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1.1. Quantum dots 

1.1.1.  General aspects 

Colloidal quantum dots are dispersions of semiconductor nanocrystal of sizes between 

2 nm and 10 nm, which were discovered by Alexey Ekimov in 19811 and described by L. E. 

Brus and coworkers during the early 80s. Brus et al. modelled the excited electronic states of 

small semiconductor crystallites comparing them with bulk materials and observing some 

interesting differences. From these studies, the influence of the quantum dots (QDs) size on 

their energy and subsequently on their properties was deduced, being this the base of their 

development2–5. As semiconductors, the electronic band structure of quantum dots is based on 

a conduction band and a valence band separated energetically by the band gap (Figure 1.1).  

 

Figure 1.1 Electronic band structure of quantum dots. 

Normally, the energy levels of the valence and the conduction band in a semiconductor 

particle are continuous. However, when the size of the semiconductor is smaller than the Bohr 

exciton radius these energy levels become discrete resulting in a size-dependent band gap6. 

This is called quantum confinement effect. The presence of discrete energy levels in their 
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electronic structure makes QDs to be sometimes referred as artificial atoms, as they show a 

structure similar to the one that would correspond to atoms7,8.  

The dependency of the band gap with the particle size is defined by Equation 1.1, which 

shows an inversely proportional relationship between the bang gap energy (ΔE) and the size 

(R); the bigger is the radius of the nanocrystals the smaller is the band gap. 

𝚫𝑬 =  
ℏ𝟐𝝅𝟐

𝟐𝑹𝟐  (
𝟏

𝒎𝒆
∗ + 

𝟏

𝒎𝒉
∗ ) −  

𝟏. 𝟖 𝒆𝟐

𝜺𝑹
 

Equation 1.1 Change in the bandgap width as a function of the size of the QD. 

e = electron elementary charge 

ε = bulk dielectric constant 

me
* and m*

h = effective mass of the electrons and the holes, respectively 

R = nanoparticle radius 

The size-dependence of the band gap influences the electronic and optical properties of 

the quantum dots, especially on their fluorescence emission. For fluorescence to happen, first 

a jump of an electron from the valence band to the conduction band has to occur. This creates 

an electron hole in the valence band upon absorption of a photon. Then, the electron and the 

hole are attracted by electrostatic Coulombic forces and recombined, generating an exciton 

emitting light in fluorescence form. As mentioned above, and as a consequence of the quantum 

confinement effect, the smaller is the particle size the bigger is the band gap between the 

valence band and the conduction band, meaning that more energy is emitted when the electron 
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and the hole are recombined. Therefore, smaller particles emit light at shorter wavelengths, 

blue range of the visible spectra, whereas bigger particles emit light at longer wavelengths, in 

the red range of the visible spectra (Figure 1.2). 

 

Figure 1.2 Quantum confinement effect (http://www.sigmaaldrich.com/technical-documents/articles/materials-
science/nanomaterials/quantum-dots.html#ref). 

1.1.2.  Structure 

Quantum dots are made of combinations of different periodic elements, especially from 

groups II and VI (CdSe, CdS…), but also from groups III and V (InAs, GaAs…) or groups IV 

and VI (PbSe). The final crystal structure, in all the cases, depends mostly on the synthesis 

conditions, being the most common structures zinc blend, wurtzite and sodium chloride9–11. 

Colloidal quantum dots, especially the ones from groups II-VI, has been extensively 

investigated10, being the most extended synthetic route the one proposed by Murray and 
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coworkers12. They synthesized good quality trioctylphosphine oxide (TOPO) coated CdE (E = 

S, Se, Te) nanocrystals by hot injection of the precursor solutions (Figure 1.3). In this method, 

the surface modifier (TOPO) is placed in the reaction vessel in solid form under magnetic 

agitation, and the temperature of the flask is increased to 300ºC melting the TOPO.  Then, two 

solutions are prepared, one containing the cadmium reagents and the other one containing the 

“E” reagents. The two solutions are then loaded in a single syringe. After cooling down the 

flask, the solutions mixture is injected in a shot increasing suddenly the temperature to 180ºC. 

Afterwards, the temperature is increased gradually to 230ºC-260ºC. Depending on the reaction 

time CdE particles of different sizes are obtained. 

 

Figure 1.3 Hot injection set-up. 

This technique gives a good control of the nucleation, which provides narrow particle 

size distributions of QDs with high luminescence. However, the nanocrystals produced present 

defects on their surface leading to electron leaks during time, and therefore, to a loss on their 

optical properties. In order to circumvent this, QDs are usually passivated with another 

semiconductor material with a similar crystal lattice to avoid incompatibilities and loss of 
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luminescence13–16. Even if hot injection technique is extensively used for the synthesis of QDs, 

more recently, good quality quantum dots have also been synthesized using supercritical fluid 

technology. This technique allows reducing the reaction time and to overcome miscibility 

problems as well as the synthesis of larger amounts of good quality product11,17. 

Depending on the band gap of the bulk material that composes the core and the shell, 

three types of core-shell systems can be distinguished, Type I, Reverse Type I and Type II16 

(Figure 1.4). In Type I (CdSe/ZnS)13 the band gap of the shell is bigger than the one of the 

core, being both electrons and holes confined in the core. In this case the shell acts as a 

protection of the core, so the loss of the optical properties of the nanocrystal is mainly reduced. 

In Inverse Type I (ZnSe/CdSe)18 the opposite situation is presented, the band gap of the core is 

bigger than the band gap of the shell. In this case the position of the electrons and the holes 

depends on the thickness of the shell being partly or entirely confined in the shell. Finally, in 

Type II core-shell QDs (CdTe/CdSe)19 either the valence band or the conduction band of the 

shell is situated in the band gap of the core. Consequently, the electron and the hole are 

separated and situated in different parts of the final structure19.  

 

Figure 1.4 Scheme of the bandgap alignment between the core (blue) and the shell (red) material in a core-shell system. 
From left to right: Type I, Type II (two cases) and Inverse Type I. (Reproduced from reference16) 
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In the three cases the thickness of the shell has a great impact on the final properties of 

the nanocrystal15,16. For example, the thickness in the ZnS shell in CdSe/ZnS Type I particles 

causes a slight red shift both in the absorbance and the emission peak. This red shift is 

probably due to partial leakage of excitons into the ZnS shell. In the two other types, as the 

electrons and holes are delocalized in the core and in the shell, the increase in the thickness of 

the shell drives to a notable red shift. Taking all these factors into account, a good equilibrium 

between an effective protection of the core in order to avoid photobleaching and maintenance 

of the tunability in the emission wavelength depending on the final size, has to be reached. 

This way highly luminescent nanocrystals can be obtained.  

In fluorescence, the luminescence efficiency is defined by the quantum yield, which is 

the ratio between the number of photons emitted and absorbed. This value increases 

significantly when synthesizing core-shell quantum dots nanocrystals avoiding 

photodegradation. 

Most of the quantum dots presented so far are cadmium based, so potentially toxic 

when used for biological applications. Therefore, new heavy metal free quantum dots have 

been synthesized trying to obtain the same optical properties as for Cd-based nanocrystals20, 

in order to use them for both optoelectronic and biological applications. In some cases, 

synthesis have been done by hot injection of the precursors21–26. On the other hand, other 

authors have developed new techniques aiming at obtaining properties similar to the ones of 

conventional QDs. For example, Li and Reiss developed the “heating-up method” obtaining 

high quantum yields27. As in the case of conventional Cd-based quantum dots, supercritical 
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fluid technology can also be used for the synthesis of those novel nanocrystals, such as GaN 

that present excellent optoelectronic properties and are biocompatible28. 

1.1.3.  Surface chemistry 

Independently from the inorganic shell, usually quantum dots are further coated with an 

organic compound (eg., trioctylphosphine oxide (TOPO) or octadecylamine) that acts as a 

stabilizer ligand in their synthesis29,30. Furthermore, the organic coating gives the QDs 

dispersibility in different solvents (water or organic solvents). Ligands normally influence the 

optical properties of the nanocrystals because they interact with its surface, and therefore, 

ligands have to be carefully chosen and incorporated. Typically, the organic ligand is 

incorporated when synthesizing the nanocrystal, as some of the precursors are dissolved in the 

presence of the ligand.  

Additionally, most of the stabilizers used to coat quantum dots surface are hydrophobic, 

which makes difficult their dispersion in aqueous media and hence reduce their potential use in 

biological applications. Therefore, polymeric modifiers that are compatible with water and 

contain multiple functionalities have been implemented to achieve stable dispersion of QD in 

aqueous media30. Although many approaches have been developed to get polymer-coated 

quantum dots, most of them require a ligand exchange reaction that affects the fluorescence of 

the QDs by reducing their quantum yield31. Some examples are: the use of multidentate 

polymeric ligands32,33; attachment of the polymer chain to the QDs´ surface both via direct 

attachment of a functionalized polymeric chain to the surface34, or via polymerization from the 
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surface of the nanocrystal35; or coating with dendrimeric materials36,37. An alternative to these 

ligand exchanges is the use of amphiphilic polymers in which the hydrophobic part interacts 

with the former organic modification of the quantum dot surface and the hydrophobic part is 

exposed to the outer side, obtaining good quality water dispersible quantum dots 38–40. 

1.1.4.  Properties 

As discussed in the previous sections, thanks to their very small size (2-10 nm), 

quantum dots present a size dependent band gap that makes them exhibit some exceptional 

optical and electronic properties. 

The most remarkable property of quantum dots is linked to their size-tunability, which is 

intimately related with their band gap size dependency. This means that maintaining the 

chemical composition of the nanocrystal, the emission wavelength is changed by varying their 

size. For example, in the case of CdSe/ZnS quantum dots, emission wavelength shifts from the 

blue to the red range by changing the size of the nanocrystal from 2 nm to 10 nm (Figure 1.5). 
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Figure 1.5 Fluorescence emission wavelength of CdSe/ZnS quantum dots dependending on their size.(Image taken from 
reference 41). 

Apart from their size-tunability, quantum dots present other remarkable optical 

properties. They present a narrow emission peak exhibiting small full width at half maximum, 

so their emission is very specific. Additionally, they absorb light in a wide range of wavelengths. 

Combining these two characteristics, different types of quantum dots or quantum dots of 

different sizes can be used at the same time illuminating the sample under the same excitation 

wavelength and obtaining fluorescence spectra in which overlapping of the peaks is avoided. 

Therefore, quantum dots can be used in biological labelling or bioimaging assays such as 

multiplexing. 

Compared with organic dyes, quantum dots present many advantages, apart from the 

already highlighted size-tunability, specific emission peaks and broad absorbance. For 
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example, they are around 20 times brighter under UV light42. In terms of photostability, 

quantum dots are much more stable than organic chromophores. This is mainly due to the 

inorganic composition of QDs. In the case of chromophores, they are photochemically altered 

by the cleavage of covalent bonds, modifying their chemical structure and suffering from a 

decay in fluorescence emission intensity. This effect is called photobleaching. Regarding 

fluorescence lifetime, regardless the slower start of emission of QDs; their excited state decay 

curves are smoother presenting longer lifetimes than organic dyes. Quantum dots also present 

molar extinction coefficients 10 to 50 times larger than organic dyes, which is a notable 

advantage in limited photon absorbance conditions39,43. 

In spite of the inherent advantages provided by quantum dots (exceptional electronic 

and optical properties), one should also consider their potential drawbacks for certain 

applications. Thus, the most important drawbacks is their small size (that is needed to get size-

tunability fluorescence), which makes them difficult to manipulate. Furthermore, their sensitivity 

upon degradation of their surface that leads to a loss of their properties, and their toxicity due 

to the heavy metals composition, are also important drawbacks. Therefore, there is a strong 

interest to protect quantum dots using polymers to facilitate their use in optoelectronic and 

biological applications, overcoming the drawbacks listed above. This way, QDs with easier 

manipulation and good dispersibility in several mediums will be available. Regarding their 

surface sensitivity, quantum dots would be protected against damage, so against loss of their 

properties. Furthermore, the working environment would be protected and the impact of their 

toxicity notably reduced. 
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1.2. Incorporation of quantum dots into colloidal polymer particles 

A large number of researchers have attempted the production of colloidal polymer 

particles with encapsulated inorganic nanoparticles and more particularly with quantum dots. A 

careful review of these works clearly indicates that, not only there is not a general approach for 

the encapsulation of QDs, but also in most of the cases specific modification of the surface of 

the QDs and purification steps are required, which makes the methods difficult to scale-up. The 

most relevant methods developed for the encapsulation of quantum dots into polymer particles 

are the following: 

➢ Incorporation into premade polymers 

➢ Suspension Polymerization 

➢ Emulsion Polymerization 

➢ Miniemulsion Polymerization 

A brief summary of these methods will be presented in the next sections. 

1.2.1.  Incorporation of QDs into premade polymers 

With the aim of controlling the position and the number of quantum dots into the polymer 

particles, as well as to avoid possible degradation of the surface of the nanocrystals (by the 

interaction of the radicals when polymerizing in presence of QDs), several groups studied the 
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incorporation of QDs into already preformed polymer particles. Different ways of incorporation 

have been reported. 

The simplest method is the swelling of the quantum dots into polymer microgels44. This 

has been reported both for quantum dots coated with organic ligands44,45 and for water-

dispersible nanocrystals46. However, in some of the cases the position of the quantum dots in 

the microgels was not the desired one, being found in the outer part of the particle. Regarding 

the microgel size, this has to be well controlled as it can change depending on the 

environment, pH, temperature, ionic strength, solvent and electric field. The tuning of these 

parameters was seen as an advantage for the incorporation of quantum dots in different 

reported works. For example Kuang et al.47 entrapped CdTe QDs into microgel spheres by 

changing the pH. At low pH microgel particles were swollen trapping the QDs. Then, increasing 

the pH, the microgel shrinked and confined the nanocrystals inside. When the pH was 

increased to values higher than 11 QDs were released (Figure 1.6). 

 

Figure 1.6 Schematic illustration of the loading of CdTe NCs in PNIPVP spheres and their controlled release by pH. 
(Image taken from reference 47). 
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In-situ synthesis of quantum dots in polymer microspheres (e.g. microgels) has also 

been studied, carrying it on the surface of the polymer particles or directly inside48,49 them. 

Many factors have to be controlled in order to get high quality nanocrystals into the microgels, 

such as the pH during the nanocrystal synthesis, the microgel composition, and the 

morphology of the microgel.  

1.2.2.  Encapsulation via suspension polymerization 

Regarding encapsulation of quantum dots during a polymerization reaction, suspension 

polymerization has been one of the ways investigated for obtaining stable polymer particles-

quantum dots hybrids. O´Brien et al.50 first synthesized hexadecylamine CdSe QDs followed by 

a ligand exchange (with polymerizable ligands based on the TOPO structure) obtaining surface 

polymerizable QDs. Those quantum dots were encapsulated into polymer particles synthesized 

by suspension polymerization. The nanocrystals were dispersed in a styrene-divinyl benzene 

(DVB) monomer mixture. Polyvinyl alcohol was used as stabilizer and AIBN as initiator in the 

suspension polymerization. They obtained polymer beads of 38 μm size with a homogeneous 

distribution of QDs in them after polymerization (Figure 1.7 left image). This homogeneity in the 

distribution of the QDs, was shown by measuring the fluorescence in different parts of a bead 

(RDI 1, RDI 2…) and obtaining the same emission intensity, as shown in the fluorescence 

spectra of Figure 1.7 (right image). 
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Figure 1.7 Fluorescence emission fingerprint of quantum dot containing polymer beads. Images taken from reference 50 

Bradley et al.44 used two different ways to encapsulate TOPO coated CdSe QDs. On 

one hand, the quantum dots dispersed in chloroform were swollen into polystyrene microgel 

particles. On the other hand, the QDs were dispersed in a mixture of styrene and divinyl 

benzene (DVB), carrying out suspension polymerization using polyvinyl alcohol as stabilizer 

and benzoyl peroxide (BPO) as initiator. The localization of the QDs was studied by confocal 

microscopy. In the former case, the penetration of the nanocrystals depended on the swelling 

of the microgel particles; the higher the swelling, the higher the penetration of the QDs. In the 

latter case quenching of the fluorescence was observed when encapsulating CdSe QDs, so 

CdSe/ZnS QDs were used. In this case, the polymer particles in which the nanocrystals were 

located in the polymer particle-aqueous phase interface were obtained. In this report, no data 

about the fluorescence of the microgel particles was shown, just the localization of the QDs by 

confocal microscopy. 
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Sheng et al.51 first produced TOPO coated CdSe/ZnCdS/ZnS quantum dots followed by 

a cap-exchange in which the TOPO molecules were substituted by an oligomeric phosphine 

ligand. The obtained QDs were then dispersed in ethanol for a pre-polymerization process with 

MMA, after which a shell of cross-linked PMMA protected the QDs. These PMMA modified 

QDs were incorporated in PS microparticles produced in suspension polymerization, using 

AIBN, poly(vinylpyrrolidone) (PVP) and ethanol as initiator, stabilizer and continuous medium 

respectively. The process led to quantum dot-embedded polystyrene microspheres 

(QD/PSMS) with 1.2 µm diameter. Fluorescent monodispersed microspheres stable under 

harsh conditions were obtained. Nevertheless, aggregation of quantum dots could not be 

prevented when increasing their concentration. 

Even though QDs were incorporated into polymer particles by suspension 

polymerization process, a good control of either the position of the quantum dots or of the final 

fluorescence properties was achieved. 

1.2.3.  Encapsulation via emulsion polymerization 

Emulsion polymerization has also been used for the encapsulation of quantum dots into 

colloidal polymer particles. Yang and Zhan52 synthesized TOPO coated CdSe quantum dots 

and dispersed them in toluene. The dispersion was then added dropwise to the surfactant 

solution in water at room temperature. Then, the monomer mixture (styrene, divinyl benzene 

and methacrylic acid) and the initiator (AIBN) were added dropwise to the prepared emulsion in 

an ice bath. Finally, they increased the temperature to 70ºC carrying out the polymerization for 
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20 hours. They claimed a good control of the encapsulation of the quantum dots into the 

polymer particles avoiding aggregation of the nanocrystals, showing fluorescence microscopy 

images. Unfortunately, TEM micrographs and fluorescence spectra of the hybrid polymer 

particles were not provided to assess the encapsulation.  

Cysteine acrylamine coated CdS and CdSe/CdS quantum dots were encapsulated by 

emulsion polymerization using two different methods53. In a first example, surfactant-free 

emulsion polymerization of styrene and sodium 4-styrenesulfonate using KPS as initiator was 

carried out, dispersing the QDs in the monomer. Polymer particles ranging from 177 nm to 226 

nm were described, noting that after the polymerization some of the QD nanoparticles were not 

trapped into the polymer particles and were removed by ultrafiltration. Although nanocrystals 

could not be observed in the TEM micrograph shown and fluorescence emission spectra were 

not presented, they claimed stability of the fluorescence for more than two years. In a second 

example, CdSe/CdS QDs were first modified with vinylbenzyl (trimethyl)-ammonium chloride 

obtaining polymerizable groups on their surface. Those nanocrystals were then dispersed in a 

mixture of styrene and water containing sodium dodecyl sulfate as emulsifier carrying out the 

emulsion polymerization using AIBN as initiator. No TEM images in which the QDs could be 

observed were presented. Nevertheless, a fluorescence spectra comparing the CdSe/CdS 

signal before and after the emulsion polymerization was shown. A blue shift in the fluorescence 

emission wavelength was observed during the polymerization, as well as a wider final emission 

peak (Figure 1.8), meaning that the nature of the quantum dots did not remain unaltered during 

the polymerization process. 
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Figure 1.8 Fluorescence emission spectrum of cysteine acrylamine coated CdSe/CdS QDs before and after the emulsion 
polymerization process carried out using SDS and AIBN as emulsifier and initiator (336) (Image taken from reference 53). 

Finally, Lee et al.54 synthesized TOPO coated CdSe and CdSe/ZnS quantum dots. In 

this work, encapsulation via emulsion polymerization using different monomers is explained. 

First the encapsulation of the CdSe QDs into polydivinyl benzene (pDVB) particles is shown. 

The QDs were dispersed in chloroform and then mixed with an aqueous solution of sodium 

bis(2-ethylhexyl) sulfosuccionate (AOT). After removing the excess of AOT from the surface of 

the QDs by dialysis and centrifugation, the aqueous solution of QDs was mixed with divinyl 

benzene (DVB) initiating the polymerization reaction with potassium persulfate (KPS). They 

claimed the synthesis of 20 nm size hybrid polymer particles with a successful encapsulation of 

the QDs (Figure 1.9a). The obtained hybrid polymer particles were characterized by UV-Vis 

absorbance observing a decrease of the absorbance during the encapsulation process, from 

the dispersion of the QDs in chloroform (Figure 1.9b). Moreover, a decrease of the 

fluorescence emission intensity from the dispersion of the QDs in chloroform to the final hybrid 

polymer particles was reported, as well as a red shift of the emission peak (Figure 1.9b inset). 

They proved the versatility of the method by using different monomers (styrene (S), vinyl 

pyridine (VPy) and methyl methacrylate (MMA)) for the encapsulation of CdSe QDs with and 
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without using DVB as cross-linker. The effect of the cross-linking in the polydispersity and 

structure was studied, presenting an improvement for the case of PS and PVPy hybrid polymer 

particles, but not for PMMA, where QDs were severely aggregated. Better results were 

obtained when CdSe/ZnS core-shell QDs were used in the same approach. Thus, fluorescence 

quenching during the process of encapsulation into pDVB particles was avoided (Figure 1.9). 

However, results for the other monomers were not shown, neither the evolution of the 

fluorescence during time. 

  
a b 

 
c 

Figure 1.9 a) TEM micrographs of hybrid polymer particles pDVB/QDs. The upper inset is a high magnification image 
showing an individual pDVB/QDs hybrid polymer particle. The lower inset shows the particle size distribution. b) UV-VIS 

absorption spectra of CdSe nanocrystals at each step of the synthesis. Absorption spectra are offset for clarity. The curves 
in the inset are the corresponding photoluminescence spectra normalized to the optical density at the excitation 

wavelength. c) Photoluminescence spectra normalized to the optical density at the excitation wavelength of CdSe/ZnS 
nanocrystals at each step of the synthesis (Images taken from reference 54). 
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From the examples above, it can be said that complete encapsulation of QDs into 

polymer particles by means of emulsion polymerization is difficult, unless polymerization is 

started from the surface of the QDs, after their surface modification to incorporate 

polymerizable groups. 

1.2.4.  Encapsulation via miniemulsion polymerization 

Likely the simplest and more general method to encapsulate QDs in hydrophobic 

submicron polymer particles is by means of miniemulsion polymerization55,56; namely by 

generating an aqueous dispersion of nanodroplets of a polymerizing monomer where the 

surface coated QDs are compatible. The polymerization of the nanodroplet dispersion yields a 

dispersion of polymer nanoparticles that contain the quantum dots. The successful 

encapsulation of the inorganic nanoparticles into the polymer particles by miniemulsion 

polymerization depends on the monomer system, the initiator type, the surfactant concentration 

and the surface modification of the inorganic nanoparticles. All these factors determine the 

thermodynamic equilibrium morphology of the hybrid polymer-inorganic nanoparticle particles, 

which is the one that minimizes the surface energy of the system57. 

Fleischaker and Zentel58 produced core/shell PS/PMMA nanoparticles with CdS/ZnS 

coated CdSe QDs integrated in the core. The core was produced by miniemulsion 

polymerization using hexadecane (HD) as co-stabilizer and sodium dodecyl sulphate (SDS) as 

emulsifier. The shell was produced by starved feeding of MMA to the hybrid core seeds. 

Unfortunately, the authors did not provide information about the location and distribution of the 
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QDs in the core particles neither regarding the fluorescence properties of the core particles. 

Nonetheless, the core/shell particles seem to be good candidates to produce colloidal crystals 

(Figure 1.10). 

 
Figure 1.10 Colloidal photonic crystals from PS/PMMA core-shell spheres with embedded CdSe QDs (Image taken from 

reference 58). 

Esteves et al. claimed encapsulation of TOPO-coated CdS or CdSe QDs in polystyrene 

and polybutyl acrylate polymer particles produced by free radical59 or AGET-ATRP (Activator 

Generated by Electron Transfer-Atom Transfer Radical Polymerization)60,61 miniemulsion 

polymerization, yielding homogeneous nanocomposites where the optical properties of the 

QDs were maintained. However, the latexes were bimodal and QDs were only observed in the 

large population, and hence additional separation steps were necessary to get only the 

fluorescent colloidal particles. 

Joumaa et al. extensively analysed the incorporation of CdSe/ZnS core-shell QDs into 

polymer colloids by miniemulsion polymerization investigating the effect of the type of coating 

(either trioctylphosphine oxide (TOPO) or vinyl-functionalized), the concentration of the QDs, 

and the surfactant concentration on the kinetics of the polymerization as well as the 

photoluminescence properties of the hybrid polymer particles62. They found that the kinetics of 

the polymerization was almost not altered by the presence of either type of QDs, the 
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fluorescence of the particles increased with the concentration of nanocrystals, and the 

fluorescence properties were superior for the TOPO-coated latexes. Interestingly, the authors 

provided very accurate TEM images of the location of the QDs in the polymer particles and two 

aspects were noteworthy: the QDs aggregated, but preserved their optical properties and the 

QDs were located at the edge of the polymer particles, namely at the interface of the particles 

and aqueous phase (Figure 1.11). Although the authors showed that fluorescent latexes were 

produced, they did not provide any information of the fluorescence during storage which might 

be affected by the location of the QDs in the vicinity of the aqueous phase. 

  

Figure 1.11 TEM micrographs of ultrathin sections showing the location of the TOPO coated CdSe/ZnS QDs in the 
polymer particles (Image taken from reference 62). 

More recently, Harun et al. used miniemulsion polymerization to encapsulate alkylated 

silicon quantum dots (Si-QD) in polymer nanoparticles composed of styrene and 4-

vinylbenzaldehyde monomers63. The authors claimed encapsulation by measurements done by 

confocal microspectroscopy using Raman and luminescence spectra and by bright field optical 

images, but well-resolved TEM images were not obtained and hence neither the location nor 

the distribution of the Si-QDs within each polymer particles could be provided. Interestingly, 
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these authors analyzed the preservation of the luminescence of the latexes during time upon 

exposure to aqueous alkali medium (0.02M). They showed that bare Si-QDs lost their 

fluorescence intensity in 24 hours, whereas the hybrids lost in the same time 60% of the 

intensity. Unfortunately, the authors did not provide fluorescence information in longer time 

periods. 

All the above reports indicated, not only that there is still a need to efficiently 

encapsulate fluorescent QDs in submicron colloidal particles, but also to preserve the 

fluorescence of the colloidal particles during storage, in order to have time to fabricate optical 

devices without jeopardizing the properties achieved right after the synthesis of the hybrid 

colloidal particles. 

1.3. Applications 

Taking advantage of the unique optical and electronic properties of quantum dots, they 

have been extensively investigated as perfect candidates for several applications. 

Encapsulated into polymer particles they are easily manipulated, they can be better dispersed 

in different mediums, they are better protected against damage of their surface and the 

environment is protected against their toxicity, they can improve the electronic transmission in 

electronic devices, such as light emission diodes64–66 and solar cells67–69, and the optical 

properties for example for biological assays as multiplexing and for bioimaging42,70.  
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1.3.1.  Biological applications 

Regarding biological labelling, the small retard (ns) of quantum dots for emitting 

fluorescence in comparison with organic chromophores is an important advantage. Cellular 

components present autofluorescence during a short period of time, that coincide with the time 

during which organic dyes present their highest fluorescence, making difficult their detection by 

fluorescence. However, as QDs start emitting later, they avoid the overlapping of the signals 

distinguishing better the organelles of interest, and carrying out measurements during longer 

periods of time71. Taking into account the potential toxicity of QDs and their sensible surface, in 

most of the reported works they are coated with amphiphilic polymers, specially PEG. 

However, the encapsulation or coating of the QDs with polymers increases their size making 

difficult to introduce them into the cell. So, for cell labelling quantum dots are directly capped 

with terminal functional groups as thiols, carboxylic acids or amine, so they can be conjugated 

to diverse molecules such as proteins and DNA72–74. Both in vitro and in vivo labelling has been 

reported by different groups, taking into account the most appropriate functionalization 

depending on the desired binding, as well as the size of the resulting particle to be suitable for 

the labelling39,75–80. 

As presented above, quantum dots present a very narrow fluorescence emission peak 

and absorb light in a very wide range of wavelengths. Thanks to this, different quantum dots 

can be detected simultaneously using a single excitation wavelength and avoiding overlapping 

of the emission signals. This has been studied for the application of the nanocrystals in 

multiplexing assays45–47,71,74,78,81. Multiplexing assays are based on the encapsulation of 

different types of QDs into polymer particles and the posterior modification of the polymer 
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particles to make them compatible with biological systems. The recognition of the polymer 

particle by an analyte, and the already known fluorescence spectra corresponding to each 

polymer particle modification allows the identification of the analyte (Figure 1.12). A good 

stability of the hybrid polymer-QDs particles as well as a good dispersibility of the QDs into 

them is important in order to get good results. 

 

 

Figure 1.12 Scheme of a multiplexing assay. 
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1.3.2.  Optoelectronics 

The use of quantum dots in optoelectronic applications is another field that has been 

investigated in the last years. Combination of the nanocrystals with polymers in order to avoid 

aggregation and to keep their electronic and optical properties is also necessary in this case. 

However, an additional requirement is needed, the polymer used has to be able to conduct the 

charges generated by the nanocrystals through the material. 

Solar cells transform solar energy in electronic current. For that, charges have to be 

efficiently transported to the electrodes. The rise of solar cell market has motivated the finding 

of a way for improving their efficiency exceeding the Shockley-Queissar82 limit, which was 

calculated to be 31%, developing the third generation of solar cells. There are three ways 

described for the use of quantum dots in solar cells, metal-semiconductor or Schottkly junction, 

polymer-semiconductor junction and semiconductor sensitized solar cell or p-n junction67,83 

(Figure 1.13). 

 

Figure 1.13 Types of solar cells using QDs in their structure (Image taken from reference 83). 
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Metal-semiconductor junction is an electrical junction in which a semiconductor comes 

in contact with a metal undergoing Fermi level equilibration. Different cases of metal-

semiconductor junctions using QDs have been investigated such as self-assembly with gold 

nanoparticles or infrared responsive photovoltaic devices. In the former case it has been 

observed that the union linker between the metal and the QD particles has an important effect 

in the charge transport84–86. In the latter case, most of the examples are based on the use of 

PbS derivatives quantum dots. A thin film of quantum dots is put on a treated indium tin oxide 

(ITO) substrate obtaining high efficiency devices69,87,88. 

Polymer-QDs or organic solar cells are another option in the synthesis of efficient solar 

cells89,90. Depending on the polymer used for such devices, different properties of the QDs are 

required, working as photosensitizer or as electron acceptor. When incorporating a small 

amount of QDs into a carrier-transporting polymer, such as poly(N-vinylcarbazole) (PVK), the 

matrix was sensitized, observing an enhancement of the photoinduced charge generation 

efficiency and an extension of the sensitivity range compared to the synthesis of blends91,92. On 

the other hand, semiconductor polymers have also been used (poly(3-hexylthiophene) (P3HT), 

phenyl-C61-butyric acid methyl ester (PCBM) or poly(p-phenylene vinylene) (PPV)) taking 

advantage of the electron acceptor properties of QDs as well as their high electron 

conductivity. The holes generated in the QDs are injected in the polymer, whereas the 

electrons remain in the nanocrystal. Incorporation of the QDs in the polymer matrix, blends of 

conjugated polymers and QDs93–95, and grafting of polymers with QDs96 are techniques studied 

for the improvement of efficiencies. 
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The last type of third generation solar cells is p-n junction systems. Those are based on 

the wide absorbance wavelength range of QDs using them as light harvesters for then 

transferring the electrons to TiO2 nanoparticles that take part on the electrode67,68,83, making 

this way a simpler device compared to the previous ones. Kamat83 studied deeply the 

QDs/TiO2 system, describing how fluorescence bleaching appears and depends on the QDs 

particle size when combining these two nanoparticles. This fact confirms the electron transfer 

from the QDs to TiO2 nanoparticles. 

Light emitting devices are based on the same principle as solar cells, quantum dots 

combined with functional polymers. The polymer is normally used as hole or electron 

transporting material to the QDs, while QDs absorb light in a wide range of wavelengths or emit 

at a specific wavelength depending on the size. QD-LEDs can be fabricated in different ways, 

incorporation of the QDs in the as-synthesized polymer, dispersion of the QDs in a polymer 

matrix, deposition of the QDs dispersion as films on the electrodes or polymerization of the 

matrix in the presence of the QDs20,64–66,97,98,22,25. 

1.3.3.  Gas sensing applications 

Apart from the most known applications for colloidal quantum dots such as biological 

labelling, biological assays and optoelectronic devices, quantum dots have also been used as 

gas sensors. Quantum dots can be combined with certain polymers in order to detect electrical 

conductivity changes in the presence of volatile organic compounds (VOCs)99. In this work, 

Tatavarty et al. dispersed TOPO and octadecylamine coated CdSe/ZnS quantum dots in 
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chloroform and mixed them with a solution of polystyrene and polystyrene-co maleic anhydride 

in N,N-dimethylformamide (DMF). Then, the mixture was vortexed and sonicated for producing 

nanofibers by electrospinning. Fluorescent and electrically conductive nanofibers were 

obtained. The detection of VOCs was carried out by exposing the nanofibers to tetrahydrofuran 

(THF), chloroform and DMF. For the three solvent vapors an increase in the electrical 

conductivity of the nanofibers was observed when increasing the concentration of vapor, 

concluding that the QD-PS-PSMA nanofibers could be used in gas sensing applications. 

1.3.4.  Catalysis 

Quantum dots have also been used as photosensitizers in photocatalysis for water 

treatment, as well as for carbon dioxide reduction. In the case of water splitting, for example, 

QDs when excited are able to transfer a hole to a water oxidation catalysts or an electron to 

proton reduction catalyst, driving the water splitting reaction or synthesis of molecular 

hydrogen100,101. 

Recently, the use of QDs as carbon-carbon bond forming photocatalyst has been 

reported102. This has been done using a single size CdSe quantum dot as photoassisted redox 

catalysts that can replace several conventional photoredox catalysts. 
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1.4. Main objectives 

As discussed in this introduction, quantum dots exhibit exceptional optical and electronic 

properties that are of great interest in different fields for several applications. Their size 

tunability, specific emission peak, absorbance at a very wide wavelength range, emission 

stability and brightness, leads to an improvement in imaging resolution, more reliable 

fluorescence assays (multiplexing) and an improvement in electronic transport. However, they 

are very sensitive nanoparticles and can easily loss their properties if their surface is not well 

protected. Electron loss through the defects of their surface is a major drawback in the use of 

quantum dots. Their difficult manipulation due to their small size and their composition, mainly 

heavy metals, are also key factors that have to be overcome. 

In order to profit from the advantages that quantum dots provide, but taking into account 

their drawbacks, the first objective of this work was to efficiently encapsulate the quantum dot 

nanocrystals into polymer particles maintaining their optical properties during storage. Then, 

with the multiplexing application in mind, the combination of four different sizes of 

octadecylamine coated CdSe/ZnS quantum dots was studied. The synthesis of multifunctional 

polymer particles using quantum dots was also on the scope of this thesis. Thus, the 

combination of quantum dots with other inorganic nanoparticles, specifically with cerium oxide, 

was investigated. Finally, we explored potential applications for the waterborne hybrid 

dispersions with encapsulated QDs. 
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1.5. Outline 

This thesis manuscript is divided in six chapters. Chapter 1 is a general introduction 

about the synthesis, structure, encapsulation and applications of quantum dots. 

In Chapter 2 a complete description of the process of encapsulation of octadecylamine 

coated CdSe/ZnS quantum dots in polymer particles is shown. A two-step polymerization 

process is optimized to obtain hybrid polymer-QDs particles. In the first step, miniemulsion 

polymerization is the chosen technique for the synthesis of polystyrene and polystyrene-divinyl 

benzene hybrid polymer-QDs particles. The second step is a seeded semi-batch emulsion 

polymerization of MMA or MMA/DVB using as seed the polymer particles of the first step. Core-

shell and cross-linked core-shell hybrid particles were synthesized. The morphology of the 

hybrid particles was studied by TEM and fluorescence was measured during storage. 

In Chapter 3 the encapsulation of quantum dots of different sizes into cross-linked core-

shell PS/PMMA polymer particles is shown. First the synthesis of different QDs sizes is carried 

out in supercritical fluids. Then, the effect of the co-encapsulation of different QDs in the same 

polymer particle is studied by fluorescence. Additionally, a complete control of the fluorescence 

emission intensity of each type of quantum dot is achieved both in dispersion and blending 

latexes containing the different types of QDs. 

The synthesis of multifunctional latexes and films by co-encapsulation of quantum dots 

with cerium oxide is addressed in Chapter 4. The effect of the incorporation of CeO2 in the 

system on the optical properties of quantum dots is deeply analyzed by fluorescence emission 
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measurements during storage in the dark and at daylight. An enhancement of the fluorescence 

emission intensity both in the latexes and in the films during time is observed when co-

encapsulating both nanoparticles and stored the material at daylight. 

One potential applications of the hybrid waterborne dispersions containing QD 

nanoparticles synthesized is explained in Chapter 5. Nanofibres are produced by 

electrospinning out of hybrid polymer/quantum dots latexes and studied as optical and 

electrical gas sensors. 

The most relevant conclusions on this Thesis are presented in Chapter 6. 

Appendix I shows in more detail the experimental procedure and the techniques used 

during this work. Additionally, Appendix II shows additional experiments carried out during this 

PhD thesis. 
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2.1. Introduction 

As discussed in Chapter 1 many researchers have attempted the encapsulation of 

quantum dots into polymer particles
1–11

 aiming at enhancing the compatibility of the 

nanocrystals in a given medium, to protect their surface, to protect the environment against 

their toxicity, and for an easier manipulation
12,13

. Nevertheless, a general approach has not 

been established yet. Likely the simplest and more general method to encapsulate QDs in 

hydrophobic submicron polymer particles is by means of miniemulsion polymerization; namely, 

by generating an aqueous dispersion of nanodroplets of a polymerizing monomer in which the 

surface coated QDs are compatible. The polymerization of the nanodroplet dispersion would 

then yield a dispersion of polymer nanoparticles that would contain quantum dots, provided that 

the QDs are also compatible with the polymer.  

It is clear, not only that there is a need to encapsulate fluorescent QDs in submicron 

colloidal particles, but also to preserve the fluorescence of the colloidal particles during storage 

in order to have time to fabricate optical devices without jeopardizing the properties achieved 

after the synthesis of the hybrid colloidal particles. This Chapter reports the research carried 

out to obtain an efficient encapsulation and fixation of octadecylamine coated CdSe/ZnS QDs 

into colloidal polymer particles and the study of the stability of their fluorescent properties over 

time. 

In this study, the synthesis of hybrid polystyrene/quantum dots polymer particles by 

batch miniemulsion polymerization was first considered. These hybrid polymer particles 

produced did not preserve the fluorescence and this was attributed to the location of the QDs 
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at the polymer particle/aqueous phase interface. In order to avoid the lack of stability of the 

fluorescence emission intensity, PS/PMMA core-shell and cross-linked PS-DVB/PMMA-DVB 

core-shell morphology hybrid particles were produced by seeded semi-batch emulsion 

polymerization. The cross-linked core-shell hybrid particles presented the best optical 

properties. 

2.2. Experimental part 

2.2.1.  Characterization of octadecylamine coated CdSe/ZnS quantum 

dots 

The main properties of octadecylamine coated CdSe/ZnS core-shell quantum dots 

(Ocean NanoTech) were characterized in toluene dispersions. In order to measure their 

particle size distribution (PSD) they were dispersed in toluene at a concentration of 0.03 wt%. 

The PSD was calculated by measuring 500 particles from TEM images. A representative TEM 

image is shown in Figure 2.1a, from which a number average particle size of 7 nm was 

determined (Figure 2.1b). 
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Figure 2.1 a) TEM image of octadecylamine coated CdSe/ZnS quantum dots dispersed in toluene (0.03 wt%) and b) 
Particle size distribution obtained after counting 500 particles in TEM images. 

Dispersions of QDs in toluene at different concentrations were prepared to study the 

effect of the QDs load on the fluorescence emission intensity. Figure 2.2a shows that the 

fluorescence emission intensity strongly depends on the amount of quantum dots added; the 

higher the load of QDs, the higher the fluorescence emission intensity. As seen in Figure 2.2b, 

this increase tends to level off as the concentration of QDs increases. 

 
 

Figure 2.2 a) Fluorescence emission spectrum of QDs toluene dispersions at different concentrations. b) Intensity vs 
concentration plot for QDs dispersions in toluene. 

In order to assess the dispersibility of quantum dots in monomer, styrene and methyl 

methacrylate were chosen as representative monomers. 
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When dispersing the QD nanoparticles in styrene (S) a completely transparent 

dispersion was obtained independently of the concentration of quantum dots, indicating a good 

compatibility between this monomer and the octadecylamine coated CdSe/ZnS quantum dots 

(Figure 2.3a and b). This dispersion was stable for several months at ambient temperature 

without losing any optical properties (Figure 2.3c) or evidencing any sedimentation of the 

quantum dots at the bottom of the vial. In contrast, if the quantum dots were dispersed in 

methyl methacrylate (MMA), a turbid dispersion was obtained, observing the sedimentation of 

the nanocrystals at the bottom of the vial 40 minutes after stopping the stirring (Figure 2.4). 

Therefore, the octadecylamine coated QDs used in this study were not compatible with MMA. 

   

Figure 2.3 Dispersion of quantum dots in styrene at two different concentrations a) 0.81 wt% and b) 0.008 wt% and c) 
fluorescence emission intensity of a toluene dispersion of QDs over time. 
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Figure 2.4 CdSe/ZnS quantum dots dispersed in methyl methacrylate 0.03 wt% a) Just after stirring, b) 40 minutes after 

stirring, c) bottom of the vial 40 minutes after stopping the stirring. 

 

2.2.1.1.  Study of the degradation of the quantum dots 

fluorescence 

As water based miniemulsion polymerizations were carried out to encapsulate QD 

nanoparticles, the effect of water and free radicals on the fluorescence properties of QDs was 

studied. For this purpose, two different dispersions of QD nanoparticles in styrene were 

prepared by adding water to one of them and an aqueous solution of KPS to the other one. 

These dispersions were kept under vigorous magnetic agitation and the fluorescence emission 

was measured during time. A first measurement was done right after adding the aqueous 

solution, and then measurements were repeated after several days. The results are presented 

in Figure 2.5a for the QDs dispersion with water and Figure 2.7b for QDs dispersion with a KPS 

solution. In both cases fluorescence emission is lost upon mixing with pure water or a KPS 

aqueous solution. The fluorescence loss seems faster for the later. Therefore, in order to avoid 

b a 
c 
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the degradation of QDs, there is a strong incentive for an efficient encapsulation of QDs into 

polymer particles. 

  

Figure 2.5 Fluorescence emission evolution for a dispersion of QDs in styrene a) in contact with water, b) in contact with 
an aqueous solution of KPS. 
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linked PS particles, and the octadecylamine coated quantum dots for 10 minutes. The aqueous 

phase was obtained by dissolving the emulsifier (SDS) and the buffer (NaHCO3) in water. 
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at 80% amplitude and 100% cycle) in an ice bath under magnetic stirring. To stabilize the 

monomer droplets, an additional 1% weight based on monomer (wbm%) SDS was added to 

the so formed miniemulsion. This 5% S.C. miniemulsion was polymerized in batch in a 25 ml 

round bottom flask with a nitrogen inlet under magnetic stirring. When the desired temperature 

(75ºC) was reached, the initiator KPS (0.5 wbm%) was added to the miniemulsion in a shot. 

The polymerization was carried out for 6 hours. 

Table 2.1 Formulation used to prepare 5% S.C. PS-(DVB)/QDs hybrid latexes. 

 Component wt% 

Organic phase 

Styrene 5 

Hexadecane* 4 

Divinyl benzene* 0-1 

CdSe/ZnS* (PS/QDs) 0-0.41 

CdSe/ZnS* (PS-DVB/QDs) 0-1.53 

Aqueous phase 

SDS* 2 

NaHCO3* 1 

Deionized water 60 

Post-addition 
SDS* 1 

Deionized water 25 

Initiator 
KPS* 0.5 

Deionized water 10 

*With respect to the monomer 
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2.2.2.1.  Miniemulsion stability 

To achieve an efficient droplet nucleation during miniemulsion polymerization the 

miniemulsion should be stable, at least, during the polymerization reaction time. 

Two miniemulsions were prepared, a blank (S+HD) and a hybrid one (S+HD+QDs), and 

their stability was measured by using the Turbiscan equipment (see Appendix I for more 

information). Backscattering measurements were carried out during six hours at 60ºC to assess 

the stability of the as prepared miniemulsions. Figure 2.6 shows that the percentage of 

backscattered light (measured every 60 minutes) for both miniemulsions remained almost 

unchanged for six hours, which is an indication of a stable miniemulsion. 

  
Figure 2.6 Backscattered light of a) blank miniemulsion and b) hybrid styrene-quantum dots (0.30 wbm%) miniemulsion. 
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2.2.3. Synthesis of hybrid core-shell latexes 

Core-shell PS/QDs/PMMA and core-shell cross-linked PS-DVB/QDs/PMMA-DVB 

latexes were synthesized by seeded semi-batch emulsion polymerization. The polymer shell 

was produced on the previously synthesized core used as seed (PS/QDs or PS-DVB/QDs). 

The seed was placed into a round bottom flask with a nitrogen inlet. At the desired temperature 

(75ºC), the initiator (KPS 0.5 wbm %) was added in a shot and the monomer (MMA) or the 

monomer mixture (MMA+DVB) was fed into the reactor using a syringe pump at a feeding rate 

of 0.12 g/min (Figure 2.7). The amount of monomer needed to obtain a certain shell thickness 

was calculated from the size of the seed particles assuming absence of secondary nucleation 

(see Appendix I for detailed calculations). When the feeding was finished, the latex was kept at 

75ºC for 3 hours. Table 2.2 presents a typical formulation used to produce a PS-

DVB/QDs/PMMA-DVB composite hybrid latex of a shell thickness of 25 nm. 

 
Figure 2.7 Schematic representation of seeded semi-batch emulsion polymerization of hybrid core-shell polymer particles. 
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Table 2.2. Formulation used to prepare a core-shell latex with a shell thickness of 25 nm. 

 
Component wt% 

Initial charge 
Seed 57 

KPS 0.5* 

Water 34 

Feed MMA 9 

DVB 1* 
*Weight based on MMA 

2.3. Synthesis of hybrid core-shell polymer-quantum dots particles 

2.3.1. Synthesis of hybrid polystyrene/quantum dots nanoparticles 

Batch polymerizations with different concentrations of quantum dots were carried out 

following the procedure explained in section 2.2.2. Miniemulsion polymerization of styrene in 

the presence of quantum dots was carried out obtaining hybrid latexes at 5% S.C. In order to 

characterize the different latexes synthesized, final conversion, droplet size and final particle 

size were measured for each case and compared to each other. Also, the theoretical number of 

QDs per particle was calculated based on the amount of QDs added, the number average 

particle size of the QDs, the number average polymer particle size measured and the polymer 

and QDs density (see Appendix I for the detailed calculations). Table 2.3 summarizes the 

results in terms of the conversion, droplet size and final particle sizes achieved in the 

polymerization as well as the theoretical number of QD per particle for the experiments carried 

out with different concentrations of QDs. Neither the final conversion nor the final particle size 

were affected by the number of nanocrystals used in the polymerization reaction, and the 
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theoretical number of QDs per particle depended both on the concentration of nanocrystals and 

on the final polymer particle size obtained. 

Table 2.3 Characterization of hybrid polystyrene/QDs latexes in terms of QDs loading, conversion calculated by 
gravimetry, monomer droplet size and polymer particle size. 

Sample 
CdSe/ZnS 
(%wbm) 

Conversion 
(%) 

Dd 
(nm) 

Dp 
(nm) 

Theoretical number 
of QDs per particle* 

Run C1 0 97 87 93 - 

Run C2 0.25 100 77 104 0.7 

Run C3 0.32 93 89 87 0.5 

Run C4 0.38 96 95 106 1.1 

Run C5 0.41 90 85 106 1.2 

*Calculated based on the amount of QDs added, the number average particle size of QDs, the average 
polymer particle size provided in this table and the polymer and QDs density (ρpol = 1.04 g/mL; ρQD = 5.82 g/mL). 

During the polymerization of the hybrid styrene/QDs miniemulsions, samples were 

withdrawn from the reactor to determine the evolution of both the conversion and the particle 

size. As it can be seen in Figure 2.8 the evolution was affected by the concentration of QDs but 

without a clear trend, reaching high final conversion for all the cases and obtaining particles 

sizes between 87 nm and 106 nm. 

  
Figure 2.8 a) Time evolution of the conversion of the miniemulsion polymerizations carried out with different QDs loads. b) 

Time evolution of the particle size measured by DLS. 
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Apart from the characterizations shown above in terms of polymer particle size, 

conversion and theoretical number of quantum dots per polymer particle, Run C2 and Run C5 

were also characterized by TEM. Figure 2.9 shows TEM micrographs of the resulting latexes. 

Quantum dots (the black spots marked with the red arrows) were placed in the polymer 

particles, but really close to the polymer particle-aqueous phase interface. This morphology 

has been observed by other authors for miniemulsion polymerizations using QDs
9
 and for other 

inorganic nanoparticles
14

. This hemispherical morphology can be explained by the interfacial 

surface tensions of the polymer-water, inorganic particle-water and inorganic particle-

polymer
15,16

. Regarding their distribution, it is observed that most of the particles having QDs 

contained just one, and in the cases in which more than one nanocrystal is present in the same 

polymer particle, no aggregation is observed between them. 

 
 

Run 2 
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Run 5 

Figure 2.9 TEM micrographs corresponding to hybrid polystyrene/QDs Runs C2 (0.25 %wbm) and C5 (0.41 %wbm). 

Based on the TEM micrographs of Run C2, the distribution of the quantum dots in the 

polymer particles was obtained counting 225 polymer particles. In Figure 2.10 the number 

distribution of QDs per polymer particle is shown, observing that around 40% of the polymer 

particles contained quantum dots, and from them most of the particles contained just one QD 

(22%). From this distribution, the experimental average number of QD per particle was 

obtained (0.56 QDs/polymer particle). After the polymerization reaction QDs were observed 

stuck on the magnetic bar, meaning that during the reaction some QDs diffuse out of the 

polymer particles explaining the difference between the experimental and the theoretical 

average number of QDs per polymer particle for Run C2 (0.7 QDs/polymer particle).  
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Figure 2.10 Number distribution of QDs in hybrid polystyrene/QDs particles for Run C2 (0.25 %wbm). 

Fluorescence analysis were also carried out measuring the fluorescence emission 

intensity during storage of latex C4. As it can be observed in Figure 2.11 the intensity 

decreased 80% during the first three weeks, then maintaining this intensity during the next 

weeks. This decrease of the fluorescence emission intensity with time, is likely related to the 

degradation of the QDs that might occur if they get in contact with water as shown above. 

According to Figure 2.9 QD nanoparticles are at the polymer particle-aqueous phase interface 

and hence degradation by getting in contact with water is likely, (either by the nanoparticles 

diffusing to the outer side of the polymer particles or by contact with water that penetrates into 

the polymer particles). 

 
Figure 2.11 Fluorescence emission intensity evolution of Run C4 PS/QDs latex over time. 
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2.3.2. Synthesis of hybrid core-shell polymer/quantum dots particles 

As explained in Chapter 1, quantum dots remain sensitive upon manipulation, which 

may damage their unique properties, and furthermore they are toxic for the environment. 

Therefore, an efficient incorporation into colloidal polymer particles is a must. In section 2.5.1 it 

has been demonstrated that the encapsulation of quantum dots into polystyrene particles was 

not efficient because fluorescence emission was lost over time. Therefore, a new approach 

was adopted to improve the efficiency of the encapsulation in order to better protect the QDs 

from the environment. 

 Seeded semi-batch emulsion polymerization was carried out using the 

polystyrene/quantum dot hybrid particles as seed. Methyl methacrylate was the chosen 

monomer for the production of the shell because polymethyl methacrylate is more hydrophilic 

than polystyrene and hence the most likely expected equilibrium morphology is core-shell, 

although hemispherical morphology can be obtained depending on the initiator and emulsifiers 

employed in the polymerization
17

. Additionally, the wettability of the octadecylamine coated 

QDs in MMA was poor, and consequently we also expected that QDs will not be compatible 

with PMMA and they will not leave out from the polymer particles. Table 2.4 shows the 

characterization of two different runs carried out to produce hybrid core-shell particles. 

The theoretical final particle size was targeted to be 125 nm for Run CS2 and 150 nm 

for Run CS4. The targeted final particle size was almost achieved in both experiments, not 

observing secondary nucleation or the presence of a bimodal distribution in DLS and in TEM 
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analysis. Therefore, the theoretical number of quantum dots per polymer particle was the same 

than for the core hybrid polymer particles. 

Table 2.4 Characterization of hybrid core-shell latexes in terms of monomer used for the production of the shell, QDs 
loading, conversion and final polymer particle size. 

Sample Seed 
Shell 

monomer 
CdSe/ZnS 
(%wbm)

#
 

Conversion 
(%) 

Dp 
(nm) 

Theoretical 
number of QDs 

per particle 

Run CS2 Run C2 MMA 0.25 92 128 0.7 

Run CS4 Run C4 MMA 0.32 90 148 1.1 

# Weight based on total monomer (S+MMA). 

The position of the QDs into the synthesized PS/PMMA polymer particles of Run CS2 

was studied by TEM (Figure 2.12). In most of the polymer particles containing QDs (marked 

with red arrows), they were observed at the edge of the darker area, that corresponds to the 

polystyrene phase, and none in the lighter part (PMMA). Therefore, QDs were not diffusing 

through the PMMA phase. Regarding their distribution into the polymer particles, some of the 

polymer particles contained more than one QD, nevertheless no aggregation was observed, as 

in the case of hybrid polystyrene/QDs polymer particles. Thus, the introduction of MMA did not 

affect the QDs behavior into the polymer particles. 
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Figure 2.12 TEM micrograph of hybrid PS-QD/PMMA polymer particles of Run CS2. 

In order to increase the contrast between PMMA and PS phases in TEM, new sample 

grids were prepared by using hydroxyethyl cellulose (HEC) to embed the latex particles. A 

solution of 0.06 wt% HEC was added to the latexes and a drop of this mixture was deposited in 

a TEM grid and let it dry at room temperature. The grids were observed in TEM and the images 

are shown in Figure 2.13. According to these images the PS cores were not completely 

covered by the PMMA polymer, not observing a pure core-shell morphology. 
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Figure 2.13 High contrast TEM micrographs of polystyrene/QDs/polymethyl methacrylate hybrid polymer particles of CS4 
run after mixing with HEC. 

Figure 2.14 shows the equilibrium morphology mapping for a two phase system 

predicted by González-Ortíz and Asua
18

. As it can be observed, the final morphology depends 

on the interfacial tension between phase 1 (PS) and phase 2 (PMMA) (σ12) and between phase 

1 (PS) with phase 3 (H2O) (σ13) and phase 2 (PMMA) with phase 3 (H2O) (σ23). For the system 

presented here, polystyrene is more hydrophobic than polymethyl methacrylate; therefore, 

interfacial tension σ13 is higher than σ23. Regarding the interfacial tension between the 

polymers (σ12) it is high as they are not compatible. According to some reports
19,17

, σ23 is 

bigger than σ12. Thus, σ12/σ23 < 1 and |
σ23−σ12

σ13
| < 1. Without having more accurate data for the 

interfacial tensions, one can only predict that the equilibrium morphology lies between a core-

shell and hemispherical as indicated by the red square drawn in Figure 2.14. The morphology 

of Figure 2.13 is in agreement with this prediction. 
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Figure 2.14 Equilibrium morphologies of a two phase system predicted by the minimization of the surface energy of the 

system (image taken from reference 
18

), and location for the PS/PMMA system highlighted with a red square. 

In order to see if this morphology could lead to a preservation of the optical properties of 

the QDs, fluorescence emission measurements during storage were carried out for Run CS4. 

As done for the polystyrene/QDs core, fluorescence was followed during storage at dark and 

room temperature noticing a decrease of 40% after eight weeks (Figure 2.15). However, this 

decrease was lower than in the case of the core hybrid particles (Figure 2.11), meaning that 

the introduction of PMMA in the system reduces, up to some extent, the contact of the QDs 

with water. 

 
Figure 2.15 Fluorescence emission intensity evolution of PS/QDs/PMMA latex over time. 
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The decrease of the fluorescence emission intensity observed might be caused by the 

fraction of composite particles with hemispherical morphology. As PS particles are not 

completely covered by a PMMA shell, a fraction of quantum dots are not entirely confined into 

the polystyrene core particles, so some might migrate to the polymer particle/aqueous phase 

interface and degrade explaining the loss of fluorescence during storage. The polystyrene/QDs 

and polystyrene/QDs/polymethyl methacrylate latexes, synthesized in section 2.5 did not 

succeed in the efficient encapsulation of QD nanoparticles and hence in the preservation of the 

optical properties of the QDs. Therefore, new approaches were pursued to increase the 

encapsulation efficiency as well as the optical properties. 

2.4. Synthesis of cross-linked core-shell particles with encapsulated 

QDs 

In order to better anchor the QDs in the polymer particles and avoid their migration to 

the aqueous phase, the cross-linking of both the core and the shell of the polymer particles was 

envisaged. 

2.4.1. Synthesis and characterization of hybrid cross-linked cores 

First the position of the quantum dots into the monomer droplets in the miniemulsion 

was analyzed. For this cryo-TEM was used (extended explanation of the sample preparation 

can be found in Appendix I). Figure 2.16 shows cryo-TEM micrographs of the hybrid 

styrene/DVB/QDs monomer miniemulsion (0.32%wbm). According to these images all the 
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quantum dots were in the monomer nanodroplets, some of them near the edge of the droplets, 

but there were not quantum dots in the aqueous phase. It is also important to point out that 

some droplets contained several QDs, but interestingly they did not aggregate. Also noticeable 

was the shape of the monomer droplets, which was not spherical in all the cases and likely it 

was caused by the preparation method used in the cryo-TEM analysis. 

 

Figure 2.16 Cryo-TEM micrograph of styrene/DVB monomer miniemulsion droplets containing QDs (0.32% 
wbm). 

Table 2.5 presents the results obtained for five representative reactions carried out to 

obtain the cross-linked hybrid PS/QDs cores with different loads of quantum dots. During the 

polymerization of the hybrid styrene/DVB/QDs miniemulsion, samples were withdrawn from the 

reactor to determine the evolution of both the instantaneous conversion and the particle size 

(Figure 2.17). It was observed that, as for the case of hybrid polystyrene/QDs particles 
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described in Section 2.5.2, neither the conversion nor the particle size were substantially 

affected by the concentration of quantum dots in the formulation. 

Table 2.5 Characterization of the cross-linked hybrid polystyrene/QDs seeds in terms of QDs loading, conversion 
calculated by gravimetry, monomer droplet size and polymer particle size. 

Sample 
QDs 

(wbm%) 
Conversion (%) 

Dd 
(nm) 

Dp 
(nm) 

Theoretical number 
of QDs/particle* 

Run XC1 0 98 78 94 0 

Run XC2 0.27 100 86 104 0.7 

Run XC3 0.36 96 108 96 0.8 

Run XC4 0.81 95 76 101 2 

Run XC5 1.53 94 75 99 4 

*Calculated based on the amount of QDs added, the number average particle size of the QDs (7.2 
nm), the average particle size provided in this table and the polymer and QDs density. 

 

  

Figure 2.17 a) Time evolution of the conversion of the seeds for different QDs loads. b) Time evolution of the particle size 
of the seeds measured by DLS. 

Regarding their optical appearance, these latexes, as well as the ones previously 

described, were pinkish at the end of the polymerizations (except for Run XC1), showing a 

more intense color while increasing the concentration of nanocrystals in the latex. 

a b 
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Figure 2.18a presents the TEM image of one of these hybrid seeds (Run XC2, 0.27% 

wbm). As for the hybrid miniemulsion, all the QDs were located in polymer particles, none 

being found in the water phase and proving high incorporation efficiency. In order to quantify 

the number of particles containing quantum dots and their distribution, 500 particles were 

counted in the TEM micrographs obtaining the distribution shown in Figure 2.18b. 

  

 
Figure 2.18 a) TEM micrographs of cross-linked polystyrene Run XC2 (0.27% wbm QDs). b) Number distribution of QDs 

in the cross-linked polystyrene polymer particles for Run XC2. 
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According to this analysis, around half of the polymer particles contained QDs (48%). It 

is worth to point out that most of the particles containing QDs contained just one (30%) and the 

particles with more than one nanocrystal did not present aggregation between them; namely, 

QDs could be well differentiated from each other. From this distribution, the average number of 

QDs/particle could be calculated. A value of 0.65 was obtained, which is in good agreement 

with the theoretical value of 0.7 presented in Table 2.5, demonstrating the statistical distribution 

of the QDs in the polymer particles and the absence of QDs in the aqueous phase. Comparing 

this distribution with the one obtained for Run C2 (non-cross-linked polystyrene hybrid polymer 

particles) having the same theoretical number of QDs per polymer particle, it was observed that 

the number of particles non-containing QDs decreased. Therefore, the increase of the internal 

viscosity of the polymer particles because of the cross-linking of the PS chains makes more 

difficult the diffusion of QDs.  

In order to shed light on the encapsulation of the quantum dots in the polymer particles, 

electron tomography TEM was carried out. The cross-linked polystyrene/QDs sample was 

characterized using tilt series of micrographs and their subsequent 3D reconstruction. The tilt 

series was obtained tilting the sample from +60º to -60º taking pictures every 2º with a pixel 

size of 0.22 nm/pixel. Figure 2.19a shows the 0º TEM micrograph of Run XC2 sample analyzed 

by tomography. One of the polymer particles of the specimen considered contained two 

quantum dots (QD1 and QD2), whose position was studied individually by cutting the 

reconstructed volume (XYZ) by two planes, OXY and OYZ (see Figure 2.19b for the XYZ axis 

identification). 
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As shown in Figure 2.19c and Figure 2.19d, the orthogonal cuts done to this 

reconstructed area for each quantum dot showed that both nanocrystals were surrounded by 

polymer in all the directions. From this analysis, it can be concluded that QDs were 

successfully encapsulated into cross-linked polystyrene particles, even if they were relatively 

close to the edge of the polymer particles. 

 
 

 

 
 

 
 

a b 

c d 
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Figure 2.19 Electron tomography TEM of Run XC2. a) Original 2D-TEM micrograph showing the area of interest. b) 

Tomographic reconstruction of the sample. c), d) OXY and OYZ orthogonal sections for QD1 and QD2 in the region of 
reconstructed volume, respectively. 

The evolution of the position of the quantum dots in the polymer particles was studied 

by comparing TEM micrographs of Run XC2 during storage (after 10 months, Figure 2.20a). As 

it can be seen, the amount of polymer particles containing quantum dots had notably 

decreased. Figure 2.20b shows the distribution of the QDs into the polymer particles after this 

time. Clearly the number of polymer particles without QDs increased up to 90%. This means 

that the quantum dots either diffuse out of the polymer particles during storage or that water 

penetrated into the particles and degraded the QDs. Then, the effect of the cross-linking on the 

fluorescence properties was analyzed. 

c d 
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Figure 2.20 a) TEM micrograph of Run XC2 sample ten months after the synthesis. b) Number distribution of QDs in the 
polymer particles after ten months’ storage of the hybrid Run XC2. 

The evolution of the fluorescence intensity during storage was assessed. As a 

representative example, the fluorescence of Run XC4 latex (0.81% wbm QDs) was studied 

during 8 weeks. The sample was measured right after the polymerization and then kept at dark 

measuring again after 3, 6 and 8 weeks withdrawing the sample to be analyzed from the top of 

the vial. As it can be seen in Figure 2.21, the fluorescence intensity for the latex decreased to 

less than half of the original one after 3 weeks. After week 6 it got to a minimum value that was 

kept almost constant after 8 weeks. In order to check if fluorescence loss was due to 

sedimentation of the polymer particles containing quantum dots in the bottom of the vial, in 

week 6, this was agitated vigorously and fluorescence was measured again in the same 

conditions resulting in a small increase of the emission intensity, but not enough to recover the 

original value. Nonetheless, it is important to point out that during storage, the emission 
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wavelength was maintained; namely, the encapsulated quantum dots did not suffer any change 

in their size. The decrease in the fluorescence was likely due to the migration of the QDs from 

the edge of the polymer particles to the aqueous-polymer particle interface and degradation of 

the QDs surface or to the reaction of the QDs with the water that penetrates in the polymer 

particles. Fleischaker and Zentel also found loss of fluorescence in hybrid latexes prepared 

with CdSe/Zns QDs and attributed the degradation to incomplete coverage by the ZnS shell 

layer. As explained in Section 2.4, it was observed that the contact of QDs with water or an 

aqueous solution of KPS degrades their surface and affects their fluorescence. This hypothesis 

is in agreement with the TEM observation of Figure 2.18a and Figure 2.20b (taken right after 

the synthesis of the latex and after several months respectively) that indicated a substantial 

reduction of the number of polymer particles containing QDs. 

 
Figure 2.21 Evolution of the fluorescence emission intensity with time for Run XC4. 
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2.4.2.  Synthesis and characterization of hybrid core-shell particles 

As seen in the previous section, the cross-linking of the polystyrene particles did not 

avoid the loss of fluorescence during storage of the hybrid latexes. Taking into account that 

when including methyl methacrylate in the formulation (Section 2.3.2) the decrease in the 

fluorescence emission intensity was attenuated but not avoided, it was thought that a potential 

way to definitely avoid the migration of the QDs from the polystyrene particle surface was to 

produce a highly cross-linked MMA shell on top of the cross-linked polystyrene cores. This was 

done by feeding a MMA/DVB mixture to the cross-linked polystyrene seed using a syringe 

pump at low feeding rate (0.12 g/min) to avoid secondary nucleation. Table 2.6 summarizes the 

seeded semi-batch emulsion polymerizations carried out varying the amounts of MMA in order 

to control the thickness of the shell. 

Table 2.6 Characterization of core-shell latexes in terms of conversion, seed particle size, final particle size and 
PMMA/DVB shell thickness. 

Sample Seed 
QDs 

(%wbm)# 
Conversion 

(%) 
Dp seed 

(nm) 
Dp final 

(nm) 
Shell 

thickness (nm) 

Run XCS1 XC1 0 83 95 131 18 

Run XCS2 XC2 0.19 97 104 146 21 

Run XCS2* XC2* 0.24 90 105 121 8 

Run XCS2** XC2* 0.23 93 105 128 12 

Run XCS2*** XC2* 0.20 95 105 136 16 

Run XCS3 XC3 0.17 95 96 170 37 

Run XCS4 XC4 0.46 75 101 166 33 

Run XCS5 XC5 1.03 96 99 154 28 

# Weight based on total monomer (S+MMA+DVB). 

Figure 2.22 shows a TEM micrograph of a latex with a clear core-shell morphology (Run 

XCS3) in contrast to the non-cross-linked PS/PMMA polymer particles. The darkest regions 
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correspond to the cross-linked polystyrene cores and the lighter regions to cross-linked 

polymethyl methacrylate shell. In one of the core-shell particles it is also clearly distinguished 

the presence of two QDs nanoparticles located at the edge of the PS core (see arrows).  

 

Figure 2.22 TEM micrograph of cross-linked core-shell polystyrene/QDs/polymethyl methacrylate (Run XCS3) hybrid 
polymer particles. 

The analysis of the morphology obtained for these particles was done with the help of 

the equilibrium morphology map showed in Figure 2.23. Regarding the interfacial tensions, and 

as in the case of non-cross-linked PS/PMMA polymer particles, σ12 represents the interfacial 

tension between the polymers (cross-linked PS and cross-linked PMMA), σ13 is the interfacial 

tension between the cross-linked PS and water and σ23 is the interfacial tension between the 

cross-linked PMMA and water. Unlike the non-cross-linked PS/PMMA polymer particles, in this 

case the PS-DVB phase and the PMMA-DVB phase are more compatible, leading to a 

decrease of σ12, and the cross-linked PMMA phase is more hydrophobic, increasing the value 

of σ23. This way σ12/ σ23 is lower than one, and smaller than for the non cross-linked core-shell 
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particles │σ23- σ12│/ σ13 is also lower than one being slightly larger than in the case of non-

cross-linked particles. This makes the equilibrium morphology to be most likely core-shell, as 

marked in the equilibrium map. 

 

Figure 2.23 Equilibrium morphologies of a two phase system predicted by the minimization of the surface energy of the 

system (image taken from reference 
18

), and location for the cross-linked PS/PMMA system (continuous red square) 
respect to the location for the non cross-linked PS/PMMA system (dashed red square). 

Electron tomography TEM was used to determine more accurately the position of the 

QDs into the cross-linked core-shell polymer particles. In this case the sample was tilted from -

55º to +71º taking TEM pictures every 2º. Figure 2.24a presents the reconstructed area and 

Figure 2.24b the rotational axis (Y), the direction of the electron beam (Z) and the planar axis 

(X). In this TEM picture two core-shell polymer particles with one quantum dot each (QD3 and 

QD4) (black spots in the image) were analyzed. For both nanocrystals, orthogonal cross-

sections OXY and OYZ were done (Figure 2.24c and Figure 2.24d), in which it was clearly 

observed that the particles were surrounded by polymer in all the directions, and in a more 

centered position into the polymer particles than in the case of the QDs encapsulated in the 

core particles. The TEM analysis confirms that when adding a shell of cross-linked PMMA to 
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the seed particles, the QDs are further from the aqueous phase/polymer particle interface and 

hence they are less prone to suffer degradation. In principle, they should preserve better their 

optical properties. 

 
 

 

 
 

 

a b 

c d 
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Figure 2.24 Run XCS2 electron tomography TEM. a) Original 2D-TEM micrograph showing the area of interest. b) 

Tomography reconstruction of the sample. c), d) OXY, OYZ orthogonal sections for QD3 and QD4 in the region of 
reconstructed volume. 

Several TEM images (as the one shown in Figure 2.22) were used to calculate the 

distribution of the quantum dots in the polymer particles after the synthesis of the shell. On one 

hand, Figure 2.25a shows the distribution of the quantum dots in the polymer particles for Run 

XCS2 (0.19%wbm), which was very similar to Run XC2. Indeed, a resembling number of 

QDs/polymer particle was determined 0.62, which, as in the case of the cross-linked hybrid 

core, is very close to the theoretical 0.7 QDs/polymer particle. In addition, the distribution for 

the latex with the highest concentration of QDs synthesized and presenting an average 

theoretical number of QDs per polymer particle of 4 (Run XC5) was also obtained (Figure 

2.25b). A decrease on the number of particles non-containing QDs was observed, as well as a 

broadening of the distribution (observing some polymer particles containing up to 60 QDs). 

Therefore, when increasing the concentration of QDs, the percentage of polymer particles 

containing QDs substantially increased, from 48% for Run XC2 to 57% for Run XC5. Moreover, 

an experimental average number of QDs per polymer particle of 1.3 for Run XC5 was 

calculated. 

c d 
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Figure 2.25 QDs particle number distribution in the core-shell polymer particles for a) Run XCS2 and b) Run XCS5. 

Regarding the optical properties, when comparing the fluorescence emission spectra of 

the hybrid cores and the hybrid core-shell particles, the same intensity and emission 

wavelength was observed (Figure 2.26a), showing that octadecylamine coated CdSe/ZnS QDs 

were not affected by the synthesis of the cross-linked shell. 

The efficiency of the encapsulation was also proven by assessing fluorescence during 

storage. As presented in Figure 2.21, fluorescence intensity of Run XC4 decreased during 

storage; the emission intensity decreased to less than half in 6 weeks. Thus, fluorescence of 
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the Run XCS4 core-shell latex (synthesized from Run XC4) was also studied during several 

months. The first measurement was done right after the polymerization and the vial was kept at 

dark measuring again after 3, 6, 8 and 46 weeks. As it can be seen in Figure 2.26b, 

fluorescence intensity decreased a bit in the first weeks, but afterwards it remained constant, 

indicating that quantum dots were well encapsulated into the polymer particles preserving their 

optical properties over time. Different PMMA-DVB shell thicknesses were synthesized (see 

Table 2.6), and its effect on the fluorescence stability of the samples during storage was 

studied. Although the shell thickness did not have an effect on the initial fluorescence emission 

intensity, it was observed that for shell thicknesses lower than 12 nm the fluorescence 

decreased over time. This is shown for Run XCS2*, for which fluorescence emission intensity 

during storage was measured over time observing a fast decrease of the intensity (Figure 

2.26c). Thus, there is a minimum PMMA shell thickness required to preserve the optical 

properties of the final material avoiding the migration of the quantum dots out of the polymer 

particles. 
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 Figure 2.26 a) Fluorescence emission intensity comparison of cross-linked core and core-shell latex b) Fluorescence 

emission intensity evolution with time for Run XCS4 hybrid core-shell latex c) Fluorescence emission intensity evolution 
with time for Run XCS2* hybrid core-shell latex. 

2.5. Conclusions 

Octadecylamine coated CdSe/ZnS quantum dots dispersed well in styrene, being the 

dispersion stable during months and maintaining their optical properties unvaried. However, 

quantum dots were degraded losing their fluorescence emission when contacted with water 

during 55 days and faster if KPS was present. Thus, different strategies to protect the 

nanocrystals from degradation were investigated in this Chapter. 
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Hybrid PS/QDs latexes at 5% S.C varying the concentration of QDs from 0.25 to 0.41% 

wbm were synthesized by miniemulsion polymerization. By TEM analysis it was found that the 

nanocrystals were located at the edge of the polymer particles. To improve their encapsulation, 

hybrid polystyrene/QDs/polymethyl methacrylate polymer particles were synthesized using the 

hybrid PS/QD latexes as seed expecting core-shell morphology to avoid the degradation of 

QDs. The morphology of these hybrid particles was carefully studied observing a substantial 

fraction of the composite particle presenting morphologies between hemispherical and core-

shell and the quantum dots placed at the aqueous phase-polymer particles interface. 

Fluorescence properties of both PS-QDs and PS-QDs/PMMA particles were studied over time, 

observing that the emission intensity decreased during storage indicating that quantum dots 

degraded. 

Therefore, the synthesis of hybrid cross-linked core-shell polystyrene-polymethyl 

methacrylate polymer particles was attempted. Different loadings of nanocrystals (up to 1.03% 

wbm) were used without noticing any influence on the reaction kinetics. The encapsulation of 

the nanocrystals was proved by 3D-TEM analyses, showing that CdSe/ZnS nanoparticles were 

close to the polymer particle/aqueous phase interface in the seed polystyrene-DVB particles, 

but were better encapsulated (inner regions) in the core-shell particles. 

Moreover, fluorescence studies were done to the synthesized cross-linked core-shell 

latexes in order to control and optimize the optical properties of the final material. First, the 

influence of the concentration of QDs in the latex had on the fluorescence emission intensity 

was investigated. Increasing the amount of quantum dots used fluorescence emission intensity 

increased. 
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The evolution of the fluorescence emission intensity during storage time was also 

analyzed both for cross-linked core and core-shell latexes. For the first case, and because of 

the position of the QDs close to the polymer particle/aqueous phase interface, the nanocrystals 

were degraded by the aqueous phase in few weeks. However, when the cores were coated 

with PMMA/DVB shell the QDs were better encapsulated avoiding their migration or contact 

with water. The fluorescence of the core/shell latexes was not affected in 46 weeks.  

Finally, the effect that the cross-linked shell thickness had on the fluorescence of the 

final material was also studied. It was found that a minimum PMMA shell thickness of 12 nm 

was needed to preserve the optical properties of the QDs over time. 
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3.1. Introduction 

A way of efficiently encapsulating octadecylamine coated CdSe/ZnS quantum dots was 

presented in Chapter 2. The aim of this Chapter is the encapsulation in polymer particles of 

different types of quantum dots, in order to create a sort of barcode to open the door to imaging 

detection assays. For this purpose, quantum dots with good optical properties and narrow 

emission peaks are needed (to avoid overlapping of the emission peaks when combining 

them). 

The synthesis of CdSe/CdS quantum dots of different sizes using supercritical fluid 

technology was investigated. 

Supercritical fluid technology is a powerful technique for the synthesis of nanoparticles, 

such as quantum dots, in a continuous way1–3. It has several advantages over the synthesis in 

solution as, for example, an enhancement of the mass and heat transfer, and a good control of 

the residence time that leads to a good control of both the final size and the growth of the 

particles. This way very narrow particle size distributions can be obtained and therefore, very 

specific fluorescence emission peaks. In any case, the reaction parameters have to be 

carefully selected because the nanocrystal structure depends on the reaction temperature, and 

the morphology of the final nanoparticles can be tuned obtaining spheres, nanorods…  

Even if this technique provides flexibility in terms of control during the synthesis of the 

nanoparticles, the amount of solvents available for this process is limited. The solvent chosen 

should be able to solubilize all the precursors and ligands at ambient temperature and to stay 
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in liquid form during all the process. Normally, the solvents that accomplish these requirements 

are too viscous leading to mixing problems. Nevertheless, taking advantage of the supercritical 

regime these problems can be overcome, increasing the number of compatible solvents and 

reagents allowing the synthesis of a wide range of nanoparticles4–7. 

The second part of the Chapter presents the use of QDs with different sizes in the 

production of hybrid latexes with a characteristic emission spectrum. Two approaches were 

pursued to accomplish the goal. In the first one quantum dots of different particle size were co-

encapsulated in polymer particles following the approach presented in Chapter 2. In a second 

approach, several latexes each one containing a single type of quantum dot were blended. 

3.2. Synthesis of quantum dots using supercritical fluid technology 

 The synthesis of core-shell CdSe/CdS quantum dots was carried out in supercritical 

hexane.  Figure 3.1 shows the phase diagram for hexane. The critical point for hexane is at a 

temperature of 234ºC and a pressure of 3MPa. 
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Figure 3.1 Phase diagram highlighting the supercritical point of hexane. 

A two-step synthesis procedure was employed for the synthesis of CdSe/CdS quantum 

dots. First, the synthesis of CdSe core quantum dots modified in their surface with oleylamine 

was carried out. Then, trioctyphosphine oxide-hexadecylamine (TOPO-HDA) coated 

CdSe/CdS core-shell quantum dots were synthesized also in supercritical hexane. The 

materials, the set-up, the synthetic route followed and the results obtained are explained in the 

following sections. 

  Materials 3.2.1.

The following reagents were used for the synthesis of TOPO/hexadecylamine coated 

CdSe/CdS quantum dots in supercritical conditions: cadmium deoxycholate [Cd(DCh)2], 

previously synthesized in the lab, elemental selenium (Se, Sigma Aldrich), elemental sulfur (S, 

Sigma Aldrich) and trioctyl phosphine (TOP, Sigma Aldrich, technical grade 90%) were used 

for the synthesis of the cadmium, selenium and sulfur precursors. Oleylamine (OA, Sigma 

Aldrich, technical grade 70%) was used as surface modifier for CdSe quantum dots. Trioctyl 

phosphine oxide (TOPO, Stem Chemicals, 90%) and hexadecylamine (HDA, Sigma Aldrich) 
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were used as surface modifiers in the synthesis of CdSe/CdS QDs. Hexane (Sigma Aldrich, 

anhydrous 95%) was used as solvent in the preparation of the precursors and as supercritical 

fluid during the synthesis. All the mentioned reagents were used without further treatment. 

  Experimental set up 3.2.2.

The experimental set up used (Figure 3.2) comprises two high pressure syringe pumps 

(Harvard Apparatus, PHD 2000), each of them containing a stainless steel syringe, a 

temperature controller (Eurotherm) and a back pressure regulator (JASCO BP-2080). 

	

Figure 3.2 Picture of the experimental set up used for the synthesis of CdSe core and CdSe/CdS core-shell quantum dots. 

In the case of the synthesis of the CdSe core QDs the syringes used were filled with the 

cadmium precursor (OA-TOP-Cd) in hexane and with the selenium precursor (TOP-Se) in 

hexane respectively. The syringes were connected by microtubes (1 m length and internal 

diameter of 400 µm) to a stainless steel tubular reactor (1/32” scrolled around a cylindrical 

heating cartridge) connected to the temperature controller (set at 250ºC or 310ºC) that 
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determines the final QDs morphology. In order to control the flow of the precursors in the 

microtubes, a three way valve was placed at the syringes´ exit. At the outlet of the reactor the 

back pressure regulator (BPR) was placed to control the pressure used in the process (10 

MPa). At the outlet of the back pressure regulator the QDs dispersion was recovered at room 

temperature (Figure 3.3). 

	

Figure 3.3 Scheme of the set-up used for the synthesis of oleylamine coated CdSe QDs 

For the synthesis of the core-shell CdSe/CdS quantum dots the experimental set-up 

described above was slightly modified. An additional stainless steel tubular reactor 1/32” was 

scrolled around a second heating cartridge connected to the temperature controller. The 

cadmium precursor (HDA-TOPO-Cd in hexane) was connected to a heat exchange unit (the 

configuration of the heat exchanger is equal to the reactor used in the first set up) to condition 

the Cd precursor to 250ºC and avoid clogging of the microtubes. On the other hand, the sulfur 

precursor (TOP-S in hexane) was mixed with the CdSe nanocrystals dispersed in hexane and 

the mixture let to the reactor at room temperature. Both precursor streams were mixed prior 

entering to the reactor. The reactor temperature was set at 285ºC to produce the CdS shell. 

The reactor was connected to the back pressure regulator set at 10 MPa through stainless 

steel microtubes of 1/32” diameter. After releasing the pressure and cooling down, the final 

core-shell quantum dots are collected as a dispersion in hexane (Figure 3.4). 
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(TOP-Se) Heating cartridge 
Core CdSe 
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Mixing point 
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Figure 3.4 Scheme of the set-up used for the synthesis of TOPO-HDA coated CdSe/CdS QDs 

The growing of the nanocrystals depends on the temperature and on the residence 

time. The residence time (Rt) depends on the flow rate of the syringe pumps (Qtot [µm3/s]), the 

reactor volume (Vreactor [µm3]) and the density of the fluid both before increasing the 

temperature (ρ before [kg/m3]) and at reaction temperature (ρreaction [kg/m3]), but both at high 

pressure (Equation 3.1). 

𝐑𝐭 =  
𝐕𝐫𝐞𝐚𝐜𝐭𝐨𝐫
𝐐𝐭𝐨𝐭

×
𝛒 𝐫𝐞𝐚𝐜𝐭𝐢𝐨𝐧
𝛒 𝐛𝐞𝐟𝐨𝐫𝐞

 
(Equation 3.1) 

The experimental set-up described above was used for all the synthesis described in 

the following sections, both for the synthesis of core CdSe or core-shell CdSe/CdS of different 

sizes. 
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  Synthesis of CdSe core quantum dots 3.2.3.

The first step in the synthesis of CdSe nanocrystals was the preparation of the cadmium 

and selenium precursors. Based on previous reports, cadmium deoxycholate [(Cd(DCh)2] was 

used as cadmium precursor because it is highly thermally stable and inexpensive8. This salt 

(225 mg) was mixed together with 0.5 ml of oleylamine (OA) and 1.5 ml of trioctylphosphine 

(TOP) used as surfactants, in a round bottom flask heated up to 80ºC in a silicon bath. A clear 

solution was obtained after 15 minutes and it was diluted in 8 ml of hexane, as this was the 

chosen solvent for the synthesis of the nanoparticles. 

On the other hand, the selenium precursor was prepared by mixing 30 mg of selenium 

powder with 1 ml of trioctylphosphine (TOP) also at 80ºC until complete solution of selenium. 

This precursor was also diluted in 9 ml of hexane to get a final volume equal to the one of the 

cadmium precursor. 

In order to avoid problems with oxygen during the synthesis of the nanocrystals in the 

microfluidic system, both precursors were degassed using argon. Protection against light was 

also needed to keep them away from degradation issues. 

In the literature it has been reported that depending on the process temperature, two 

different crystal structures can be obtained for CdSe nanocrystals6. At 250ºC zinc blend 

structure was produced whereas at 310ºC würtzite structure nanocrystals were synthesized. 
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Previous to the injection of the precursors the reactor was purged with hexane, at the 

reaction conditions (250ºC or 310ºC and 10 MPa). In order to maintain the reactor pressure, 

valves were closed while charging the precursors in the syringes. 

Afterwards, the feeding rate of each syringe pump was set depending on the desired 

residence time, and hence the desired final particle size. The relationship between the 

residence time and the flow rate for reaction temperatures of 250ºC and 310ºC calculated from 

(Equation 3.1) for a reactor volume of 1.96*1011 µm3 is summarized in Table 3.1. 

Table 3.1 Relationship between retention time and the syringe pumps flow rate depending on the temperature for a 
reactor volume of 1.96*1011 µm3. 

250ºC 

Residence 
time (s) Flow rate (µl/min) 

310ºC 

Residence 
time (s) Flow rate (µl/min) 

5 769 5 604 

10 384 10 302 

20 192 20 151 

30 128 30 101 

40 96 40 75 

50 77 50 60 

60 64 60 50 

The nanocrystals dispersed in hexane were collected at room temperature at the back 

pressure regulator outlet. Taking advantage of the characteristic emission color of the quantum 

dots depending on their size, the sample coming out the back pressure regulator was irradiated 

with a UV lamp for ensuring the recovery of the desired QDs´ size. When the synthesis was 
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finished, the set up was cleaned with ethanol at the same supercritical conditions in order to 

pull out all the remaining reactants as well as to unclog the microtubing, if necessary. 

One of the advantages of this synthesis method, apart from being continuous and 

having the possibility of collecting large amounts of product, is that the flow rate can be 

changed during the reaction. This way different sizes can be synthesized in a single run taking 

into account the residence time of the desired CdSe size, discarding the grade transition 

product between steady states. 

  Synthesis of CdSe/CdS core-shell quantum dots 3.2.4.

Cadmium sulfide presents a similar crystal lattice to the one of cadmium selenide, 

expecting this way a better coating of the CdSe surface in order to achieve a good preservation 

of the optical properties by covering the surface defects of the nanocrystal. It is important to 

point out that due to this good compatibility between the core and the shell crystal lattices, 

electrons are not confined to the CdSe core but delocalized between both structures. This 

affects the final emission wavelength in the sense that when growing a CdS shell on the top of 

the core, the emission wavelength will suffer a red shift9,10. The thicker the shell the bigger the 

shift. 

Prior to the preparation of the cadmium and sulfur precursors, the CdSe core quantum 

dots had to be purified to remove the excess of surfactant that was not bonded to the surface 

of the nanocrystals. For this, the procedure below was followed: 

• 4 ml of CdSe sample were placed into a 50 ml centrifuge tube 
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• 31 ml of acetone were added to the centrifuge tube 

• Centrifugation for 30 minutes at 11000 r.p.m was carried out. 

• After the centrifugation, the supernatant was discarded and the CdSe pellet 

was washed with acetone two times. 

• The CdSe pellet was then redispersed in 4 ml of hexane. 

Then, the cadmium and sulfur precursors were prepared for the synthesis of TOPO-

HDA coated CdSe/CdS quantum dots. In contrast to common core-shell QDs synthesis, two 

organic compounds were used in this case for the surface modification of the QDs. On one 

hand, trioctylphosphine oxide (TOPO) leads to high quantum yields of the final nanocrystals. 

On the other hand, hexadecylamine (HDA) maintains the spherical morphology of the quantum 

dots.  

The preparation of the precursors was based on the number of monolayers sought, and 

on the Cd:S molar ratio, which for the synthesis carried out was set at 1:5. Several reports in 

literature explain the importance of controlling the reagents molar ratio in order to get 

nanoparticles with good optical properties, especially high quantum yields and control of their 

size11,12. Some examples in literature show that a minimum shell thickness is required in order, 

not only to preserve the optical properties of the CdSe nanocrystals, but also to avoid blinking 

(fluorescence intermittency)9,13,14 of the quantum dots. The CdS shell was synthesized by 

producing sequential monolayers on the top of the nanocrystals, being each monolayer 0.337 

nm thick, which corresponds to half the würtzite structure cell unit c-axis dimension10. At first, 

the number of monolayers sought in this work was 7, in order to preserve the optical properties 

of the quantum dots by avoiding the electron leaks that can appear because of defects in the 
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CdSe nanocrystal structure. However, due to the characteristics of the synthesis, that is in 

continuous, it was not possible to produce seven monolayers of CdS as the residence time 

needed would be much longer than possible with this set-up. Therefore, the number of 

monolayers to be synthesized was set to 4, maintaining their thickness. Finally, and also in 

order to avoid clogging problems in the supercritical fluid system, bigger particles were 

synthesized in three steps obtaining core-shell-shell nanocrystals. 

The preparation of the cadmium and sulfur precursors was done as follows, taking into 

account the number of CdS monolayers and the CdSe core size. First, the adequate amount of 

[(Cd(DCh)2] salt for the core size used and 2 g of TOPO were solubilized in 1.5 ml of TOP in a 

25 ml round bottom flask at 80ºC during 15 minutes obtaining a clear solution. Meanwhile, 

0.367 g of HDA were solubilized in 6.5 ml of hexane using an ultrasound bath. Finally, both 

solutions were mixed obtaining this way the cadmium precursor. In the case of the sulfur 

precursor, elemental sulfur (S) was dissolved in 1 ml of trioctylphosphine (TOP) in a round 

bottom flask at 80ºC. Once sulfur was completely dissolved, the solution was cooled down to 

room temperature and 3 ml of the previously purified CdSe quantum dots dispersed in hexane 

were added to it. More hexane was added in order to have the same volume as for the 

cadmium precursor (6 ml). Both precursors were purged with argon before use to avoid 

problems with oxygen during the synthesis of the core-shell nanocrystals. 
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  Morphological characterization of the obtained quantum dots 3.2.5.

High resolution transmission electron microscopy (HRTEM) was used for the 

characterization of both CdSe core and CdSe/CdS core-shell quantum dots. With this 

technique, apart from the morphology and the size of the nanocrystals, also their crystalline 

structure could be observed, seeing the lattice planes of each particle.  

Figure 3.5 shows HRTEM micrographs of some representative examples, the CdSe 

core nanoparticles synthesized at 250ºC and a residence time of 60s (C_250_60), the 

subsequent CdSe/CdS nanocrystals (CS_250_60) and the growing of those nanoparticles by 

the production of an extra CdS shell (CSS_250_60). 

  
a b 
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Figure 3.5 HRTEM micrographs of a) C_250_60, b) CS_250_60 and c) CSS_250_60 synthesized QDs 

This morphology slightly changed while increasing the size of the nanoparticles, being 

spherical in the case of the CdSe cores and noticing the appearance of some sharp edges 

specially in the case of the CdSe/CdS/CdS core-shell-shell quantum dots. The change in size 

has a great influence on the morphology of the final particles. 

Particle size distributions for each case were obtained from the HRTEM pictures. As 

shown in Figure 3.6, an increase in the particle size from the core to the core-shell and core-

shell-shell nanocrystals was achieved, meaning that the synthesis of the CdS shell was 

successful. From these distributions, the average size for each case was calculated obtaining 

the following data: 3.8 nm for the CdSe core, 5.5 nm for the CdSe/CdS core-shell and 6.6 for 

the CdSe/CdS/CdS core-shell-shell nanocrystals. The size of the core resulted to be bigger 

than expected (3 nm), whereas the size of the core-shell and core-shell-shell nanocrystals 

resulted smaller than calculated from a 3 nm core (5.7 nm for the core-shell and 8.4 nm for the 
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core-shell-shell). If adjusting the calculations of the theoretical particle size for the core-shell 

and core-shell-shell particles to the real CdSe core particle size, this difference between the 

calculated sizes and the real ones results to be even higher (theoretical particle size for 

CdSe/CdS CS_250_60 = 6.5 nm; theoretical particle size for CdSe/CdS/CdS CSS_250_60 = 

9.2 nm). 

  
a b 

	
c 

Figure 3.6 Particle size distribution for a) C_250_60, b) CS_250_60 and c) CSS_250_60 obtained from the HRTEM 
micrographs 

This shows that, as explained above, the number of CdS monolayers that can be 

synthesized with this method is limited, as the residence times needed for such particle growth 

cannot be safely achieved in the experimental set-up used in this work. Longer residence times 
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would be needed. However, at longer times clogging of the microtubing occurs due to the 

solidification of TOPO and HDA at room temperature. 

  Fluorescence measurements of quantum dots dispersions 3.2.6.

The quality of the synthesized quantum dots (CdSe, CdSe/CdS and CdSe/CdS/CdS) 

was checked by measuring their fluorescence. Fluorescence is the most important 

characteristic of QDs as it gives information about the size of the nanocrystals and about how 

specific the emission of the nanocrystals is. Therefore, it is a very useful information to forecast 

the combinations that can be prepared between them in future applications as multiplexing. 

The position of the main emission peak is related to the particle size, the longer the wavelength 

the bigger the particle size. The intensity of the emission gives information on the concentration 

of the sample, and the shape of the peaks gives information about the quality of the sample, 

the broadening of the peaks indicating a mixture of different sizes present in the sample and 

sharper peaks accounting for more monomodal PSD of QDs. 

Before measuring the fluorescence of the synthesized nanocrystals, the optimum 

excitation wavelength for each sample was determined. The optimum excitation wavelength is 

the one at which the emission intensity reaches its maximum. This excitation wavelength 

normally is not far from the main absorbance peak wavelength, however, real time control 

measurements were done for each sample. This means doing a wavelength sweep of the 

excitation wavelength while observing the variation in the emission intensity and finding the 

maximum value. Quantum dots present more than one excitation wavelength that correspond 
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to their different excitation states. Therefore, the value was carefully chosen, being this the one 

corresponding to the first excitation state of each quantum dot size. 

Figure 3.7 presents the fluorescence emission spectra obtained for the CdSe core QDs 

synthesized at 250ºC (a) and at 310ºC (b). According to the results, it can be concluded that 

the synthesis worked out better at 250ºC than at 310ºC. The peaks obtained are sharper for all 

residence times at this temperature (250ºC). In the case of würtzite CdSe quantum dots 

(reaction temperature 310ºC), a shoulder showed up in the emission spectrum, even for the 

shorter residence time, observing also big differences in intensity. This shoulder indicates the 

presence of several QDs sizes for the same residence time. 

  
Figure 3.7 Photoluminiscence spectra of core CdSe QDs synthesized at a) 250ºC and b) 310ºC 

Full width at half maximum (FWHM) of the photoluminescence spectra was calculated 

for the CdSe nanoparticles obtained at each residence time and at both temperatures. Table 

3.2 summarizes the values obtained for each case together with their fluorescence emission 

wavelength. 
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Table 3.2 Fluorescence emission wavelength and full width at half maximum of the photoluminescence spectra for the 
different CdSe QDs synthesized at different residence times and at 250ºC and 310ºC. 

250ºC 

Name λem (nm) FWHM (nm) 

310ºC 

Name λem (nm) FWHM (nm) 

C_250_5 504 23 C_310_5 557 42 

C_250_10 524 25 C_310_10 631 71 

C_250_20 537 28 C_310_20 637 64 

C_250_30 542 26 C_310_30 646 58 

C_250_40 546 26 C_310_40 647 56 

C_250_50 548 27  - - 

C_250_60 550 27  - - 

Table 3.2 shows the effect of the residence time and the reaction temperature on the 

emission wavelength of the CdSe quantum dots. On one hand, independently from the 

temperature, while increasing the residence time the emission wavelength of the QDs 

increased. This increase tends to level off, for both temperatures, from 30s of residence time 

observing smaller differences between the wavelengths obtained at longer residence times. On 

the other hand, an increase in the reaction temperature also derives on an increase on the 

emission wavelength at the same residence times. For example, at a residence time of 5s an 

emission wavelength of 504 nm is obtained at 250ºC and of 557 nm at 310ºC. Regarding the 

FWHM, interestingly at 250ºC increases at low residence times but it remained almost the 

same at high residence times. However, CdSe QDs synthesized at 310ºC presented higher 

FWHM values, indicating the obtaining of a mixture of QD sizes at this temperature. 
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Fluorescence emission was also measured for the CdSe/CdS core-shell (CS) quantum 

dots synthesized following the procedure explained in Section 3.2.4. Figure 3.8 shows the 

fluorescence spectra for the synthesized core-shell (a) and core-shell-shell (b) QDs. For the 

core-shell nanocrystals, when increasing the size of the CdSe core, so increasing the 

residence time, the emission peaks shifted to longer wavelengths. This shift was also noticed 

for the core-shell-shell (Figure 3.8b) quantum dots indicating a successful growing of the 

nanocrystals. (Note that the nomenclature used from now on to describe the core-shell and 

core-shell-shell QDs works as follows: core-shell (CS) or core-shell-shell (CSS)_reaction 

temperature for the core synthesis_residence time for the core synthesis.) 

  

Figure 3.8 Fluorescence emission spectra of a) CdSe/CdS core-shell and b) CdSe/CdS/CdS core-shell-shell quantum 
dots. 

Table 3.3 summarizes the emission wavelength of the CdSe/CdS core-shell (CS) and 

core-shell-shell (CSS) quantum dots synthesized.  
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Table 3.3 Emission wavelength for CdSe/CdS and CdSe/CdS/CdS core-shell and core-shell-shell nanocrystals 
synthesized from the CdSe core quantum dots. 

CS CSS 
Name λem (nm) Name λem (nm) 

CS_250_5 564 CSS_250_10 583 

CS_250_10 578 CSS_250_20 595 

CS_250_20 583 CSS_250_60 608 

CS_250_60 591   

CS_310_10 630   

Fluorescence emission comparisons between some representative core and core-shell 

quantum dots are shown in Figure 3.9. In Figure 3.9a the shift between the C_250_5 core (λem 

504 nm) and the corresponding CS_250_5 core-shell (λem 564 nm) is shown, and in Figure 

3.9b the fluorescence emission of the series C_250_60 core (λem 550 nm), core-shell (λem 591 

nm) and core-shell-shell (λem 608 nm) nanocrystals is presented. In both cases a shift of the 

emission peak from the core to the core-shell was observed. Additionally, in Figure 3.9b a shift 

from the core-shell to the core-shell-shell emission peak occurred showing the growth of CdS 

monolayers on the top of both the core and the core-shell nanocrystals. Regarding the 

differences in emission intensity, especially in Figure 3.9b, this is due to the different QDs 

concentrations used when doing the fluorescence measurements. 

  
Figure 3.9 a) Fluorescence emission of CdSe core C_250_5 and CdSe/CdS core-shell CS_250_5 QDs. b) Fluorescence 
emission of CdSe core C_250_60, CdSe/CdS core-shell CS_250_60 and CdSe/CdS/CdS core-shell-shell CSS_250_60. 
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According to the FWHM values obtained, in both cases good quality QDs were 

synthesized, with narrow particle size distributions and good optical properties when dispersed 

in hexane and chloroform. 

3.3.  Encapsulation of the synthesized CdSe/CdS quantum dots into 

colloidal polymer particles 

Taking advantage of the synthesis of different QDs sizes, different combinations can be 

made taking into account the emission wavelength and the full width at half maximum for each 

case in order to be able to distinguish the fluorescence emission peaks. Figure 3.10 shows the 

fluorescence spectrum of a dispersion in styrene of QDs of three different sizes in a ratio 1:1:1 

in weight, in which the emission maxima are clearly differentiated. Combination of these QDs 

with the encapsulation technique reported in Chapter 2, that ensures stability of the optical 

properties of the nanocrystals during storage, waterborne dispersions of polymer particles 

containing QDs of different sizes were produced. 

	
Figure 3.10 Fluorescence spectra of three different QDs, in a ratio 1:1:1 in weight, dispersed in styrene before their 

encapsulation. 
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The as-synthesized TOPO-hexadecylamine coated CdSe/CdS quantum dots were 

pretreated prior to their encapsulation into polymer particles. On the one hand quantum dots 

had to be purified in order to remove the excess of organic modifiers in the dispersion. Acetone 

was added to the nanoparticles dispersion and centrifuged for 30 minutes at 11.000 r.p.m. This 

procedure was done three times discarding the acetone after each centrifugation. After the last 

centrifugation, the obtained pellet was redispersed in a suitable solvent, in this case toluene, in 

order to facilitate the transport from the laboratory in Bordeaux to the laboratory at Polymat. 

The solvent was removed prior to the encapsulation of the QDs into polymer particles. 

3.3.1.  Synthesis of hybrid core-shell polymer/QDs particles 

The synthesized CdSe/CdS quantum dots presented a good compatibility with styrene, 

being easily dispersible in this monomer, therefore, the encapsulation strategy followed was 

the one explained in Chapter 2 for the encapsulation of octadecylamine coated CdSe/ZnS 

quantum dots. Briefly, an organic phase composed by QDs, styrene as monomer, hexadecane 

(HD) as costabilizer and divinyl benzene (DVB) as cross-linker, and an aqueous phase 

containing sodium dodecyl sulfate (SDS) as surfactant, sodium bicarbonate (NaHCO3) as 

buffer and water, were prepared separately. After 10 minutes of mixing each phase, they were 

brought together and mixed under vigorous stirring for 20 minutes. Then, the miniemulsion was 

produced using a Hielscher sonicator (operating at 80% amplitude and 100% cycle) sonicating 

during 4 minutes in an ice bath under magnetic stirring. The obtained monomer droplets were 

stabilized by doing a post-addition of SDS 1% wbm to the so formed miniemulsion. A 5% S.C 

monomer miniemulsion was obtained and polymerized in batch in a 25 ml round bottom flask 

with a nitrogen inlet under magnetic stirring. Potassium persulfate (KPS) was used as thermal 
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initiator, which was added when the temperature reached 75ºC. Polymerization was carried out 

for 6 hours and hybrid cross-linked polystyrene/quantum dots particles were obtained. Then, 

the production of the cross-linked polymethyl methacrylate shell by seeded semi-batch 

emulsion polymerization was carried out. The cross-linked PS/QDs seed was placed into a 

round bottom flask, which was inmersed in a silicon bath, with a nitrogen inlet. The temperature 

of the bath was increased up to 75ºC and then the initiator (KPS) was added in a shot and the 

mixture MMA+DVB was fed into the reactor using a syringe pump at a flow rate of 0.12 g/min. 

When the feeding was finished, the polymerization was kept during 3 more hours at the same 

temperature. Finally, hybrid cross-linked core-shell PS/QDs/PMMA hybrid polymer particles 

were obtained. 

Three latexes containing one, two and three different types of CdSe/CdS QDs were 

synthesized. Table 3.4 summarizes the most relevant properties of these latexes as well as the 

type and the ratio (in weight) of QDs used in each Run. 

Table 3.4 Characteristics of hybrid cross-linked core-shell PS/QDs/PMMA latexes in terms of conversion, droplet size, 
particle size of the seed and final particle size. 

Sample CdSe/CdS 
type 

CdSe/CdS 
weight ratio 

Conversion 
(%) 

Dd 
(nm) 

Dp seed 
(nm) 

Dp core-
shell (nm) 

Run 1 CS_250_20s 1 90 95 113 156 

Run 2 CS_250_10s + 
CSS_250_60s 1:1 96 92 112 162 

Run 3 
CS_250_5s + 

CS_250_20s + 
CSS_310_10s 

1:1:1 75 86 101 131 
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  Fluorescence properties 3.3.2.

Fluorescence of the resulting hybrid colloidal polymer particles was studied. For this, 

latexes were diluted in water (0.1 g/ml) in order to avoid backscattering while measuring. 

Figure 3.11 shows the fluorescence spectrum of the core cross-linked polystyrene/QDs 

latex containing CS_250_20s CdSe/CdS quantum dots and the fluorescence spectrum of Run 

1, the corresponding core-shell latex. This type of QDs presents a fluorescence emission peak 

at around 583 nm, which is distinguished in the spectrum corresponding to the hybrid PS/QDs 

core polymer particles. However, this peak was not present for Run 1, that is, in the hybrid 

core-shell cross-linked PS/QD/PMMA polymer particles. Therefore, the synthesized HDA-

TOPO coated CdSe/CdS quantum dots were degraded during the seeded semi-batch emulsion 

polymerization step. 

	
Figure 3.11 Comparison of fluorescence spectra after the synthesis of the hybrid seed (seed Run 1) and of the cross-

linked core-shell PS/QD/PMMA polymer particles (Run 1). 
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In order to shed light on the fluorescence degradation of the QDs, the fluorescence 

emission intensity was monitored by withdrawing samples from the reaction during the 

synthesis of Run 3 (Figure 3.12). The fluorescence emission spectra corresponding to the 

styrene dispersion of the three different types of QDs used in Run 3 was already shown in 

Figure 3.10, in which the maximum fluorescence emission peaks of each QD were well 

differentiated. However, when producing the miniemulsion, the fluorescence emission 

spectrum only showed the emission peak corresponding to the bigger size QDs 

(CSS_250_20s). The disappearance of the fluorescence emission peaks of the smaller size 

QDs (CS_250_5s, CS_310_10s) shows a faster degradation of the QDs when decreasing their 

size. Samples were withdrawn during the polymerization and fluorescence was measured 

observing that the shape of the spectrum was maintained during the reaction. In contrast to 

Run 1 (Figure 3.11), in this case the fluorescence of the bigger QDs (CSS_250_20s) was 

maintained after the synthesis of the cross-linked PMMA shell. The QDs used for this reaction 

were bigger than the ones used for Run 1 and they contained an additional CdS shell. 

Therefore, the difference in the final result is probably related to a better coverage of the 

surface that slows down the degradation of the nanocrystals, and hence the loss of 

fluorescence. 
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Figure 3.12 Fluorescence evolution during the polymerization reaction. 

As reported in Chapter 2, commercial octadecylamine coated CdSe/ZnS quantum dots 

were degraded in contact with aqueous solutions. The QDs synthesized in this Chapter 
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concluded that the smaller the QDs the faster the degradation. The faster degradation is likely 

related to a weaker protection shell resulting from the synthesis and purification strategies 

employed. On one hand, it is worth noting that independently of the residence times employed 

for the synthesis of the CdSe core, the amount of hexadecylamine and TOPO used to protect 

the surface of the CdSe/CdS nanocrystals was the same. Therefore, the surface coverage of 

the nanocrystals decreased as the nanocrystal size decreased as the number of nanoparticles 

obtained increased. That is, the amount of surface modifiers used would not be enough to 

efficiently cover the smaller QDs surface leading to less protected QDs. On the other hand, the 

continuous strategy used to produce the CdS shell on the CdSe nanocrystals did not ensure a 

minimum number of CdS layers to be produced and hence the QDs were only weakly 
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modifier molecules weakly adsorbed to the QDs surface would be released reducing the 

protection of the QDs´ surface. This would affect all the QDs´ sizes but with a greater impact in 

the ones less protected from the beginning. 

Although the continuous synthesis of CdSe/CdS QDs under supercritical conditions of 

hexane in tubular microreactors is a versatile and robust approach to produce dispersions of 

QDs of tunable sizes, the process conditions used in this work did not guarantee their stability 

when contacting with aqueous solutions, as required in the strategy presented in Chapter 2. 

Even though the continuous synthesis approach can be optimized to increase the stability of 

the QDs dispersions, such attempt was not pursued in this PhD due to the lack of time. 

Instead, commercial QDs used in Chapter 2 were acquired in different sizes to attempt their 

simultaneous encapsulation into colloidal polymer particles. 

3.4. Encapsulation of multiple commercial CdSe/ZnS QDs in colloidal 

polymer particles. 

As described above, the synthesized TOPO-hexadecylamine coated CdSe/CdS 

quantum dots were not suitable for their encapsulation into colloidal polymer particles due to 

their loss of fluorescence when being in contact with the aqueous phase in the 

miniemulsification step. Therefore, octadecylamine coated CdSe/ZnS quantum dots of four 

different sizes were purchased from Ocean NanoTech for this purpose. The same 

encapsulation strategy described in Chapter 2 Section 2.7 was followed to encapsulate 

different QDs sizes into the same cross-linked core-shell PS/PMMA polymer particles. 
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3.4.1.  Characterization of CdSe/ZnS of different sizes 

Prior to the encapsulation, quantum dots were characterized in terms of size and 

fluorescence properties by preparing toluene dispersions of the four quantum dots purchased 

(QD520, QD560, QD600, QD626). Toluene dispersions of different concentrations were 

prepared for each quantum dot size. First, the most suitable excitation wavelength for each QD 

was checked maintaining it for all the measurements of each series. Taking into account the 

saturation and detection limit of the equipment, the slit was chosen and fixed at 2 nm for all the 

measurements independently from the type of QD. 

Regarding the evolution of the fluorescence emission intensity with the QDs size, it was 

observed that, when increasing the size of the nanocrystals the emission wavelength shifted to 

the right (to longer wavelengths) and the fluorescence emission intensity decreased for the 

same concentration in weight of QDs (g/ml) (Figure 3.13a). Figure 3.13b shows the calibration 

curve for the four types of commercial QDs dispersed in toluene, in which the difference in 

emission intensity for each QD type at each concentration is clearly noticed. Based on these 

results, it was concluded that the number of particles and not the concentration in weight 

determines the fluorescence emission intensity of the quantum dots. As a result, the size of the 

nanocrystals had to be accurately determined in order to be able to calculate the number of 

QDs for each case, and hence to control the fluorescence emission intensity when combining 

different quantum dot sizes. 
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Figure 3.13 a) Fluorescence emission spectra for the different QDs at the same weight concentration. b) Fluorescence 
emission intensity calibration curves for the different types of QDs. 

TEM micrographs of a toluene dispersion of each quantum dot were taken in order to 

obtain their particle size. Around 500 particles were measured to determine the distribution and 

the average particle sizes (Figure 3.14).  
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Figure 3.14 TEM micrographs of the four types of QDs and the particle size distribution obtained for each of 
them. 
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The TEM micrographs show that the quantum dots could be differentiated as individuals 

in all the cases, however dependent on the concentration they tend to be more or less close to 

each other. Table 3.5 shows the volume, number and weight particle size obtained for each 

QD, as well as the particle size distribution (Dw/Dn) and the full width at half maximum 

calculated from the fluorescence emission spectra. Interestingly, the particle size distributions 

were identical for the three smallest QDs, slightly decreasing for the bigger ones, indicating a 

good homogeneity on the particle size independently from their size. However, according to the 

FWHM values obtained from the emission spectra, a mixture of sizes would be present for the 

two smallest QD sizes as high values were obtained. Nevertheless, for the two bigger sizes a 

small full width at half maximum was obtained, showing homogeneity of the sample. This 

shows that for QDs very small differences in size have a great impact on their optical 

properties. 

Table 3.5 Summary of the emission wavelength, calculated volume, number and weight particle size, particle size 
distribution and full width at half maximum of the emission peak for each QD. 

Emission 
wavelength (nm) Dv (nm) Dn (nm) Dw (nm) PDI FWHM (nm) 

520 6.8 6.7 7 1.05 40 

560 7.0 6.9 7.2 1.05 45 

600 7.2 7.0 7.4 1.05 27 

626 7.4 7.3 7.5 1.04 27 

Knowing the particle size, the number of particles for a certain concentration, and vice 

versa, can be calculated using (Equation 3.2). Therefore, dispersions of multiple QDs sizes in 

solvent with known number of each size of QD can be readily prepared. 
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𝑵𝒑 =  
𝟔 ∗𝒎𝑸𝑫

𝝅 ∗ 𝝆 ∗ 𝑫𝒑𝒗𝟑
 

(Equation	3.2)	

   

Where, 

Np = number of particles 

mQD = mass of quantum dots in the dispersion (g) 

ρ = density of CdSe/ZnS = 5.82 g/cm3 

Dpv = QD volume average particle size (cm) 

Two mixtures with different ratios of nanoparticles were prepared in order to analyze the 

influence of one type of quantum dot on the fluorescence properties of the other. For this, two 

types of quantum dots with well differentiated emission peaks (520 nm and 600 nm) were 

dispersed in toluene. Figure 3.15 shows the fluorescence emission spectra obtained when 1:1 

and 1:2 ratios, in number of particles, were prepared. As it can be seen, the emission 

intensities were in close agreement with the ratio of number of particles. Furthermore, no 

influence on the fluorescence emission of none of the nanoparticles was observed, meaning 

that, besides the wide absorbance spectra that quantum dots show, none of them absorbed the 

light that the other emitted. 



Encapsulation of multiple quantum dots into colloidal polymer particles 

117 

 

	
Figure 3.15 Fluorescence emission spectra for a mixture of QD520 and QD600 in ratios 1:1 (blue) and 1:2 (red) dispersed 

in toluene 

 After this thorough characterization of the four sizes of quantum dots, it was concluded 

that the simultaneous encapsulation of QDs into cross-linked core-shell PS/PMMA polymer 

particles controlling the final fluorescence emission intensity was possible taking into account 

that: 

• The fluorescence emission intensity of the quantum dots is directly proportional 

to the number concentration.  

• Quantum dots presenting well differentiated emission spectra are needed in 

order to differentiate the emission signals from each other. 

  Encapsulation results 3.4.2.

Quantum dots emitting fluorescence at 520 nm (QD520) and 600 nm (QD600) were the 

chosen nanoparticles to be encapsulated into cross-linked core-shell polystyrene/polymethyl 

methacrylate polymer particles following the procedure described in Chapter 2. 
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First the concentration of QD600 was fixed at 0.31% wbm, as it was previously 

calculated that this concentration gives a theoretical distribution of one QD600 per polymer 

particle for polystyrene/DVB particles of 100 nm size. The number of QD particles 

corresponding to this concentration was calculated using (Equation 3.2). As the desired 

fluorescence ratio for this reaction was 1:1, the number of particles for the smaller QDs 

(QD520) should be the same. The amount of small QDs was thus calculated as follows: 

𝑵𝒑𝑸𝑫𝟔𝟎𝟎 =  
𝟔 ∗ 𝟎.𝟎𝟎𝟑𝟏𝒈

𝝅 ∗ 𝟓.𝟖𝟐𝒈/𝒄𝒎𝟑 ∗ 𝟏𝟎!𝟐𝟏 ∗ (𝟕.𝟐𝒏𝒎)𝟑
= 𝟐.𝟕𝟐𝟓𝟓 ∗ 𝟏𝟎𝟏𝟓 

𝒎𝑸𝑫𝟓𝟐𝟎 =  
𝟐.𝟕𝟐𝟓𝟓 ∗ 𝟏𝟎𝟏𝟓 ∗ 𝝅 ∗ 𝟓.𝟖𝟐𝒈/𝒄𝒎𝟑 ∗ 𝟏𝟎!𝟐𝟏 ∗ (𝟔.𝟖𝒏𝒎)𝟑

𝟔
= 𝟎.𝟎𝟎𝟐𝟔𝒈 

For comparative reasons, and prior to their encapsulation, fluorescence emission 

intensity of the mixture of both quantum dots dispersed in styrene was measured observing 

that, as expected, the emission intensity of both quantum dots was similar (Figure 3.16). 

	
Figure 3.16 Fluorescence emission spectrum of a mixture 1:1 QD520:QD600 dispersed in styrene before the 

polymerization reaction. 
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Then, the polymerization reaction using the calculated concentrations of QDs was 

carried out following the procedure described in Chapter 2. Fluorescence of the core-shell latex 

was measured right after the polymerization and compared to the one of the styrene dispersion 

(Figure 3.17), noticing a big change in the fluorescence intensity ratio of both QDs. In fact, the 

1:1 ratio was lost during the reaction. Moreover, the emission peak corresponding to QD520 

suffered a broadening and a red shift with respect to the one obtained for the styrene 

dispersion. It is also noticeable that the intensity emission peak corresponding to QD600 was 

higher than the one for QD520, maintaining, for QD600, the maximum emission wavelength 

and its full width at half maximum. Note that the intensities of the spectra obtained in the 

styrene dispersion and in the core-shell latex cannot be compared because the concentrations 

of QDs are different. 

	
Figure 3.17 Comparison of fluorescence spectrum between the styrene dispersion and the core-shell final latex for a 

mixture 1:1 QD520:QD600. 

A different hybrid latex containing quantum dots emitting at 560 nm and 626 nm was 

synthesized to study if the fluorescence emission spectrum was altered during the synthesis 

process (miniemulsion, seed and final core-shell latex). Calculations of the amount of QDs 

used were done to get a ratio 1:1 between the fluorescence emission peaks of both QDs. 
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According to Figure 3.18, after the miniemulsion the fluorescence ratio was still maintained, but 

after the synthesis of the hybrid seed this ratio changed. The fluorescence emission intensity of 

the smaller nanocrystals (QD560) was lower than the one of the bigger quantum dots (QD626). 

Furthermore, after the synthesis of the PMMA shell the fluorescence emission intensity 

difference between both peaks increased. The ratio between the maximum intensity values of 

both peaks for the core and the core-shell was calculated obtaining a value of 1.6 in the case of 

the seed and of 2.6 for the core-shell hybrid latex. This indicates a decrease in the 

fluorescence emission intensity of the smaller QDs during the polymerization reaction. 

 
Figure 3.18 Comparison between the fluorescence obtained for the miniemulsion and the resulting core and core-shell 

latex for a mixture 1:1 QD560:QD626 

The two examples of co-encapsulation of two different quantum dots in polymer 

particles presented the same fluorescence emission behavior. A large emission intensity 

decrease for the smaller QDs was observed in both cases, independently of the size of the 

nanocrystals. This fact is probably due to an absorption-emission process between the QDs of 
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bigger QDs can absorb the light that the smaller ones emit, which did not occur when the QDs 

were dispersed in toluene, much further away from each other. 

Based on the results obtained, and although it was possible to control fluorescence in 

toluene and styrene dispersions controlling the number of quantum dots particles, this was not 

possible when co-encapsulating different QD sizes in the same polymer particles. Therefore, a 

new strategy was necessary in order to achieve a good control of the fluorescence emission 

intensity when combining different QDs, in order to open the door to detection applications. 

3.5.  Blends of waterborne hybrid polymer/QD dispersion with 

different QD nanoparticle sizes. 

An alternative way of producing a waterborne hybrid polymer/QD dispersion with a 

characteristic spectrum corresponding to more than one QD size is the production of 

dispersions with a single QD size and then blending them. This approach, although more time 

consuming, might prevent the absorption-emission interactions between the QDs of different 

sizes. 

Therefore, the synthesis of four latexes with a single quantum dot type (of different size) 

each was pursued. Latexes were synthesized following the same strategy as in the previous 

examples; first hybrid PS-DVB/QDs particles were obtained by miniemulsion polymerization, 

and then seeded semi-batch emulsion polymerization was carried out to obtain the final core-

shell cross-linked PS/QDs/PMMA polymer particles. Table 3.6 summarizes the most relevant 
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properties of the four latexes obtained with each QDs size, QDs fluorescence emission 

wavelength and final polymer particle size. In all the cases, complete conversion was obtained. 

Table 3.6 Summary of the particle size and fluorescence emission wavelength for each QD and final polymer particle size 
for each latex synthesized. 

Dpv QD (nm) λQD (nm) Dp polymer particle (nm) 

6.8 520 175 

7.0 560 183 

7.2 600 178 

7.4 626 185 

Here again the number of quantum dots was the key factor to control the fluorescence 

intensity and the proportion between the emission peaks of the different quantum dots when 

blending the latexes. That is, assuming that the encapsulation efficiency was the same in all 

the latexes, the number of quantum dots for a specific amount of latex was calculated and from 

it and depending on the proportion required, the quantity of the other latex or latexes was 

obtained. 

This way, several blends were prepared combining two and three types of QDs with well 

separated emission peaks, avoiding overlapping and facilitating the recognition of the signal 

and analysis of the final spectrum. The following combinations were done: 

• QD520 + QD600 (1:1, 1:2, 2:1) 

• QD560 + QD600 (1:1) 

• QD560 + QD626 (1:1) 

• QD600 + QD626 (1:1) 
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• QD560 + QD600 + QD626 (1:1:1) 

Fluorescence emission was measured fixing the most suitable excitation wavelength for 

each case. Figure 3.19 shows the spectra obtained for each blend in which the peaks could be 

perfectly distinguished and measured when blending two and three latexes. Unlike what 

happened with the latexes with two types of quantum dots encapsulated in the same polymer 

particle dispersion, this time fluorescence intensity ratio followed the number of particles ratio 

used in the blend. 
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QD560 + QD600 1:1 QD560 + QD626 1:1 

  

QD600 + QD626 1:1 QD560 + QD600 + QD626 1:1:1 

Figure 3.19 Fluorescence emission spectra for the blends prepared with different ratios of particles containing QDs of 
different sizes. 

Therefore, it was demonstrated that blending different latexes, in which a good 

encapsulation efficiency of the quantum dots in the polymer particles was achieved, a high 

control of the fluorescence spectra can be accomplished. This way fluorescence spectra can 

be modulated at will allowing a large number of combinations by choosing the most suitable 

nanocrystals. 
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3.6. Application of the latex blends containing commercial QDs 

In the previous section, it has been demonstrated that fluorescence spectra can be 

modulated at will by blending latexes containing commercial CdSe/ZnS QDs. This control of 

the fluorescence emission intensity and the demonstrated efficient encapsulation of the QDs 

into cross-linked core-shell PS/PMMA opens the door to multiplexing application. 

The first step after the fluorescence characterization of different blends, would be the 

functionalization of the surface of the polymer particles of one blend with the same reactive 

group. This functionalization should be different for each blend so they could be differentiated 

during the detection process. That is, for example, the polymer particles of a blend containing 

QD520 and QD600 in a ratio 1:1 functionalized with A, and the polymer particles of a blend 

with QD560 and QD626 in a ratio 2:1 functionalized with B. Then, these blends would be mixed 

and put in contact with an analyte anti-B. This way only the particles modified with B would 

react and would be attached to the analyte, discarding the others. Measuring the fluorescence 

spectrum of the resulting sample, and as the spectra corresponding to the different blends 

were previously characterized, the analyte can be fast and easily identified (Figure 3.20). 
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Figure 3.20 Schematic representation of a multiplexing assay. 

A potential application of this work could be to functionalize the surface of the cross-

linked core-shell PS/QDs/PMMA hybrid polymer particles with L-lysine. As shown previously by 

Holzapfel et al15., the surface of the polymer particles has to be firstly functionalized with 

carboxylic acid groups for then activating them and successfully coupling the lysine15.  

3.7. Conclusions 

Trioctylphosphine oxide-hexadecylamine coated CdSe/CdS quantum dots were 

synthesized in supercritical hexane obtaining nanocrystals of different sizes and good optical 

properties, stable when dispersed in organic solvents. The aim was to encapsulate quantum 
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dots of different sizes in the polymer particles dispersion and to control the final fluorescence 

spectra. However, when carrying out the first step of the encapsulation by miniemulsion 

polymerization, fluorescence of the quantum dots was lost right after being in contact with the 

aqueous phase. 

Therefore, commercial octadecylamine coated CdSe/ZnS quantum dots of four different 

sizes were used for the encapsulation of multiple quantum dots maintaining good optical 

properties in the final latex. The four of them were characterized both by fluorescence 

measurements and by TEM to calculate their size. It was determined that the fluorescence 

intensity of a QD dispersion (of any size) in solvent was proportional to the number 

concentration rather than the weight concentration. Thus, is was possible to prepare QD 

dispersions in solvents with the desired fluorescence spectrum by combination of the 

appropriate number of QDs of different sizes. Furthermore, it was observed that the absorption 

of the different QDs did not affect the emission intensity of the others present in the dispersion. 

According to the results obtained in toluene dispersion, different QDs with wide enough 

separation of their fluorescence peaks were encapsulated together into cross-linked core-shell 

polystyrene/polymethyl methacrylate polymer particles.  Two trials were done using the same 

number of particles for two different pairs of quantum dots with the idea of obtaining a 

fluorescence emission intensity ratio 1:1. Although the fluorescence ratio was the desired one 

in the miniemulsion, after the synthesis of the core-shell polymer particles this was lost 

obtaining a higher emission intensity for the bigger QDs. This happened no matter the 

combination of QDs used, probably because of an absorption-emission process occurring 
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between the quantum dot nanocrystals placed close enough to each other in the polymer 

particles. 

To overcome this drawback waterborne polymer/dispersions using single size of QD 

were synthesized by the method developed in Chapter 2. Then, blends of dispersions 

containing different QD sizes were prepared. As in the previous case, different combinations 

were done taking into account both the number of QD particles to obtain the desired ratio, and 

the fluorescence emission peaks for each QD. Thus, a good control of the final fluorescence 

was achieved. This method opens the possibility to prepare dispersions with targeted 

fluorescence spectra by the combination of different hybrid latex dispersions. 
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4.1. Introduction 

Waterborne-polymer-inorganic hybrid dispersions have attracted plenty of attention 

because in addition to the improvement of the performance in stablished applications, they 

allow targeting new applications that are out of reach of the conventional waterborne polymer 

latexes
1
. Thus, the inorganic materials offer the possibility to new functionalities. Although, 

commonly the incorporation of a single type of inorganic material is challenging, the 

incorporation of multiple inorganic nanoparticles with complementary functionalities is pursued 

in recent research works. The production of hybrid polymer/inorganic materials with multiple 

functionalities including quantum dots have already been studied; particularly for the fields of 

photovoltaics and biological applications
2–15

. 

Many examples of preparation of bifunctional polymeric fluorescent-magnetic particles 

bringing together different types of quantum dots and magnetic nanoparticles using diverse 

techniques can be found in literature
2–8,13–15

. Gaponik et al.
3
 encapsulated together water-

soluble CdTe quantum dots and magnetic nanoparticles in poly(styrene-sulfonate)-

poly(allylamine hydrochloride) microcapsules (5.6 μm diameter) obtaining fluorescence stability 

in physiological buffer solutions during two weeks. In order to avoid the reabsorption of emitted 

light they used a concentration of magnetic nanoparticles more than an order of magnitude 

lower than for QDs. They obtained fluorescent capsules that can be externally externally 

controllable by a magnetic field. Mandal et al.
5
 produced oil droplets containing core/shell 

CdSe/ZnS QDs and a ferrofluid composed of Fe2O3 nanoparticles. They studied the optical 

properties of the droplets by varying the concentration of QDs and Fe2O3 nanoparticles, 

observing that when increasing the concentration of ferrofluid in the droplets, fluorescence 

intensity decreased due to both static and dynamic fluorescence quenching. More recently, 
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Fischer et al.
15

 synthesized magneto and light-responsive polymer particles. Magnetite was 

incorporated into polystyrene particles functionalized with phosphonate groups. This magnetic 

particles were further functionalize by crystalline CdS nanoparticles on their surface, obtaining 

raspberry like hybrid polymer particles. 

Other important combinations have been made in the area of photovoltaics, in which the 

rise of solar cells market has motivated the improvement of their efficiency. For this, dye-

sensitized solar cells have been developed, and as exposed in Chapter 1, taking advantage of 

the growth of quantum dots technology three different systems can be differentiated
10,12

. 

Semiconductor sensitized or p-n junction system is a clear example of combination of QDs with 

other semiconductors. This system takes advantage of the wide absorbance wavelength range 

of quantum dots, using them as light harvesters, for transferring the electrons to the TiO2 

nanoparticles contained in the electrode
10–12

. Kamat
12

 studied deeply the QDs/TiO2 system 

describing how fluorescence bleaching appears and depends on the QDs particle size when 

combining these two nanoparticles. This observation confirms the electron transfer from 

quantum dots to titanium oxide. 

In this Chapter, the synthesis of multiparticle hybrid latexes and films by co-

encapsulation of octadecylamine coated CdSe/ZnS quantum dots and cerium oxide 

nanoparticles is presented. The aim was to explore the potential synergies of the combination 

of both nanoparticles in a waterborne polymer dispersion and film. CeO2 is known by good UV-

Vis absorbance properties
16

, and quantum dots present, as shown in previous chapters, 

exceptional fluorescence emission properties. 
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For this, and profiting from the good dispersability of both nanoparticles in styrene, their 

encapsulation into cross-linked core/shell PS/PMMA polymer particles was carried out by 

seeded semi-batch emulsion polymerization
17

. Furthermore, film-forming latexes were 

synthesized by the production of an additional MMA/BA/AA shell to the cross-linked core/shell 

particles, ending up with core/shell/shell hybrid polymer particles containing both QDs and 

CeO2 nanoparticles. 

The effect of cerium oxide nanoparticles on the optical properties of quantum dots was 

studied by measuring fluorescence emission intensity during storage at sunlight of toluene 

dispersions, latexes and films in which both nanoparticles were present. 

4.2. Toluene dispersions of quantum dots and cerium oxide 

nanoparticles 

As already discussed in previous Chapters octadecylamine coated CdSe/ZnS quantum 

dots were purchased in powder state, and hence it could be directly dispersed in the solvent or 

monomer. However, cerium oxide provided by Altana (BYK3812) was received in mineral 

spirits. Thus, they were first dried at 60ºC for two days in an oven and then the solid was 

powdered prior to use. 

The study of the combination of quantum dots and cerium oxide was started in the 

simplest system, i.e. dispersions of both nanoparticles in different proportions exposed to 

daylight. Both quantum dots and cerium oxide nanoparticles were easily dispersed in toluene, 

obtaining transparent and stable dispersions independently of their concentration. Taking 
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advantage of this, toluene was the chosen as solvent to study the influence of cerium oxide on 

the emission fluorescence of quantum dots during storage. Mixtures of both types of 

nanoparticles at different ratios were prepared (Table 4.1) and left at daylight and ambient 

temperature in order to study how the increase in the concentration of CeO2 nanoparticles 

affected the fluorescence emission intensity and the UV absorbance of the quantum dots 

during time. The concentration of QDs was maintained for all the samples. 

Table 4.1 Mixture of quantum dots and cerium oxide dispersed in toluene in different weight ratios. 

Sample QDs/CeO2 ratio 

1 1:0 

2 2:1 

3 1:1 

4 1:2 

5 1:3 

6 1:4 

7 1:5 

 

Fluorescence emission intensity of the different toluene dispersions were measured 

right after their preparation (Figure 4.1). It was observed that the emission intensity of 

dispersion with the lowest amount of CeO2 (2:1 ratio) did not vary substantially compared to the 

QDs dispersion. However, when increasing the concentration of CeO2 in the system, 

fluorescence intensity decreased proportionally. 
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Figure 4.1 Fluorescence emission intensity of toluene dispersions containing different QDs:CeO2 ratio. 

Scattering measurements for samples 1 to 6 were carried out using a Zetasizer Nano 

Series (Malvern Instruments). The counts per second were analyzed observing an increase 

while increasing the concentration of CeO2 in the dispersion. As it can be seen in Figure 4.2, 

adding CeO2 to the system, fluorescence emission intensity decreases to more than a half the 

value obtained for a pure QDs dispersion, while scattering increases nearly to double its value. 

Therefore, the light scattering of the CeO2 nanoparticles probably cause the decrease of the 

fluorescence emission intensity 

 

Figure 4.2 Comparison between the decrease of the fluorescence emission intensity and the increase of the scattering of 
samples 1 to 6. 
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The seven toluene dispersions were stored at daylight measuring their fluorescence 

emission intensity during time (Figure 4.3). In the case of the QDs dispersion, no changes in 

the emission intensity were observed over time under sunlight exposure. Regarding the 

dispersions containing both QDs and CeO2, the same variations during time were observed in 

all the cases. Emission intensity slightly decreased during time when exposing the samples to 

sunlight in similar proportions independently of the ratio between the nanoparticles. 
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Figure 4.3 Fluorescence emission intensity evolution during exposure to daylight of the different toluene dispersions. 

4.3. Multiparticle latexes 

Hybrid cross-linked core/shell polymer particles were synthesized by seeded semi-batch 

emulsion polymerization following the same procedure described in Chapter 2 for the 

encapsulation of quantum dots. First, the seed latex was produced by miniemulsion 

polymerization of styrene and divinyl benzene in presence of the nanoparticles (QDs + CeO2). 

Then a cross-linked polymethyl methacrylate shell was synthesized by feeding to the reactor a 

mixture of methyl methacrylate and divinyl benzene in starved conditions. 
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4.3.1.  Morphology of hybrid cross-linked core/shell polymer/QDs-CeO2 

particles. 

Morphology of the multifunctional cross-linked core/shell PS/QDs-CeO2/PMMA polymer 

particles was studied by TEM. Figure 4.4 presents a TEM micrograph of a cross-linked 

core/shell latex with co-encapsulated QDs:CeO2 in a weight ratio 1:1. It is remarkable that most 

of the polymer particles contained nanoparticles. Additionally, all the nanoparticles observed 

were placed in the polymer particles, not observing any in the aqueous phase, confirming a 

good encapsulation efficiency of both quantum dots and CeO2 nanoparticles.  

  

Figure 4.4 TEM micrograph of PS-DVB/QDs-CeO2/PMMA-DVB polymer particles 

In order to shed light on the identification of both types of nanoparticles, EDX analysis 

was carried out on this sample. For this, a High Resolution Transmission Electron Microscope 

(HRTEM-TITAN) was used in STEM mode. It is important to highlight that in this mode the 



Chapter 4   

142 

contrast is inverted with respect to normal TEM mode, that is, the more dense areas are seen 

in white and the less electron dense parts are seen darker. This can be observed in Figure 

4.5a, in which the background is completely dark, observing the cross-linked core-shell 

PS/PMMA polymer particles in a light grey and white spots inside them that correspond to the 

inorganic nanoparticles. In the selected area, three out of four polymer particles contain 

inorganic nanoparticles. Moreover, the top polymer particle contains two inorganic 

nanoparticles. An EDX map of this area was done, highlighting the main elements that form the 

quantum dots and the cerium oxide (Cd, Se, Zn, S and Ce) (Figure 4.5b). Unfortunately, only 

the signals from the cadmium and the cerium elements (red and orange pixel images), were 

relevant; for the other elements only noise was measured (not presented). Based on these two 

elements (Cd and Ce) it is noticed that the bottom left polymer particle contains a quantum dot 

and the center polymer particle contains a CeO2 aggregate. Regarding the top polymer particle, 

both Cd and Ce signals are observed next to each other, concluding that one QD nanocrystal 

and one CeO2 nanoparticle are present. These results confirm the encapsulation of QDs and 

CeO2 nanoparticles into the cross-linked core-shell PS/PMMA polymer particles, either into 

different or the same particle. 
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L-Cd L-Ce 

Figure 4.5 EDX analysis of a sample containing QDs and CeO2 co-encapsulated into cross-linked PS/PMMA polymer 
particles (ratio 1:1). a) STEM image of the selected area. b) EDX mapping of the elements of interest (Cd, Ce). 

 

 

b b 

a a 
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4.3.2.  Optical properties of QDs-CeO2 multiparticle latexes 

The effect of the addition of CeO2 nanoparticles in the system in terms of optical 

properties was studied by comparing latexes containing QDs and CeO2, in a ratio 2:1, and 

latexes containing only QDs. The latexes were diluted at the same QDs concentration and 

measured under the same conditions of excitation wavelength and slit opening. Figure 4.6 

shows a comparison of their fluorescence emission spectra observing that both latexes 

presented the same emission intensity right after their synthesis. Hence, the coencapsulation 

of CeO2 nanoparticles and CdSe/ZnS QDs did not change the fluorescence properties of the 

later. 

 

Figure 4.6 Comparison of fluorescence emission for latexes with the same concentration of quantum dots, with and 
without nanoceria. 

Latexes containing QDs and CeO2 and latexes only containing QDs were exposed to 

sunlight and stored in the dark monitoring their fluorescence emission intensity during storage 

time. Figure 4.7a presents the time evolution of the fluorescence spectrum of a latex containing 

QDs and CeO2 in a ratio 2:1 in weight of nanoparticles, and Figure 4.7b presents the spectrum 

for a latex only containing QDs, being both exposed to daylight during the same time. A clear 
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increase in the fluorescence was observed for the one containing nanoceria and QDs, whereas 

for the hybrid QDs-polymer latex the variation in fluorescence intensity was negligible. 

Fluorescence emission intensity in the case of latexes containing QDs and CeO2 increased 

31% during the 18 days of exposure, while for the latex without nanoceria the variation 

observed was 0.8%. 

  

Figure 4.7 a) Fluorescence emission spectrum of latex containing both QDs and CeO2 nanoparticles exposed to daylight 
during 18 days. b) Fluorescence emission spectrum of latex containing QDs exposed to daylight during 18 days. 

In contrast, when the latexes where kept in the dark, the same behavior was found 

regardless of the presence or not of nanoceria in the polymer particles (Figure 4.8). A small 

decrease in fluorescence emission intensity was observed during the first three weeks but no 

further changes were measured afterwards. This is in agreement with the results presented in 

Chapter 2 in which emission intensity of the latexes containing QDs remained stable after a 

small decrease during 3 weeks of storage. 
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Figure 4.8 a) Fluorescence emission spectrum of latex containing QDs and CeO2 nanoparticles stored in the dark during 
47 days. b) Fluorescence emission spectrum of latex containing QDs stored in the dark during 42 days. 

These results clearly indicate that CeO2 nanoparticles are influencing the optical 

properties of the QDs when exposed to daylight. This behavior can be related to the antenna 

effect that CeO2 nanoparticles can have on receiving incident optical radiation and transferring 

it to QDs enhancing their fluorescence
18,19

. This plasmonic effect could not explain the time 

dependence of the fluorescence increase by itself, but a change in the dielectric constant of the 

surrounding medium when exposed to light could account for the enhancement of the antenna 

phenomenon
20

. It must be said that the photoactivation of CdSe/ZnS observed in this work in 

the presence of CeO2, cannot be directly related to the activation observed by other authors 

due to photocorrosion of freshly prepared QDs
21

. In these cases, the photoactivation is due to 

the oxidation of the surface defects in the presence of O2 and light excitation, and it is 

accompanied by a blue shift due to a decrease in QD nanoparticle size. In our case, the 

fluorescence of bare QDs was completely stable under O2 and light both in toluene and 

encapsulated in polymer particles, and it is the presence of CeO2 which produces the 

photoactivation. 

In an attempt to understand the effect of the CeO2 nanoparticles on the fluorescence 

emission of QDs when both are co-encapsulated into polymer nanoparticles, latexes containing 

different weight ratios of QDs:CeO2 nanoparticles were synthesized by means of the method 
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described above, and their fluorescence emission intensity during storage at daylight was 

monitored over time. Figure 4.9 shows how fluorescence emission intensity varied when 

latexes were exposed to daylight during 17 days and Table 4.2 summarizes the increase of 

fluorescence emission intensity for each case taking the value at t0 as reference. It can be seen 

that, contrary to what happened for the toluene dispersions, when increasing the concentration 

of nanoceria up to five times the concentration of QDs, fluorescence emission intensity 

increased during storage at daylight. It was observed that, the nanoparticle ratio strongly 

influenced the increase in fluorescence emission. Interestingly, the highest increase in 

fluorescence emission intensity was obtained for a QDs:CeO2 ratio of 1:2. For this ratio the 

intensity increased by 225% after 10 days, and it even kept increasing after those days of 

exposure, while for 1:1 and 1:5 ratios the increment was of 80% and 125% respectively after 

10 days, but then the emission intensity was maintained almost constant. In the case of ratio 

1:2 the increase of fluorescence emission intensity did not stop after 17 days but after around 

40 days. However, this increase was very low compared to the one observed during the period 

showed. 
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Figure 4.9 Fluorescence emission spectra of latexes containing different QDs:CeO2 ratios when exposed to daylight. 

 

Table 4.2 Fluorescence emission intensity increase during storage at daylight of latexes with different QDs:CeO2 ratios. 

Sample t0 - day 10 Day 10 - day 17 Total increase 

1:0.5 76% 6% 82% 

1:1 80% 9% 89% 

1:2 225% 54% 279% 

1:5 124% 12% 136% 

 

For the sake of understanding the reasons of the interaction of the CeO2 nanoparticles 

on the fluorescence emission of QDs, the nanoparticles were encapsulated individually in 

polymer particles and then blended. The fluorescence emission of the blend was monitored 

during time. Blends were prepared by mixing the latexes for obtaining weight ratios 1:1 and 1:2 

of QD:CeO2 nanoparticles.  
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Figure 4.10 Fluorescence emission intensity evolution during exposure to sunlight of the blend latexes in a ratio of 
nanoparticles QDs:CeO2 1:1 and 1:2 in weight. 

Both were stored at daylight as done for the co-encapsulated hybrid latexes, and 

fluorescence was measured over time. The same behavior was observed in both cases; a 

small increase of the fluorescence emission intensity during the first 8 days of exposure, and 

then stable emission during time (Figure 4.10). The increment was slightly higher in the case of 

the 1:2 blend, which was in agreement with the behavior found for the hybrid latexes with co-

encapsulated QDs and CeO2 nanoparticles. However, the magnitude of increase for each ratio 

is substantially smaller, 23% for the blend 1:1 and 30% for the blend 1:2 in 19 days, whereas 

for the co-encapsulated latexes this increase was of 89% and 279%, respectively. 

This result indicated that the presence of the CeO2 nanoparticles in separate polymer 

particles and hence at longer distances, does not affect the environment of the QDs and their 

fluorescence emission intensity in the same manner. The shorter the distance between the 

nanoparticles, the higher the influence on the optical properties of the environment of the QDs, 

and hence stronger the effect on the fluorescence emission. 
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Based on these results for cross-linked core/shell hybrid latexes with co-encapsulated 

quantum dots and cerium oxide nanoparticles, it is clear that cerium oxide has a strong impact 

on the optical properties of the quantum dots leading to an enhancement of their fluorescence 

emission when exposing the latex to daylight. This influence was found to be stronger when the 

ratio QDs/CeO2 was 1:2. On the other hand, it is worth to point out that CeO2 nanoparticles did 

not affect the fluorescence stability during storage when the samples were not exposed to light. 

4.4. Synthesis of hybrid films containing QDs and CeO2 

The hybrid cross-linked core/shell PS/QDs-CeO2/PMMA latexes did not produce 

continuous films at room temperature because of the high Tg and the cross-linking of the 

polymer that do not favor the deformation of the particles in order to produce continuous films 

at room temperature. Therefore, in order to obtain good quality continuous and transparent 

hybrid films, the hybrid core/shell latex was used as seed in semi-batch emulsion 

polymerization aiming the production of a film forming shell by copolymerizing MMA/BA/AA 

under starved feed conditions. The seeded semi-batch emulsion copolymerization was carried 

out in a 50 ml round bottom flask adding the seed, the initiator solution (KPS 0.5 wbm%) in a 

shot and feeding the monomer mixture MMA/BA/AA in a ratio 39.5%/59.5%/1% employing a 

syringe pump at a feeding rate of 0.12 g/min. The polymerization was carried out at 75ºC for 3 

hours obtaining latexes with 20% S.C. 

Regarding the thickness of this second shell, it was proved that it has to be at least as 

thick as the cross-linked polymethyl methacrylate shell to obtain continuous and transparent 
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films; namely the MMA/BA/AA monomer mixture should be at least 60% of the total polymer in 

weight.  

Minimum film formation temperature of the films was determined using a minimum film 

forming temperature bar obtaining a result of 15ºC. Taking this into account, films were casted 

into silicon molds and dried at 23±2ºC and 55±5% humidity obtaining continuous, transparent 

and flexible material. 

4.4.1.  Morphological analysis of film forming latexes and films 

The analysis of the morphology of the hybrid core-shell-shell latex was done by TEM. 

According to some reports, the addition of hydroxyethyl cellulose (HEC) to low Tg latexes 

keeps the spherical shape of the polymer particles preventing from deformation during the 

sample preparation
22

. Figure 4.11 presents the TEM images of the film forming latex particles 

prepared by this method. Figure 4.11a shows a low magnification image which one can clearly 

distinguish the hard core (dark) and the soft film forming shell (grey) but not the inorganic 

nanoparticles. Some of the inorganic nanoparticles can be better distinguished in the high 

magnification images (Figure 4.11b and c), and they are at the edge or at the interface 

between the hard and soft phases. 
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Figure 4.11 TEM micrographs of core/shell/shell hybrid polymer particles containing QDs and CeO2 nanoparticles after the 

addition of a 0.06% wt HEC, a) at low magnification (scale bar 500 nm), b) c) at higher magnification distinguishing the 
inorganic nanoparticles into the hard part of the polymer particles (scale bar 100 nm). 

Regarding the morphology of the films, those were cast in silicon molds as described 

above, at 23ºC and 55% humidity and trimmed with an ultra microtome device (Leica EMFC6) 

equipped with a diamond knife. The sections of 100 nm thickness obtained were placed on 300 

mesh copper grids and observed by TEM without further treatment (Figure 4.12). 

a 

b c 
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Figure 4.12 TEM micrographs of hybrid films containing QDs and CeO2 nanoparticles. 
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As it can be observed in the above micrographs, the hardest part of the film forming 

particles (PS/PMMA) stands out as dark grey particles from the poly(MMA-co-BA-co-AA) 

background that forms the film. The inorganic nanoparticles are distinguished as black spots at 

the edge of the hard particles, showing that the formation of the film does not affect the position 

of the nanoparticles in the polymer particles. 

4.4.2.  Optical properties of the films 

Films were cast from latexes containing both QDs and CeO2 and only QDs. During the 

drying time, no differences in color between a film containing both quantum dots and cerium 

oxide and a film only containing quantum dots were observed. However, when the films 

containing both nanoparticles was removed from the mold and exposed to daylight it became 

reddish as seen in Figure 4.13a. Clearly the film was emitting light under the influence of 

normal daylight. In contrast, a film cast from a latex containing only quantum dots (Figure 

4.13b) did not show such a reddish color and was transparent.  

  

Figure 4.13 a) Hybrid QDs/CeO2 film exposed to daylight. b) Hybrid QDs film exposed to daylight. 

The homogeneity of the fluorescence in the hybrid film was studied by fluorescence 

microscopy. Figure 4.14 shows homogeneous fluorescence along the film, concluding that the 

QDs did not aggregate during the film formation. 

b a 
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Figure 4.14 Fluorescence image of a film with a homogeneous fluorescence distribution. 

Moreover, as done for the toluene dispersions and the latexes where QDs and CeO2 

were mixed and co-encapsulated respectively, fluorescence of the films was measured during 

storage at daylight. 

Figure 4.15 shows a comparison between the fluorescence emission intensity of a film 

containing only QDs and a film in which both QDs and CeO2 nanoparticles were present. Both 

films were stored at daylight during 20 days measuring their fluorescence emission intensity 

along time. Measurements were done to thin films cast in a quartz support, and carried out 

directly in the spectrofluorometer taking advantage of the homogeneous distribution of the 

fluorescence showed above. 

  

Figure 4.15 Fluorescence emission intensity evolution of a) hybrid polymer/QDs film and b) hybrid polymer/QDs/CeO2 film 

during storage at sunlight. 
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As it can be observed in Figure 4.15a, the film containing only quantum dots did not 

present any variation on the fluorescence emission intensity during storage at daylight.  

In the case of the hybrid QDs/CeO2 films enormous variations in fluorescence emission 

intensity were measured (Figure 4.15b). Note that the nanoparticles´ ratio in the film forming 

latex was QDs/CeO2 1:2, for which in the core/shell latex a much smaller increase in the 

emission intensity was noticed (see Figure 4.9 and Table 4.2). Nevertheless, in the film the 

intensity increase was large during the first 24 hours and kept growing during the 20 days of 

measurement. The total increase was calculated to be of 545%, much higher than the 82% 

calculated for the corresponding hybrid core/shell latex.  

The higher increase of fluorescence emission intensity observed for the hybrid films with 

respect to hybrid latex when exposed to sunlight, can be explained considering the different 

environments surrounding the QD nanoparticles when they are dispersed in polymer particles 

or when they are fixed upon film formation. Neighboring particles that might also contain CeO2 

nanoparticles are substantially closer and hence affecting their optical properties. This is 

illustrated with a cartoon in Figure 4.16. As it can be seen in the dispersed system (hybrid 

latex) the environment of the QDs is only affected by the CeO2 in polymer particles that contain 

both inorganic nanoparticles (note that the inorganic nanoparticles are statistically distributed in 

the polymer particles based on their abundance during the miniemulsification step, as already 

seen in Chapter 2 for hybrid particles containing QDs). However, in the hybrid films the 

environment of the QDs, in absence of the surrounding water, might also be affected by 

neighboring polymer particles that contain CeO2 (or both nanoparticles). As indicated by the 

green circles the number of particles affecting the environment of QDs in substantially 

enhanced and this is likely the reason for the increase in the fluorescence emission of the films. 
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In fact, if the average interparticles space (IPS) is calculated for inorganic nanoparticles in the 

latex (QD/CeO2 1:2 latex), assuming a random and homogenous distribution, it would be 106 

nm, while the IPS of the inorganic nanoparticles in the polymeric dry film would be 58 nm. This 

explanation is also valid for the differences found in the fluorescence emission intensity 

between toluene dispersions of both nanoparticles, latex particles containing both 

nanoparticles and blends of latexes containing QDs on one side and CeO2 nanoparticles on the 

other. 

 

Figure 4.16 Cartoon of the environments seen by QD nanoparticles in a polymer latex and film made out of the same 
latex. 

Further proof of the hypothesis presented above was obtained by preparing two latexes: 

one containing only CeO2 nanoparticles (synthesized following the procedure described in 

Aguirre et al
23

) and the other containing only QDs synthesized the seeded semi-batch emulsion 

polymerization procedure described along this thesis. A film was made out of this mixture with 

a QD/CeO2 ratio 1:2, and its fluorescence was monitored over time when stored in daylight. 

The evolution of the fluorescence is presented in Figure 4.17. Clearly, the fluorescence 

intensity increases substantially (more than 300% in 12 days), which again indicated that the 

environment of the QD nanoparticles is affected by CeO2 nanoparticles located at short 
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distances in the film, in agreement with the cartoon in Figure 4.16. However, in this case the 

distances are not as short as when both nanoparticles were co-encapsulated and hence this is 

reflected in a lower increase of the fluorescence. 

 
                Wavelength (nm) 

Figure 4.17. Fluorescence emission intensity over time in daylight of a film obtained from the mixture of two latexes: one 
containing only encapsulated CeO2 and other containing only encapsulated QDs. 

4.5. Conclusions 

A deep study of the effect of CeO2 on QDs optical properties has been done. Starting 

from the simplest system, toluene dispersions of mixtures of both nanoparticles in different 

ratios in which no relevant variations in fluorescence emission were observed. Then, latexes 

with four different QDs:CeO2 ratios were synthesized and fluorescence emission intensity was 

measured over storage at daylight observing in all the cases an increase of the emission 

intensity during time. A dependence between the variation of the emission and the ratio of the 

weight of the nanoparticles was observed, obtaining a greater increase for the case of the ratio 

QDs:CeO2 1:2. 
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Blends between one latex with encapsulated quantum dots and another one with 

encapsulated CeO2 were done in two different ratios observing the same behavior in both 

cases. In those cases, there were only slight variations in the fluorescence emission intensity, 

determining that, as the distance between both nanoparticles was higher, the effect of CeO2 

was attenuated. 

In the last part, core/shell/shell film forming latexes with QDs and QDs and CeO2 co-

encapsulated in the core were synthesized. From these latexes good quality homogeneous 

and transparent films were obtained at ambient temperature. Fluorescence of the films was 

studied by fluorescence microscopy observing that it was homogeneous along them, not 

observing aggregates of the nanoparticles. A long-term study of the evolution of fluorescence 

in films containing only QDs or QDs and CeO2 was carried out by exposing them to daylight 

during 20 days. It was observed that, in the case of a film containing both nanoparticles 

fluorescence emission intensity increased 545% in 20 days, whereas for the film only 

containing QDs, fluorescence was stable during time. 

Fluorescence enhanced latexes and films were obtained by the successful co-

encapsulation of octadecylamine coated CdSe/ZnS quantum dots and cerium oxide 

nanoparticles into colloidal polymer particles. 
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 Introduction 5.1.

As presented in Chapter 1, quantum dots can be used for several applications such as 

biological labeling, multiplexing assays, solar cells and LEDs in combination with polymers, in 

photocatalysis and as volatile organic compounds (VOCs) sensors. This is possible thanks to 

their exceptional optical and electronic properties, that lead to an improvement of either the 

optical stability or the electron transport in the device. In this project, an efficient encapsulation 

of CdSe/ZnS quantum dots into cross-linked core-shell PS/PMMA polymer particles with a 

good optical stability was achieved opening the door to some applications. Moreover, in 

Chapter 3 a great control of the fluorescence of the hybrid latexes containing different QDs 

sizes was demonstrated, introducing the possibility of using the produced blends for biological 

labeling and multiplexing assays.  

Gas and/or VOC sensing is a recent area of interest for quantum dots
1–6

. Gas sensing 

for semiconductor gas sensors is based on interactions on the surface of the sensor such as 

adsorption-desorption (reduction-oxidation) that generates an electrical signal upon contacting 

with a gas or vapor (Figure 5.1). The adsorption process of oxygen takes place in absence of 

the gas of interest. The atmospheric oxygen adsorbs on the sensor´s surface taking an 

electron from the semiconductor material and forming species as O
-
, O

2-
 or O2

-
. This leads to a 

reduction in the number of charges on the surface of the sensor, so to an increase of the 

resistance, which is the parameter usually used for the characterization of a sensor against a 

gas or vapor. Adsorption is both temperature and composition dependent, so studies carried 

out with different QD types and at different temperatures can be found in literature
7
. When 

exposing the sensor to the gas or vapor of interest, this reacts with the previously adsorbed 
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oxygen on the surface of the sensor, injecting electrons to the surface and resulting in a 

decrease of the resistance of the sensor. Thanks to this increase and decrease of the 

resistance the sensitivity and selectivity of the sensor can be characterized
8,9

. 

 

Figure 5.1 Adsorption-desorption process taking place in the sensor surface before and when exposed to a gas or vapor
7
. 

The resistance of semiconductor metal oxides such as ZnO and SnO2 is very sensitive 

to these processes, so they have been extensively used as gas sensors
10

. However, this 

process can be improved by using quantum dots. Their large surface to volume area enhances 

the selectivity and sensitivity of the gas sensor
11,12

. Some recent articles show this 

improvement using metal oxide QDs synthesized using different techniques and validated 

against different gases. For example, Forleo et al
1
 synthesized ZnO QDs by a wet chemical 

procedure
13

 obtaining nanoparticles ranging in size from 2.5 nm to 4.5 nm in diameter. The 

sensor device was prepared by drop-casting deposition of the nanocrystals onto an alumina 

substrate. Their response was studied by applying a voltage of 4 V between the electrodes and 

measuring the circulating current when exposing the sensor to a gas or vapor. The response of 

the sensor was assessed when exposed to NO2, acetone and methanol at different 

temperatures. They achieved a good and selective response to NO2 at low concentration and 

temperature, but poor responses to methanol and acetone. On the other hand, Nath et al
2
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synthesized ZnO quantum dots embedded in a polyvinylpyrrolidone (PVP) matrix by quenching 

method, to measure the response to acetone vapor. The authors of this publication carried out 

the sensing test to acetone into a silica tube introduced into a tubular furnace, controlling both 

the temperature (200-360ºC) and the acetone concentration (100-500 ppm). They observed 

response of the ZnO sensor at low concentrations of acetone vapor (100 ppm), being 

maximum at 300ºC. Other metal oxides, such as SnO2, have been used as gas sensors
3
. In 

this work, the authors synthesized SnO2 QDs by sonochemical method, and showed the 

selectivity of the sensor to carbon monoxide over methane in a mixture of both gases below 

375ºC. However, not only metal oxides are suitable as gas sensors, colloidal PbS has also 

been studied to detect gases as NO2
4
 and H2S

5
. In the first case, a flexible device constructed 

on a paper substrate with fast response and high selectivity to NO2 at room temperature was 

designed. Based on this, the same authors demonstrated the high sensitivity and selectivity of 

PbS QDs as sensors for H2S. In this case they used an aluminum substrate onto which the 

PbS QDs were spin-coated by a layer-by-layer process. As in the previous examples, the 

resistance of the device was measured in a range of temperatures and at different gas or vapor 

concentrations. In this case, a highly sensitive, selective and recoverable device for the 

detection of H2S over SO2, NO2 or NH3, at 135ºC was obtained. Recently, an optical gas 

sensor for CO2 diluted in water using graphene quantum dots has been reported
6
. In this case, 

instead of electrical changes, authors observed a variation of the photoluminescence spectrum 

of the QDs when putting them in contact with a solution of CO2 in water. 

In the examples exposed above quantum dots were used in a bare form, they were put 

directly in contact with the vapor or gas of interest. However, this does not avoid the problems 
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of toxicity and manipulation. A reported alternative is the incorporation of QDs into polystyrene-

polystyrene-co-maleic anhydride and the synthesis of nanofibers by electrospinning out of 

those hybrid latexes
14

. Homogeneous fluorescent and conductive nanofibers. The variation of 

the conductivity was studied when exposed to chloroform, DMF and THF thanks to the 

presence of QDs. However, the variation of the fluorescence was not studied when exposing 

the nanofibers to the different vapors. 

In the reports presented here, quantum dots have been used taking advantage either of 

their semiconductor nature, their large surface area or of their fluorescence properties, 

obtaining sensitive and selective sensors, most of them at high temperatures. However, to the 

best of our knowledge, the combination of fluorescence and conductivity in the same gas 

sensor has not been reported. In this Chapter, the synthesis of hybrid nanofibers containing 

CdSe/ZnS QDs by electrospinning and their optical and resistance response to volatile organic 

compounds (VOCs) at room temperature is described. Latexes containing cross-linked core-

shell PS/QDs/PMMA particles synthesized as described in Chapter 2 were used. However, as 

the viscosity of those latexes is very low for the electrospinning process, a polymeric thickener 

was employed to achieve the appropriate viscosity of the dispersion. Two different polymers 

were used, polyvinyl alcohol (PVA) and polyethylene oxide (PEO) for this goal. The differences 

in terms of synthesis, morphology and response to VOCs depending on the polymer used are 

shown in this Chapter. 
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 Synthesis of fluorescent nanofibers by electrospinning 5.2.

The nanofibres containing commercial octadecylamine coated CdSe/ZnS quantum dots 

were produced by electrospinning. The working conditions in terms of viscosity of the latex and 

of the set-up as well as the characterization of the obtained hybrid nanofibers are described in 

the next sections. 

  Synthesis of the latexes and optimization of the viscosity of the 5.2.1.

electrospun dispersions 

Cross-linked PS/QD/PMMA core-shell hybrid latexes were synthesized following the 

same protocol described in Chapter 2. However, these latexes have a low solids content, 12%. 

Therefore, viscosity is low and not suitable for the production of nanofibers by electrospinning. 

In order to obtain good quality and continuous nanofibers, viscosity had to be increased to be 

in the range of 100-500 cP. Water soluble polyvinyl alcohol (PVA) and polyethylene oxide 

(PEO) have been used as thickeners for this purpose. Two samples with latexes containing 

different types and concentration of QDs were prepared, NF1 and NF2. To prepare NF1, 10 g 

of latex were taken and 1.5 g of PVA were added. To dissolve the PVA the mixture was heated 

at 70ºC during 24 hours under magnetic agitation. On the other hand, NF2 was prepared by 

dissolving 0.5 g of PEO in 10 g of latex at room temperature. Homogeneous and stable 

dispersions were obtained. Table 5.1 summarizes the most relevant data of the obtained 

dispersions including a Blank prepared with PVA as thickener. 
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Table 5.1 Characteristics of the nanofibers samples synthesized in terms of type and concentration of QDs, final particle 
size, and thickening type and concentration. 

Sample 
QDs 
type 

%QDs 
(%wbm)

#
 

Dp 
Thickening 

type 
Thickening concentration 

(%wt) 

Blank - - 180 PVA 15% 

NF1 QD560 0.05 135 PVA 15% 

Blank 2 - - 132 PEO 5% 

NF2 QD600 1.03 154 PEO 5% 
#
Weight based on total monomer (S+MMA+DVB). 

 

 

To get these thickener concentrations different samples were prepared using blank 

core-shell latex and adding different concentrations of the thickeners. The apparent viscosity of 

the dispersions was measured using a rheometer (TA Instruments-AR1500ex). Flow 

procedures using a 60 mm diameter steel plate as geometry were carried out at 25ºC in all the 

measurements. Three different steps were set. A conditioning step in which the working 

temperature is set, a first continuous ramp from 0.1 to 1000 s
-1

 and a second continuous ramp 

from 1000 to 0.1 s
-1

. Figure 5.2a and b presents the viscosity as a function of the thickeners 

concentration for a shear rate of 200 s
-1

 for the studied thickeners. Suitable viscosities for the 

production of nanofibers were obtained for a concentration of PVA of 15% in weight, 0.25 Pa.s 

(Figure 5.2a) and for a concentration of 5% in weight of PEO, 0.52 Pa.s (Figure 5.2b). 

Additionally, Figure 5.2c and d shows the non-newtonian behavior of the dispersions containing 

QDs (NF 1 and NF 2) plotting the viscosity as a function of the shear rate. 
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Figure 5.2 a) Viscosity vs PVA concentration at a shear rate of 200s
-1

; b) Viscosity vs PEO concentration at a shear rate 
of 200s

-1
; c) and d) Apparent viscosity of samples a) NF1 and b) NF2. 

  Electrospinning set-up and synthesis of the nanofibers 5.2.2.

The experimental set-up used is a home-made equipment available in Tecnalia 

research center (Donostia-San Sebastián). The equipment is composed by a syringe pump, a 

polyamide tube that connects the syringe with a needle of 0.6 mm internal diameter, an 

aluminum foil collector connected to earth and a voltage generator. The voltage, the feeding 

rate and the needle to collector distance are controlled by a computer. As it can be seen in 

Figure 5.3, the set-up is placed onto a chamber were the temperature and the humidity are 

controlled to be 20ºC and 45-50%, respectively. 
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Figure 5.3 Experimental electrospinning set-up from Tecnalia research center (Donostia-San Sebastián). 

The following procedure was used to produce the nanofibers. The polymeric dispersion 

was placed into a 3 ml plastic syringe, taking care of removing the air bubbles. The dispersion 

is brought up to the outlet of the syringe at high feeding rate but once this point the optimum 

feeding rate is implemented. Optimum conditions in terms of applied voltage, needle-collector 

distance and feeding rate for each sample are listed in Table 5.2. Those optimum conditions 

depend, among others, on the viscosity of the sample, the vapor pressure of the solvent (in this 

case water), and the desired morphology of the nanofibers. 

Table 5.2 Optimum electrospinning conditions for each sample. 

Sample Voltage (kV) Needle-collector distance (mm) Feeding rate (ml/h) 

Blank 15 200 0.08-0,1 

NF1 15 200 0.08-0.1 

NF2 15 200 0.2-0.3 
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Once the voltage is applied, the latex comes out of the needle, and due to the high 

electrostatic forces produced the nanofibers are produced and deposited on the collector 

(Figure 5.4). 

 

Figure 5.4 Scheme of the electrospinning process. 

Due to the difference in viscosity, the area covered by the nanofibers on the aluminum 

foil was different, 20 cm in diameter for sample NF1 and 10 cm for sample NF2. A glass slide 

or transmission electron microscopy grid was placed on the middle of this area collecting there 

the nanofibers for their later characterization by scanning electron microscopy, transmission 

electron microscopy and fluorescence microscopy (Figure 5.5a and b). Furthermore, deposition 

was also done on an interdigitated electrode of 22.8 x 7.6 mm size with platinum electrodes 

fabricated onto a glass substrate with a trail distance of 5 µm for the electrical measurements. 

The electrospinning conditions were maintained as in the case of the deposition onto glass 

slides, however, in this case it is of special importance to connect the electrode to earth due to 

the high tension generated between the needle and the collector for the production of 



Applications of hybrid polymer/quantum dots latexes 

173 

 

nanofibers. The electrodes were connected to earth using two alligator clips on the pads as it 

can be observed in Figure 5.5c. This way the amount of nanofibers deposited on the electrode 

trails is maximized.  

 
 

 

Figure 5.5 a) General image of the deposition area of NF2 sample on the aluminum foil collector during 5 min; b) Detail of 

NF1 sample deposited onto a glass slide for 30 min; c) NF2 nanofibers deposited onto an interdigitated electrode for 1.5 
min. (Property of Tecnalia. All the rights reserved) 

 

 

a) 
b) 

c) 



Chapter 5   

174 

 

 Morphological characterization of the nanofibers 5.3.

The morphology of hybrid nanofibers was analyzed by SEM and TEM. On one hand, 

SEM was used for the characterization of the fibers themselves such as their thickness, their 

homogeneity and the possible defects. On the other hand, by TEM the interior of the nanofibers 

was investigated; the shape of the cross-linked core-shell PS/PMMA polymer particles, their 

distribution into the PVA or PEO matrix and the final distribution of the QDs. 

  Scanning electron microscopy 5.3.1.

A Scanning Electron Microscope (SEM) QUANTA 250 from FEI at high voltage (10 kV) 

using a standard detector was used for the analysis of the shape and homogeneity of the 

nanofibers of the Blank, samples NF1 and NF2. Nanofibers were electrospunned on a 

microscope glass slide for five minutes for their characterization. Figure 5.6 shows SEM 

images for samples NF1 and Figure 5.7 for NF2. In both cases, good quality nanofibers with a 

continuous phase of PVA (NF1) or PEO (NF2) and no defects were observed.  

Figure 5.6 displays the morphology of the nanofibers at different magnification. The 

diameter of the fibers is between 200-250 nm and the surface of the fibers is not flat but 

“sinusoidal”. The size of the fibers indicates that a single polymer particle (average diameter of 

135 nm) fits. QDs cannot be distinguished in these images. 
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Figure 5.6 SEM micrographs of sample NF1. 

Figure 5.7 shows the SEM micrographs of the nanofibers corresponding to sample NF2 

at different magnifications. Continuous fibers of diameters ranging in size between 200 nm at 

3.5 µm were obtained, indicating the possibility of having multiple polymer particles (average 

diameter of 154 nm) next to each other in the wider parts of the nanofibers. Regarding the 
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surface of the nanofibers, it is not completely smooth but bumpy. Due to the low magnification 

of the micrographs, QDs cannot be identified. 

  

 

Figure 5.7 SEM micrographs of sample NF2. 
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 Transmission electron microscopy 5.3.2.

In order to characterize in further detail the nanofibers and the localization of the 

quantum dots, transmission electron microscopy was used. For this, nanofibers were directly 

deposited by electrospinning on the copper grids for a very short time to avoid large thickness 

that might prevent an appropriate TEM analysis. Figure 5.8 confirms that the nanofibers´ 

surface is not smooth. Indeed, it is bumpy and TEM clearly shows that there is a single polymer 

particle along the thickness of the fiber, which is seen darker in the micrographs. Surprisingly, 

the cross-linked particles appeared in some cases elongated or partially deformed in the 

direction of fiber formation. As the concentration of QDs was low in dispersion NF1 (0.5 

QD/particle; namely not all the particles have a QD), visualizing the QDs was not easy. Figure 

5.8c presents a fiber section composed by 3 polymer particles one of them clearly presenting a 

QD.  

  

a) b) 
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Figure 5.8 TEM micrographs of sample NF1. 

The elongation of the polymer particles in emulsion electrospinning has been reported in 

literature, and is due to the huge electrostatic forces generated during the electrospinning 

process (Figure 5.9). On the other hand, the deformation of the core-shell polymer particles is a 

consequence of electrostatic interactions and physical confinement of the PVA layer. This 

difference in the internal morphology of the nanofibers might be due to inhomogeneity of the 

sample combined with an excess of PVA. 

c) 
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Figure 5.9 Elongation of the polymer particles when producing nanofibers by electrospinning of a polymer emulsion
15

. 

Concerning sample NF2, the morphology was completely different. In this case, and as 

it can be seen in Figure 5.10a, a discontinuous distribution of the polymer particles in the 

nanofibers occurred. Dark areas corresponding to the polymer particles were mixed with lighter 

areas corresponding to the PEO nanofiber. Moreover, focusing on these dark areas 

aggregation of the polymer particles was observed (Figure 5.10b). Contrary to the deformation 

of the polymer particles observed for sample NF1, in this case most of them maintained their 

spherical morphology during the electrospinning process.  

As explained above, the final morphology of the nanofibers in electrospinning depends 

on many factors. In this case, the thickener polymer was changed (PEO instead of PVA) 

driving to a change in the viscosity, the surface tension…, what clearly affected the final 

morphology and the distribution of the polymer particles into the nanofibers. 
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Figure 5.10 TEM micrographs of sample NF2. 

This change in the thickener was done after observing, in the spectrofluorometer, that 

PVA emitted fluorescence at the same wavelength as the QD560 quantum dots present in 

sample NF1. Figure 5.11 shows this circumstance, the Blank PVA and the NF1 samples show 

an emission peak of different intensity but at the same wavelength. This causes an interference 

that does not allow reliable fluorescence measurement. 

 

Figure 5.11 Fluorescence emission spectrum of the PVA blank compared to NF1 sample. 
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Quantum dots can be distinguished in Figure 5.10b. As it can be seen a higher amount 

was present in the polymer particles in contrast to sample NF1, as their concentration is higher 

(4 QDs/particle). 

  Fluorescence characterization of the nanofibers 5.4.

Fluorescence emission intensity of the samples deposited on microscope glass slides 

was measured using a fluorescence microscope Olympus BX-51 coupled to a Horiba 

spectrofluorometer. For all the cases, the samples were covered in order to avoid the influence 

and detection of the external light during the measurements. This way the QDs present in the 

nanofibers could be focused obtaining higher emission intensity rather than measuring directly 

through the spectrofluorometer. This technique was especially useful in the case of sample 

NF1, in which, as it was explained above PVA emitted fluorescence at the same wavelength as 

the QD560 quantum dots when measuring the Blank PVA and the NF1 sample in the 

spectrofluorometer.  

Figure 5.12a shows a fluorescence microscopy image of sample NF1. It was observed 

that the fluorescence distribution was neither high nor homogenous along the sample due to 

the low concentration of quantum dots in the sample. However, some fluorescent aggregates 

were perceived showing the presence of quantum dots. Taking advantage of this, the 

interference of the PVA could be avoided by focusing on the QDs aggregates and measuring 

there the fluorescence emission. In contrast to the measurement in the spectrofluorometer, the 

Blank PVA emission was not observed due to the filter used, specific for QDs detection (U-
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MNU2), and therefore the fluorescence emission intensity of sample NF1 could be quantified 

(Figure 5.12b). 

 

 
 

Figure 5.12 a) Fluorescence emission spectrum from the blank PVA measured in the spectrofluorometer; b) Fluorescence 

microscopy image of an area of NF1 sample; c) Fluorescence emission spectrum of sample NF1 measured through the 
fluorescence microscope focusing on an aggregate. 

As observed in Figure 5.13a, fluorescence for sample NF2 was more homogeneous 

along the sample than for NF1, but still some fluorescent aggregates were observed, which is 

in good agreement with the morphology observed by SEM and TEM. PEO did not present 

fluorescence, so the interference between the polymer and the QDs was avoided, but still 

fluorescence emission was measured through the fluorescence microscope. This way, and as 

the fluorescence in the sample is not completely homogeneous, always the same fluorescent 

point could be focused making the measurements reproducible on time. Figure 5.13b shows 

the fluorescence emission spectrum of the point highlighted as a green square on the 

microscope image. A greater intense and smother peak than for sample NF1 was obtained due 

to the much higher concentration of QDs in this sample. 

0,00E+00

2,00E+04

4,00E+04

6,00E+04

8,00E+04

1,00E+05

1,20E+05

1,40E+05

1,60E+05

1,80E+05

500 520 540 560 580 600 620 640

In
te

n
s

it
y
 (

C
P

S
) 

Wavelength (nm) 

Blank PVA

NF1

a) 
b) 



Applications of hybrid polymer/quantum dots latexes 

183 

 

 

 

Figure 5.13 a) Fluorescence microscopy image of sample NF2; b) Fluorescence emission spectrum obtained using the 
fluorescence microscope focusing on one aggregate (highlighted in green). 

 Hybrid nanofibers as VOCs sensors 5.5.

  Optical VOCs sensors 5.5.1.

The sensitivity of the synthesized nanofibers (samples NF1 and NF2) to VOCs was 

studied by monitoring the fluorescence emission intensity of the sample during time upon 

contact of the nanofiber with volatile organic compounds (VOCs) vapor. The sample was first 

covered to avoid the influence of the light on the sample and on the detector. Then, 

fluorescence was measured at time cero and afterwards a beaker containing the VOC was 

placed next to the sample. In order to generate a steam-rich atmosphere, both the sample and 

the beaker were covered during the whole experiment. The influence of three different solvents 

was studied, acetone, toluene and methanol. In the case of sample NF1 only acetone was 

used because of the complexity of finding areas with a measurable fluorescence emission 

intensity due to the low concentration of QDs.  
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Sample NF1 was exposed to acetone, and the fluorescence emission intensity of 

fluorescence of a chosen area was measured at different times, so while increasing the 

concentration of acetone vapor in the system (Figure 5.14a). A fast decrease of the 

fluorescence emission intensity was observed, 3 times in 20 minutes. Moreover, the emission 

peak suffered a blue shift showing a degradation of the QDs when being exposed to acetone 

vapor, probably due to the degradation of the QDs during their exposition to acetone. 

  

Figure 5.14 Fluorescence emission spectrum of a fluorescent aggregate in sample NF1 a) during exposure to acetone; b) 
after exposure to acetone. 

The recovery of the fluorescence for this sample was also studied. This was done by 

first taking out the beaker with acetone and ventilating the area for a few minutes. Then, 

fluorescence emission intensity was measured during time observing a continuation of the 

decrease of the emission intensity and the blue shift of the peak even after more than one hour 

(Figure 5.14b). This fact is likely due to the degradation of the QDs during the exposition to 

acetone that makes them loosing fluorescence even after removing the solvent, making these 

hybrid PVA nanofibers non-recoverable. 

Sample NF2 was exposed to three different compounds, acetone, toluene and 

methanol. In the case of exposition to methanol (Figure 5.15a) the response was fast, 
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comparable to the one observed for sample NF1 when exposed to acetone, but then it 

increased again until stability. In the case of toluene (Figure 5.15b) some fluctuations occurred 

during 2 hours, but it was not until exposing the sample overnight when a high decrease of the 

emission intensity occurred. A much more progressive decrease was observed for the 

exposition to acetone. In this case the fluorescence emission intensity decreased around 1.2 

times in 3 hours, much less than for NF1 sample (Figure 5.15c). 

 
 

 

Figure 5.15 Fluorescence emission spectrum of an aggregate of sample NF2 when exposed to a) methanol; b) toluene; c) 
acetone. 
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fluorescence emission intensity was recovered. According to these results, the nanofibers 

could be reused in an additional acetone exposition cycle. 

 

Figure 5.16 Fluorescence emission spectra during 5 days of sample NF2 after exposition to acetone. 

In the second cycle of acetone detection by fluorescence emission intensity 

measurements (Figure 5.17a), the intensity decreased fast during the first hour and then it 

decreased progressively as in the case of the first acetone cycle. The recovery of the initial 

optical properties was also studied in this case, by taking out the acetone beaker and 

measuring the fluorescence emission intensity for two days (Figure 5.17b). In this second 

cycle, recovery of the initial emission intensity was not obtained, but it increased back to the 

values measured after 60 minutes of exposition to acetone. This uncomplete recovery of the 

fluorescence emission intensity shows that at every cycle some fluorescence is lost. 
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Figure 5.17 a) Fluorescence emission intensity evolution of cycle 2 of sample NF2 exposed to acetone; b) Fluorescence 
emission intensity evolution after the exposition of sample NF2 to a second cycle of acetone. 

According to these results it can be concluded that the synthesized nanofibers are 

optically responding to VOCs. Furthermore, the increase in the concentration of quantum dots 

in the nanofiber is not accelerating the process, the main differences are due to the variation of 

the polymer (PVA or PEO). Moreover, in the case of nanofibers composed by PEO, a second 

detection cycle of acetone was possible. The possible use of these nanofibers in further cycles 

has to be further investigated, as well as the use of different thickeners and their impact on the 

detection of different VOCs. 

  Resistance of the VOCs sensors 5.5.2.

Additionally to the optical response of the nanofibers to different VOCs, sample NF2 

was also electrically characterized in Tecnalia research center (Donostia-San Sebastián). For 

this, as mentioned above, the nanofibers were deposited onto an interdigitated electrode 

(22.8x7.6 mm) with platinum electrodes fabricated onto a glass substrate with a trail distance of 

5 µm (Figure 5.18). 
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Figure 5.18 Interdigitated electrode. (Property of Tecnalia. All the rights reserved) 

Resistance was measured with a multimeter. Two electrospinning tests were carried 

out, with deposition times of 1.5 min (D06E23) and 4 min (D03E24) in order to study the 

influence of the deposition time on the resistance measurements. For sample D06E23 a value 

of 110-120 MΩ was obtained, while for sample D03E24 the resistance value was of 5-6 MΩ. 

This showed that the deposition time had a great influence on the resistance of the electrode, 

being much higher when less nanofibers were deposited on the electrode, so less quantum 

dots were present in the sample.  

 

Figure 5.19 Electrodes deposited with NF2 nanofibers, sample D03E23 on the right and sample D03E24 on the left. 
(Property of Tecnalia. All the rights reserved) 
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In order to get reasonable resistance values, sample D06E24 was the chosen one for 

studying the resistance evolution when exposed to acetone vapor. This study was done by 

placing the chosen electrode connected to the multimeter together with a petri dish containing 

acetone under a beaker (Figure 5.20). This way, as done for the optical measurements, an 

acetone vapor-rich atmosphere was generated. 

 

Figure 5.20 D03E24 electrode into an acetone steam-rich atmosphere prepared for the resistance measurements. 
(Property of Tecnalia. All the rights reserved) 

Measurements were carried out at 24.7ºC and 56% humidity for 50 minutes. As it can 

be observed in Figure 5.21, the resistance increased from 6 to 13 MΩ almost immediately 

when introducing the electrode into the acetone vapor atmosphere. Small fluctuations of the 

signal were observed during time, probably because of changes in the humidity as it was 

checked that this had a great influence on the resistance. When taking the electrode out to the 

air, the original resistance value was recovered almost at the same moment, meaning that the 

electrode could be reused for at least another cycle. 



Chapter 5   

190 

 

 

Figure 5.21 Resistance evolution of electrode D03E24 against acetone. 

The electrode was left in the air overnight measuring the resistance again and obtaining 

a value of 3.5 MΩ, much lower than the one measured initially in the air and after the test with 

acetone. This can be explained by the increase of humidity, from 56% to 70%, which 

demonstrates the great influence that this parameter has on the resistance measurements, 

meaning that the sensor is also sensitive to water vapor. 

 Conclusions 5.6.

The potential application of the hybrid PS/QD/PMMA dispersions as volatile organic 

compounds sensor was studied in this Chapter. Hybrid nanofibers with different types and 

concentration of QDs were produced by electrospinning. For this, first the viscosity of the 

PS/QD/PMMA dispersions had to be increased to appropriate values for the electrospinning 

process. Two different thickeners, polyvinyl alcohol (PVA) and polyethylene oxide (PEO), were 

used for this goal. The morphology of the resulting nanofibers was studied by SEM and TEM 
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obtaining a different effect on the polymer particles depending on the thickener used. 

Nanofibers produced with PVA resulted in a deformation of the polymer particles during the 

electrospinning process, while in the nanofibers produced with PEO aggregation of the polymer 

particles was observed. Regarding the QDs, they were present in both cases, showing that 

they were not lost during the production of the nanofibers. 

Fluorescence measurements were done by fluorescence microscopy exposing the 

nanofibers to different VOCs (acetone, toluene and methanol). Nanofibers produced with PVA 

were exposed to acetone and showed a progressive decrease of the fluorescence emission 

intensity as well as a blue shift of the peak. The nanofibers produced with PEO responded to 

the three compounds showing a decrease of the fluorescence emission intensity. Additionally, 

conductivity measurements were carried out to the PEO sample in an acetone atmosphere. 

Conductivity increased during the exposition to the vapor recovering its original resistance 

value when taking it out the acetone environment. 

In conclusion, the hybrid PEO synthesized nanofibers can be used both as optical and 

electrical VOCs sensors. On the other hand, PVA hybrid nanofibers can be applied at least as 

optical sensors. These are preliminary results to prove that the hybrid PS/QD/PMMA 

dispersions are good candidates to be used as optical and electrical sensors for VOC 

detection. Further work is needed to optimize the composition and morphology of the fibers, but 

this is out of the scope of this PhD thesis. 
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Chapter 6. Conclusions 

Quantum dots are inorganic nanoparticles that have demonstrated exceptional optical 

and electronic properties with a myriad of potential applications. However, the implementation 

of new technologies based on QDs requires solving some important drawbacks (toxicity, small 

size and hence difficult manipulation, degradability…). This has been investigated in this thesis. 

The first and main goal of this work was the encapsulation of the quantum dots into colloidal 

polymer particles, in order to preserve their properties, but also to protect the environment from 

their toxicity. 

To accomplish this objective, octadecylamine coated CdSe/ZnS quantum dots 

purchased to OceanNanotech were used, and a two-step encapsulation method was 

developed to ensure an efficient encapsulation and stability of the nanocrystals: seeded semi-

batch emulsion polymerization. In a first step, cross-linked polystyrene-QDs particles were 

synthesized by miniemulsion polymerization. The resulting latex was not optically stable, as the 

QDs diffused out the polymer particles being degraded by the action of the water and the 

remaining radicals, and therefore losing their fluorescence during storage. Efficient 

encapsulation was ensured in the second step of the process. The core cross-linked hybrid 

PS/QDs particles were used as a seed, and a mixture of methyl methacrylate and divinyl 

benzene was fed into the reactor. As a result, cross-linked core-shell 
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polystyrene/QDs/polymethyl methacrylate hybrid polymer particles with high fluorescence 

stability (up to 9 months) were obtained (Figure 6.1). The influence of the shell thickness was 

also investigated, concluding that a minimum shell thickness of 12 nm was necessary in order 

to achieve this fluorescence stability. 

  

Figure 6.1 Comparison of fluorescence emission spectrum of the PS-DVB/QDs core vs the PS-DVB/QD/PMMA-DVB 
core-shell latexes. 

Once this key objective was fulfilled, the encapsulation of quantum dots of different 

sizes was investigated to open the door to multiplexing applications. During the internship, 

done at ICMCB (Bordeaux-France), oleylamine coated CdSe core and hexadecylamine-TOPO 

coated CdSe/CdS core-shell quantum dots were synthesized in supercritical hexane. Those 

nanocrystals showed good optical properties when dispersed in organic solvents such as 

hexane, chloroform or toluene. However, when carrying out the miniemulsion for their 

encapsulation into cross-linked core-shell PS/PMMA polymer particles, fluorescence was lost. 

Therefore, commercial octadecylamine coated CdSe/ZnS quantum dots of four different sizes 

were used (that is four different emission wavelengths). One latex per QD type was prepared 

by seeded semi-batch emulsion polymerization. Then, blends of the different latexes were 
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prepared considering the emission wavelengths of the QDs. It has been shown that the number 

concentration of QD nanocrystals determines their fluorescence emission intensity. Taking this 

into account, mixtures of two or three latexes could be prepared with characteristic 

fluorescence spectra corresponding to each type of QDs. This strategy, that led to a great 

control and stability of the fluorescence emission intensity, is the first step in the potential use 

of these latexes and blends as biological markers and in multiplexing assays. For this, the 

polymer particles have to be modified in their surface with, for example, an amino acid as 

lysine that is recognised by a specific protein. The modification of the surface of the particles 

with different modifiers would allow specific recognition of different proteins (Figure 6.2). 

  

Figure 6.2 Left: Fluorescence emission spectrum of a blend of three different latexes; Right: Multiplexing scheme. 

The combination of the commercial CdSe/ZnS quantum dots with CeO2 nanoparticles 

was also studied in this thesis. Taking advantage of the excellent emission properties of QDs 

and of the excellent UV-absorption properties of CeO2 nanoparticles, those two types of 

nanoparticles were co-encapsulated into the same polymer particle. The seeded semi-batch 

emulsion polymerization strategy used for the encapsulation of QDs was also used in this case. 

Additionally, a film forming formulation was developed. By producing a second shell of 
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MMA/BA/AA good quality and transparent films cast at room temperature were obtained. 

Latexes and films containing both QDs and CeO2 nanoparticles in different ratios (in weight) 

were exposed to sunlight, studying their fluorescence emission intensity evolution during 

exposition. An enhancement of the fluorescence emission intensity was observed in both 

cases: 280% in the latex with a ratio 1:2 QDs:CeO2 and 545% for a film with a ratio 1:2 

QDs:CeO2. This increase in the emission intensity is likely due to the effect of CeO2 

nanoparticles on the QDs. Moreover, the increase proportion depends on the different 

environments surrounding the QD nanoparticles when they are dispersed in polymer particles 

or when they are fixed upon film formation. Neighboring particles that might also contain CeO2 

nanoparticles are substantially closer in the case of the film and hence affecting much more the 

optical properties of the QDs (Figure 6.3). 

 

Figure 6.3 Enhancement of the fluorescence emission intensity in a latex and in a film containing QDs and CeO2. 

The potential application of the stable hybrid polymer/QDs latexes as gas sensors was 

studied in the last part of this work. Two hybrid latexes containing different QD sizes at different 

concentrations and mixed with different thickeners (PVA and PEO) were chosen for this goal. 

Nanofibers were produced by electrospinning, obtaining very different morphologies for each 

case, concluding that this was intimately related with the thickener used (Figure 6.4). Taking 
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advantage of the fluorescence of the nanofibers, their use as optical gas sensors for acetone, 

methanol and toluene was investigated, concluding that both PVA and PEO nanofibers 

optically responded to VOCs. However, it was observed that this response depended on the 

thickener used and on the vapor to which the nanofibers were exposed to. PEO nanofibers 

deposited on an electrode were responsive to acetone showing an increase in the resistance. 

Moreover, the starting resistance value was recovered instantaneously after finishing the 

exposition to acetone. Therefore, the synthesized nanofibers containing QDs and PEO as 

thickener were recoverable for additional detection cycles. 

 

 

Figure 6.4 Right: SEM image of the hybrid polymer/QD latex with PVA nanofibers. Left: Fluorescence microscopy image 
of the hybrid polymer/QD latex with PEO nanofibers. 

As a general conclusion, CdSe/ZnS quantum dots were successfully encapsulated into 

cross-linked core-shell PS/PMMA polymer particles, obtaining stable latexes during long 

periods of time. Additionally, a great control of the fluorescence when mixing latexes containing 

different types of quantum dots was achieved, allowing for labelling and multiplexing assays. A 
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big enhancement of the fluorescence was accomplished when co-encapsulating the quantum 

dots and nanoceria nanoparticles and exposing the latexes and the films to sunlight. Finally, 

the preliminary work of the potential use of those hybrid latexes as VOCs sensors was shown. 
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Appendix I. Materials and characterization 

methods 

I.1. Materials 

Commercial octadecylamine coated CdSe/ZnS quantum dots (QDs) of four different 

sizes were purchased to Ocean NanoTech in solid form. The needed amount of nanocrystals 

for each case was directly dispersed in the solvent or in the monomer without further treatment. 

The following reagents were used for the synthesis of TOPO/hexadecylamine coated 

CdSe/CdS quantum dots in supercritical fluids. Cadmium deoxycholate [(Cd(DCh)2], previously 

synthesized in the lab, elemental selenium (Se, Sigma Aldrich), elemental sulfur (S, Sigma 

Aldrich) and trioctyl phosphine (TOP, Sigma Aldrich, technical grade 90%) were used for the 

synthesis of the cadmium, selenium and sulfur precursors. Oleylamine (OA, Sigma Aldrich, 

technical grade 70%) was used as surface modifier for CdSe quantum dots. Trioctyl phosphine 

oxide (TOPO, Stem Chemicals, 90%) and hexadecylamine (HDA, Sigma Aldrich) were used as 

surface modifiers in the synthesis of CdSe/CdS QDs. Hexane (Sigma Aldrich, anhydrous 95%) 

was used as solvent in the preparation of the precursors and as supercritical fluid during the 

synthesis. All the mentioned reagents were used without further treatment. 
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Hydrophobic CeO2 nanoparticles dispersion in mineral spirit with 49 wt% was kindly 

supplied by Altana. The dispersion was first dried for 48 hours at 60ºC and then grinded before 

use. 

Toluene (Acros, 99.5%) was used as solvent for the dispersion of QDs and CeO2 for 

fluorescence measurements. Styrene (S, Quimidroga), methyl methacrylate (MMA, 

Quimidroga), butyl acrylate (BA, Quimidroga), acrylic acid (AA, Sigma Aldrich) and methacrylic 

acid (MAA, Sigma Aldrich) monomers were used as received. Divinyl benzene (DVB, Fluka) as 

cross-linked, sodium dodecyl sulfate (SDS, Sigma Aldrich) as anionic emulsifier and 

hexadecane as co-stabilizer (HD, Sigma Aldrich) were used as received. Potassium persulfate 

(KPS, Sigma Aldrich) was used as initiator without further treatment. Deionized water was used 

for the preparation of the aqueous phase of the miniemulsions and hydroquinone (HQ, Sigma 

Aldrich) for stopping the reaction when withdrawing a sample from the round bottom flask. 

Polyvinyl alcohol (PVA, Sigma Aldrich) and polyethylene oxide (PEO, Sigma Aldrich) were 

used as thickeners for increasing the viscosity of the hybrid core-shell latex for the synthesis of 

the nanofibers by electrospinning. 

I.2. Miniemulsion stability measurement 

As introduced in Chapter 2, the miniemulsion stability was followed by studying the 

evolution of the backscattered light using the Turbiscan LAbexpert equipment. The reading head 

of this device consists of a pulsed near infrared light source (λ = 880 nm) and two synchronous 

detectors. The transmission detector receives the light flux transmitted through the sample 

while the backscattering detector measures the backscattered light. The detection head scans 
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the entire length of the sample (55 mm) acquiring transmission and backscattering data every 

40 µm. A representation of the equipment is presented in Figure I.1. The curves that are 

obtained provide the transmitted and backscattered light flux in percentage relative to 

standards (suspension of monodisperse spheres and silicon oil) as a function of sample height 

(in mm).  

 

Figure I.1 Representation of the Turbiscan LAbexpert detection principle. 

This technique allows very early visualization of creaming, sedimentation and 

coalescence/flocculation. Creaming takes place when the dispersed phase has a lower density 

than the continuous phase. It can be easily detected because the backscattering flux 

decreases at the bottom of the sample and increases at the top due to the increase in the 

dispersed phase concentration. Sedimentation takes place when the density of the dispersed 

phase is greater than the continuous one. In this case, the backscattering increases at the 

bottom of the sample due to an increase in the sample concentration. Coalescence/flocculation 



Appendix I        

204 

 

leads to the fusion of interfaces increasing the droplet size. The particle size leads to a 

variation (usually a decrease) of the backscattering over the whole height of the sample. 

I.3. Solids content and monomer conversion 

Approximately 1mL of the latex was withdrawn from the reactor during the 

polymerization process, placed in a pre-weighed aluminum pan and immediately thereafter a 

drop of a 1 wt% hydroquinone solution was added to stop the reaction. The pan was dried until 

constant weight was achieved. The solids content (SC) was obtained gravimetrically and is 

given by: 

𝑆𝐶 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑖𝑑 𝑑𝑟𝑖𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑥
                                                                                                  ( 𝐼. 1) 

The instantaneous conversion (X) was determined by the following equation, 

𝑋 𝑡 =
𝑃𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑒𝑑 𝑀𝑜𝑛𝑜𝑚𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑛𝑜𝑚𝑒𝑟
=

𝑆𝐶 · 𝐿𝑎𝑡𝑒𝑥 − 𝑁𝑃𝑆
𝑀𝑊

                                                                           (𝐼. 2) 

Where, NPS is the non-polymerizable materials (QDs, CeO2, surfactant, costabilizer 

and initiator) and MW is the amount of monomer plus polymer at each time. 

I.4. Nd and Np calculations 

Miniemulsion droplets and polymer particle sizes were measured by dynamic light 

scattering (DLS) using a Malvern Zetasizer Nano ZS (laser: 4mw, He-Ne, λ=633 nm, angle 
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173º). The equipment determines the particle size by measuring the rate of fluctuations in light 

intensity scattered by particles as they diffuse through a fluid.  

Samples were prepared by diluting a fraction of the latex or miniemulsion with deionized 

water. To measure the size of miniemulsion droplets, H2O saturated with monomer is normally 

used to avoid droplet destabilization by thermodynamic reasons. However, similar results were 

found when saturated H2O and no-saturated H2O was used. The analyses were carried out at 

20°C and each run consisted in two size measurements per sample, from which the final size 

was obtained as the average of both measurements. 

Results obtained from DLS were used to determine the number of droplets (Nd) and 

number of particles (Np).  

N! =
V!
V!
=
6 ∙ (W!"#/ρ!"#)

π ∙ d!
!                                                                                                                              (I. 3)  	

N! =
V!
V!
=
6 ∙ (W!"#/ρ!"#) ∙ 𝑋

π ∙ d!
!                                                                                                                          (I. 4)  	

Nd was calculated using Equation I.3, where Wmon was the amount of monomer (g), ρmon 

the monomer density (0.909 g/cm3), and dd the average droplet size (nm) calculated by DLS. 

Np was determined following Equation I.4. In this case, Wpol corresponds to the amount of 

polymer (g) at each time, and it was calculated from the monomer conversion (X). ρpolym refers 

to the polymer density (1.04 g/cm3) and dp to the average particle size. Nd	and Np involved 

some uncertainty because the third power of dd and dp was used in their calculation. 
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Equation I.4 was also used to calculate the Np of the nanoparticles QDs and CeO2 

being their density 5.82 g/cm3 and 7.2 g/cm3 respectively.	

I.5. Fluorescence measurements 

Fluorescence emission intensity of quantum dots dispersions, hybrid latexes and hybrid 

films was measured using a Fluoromax-4 spectrofluorometer (Horiba Jobin Yvon) equipped 

with a Xe arc-lamp as excitation source, detecting the signal at 90º with a photon counting 

detector. Quartz cuvettes of 10 mm path length clear on all four sided were used for the 

measurement of dilutions and latexes, whereas square quartz supports 1.5 cm side were used 

for the analysis of the films that were casted on them. 

Coupled to the spectrofluorometer, a fluorescence microscope Olympus BX51 furnished 

with a Hg lamp excitation source and a specific filter cube (U-MNU2), was used for measuring 

the fluorescence in a specific area of the film and to take pictures of the distribution of the QDs 

along a film. 

I.6. UV-Vis measurements 

The UV-Vis absorption measurements were carried out using a Shimadzu 

spectrophotometer (model UV-2550 230V). The measurements were done in the 200-800 nm 

range at room temperature using a quartz cuvette 10 mm path length and quartz supports 

where the films were cast. 
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I.7. Viscosity measurements 

Apparent viscosity of the PVA and PEO dispersions was measured using a TA 

Instruments-AR1500ex rheometer. Flow procedures using a 60 mm diameter steel plate as 

geometry were carried out at 25ºC in all the measurements. Three different steps were set. A 

conditioning step in which the working temperature is set, a first continuous ramp from 0.1 to 

1000 s-1 and a second continuous ramp from 1000 to 0.1 s-1.  

I.8. Conventional 2D TEM 

The morphology of the latex particles as well as the films cast from the latexes, and the 

quantum dot sizes were characterized by Transmission Electron Microscopy (TEM), TECNAI 

G2 20 TWIN (FEI, Eindhoven, The Netherlands), operating at an accelerating voltage of 200 

KeV in a bright-field image mode. 

Preparation of the samples was done as follows. For the analysis of the core and core-

shell particles, the latex was diluted and directly deposited on a copper grid. For the analysis of 

the soft core-shell-shell particles, hydroxyethyl cellulose (HEC) was added to the latex (0.06% 

wt) prio to the deposition of the sample on the copper grid. This prevents the deformation of the 

low Tg polymer particles during sample preparation by forming a thin film around the particles 

and keeping their spherical morphology1. On the other hand, in the case of the films, those 

were cast at room temperature and trimmed at -40ºC using an ultramicrotome device (Leica 
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EMFC6) equipped with a diamond knife. The ultrathin sections (100 nm) were placed on a 300 

mesh copper grid. In all cases no further preparation or staining was necessary. Finally, for the 

characterization of the QDs´ sizes, toluene dispersions were deposited on the copper grids and 

analyzed without further preparation. 

I.9. Cryo-TEM 

Cryo-TEM was used to analyze the position of the QDs into the monomer droplets in the 

miniemulsion. Briefly, one drop of the diluted hybrid miniemulsion (~3 µL) was vitrified by fast 

freezing in liquid ethane using a Vitrobot Mark IV (FEI, Eindhoven, The Netherlands). This 

vitrified sample grid was then transferred through a 655 Turbo Pumping Station (Gatan, 

France) to a 626 DH Single Tilt Liquid Nitrogen Cryo-holder (Gatan, France), where it was 

maintained bellow -170ºC. A copper grid (300 mesh Quantifoils) was hydrophilized by glow-

discharge treatment. The sample was then examined in the Transmission Electron Microscope 

TECNAI G2 20 TWIN (FEI, Eindhoven, The Netherlands) mentioned above, operating at an 

accelerating voltage of 200 keV in a bright-field and low-dose image mode. 

I.10. Electron tomography (3D-TEM) 

The use of 2D-TEM to determine the location of the nanoparticles into the polymer 

particles conventional 2D-TEM can be ambiguous due to a wrong interpretation of the images 

because of the artefacts intrinsic to the technique2. To accurately determine the location of, in 

this case, the quantum dots into the polymer particles, a 3D reconstruction is needed in order 
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to get a general view of the whole hybrid particle. For this Electron Tomography or 3D-TEM 

was carried out to the hybrid core and core-shell particles.  

To reconstruct a 3D object by electron tomography a tilt series (projections) of 

micrographs are taken at angular increments. This is done by tilting the sample around the 

eucentric axis of the holder rod, usually from -60º to +60º (see Figure I.2a). Each projection in 

real space is equivalent to a central slice in Fourier space and thus, by recording images at 

successive tilt angles, the 3D Fourier space is built slice by slice3. The images collected by 

tilting the sample are back-projected along their original tilt directions into a three-dimensional 

object space as shown in Figure I.2b. The overlap of the back-projections defines the 

reconstructed object. 
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Figure I.2. A schematic diagram of the tomographic reconstruction using the back-projection method. a) images at tilted 
angles and b) the images projected into a three dimensional object3. 

In order to assess the degree of encapsulation of the nanoparticles, a 3D tomographic 

reconstruction of core and core-shell samples was carried out. On one hand, the polystyre/QDs 

sample was characterized using tilt series of micrographs and their subsequent 3D 

reconstruction acquired in the same TEM microscope as for the 2D analysis exposed above, 

TECNAI G2 20 TWIN (FEI, Eindhoven, The Netherlands) in bright field and low dose 

conditions. The tilt series was obtained tilting the sample from +60º to -60º every 2º with a pixel 

size of 0.22 nm/pixel. The images were aligned using a homemade plugging for Digital 

Micorgraph (http://www.christophtkoch.com/FRWR/index_tools.html) and Inspect 3D software 

(http://www.fei.com). The reconstruction was carried out using Simultaneous Iterative 

Reconstruction Technique (SIRT) (10 iteration) employing the Inspect 3D software. On the 
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other hand, the core-shell polystyrene/QDs/polymethyl methacrylate sample was tilted from -

55º to +70º every 2º. The images were acquired at 100kV in a JEOL JEM-1230 thermionic 

emission TEM (JEOL, Japan) in bright field and low dose image mode with a pixel size of 0.34 

nm/pixel. The images were aligned using the Midas utility of the IMOD 4.3.3 package4 and 

reconstructed with weighted back projection (WBP) algorithm in IMOD 4.3.4 package. 

Some differences between the XY and YZ planes were present due to the elongation of 

the objects inherent to the TEM tomography technique. This is due to the missing wedge, some 

information is missing at certaing angles, in these cases the images missing to cover 360º. To 

correct this distortion the resulting 3D reconstruction was rescaled in the electron beam 

direction. 

The 3D-TEM analyses were carried out in eMERG and Department of Mining and 

Metallurgical Engineering and Materials Science University of the Basque Country UPV/EHU, 

Pº Rafael Moreno Pitxitxi, 3, 48013, Bilbao, Spain. 

I.11. Image processing 

Statistics of the distribution of the nanoparticles into the polymer particles as well as of 

the size of the polymer particles and the quantum dots used during this work, around 500 

polymer particles and nanoparticles were counted and measured using the open access 

software Image Processing and Analysis in Java (Image J). Different average values were 

calculated, precisely, in number, in weight and in volume. 
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I.12. Energy-dispersive X-ray spectroscopy 

Discern of quantum dots over nanoceria nanoparticles was not possible visually due to 

the similar size of the nanoparticles. Therefore, an Energy-dispersive X-ray (EDX) mapping of 

the samples was carried out. Samples containing core-shell hybrid polymer particles were 

diluted and directly deposited on copper grids. On the other hand, the samples containing soft 

core-shell-shell hybrid polymer particles were, as mentioned above, mixed with HEC (0.06% 

wt) prior to their deposition on the copper grid. A High-Resolution Transmission Electron 

Microscope (HRTEM) TITAN (FEI, Eindhoven, The Netherlands) operating in Scanning 

Transmission Electron Microscopy (STEM) mode was used, which makes observing the 

background of the sample in dark, the polymer particles in grey and the inorganic nanoparticles 

as white spots. An electron beam stimulated the emission of characteristic X-rays of the 

elements present in the area focused. This allows doing an EDX mapping of the area of 

interest and identify the nanoparticles present. 
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The EDX analysis were carried out using the HRTEM facilities of the Electron-

Microscopy Laboratory in NanoGUNE, Avd. Tolosa 76, 20018, Donostia-San Sebastián, Spain. 
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Appendix II. Additional experiments 

 

II.1. Optical study of the combination of QDs with TiO2 nanoparticles 

In view of the effect of nanoceria nanoparticles on the optical properties of the quantum 

dots presented Chapter 4, other interesting semiconductor inorganic nanoparticles were 

analyzed. TiO2 (Degussa-P25) was the chosen nanoparticle for this study, which was first 

explored in toluene dispersions. The election of this nanoparticle was made based on the good 

UV-Vis absorbance capacity of TiO2, the similar band gap value to the one of CeO2, and its use 

in solar cells.  

A dispersion in toluene of quantum dots and titanium oxide in a ratio 1:1 in weight was 

prepared. As done with the QDs-CeO2 dispersions, fluorescence was measured during storage 

at daylight. In this case a clear decrease in the emission intensity was observed, together with 

a blue shift in the maximum emission peak (Figure II.1a), which indicated a reduction of the 

size of the nanocrystals, so a degradation of their surface. Nevertheless, if the dispersion was 

purged with N2 overnight, a decrease in the fluorescence emission intensity was also observed 

but not a shift on the emission wavelength (Figure II.1b). Moreover, differences in color from 

the non-purged to the purged dispersions were also observed (Figure II.1c-d).  
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Figure II.1 a) Fluorescence emission intensity evolution of a toluene QDs-TiO2 dispersion exposed to daylight. b) 
Fluorescence emission intensity evolution of a toluene QDs-TiO2 dispersion purged with N2 and exposed to daylight. c) 

QDs-TiO2 toluene dispersion after exposure to daylight. d) N2 purged QDs-TiO2 toluene dispersion after exposure to 
daylight. 

In the case of QDs-CeO2 toluene dispersions, a slight decrease of the fluorescence 

emission intensity was observed over time. However, this decrease was much lower than for 

QDs and TiO2, and the blue shift was not observed. At this point it is important to highlight the 

high photocatalytic activity that titanium oxide nanoparticles present. This means that, the 

electron-hole generated when an electron jumps from the valence band to the conduction band 

when the nanoparticle absorbs light reacts with oxygen, water or hydroxyl groups generating 

radicals. Taking this into account, together with the already discussed effect that radicals have 

in the surface of QDs (Section 2.4), it was concluded that, when a dispersion containing both 
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TiO2 and QDs was in contact with oxygen, degradation of the QDs´ surface took place driving 

to a loss of fluorescence and a shift of the emission peak. 

Those are preliminary results; more research can be done on the co-encapsulation of 

QDs and TiO2 nanoparticles into polymer particles or on the encapsulation of QDs and use of 

the TiO2 nanoparticles as a stabilizer of the polymer particles, to study the effect on the optical 

properties of the QDs as done for the CeO2 nanoparticles. However, this is out of the scope of 

this PhD thesis. 

 

II.2. Modification of the hybrid core-shell polymer particles for their use 

in multiplexing assays 

As shown in Chapter 3 fluorescence spectra can be modulated at will by blending 

latexes containing commercial CdSe/ZnS quantum dots of different sizes. This opens the door 

to the use of the synthesized hybrid latexes for multiplexing assays. However, for this the 

surface of the hybrid polymer particles has to be functionalized so it reacts with an analyte 

present in the sample of study.  

This functionalization is being currently studied by a master student of the group (Ms. 

Idoia Guruceaga), using L-lysine, based on the method shown previously by Holzapfel et al1. 

First the surface of the polymer particles is functionalized with carboxylic acid groups, 

which are then activated for coupling the lysine. Functionalization of the surface of the polymer 



Appendix II        

220 

 

particles with carboxylic acid group has been done by producing an additional MMA-MAA or 

AA shell on the top of the cross-linked core-shell polymer particles. This second shell has been 

synthesized by seeded semi-batch emulsion polymerization using the core-shell latex as a 

seed, adding a 2% wt of emulsifier (SDS), and feeding with a syringe pump a 1% wt of MAA or 

AA. The final shell thickness was about 30 nm. The resulting latex was centrifuged for one hour 

at 30.000 r.p.m in order to remove the carboxylic acid groups that were not attached to the 

surface. Then, activation of the carboxylic acid groups was done using a molar ratio 1:1 of 

carboxylic acid groups and activation reagents in order to get all the carboxylic acid groups 

functionalized with L-lysine. The activation of the carboxylic acid groups works as shown in 

Figure II.2. The 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) works as 

a carbodiimide cross-linker, which reacts with the carboxylic acid groups forming an unstable 

O-acylsourea ester intermediate. In order to improve the efficiency of the lysine coupling and to 

avoid the hydrolysis of the O-acylsourea intermediate, sulfo-N-hydroxysuccinimide (sulfo-NHS) 

is included in the method. The activation reaction is carried out in 4-morpholinoethanesulfonic 

acid (MES) buffer at pH 6.5 for 20 minutes at room temperature by dissolving the EDC with 

sulfo-NHS in the buffer. After the activation of the carboxylic acid groups L-lysine 

dihydrochloride is added. The coupling reaction is carried out under agitation for 3 hours at 

room temperature. 
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Figure II.2 Carboxylic acid group activation with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride 
(EDC) and sulfo-N-hydroxysuccinimide (sulfo-NHS). 
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Resumen y conclusiones 

 

Los puntos cuánticos (PCs) o quantum dots (QDs) son nanocristales semiconductores 

con un tamaño que oscila entre los 2 nm y los 10 nm. Fueron descubiertos en 1981 por Alexey 

Ekimov y estudiados durante los años 80 por L. E. Brus y sus colaboradores. De especial 

interés fue el estudio de la influencia de su tamaño en sus propiedades. Su reducido tamaño, 

menor al radio de Bohr, les confiere unas propiedades ópticas y electrónicas especiales. Entre 

ellas destaca su capacidad de variar la longitud de onda de emisión, únicamente variando el 

tamaño del nanocristal sin modificar su composición (Figura 1). También cabe destacar su 

emisión a una longitud de onda muy determinada y su capacidad de absorción de luz en un 

amplio rango de longitudes de onda. 

 
Figura 1. Variación de la longitud de onda de emisión en función del tamaño de los puntos cuánticos CdSe/ZnS. (Imagen 
tomada de la referencia Chen, J.; Imam, P. Causes of Asset Shortages in Emerging Markets. Rev. Dev. Financ. 2013, 3 

(1), 22–40). 
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Estas propiedades los hacen ser útiles para diversas aplicaciones. Por ejemplo, en 

biomedicina se pueden utilizar uno o varios tipos de puntos cuánticos simultáneamente, 

formando una especie de código de barras que permita la detección de analitos de interés. 

Esto es posible gracias a su estrecho pico de emisión, que permite diferenciar varios tipos de 

puntos cuánticos a la vez, excitando la muestra a una única longitud de onda. Los puntos 

cuánticos también se utilizan para la producción de placas solares y LEDs. En combinación 

con polímeros conductores hacen el transporte de electrones hacia los electrodos más 

eficiente. Otras aplicaciones menos conocidas pero de gran importancia son su uso como 

sensores de compuestos orgánicos volátiles (COVs) y como foto-sensibilizadores en procesos 

de fotocatálisis para el tratamiento de agua. 

Sin embargo, también hay que tener en cuenta sus inconvenientes; su difícil 

manipulación, debida a su pequeño tamaño y su toxicidad, dado que los PCs de mayor calidad 

están mayoritariamente compuestos por metales pesados.  

Para sacar el mayor partido a las excelentes propiedades ópticas de estas 

nanopartículas, pero sin olvidar los problemas de toxicidad que presentan, en este trabajo se 

han encapsulado en partículas de polímero, utilizando puntos cuánticos comerciales 

(OceanNanotech) de morfología núcleo corteza, con un núcleo de CdSe y una corteza de ZnS, 

modificados en su superficie con octadecilamina. La presencia de una corteza minimiza la 

pérdida de electrones debida a defectos en la superficie del núcleo. Por otra parte, el 

recubrimiento con octadecilamina permite la dispersión de los PCs en disolventes orgánicos 

como tolueno o cloroformo, así como en diferentes monómeros como el estireno.  
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El primer objetivo de esta tesis fue el de la encapsulación de estos PCs en partículas 

de polímero dispersas en agua para mantener su fluorescencia durante largos periodos de 

tiempo y conseguir una mayor protección frente a su potencial toxicidad. Una vez conseguido 

esto, el siguiente paso fue la combinación de PCs de diferentes tamaños para la creación de 

un código de barras con el fin de utilizarlo para detección múltiple en sistemas biológicos. Por 

otra parte, también se investigó la combinación de los puntos cuánticos con otras 

nanopartículas inorgánicas, más concretamente con óxido de cerio. Por último, se abordó la 

posible aplicabilidad de las dispersiones híbridas sintetizadas como sensores ópticos y 

eléctricos de compuestos orgánicos volátiles. 

La encapsulación de los puntos cuánticos en partículas de polímero se realizó en dos 

etapas. La primera fue la formación de un núcleo de poliestireno reticulado mediante 

polimerización en miniemulsión, y la segunda la formación de una corteza de 

polimetilmetacrilato reticulado sobre el núcleo mediante la polimerización en emulsión en 

semicontinuo. En la primera etapa, los PCs se dispersaron en el monómero (estireno, S) junto 

con el reticulante (divinil benceno, DVB) y un co-estabilizador (hexadecano, HD) obteniendo la 

fase orgánica. Por otra parte, se preparó la fase acuosa en la que se disolvieron parte del 

emulsificante (SDS) y el tampón (NaHCO3) en agua. Ambas fases se mezclaron y se 

sonificaron creando la miniemulsión. En este punto se obtuvieron gotas de monómero 

conteniendo los PCs estabilizadas en medio acuoso. Estas gotas se polimerizaron durante 6 

horas a 75ºC utilizando para ello un iniciador térmico (KPS), obteniendo un látex híbrido con 

5% en contenido en sólidos. El látex resultante no era ópticamente estable, observando una 

pérdida de fluorescencia durante el tiempo por la difusión de los PCs hacia la interfase 
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partícula polimérica-agua (Figura 2a). Por ello, y para asegurar la encapsulación de las 

nanopartículas en las partículas de polímero se realizó una segunda etapa sintetizando una 

corteza alrededor del núcleo. En ella se utilizó el látex de partículas reticuladas de poliestireno 

como siembra, KPS como iniciador y una mezcla de metil metacrilato y divinil benceno como 

monómeros a alimentar, llevando a cabo la reacción a 75°C durante 3 horas. La inyección de 

la mezcla de monómeros en el reactor se hizo utilizando una bomba jeringa . El contenido en 

sólidos final fue del 12%. Al finalizar este proceso se logró una efectiva encapsulación de PCs 

CdSe/ZnS modificados con octadecilamina en su superficie en partículas reticuladas núcleo-

corteza PS/PMMA. La morfología de dichas partículas híbridas se estudió mediante 

microscopía de transmisión electrónica en tres dimensiones, observando que los PCs se 

encontraban rodeados por polímero en todas las direcciones. También se hizo un estudio de la 

fluorescencia de los látex durante el tiempo, observando estabilidad de la intensidad de 

emisión durante al menos 9 meses (Figura 2b). 

  

Figura 2. a) Espectro de fluorescencia para un látex PS-DVB/PCs. b) Espectro de fluorescencia para un látex PS-
DVB/PCs/PMMA-DVB durante nueve meses. 
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Una vez desarrollado el método de encapsulación se investigó la encapsulación de 

múltiples puntos cuánticos de cara a su aplicación como marcadores. Durante el segundo año 

de tesis se realizó una estancia corta en el Institut de Chimie de la Matière Condensée de 

Bordeaux (ICMCB) bajo la supervisión del profesor Cyril Aymonier, con el objetivo de sintetizar 

puntos cuánticos de diferentes tamaños y posteriormente encapsularlos siguiendo el método 

anterior. Se sintetizaron PCs núcleo-corteza CdSe/CdS de diferentes tamaños recubiertos con 

trioctil fosfina y hexadecilamina en hexano supercrítico. Los puntos cuánticos sintetizados 

presentaban buenas propiedades ópticas en dispersión en hexano o cloroformo. Sin embargo, 

se observó una degradación de dichos nanocristales en el proceso de encapsulación, 

perdiendo sus propiedades ópticas. Por ello se utilizaron PCs CdSe/ZnS comerciales de 

cuatro tamaños diferentes, es decir, de cuatro longitudes de onda de emisión diferentes. Se 

prepararon látex con cada uno de los diferentes tipos de PCs, y se realizaron mezclas de dos 

o tres látex controlando el número de nanocristales de cada tipo en cada mezcla. Con ello se 

lograron controlar las intensidades y las relaciones de emisión, creando un amplio número de 

combinaciones posibles. 

Durante este trabajo también se han estudiado los efectos de la combinación de los 

puntos cuánticos con nanopartículas de óxido de cerio, teniendo en cuenta la excelente 

emisión de los PCs y las buenas propiedades de absorción UV de las partículas de CeO2. 

Ambos tipos de nanopartículas se co-encapsularon en las mismas partículas de polímero 

utilizando el método de encapsulación expuesto anteriormente. Así mismo se desarrolló una 

formulación que era capaz de formar films a temperatura ambiente. Para ello, se sintetizó una 

segunda corteza utilizando el látex híbrido de partículas reticuladas de poliestireno recubiertas 
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por una corteza de polimetil metacrilato reticulado como siembra. Esta segunda corteza está 

compuesta por metil metacrilato-butil acrilato y acido acrílico en una proporción 39.5/59.5/1% 

con el objetivo de reducir la Tg del polímero. Se obtuvieron films transparentes y de buena 

calidad a temperatura ambiente. Mediante fluorescencia se estudió el efecto que tienen las 

nanopartículas de CeO2 sobre las propiedades ópticas de los puntos cuánticos. Tanto los látex 

como los films conteniendo diferentes proporciones de PCs:CeO2 se expusieron a la luz solar 

midiendo la fluorescencia a lo largo del tiempo. Se observó un incremento de la emisión de 

fluorescencia durante el tiempo de exposición a la luz solar tanto para los látex como para los 

film (ej. 280% de incremento para un látex con una proporción PCs:CeO2 1:2, y 545% para un 

film con una proporción PCs:CeO2 1:2). Las diferencias en el incremento de la emisión se 

deben a la diferencia en las distancias entre las nanopartículas. En el látex esta distancia es 

mayor al estar las partículas de polímero en dispersión. Sin embargo, cuando se forma el film 

estas distancias se acortan y por lo tanto el efecto del óxido de cerio sobre los puntos 

cuánticos se acrecienta (Figura 3). 

 
Figura 3. Incremento de la fluorescencia de un látex (izquierda) y de un film (derecha) expuestos a la luz solar. 

Por último, la aplicabilidad de los látex híbridos núcleo-corteza se ha estudiado 

mediante la producción de nanofibras por electrohilado y su posterior contacto con 
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compuestos orgánicos volátiles (COVs). Dado que los látex sintetizados tienen una viscosidad 

demasiado baja para producir las nanofibras, ésta se aumentó mediante la adición de polivinil 

alcohol (15% wt) u óxido de polietileno (5% wt). La dispersión resultante se inyectó a través de 

una bomba jeringa, creando una diferencia de potencial entre la aguja y el colector para 

producir las nanofibras. Las condiciones óptimas utilizadas han sido: voltaje 15 kV, distancia 

aguja-colector 200 mm y un flujo de alimentación 0.08-0.1 mL/h para las dispersiones de PVA 

y 0.2-0.3 mL/h para las dispersiones de PEO. Las nanofibras sintetizadas se pusieron en 

contacto con vapores de diferentes disolventes (acetona,  tolueno y metanol) y se midió la 

evolución de su fluorescencia durante el tiempo. Se observó que con el paso del tiempo, al 

aumentar la concentración de vapor, la intensidad de emisión de fluorescencia desciende. 

También se ha estudiado la respuesta eléctrica de las nanofibras producidas con PEO ante 

vapor de acetona. Para ello se midió la conductividad de las nanofibras depositadas en un 

electrodo interdigitado observando un aumento de la resistencia a lo largo del tiempo de 

exposición al vapor de acetona, recuperando su valor inicial al dejar de exponer el electrodo a 

la acetona. 

Con el trabajo desarrollado para esta tesis doctoral se ha logrado una eficiente 

encapsulación de PCs de diversos tamaños en partículas poliméricas dispersas en agua, 

consiguiendo gran estabilidad de sus propiedades ópticas, así como un buen control de la 

fluorescencia al combinar diferentes PCs. Así mismo, se co-encapsularon los PCs con CeO2 

consiguiendo mejorar las propiedades ópticas tanto de los látex como de los films. Por último, 

se ha investigado la posible aplicabilidad de los látex híbridos sintetizados como sensores de 

COVs. 


