some new simula-
tions should be created with the WRF model in order to analyse the e�ect of
creating new background error covariances for the 3DVAR data assimilation
step including SST data with a sub-daily temporal resolution. In this thesis,
the SST provided to both WRF simulations was updated daily. However, the
analysis of the residuals showed that the e�ect of the data assimilation step
was remarkable during the afternoon, and not during the whole day. Thus, the
e�ect of improving the temporal resolution of the data provided to the WRF
model could be an interesting study.

• The static data defined within the NOAH land surface model should be fur-
ther studied, as we have found that some problems can arise even if the basic
configuration of the land surface model is used. Not only the land use or soil
type categories should be re-evaluated, but also other categories such as veg-
etation fraction. In this thesis, the evaporation cannot be correctly simulated
on many urban or built-up grid points. Then, the physical mechanisms that
could explain WRF’s inability to simulate a realistic evaporation over urban o
built-up points must be identified. However, it must be taken into account that
the e�ect of this problematic categories could extent the evaporation and a�ect
also other variables not studied in this thesis.

• A comparison of the statistical and dynamical downscaling techniques was car-
ried out in this thesis. However, since the SDSM provides a twenty-member
ensemble, the comparison was carried out comparing the deterministic simu-
lations created by WRF against the probabilistic results of SDSM. Then, it
should be interesting to create an ensemble of simulations with WRF, made
by changing the configuration of the physics of the model (that is, changing
the parameterizations) or by changing the initial conditions of both simula-
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tions. This way, a fair comparison between two probabilistic products could be
carried out.

• The energy fluxes involved in the cold bias in the south of the IP during summer
must be determined. Our study has proved that the data assimilation step is
able to correct this cold bias in the model (see Figure 3.28), but most of the
simulations created in the literature do not include the data assimilation step.

• The influence of two types of precipitation (large-scale and convective) can
be identified in the results presented in this thesis. How well these di�erent
precipitation types are reproduced by dynamical and statistical downscaling
is also an interesting topic to developed in further research. In addition, the
inter-annual or seasonal variability of precipitation simulated with WRF and
SDSM could be also studied.

• The ability of WRF and SDSM to simulate actual precipitation regimes was
tested in this thesis. However, this study could be extended to the evaluation
of the skill of the models to reproduce climate changes. Because of the use
of the data assimilation step, the WRF model cannot simulate future climate
changes, but it could be useful for the simulation of those changes in the regimes
observed during the 20th century.
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A PREDICTOR SUITES FOR SDSM EXPERIMENTS

A

Predictor suites for SDSM

experiments

In this appendix we present the predictor suites generated for each SDSM experiment
in section 4.1. Particularly, Figures A.1 and A.2 are the predictor suites for the N48
and E79 experiments, described in the main body as NCEP and ERA predictor suites
respectively. Figures A.3 and A.4 are those predictor suites created for the N79 and
E79r experiments.
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NCEP Predictor Suite (Experiment N48)
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Figure A.1: SDSM predictor suite calibrated using N48 inputs. R2 values are for the
validation period when SDSM is driven by N48, N79, E79 and E79r inputs respectively.
This predictor suite is described in the main body text as the ‘NCEP predictor suite’.
Acronyms of the predictors as defined in Wilby and Dawson (2013).
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Figure A.2: As in Figure A.1 but for E79 inputs. This predictor suite is described in the
main body text as the ERA predictor suite’.
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Figure A.3: As in Figure A.1 but for N79 inputs.
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Figure A.4: As in Figure A.1 but for E79r inputs.
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B TAYLOR DIAGRAMS FOR EACH REGION OF THE IP

B

Taylor diagrams for each

region of the IP

This appendix includes every Taylor diagram created for the chosen stations over
the IP. As stated in section 4.3 (Figure 4.7), four regions were defined: Northern,
Central, Mediterranean and SouthWestern regions. Figure B.1 shows the results
for the Northern region of the IP, including Vigo, A Coruña, Gijón and Santander
stations. The Taylor diagrams for the central region are presented in Figure B.2,
which includes Pamplona, Soria, Valladolid, Madrid and Daroca stations. The Taylor
diagrams for Lleida, Barcelona, Castellón de la Plana, Almería and Murcia stations
(Mediterranean region) are included in Figure B.3. Finally, the Taylor diagrams for
the southwestern zone are presented in Figure B.4, including Lisbon, Cáceres, Ciudad
Real, Albacete, Córdoba, Huelva and Tarifa.
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B TAYLOR DIAGRAMS FOR EACH REGION OF THE IP

Soria Station

Standard deviation

St
an

da
rd

 d
ev

ia
tio

n

0 1 2 3 4 5 6

0
1

2
3

4
5

6

1

2

3

4

5

6

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

N
D
ERA
SDSM
EOBS
GPCP
TRMM
Ensemble

Observed

Madrid Station

Standard deviation

St
an

da
rd

 d
ev

ia
tio

n

0 1 2 3 4 5

0
1

2
3

4
5

1

2

3

4

5

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

N
D
ERA
SDSM
EOBS
GPCP
TRMM
Ensemble

Observed

Daroca Station

Standard deviation

St
an

da
rd

 d
ev

ia
tio

n

0 1 2 3 4 5

0
1

2
3

4
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5
5

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

N
D
ERA
SDSM
EOBS
GPCP
TRMM
Ensemble

Observed

Pamplona Station

Standard deviation

St
an

da
rd

 d
ev

ia
tio

n

0 2 4 6 8

0
2

4
6

8

1

2

3

4

5

6

7

8
9

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

N
D
ERA
SDSM
EOBS
GPCP
TRMM
Ensemble

Observed

Valladolid Station

Standard deviation

St
an

da
rd

 d
ev

ia
tio

n

0 1 2 3 4 5

0
1

2
3

4
5

1

2

3

4

5

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

N
D
ERA
SDSM
EOBS
GPCP
TRMM
Ensemble

Observed

-10 -5 0 5

40
41

42
43

44
45

Centre Region

ºE

ºN

SORIA

MADRID

PAMPLONA

VALLADOLID

DAROCA

Figure B.2: Same as Figure B.1 but for the Central region.
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Figure B.3: Same as Figures B.1 and B.2 but for the Mediterranean region.114
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C DETAILS ON THE METHODOLOGY FOR THE CALCULATION OF
WIND FARM RELATED VARIABLES

C

Details on the methodology

for the calculation of wind

farm related variables

In this appendix we give more details about the methodology followed in chapter 5
for the calculation of the wind speed at 10 m from the measured wind at 3 m by
the buoys, but also the one followed for the calculation of the CF and AEP of the
turbines.

C.1 Wind at 10 m
All the buoys chosen for the study present their anemometer at 3 m. However, the
nearest wind to that height that can be obtained from both WRF simulations is the
wind at 10 m. Thus, it is necessary to estimate the measured wind at 10 m by the
buoys.

To do so, the instantaneous roughness of the sea (z0) was calculated by means of
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C.2 Capacity Factor and Annual Energy Production

Hsu’s equation (Hsu, 2003):

z0
Hs

= 1200 ·
3

Hs

Lp

44.5
(C.1)

where Lp is the peak period wavelength (obtained from the records of each buoy)
and Hs the significant wave height.

Once the instantaneous roughness was calculated, the logarithmic law of vertical
wind shear was applied:

U(z) = U(zr) + ln ((z + z0)/z0)
ln ((zr + z0)/z0) (C.2)

where U(zr) is the wind speed at the reference level (z = 3 m) and U(z) the estimation
at the desired height. In this case, z = 10 m.

C.2 Capacity Factor and Annual Energy Production
In order to incorporate the e�ect of air density on wind speed, the CF and AEP were
calculated with the normalized wind speed Un. It is defined this way:

Un = U

3
fl

fl0

43
(C.3)

where fl0 is the density of the air at sea level and at 15¶C according to the Standard
Atmosphere model (1.225 kg/m3).

According to equations 6.62 to 6.64 in Masters (2013), the CF of a turbine is
defined as:

CF = 0.087 · Un ≠ PR

D2 (C.4)

depending on the mean wind speed in m/s (in this case, the mean normalized wind
speed for period 2010-2014), the rated power PR in KW and the diameter of the
wind turbine D in m.

Once the CF is calculated, it is easy to calculate the AEP of a turbine (in TW
h/year) as:

Ea = CF · PR · 365.25 · 24 · 10≠12 (C.5)
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