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Abstract 

Shape memory polymers (SMPs) have attracted extensive attention from basic 

research to industrial applications because they have emerged as a cheap and efficient 

alternative to shape memory alloys. Shape memory polymers present the ability of 

modifying their shape in a predefined manner in response to externally imposed stimuli. 

More precisely, shape memory polyurethanes (SMPUs) include a class of polyurethanes 

that are different from conventional polyurethanes in that they exhibit a hard and soft-

segment phase, forming a two-phase heterogeneous structure and morphology. 

Therefore, a wide variety of polyurethanes can be synthesized with different types of 

molecular architectures by manipulating their composition and choosing properly the 

chemical structure of their components, which in turn would be beneficial for their 

different applications. Among them, adhesives, coatings, automotive, biomedicine, 

construction and textile and footwear industry are the most important.  

In this Thesis, a thorough study of shape memory polyurethanes (SMPUs) for 

applications in smart fabrics was presented. First, all SMPUs were synthesized by the 

prepolymer method. Soft-segment was composed of a polyol and hard-segment was 

composed of a diisocyanate and a chain extender. Second, relevant shape memory 

properties such as themogravimetric behavior, thermomechanical properties, 

permeability, and shape memory effect were characterized. Besides, fibers and fabrics 

were created from shape memory polyurethanes in order to provide deeper understanding 

towards the use of polyurethanes in the field of textile. 

In conclusion, polyurethanes with tunable thermal and mechanical properties were 

obtained just by varying the hard to soft-segment content. Overall, the obtained 

experimental findings through this work highlight the potential of both MDI and TDI-based 

SMPUs for a wide range of applications. Moreover, shape memory effect of SMPUs shows 

that almost all SMPU samples have been characterized by shape fixity ratios higher than 

85% and shape recovery ratios near 99%. Relating to permeability behavior, the 

conclusion is that these shape memory polyurethane films have potential applications in 

different fields such as in textile sector that could promote sweat evaporation and 

humidity control. Finally, it has demonstrated that synthesized and commercial fibers 

were successfully fabricated and possesses stable thermal properties. Moreover, SMPUs 

in the form of fabrics show excellent recovery (more than 99.9% in almost samples). 

Furthermore, it can be concluded that synthesized polyurethane fibers are good enough 

for future applications in textile industry or medical areas among others. 

  



 



 

Resumen 

En los últimos años, los polímeros con memoria de forma (Shape Memory Polymers, 

SMPs) han sido foco de atención, tanto en investigaciones básicas, como en sectores 

tecnológicamente avanzados, debido a su destacada funcionalidad y a las posibilidades 

que ofrecen como materiales inteligentes. Estos polímeros han surgido como una 

alternativa eficaz a las aleaciones metálicas con memoria de forma. Los polímeros con 

memoria de forma tienen la capacidad de modificar su forma desde un estado ‘A’ 

(denominado también original o permanente) a otro estado ‘B’ (conocido como transitorio 

o deformado) al aplicar sobre ellos un estímulo externo. Entre ellos, los poliuretanos con 

memoria de forma (Shape Memory Polyurethanes, SMPUs) son una clase de polímeros 

que se pueden sintetizar con diferentes tipos de arquitecturas moleculares mediante la 

variación de su composición y la elección adecuada de la estructura química de sus 

componentes. Esto da lugar a diversas aplicaciones en automoción, biomedicina, 

adhesivos, la industria textil o del calzado. 

En esta Tesis Doctoral se presenta un estudio sobre los poliuretanos con memoria 

de forma para aplicaciones en tejidos inteligentes. En primer lugar, se describe la síntesis 

de SMPUs mediante el método del prepolímero. Los poliuretanos, así sintetizados, poseen 

una estructura segmentada constituida, por un lado, por segmentos rígidos (diisocianatos 

y un extendedor de cadena) y, por otro lado, por segmentos flexibles formados por 

polioles. A continuación, se ha analizado el comportamiento térmico, las propiedades 

termomecánicas, la permeabilidad y el efecto de memoria de forma. Además, se han 

creado fibras y tejidos a partir de los SMPUs con el fin de aportar una comprensión más 

profunda sobre los poliuretanos en la industria textil.  

Finalmente, tras los resultados obtenidos, se puede concluir que los poliuretanos 

con memoria de forma sintetizados poseen aplicaciones prometedoras en la industria 

textil. Asimismo, el efecto de memoria de forma demuestra que la mayoría de SMPUs 

poseen valores de recuperación mayores del 99%. Respecto a la permeabilidad, se puede 

concluir que los films de SMPUs poseen la capacidad de promover la evaporación del sudor 

y el control de la humedad. Por último, se ha demostrado que las fibras se han obtenido 

satisfactoriamente y que poseen estabilidad térmica. También, los SMPUs en forma de 

tejido presentan una recuperación mayor del 99%, por lo que se puede concluir que las 

fibras y los tejidos se podrán usar en futuras aplicaciones en el campo textil. 

  



 



Laburpena 

Azken urteetan, formazko memoria duten polimeroak (Shape Memory Polymers, 

SMPs) interes handia izan dute, bai oinarrizko ikerkuntzan eta baita teknologi 

aurreratuzko sektoreetan ere, eskaintzen duten funtzionaltasun nabariak eta material 

adimentsuak egiterako orduan ahalbidetzen dituzten aukerengatik, besteak beste. 

Polimero hauek formazko memoria duten metal aleazioen hautabide gisa azaldu dira. 

Formazko memoria duten polimeroek ‘A’ egoeratik (egoera original edo behin betiko 

egoera bezala ezagutua), ‘B’ egoerara (trantsiziozko edo behin-behineko egoera bezala 

ezagutua) forma aldatzeko gaitasuna dute kanpo-estimulu bat aplikatzean heureengan. 

Horien artean, formazko memoria duten poliuretanoak (Shape Memory Polyurethanes, 

SMPUs) aurkitzen dira eta polimero hauek arkitektura molekular ezberdinekin sintetizatu 

daitezke osagaien neurriak aldatuz eta osagaien egitura kimikoen aukeraketa egokia 

eginez. Ezaugarri horiek, automozio-industria, biomedizina, eranskailu, textil-industria, 

edo zapatu-industrian hainbat aplikazio ahalbidetzen dituzte. 

Doktorego-tesi honek, formazko memoria duten poliuretanoek ehun-adimendunen 

eremuko aplikazioei buruzko azterketa aurkezten du. SMPUen sintesia deskribatzen da 

lehenik, prepolimero teknika erabiliz. Honela sintetizaturiko poliuretanoek segmentutan 

banaturiko egitura osatzen dute, alde batetik segmentu zurrunak (diisozianatoez eta 

kate-luzatzaile batez osatuak) eta bestetik poliolez osaturiko segmentu malguak. 

Ondoren, jokamolde-termikoa, ezaugarri termo-mekanikoak, iragazkortasuna eta 

formazko memoria efektua aztertu dira. Gainera, zuntz eta ehunak sortu dira SMPUak 

erabiliz, poliuretanoak textil-industrian sakon ulertzeko asmoz. 

Azkenik, lorturiko emaitzen harira, formazko memoria duten sintetizaturiko 

poliuretanoek etorkizun handiko aplikazioak dituztela textil-industrian ondoriozta daiteke. 

Hala nola, SMPUek formazko memoria efektuaren %99ko berreskuratze-maila baino 

handiagoak erakusten dituztela frogatzen da. Iragazkortasunaren inguruan, SMPU filmek 

izerdiaren lurrunketa sustatu eta hezetasuna kontrolatzen dutela ondoriozta daiteke. 

Amaitzeko, zuntzak behar bezala lortu direla eta egonkortasun termikoa aurkezten dutela 

erakutsi da. Gainera, SMPUek ehun-forman %99koa baino errekuperatze handiagoa 

azaltzen dute, beraz, aurkezturiko zuntz eta ehunek textil-eremuan erabilgarriak izango 

dira zenbait aplikaziotan. 
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Chapter I 

INTRODUCTION 

 
 

1.1. Definition and general aspects of smart 

materials 

he research on smart materials is growing all over the globe due to 

their potential future benefits, and their intelligent structures and 

systems. Since the 19th century, revolutionary changes have been 

occurring at an unprecedented rate in many fields of science and 

technology, which have profound impacts on every human being. 

Later, during the second half of the 20th century, the majority of materials were 

developed for specific purposes, focusing the research on their performance, hence 

the name ‘performative materials’.1. In this way, high quality materials were 

developed for industries such as aerospace, biomedical, industrial, automotive, etc. 

Due to this increasing awareness of unique material capabilities and properties, 

material development was taken to another level 2. Nowadays, the ongoing 

T 
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development is mainly focused on exploring the different functionalities of these 

materials and finding out what new added value they can contribute compared to 

existing materials. 

Smart materials are the common name for a wide group of different substances. 

A smart material was defined as the material which responds to its environment in a 

timely manner and one or more properties might be altered under controlled 

conditions. However, the definition of smart materials has been expanded to the 

materials that receive, transmit or process a stimulus and respond by producing a 

useful effect 3. Therefore, smart materials are a new generation of materials which 

overtake the conventional structural and functional materials.  

Many researchers have employed the term ‘smart material’ in different fields, 

so that, some definitions are presented here to clarify what a smart material is. In 

1989 Rogers et al. 4,5 defined smart materials as materials which possess the ability 

to change their physical properties in a specific manner in response to specific 

stimulus input. The stimuli could be pressure, temperature, electric and magnetic 

fields, chemicals, hydrostatic pressure or nuclear radiation. The associated 

changeable physical properties could be shape, stiffness, viscosity or damping. 

Takagi 6 in 1990 defined the smart materials as materials that respond to 

environmental changes at the most optimum conditions and reveal their own 

functions according to the environment. The kind of ‘smartness’ shown by these 

materials is generally programmed by the material composition, a special processing, 

the introduction of defects or by modifying the micro-structure, so as to adapt to the 

various levels of stimuli in a controlled way. Like smart structures, the terms ‘smart’ 

and ‘intelligent’ are used interchangeably for smart materials. These materials 

possess adaptive capabilities to external stimuli, such as loads or environment, with 

inherent intelligence. The feedback functions within the material are combined with 

properties and functions of the materials. 

In 1999, Fairweather 7 defined active smart materials as those materials which 

possess the capacity to modify their geometric or material properties under the 

application of electric, thermal or magnetic fields, thereby acquiring an inherent 

capacity to transduce energy.  

Described in even more detail by Xiaoming Tao 8 in 2001, the term smart 

material is used to refer to materials that can sense and respond in a controlled or 
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predicted manner to environmental stimuli, which can be delivered in mechanical, 

thermal, chemical, magnetic or other forms. The responses of smart materials could 

be visible direct responses including automatic changes in shape, color, geometry, 

volume and other visible physical properties. Besides these definitions, Karana & 

Kandachar 9 in 2006 defined a smart material as “a material that has the capability 

to both sense and respond to environmental stimuli, as well as being capable of active 

control of its response”. 

Tao 8 further stated, “according to the manner of reaction, the smart materials 

can be divided into passive smart, active smart and very smart materials”, Figure 

1.1. Passive smart materials can only sense environmental conditions or stimuli; 

active smart materials will sense and react to the conditions or stimuli; very smart 

materials can sense, react and adapt themselves accordingly. In other words, passive 

smart materials are ‘smart’ in being responsive to their environment, but they lack 

the inherent capability to transduce energy. Fiber optic material is a good example 

of a passive smart material. An even higher level of intelligence can be achieved from 

active smart materials which transduce their stimuli energy into some other form of 

energy, those intelligent materials and structures are capable of responding or 

activated to perform a function in a manual or pre-programmed manner 10. Sensors 

and actuators may be present in such materials. The sensors provide a nerve system 

to detect signals, thus in a passive smart material, the existence of sensors is 

essential. The actuators act upon the detected signal either directly or from a central 

control unit; together with the sensors, they are the essential element for active 

smart materials. Piezoelectric materials, shape memory alloys, shape memory 

polymers, electro-rheological fluids or magneto-strictive materials are considered to 

be active smart materials and therefore, they can be used as force transducers and 

actuators. At even higher levels, like very smart or intelligent materials, another kind 

of unit is essential, which works like the brain, with cognition, reasoning and 

activating capacities. They are adapted as smart material systems or smart textiles 

and can respond in any desired way to any desired stimuli by integrating electronics. 
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Figure 1.1. Classification of smart materials by Tao 8 (2001)  
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As mentioned above, some smart materials need electronic stimuli in order to 

function, others need to be chemically altered by adding certain ‘smart’ elements. 

Other classification about the different types of smart material was given by Poelman 

and Tempelman 11 in 2014. They classified the current smart materials according to 

their working principles on three levels (Figure 1.2): 

1) New material systems on molecular level. They can be seen as intrinsic smart 

materials because they contain characteristics on a molecular level which they 

can respond to a certain stimulus. There is no need for any external electronic 

component nor software to make the material respond to the stimuli. 

2) New material systems on particle level. The smart component in these 

materials is thus perceived from an external factor as seen from the original 

material. 

3) New material systems on structural level. This group has a far wider range of 

applications since they also include materials that are controlled via integrated 

microprocessors and other electronic devices. 

 

 

Figure 1.2. The three levels on which a smart material effect works 11 
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To sum up, the concept of smart materials implies materials that are able to 

appropriately respond to changes in external factors such as temperature, pH, 

pressure, electric or magnetic field… by changing their structure and functions. In 

this way, it can be assumed that the smart materials have their own sensor, which 

is able to change the materials characteristics. This definition is then consistent with 

the behavior of shape memory materials, with potential applications as smart 

materials and new functional materials in many fields such as aerospace, civil 

engineering applications, biomedicine and textile industry. 

 

1.2. Shape memory materials 

Shape memory materials (SMMs) are one of the main groups of smart materials 

because of their unusual properties, such as the shape memory effect (SME), the 

pseudoelasticity or large recoverable stroke, the high damping capacity and the 

adaptive properties which are due to phase transitions in the materials. SMMs may 

sense thermal, mechanical, magnetic or electric stimuli and exhibit actuation or some 

pre-determined response, making it possible to tune some technical parameters such 

as shape, position, strain, stiffness, natural frequency, damping, friction and other 

static and dynamical characteristics of material systems in response to the 

environmental changes. However, shape memory materials have to overcome some 

shortcomings before they become more widely recognized in the industrial world 12–

14. SMMs have been extensively developed and applied in smart structure technology. 

SMMs have the capability to memorize a permanent shape and to be programmed 

for one or many temporary shapes, while spontaneously recovering their original 

permanent shape from temporary deformations upon exposure to an external 

stimulus 15,16. As one of the most important branches of smart materials, the most 

common shape memory materials are shape memory alloys (SMAs), shape memory 

ceramics (SMCs) and shape memory polymers (SMPs). 
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a) Shape Memory Alloys 

SMAs are metals that exhibit two unique properties. The first one is 

superplasticity, which is the ability of a material to exhibit large recoverable strains 

(up to approximately 15%), while deformed within a range of temperature which is 

characteristic of every specific alloy. The second one is the shape memory effect, 

characterized by the capability of a material to be deformed at a low temperature 

and then to revert to its prior shape upon heating above the temperature associated 

with every particular alloy 17,18.  

Shape memory alloys are metal compounds, which can memorize a 

predetermined shape, and then can be bent, stretched or otherwise mechanically 

deformed so they can return to this predetermined shape under certain temperature 

conditions. This shape memory effect is due to a phenomenon known as a 

thermoelastic martensitic transformation, which is a reversible, diffusionless 

transformation between two different crystal microstructures that occurs when a 

shape memory alloy is heated or cooled beyond alloy specific transition temperatures. 

These temperature-dependent crystal structures or phases are called martensites 

(low temperature) and austenites (high temperature) 19. Shape memory alloys are 

quite strong and hard in their austenite form, but in the martensite form SMAs are 

soft and ductile and can be easily deformed. SMAs also exhibit superelasticy (or 

pseudoelasticity) giving the material like a rubber behavior. In other words, the 

stress-induced strain on SMA can be recovered by heating the alloy up to the 

austenite finish temperature by transforming the low stiffness martensite phase to 

the high stiffness austenite phase. This reversible phase transformation is only 

temperature and stress dependent. The molecular structure of this phase is 

illustrated in Figure 1.3. 

The discovery of the shape memory effect dates back to the 1930s when a 

Swedish chemist, Arne Ölander, discovered the pseudoelastic behavior of Au–Cd alloy 

in 1932 20. Major breakthrough discovery in the field of SMAs came in the earlies 

1960s, when Buehler and his coworkers at the US Naval Ordnance Laboratory 

discovered the shape memory effect in an equi-atomic alloy of nickel and titanium 21. 

This alloy was named Nitinol (Nickel–Titanium Naval Ordnance Laboratory) and 

nowadays it is the most widely used. Since that time, intensive investigations have 

been made to elucidate the mechanics of its basic behavior. Along with Nitinol, other 

important SMAs are copper–zinc–aluminum–nickel and copper–aluminum–nickel; 
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furthermore, SMAs can also be manufactured by alloying zinc, copper, gold and iron, 

which modifies the SME and superelastic effect as needed 22–24. As they have a very 

high energy density and are usable in a variety of shapes, including rods, plates, 

ribbons, springs and wires, SMAs have been used in a wide variety of applications. 

For instance, SMA elements have been used in the medical and structural vibration 

control fields due to their superelastic properties when the temperature is above the 

austenite transition temperature, allowing them to constantly apply a force to regain 

their original configuration 25. 

Shape memory alloys (SMAs) exhibit outstanding properties such as small size, 

high strength, easy to shape and work, hold the molded shape very well and have 

found wide technical applications. However, they have obvious disadvantages, such 

as high manufacturing cost, limited recoverable force and appreciable toxicity 26. 

Therefore, ceramic-based and polymer-based shape memory materials have been 

explored.  

 

 

Figure 1.3. Microscopic and macroscopic views of the two phases of SMAs 
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b) Shape Memory Ceramics 

Shape memory effect can also be found in ceramic materials. Shape memory 

ceramics (SMCs) can be classified as viscoelastic, martensitic, ferroelectric or 

ferromagnetic depending on their activation mechanism 27,28. SMCs can tolerate much 

higher operating temperatures than other shape memory materials, but their 

recoverable strain is quite small. On the other hand, the actuation by electric field, 

for instance, can be much faster than by heat 29–32. 

 

c) Shape Memory Polymers  

Shape memory polymers (SMPs) are another emerging class of SMMs. Unlike 

SMAs, which can only recover between 1 and 10% strain, SMPs have the capacity to 

recover strain on the order of 100% 33. SMPs exhibit a radical change from a normal 

rigid polymer to a highly flexible elastic polymer and then quickly revert back by 

application of heat. This change can be repeated multiple times without degradation 

of the material 34–37.  

The term ‘SMP’ was not officially used until 1984, when the CFG Chimie 

Company (France) developed a polynorbornene based SMP 38,39. Since then, the rapid 

development and wide investigation of SMPs has made their features more and more 

prominent, particularly compared with SMAs. In this way, one of the major 

application of SMPs was in robotics to develop an adaptive grip for robots 40. 

Moreover, SMPs have been used in medicine and other fields 26,41. SMPs have several 

advantages 42,43:  

▪ they can use diverse external stimuli: in addition to heat, there are many 

alternative ways to trigger the shape recovery (light, magnetic field, chemical, 

electricity…). 

▪ they can show highly flexible programming: polymers can be programmed 

with different stimuli through single and multi-step processes. 

▪ they have a broad range of structural designs: there is an abundance of 

approaches for designing net-points and switches for various types of SMPs.  

▪ they possess tunable properties: the properties of SMPs can be engineered 

very easily and accurately tuned using composites, blends and different 

synthesis methods. 
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▪ they can be well-suited for responses to human senses/tissues and also can 

be biodegradable: SMPs are made from polymers, which are soft materials 

that provide an abundant array of choices for making highly biodegradable, 

biocompatible and comfortable devices to interface with our bodies, offering 

unique opportunities for smart medical, biological and garment-integrated 

devices. 

▪ they can be very light and can occupy a large volume (foam): these properties 

are extremely important for applications, such as aerospace devices, air force 

items and airplane components. 

 

1.3. Shape Memory Polymers 

As mentioned above, shape memory polymers (SMPs) have drawn increasing 

attention because of their scientific and technological significance. Shape memory 

polymers represent one of the most active areas in material science due to their 

easier processability, light weight and lower cost when they are compared with shape 

memory alloys or ceramics. Polymers offer extra advantages due to the fact that they 

may be biocompatible, nontoxic and biodegradable. SMPs are a promising class of 

smart materials which are able to change their shape in a predefined way under an 

appropriate external stimulus, such as heat, light, pressure, electrical field, magnetic 

field, pH, solvent, etc. 8,15,26,34,44. The first shape memory polymer was developed by 

the CDF Chimie Company (France) in 1984 under the trade name of Polynorbornene 

38,39 and was commercially available in the same year by Nippon Zeon Company of 

Japan under the trade name of Norsorex 45. However, its application has been limited 

by its poor processibility. After that, lot of works have been done and various kinds 

of SMPs have been reported and developed.  

A single polymer chain cannot present shape memory effect, because it is not 

a specific material property of the macromolecular chain. The shape memory effect 

(SME) results from a combination of the overall polymer structure and morphology, 

together with the applied processing technology. In a macroscopic sense, a thermally 

induced shape memory effect is due to the presence of networks of polymer chains. 

These networks determine the permanent shape. The network of polymer chains 

presents a thermal transition, either a glass transition or a crystallization point, within 

which the shape memory effect is triggered. The temporary shape can be stabilized 
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via the transition that is based on these switching segments. Both the deformability 

from the permanent to the temporary shape and the recovery of the permanent 

shape, can be attributed to entropy elasticity on the molecular scale 13,46–49. 

As stated, shape memory polymers (SMPs) are a type of important stimuli-

responsive polymers that have the ability to recover their (permanent) original shape 

after a deformation into a different one (temporary shape) upon exposure to external 

stimuli, such as temperature, pH, electric or magnetic fields, light intensity, etc. A 

stable network and a reversible switching transition of the polymer are the two pre-

requisites for the shape memory effect 50–53.  

The most common SMP is designed from a polymeric material, in which the 

polymer chains are able to fix a given deformation by cooling below a certain 

transition temperature (Ttrans). The transition temperature (Ttrans) can be the glass 

transition temperature (Tg) or the melting point (Tm) of the polymer. Upon reheating 

above Ttrans, the oriented or crystalline chains in the network, restore the random 

conformation resulting in a macroscopic recovery of the original shape 54–57. The 

typical process is shown schematically in Figure 1.4. Such polymer systems consist 

of two segments or phases; one of them is a fixed phase and the other one is a 

reversible or switching phase. Figure 1.5 shows a schematic representation of the 

micromechanisms which describes the shape memory behavior. 

 

 

Figure 1.4. Schematic representation of shape memory effect (SME) 
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Figure 1.5. Micromechanism of shape memory effect of polymers  
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1.3.1. Classification of shape memory polymers 

The classification of the SMPs have been widely discussed and several authors 

have proposed different models. One of the possible classification is associated to the 

architecture of SMPs. Hu and Chen 58 proposed an overall 3D SMP architecture based 

on the development of molecular mechanisms that can describe any SMP polymer. 

In this model, SMPs consist of both netpoints and switch units (Figure 1.6).  

Relating to the nature of switching segments, the switch units are responsible 

for controlling the shape fixity and recovery upon a specific and predetermined 

external stimulus. SMPs are subdivided into different categories: SMPs with 

amorphous switching segments (Ttrans = Tg) 59–61, SMPs with crystalline switching 

segments (Ttrans = Tm) 62–65, SMPs with liquid crystallization 66–70, SMPs with 

supramolecular hydrogen bonding 71,72, SMPs with light reduced reversible network 

and percolating network in nanocomposites. In all of these systems, the entropic 

elastic force results from the polymer networks; thus, physical or chemical netpoints 

via intermolecular forces and/or covalent bonding are usually required.  

On the basis of the nature of netpoints, the netpoints of the SMPs determine 

the permanent shape, which can be formed by physical crosslinking, chemical 

crosslinking, interpenetrating network and interlocking 62,73–76. They can respond to 

a single stimulus or to multiple stimuli as a consequence of small environmental 

variations that induce macroscopic responses in the material. The driving force for 

strain recovery in SMPs is the entropic elasticity of the polymer network. The most 

common netpoints are physical and chemical crosslinking. 

On the one hand, chemical crosslinking determines the macroscopic shape of 

the polymer, while a thermal transition of the polymer segments is used as the shape 

memory switch. In comparison with physically crosslinking, the polymer networks 

based on chemical crosslinking show practically no creep, thus any irreversible 

deformation during the programming or the release progress is greatly diminished.  

Other possible classification of the shape memory polymers can be shown in 

Figure 1.7. This schematic figure presents an insight into SMPs based on structure, 

stimuli and functionality 48,77. Thus, the structure and composition of SMPs can be 

block/segmented copolymer 64,78–80, supramolecular polymer 81, polymer blends 82–

84, polymer composites 85–87, interpenetrating polymer networks (IPNs) 88, semi-IPNs 

89,90 and even crosslinked homopolymer 91,92.  
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Figure 1.6. Architecture of shape memory polymers 

 

 

Figure 1.7. Insight into SMPs based on structure, stimulus and functionality 

 



Introduction    17 

Relating to functionality, the shape memory effect (SME) of SMPs has been 

developed from different ways: the conventional one-way SME, two-way SME, triple 

shape SME and multiple shape SME. Additionally, multi-functionality can be achieved 

in SMPs, as discussed by Behl et al. 60. 

Finally, an external stimulus is needed to achieve the SME, which is used to 

trigger the strain recovery after deformation. Thus, SMPs can be classified by their 

stimulus into the following groups: thermally induced 93,94, electrically induced 95,96, 

magnetically induced 97,98, electromagnetically induced 99, pressure induced 100, 

water/solvent/moisture induced 101,102, light/radiation sensitive 103,104, and chemical 

sensitive (pH, ions, oxidation-reduction 105,106). 

The most investigated shape memory polymers are the thermo-induced SMPs. 

They can convert the thermal energy directly into mechanical work. This work focuses 

on this kind of polymers because they may be very useful in textile industry 

applications. Therefore, the actuation must be triggered by heating at around body 

temperature (37°C), e.g., the materials must change back to their permanent shape 

at approximately this temperature. 

Moreover, relating to the final product, shape memory polymers can be easily 

fabricated in different forms (Figure 1.8). Some examples are films, fibers or wires, 

yarns, powder, emulsion, chips, foams and plates. These application forms enable 

them feasibly to be incorporated with other materials to create hybrid composites. 

 

Figure 1.8. Application forms of shape memory polymers 
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1.4. Shape memory polyurethanes (SMPUs) 

This thesis has been focus on a common shape memory polymer: the 

polyurethane (PU). Shape memory polyurethanes (SMPUs) have been chosen 

because of its wide variety of applications in the footwear and textile industry. 

General considerations of polyurethanes and some other important aspects of shape 

memory polyurethanes are presented in this section. 

 

1.4.1. General considerations of polyurethanes 

More than half a century ago, plastic industries were working with 

polymerization and polycondensation processes to produce plastics. In 1937 the 

German scientist Dr. Otto Bayer, also known as “father” of polyurethane, with IG 

Farbenindustrie developed the polyurethane technology: the polyaddition reaction. 

The polyaddition of a diisocyanate to a diol in the presence of a catalyst proceeds 

completely to a polyurethane under mild conditions without the formation of 

undesired products. During World War II polyurethanes were used in small scale for 

aircraft coating, but it was not until 1952 that polyisocyanates became available in 

the market. In 1954, a commercial production of flexible foam began, based on 

toluene diisocyanate (TDI) and polyester polyols. The invention of these foams was 

thanks to water accidentally introduced in the reaction mix. These materials were 

also used to produce rigid foams, gum rubbers and elastomers. Schollenberger 

(1958) introduced the crosslinked thermoplastic polyurethane elastomers 107,108. 

Commercial use of polyurethanes in several technical areas were considered after 

1960. 

Polyurethanes (PUs) are the most versatile synthetic polymer materials that 

have been employed in diverse industrial applications for several decades. Their 

many uses range from flexible foams and rigid foams as insulation in walls and roofs, 

to thermoplastic polyurethanes used in medical devices and footwear, to coatings, 

adhesives, sealants and elastomers used on floors and automotive interiors 109–111. 

Polyurethane is a unique material that offers the elasticity of rubber combined with 

the toughness and durability of metal. Because polyurethanes are available in a very 

broad hardness range, it allows the engineer to replace rubber, plastic and metal by 

these materials. 
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1.4.2. Polyurethane structure 

Polyurethane is a multiblock copolymer having urethane bonds in its backbone. 

This polymer structure can vary its properties over a very wide range of strength and 

stiffness by modification of its three basic building blocks: the polyol, the diisocyanate 

and the chain extender. Polyurethanes are made up of hard and soft-segments. In 

other words, polyurethane is a multi-block copolymer that consists of alternating 

hard and soft-segments. A hard-segment (HS) usually consists of diisocyanate and a 

chain extender, and a soft-segment (SS) is usually made up of polyol (Figure 1.9). 

The hard and soft-segments are thermodynamically incompatible at low temperature 

resulting in the microphase separated structure (Figure 1.10). The properties of 

segmented polyurethanes depend on their structure 112. 

The polyurethanes possess enhanced mechanical, thermal and optical 

properties. These properties are related to segmented flexibility, chain entanglement, 

interchain forces and crosslinking. Some relevant properties of polyurethanes are low 

density, excellent flexibility, shape memory, high abrasion resistance, corrosion 

resistance, high elongation at break, weathering durability, high elasticity, anti-

aging, good processability, high impact strength, excellent gloss, transparency, 

controllable hardness, high biocompatibility and biostability, excellent blood 

compatibility and good low temperature flexibility 113–116. The structure of 

polyurethanes can be modified according to the preferred application requirements. 

Therefore, choice of reactants, their ratio as well as the synthesis methods are 

important for PU design. In this way, PUs have been tailored to meet the highly 

diversified demands of modern technologies. 

There are also some major disadvantages associated with PUs in terms of high 

temperature applications. PUs have some drawbacks, for example, insufficient tensile 

strength and thermal stability in a high temperature working environment with low 

anticorrosive properties 117. PUs are highly flammable in these conditions and have 

poor adhesion to metal surfaces 118. The poor heat resistance and the low tensile 

strength of PUs are the most known barriers for their application 119. PUs also exhibit 

poor thermal and electrical conductivity 120. The PUs limitations have led to the birth 

of nanocomposites to compensate them by addition of other materials 121. 
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Figure 1.9. Composition of polyurethane 

 

 

Figure 1.10. Polyurethane structure 

 

As indicated earlier in this chapter, the main components of polyurethanes are 

a polyol (soft-segment), a diisocyanate and a diol (hard-segment). A brief description 

is reported below. 

Polyols are the predominant reaction partners of diisocyanates. The two main 

classes of polyols are polyethers and polyesters, usually with molecular weights 

between 500 and 5000 g·mol-1. The most common polyethers are polypropylene 

glycols, polyethylene glycols, polybutadiene diols and polytetramethylene glycols. 

The polyesters include aliphatic and aromatic polyesters. Among them, the most used 
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are polyethylene adipate glycol, polyhexamethylene carbonate glycol and 

polytetramethylene adipate glycol. They are more expensive to produce and much 

more viscous than polyethers with comparable chain lengths. In both cases the 

manufacture involves the addition polymerization of the monomeric epoxide 122. 

Relating to diisocyanates, isocyanates are characterized by the percentage of 

NCO content and their functionality, which indicates how many NCO groups a 

molecule contains. There are different types of diisocyantes: aromatic, aliphatic and 

cycloaliphatic isocyanates. Aromatic isocyanates account for the vast majority of 

global diisocyanate production. Aliphatic and cycloaliphatic isocyanates are also 

important building blocks for polyurethane materials, but in much smaller degree. 

This is because the aromatically linked isocyanate group is much more reactive than 

an aliphatic one. Another reason is that aromatic isocyanates are more economical 

than the aliphatic isocyanates. The most important ones used in elastomer 

manufacture are 2,4- and 2,6-toluene diisocyanates (TDI); 4,4'-diphenylmethane 

diisocyanate (MDl) and its aliphatic analogue 4,4'-dicyclohexylmethane diisocyanate 

(HMDl); 1,5- naphthalene diisocyanate (NDI); 1,6-hexamethylenediisocyanate 

(HDI); isophorone diisocyanate (IPDI); and 3- isocyanatomethyl-3,5,5-

trimethylcyclohexyl isocyanate (TMDI) 123,124. 

The last component to form polyurethanes is the chain extender. Typical chain 

extenders are low molecular weight (Mw<400 g·mol-1) difunctional intermediates 

designed to react with the isocyanate groups to become part of the hard-segment. 

The chain extenders play a very important role. Without a chain extender, a PU 

formed by directly reacting a diisocyanate and a polyol generally has very poor 

physical properties and often does not exhibit microphase separation. The 

introduction of a chain extender may increase the HS length allowing its segregation, 

which results in good mechanical properties, such as an increase in the modulus and 

an increase in the HS glass transition temperature of the polymer. PUs chain 

extenders can be categorized into two classes: aromatic diols and diamines and the 

corresponding aliphatic ones. Examples of diol chain extenders include 1,6-

hexanediol (HD), ethylene glycol (EG), 1,4-butanediol (BD) and diethylene glycol 

(DEG). Examples of diamine chain extenders include 2,5-bis-(4-aminophenylene-

1,3,4-oxadiazole) (DAPO), 4,4’-diamino-dibenzyl (DAB), 2,6-diaminopyridine (DAPy) 

or 4,4’-methylene-diamine (MDA) 125,126. 
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Other important aspect to be taken into account in polyurethanes is the way to 

synthesize them. PUs microstructure and its mechanical behavior are strongly 

dependent on the employed synthesis method. There are two methods of reaction 

control: the components being allowed to react either simultaneously (“one shot 

process”) or successively in two stages (prepolymer process) 127,128.  

In the one shot polyaddition procedure all reagents (polyol, diisocyanate and 

chain extender) are added at once during the initial reaction. Although this is a 

commonly used industrial technique, this procedure does not have the control 

required to yield regular block sequences. However, the process is faster, easier and 

more reproducible and can be used to best advantage where the reaction rates of 

the diol components with the diisocyanate are comparable. 

In contrast, in the prepolymer method, in the first step of the reaction a 

prepolymer is produced through the reaction of a polyol with an excess of 

diisocyanate, followed by a chain extension with a chain extender to form the HS and 

also to increase the overall molecular weight of the polymer. The PUs obtained via 

the prepolymer method are statistically more regular in the chain sequence of 

polyester-diisocyanate-glycol-diisocyanate-polyester, whereas PUs obtained by using 

the one shot process (assuming the polyester and the glycol are of equal activity) 

have a more random sequence 129. 

 

1.4.3. Shape memory polyurethanes 

Shape memory polyurethanes (SMPUs) are a class of polyurethanes that are 

different from conventional ones. SMPUs exhibit a hard-segment phase and a soft-

segment phase, forming a two-phase heterogeneous structure and morphology. In 

order to show good shape memory properties, the hard segment content in the 

SMPUs must be high enough to inhibit the plastic flow of the chains by forming 

physical crosslinks that are responsible for memorizing the primary shape. 

Since the discovery of the shape memory effect (SME) in polyurethanes  by 

Mitsubishi Heavy Industry (MHI) in 1988 130, extensive research on SMPUs has been 

carried out, resulting in the most systematic knowledge on SMPs. The advantage of 

the shape memory polyurethanes is the flexibility that the polyurethane chemistry 

provides in designing materials with a wide range of phase transition temperature. 
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In addition, these polyurethanes are thermoplastic polymers that provide a significant 

improvement to be processed 27. 

Thus, a wide variety of polyurethanes can be synthesized with different types 

of molecular architectures just by manipulating their composition and choosing 

properly the chemical structure of their components, which in turn would be beneficial 

for their different applications 131,132. Among them, the textile finishing, adhesives, 

coatings, automotive, furniture, construction, thermal insulation and footwear 

industries are the most important 133,134. 

For example, shape memory polymers yield intelligent textiles that exhibit 

unique responses to environmental changes. In the history of humans, textiles have 

been the driving force to industrialization. Now it seems that smart textiles and 

intelligent clothing could play an important role again when developing smart 

materials for all round applications. 

 

1.5. SMPs applications 

Shape memory polymers can be widely used in many areas such as adaptive 

biomedical devices, cell growth, aerospace, functional textiles, footwear, energy, 

bionics engineering, electronic, civil engineering, toys, pipe joints, utensils, 

cosmetics, products for rest, adhesives, films for packaging, household products, etc. 

These examples cover only a small number of the possible applications of shape 

memory technology, which shows potential in numerous other applications. In fact, 

there is a need for a comprehensive review of SMPs to provide some guidance for 

people who initiate in this field and to stimulate more meaningful work for people in 

the area in the years ahead. Figure 1.11 summarizes the most common applications 

of SMPs 135–141. It is difficult to extensively explain all the applications. Therefore, as 

this work focuses on the textile and footwear applications of SMPUs, only some 

relevant examples about these applications are described in this section.  

In recent years, significant progresses have been achieved in the area of 

technical textiles. Fibers, yarns, fabrics and other structures with added value 

functionality have been successfully developed for high performance end uses. 

Technical textiles have been promoted as alternative materials for a limitless range 

of applications, including engineering, automotive industry, aerospace and medical 
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industry. In textile industry, rapid progresses in high performance materials have 

attracted a lot of interest for the sports and protective clothing industry. The clothing 

industry can potentially be revolutionized with the commercialization of the latest 

‘smart’ textiles research. Numerous SMPs have been commercialized in large scales 

such as polyurethanes (DiAPLEX, SMP Technologies Inc., originally from Mitsubishi 

Heavy Industries), polystyrene based SMPs (Veriflex, Verilyte, Veritex, Cornerstone 

Research Group, Inc.), aliphatic polyurethanes (Tecoflex, Lubrizol Advanced 

Materials), epoxy based SMPs (TEMBO, Composite Technology Development, Inc.), 

and UV curable polyurethanes (NOA-63, Norland Products Inc.) 142. 

 

 

Figure 1.11. Some applications of shape memory polymers 



Introduction    25 

For example, when a piece of fabric is sewn with a conductive yarn or the entire 

fabric piece is conductive itself, it allows the designer to integrate all sorts of electrical 

components onto it. These results can be used to create interactive fashion clothing 

that demonstrate the capabilities of textiles integrated with electronics (Figure 1.12). 

 

 

Figure 1.12. Smart textiles 

 

As it is known, many materials are never further developed and remain in the 

prototype or research stage. This usually happens when the costs are very high, and 

causes a poor reception from the design world and commercial market. On the 

contrary, these smart material systems are adapted more easily because are not 

expensive materials since are composed by a simple base material and some 

integrated electronics. Examples range from smart products that make use of 

integrated sensors to a couple of products in which an actual intrinsic smart material 

is used. Thus, the shape memory textile created by Mariëlle Leenders 143, “Curious 

collections”, is a piece of clothing that shrinks up its lower part when a temperature 

of around 45ºC is reached. Imagine a hot summer or an increasing body temperature 

due to perspiration and your shirt helping you to cool by opening up (Figure 1.13). 
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Figure 1.13. Shape memory textile by Mariëlle Leenders. 

 

Linda Worbin 144 is a senior lecturer in Textile Design at the Swedish School of 

Textiles who exhibited a collection of smart textile samples. In the collection, Worbin 

et al. 145 created qualities such as color changing textiles (due to temperature or light 

conditions), lighting textiles (light transporting and emitting textiles, etc.), and 

conductive textiles (for example to be used as sensors, heat emitters or for 

transporting electricity). To begin with the collection, they met industrial 

requirements and limitations to spark a discussion and to make users see the actual 

textile material as a design tool. By creating a collection of smart textile samples, a 

possibility arose for other disciplines to work with smart textile materials. The goal 

was to collect feedback on how these new textile qualities can be used and to further 

develop textiles for different areas and for a variety of applications. They wanted to 

know if smart textile materials gain from being developed from a more craft based 

perspective in the next phase (Figure 1.14). 

 

Figure 1.14. Smart textiles. Photo: Linda Worbin 
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Other example of the use of smart textiles is the black air dress. For the black 

air dress and its white counterpart, the white air dress, Hertenberger et al. 146 were 

inspired by inflatable life-jackets. By the release of gaseous carbon dioxide, the collar 

or back of the dress is inflated to form a pillow. This allows the wearer to lean against 

a wall or another person to rest while waiting for the train or the arrival of a friend. 

The white air dress also lights up to invite other people to use the pillow. The idea 

behind inflatables is philosophical but also very practical. Some people get very 

stressed in a crowded space. The concept of their inflatable garments helps create 

instant private space around you, said Marta Kisand (one member of the group). 

Strips of textile from the dress were displayed in the exhibition, allowing visitors to 

try out the various color combinations available (Figure 1.15). 

 

Figure 1.15. Exhibition footage: Photo: Jan Berg  
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1.6. Objectives and outline of the report 

Shape memory polymers are expected to have a prominent role in the future. 

Therefore, this research project tries to reach a wide understanding about shape 

memory polymers, specifically shape memory polyurethanes (SMPUs), to create new 

materials with novel functionalities involved in footwear and textile industry. For this 

reason, this doctoral Thesis was realized in collaboration between The Footwear 

Technology Center of La Rioja (CTCR) in Arnedo and the University of the Basque 

Country (UPV/EHU) in Leioa.  

The overall objective of this work is the study, synthesis and characterization 

of new SMPUs in order to develop fabrics capable of modify their shape against an 

external stimulus: changes in temperature. Thus, it is necessary to acquire and 

generate novel significant knowledge in the polyurethane synthesis and finally, to 

create new shape memory fibers and fabrics from the developed SMPUs to be 

industrially applied in both textile and footwear fields. For this purpose two polyols 

(poly(ethylene glycol), PEG, and poly(oxytetramethylene) glycol, PTMG), two 

isocyanates (4,4’-methylene diphenyl diisocyanate, MDI, and 2,4-toluene 

diisocyanate, TDI) and a chain extender (1,4-butanediol, BD) were selected. As 

synthesis method, the prepolymer method was chosen. Moreover, relevant shape 

memory properties such as themogravimetric behavior, thermomechanical 

properties, permeability and shape memory effect were characterized. 

Obviously, to achieve this overall objective it is essential to organize the work 

in clearly and defined specific technical objectives: 

• To acquire and generate novel knowledge about the synthesis of shape 

memory polyurethanes and the technologies required to obtain them. 

• Synthesis and characterization of different shape memory polyurethanes 

obtained from the chosen reagents: PEG, PTMG, MDI, TDI, BD and mixtures 

of them. To verify the mechanical and thermal properties and shape 

memory behavior of every developed SMPUs. To optimize the synthesis 

procedure to get SMPUs with a transition temperature near the body 

temperature (~ 37ºC). 
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• To develop fibers with the optimized shape memory polyurethanes and to 

characterize them. Finally, with these fibers, to make fabrics in order to be 

tested in textile industry. 

The content of the chapters, their main objectives and hypotheses, are 

summarized as follows (Figure 1.16). 

Chapter I presents a brief description of the state of art of smart materials, an 

overview on the most important research issues of shape memory polymers, their 

applications and the principal objectives of the doctoral Thesis. Specifically, in this 

chapter, conceptualization, antecedents and applications of shape memory materials 

are reviewed. This chapter is the starting point of the present guide research 

throughout the following chapters. 

Chapter II introduces the materials, the synthesis mechanism performed in this 

work and the characterization techniques. Characterization techniques were firstly 

used to check the success of the SMPUs synthesis reaction, secondly to test the most 

relevant mechanical and thermal properties and, finally, to analyze the shape 

memory behavior of the developed polyurethanes. 

In Chapter III, Attenuated Total Reflectance (ATR) was used to assess the 

extent of the reaction between the isocyanate and hydroxyl groups, i.e., to confirm 

that the isocyanate groups were completely reacted. Moreover, thermal properties 

as the glass transition temperature (Tg) and the initial temperature of the degradation 

were measured by Differential Scanning Calorimetry (DSC) and Thermogravimetric 

Analysis (TGA), respectively. Finally, the thermomechanical behavior of shape 

memory polyurethanes was analyzed by Dynamic Mechanical Analysis (DMA) and 

tensile stress-strain tests. 

In Chapter IV, the shape memory behavior of all polyurethanes was evaluated 

by thermomechanical analysis (TMA). Shape fixity and shape recovery ratios were 

calculated from some parameters, defined in this chapter, such as the maximum 

strain, the strain fixed and the residual strain. Finally, in some selected samples, the 

repeatable shape recovery ability was tested by six subsequent shape recovery 

cycles. 

Chapter V focuses on permeability behavior exclusively. In this chapter the 

water vapor transmission rate (WVTR), the oxygen permeability (PO2) and the 

limonene vapor transmission rate (LVTR) are studied. 
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In Chapter VI, attention is paid to direct applications. Fibers and fabrics created 

(this work was performed at the University of Borås, Sweden) from some selected 

shape memory polyurethanes synthesized previously in the laboratory (those with 

glass transition temperatures near body temperature) were characterized by DSC, 

TGA, DMA, TMA, etc.  

Finally, in the Chapter VII, general conclusions and the most significant results 

of each chapter are summarized. All results are integrated in order to move one step 

forward in the understanding of shape memory polyurethanes and their application 

in textile and footwear fields. At last, weakness, strengths and challenges for future 

research are also presented. 
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Figure 1.16. Thesis overview goal  
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Chapter II 

MATERIALS, SYNTHESIS AND 

EXPERIMENTAL TECHNIQUES 

 
 

2.1. Materials 

olyurethane elastomers (PUs) are formed typically by reacting 

together three chemical constituents: a diisocyanate (aromatic or 

aliphatic), a long-chain diol (or “macrodiol”), and a small molecule 

called chain-extender that can be a diol or a diamine. The resulting 

polymer may be considered as a copolymer with macrodiol and 

diisocyanate-chain extender sequences, named soft-segment (SS) and hard-

segment (HS), respectively (Figure 2.1) 1–5. 

In this work, all the cured polyurethane elastomers were made from three main 

components that are detailed in Table 2.1. Thus, three polyols (PEG, PTMG-650, 

PTMG-1000), two isocyanates (MDI, TDI) and a chain extender (BD) were used. 

P 
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Moreover, in some polyurethanes, titanium oxide (TiO2) nanoparticles were 

used as fillers in order to check their influence in the properties of the polyurethanes. 

 

 

Figure 2.1.Typical repetitive structure of the polyurethane elastomers 

 

Table 2.1. Main polyurethane components 

Reagents 

Polyols 

Poly(oxytetramethylene) glycol (PTMG-650) 

Poly(oxytetramethylene) glycol (PTMG-1000) 

Poly(etylene glycol) (PEG) 

Diisocyanate 
2,4-toluene diisocyanate (TDI) 

4,4’-methylene diphenyl diisocyanate (MDI) 

Chain extender 1,4-butanediol (BD) 

Other chemicals Nanoparticles (TiO2) 

 

2.1.1. Polyols 

Flexibility in polyurethanes is provided by the backbone or “soft-segment.” 

Polyols, the soft-segment of the polymer, are capped with a hydroxyl group. Unless 

there are special requirements, these polyols must be linear (i.e., no branching) and 

with a molecular weight between 400 and 7000 g·mol-1. The overall molecular weight 

of the soft-segment controls the frequency of the hard phase and hence the hardness, 

resilience, and stiffness of the final polyurethane. The lower the molecular weight of 

the polyol, the higher the occurrence of the hard phase. There are two main groups 

of polyols used to make polyurethanes: polyethers and polyesters 6,7. Thus, in this 

work, two different polyols were used: poly(oxytetramethylene) glycol (PTMG) with 
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two different molecular weight (Mn = 650 g·mol-1 and Mn = 1000 g·mol-1) and 

poly(ethylene glycol) (PEG, Mn = 1000 g·mol-1) (Figure 2.2).  

 

(a) 

 

(b) 

 

Figure 2.2. Molecular structure of poly(oxytetramethylene) glycol (a) and poly(ethylene 

glycol) (b) 

 

All these raw materials were purchased from Sigma-Aldrich and were used as 

received. Properties of the three polyols are presented in Table 2.2.  

 

Table 2.2. Properties of polyols 

 PTMG (650) PTMG (1000) PEG 

Mn (g·mol-1) 650 1000 1000 

Vapor Pressure 
<0.01 mm Hg 

(25°C) 

<0.01 mm Hg 

(25°C) 

<0.075 mm Hg 

(20°C) 

Melting point (ºC) 11-19 25-33 33-40 

Density (g·cm-3) 0.978 at 25°C 0.974  25°C 1.2 at 20°C 

 

 

2.1.2. Diisocyanates 

The major polyisocyanates usually employed for the synthesis of polyurethanes 

are 2,4-toluene diisocyanate (TDI) and 4,4’-methylene diphenyl diisocyanate (MDI) 

in oligomeric type. Their chemical structures are shown in Figure 2.3. 
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(a)  

 

(b) 

 

 

Figure 2.3. Molecular structure of 2,4-toluene diisocyanate (a) and 4,4′-methylene diphenyl 

diisocyanate (b) 

 

On the one hand, TDI is manufactured by phosgenation of diaminotoluene, 

which is obtained by reduction of nitrotoluene. Commercial products of TDI are 

mixtures of 2,4- and 2,6-isomers in the weight ratio of 80/20 or 65/35. TDI with 

80/20 isomer ratio was used in this work. On the other hand, MDI is obtained by the 

phosgenation of the condensation product of aniline with formaldehyde. MDI is mainly 

4,4′-isomer based and has small quantities of the 2,2′-isomer and up to 10% of the 

2,4-isomer. Its average functionality is in a range of 2.3 to 3.0 8,9. 

In this work, 2,4-toluene diisocyanate (TDI) and 4,4′-methylene diphenyl 

diisocyanate (MDI) were used as received from Sigma-Aldrich and kept in the 

refrigerator and freezer, respectively. Their physical properties are shown in Table 

2.3. 

 

Table 2.3. Properties of diisocyanates 

 TDI MDI 

Mn (g·mol-1) 174.16 250.25 

Melting point (ºC) 19.5-21.5 42-45 

Density (g·cm-3) 1.21 at 20°C 1.18 at 25°C 

Storage temperature (ºC) 2-8 -20 
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2.1.3. Chain extender  

Low molecular weight diols such as ethylene glycol, diethylene glycol, 1,3-

propylene glycol or 1,4-butanediol (Figure 2.4) are usually used as chain extenders. 

In this case, 1,4-butanediol (BD) was used to synthesize polyurethanes and was dried 

under vacuum for 3 h at 65oC before using (see properties on Table 2.4) 6,10.  

 

 

Figure 2.4. Structure molecular of 1,4-butanediol 

 

Table 2.4. Properties of diol 

 1,4-BD 

Mn (g·mol-1) 90.12 

Melting point (ºC) 16 

Density (g·cm-3) 1.017 

 

2.1.4. Nanoparticles 

Some of the shape memory polyurethanes (SMPUs) were also synthesized with 

TiO2 nanoparticles in order to provide them better and novel properties. These 

nanoparticles have been kindly purchased by L ́Urederra Technological Centre 

(Spain). The morphology of these nanoparticles has been analyzed by Transmission 

Electron Microscopy (TEM), using an equipment PHILIPS EM208S with Morada digital 

camera and PHILIPS CM120 biofilter with STEM module and elemental mapping and 

filtering of images via EELS (Figure 2.5).  

By TEM it is possible to obtain a quantitative measure about the grain size, 

the size distribution (Figure 2.6) and the morphology of these nanoparticles. 

Therefore, it can be observed that TiO2 nanoparticles own a spherical structure, with 

a width of particle size distribution between 10-30 nm and a mean value of 16-17 nm. 
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Figure 2.5. TEM of TiO2 nanoparticles 
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Figure 2.6. Distribution of particle size of TiO2 nanoparticles 
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2.1.5. DIAPLEX 

Diaplex is a commercial shape memory polyurethane, as mentioned in Chapter 

I, supplied by a Japanese Company called ‘SMP Technologies’. Diaplex is the newly 

developed intelligent material which changes its features according to temperature. 

In this thesis, DIAPLEX MM4520 was used to compare with different polyurethanes 

synthesized in laboratory. 

 

2.2. Synthesis of polyurethanes 

All SMPUs were synthesized by a two-step method (prepolymerization method), 

as described in Chapter I, varying the relationship between the hard-segment / soft-

segment content between approximately 25 and 75%. Briefly, SMPUs were prepared 

by the reaction of stoichiometric amounts of polyol / diisocyanate / chain extender 

with block ratios of 1:n+1:n (where n, the mole ratio of reactants, was kept between 

0.5 and 6.5). Therefore, the hard-segments of the SMPUs were composed of MDI, 

TDI or a 50% weight mixture between MDI and TDI; the chain extender was 1,4-

butanediol (BD); and the soft-segments were composed of PEG or PTMG with two 

different molecular weights (Mn): 650 g·mol-1 or 1000 g·mol-1.  

Once the reaction temperature and the reaction time were optimized, both the 

followed procedure and the experimental conditions were kept the same for all the 

polyurethane syntheses (view Table 2.5) 11. The reaction scheme for the synthesis is 

shown according to the route outlined in Figure 2.7 12,13.Tables 2.6, 2.7, 2.8 and 2.9. 

show the different shape memory polyurethanes that were synthesized in this thesis. 

 

Table 2.5. Experimental conditions for polyurethane syntheses 

Experimental conditions 

Nitrogen atmosphere 

Ratio  Polyol:Diisocyanate:diol  1:n+1:n (n: 0.5-6.5) 

Reaction temperature 70ºC 

Reaction time 2 h 
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Figure 2.7. Synthetic route for shape memory polyurethanes 

 

Table 2.6. Summary of the SMPUs based on PEG (n represents the molar ratio) 

  
Composition of polyurethane 

(1:n+1:n) 
  

System & Sample PEG TDI MDI BD %HS %SS 

S1 

PEGTDI_3.5 1 4.5 0 3.5 52.4 47.6 

PEGTDI_4.5 1 5.5 0 4.5 64.1 35.9 

PEGTDI_5.5 1 6.5 0 5.5 68.0 32.0 

S2 

PEGMDI_2 1 0 3 2 48.2 51.8 

PEGMDI_3 1 0 4 3 56.0 44.0 

PEGMDI_4 1 0 5 4 61.7 38.3 
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Table 2.7. Summary of the SMPUs based on PTMG 650 (n represents the molar ratio) 

  
Composition of polyurethane 

(1:n+1:n) 
  

System & Sample PTMG TDI MDI TDI/MDI* BD %HS %SS 

S3 

PTMG650TDI_2.5 1 3.5 0 0 2.5 62.9 37.1 

PTMG650TDI_3 1 4 0 0 3 66.2 33.8 

PTMG650TDI_3.5 1 4.5 0 0 3.5 68.9 31.1 

PTMG650TDI_4 1 5 0 0 4 71.3 28.7 

PTMG650TDI_4.5 1 5.5 0 0 4.5 73.3 26.7 

PTMG650TDI_5 1 6 0 0 5 75.0 25.0 

PTMG650TDI_5.5 1 6.5 0 0 5.5 76.6 23.4 

S4 

PTMG650MDI_0.5 1 0 1.5 0 0.5 39.3 60.7 

PTMG650MDI_1 1 0 2 0 1 47.6 52.4 

PTMG650MDI_1.5 1 0 2.5 0 1.5 53.9 46.1 

PTMG650MDI_2 1 0 3 0 2 58.9 41.1 

PTMG650MDI_2.5 1 0 3.5 0 2.5 62.9 37.1 

PTMG650MDI_3 1 0 4 0 3 66.2 33.8 

PTMG650MDI_3.5 1 0 4.5 0 3.5 68.9 31.1 

PTMG650MDI_4 1 0 5 0 4 71.3 28.7 

PTMG650MDI_4.5 1 0 5.5 0 4.5 73.3 26.7 

S5 

PTMG650MDITDI_1.5 1 - - 2.5 1.5 50.6 49.4 

PTMG650MDITDI_2 1 - - 3 2 55.7 44.3 

PTMG650MDITDI_2.5 1 - - 3.5 2.5 59.8 40.2 

PTMG650MDITDI_3 1 - - 4 3 63.3 36.7 

PTMG650MDITDI_3.5 1 - - 4.5 3.5 66.2 33.8 

*50% weight of TDI and 50% weight of MDI 
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Table 2.8. Summary of the SMPUs based on PTMG 1000 (n represents the molar ratio) 

  
Composition of polyurethane 

(1:n+1:n) 
  

System & Sample PTMG TDI MDI TDI/MDI* BD %HS %SS 

S6 

PTMG1000TDI_2.5 1 3.5 0 0 2.5 52.4 47.6 

PTMG1000TDI_3 1 4 0 0 3 56.0 44.0 

PTMG1000TDI_3.5 1 4.5 0 0 3.5 59.0 41.0 

PTMG1000TDI_4 1 5 0 0 4 61.7 38.3 

PTMG1000TDI_4.5 1 5.5 0 0 4.5 64.1 35.9 

PTMG1000TDI_5 1 6 0 0 5 66.1 33.9 

PTMG1000TDI_5.5 1 6.5 0 0 5.5 68.0 32.0 

PTMG1000TDI_6.5 1 7.5 0 0 6.5 71.1 28.9 

S7 

PTMG1000MDI_0.5 1 0 1.5 0 0.5 29.6 70.4 

PTMG1000MDI_1 1 0 2 0 1 37.1 62.9 

PTMG1000MDI_1.5 1 0 2.5 0 1.5 43.2 56.8 

PTMG1000MDI_2 1 0 3 0 2 48.2 51.8 

PTMG1000MDI_2.5 1 0 3.5 0 2.5 52.4 47.6 

PTMG1000MDI_3 1 0 4 0 3 56.0 44.0 

PTMG1000MDI_3.5 1 0 4.5 0 3.5 59.0 41.0 

PTMG1000MDI_4 1 0 5 0 4 61.7 38.3 

PTMG1000MDI_4.5 1 0 5.5 0 4.5 64.1 35.9 

S8 

PTMG1000MDITDI_3.5 1 - - 4.5 3.5 44.0 56.0 

PTMG1000MDITDI_4 1 - - 5 4 41.3 58.7 

PTMG1000MDITDI_4.5 1 - - 5.5 4.5 38.9 61.1 

PTMG1000MDITDI_5 1 - - 6 5 36.7 63.3 

PTMG1000MDITDI_5.5 1 - - 6.5 5.5 34.8 65.2 

PTMG1000MDITDI_6 1 - - 7 6 33.0 67.0 

*50% weight of TDI and 50% weight of MDI 
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Table 2.9. Summary of the SMPUs synthesized with nanoparticles (n represents the molar 

ratio) 

 
Composition of polyurethane 

(1:n+1:n) 
  

System & Sample PTMG TDI/MDI* BD TiO2 %HS %SS 

S9 

PTMG650MDITDI_1.5_1 1 2.5 1.5 1 50.6 49.4 

PTMG650MDITDI_2_1 1 3 2 1 55.7 44.3 

PTMG650MDITDI_2.5_1 1 3.5 2.5 1 59.8 40.2 

PTMG650MDITDI_3_1 1 4 3 1 63.3 36.7 

PTMG650MDITDI_3.5_1 1 4.5 3.5 1 66.2 33.8 

S10 

PTMG1000MDITDI_3.5_1 1 4.5 3.5 1 44.0 56.0 

PTMG1000MDITDI_4_1 1 5 4 1 41.3 58.7 

PTMG1000MDITDI_4.5_1 1 5.5 4.5 1 38.9 61.1 

PTMG1000MDITDI_5_1 1 6 5 1 36.7 63.3 

PTMG1000MDITDI_5.5_1 1 6.5 5.5 1 34.8 65.2 

PTMG1000MDITDI_6_1 1 7 6 1 33.0 67.0 

S11 

PTMG1000MDITDI_3.5_3 1 4.5 3.5 3 44.0 56.0 

PTMG1000MDITDI_4_3 1 5 4 3 41.3 58.7 

PTMG1000MDITDI_4.5_3 1 5.5 4.5 3 38.9 61.1 

PTMG1000MDITDI_5_3 1 6 5 3 36.7 63.3 

PTMG1000MDITDI_5.5_3 1 6.5 5.5 3 34.8 65.2 

PTMG1000MDITDI_6_3 1 7 6 3 33.0 67.0 

*50% weight of TDI and 50% weight of MDI 

 

The synthesis was carried out in a 150 mL 5-neck round-bottom flask heated 

at 70ºC in an oil bath, equipped with a mechanical stirrer and a nitrogen inlet (Figure 

2.8). In the first step, the polyol (PEG or PTMG) was added into the dried reactor, 

and after 30 min under nitrogen atmosphere, MDI and/or TDI was added dropwise. 

The reaction continued at 70ºC for 2 hours to obtain a –NCO terminated prepolymer. 

In the case of polyurethanes with nanoparticles, TiO2 was put into the reactor 1 hour 
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after adding the diisocyanates. Moreover, a vigorous nitrogen flow has been used to 

prevent the reaction of the isocyanate groups with air moisture 14,15.  

 

 

Figure 2.8. Equipment for synthesis of shape memory polyurethanes 

 

In the second step, the BD chain extender was added dropwise into the reaction 

system. The reaction mixture was continuously stirred between 2 or 5 minutes 

(depending on the reagents) until a significant increase in viscosity was detected. 

Then, the viscous mixture was poured into a preheated stainless steel mold at 100ºC, 

and put into a hydraulic press overnight (Figure 2.9) to obtain the final polymer. 

Thus, SMPUs sheets were manufactured by compression molding under a pressure 

of 150 bar. Two teflon sheets were placed on both sides of the mold to reduce the 

surface roughness of the obtained SMPUs. After curing, the obtained specimens were 

cooled to room temperature in the mold under constant pressure (Figure 2.10). The 

specific routes of synthesis are drawn in Figures 2.11, 2.12 and 2.13, for the 

polyurethanes with TDI, with MDI and with a mixture of MDI and TDI, respectively 

16,17. 
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Figure 2.9. Hydraulic press 

 

  

Figure 2.10. Steel molds and final polyurethanes 
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Figure 2.11. Specific route of SMPU synthesis with TDI as diisocyanate 
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Figure 2.12. Specific route of SMPU synthesis with MDI as diisocyanate 
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Figure 2.13. Specific route of SMPU synthesis with a mixture of TDI and MDI as 

diisocyanate 
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2.3. Characterization techniques 

The most important characterization techniques are presented in this section 

such as attenuated total reflectance (ATR), thermogravimetric analysis (TGA), 

differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) or 

thermomechanical analysis (TMA). All of these techniques were used to analyze the 

shape memory polyurethanes (SMPUs).  

 

2.3.1. Attenuated total reflectance (ATR) 

ATR is an infrared (IR) sampling technique that provides excellent quality data 

in conjunction with the best possible reproducibility of any IR sampling technique. It 

has revolutionized IR solid and liquid sampling, eliminating in many cases the need 

for sample preparation or at least simplifies the procedures, improving sample-to-

sample reproducibility and minimizing user to user spectral variation. An attenuated 

total reflection accessory operates by measuring the changes that occur in a total 

internal reflected infrared beam when the beam comes into contact with a sample. 

An infrared beam is directed onto an optically dense crystal with a high refractive 

index at a certain angle. This internal reflectance creates an evanescent wave that 

extends beyond the surface of the crystal into the sample held in contact with the 

crystal. 

In this work, ATR was used to assess the extent of the reaction between the 

isocyanate and hydroxyl groups so that, it could be confirmed that the isocyanate 

groups were completely reacted. It should be noted that not all the polyurethanes 

were characterized through ATR due to their unsuitable mechanical properties. This 

impediment comes from the procedure of synthesis. Thus, some MDI-based 

polyurethanes were too rigid and solid to be measured and some TDI-based 

polyurethanes were too liquid to be put into a press under pressure. 

Infrared measurements (FTIR) were performed at room temperature on a 

Nicolet Nexus FTIR spectrophotometer (Thermo Electron Corporation). The 

spectrums were obtained using an ATR tool in the range from 500 to 4000 cm-1 at a 

resolution of 4 cm-1 and 64 scans per spectrum (Figure 2.14) 18. 
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Figure 2.14. Photography of a Nicolet Nexus FTIR spectrophotometer 

 

2.3.2. Thermogravimetric analysis (TGA)  

Thermogravimetric Analysis (TGA) is a technique in which the mass of a 

substance is monitored as a function of temperature or time as the sample specimen 

is subjected to a controlled temperature program in a controlled atmosphere. 

Thermogravimetric and Derivative Thermogravimetric (DTG) analysis gives 

information about the weight loss process as well as the degradation rate (%/ºC) of 

the sample, respectively. The temperatures at the maximum degradation rate 

(dw/dt) were obtained from DTG curves. In a typical thermogram, several 

characteristics of the degradation process can be observed (Figure 2.15) 19 such as:  

-Initial temperature of the degradation process (T5%): temperature when the 

mass change reaches a value that can be detected by the thermobalance (5%). This 

temperature is the one used to establish the thermal stability of the materials. 

-Degradation process temperature (Td): it reflects the temperature when the 

maximum rate of degradation takes place. It is determined from the minimum of the 

first derivative of the thermogravimetric curve.  

-Final temperature (Tf): temperature when the mass change reaches a 

maximum value, corresponding to the complete reaction. 
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Figure 2.15. Thermogravimetric curve where the different characteristic temperatures can 

be observed 

 

Thermal stability of shape memory polyurethanes was evaluated by 

Thermogravimetric Analysis on a TGA Mettler Toledo 822e (view Figure 2.16) in 

alumina pans by heating the samples (10-15 mg) from room temperature to 800°C 

at 10°C·min-1. A nitrogen atmosphere was used to drag the gases produced in the 

measuring cell with a carrier flow rate of 50 cm3·min-1, and also another purge gas 

to protect the balance, with a flow rate of 100 cm3·min-1. 

 

 

Figure 2.16. Photography of a TGA Mettler Toledo 822e module 
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2.3.3. Differential scanning calorimetry (DSC) 

Differential Scanning Calorimetry (DSC) is one of the most effective analytical 

techniques to characterize the physical properties of polymers. DSC allows to 

determine heat capacities in both solid and liquid states, phase transition 

temperatures and the corresponding enthalpy and entropy changes as well as 

changes in heat capacity.  

Differential scanning calorimetry (DSC) is an instrument that measures the rate 

of heat evolution of absorption of a specimen while it is undergoing a programmed 

temperature rise. DSC maintains the sample and the reference at the same 

temperature through varying the heat flow linearly as a function of time. Thus, the 

reference sample should have a well-defined heat capacity over the range of 

temperatures to be scanned. 

When the differential heat flow supplied is plotted as a function of temperature, 

it is possible, after normalizing the sample mass, to obtain enthalpic information, 

such as the heat of fusion. The glass transition temperature can be defined in 

different ways. In the literature, both the onset temperature (Tonset) and the inflection 

point temperature are used to report relevant information about the polymer. These 

parameters are obtained from the thermogram from points A and B, respectively, as 

shown in Figure 2.17. One of the advantages of DSC is that samples are very easily 

encapsulated, usually with little or no preparation, ready to be placed in the DSC, so 

that measurements can be quickly and easily made 20.  

Thermal properties of all samples were measured by differential scanning 

calorimetry (DSC 822e from Mettler Toledo) (Figure 2.18) to identify the thermal 

transitions of the obtained materials. The transition temperature of shape memory 

effect (Ttrans) was defined from glass transition temperature measured in the second 

heating cycle (Tg). In all the experiments, the glass transition temperatures were 

determined by the onset method. Samples containing 10-15 mg were sealed in 

aluminum pans and were characterized under constant nitrogen flow (50 cm3·min-1). 

First, samples were equilibrated at -100°C, and then heated at a rate of 10ºC·min-1 

from -100 to 250ºC. In this first cycle, the thermal history of the sample was erased. 

It was then cooled down to -100ºC at a cooling rate of 10ºC·min-1. Subsequently, a 

second heating scan to 250ºC was conducted at the same heating rate 21,22. As in the 

TGA, this analysis was performed for all the synthesized polyurethanes and also for 

the commercial sample (DIAPLEX MM4520).  
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Figure 2.17. The onset temperature (A) and the inflection point (B) of a glass transition in a 

DSC curve 

 

 

Figure 2.18. Photography of a DSC 822e module 
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2.3.4. Dynamical Mechanical Analysis (DMA) 

Dynamic Mechanical Analysis (DMA) is a technique that is widely used to 

characterize material’s properties as a function of temperature, time, frequency, 

stress, atmosphere or a combination of these parameters.  

Dynamic mechanical analysis allows to obtain characteristic temperatures of 

polymers such as glass transition temperature (Tg) and melting temperature (Tm). 

Analyses of polyurethanes were performed on a MettlerToledo DMA1 analyzer (Figure 

2.19.a). A rectangular sample with a cross-section area of 6 mm x 1.5 mm and initial 

clamps distance of 10 mm was directly cut from the polyurethane sheet and 

measured in tensile mode. Curves displaying the storage modulus (E’) and the loss 

factor (tanδ) were recorded in the range of -100 to 150ºC at a heating rate of 

3ºC·min-1. Glass transition temperature (Tg,DMA) was determined from the maximum 

of the loss factor of the thermomechanical diagram (Figure 2.20).  

Deformation frequency of 1 Hz and displacement of 20 µm were used, which 

are found within the linear viscoelastic region (LVR) of the synthesized SMPUs 15. Test 

of polyurethane fibers were carried out in the same way on a TA-Instruments DMA 

Q800 at the University of Borås (Figure 2.19.b), but in a temperature range from -40 

to 150ºC.  

 

(a) 

 

(b) 

 

Figure 2.19. Photography of Mettler Toledo DMA1 (a) and TA-Instruments DMA Q800 (b) 
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Figure 2.20. An example of a thermomechanical curve 

 

2.3.5. Thermomechanical analysis (TMA) 

Thermomechanical Analysis (TMA) is the study of the relationships between the 

length and the temperature of a sample. A technique in which a deformation of the 

sample under non-oscillating stress was monitored against time or temperature while 

the temperature of the sample was programmed. The sample is inserted into a 

furnace and a thermocouple for temperature measurements is located near the 

sample. The sample deformation, such as thermal expansion and softening, with 

changing temperature was measured as the probe displacement by the length 

detector.  

Polyurethane is a thermally induced shape memory polymer, where the 

transition temperature corresponds with the glass transition temperature (Tg), so 

that cyclic thermomechanical experiment was designed in the stress-controlled mode 

in order to evaluate quantitatively its shape memory behavior. Schematic 

representation of thermomechanical experiment is shown in Figure 2.21. 

For thermomechanical analysis (TMA), samples were conducted in tension 

mode on the same Mettler Toledo DMA1 at a cooling rate of -20ºC·min-1 and at a 

heating rate of 4°C·min-1, in different temperature ranges depending on the system 

analyzed. This temperature range was selected according to the transition 
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temperature of shape memory effect (Ttrans) defined from the glass transition 

temperature of the sample measured by DMA. The different performed experiments 

can be appreciated in Table 2.10, where Thigh, Tlow and deformation force were 

modified in order to study how these parameters affect the fixation of the temporary 

shape 23,24. 

 

Figure 2.21. Description of thermomechanical experiment. (a) Tension at Thigh. (b) Cooling 

to Tlow at constant strain (temporary shape). (c) Unloading at Tlow. (d) Heating to Thigh at zero 

stress (shape recovery)  

 

Table 2.10. Experimental conditions to perform shape memory experiments in 

polyurethanes 

System Experiment Tlow (ºC) Thigh (ºC) F (N) 

S1 and S2 PEG -20 80 2 

S3 PTMG(650)TDI -20 80 2 

S4 PTMG(650)MDI -100 40 5, 10 

S5 PTMG650MDITDI -20 80 2 

S6 PTMG(1000)TDI -20 80 2 

S7 PTMG(1000)MDI -100 30 5, 10 

S8 PTMG1000MDITDI -20 80 2 

S9-S11 TiO2 -20 80 2 

 DIAPLEX MM4520 -20 80 1 
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Rectangular samples of about 10 mm x 6 mm x 1.5 mm were used in shape 

memory tests. TMA measurements were made following the procedure depicted in 

Figure 2.22, where the increase of the sample length is recorded as a function of 

temperature. First, the sample is heated to a desired programming temperature 

(Thigh), at least 20ºC above the glass transition temperature in order to allow 

relaxation of the polymer chains, and deformed applying a determined force, which 

depends on the system used as mentioned above. Once the sample is stretched, εm, 

the next stage consists of a cooling below transition temperature (Tlow, temperature 

under 20ºC to Tg) in order to fix the temporary shape. When the sample is unloaded 

(F = 0 N), the deformation of the sample is εu. The shape memory effect is triggered 

by heating the sample to a temperature above the transition temperature. The 

amount of non-recoverable deformation at the end of programming is εp. The fixing 

(Rf) and recovery (Rr) ratios were calculated for each sample using equations 2.1 and 

2.2. 

 

𝑅𝑓(%) =
𝜀𝑢
𝜀𝑚

· 100 (2.1) 

  

𝑅𝑟(%) =
𝜀𝑚 − 𝜀𝑝
𝜀𝑚

· 100 (2.2) 

 

Where, 𝑅𝑓 is strain fixity ratio 

𝑅𝑟 is strain recovery ratio 

𝜀𝑚 is the maximum strain applied to the material 

𝜀𝑢 is the strain of the material at Tlow after the external stress has been 

removed 

𝜀𝑝 is the residual strain at Thigh 
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Figure 2.22. Description of the method used in thermomechanical analysis 

 

2.3.6. Scanning Electron Microscopy (SEM) 

A scanning electron microscope (SEM) is a type of electron microscope that 

produces images of a sample by scanning it with a focused beam of electrons instead 

of light to form an image. A beam of electrons is produced at the top of the 

microscope by an electron gun. The electron beam follows a vertical path through 

the microscope, which is held within a vacuum. The beam travels through 

electromagnetic fields and lenses, which focus the beam down toward the sample. 

The electrons in the beam interact with the sample, producing various signals that 

can be used to obtain information. 

The morphology of SMPUs have been analyzed in a Hitachi S-4800 field 

emission scanning electron microscope (FE-SEM), an equipment located in the 

general services of the University of the Basque Country (SGIKER), Figure 2.23, at 

an acceleration voltage of 15 kV. Prior to SEM, the samples were coated with copper 

in a Quorum Q150T ES turbo-pumped sputter coater (5 nm thick coating). However, 

fibers produced by melt spinning were analyzed using an optical microscopic, a Nikon 

SMZ800. 
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Figure 2.23. Photography of Hitachi S-4800 field emission scanning electron microscope 

(FE-SEM) 

 

2.3.7. Permeability test 

In this work, permeability has been measured in different SMPUs in order to 

know the performance of this kind of polyurethanes at different temperatures. Thus, 

three different tests of permeability were realized at the Polymer Science and 

Technology Department of the University of Basque Country (UPV/EHU) in Donostia-

San Sebastian: 

- Water Vapor Transmission Rate (WVTR) 

- Permeability Oxygen Measurements (PO2) 

- Limonene Vapor Transmission Rate (LVTR) 

 

All samples of systems S4 and S7 were tested, as well as some samples of 

system S8 (PTMG1000MDITDI_4 and PTMG1000MDITDI_5) and system S10 

(PTMG1000MDITDI_4_1 and PTMG1000MDITDI_5_1). In all cases, the required 

thickness of the films was measured by a Duo Check gauge with an accuracy of 1 µm. 

The procedure is illustrated in Figure 2.24. 
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Figure 2.24. Representation of permeability through a film of shape memory polyurethane 

 

Water Vapor Transmission Rate 

The analysis of water vapor permeability was carried out with a Sartorius 

gravimetric cell. Taking into account the results obtained of time and weight gain, 

due to the water vapor that crosses the film, water vapor transmission rate (WVTR) 

values could be calculated. These data are directly related with the water vapor 

permeability. Permeability is measured in ‘g mm/m2 day’ 25. 

 

Permeability Oxygen Measurements 

The measurements were carried out using a MOCON OX-TRAN Model 2/21 gas 

permeability tester (USA) in accordance with ASTM standard D3985 and ISO 

15105-1,2. The permeability of O2 through the polyurethanes was tested at 760 

mm Hg, 0% of relative humidity and 23ºC. The permeability of oxygen is measured 

in ‘barrer’ units 26. 
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Limonene Vapor Transmission Rate 

The analysis of limonene vapor permeability was carried out with a Sartorius 

gravimetric cell, following the same procedure as water vapor transmission rate. 

Taking into account the results obtained of time and weight gain, due to the limonene 

vapor that crosses the film, limonene vapor transmission rate (LVTR) values could be 

calculated. These data are directly related with the limonene vapor permeability. 

Permeability is measured in ‘g mm/m2 day’. 

 

2.3.8. Tensile testing 

Tensile test is the application of uniaxial force to measure the performance of 

a sample up to the point of yield or breaking. In simple terms, it consists in pulling 

the sample out in a straight line and analyzing how it behaves. Even where 

performance to ultimate failure is not required, characteristics of elongation, 

deformation and relaxation can be accurately recorded, as in elastomers and springs.  

Some dog-bone shaped specimens (25 mm x 4 mm x 1 mm) of shape memory 

polyurethanes (Figure 2.25) were tested on a Shimadzu Autograph at the Basque 

Center for Materials, Applications and Nanostructures in Derio (Figure 2.26.a) using 

a 500 N load cell at a stretching speed of 2.5 mm·min-1 and at room temperature, 

over 5 specimens per SMPU 27. Different parameters have been calculated for all 

samples such as Young’s modulus (E’), stress and strain at yield (σy, εy) or stress and 

strain at break (σb, εb).  

 

 

Figure 2.25. Example of a dog-bone shaped specimen 

 

Moreover, fibers of shape memory polyurethanes were also measured by a 

tensile machine. The tensile tests were carried out according to ISO 527 standard in 

a Tinius Olsen H10KT testing machine at the University of Borås (Figure 2.26.b) with 

an extensometer to measure the strain. Five dumbbell-shaped specimens were 
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examined for each sample in the machine direction of the fibers at room temperature. 

The gauge length was 100 mm while the test speed was 10 mm·min-1. The capacity 

of used load cell was 10 N.  

 

(a) 

 

(b) 

 

Figure 2.26. Photography of Shimadzu Autograph (a) and Tinius Olsen H10KT (b)  
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Chapter III. 

RESULTS AND DISCUSSION.   

I. CHARACTERIZATION 

 
 

3.1. Introduction  

ll shape memory polyurethanes synthesized in this work were 

characterized by multiple different techniques in order to define their 

properties properly. In this chapter, the physico-mechanical 

characterization is studied. In next chapters, Chapter IV and Chapter 

V, the shape memory behavior and the permeability behavior will be 

studied, respectively. Thus, attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR) was used in order to follow and control the reaction for the 

formation of polyurethanes. Moreover, thermal stability was studied by 

thermogravimetric analysis (TGA), whereas transition temperatures, which 

correspond with the glass transition temperatures, were determined by differential 

scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Finally, 

A 
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mechanical properties were analyzed by tensile tests and scanning electron 

microscopy (SEM) was used to study the morphology of the polyurethanes. 

 

3.2. Attenuated total reflectance (ATR) 

All shape memory polyurethanes were analyzed by attenuated total reflectance 

(ATR). ATR-FTIR was used to assess the extent of the reaction between the 

isocyanate and the hydroxyl groups 1–3. The major benefit of ATR is the ability to 

measure a wide variety of solid and liquid samples without requiring complex 

preparations. This technique consists of a beam of infrared light passing through an 

ATR crystal, which comprises an IR transparent material with a high refractive index 

and polished surfaces 4. In this work, infrared spectra were collected on a Nicolet 

Nexus FTIR spectrophotometer. The spectra were obtained using an ATR tool in the 

range from 500 to 4000 cm-1 at a resolution of 4 cm-1 and 64 scans per spectrum, as 

mentioned in Chapter II.  

In Table 3.1, the typical band assignment for all the polyurethanes synthesized 

in the laboratory is presented. Moreover, Figure 3.1 shows the typical spectrum for 

this kind of polyurethanes, specifically, for the sample PTMG1000MDI_2.5. Chemical 

structure of all the resultant SMPUs was fully confirmed 5–7. 

The stretching band corresponding to the isocyanate group was not found at 

2270 cm-1, indicating that the initial isocyanate groups have reacted completely 

during the synthesis 8–12. Furthermore, in Figure 3.1 it can be observed, for the 

isocyanate segments, the symmetric and asymmetric stretching vibrations of N-H 

corresponding to the broad absorption bands near 3320 cm-1; the medium-strong 

peak at 1590 cm-1 which confirms the in-plane bending vibration of N-H; the sharp 

absorption peaks around 1730-1700 cm-1 which are typical for the stretching 

vibration of esters C=O (NHCOO stretching combined with ester COO stretching); the 

1220 cm-1 absorption peak caused by the vibration of C=C in benzene ring; and 

several weak peaks near 900-700 cm-1 that belong to out-of-plane bending vibration 

of C-H in multisubstituted benzene ring. On the other hand, Figure 3.1 shows, for the 

soft-segment polyether polyols, the peak groups near 2940 to 2850 cm-1 caused by 

the stretching vibration of C-H2, and the broad and strong peak at 1100 cm-1 from 

the ether bond C-O-C stretch. Furthermore, the peaks observed at around 1530 and 
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1450 cm-1 corresponding to C-N and CH2 bond, respectively, support the formation 

of the urethane group 13–15. 

 

Table 3.1. Summary of typical band assignment for polyurethanes 

Nº Band assignment 
Wavenumber 

(cm-1) 

1 Ѵ (NH) 3320 

2 Ѵs (CH2) 2940 

3 Ѵas (CH2) 2850 

4 Ѵ (C=O) Non-bonded urethane stretching 1730 

5 
Ѵ (C=O) Associated urethane and 

isocyanurate ring stretch 
1700 

6 δ (NH) 1590 

7 δ (C-N) 1530 

8 δs (CH2) 1446 

9 δas (CH2) 1414 

10 Ѵ (C=C) 1220 

11 Ѵs (C-O-C) 1100 
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Figure 3.1. Example of an ATR spectrum for polyurethanes 
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Furthermore, as an example, in Figure 3.2 and Figure 3.3 the ATR spectra for 

the PTMG1000MDI samples are divided in two parts, from 4000 to 2500 cm-1 and 

from 2100 to 700 cm-1, respectively. All samples of system 7 (PTMG1000MDI) were 

shown in these figures, except PTMG1000MDI_0.5 and PTMG1000MDI_1 samples 

because they were too liquid to be measured by ATR. 

In these figures, it can be observed that the intensity of all signals related to 

the urethane links (1730 cm-1, 1530 cm-1…) decreases from PTMG1000MDI_1.5 to 

PTMG1000MDI_4.5, that is, decreases when the amount in moles of 1,4-butanediol 

(n) rises. In other words, these peaks became lower indicating a higher concentration 

of hard-segment content which is composed, as mentioned in Chapter II, of 

diisocyanate (n+1) and diol (n) 16,17. 
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Figure 3.2. ATR spectra for system 7, PTMG1000MDI, from 4000 to 

2500 cm-1  
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Figure 3.3. ATR spectra for system 7, PTMG1000MDI, from 2100 to 700 cm-1 

 

3.3. Thermogravimetric behavior of shape memory 

polyurethanes 

In a thermogravimetric analysis (TGA), the weight loss of a sample is 

continuously monitored as the temperature is raised. Therefore, TGA was used to 

evaluate the thermal stability of all synthesized polyurethanes. Thermal stability of 

polyurethanes is related to the structure, the chemical composition and, of course, 

the hard-segment/soft-segment molar ratio 18. For example, the initial degradation 

temperature of the polyurethanes is a relevant parameter because it is dependent on 

the thermal history of the weakest points within the PU macromolecule, which are 

the urethane and the ester bonds 19. 

All the TGA and DTG curves obtained from PTMG-based and PEG-based SMPUs 

with different molar ratio are shown in the Appendix A. Here, the most representative 

ones are presented in the following figures. Thus, Figure 3.4 represents the TGA and 
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DTG curves for the polyurethanes based on PEG and TDI; Figure 3.5 for the 

polyurethanes based on PTMG650 and TDI; Figure 3.6 for the polyurethanes based 

on PTMG1000 and MDI; and Figure 3.7 for the polyurethanes based on PTMG1000, a 

mixture of TDI and MDI and 1 wt% TiO2. 

The initial decomposition temperatures (Ti), defined as the temperature at 5% 

weight loss; the temperatures at the maximum degradation rate (Tmax,1, Tmax,2 and 

Tmax,3) for each degradation step, obtained from the minimum in DTG curves; and 

the weight percentages of residue remaining at the end of the degradation (wt% 

residue) 20,21, are listed in the following tables. Thus, the thermal properties for PEG-

based polyurethanes are tabulated in Table 3.2; whereas Table 3.3, Table 3.4 and 

Table 3.5 show the results of PTMG-based polyurethanes (PTMG650, PTMG1000 and 

polyurethanes synthesized with TiO2 nanoparticles, respectively).  

PUs thermal decomposition is a multi-stage process, generally accepted a two-

stage or three-stage decomposition, which depends on the presence of the hard-

segment. The first stage of degradation is fast, although its rate decreases as the 

soft-segment content increases 22–25. The chemical structure of the samples allows to 

relate the observed regions of decomposition to following processes: first region is 

related to decomposition of urethane groups; second region can be connected to 

destruction of ether groups and third region is related to destruction of carbon chains 

and rings. The PEG-based SMPUs (Table 3.2 and Figure 3.4) display a typical two-

stage degradation process: the first one, attributed to the PU hard-segments, occurs 

between 275-370ºC; whereas the second degradation step, caused by the soft-

segments, takes place between 340-440ºC. Table 3.2 also shows that the initial 

decomposition temperatures are slightly higher in MDI-based SMPUs than in TDI-

based SMPUs; and that the weight percentages of residue remaining at the end of 

the degradation, which rises with the hard-segment content, is also higher for the 

PUs based on MDI.  

The TGA and DTG analyses were also made for the PTMG-based polyurethanes, 

PTMG650 and PTMG1000. In both cases, three different types of diisocyanates (TDI, 

MDI or TDI+MDI) were used. Table 3.3 shows the thermal properties for all SMPUs 

based on PTMG650, whereas in Figure 3.5 are depicted, as an example, the TGA and 

DTG curves for system 3 (PTMG650-TDI based PUs). From this curves, it can be 

noted that PTMG-based polyurethanes show the same tendencies that PEG-based 

SMPUs, that is, higher initial decomposition temperatures and higher wt% residue 
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when MDI is used as diisocyanate instead of TDI. As expected, when mixtures of both 

TDI and MDI are used, PUs present intermediate values. Moreover, while MDI-based 

and TDI-based PUs present just two decomposition stages (250-375ºC and 375-

500ºC), these last SMPUs show a three-stage decomposition process as a 

consequence of using a mixture of isocyanates. 

Table 3.4 shows the thermal properties for all SMPUs based on PTMG1000, 

whereas in Figure 3.6 are depicted as an example the TGA and DTG curves for system 

7 (PTMG1000-MDI based PUs). For these systems, the thermal stability shows a 

similar behavior to that described above for the SMPUs based on PTMG650. 

In the case of the PUs synthesized with nanoparticles (Table 3.5), all samples 

present a three-stage decomposition process because a mixture of isocyanates 

(MDI+TDI) was used. Moreover, it could be observed that these PUs are less stable 

than the ones synthesized without nanoparticles. Thus, the initial decomposition 

temperatures for PUs of system 10 (PMTG1000/MDI+TDI/1 wt% TiO2) are 10-15ºC 

smaller than the Tis for the same PUs without TiO2 nanoparticles (system 8). 

Moreover, as the nanoparticles content increases, less stable is the polyurethane 26–

28. Table 3.5 shows that Tis are 10-20ºC smaller for system 11 (3wt% TiO2) than for 

system 10 (1wt% TiO2). 

Therefore, it can be concluded that MDI-based PUs are more stable than 

TDI+MDI-based PUs which are, at the same time, more stable than TDI-based PUs 

due to the chemical structure of the diisocyanates. This fact can be explained because 

MDI owns two aromatic rings (TDI only owns one aromatic ring) that provide a higher 

thermal stability to polyurethanes. Moreover, in general, polyurethanes made from 

PTMG650 have a higher thermal stability than the equivalent ones achieved from 

PTMG1000. This fact can be related to the length of the soft-segment, which is 

smaller when the molecular weight of the polyol decreases 25.  

It can also be observed that the presence of TiO2 nanoparticles decreases the 

thermal stability of the polyurethanes, considering that Ti decreases. Moreover, as 

the wt% TiO2 increases, thermal stability decreases. This loss of thermal stability can 

be explained because TiO2 nanoparticles act as impurities or breaking points in the 

PUs macromolecular network. 
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Furthermore, as indicated above, all the polyurethanes synthesized in this work 

display a typical two-stage degradation, except for those synthesized with a mixture 

of diisocyanates (TDI+MDI), where three stages are observed.  

Finally, the obtained results show good thermal stability for all samples, 

indicating that the choice of both the hard-segment component and the soft-segment 

component influence on the thermal decomposition of the polyurethanes. 

 

 

Table 3.2. Thermal properties of the SMPUs based on PEG 

System & Sample T5% 
wt% 

residue 
Tmax,1 Tmax,2 

S1 

PEGTDI_3.5 275.7 1.9 330.2 410.1 

PEGTDI_4.5 293.7 3.1 328.9 411.8 

PEGTDI_5.5 299.7 4.3 334.9 413.7 

S2 

PEGMDI_2 296.6 10.7 322.1 411.4 

PEGMDI_3 289.4 11.5 310.7 409.4 

PEGMDI_4 298.1 13.4 326.1 408.3 
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Table 3.3. Thermal properties of the SMPUs based on PTMG 650 

System & Sample T5% 
wt% 

residue 
Tmax,1 Tmax,2 Tmax,3 

S3 

PTMG650TDI_2.5 273.8 0.2 324.3 415.7  

PTMG650TDI_3 285.9 1.1 328.7 418.7  

PTMG650TDI_3.5 279.6 2.1 321.8 418.9  

PTMG650TDI_4 276.1 2.5 326.0 411.2  

PTMG650TDI_4.5 275.7 2.7 320.2 421.0  

PTMG650TDI_5 290.3 3.5 328.9 405.0  

PTMG650TDI_5.5 283.0 6.1 331.1 421.0  

S4 

PTMG650MDI_0.5 314.6 1.1 353.3 414.1  

PTMG650MDI_1 308.3 4.7 353.5 421.9  

PTMG650MDI_1.5 295.9 6.9 335.9 423.8  

PTMG650MDI_2 304.3 8.4 327.0 423.4  

PTMG650MDI_2.5 292.5 8.9 311.5 421.6  

PTMG650MDI_3 303.3 9.9 317.9 421.4  

PTMG650MDI_3.5 302.9 9.5 324.7 425.2  

PTMG650MDI_4 325.2 13.2 325.2 425.2  

PTMG650MDI_4.5 323.3 12.4 323.3 425.6  

S5 

PTMG650MDITDI_1.5 294.2 0.5 320.2 353.8 418.2 

PTMG650MDITDI_2 287.3 3.8 321.2 361.5 419.7 

PTMG650MDITDI_2.5 296.1 4.4 332.7 360.4 425.7 

PTMG650MDITDI_3 291.8 4.7 329.8 358.4 423.8 

PTMG650MDITDI_3.5 295.8 5.9 326.2 340.5 422.8 
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Table 3.4. Thermal properties of the SMPUs based on PTMG 1000 

System & Sample T5% 
wt% 

residue 
Tmax,1 Tmax,2 Tmax,3 

S6 

PTMG1000TDI_2.5 285.3 1.5 323.3 416.5  

PTMG1000TDI_3 281.6 1.7 315.9 411.2  

PTMG1000TDI_3.5 293.5 1.7 307.9 421.4  

PTMG1000TDI_4 285.1 2.2 328.8 416.7  

PTMG1000TDI_4.5 284.6 2.5 322.4 414.9  

PTMG1000TDI_5 279.7 3.2 328.9 418.9  

PTMG1000TDI_5.5 280.9 4.9 321.1 417.1  

PTMG1000TDI_6.5 277.6 7.3 323.3 419.9  

S7 

PTMG1000MDI_0.5 311.2 1.9 354.4 417.4  

PTMG1000MDI_1 306.6 2.5 352.8 416.9  

PTMG1000MDI_1.5 303.8 3.8 350.3 418.8  

PTMG1000MDI_2 300.4 6.4 322.0 419.9  

PTMG1000MDI_2.5 301.8 9.4 317.5 423.2  

PTMG1000MDI_3 289.1 9.7 298.7 419.4  

PTMG1000MDI_3.5 307.6 9.7 323.8 417.1  

PTMG1000MDI_4 299.7 13.1 329.2 421.8  

PTMG1000MDI_4.5 304.4 18.0 331.9 426.4  

S8 

PTMG1000MDITDI_3.5 293.7 2.4 332.8 361.1 417.9 

PTMG1000MDITDI_4 292.6 3.2 332.3 361.2 417.7 

PTMG1000MDITDI_4.5 288.9 3.2 334.2 362.3 420.6 

PTMG1000MDITDI_5 294.2 3.7 330.8 358.3 422.3 

PTMG1000MDITDI_5.5 286.1 3.9 335.7 361.4 421.4 

PTMG1000MDITDI_6 294.6 6.1 335.2 354.8 423.2 
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Table 3.5. Thermal properties of the SMPUs synthesized with nanoparticles  

System & Sample T5% 
wt% 

residue 
Tmax,1 Tmax,2 Tmax,3 

S9 

PTMG650MDITDI_1.5_1 295.8 4.4 320.2 353.3 418.8 

PTMG650MDITDI_2_1 287.7 4.6 320.4 360.2 404.9 

PTMG650MDITDI_2.5_1 290.3 4.7 326.7 359.5 414.1 

PTMG650MDITDI_3_1 289.7 5.0 328.9 360.2 418.8 

PTMG650MDITDI_3.5_1 289.8 5.2 326.0 358.2 422.7 

S10 

PTMG1000MDITDI_3.5_1 285.0 4.0 313.6 351.1 404.4 

PTMG1000MDITDI_4_1 289.8 4.1 323.5 351.1 418.1 

PTMG1000MDITDI_4.5_1 284.2 4.6 320.9 354.8 415.9 

PTMG1000MDITDI_5_1 289.2 4.6 322.0 358.8 416.2 

PTMG1000MDITDI_5.5_1 291.3 5.1 329.0 359.9 419.9 

PTMG1000MDITDI_6_1 287.3 5.5 321.7 358.8 421.0 

S11 

PTMG1000MDITDI_3.5_3 263.1 5.5 314.8 350.9 405.2 

PTMG1000MDITDI_4_3 274.5 5.7 308.7 349.6 387.1 

PTMG1000MDITDI_4.5_3 282.9 6.1 316.8 352.9 389.1 

PTMG1000MDITDI_5_3 279.1 6.7 316.8 355.6 413.2 

PTMG1000MDITDI_5.5_3 277.3 7.4 279.2 351.6 404.5 

PTMG1000MDITDI_6_3 276.2 8.7 308.7 344.8 408.5 
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Figure 3.4. TGA (a) and DTG (b) curves for system 1, PEG1000TDI  
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Figure 3.5. TGA (a) and DTG (b) curves for system 3, PTMG650TDI 



96  Chapter III 

 

 

100 200 300 400 500 600 700 800
0

20

40

60

80

100

 

 
W

e
ig

h
t 

(%
)

T (ºC)

 n = 0.5

 n = 1

 n = 1.5

 n = 2

 n = 2.5

 n = 3

 n = 3.5

 n = 4

 n = 4.5

~ 

(a)

600 650 700 750
0

20

W
ei

g
h
t 

(%
)

T (ºC)

 

100 200 300 400 500 600 700
-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

 n = 0.5

 n = 1

 n = 1.5

 n = 2

 n = 2.5

 n = 3.5

 n = 4

 n = 4.5

 

 

D
er

iv
a

te
 W

ei
g

h
t 

(%
/º

C
)

T (ºC)

~ 

 n = 3

 
(b)

 

Figure 3.6. TGA (a) and DTG (b) curves for system 7, PTMG1000MDI 
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Figure 3.7. TGA (a) and DTG (b) curves for system 10, PTMG1000/MDI+TDI/1%TiO2 
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3.4. DSC behavior of shape memory polyurethanes 

As it was already mentioned, PU chains are composed of hard and soft-

segments arranged alternately. This structure results from the spatial arrangement 

of polymer chains in the condensed phase. MDI-based PUs form zigzag chains in 

which benzene rings of MDI are arranged at the right angle against each other. On 

the other hand, the TDI-based PU chains are arranged in one plane because of the 

coplanar arrangement of both TDI-derived benzene rings and urethane groups 

attached to those rings 19,29.  

Moreover, it is well known that SMPUs have an amorphous reversible phase due 

to their microstructure composed by hard and soft-segments. Therefore, for these 

SMPUs, Tg represents both the glass transition temperature and also the shape 

recovery temperature at which the shape memory effect (SME) is activated for this 

thermo-responsive SMP. On the one hand, at a temperature below Tg, this SMP is in 

the glassy state and is too stiff and hard to be deformed (with high modulus). In this 

state, the soft-segment in the SMP is frozen. It may be able to vibrate slightly, but 

no significant segmental motion occurs. When the SMPU is gradually heated, it enters 

in the glass transition region. This glass transition does not start or finish 

instantaneously, but takes place gradually over a temperature range 30. On the other 

hand, at a temperature above Tg, this SMP is in the rubber phase and it can be able 

to be deformed without any difficulty and sometimes it even changes from solid to 

liquid state.  

In this section, the glass transition temperatures (Tg,DSC) of the SMPUs were 

obtained with DSC. Table 3.6, Table 3.7, Table 3.8 and Table 3.9 summarize the 

measured glass transition temperatures corresponding to the second DSC heating 

scan for PEG-based PUs, PTMG650-based PUs, PTMG1000-based PUs and 

polyurethanes synthesized with TiO2 nanoparticles, respectively. Furthermore, Figure 

3.8, Figure 3.9, Figure 3.10 and Figure 3.11 show the DSC curves corresponding to 

the first heating, the cooling cycle and the second heating for system 1, system 3, 

system 7 and system 10, respectively. All DSC curves are in Appendix B. 

DSC results show that, for all systems, the glass transition temperature of 

polyurethanes increases with the hard-segment content (higher n). For example, the 

Tgs of PEG-based polyurethanes in system 1 appear between -2.1—10.9ºC, Tgs of 

TDI-based polyurethanes in system 3 appear between -4.3—24.6ºC whilst for MDI-



Results and discussion. I. Characterization    99 

 

 

based polyurethanes in system 7 Tgs are observed between -52.5—23.7ºC. This 

suggests that high contents in hard-segments can achieve a more well-oriented 

position within the polymeric structure 31,32. In addition, Tg,DSC increases with the rise 

in NCO/OH molar ratio. This fact might be due to the increase in the H-bonding as 

well as the crosslinking density as NCO/OH molar ratio increases 33. The Tg,DSC values 

of polyurethanes based on PEG and TDI can be assigned to the amorphous structure 

of polyol because of the lack of crystalline structure in this kind of polyurethanes, as 

reported in literature 34. 

Additionally, it was found that for a given n the Tg values of TDI-based 

polyurethanes are lower than those of MDI-based polyurethanes, whereas the Tg 

values of the polyurethanes made from a mixture of diisocyanates (TDI+MDI) are 

found in the middle of them. For example, for PTMG650-based polyurethanes and n 

= 3.5, Tg in system 3 (TDI) is 10ºC, in system 4 (MDI) is 33.4ºC, and in system 5 

(TDI+MDI) is 27.7ºC. On the contrary, there is no a clear trend for polyurethanes 

made from PTMG1000.  

Moreover, in the heating scans, a melting peak can be observed for MDI-based 

SMPUs, which can be attributed to the crystallization of the soft domains. As a result, 

PTMG650-based polyurethanes present melting temperatures (Tm) between 130-

180ºC, and PTMG1000-based polyurethanes between 130-220ºC. In addition, the 

melting enthalpy (Hm) measured by DSC becomes higher, from 6.7 to 22.1 J·g-1 for 

PTMG650-based PUs and from 2.7 to 22.9 J·g-1 for PTMG1000-based PUs, as the 

hard-segment content increases 35–37. 

As shown in Table 3.7 and Table 3.8, the glass transition temperatures of 

PTMG650-based PUs are higher than the glass transition temperatures of PTMG1000-

based PUs. Thus, at a determined temperature, PTMG650-based polyurethanes have 

less mobility than PTMG1000-based polyurethanes. The main difference between 

both polyurethanes, with the same molar ratio, is their soft-segment: PTMG650 or 

PTMG1000. 

Finally, it can be observed in Table 3.9 for the SMPUs synthetized with TiO2 

nanoparticles, that these polyurethanes own similar Tgs than polyurethanes without 

nanoparticles 38,39. Furthermore, in the same way as for the other SMPUs, as the 

hard-segment content increases the glass transition temperature becomes higher.  
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Table 3.6. Glass transition temperature of the SMPUs based on PEG 

System & Sample Tg,DSC (ºC) 

S1 

PEGTDI_3.5 -2.1 

PEGTDI_4.5 5.8 

PEGTDI_5.5 10.9 

S2 

PEGMDI_2 -7.9 

PEGMDI_3 10.5 

PEGMDI_4 22.3 

 

 

Table 3.7. Glass transition temperature of the SMPUs based on PTMG 650 

System & Sample Tg,DSC (ºC) ∆Hm (J·g-1) 

S3 

PTMG650TDI_2.5 -4.3  

PTMG650TDI_3 6.6  

PTMG650TDI_3.5 10.0  

PTMG650TDI_4 12.7  

PTMG650TDI_4.5 14.4  

PTMG650TDI_5 18.6  

PTMG650TDI_5.5 24.6  

S4 

PTMG650MDI_0.5 -35.5 6.7 

PTMG650MDI_1 -29.4 10.3 

PTMG650MDI_1.5 -24.7 14.4 

PTMG650MDI_2 -22.9 14.7 

PTMG650MDI_2.5 -12.0 16.5 

PTMG650MDI_3 30.3 19.2 

PTMG650MDI_3.5 33.4 20.7 

PTMG650MDI_4 42.6 21.3 

PTMG650MDI_4.5 48.2 22.1 

S5 

PTMG650MDITDI_1.5 -6.2  

PTMG650MDITDI_2 3.5  

PTMG650MDITDI_2.5 9.2  

PTMG650MDITDI_3 15.9  

PTMG650MDITDI_3.5 27.7  
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Table 3.8. Glass transition temperature of the SMPUs based on PTMG 1000 

System & Sample Tg,DSC (ºC) ∆Hm (J·g-1) 

S6 

PTMG1000TDI_2.5 -61.2  

PTMG1000TDI_3 -55.7  

PTMG1000TDI_3.5 -30.2  

PTMG1000TDI_4 -28.3  

PTMG1000TDI_4.5 -27.4  

PTMG1000TDI_5 -19.2  

PTMG1000TDI_5.5 3.9  

PTMG1000TDI_6.5 8.7  

S7 

PTMG1000MDI_0.5 -52.5 2.7 

PTMG1000MDI_1 -50.8 5.2 

PTMG1000MDI_1.5 -42.7 5.3 

PTMG1000MDI_2 -40.7 8.1 

PTMG1000MDI_2.5 -38.3 8.8 

PTMG1000MDI_3 -35.6 9.9 

PTMG1000MDI_3.5 -29.9 11.9 

PTMG1000MDI_4 -27.4 14.8 

PTMG1000MDI_4.5 -23.7 22.9 

S8 

PTMG1000MDITDI_3.5 -12.9  

PTMG1000MDITDI_4 7.7  

PTMG1000MDITDI_4.5 14.8  

PTMG1000MDITDI_5 16.4  

PTMG1000MDITDI_5.5 20.4  

PTMG1000MDITDI_6 25.9  
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Table 3.9. Glass transition temperature of the SMPUs synthesized with nanoparticles  

System & Sample Tg,DSC (ºC) 

S9 

PTMG650MDITDI_1.5_1 -7.6 

PTMG650MDITDI_2_1 3.4 

PTMG650MDITDI_2.5_1 12.1 

PTMG650MDITDI_3_1 15.0 

PTMG650MDITDI_3.5_1 23.6 

S10 

PTMG1000MDITDI_3.5_1 -17.7 

PTMG1000MDITDI_4_1 5.5 

PTMG1000MDITDI_4.5_1 7.3 

PTMG1000MDITDI_5_1 16.8 

PTMG1000MDITDI_5.5_1 21.8 

PTMG1000MDITDI_6_1 25.8 

S11 

PTMG1000MDITDI_3.5_3 -34.9 

PTMG1000MDITDI_4_3 -6.0 

PTMG1000MDITDI_4.5_3 12.3 

PTMG1000MDITDI_5_3 21.3 

PTMG1000MDITDI_5.5_3 24.9 

PTMG1000MDITDI_6_3 26.8 
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Figure 3.8. DSC curves for system 1, PEG1000TDI 
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Figure 3.9. DSC curves for system 3, PTMG650TDI
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Figure 3.10. DSC curves for system 7, PTMG1000MDI 
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Figure 3.11. DSC curves for system 10, PTMG1000/MDI+TDI/1%TiO2  
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3.5. Thermomechanical behavior of shape memory 

polyurethanes 

In addition to differential scanning calorimetry (DSC), dynamic mechanical 

analysis (DMA) was used to know the viscoelastic behavior of the synthesized 

polyurethanes. DMA is a sensitive method to study the thermomechanical behavior 

of polymers, which provides methods for testing the microphase separation 

characteristics through changes in the glass transitions of the components. DMA 

experiments measure the ability of a viscoelastic material to store and dissipate 

mechanical energy, and are based on the differences in the load response of the 

viscous and elastic components to a small sinusoidal applied strain. The resulting 

stress, that is measured using an appropriate sensor, lags behind the applied strain 

by a phase angle δ 19. The storage modulus (E’) quantifies the energy stored 

elastically by the material upon deformation, and provides information regarding the 

stiffness of the material. The loss factor (tanδ) is a measurement of the ratio of the 

energy absorbed by the sample as heat to the energy used by the sample to return 

to its original shape, and measures the degree of molecular motion. The major peak 

in the loss factor, tan, is usually used to designate the glass transition temperature 

(Tg,DMA). This peak corresponds with a sharp drop in the storage modulus (E’), so this 

is also an important parameter in order to evaluate the structure-property 

relationship of these materials. The glass transition temperature (Tg) is defined as 

the α transition in the tanδ curve 40. DMA technique is sensitive to the various 

transitions which polymer undergoes as a function of the temperature changing 41. 

Significant features of a tanδ plot include the location of the low temperature 

maximum, where smaller areas are associated with better phase separation of PUs 

hard and soft phases, as well as less of the hard phase being involved in the glass 

transition. Very low temperature β peaks are associated with reordering of hard-

segment domains. The degree of phase mixing can be estimated from the shift of the 

glass transition temperature (as with DSC), and also from the storage modulus E’, 

which has an intermediate value between the moduli of the two phases and depends 

on the relative amount of each phase. Phase separation in PUs is based on the 

presence of two thermal transitions in the dynamical mechanical data that were 

assigned to the glass transition temperature (Tg) of the hard and soft-segments 

softening point. Two transitions are a sign of incompatibility whereas only one 

transition is expected for compatible polymers 42–44. 
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From the experimental point of view, several differences exist between DSC 

and DMA. Although the DSC technique is less sensitive to molecular transitions than 

DMA, it generally supports results regarding the thermodynamical changes which the 

material undergoes upon heating or cooling. As does DSC, DMA allows the estimation 

of the PUs characteristics of microphase separation or phase mixing. In a standard 

DSC, the Tg is defined in relation to the measured heat flow, preferably in cooling 

experiments. Thus, DSC is sensitive to specific heat capacity (Cp)changes associated 

with the glass transition, while DMA is sensitive to mechanical relaxation, also 

associated with the glass transition, but the expression of which depends on the 

mechanical frequency imposed by the test 45. The glass transition temperature could 

be determined by both techniques, but it has been demonstrated in macromolecular 

systems that methods such as DSC are less sensitive to the glass transition 

phenomenon than the DMA employed in this study 46 due to DMA is a method with 

great sensitivity in detecting changes in internal molecular mobility. Furthermore, the 

predominant heat transfer mechanism in DSC is conduction while in DMA is 

convection 46. Therefore, it should be noted that dynamic experiments (DMA) exhibit 

higher glass transition temperatures than static experiment (DSC), i.e. Tg, DMA > Tg 

DSC. 

Thus, in this work, the viscoelastic behavior of the synthesized polyurethanes 

was investigated using DMA. Tables 3.10, 3.11, 3.12 and 3.13 show the storage 

modulus (E’) at -100ºC, β temperatures (Tβ) and glass transition temperatures (Tα) 

for PEG-based PUs, PTMG650-based PUs, PTMG1000-based PUs and polyurethanes 

synthesized with TiO2 nanoparticles, respectively. Figures 3.12, 3.13, 3.14 and 3.15 

depict the temperature dependence of the storage modulus, E´, and tanδ as a 

function of n for system 1, system 3, system 7 and system 10, respectively. All DMA 

graphics are in Appendix C. Two of the samples (PTMG650TDI_2.5 and 

PTMG1000TDI_2.5) were too liquid to be measured.  

Therefore, to compare the values of glass transition temperature of the 

obtained SMPUs, the values measured by DMA (Tg, DMA) are taken into account. As it 

can be seen from the following tables, the symmetry/asymmetry of the diisocyanate 

strongly influences the dynamic mechanical properties. As a result, symmetric 

diisocyanates (MDI) have more phase mixing (lower Tg) than asymmetric 

diisocyanates (TDI). In the asymmetric diisocyanates, the broad transition above Tg 

was ascribed to the domain boundary mixing. From DMA results, it could be observed 
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that MDI-based SMPUs present lower Tg values than TDI-based polyurethanes 

(40.4ºC for PTMG650MDI_3.5 vs. 44.7ºC for PMG650TDI_3.5). Despite this, MDI-

based polyurethanes present higher flow temperatures, which is attributed to the 

stronger hydrogen bonding interactions and partially crystallized hard-segments 7. In 

fact, while the flow zone is located at temperatures above 70ºC for all MDI-based 

polyurethanes (90ºC above their Tg), glass transition is closely followed (almost 

overlapping) by the flow region in TDI-based SMPUs. Thereby, MDI-based SMPUs 

have a wider range of temperatures where its mechanical properties are maintained 

(E'), (higher temperature) and therefore, these polyurethanes provide higher stability 

and are more suitable for commercial applications. 

Moreover, results reveal a well-defined single α-relaxation associated with the 

glass transition (Tg,DMA values are determined as the maximum in tanδ) for all the 

obtained polyurethanes, which gradually increases with n. The transition around this 

temperature was ascribed to the glass transition of the hard-segment phase. 

Therefore, as the hard-segment content increases, the corresponding glass transition 

temperature is higher, which is in agreement with the DSC results. This increase in 

Tg, from 15.3 to 30.4ºC for system 1 (PEGTDI), from 37.5 to 62.9ºC for system 3 

(PTMG650TDI) and from 24.1 to 48.9ºC for system 10 (PTMG1000MDITDI), may be 

ascribed to the reduction in chain-segment mobility induced by the increased 

presence of hard-segments. Similar Tg behavior has been found in semicrystalline 

thermoplastics via the development of further rigid crystalline domains. For example, 

in system 7, which consists of MDI-based polyurethanes, the Tg varies from -30.9 to 

52.5ºC when n increases 47. Moreover, as the temperature rises, the polyurethanes 

are transformed from glassy to rubbery state, and polymer chains start to move with 

a high internal friction resistance. As a result, the storage modulus falls quickly, as it 

can be observed in DMA graphics (Figures 3.12, 3.13, 3.14 and 3.15, and Appendix 

C). 

As denoted by the intensity and the area of the smaller loss factor peak, the 

energy dissipation of synthesized polyurethanes through the studied temperature 

range decreases upon the addition of hard-segment content. This decrease in 

damping is due to the restriction of the hard diisocyanates in the viscous component 

of soft poly(tetrahydrofuran) segment 48. In fact, it has been reported that the 

constraints introduced by the hydrogen bonding between the hard-segments provide 

an increased rigidity to the whole system 49–51. It should be pointed out that the range 
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of tanδ values obtained here through the introduction of different amount of MDI and 

TDI is notably larger than those previously reported by Tan et al. 37 for TPU/TPS 

blends using a polyolefin elastomer as compatibilizer. This would be useful to develop 

polyurethanes with rather different damping behavior simply by tuning the soft/hard-

segment ratio. 

In summary, the following general remarks can be made with regard to the PUs 

thermal behavior as revealed by the DMA experiments: the increase of the hard-

segment content results in an increase of Tg of the polymer; the increase of the 

molecular weight of polyol increases the PUs degree of phase separation caused by 

the increase of mobility; leading to a decrease in the Tg, as less energy is needed for 

motion. 

 

Table 3.10. Thermomechanical properties of the SMPUs based on PEG 

System & Sample E’ (MPa) Tβ (oC) Tα (oC) 

S1 

PEGTDI_3.5 2826.1 -69.7 15.3 

PEGTDI_4.5 950.4 -71.8 24.7 

PEGTDI_5.5 3092.8 -69.8 30.4 

S2 

PEGMDI_2 2956.6 -63.2 -17.7 

PEGMDI_3 3177.5 -68.9 -14.9 

PEGMDI_4 3584.4 -65.5 -12.1 
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Table 3.11. Thermomechanical properties of the SMPUs based on PTMG 650 

System & Sample E’ (MPa) Tβ (oC) Tα (oC) 

S3 

PTMG650TDI_2.5 - - - 

PTMG650TDI_3 2176.8 -76.2 37.5 

PTMG650TDI_3.5 2768.3 -71.7 44.7 

PTMG650TDI_4 1832.6 -72.1 55.2 

PTMG650TDI_4.5 2599.0 -66.4 58.1 

PTMG650TDI_5 2414.8 -66.9 60.6 

PTMG650TDI_5.5 3119.7 -72.3 62.9 

S4 

PTMG650MDI_0.5 2434.0 -70.8 -10.2 

PTMG650MDI_1 2359.5 -76.4 -3.0 

PTMG650MDI_1.5 2140.4 -70.9 6.3 

PTMG650MDI_2 2339.8 -70.9 10.9 

PTMG650MDI_2.5 2176.9 -73.7 15.7 

PTMG650MDI_3 1997.6 -70.1 23.1 

PTMG650MDI_3.5 2036.6 -68.5 40.4 

PTMG650MDI_4 2203.0 -71.7 46.6 

PTMG650MDI_4.5 1458.0 -63.3 62.4 

S5 

PTMG650MDITDI_1.5 987.4 -64.3 23.3 

PTMG650MDITDI_2 2374.3 -62.7 32.1 

PTMG650MDITDI_2.5 2793.9 -70.6 37.2 

PTMG650MDITDI_3 1971.5 -68.2 46.2 

PTMG650MDITDI_3.5 2675.7 -66.9 52.0 
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Table 3.12. Thermomechanical properties of the SMPUs based on PTMG 1000 

System & Sample E’ (MPa) Tβ (oC) Tα (oC) 

S6 

PTMG1000TDI_2.5 - - - 

PTMG1000TDI_3 1989.4 -74.2 22.1 

PTMG1000TDI_3.5 2562.6 -74.7 25.3 

PTMG1000TDI_4 2725.4 -75.6 35.4 

PTMG1000TDI_4.5 2068.6 -66.4 37.9 

PTMG1000TDI_5 1650.1 -69.4 41.9 

PTMG1000TDI_5.5 2622.7 -74.9 49.4 

PTMG1000TDI_6.5 1948.9 -76.5 56.1 

S7 

PTMG1000MDI_0.5 812.6 -67.2 -30.9 

PTMG1000MDI_1 1985.1 -65.9 -30.5 

PTMG1000MDI_1.5 2110.9 -72.1 -20.0 

PTMG1000MDI_2 2301.5 -71.5 -18.4 

PTMG1000MDI_2.5 2138.9 -69.6 -16.2 

PTMG1000MDI_3 2449.0 -74.4 -12.5 

PTMG1000MDI_3.5 2313.4 -64.9 -7.6 

PTMG1000MDI_4 2100.0 -67.1 -3.9 

PTMG1000MDI_4.5 2200.0 -71.5 52.5 

S8 

PTMG1000MDITDI_3.5 2965.4 -66.1 9.9 

PTMG1000MDITDI_4 1046.5 -68.9 23.8 

PTMG1000MDITDI_4.5 2155.2 -67.8 34.7 

PTMG1000MDITDI_5 2212.4 -65.1 40.2 

PTMG1000MDITDI_5.5 1715.7 -62.1 42.7 

PTMG1000MDITDI_6 2782.7 -67.4 51.7 
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Table 3.13. Thermomechanical properties of the SMPUs synthesized with nanoparticles  

System & Sample E’ (MPa) Tβ (oC) Tα (oC) 

S9 

PTMG650MDITDI_1.5_1 2141.4 -64.3 26.8 

PTMG650MDITDI_2_1 2119.9 -52.3 36.3 

PTMG650MDITDI_2.5_1 2306.2 -65.7 44.3 

PTMG650MDITDI_3_1 2334.0 -65.2 46.9 

PTMG650MDITDI_3.5_1 2149.0 -54.3 50.7 

S10 

PTMG1000MDITDI_3.5_1 2650.7 -82.9 24.1 

PTMG1000MDITDI_4_1 2277.0 -62.8 30.8 

PTMG1000MDITDI_4.5_1 2093.2 -61.5 32.7 

PTMG1000MDITDI_5_1 2052.1 -62.4 40.6 

PTMG1000MDITDI_5.5_1 2374.6 -57.5 47.5 

PTMG1000MDITDI_6_1 2216.9 -68.6 48.9 

S11 

PTMG1000MDITDI_3.5_3 1330.0 -74.1 14.5 

PTMG1000MDITDI_4_3 1940.9 -79.0 19.5 

PTMG1000MDITDI_4.5_3 2736.1 -78.4 22.2 

PTMG1000MDITDI_5_3 1916.8 -75.4 28.5 

PTMG1000MDITDI_5.5_3 1998.1 -75.8 29.9 

PTMG1000MDITDI_6_3 2522.7 -76.0 41.7 
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Figure 3.12. DMA curves for system 1, PEG1000TDI 
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Figure 3.13. DMA curves for system 3, PTMG650TDI 
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Figure 3.14. DMA curves for system 7, PTMG1000MDI 
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Figure 3.15. DMA curves for system 10, PTMG1000/MDI+TDI/1%TiO2 
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3.6. Tensile Stress-Strain 

Tensile tests are generally used to control product quality and for determining 

the effect of chemical or thermal exposure on an elastomer. Tensile strength is 

defined as the maximum amount of tensile stress that a material can be subjected 

to before failure. It is known variously as “breaking load”, “breaking stress” and 

“ultimate tensile strength”. Tensile stress, and tensile strength are both measured in 

units of force divided by units of area, usually N·cm-2, or MPa. Moreover, the tensile 

modulus or elastic modulus (E) is the force per unit of original cross-sectional area 

required to stretch the specimen to a stated elongation. Elongation is the percentage 

increase from the original length of an elastomer as a result of a tensile force being 

applied to a PU specimen. Ultimate elongation or elongation at break (εb) is the 

elongation at the point where sample breaks. Fracture toughness (UT) is a 

quantitative way of expressing a material's resistance to brittle fracture when a crack 

is present.  

In this work, the tests were performed on dumbbell-shaped specimens. In PUs, 

the stress is not linear with strain. Therefore, the modulus is neither a ratio nor a 

constant slope, but rather denotes a point on the stress-strain curve 25,52. 

The statistic values of elastic modulus (E), secant modulus at 2% (E*), 

elongation at break (εb) and fracture toughness (UT) are summarized in Table 3.14, 

while Figures 3.16 and 3.17 show the stress-strain curves of some samples from 

systems 6 and 7. In this case, for tensile test experiments, only some of the samples 

were tested in order to know how the polyurethanes behave. While all the 

polyurethanes present ductile or elastomeric behavior, results reveal a similar effect 

of n on the mechanical response of synthesized materials. As the hard phase content 

(n) is increased the elastomeric behavior of specimens is shifted towards a less 

ductile behavior. More precisely, as shown in Figures 3.16 and 3.17, the elongation 

at break is reduced from 945% to 408% and from 291% to 182% for systems 6 and 

7, respectively, upon the increase of n. This behavior is usually found in 

polyurethanes and it is ascribed to the formation of a densely crosslinked structure 

when the presence of hard-segment increases. The increased εb of TDI-based SMPUs 

in regard to MDI-based ones for a given n is associated with a reduced molecular 

mobility of chains in the last ones 48,53,54. This is in concordance with DMA results 

where MDI-based polyurethanes exhibit fairly lower glass transition temperatures 

when comparing with TDI-based polyurethanes. 

https://en.wikipedia.org/wiki/Brittle
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It is interesting to note that intermediate n values result in a concurrent 

increase of strength and elongation at break, yielding fracture toughness values up 

to 77.9 (n = 5) and 91.2 (n = 2) MJ·m-3 for TDI-based and MDI-based SMPUs, 

respectively. This 34-fold and 23-fold increase in fracture toughness arises from the 

synergetic effect obtained when both rigid and soft-segments are found at an 

appropriate ratio. Indeed, hard phase is responsible of holding together the rubbery 

soft phase by intermolecular hydrogen bonding and crosslinked network, whereas 

the soft-segments are able to extend with no rupture upon stretching 55. The proper 

combination of both segments imparts combined ductility and strength. When the 

soft phase is very large (low n) the material cannot withstand applied stress and is 

easily deformed. On the contrary, at high n values, hard-segments prevent 

macromolecules moving too far out of position, yielding lower εb values but increased 

elastic modulus. 

 

Table 3.14. Main mechanical parameters for some of the samples of system 6 and 7 

n 
Elastic 

Modulus 
E (MPa) 

Secant 
Modulus 
E* (MPa) 

Elongation 
at break 
εb (%) 

Fracture 
toughness 
UT (MJ·m-3) 

PTMG1000TDI_3 1.6 ± 0.1 1.6 945 2.3 

PTMG1000TDI_3.5 1.9 ± 0.1 2.0 1167 11.1 

PTMG1000TDI_4.5 2.5 ± 0.1 2.5 622 20.9 

PTMG1000TDI_5 78.6 ± 0.7 75.3 408 77.9 

PTMG1000MDI_0.5 8.2 ± 0.1 8.1 291 4.0 

PTMG1000MDI_1 22.8 ± 0.1 22.6 404 16.5 

PTMG1000MDI_2 37.5 ± 0.7 37.2 463 91.2 

PTMG1000MDI_3 124.4 ± 0.8 121.8 212 36.3 

PTMG1000MDI_4 239.0 ± 1.9 232.3 182 42.3 
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Figure 3.16. Stress-strain curves for system 6, PTMG1000TDI. Note that stress–strain 

curves are partially enlarged in the inset
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Figure 3.17. Stress-strain curves for system 7, PTMG1000MDI. Note that stress–strain 

curves are partially enlarged in the inset 
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3.7. Scanning Electron Microscopy (SEM) 

The morphology of almost all synthesized polyurethanes has been studied by 

FE-SEM. Figure 3.18 shows some pictures of two different samples, one of them 

corresponds to system 6 (PTMG1000TDI_4 (a)) and the other sample to system 7 

(PTMG1000MDI_4 (b)). 

As it can be observed from the pictures, no phase separation is produced in the 

synthesized SMPUs indicating that homogeneous materials were obtained during the 

synthesis. Although all the samples were cryogenically fractured, according to their 

morphological features, they show different fracture modes. Thus, it could be seen 

that specimens containing large fractions of hard-segment present a rather smooth 

surface. More interestingly, at medium n values, where higher fracture toughness are 

achieved (Table 3.14), surfaces present more zones with shear and fibrils, indicating 

that a higher amount of energy was dissipated by the material during the plastic 

deformation. Korley et al. 41 mentioned that as the hard-segment composition 

increases, mechanical data are consistent with a shift in continuous domain 

morphology, producing materials with inter-connected hard domains, exhibit limited 

extensibility, but increased initial modulus, as shown in Table 3.14. 

  

  

Figure 3.18. Representative FE-SEM images showing the morphology of 

cryogenically fractured SMPU surfaces: PTMG1000TDI_4 (a) and PTMG1000MDI_4 

(b). 
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3.8. Conclusions 

Shape memory polyurethanes (SMPUs), synthesized by a two-step 

polymerization method in a solvent-free process as mentioned in Chapter II, have 

been characterized in this chapter by different techniques such as attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric 

analysis (TGA), differential scanning calorimetry (DSC), dynamic-mechanical analysis 

(DMA), tensile tests, and scanning electron microscopy (SEM). 

ATR-FTIR was used to assess the formation of polyurethanes, showing that the 

reaction procedure was appropriate and the initial isocyanate groups reacted 

completely during the synthesis. 

Regarding the thermogravimetric analysis, it could be concluded that all the 

polyurethanes synthesized in this work display a typical two-stage degradation, 

except those synthesized with a mixture of diisocyanates (TDI+MDI) which present 

three stages. Anyway, all synthetized SMPUs show good thermal stability with initial 

decomposition temperatures higher than 275°C. Moreover, TGA analysis shows, on 

the one hand, that MDI-based PUs are more stable than TDI-based PUs, observing 

an intermediate stability for TDI+MDI-based PUs. On the other hand, all systems 

synthesized from PTMG650 are more stable than the synthesized from PTMG1000. 

Furthermore, both DSC and DMA show that glass transition temperature of 

polyurethanes increases with the hard-segment content (higher n). Both methods 

indicate that PEG-based SMPUs own glass transition temperatures lower than PTMG-

based SMPUs. In addition, it could be concluded that the glass transition 

temperatures of the polyurethanes synthetized with PTMG650 are higher than the 

polyurethanes synthetized with PTMG1000, that is, an increase in the molecular 

weight of the polyol provokes a decrease in Tg. 

Regarding the mechanical properties, both types of polyurethanes show a huge 

versatility. When the soft phase is very large (low n), the material cannot withstand 

applied stress and is easily deformed. On the contrary, at high n values, hard-

segments prevent macromolecules moving too far out of position, yielding lower εb 

values but increasing the elastic modulus.  

In conclusion, polyurethanes with tunable thermal and mechanical properties 

were obtained just by varying the hard to soft-segment content. Overall, the obtained 

experimental findings through this work highlight the potential of both MDI and TDI-
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based SMPUs for applications in which a vibration isolation in needed over a wide 

range of temperatures. These may include manufacturing of soles for footwear, 

isolators for large industrial equipment and isolation systems for vibration-sensitive 

instruments such as scanning electron microscopes among others. 
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“Nuestra felicidad más grande no está en no caer nunca, sino en levantarnos 

siempre después de cada caída” 

Confucio 
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II. SHAPE MEMORY BEHAVIOR 

 
 

4.1.  Introduction 

mart materials are one of the exciting new frontier technologies in 

engineering and manufacturing. As mentioned, smart materials are 

those materials capable of recognizing appropriate environmental 

stimuli, processing the information arising from the stimuli, and 

responding to it in an appropriate manner and time frame 1–5. The 

ability of smart polymers to respond to external stimuli is of great scientific and 

technological significance and enables such materials to change on demand certain 

macroscopic properties such as shape, color or refractive index. Because of that, in 

the last few years, research activities in the field of shape memory polymers have 

been intensified substantially. A shape memory polymer (SMP) can be processed into 

S
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a pre-determined (original) shape by molding, casting or coating, etc. The shape 

memory effect (SME) of a thermo-responsive SMP is illustrated in Figure 4.1 and 

includes the following steps:  

1) SMPs are easily deformed at a temperature above their transition 

temperature, Ttrans.  

2) The constraint is removed after cooling below Ttrans, resulting in a very small 

elastic shape recovery; deformation is largely maintained. This is the 

temporary shape. 

3) This temporary shape holds permanently unless the material is heated above 

its Ttrans, which triggers full recovery to its original shape. 

4) The SME cycle may be repeated again and again. 

 

 

Figure 4.1. Thermo-responsive shape memory effect 



Results and discussion. II. Shape Memory Behavior   131 

 

4.2. Characterization of shape memory properties 

In this chapter, all polyurethanes synthesized in the laboratory have been 

characterized to test the shape memory effect, not only in one cycle, but also in six 

cycles. The results show that all the developed polyurethanes have both the capacity 

to fix the temporary shape and to recover the original shape. 

 

4.2.1. Shape fixity and shape recovery ratios 

The shape memory effect of the synthesized polyurethanes has been measured 

qualitatively and quantitatively. 

 

▪ Qualitative 

A first approach to evaluate qualitatively the thermally-induced shape memory 

behavior of SMPUs was performed by digital monitoring of the shape recovery 

process. A rectangular strip (10 mm x 6 mm x 1.5 mm) of the polyurethane samples 

was deformed in an elbow-shaped strip at a temperature 20ºC above its transition 

temperature of shape memory effect (Tg, DMA) (immersed in a water bath at 40ºC). 

Then, the temporary shape was fixed cooling down the sample with liquid nitrogen 

to a temperature below Ttrans. Finally, this new geometry was heated again above Tg 

(T = 40ºC), and the shape recovery process was registered by a digital camera 6,7. 

Four samples were analysed, all with Tgs approximately 20ºC lower than the 

temperature of water bath (40ºC): PTMG650MDI_2 (Tg = 10.9ºC), PTMG650MDI_2.5 

(Tg = 15.7ºC), PEGTDI_3.5 (Tg = 15.3ºC) and PTMG1000TDI_3 (Tg = 22.1ºC). 

As example, Figure 4.2 demonstrates qualitatively the shape memory capacity 

of a synthesized polyurethane (sample PTMG1000TDI_3). The sample was deformed 

at 40ºC to adopt a temporary shape (Figure 4.2.a). After cooling into liquid nitrogen 

(Figure 4.2.b), the temporary shape was retained as a result of the restriction of the 

domains and the glassy polymer network. The permanent shape was recovered by 

heating the material to 40ºC to remove the restriction 8–10 (Figures 4.2.c-d). Because 

of the original sample at room temperature is transparent, the sample was green 

painted in order to see the changes in its shape 11–13. 
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Regarding thermally-activated shapememory properties, soft-segments are 

responsible for shape fixity, acting as the switching segments, while hard-segments 

are responsible for shape recovery, determining the permanent shape of the polymer 

14–21. 

 

 

 

Figure 4.2. Qualitative shape memory behavior of sample PTMG1000TDI_3. a) 

Deformation, b) Shape Fixation, c) Recovery, d) Original shape 

 

▪ Quantitative 

The thermally activated shape memory behavior of the synthesized SMPUs can 

be also studied quantitatively by means of thermomechanical cycles according to 

Thermomechanical Analysis (TMA), employing a Mettler Toledo DMA-1 in different 

ranges of temperatures, at a heating rate of 4ºC min-1 and at a cooling rate 



Results and discussion. II. Shape Memory Behavior   133 

 

of -20ºC·min-1. The cross-section area of the samples was 6 mm × 1.5 mm, and the 

experiment was performed using an initial clamp distances of 10 mm. The conditions 

of all performed tests are described in the Table 4.1. First, the sample was heated 

until Thigh (a temperature at least 20ºC higher than the transition temperatures of all 

samples involved in the specified system) with the minimum force (F = 0.001 N) in 

order to allow relaxation of the polymer chains, so initial conditions are fixed (sample 

dimensions and temperature). Then, the sample was stretched applying a determined 

force (2, 5 or 10 N), cooled at -20ºC·min-1 until Tlow (a temperature at least 20ºC 

lower than the transition temperatures of all samples involved in the specified 

system) and maintained at this temperature during 5 minutes. After this, the applied 

stress was reduced to the preload value (0.001 N) in order to fix the temporary 

shape. In the final step, the sample was heated again at 4ºC·min-1 and original shape 

was recovered. This study aims to show the shape memory effect of SMPUs in just 

one cycle (Figure 4.3). 

 

Table 4.1. Experimental conditions to perform shape memory experiments for all systems 

System 
Thigh  

(ºC) 

Tlow 

(ºC) 

Cooling rate 

(ºC·min-1) 

Heating rate 

(ºC·min-1) 

F  

(N) 

1 80 -20 -20 4 2 

2 80 -20 -20 4 2 

3 80 -20 -20 4 2 

4 40 -100 -20 4 5 and 10 

5 80 -20 -20 4 2 

6 80 -20 -20 4 2 

7 30 -100 -20 4 5 and 10 

8 80 -20 -20 4 2 

9 80 -20 -20 4 2 

10 80 -20 -20 4 2 

11 80 -20 -20 4 2 
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Figure 4.3. Shape memory effect – one cycle 

 

The shape memory performance was quantified in terms of two parameters: 

the shape fixity ratio (Rf) and the shape recovery ratio (Rr), calculated through eqs. 

4.1 and 4.2, respectively. On the one hand, the shape fixity ratio represents the 

effectiveness of the temporary shape in maintaining its dimensions. On the other 

hand, the shape recovery ratio represents how close are the dimensions of the 

recovered sample to the dimensions at the start of the experiment. For an ideal shape 

memory material, Rf = Rr = 100%, where all the applied strain energy is stored by 

the temporary shape, being later recovered during the recovery step so that the 

sample returns to its original dimensions 22.  

𝑅𝑓(%) =
𝜀𝑢

𝜀𝑚
· 100 (4.1) 

  

𝑅𝑟(%) =
𝜀𝑚 − 𝜀𝑝

𝜀𝑚
· 100 (4.2) 
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In the performed mechanical tests, 𝜀𝑢 is the strain obtained after releasing the 

applied load, 𝜀𝑚 is the maximum strain before the load is released, and 𝜀𝑝 is the final 

strain after heating and without load, i.e., after maximum recovery of the 

deformation (Figure 4.4). 
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Figure 4.4. Description of the method used in thermomechanical analysis 

 

Tables 4.2, 4.3, 4.4 and 4.5 summarize the values of shape fixity ratios (Rf) 

and shape recovery ratios (Rr) obtained for SMPUs based on PEG, PTMG650, 

PTMG1000 and SMPUS with nanoparticles, respectively, at F = 2N except for systems 

4 and 7, where F = 5 and 10 N were applied. In these systems, a different force was 

used due to the properties of MDI-based SMPUs. For some samples, it was not 

possible to calculate these parameters, for example in system 2, because the effect 

of contraction and expansion is higher than the shape memory effect. This 

inconvenience is due to the limitations in the equipment. All the results showed in 

the tables are based on the average of three measurements. 

The thermally activated shape memory behavior for systems 1, 3, 7 and 10 are 

shown in Figures 4.5, 4.6, 4.7 and 4.8, respectively. All graphs are in Appendix D. 
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Table 4.2. Shape memory parameters for the SMPUs based on PEG 

System & Sample Rf (%) Rr (%) 

S1 

PEGTDI_3.5 90.3 99.7 

PEGTDI_4.5 90.9 99.8 

PEGTDI_5.5 92.1 99.8 

S2 

PEGMDI_2 - - 

PEGMDI_3 - - 

PEGMDI_4 - - 

 

 

 

Table 4.3. Shape memory parameters for SMPUs based on PTMG 650 

System & Sample Rf (%) Rr (%) 

S3 

PTMG650TDI_2.5     

PTMG650TDI_3 93.3 99.9 

PTMG650TDI_3.5 89.9 99.8 

PTMG650TDI_4 89.7 99.6 

PTMG650TDI_4.5 98.9 99.8 

PTMG650TDI_5 91.4 99.7 

PTMG650TDI_5.5 87.2 100 

  F = 5 N F = 10 N F = 5 N F = 10 N 

S4 

PTMG650MDI_0.5 84.1 - 88.6  

PTMG650MDI_1 49.6 73.7 73.8 79.5 

PTMG650MDI_1.5 - 48.9 - 69.6 

PTMG650MDI_2 - - -  

PTMG650MDI_2.5 - - -  

PTMG650MDI_3 - - -  

PTMG650MDI_3.5 - - -  

PTMG650MDI_4 - - -  

PTMG650MDI_4.5 - - -  

S5 

PTMG650MDITDI_1.5 87.1 98.4 

PTMG650MDITDI_2 97.4 96.5 

PTMG650MDITDI_2.5 75.9 92.8 

PTMG650MDITDI_3 66.9 98.1 

PTMG650MDITDI_3.5 72.4 99.2 
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Table 4.4. Shape memory parameters for SMPUs based on PTMG 1000 

System & Sample Rf (%) Rr (%) 

S6 

PTMG1000TDI_2.5   

PTMG1000TDI_3 95.8 99.7 

PTMG1000TDI_3.5 89.8 100 

PTMG1000TDI_4 89.7 99.7 

PTMG1000TDI_4.5 89.6 99.9 

PTMG1000TDI_5 84.9 99.8 

PTMG1000TDI_5.5 94.2 99.9 

PTMG1000TDI_6.5 60.4 91.9 

  F = 5 N F = 10 N F = 5 N F = 10 N 

S7 

PTMG1000MDI_0.5 89.3 - 89.9 - 

PTMG1000MDI_1 69.3 - 80.4 - 

PTMG1000MDI_1.5 64.4 - 63.9 - 

PTMG1000MDI_2 - 45.3 - 84.7 

PTMG1000MDI_2.5 - 27.4 - 74.4 

PTMG1000MDI_3 - 30.1 - 60.4 

PTMG1000MDI_3.5 - - - - 

PTMG1000MDI_4 - - - - 

PTMG1000MDI_4.5 - - - - 

S8 

PTMG1000MDITDI_3.5 91.2 99.5 

PTMG1000MDITDI_4 92.5 99.9 

PTMG1000MDITDI_4.5 91.8 100 

PTMG1000MDITDI_5 76.5 96.7 

PTMG1000MDITDI_5.5 72.1 94.0 

PTMG1000MDITDI_6 63.1 80.9 
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Table 4.5. Shape memory parameters for SMPUs synthesized with nanoparticles 

System & Sample Rf (%) Rr (%) 

S9 

PTMG650MDITDI_1.5_1 93.9 99.9 

PTMG650MDITDI_2_1 96.6 99.9 

PTMG650MDITDI_2.5_1 91.9 99.9 

PTMG650MDITDI_3_1 99.4 98.0 

PTMG650MDITDI_3.5_1 96.2 99.4 

S10 

PTMG1000MDITDI_3.5_1 92.7 100.0 

PTMG1000MDITDI_4_1 99.7 99.4 

PTMG1000MDITDI_4.5_1 80.3 97.6 

PTMG1000MDITDI_5_1 74.1 88.6 

PTMG1000MDITDI_5.5_1 - - 

PTMG1000MDITDI_6_1 - - 

S11 

PTMG1000MDITDI_3.5_3 89.7 99.5 

PTMG1000MDITDI_4_3 89.0 99.7 

PTMG1000MDITDI_4.5_3 91.1 99.8 

PTMG1000MDITDI_5_3 100.0 99.8 

PTMG1000MDITDI_5.5_3 99.8 100.0 

PTMG1000MDITDI_6_3 99.7 99.6 
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Figure 4.5. Three-dimensional thermomechanical response for system 1, PEG1000TDI 
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Figure 4.6. Three-dimensional thermomechanical response for system 3, PTMG650TDI  
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Figure 4.7. Three-dimensional thermomechanical response for system 7, PTMG1000MDI, 

F = 5 N (a) and F = 10 N (b) 
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Figure 4.8. Three-dimensional thermomechanical response for system 10, 

PTMG1000/MDI+TDI/1%TiO2  
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As previously indicated, the value of the fixity ratio is attributed to the soft-

segment of the polyurethane while the hard-segment of the polyurethane is 

responsible for the shape recovery. 

Relating to soft-segment, it is evident that both the PTMG-based and PEG-based 

SMPUs show a similar shape memory effect 7,23. When PEG1000TDI and 

PTMG1000TDI with the same molecular weight and the same molar ratio (e.g. n=4.5) 

are compared, the shape memory behavior of PEG1000TDI presents almost complete 

strain fixing (90.9%) and strain recovery (99.8%), as PTMG100TDI does (Rf = 89.6% 

and Rr = 99.9%). These values are practically equal because the hard-segment, 

which controls the recovery, is the same. It could be concluded that these two polyols 

(PEG and PTMG), combined with TDI to synthetize a polyurethane, provide not only 

almost complete shape recovery but also similar and favorable results relating to 

shape fixity. 

Furthermore, Figure 4.9 shows the bi-dimensional representation of the 

thermomechanical cycles corresponding to PTMG650TDI_5.5 (Rf = 87.2% and Rr = 

100%) and PEG1000TDI_5.5 (Rf = 92.1% and Rr = 99.8%) samples, which have 

same hard-segment, same molar ratio and a different polyol. Since the hard-segment 

is the same, Rr is very similar in both polyurethanes. However, this time the polyol 

is different both in nature and in molecular weight, so the difference in Rf becomes 

higher than in the case of PTMG1000TDI_4.5 and PEG1000TDI_4.5 where the polyol 

differs just in nature. Moreover, it is observed that PEG1000TDI_5.5 sample recovers 

its permanent shape (original shape) in a shorter time than PTMG650TDI_5.5 (30 

minutes versus 42 minutes). In the thermo-mechanical cycle developed in order to 

study the shape memory behavior, the last stage consists in heating the sample to a 

temperature above the transition temperature. Therefore, as the glass transition 

temperature of PEG1000TDI_5.5 (Tg,DMA = 30.4ºC) is lower than the one of 

PTMG650TDI_5.5 (Tg,DMA = 62.9ºC), the recovery process takes place at a shorter 

time, although shape recovery is close to 100% in both cases. 

Finally, it is concluded that PEG1000TDI, PTMG650TDI and PTMG1000TDI were 

completely recovered with recovery ratios higher than 99.7%. 
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Relating to hard-segment, in this work, TDI, MDI and a mixture 50% weight of 

TDI and 50% weight of MDI were used to synthesize polyurethanes with different 

compositions. The soft-segments in the polyurethanes act as reversible phases, while 

physical entanglement of the amorphous polyurethanes act as the fixed phase, such 

as physical netpoints. Polyurethanes synthesized with MDI showed remarkable lower 

shape recovery ratios than TDI-based SMPUs. This is because the chain 

entanglements in the stretched sample were not sufficiently high to provide enough 

physical netpoints and elasticity required to restore the original shape 24–26. 
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Figure 4.9. Bi-dimensional thermomechanical cycles to compare PTMG650TDI_5.5 

and PEG1000TDI_5.5 samples 

 

It can be seen that the shape fixity values (Rf) obtained for the TDI-based SMPUs 

are larger than those previously showed by Gu et al. 27 for PEG-based SMPUs, which 

obtained a maximum of 75%. Moreover, the hard-segment domain formed by TDI 

and BD provides stable physical netpoints to achieve good shape recovery, 

approximately near 100%. For MDI-based SMPUs, shape fixity and shape recovery 

ratios decrease with the increase in hard-segment content in almost all samples. The 

shape fixity values for MDI-based SMPUs with molar ratio higher than 1.5 for F = 5 

N and higher than n = 3 for F = 10 N, were not possible to calculate because of the 
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limitations in the equipment. These negative values are directly related to the TMA 

test procedure developed in order to measure the shape memory behavior, as 

mentioned above. It should be noted that the maximum displacement that the Mettler 

Toledo DMA1 can register is 1 mm (1000 µm) and the maximum force is 10 N. Thus, 

on the one hand, when forces higher than 5 N were applied this limit can be overcome 

in some samples and, on the other hand, the applied force (5 N) is not enough to fix 

the temporary shape due to a thermal process contraction which decreases values 

used in eq. 4.1 to calculate Rf. 

It is worth noting that a certain fraction of the stretched polymer is unlocked 

even at a temperature below Tg, hence there is an instantaneous retractive force 

upon loading removal, which causes incomplete shape fixing in MDI-based SMPUs 

and in some TDI-based SMPUS 22. 

It can be concluded that the shape memory properties for the TDI-based SMPUs 

(Rr (%)) are superior to MDI-based SMPUs. One possible reason is that their physical 

netpoints formed by molecular interactions are weak in the MDI–based SMPUs, 

whereas TDI-based SMPUs show higher hydrogen bonded molecular interaction as 

mentioned above. 

In contrast to MDI-based SMPUs, SMPUs with nanoparticles show better 

recovery ratios, as in almost all samples Rr higher than 99.5% were achieved. Hence, 

the added TiO2 nanoparticles can be considered as secondary physical netpoints in 

conjunctions with the main physical netpoints of the matrix. Thus, it can be noted 

here that the observed improvement in Rr with the incorporation of nanoparticles is 

originated from the high physical crosslink density and large stored elastic strain 

energy in the polyurethane, which provide a high driving force for the subsequent 

complete shape recovery 22,28,29.  

In addition, it can be seen from Table 4.3 and Table 4.5 that PTMG650TDIMDI 

without nanoparticles presents moderate Rf values, while with the incorporation of 

1% TiO2 into the polyurethane, the shape fixing of nanocomposites is noticeably 

improved 30. As an example, Rf of PTMG650TDIMDI_3.5 without nanoparticles is 

72.4% and adding 1% TiO2 is 96.2%. In the case of PTMG1000TDIMDI (Table 4.4 

and Table 4.5), results are not as remarkable as it happens with PTM650TDIMDI but 

Rf values are higher with nanoparticles than without them, in almost all cases 31,32.  
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To sum up, all shape memory polyurethanes show good shape recovery, being 

the MDI-based SMPUs which show the worst shape recovery. This could be attributed 

to the presence of more physical crosslinking in the other samples due to the highest 

frequency of urethane bonds, which cause the storage of more deformed energy in 

the system. In addition, some samples with lower Tg values show higher shape 

recovery. This could be explained because of the restricted mobility of long chains 

and highly crosslinked polymer networks 33. 

 

4.2.2. Cycles 

Once demonstrated the shape memory ability of shape memory polyurethanes 

over a thermomechanical cycle, shape memory behavior during several cycles was 

studied. All the samples were tested performing the same described TMA procedure 

in order to check the reproducibility of the shape memory behavior for repetitive 

cycles 3,34,35. As explained in section 4.2.1, in these cyclic thermomechanical tests, 

shape memory behavior is usually quantified by parameters such as the strain fixity 

ratio, Rf, and the strain recovery ratio, Rr. The experimental conditions to perform 

the cyclic experiments were the same as in Table 4.1. These cyclic experiments were 

realized only for one specific polyurethane in each system, so that, 11 cyclic tests 

were carried out. The shape fixity ratios and the shape recovery ratios corresponding 

to each cycle (N = 1-6) are shown in Tables 4.6, 4.7, 4.8 and 4.9 for the SMPUs 

based on PEG, PTMG650, PTMG1000 and SMPUs with nanoparticles, respectively.  

Moreover, the procedure was the same as in one cycle. First, the sample is 

heated without force at a temperature above Ttrans with a heating rate of 4°C·min-1 

in order to allow relaxation of the polymer chain. Then, the force is applied and the 

sample is deformed. The stress is then maintained during 5 min. The temporary 

shape was fixed cooling below its transition temperature of shape memory effect, Tlow 

at a rate of -20°C·min-1. Finally, the samples were heated-up above the transition 

temperature at a rate of 4°C·min-1, so the thermal-induced recovery process was 

observed 36–39. This cycle was then conducted consecutively five more times on the 

same sample (Figure 4.10) 40,41. Therefore, the number of cycles (N) was 6. 

For each cycle (N = 1-6), Rf quantifies the ability of the polymer to fix a 

mechanical deformation, 𝜀𝑚, resulting in a temporary shape, 𝜀𝑢(𝑁); whereas Rr 

quantifies the ability to restore the permanent shape 𝜀𝑝(𝑁) after the application of a 
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certain deformation, 𝜀𝑚,  so it builds the ratio between the change in strain recorded 

during the shape memory effect 𝜀𝑚(𝑁) − 𝜀𝑝(𝑁) and the change in strain in the course 

of programming given by 𝜀𝑚(𝑁) − 𝜀𝑝(𝑁 − 1) 42,43. The shape fixing ratio, Rf(N), and 

the shape recovery ratio, Rr(N), were calculated using the equations 4.3 and 4.4, 

respectively 44,45. From these equations, it is observed that ideally Rf and Rr should 

be 100%. 

𝑅𝑓(%) =
𝜀𝑢 (𝑁)

𝜀𝑚 (𝑁)
· 100 (4.3) 

  

𝑅𝑟(%) =
𝜀𝑚 (𝑁) − 𝜀𝑝 (𝑁)

𝜀𝑚(𝑁) − 𝜀𝑝(𝑁 − 1)
· 100 (4.4) 

 

Where N is the cycle number, 𝜀𝑚 is the maximum compressive strain, εp (N) 

and εp (N - 1) are the final strains of the sample in two successive cycles in the 

recovering process (Figure 4.11). 

 

Figure 4.10. Shape memory effect - cyclic 
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Figure 4.11. Description of the method used in thermomechanical analysis – two 

consecutive cycles 

 

 

Table 4.6. Shape memory parameters after six cycles for one SMPU in each system for the 

SMPUs based on PEG 

System & Sample Cycle Rf (%) Rr (%) 

S1 PEGTDI_4.5 

N = 1 93.6 99.9 

N = 2 93.5 100 

N = 3 88.2 100 

N = 4 74.3 100 

N = 5 53.0 100 

N = 6 53.0 99.9 

S2 PEGMDI_3 N = 1-6 - 
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Table 4.7. Shape memory parameters after six cycles for one SMPU in each system for the 

SMPUs based on PTMG 650 

System & Sample Cycle Rf (%) Rr (%) 

S3 PTMG650TDI_3 

N = 1 91.9 99.8 

N = 2 91.9 100 

N = 3 91.5 100 

N = 4 91.4 99.9 

N = 5 94.2 100 

N = 6 94.4 100 

S4 PTMG650MDI_1.5 

N = 1 34.0 76.4 

N = 2 37.3 86.7 

N = 3 42.3 89.3 

N = 4 45.7 90.2 

N = 5 49.0 91.3 

N = 6 51.1 92.3 

S5 PTMG650MDITDI_1.5 

N = 1 89.6 100 

N = 2 89.4 99.6 

N = 3 89.1 100 

N = 4 89.2 99.9 

N = 5 89.9 99.9 

N = 6 89.5 100 
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Table 4.8. Shape memory parameters after six cycles for one SMPU in each system for the 

SMPUs based on PTMG 1000 

System & Sample Cycle Rf (%) Rr (%) 

S6 PTMG1000TDI_4.5 

N = 1 88.0 99.9 

N = 2 87.7 99.9 

N = 3 87.5 100 

N = 4 87.7 100 

N = 5 87.9 99.9 

N = 6 88.0 100 

S7 PTMG1000MDI_1.5 

N = 1 52.3 73.1 

N = 2 57.2 88.9 

N = 3 57.4 89.9 

N = 4 59.2 89.5 

N = 5 64.7 89.8 

N = 6 63.6 90.8 

S8 PTMG1000MDITDI_3.5 

N = 1 91.0 99.8 

N = 2 90.8 99.9 

N = 3 90.3 99.8 

N = 4 90.2 100 

N = 5 90.1 99.9 

N = 6 90.0 100 
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Table 4.9. Shape memory parameters after six cycles for one SMPU in each system for 

SMPUs synthesized with nanoparticles 

System & Sample Cycle Rf (%) Rr (%) 

S9 PTMG650MDITDI_1.5_1 

N = 1 90.9 100 

N = 2 90.4 99.9 

N = 3 90.3 99.9 

N = 4 89.8 99.9 

N = 5 90.3 99.9 

N = 6 90.9 99.7 

S10 PTMG1000MDITDI_3.5_1 

N = 1 93.0 99.9 

N = 2 92.7 99.9 

N = 3 92.5 99.9 

N = 4 92.5 100 

N = 5 92.8 100 

N = 6 92.5 99.9 

S11 PTMG1000MDITDI_3.5_3 

N = 1 90.5 99.9 

N = 2 90.3 99.9 

N = 3 90.1 100 

N = 4 90.2 99.9 

N = 5 90.6 99.9 

N = 6 90.5 100 

 

 

In Figure 4.12, the thermomechanical behavior in 2D during 6 cycles for the 

sample PTMG650TDI_3 can be observed. Furthermore, Figure 4.13, 4.14, 4.15 and 

4.16 show the obtained results about shape memory behavior during 6 cycles for the 

samples corresponding to system 1, system 3, system 7 and system 10, respectively. 

All the graphics corresponding to this section can be found in Appendix D.  

These figures provide the 3D shape memory cycles for the samples, showing 

the variation of the sample deformation with the applied force and temperature, 

where an outstanding reproducibility is observed in almost all samples 25. Generally, 

regarding thermally activated shape memory properties, soft-segments are 

responsible for shape fixity, acting as the switching segments; while hard-segments 

are responsible for shape recovery, determining the permanent shape 20,21,46. 
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Figure 4.12. Bi-dimensional thermomechanical response for PTMG650TDI_3 sample 

during 6 cycles. 
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Figure 4.13. Three-dimensional thermomechanical response for system 1, PEG1000TDI_4.5 

– 6 cycles 
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Figure 4.14. Three-dimensional thermomechanical response for system 3, PTMG650TDI_3 – 

6 cycles 
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Figure 4.15. Three-dimensional thermomechanical response for system 7, 

PTMG1000MDI_1.5 – 6 cycles 
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Figure 4.16. Three-dimensional thermomechanical response for system 10, 

PTMG1000MDITDI_3.5_1– 6 cycles 

 

 

The shape fixity ratios for each sample are higher than 85% in almost all 

samples. It is clear that, in the same way that the observed results for one TMA cycle, 

the MDI-based SMPUs show the worst shape fixity and shape recovery properties 

among the polyurethanes studied in this work. In the case of PEG-based SMPUs, the 

shape fixity ratio decreases as N increases. This could be explained because the used 

soft-segment, PEG, fix the temporary shape worse than PTMG. In the rest of the 

cases, TDI and the mixture of MDI and TDI based SMPUS, the shape fixity and shape 

recovery ratios are similar regardless of the number of the cycle.  

Relating to SMPUS with nanoparticles, the results demonstrate that the addition 

of nanoparticles enhances slightly the shape fixity and shape recovery ratios of 

SMPUs. The shape recovery ratios are higher than 99.5% in all cases and in all cycles 

from N = 1 to N = 6. 
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Finally, it could be concluded that TDI-based SMPUs and TDI+MDI based SMPUs 

have better shape fixity and shape recovery than MDI-based SMPUs in both cases, in 

one cycle and in more than one cycle. 

 

4.3. Conclusions 

Shape memory behavior of the synthesized polyurethanes was qualitatively and 

quantitatively evaluated. The qualitative evaluation demonstrates promoted shape 

memory response for all samples. At the same time, the quantitative analysis using 

TMA shows that almost all SMPUs samples are characterized by shape fixity ratios 

higher than 85% and shape recovery ratios near 99%.  

Besides, depending on the hard-segment, the shape memory effect varies 

between MDI-based SMPUs and TDI-based SMPUs, finding TDI shape memory 

properties superior to MDI-based SMPUs.  

In conclusion, considering the foregoing, PTMG-based SMPUs could be more 

promising thermal-induced shape memory polymers than PEG-based SMPUs. These 

polyurethanes could be able to provide promising applications in several fields as 

textile, footwear, biomedicine, automotive, aerospace, etc 42,47. 

 

4.4. References 

1.  Petrović ZS, Milić J, Zhang F, Ilavsky J (2017) Fast-responding bio-based shape 

memory thermoplastic polyurethanes. Polymer (Guildf) 121:26–37. 

2.  Calvo-Correas T, Gabilondo N, Alonso-Varona A, et al (2016) Shape-memory 

properties of crosslinked biobased polyurethanes. Eur Polym J 78:253–263. 

3.  Xiao R, Zhang C, Gou X, et al (2017) Tunable shape-memory behaviors in 

amorphous polymers through bound solvent. Elsevier 209:131–133. 

4.  Odent J, Raquez J-M, Samuel C, et al (2017) Shape-Memory Behavior of 

Polylactide/Silica Ionic Hybrids. Macromolecules 50:2896–2905. 

5.  Chatterjee T, Dey P, Nando GB, Naskar K (2015) Thermo-Responsive Shape 



154  Chapter IV 

 

Memory Polymer Blends Based on Alpha Olefin and Ethylene Propylene Diene 

Rubber. Polymer (Guildf) 78:180–192. 

6.  Meng H, Mohamadian H, Stubblefield M, et al (2013) Various shape memory 

effects of stimuli-responsive shape memory polymers. Smart Mater Struct 

22:93001–93023. 

7.  Hu JL, Ji FL, Wong YW (2005) Dependency of the shape memory properties of 

a polyurethane upon thermomechanical cyclic conditions. Polym Int 54:600–

605. 

8.  Li Y, Zhang Y, Rios O, et al (2017) Photo-responsive liquid crystalline epoxy 

networks with exchangeable disulfide bonds. RSC Adv 7:37248–37254. 

9.  Berlanga Duarte ML, Aranda Guevara F, Reyna Medina LA (2017) Preparation 

and Study of Shape Memory in Epoxy Resins. Macromol Symp 374:1600132–

1600137. 

10.  Chen S, Zhang Q, Feng J, et al (2017) 3D printing of tunable shape memory 

polymer blends. J Mater Chem C 5:8361–8365. 

11.  Jing Z, Shi X, Zhang G, Gu J (2017) Synthesis and properties of 

poly(lactide)/poly(ε-caprolactone) multiblock supramolecular polymers 

bonded by the self-complementary quadruple hydrogen bonding. Polymer 

(Guildf) 121:124–136. 

12.  Teoh JEM, Zhao Y, An J, et al (2017) Multi-stage responsive 4D printed smart 

structure through varying geometric thickness of shape memory polymer. 

Smart Mater Struct 26:125001–125011. 

13.  Yao Y, Zhou T, Wang J, et al (2016) “Two way” shape memory composites 

based on electroactive polymer and thermoplastic membrane. Compos Part A 

Appl Sci Manuf 90:502–509. 

14.  Saralegi A, Gonzalez ML, Valea A, et al (2014) The role of cellulose nanocrystals 

in the improvement of the shape-memory properties of castor oil-based 

segmented thermoplastic polyurethanes. Compos Sci Technol 92:27–33. 

15.  Sun L, Huang WM, Lu H, et al (2014) Heating-Responsive Shape-Memory Effect 

in Thermoplastic Polyurethanes with Low Melt-Flow Index. Macromol Chem 

Phys 215:2430–2436. 

16.  Azra C, Ding Y, Plummer CJG, Månson J-AE (2013) Influence of molecular 



Results and discussion. II. Shape Memory Behavior   155 

 

architecture on the isothermal time-dependent response of amorphous shape 

memory polyurethanes. Eur Polym J 49:184–193. 

17.  Chen S, Hu J, Liu Y, et al (2007) Effect of SSL and HSC on morphology and 

properties of PHA based SMPU synthesized by bulk polymerization method. J 

Polym Sci Part B Polym Phys 45:444–454. 

18.  Sáenz-Pérez M, Lizundia E, Laza JM, et al (2016) Methylene diphenyl 

diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: 

thermal, shape-memory and mechanical behavior. RSC Adv 6:69094–69102. 

19.  Li H, Luo Y, Gao X, et al (2017) Core–shell nano-latex blending method to 

prepare multi-shape memory polymers. Soft Matter 13:5324–5331. 

20.  Gu L, Cui B, Wu Q-Y, et al (2016) Bio-based polyurethanes with shape memory 

behavior at body temperature: effect of different chain extenders. RSC Adv 

6:17888–17895. 

21.  Ge Z, Ren H, Fu S, et al (2017) Synergistic effects of zwitterionic segments 

and a silane coupling agent on zwitterionic shape memory polyurethanes. RSC 

Adv 7:42320–42328. 

22.  Sabzi M, Babaahmadi M, Rahnama M (2017) Thermally and Electrically 

Triggered Triple-Shape Memory Behavior of Poly(vinyl acetate)/Poly(lactic 

acid) Due to Graphene-Induced Phase Separation. ACS Appl Mater Interfaces 

9:24061–24070. 

23.  Ji F, Zhu Y, Hu J, et al (2006) Smart polymer fibers with shape memory effect. 

Smart Mater Struct 15:1547–1554. 

24.  Wu S, Xu W, Balamurugan GP, et al (2017) Recovery behaviour of shape 

memory polyurethane based laminates after thermoforming. Smart Mater 

Struct 26:115002–115015. 

25.  Yu J, Xia H, Teramoto A, Ni Q-Q (2018) The effect of hydroxyapatite 

nanoparticles on mechanical behavior and biological performance of porous 

shape memory polyurethane scaffolds. J Biomed Mater Res Part A 106:244–

254. 

26.  Lakatos C (2016) Segmented linear shape memory polyurethanes with 

thermoreversible Diels-Alder coupling: Effects of polycaprolactone molecular 

weight and diisocyanate type. Express Polym Lett 10:324–336. 



156  Chapter IV 

 

27.  Gu X, Mather PT (2012) Entanglement-based shape memory polyurethanes: 

Synthesis and characterization. Polymer (Guildf) 53:5924–5934. 

28.  Gao Y, Zhu G, Xu S, et al (2018) Biodegradable magnetic-sensitive shape 

memory poly(ɛ-caprolactone)/Fe3 O4 nanocomposites. J Appl Polym Sci 

135:45652–45661. 

29.  Molavi, Fatemeh Khademeh, Ghasemi, Ismaeil, Massimo Messori ME (2017) 

Nanocomposites based on poly(l-lactide)/poly(ε-caprolactone) blends with 

triple-shape memory behavior: Effect of the incorporation of graphene 

nanoplatelets (GNps). Compos Sci Technol 151:219–227. 

30.  Qian C, Zhu Y, Dong Y, Fu Y (2017) Vapor-grown carbon 

nanofiber/poly(ethylene-co-vinyl acetate) composites with electrical-active 

two-way shape memory behavior. J Intell Mater Syst Struct 28:2749–2756. 

31.  Cai S, Sun Y-C, Ren J, Naguib HE (2017) Toward the low actuation temperature 

of flexible shape memory polymer composites with room temperature 

deformability via induced plasticizing effect. J Mater Chem B 5:8845–8853. 

32.  Alberto N, Fonseca MA, Neto V, et al (2017) Incorporation of fiber bragg 

sensors for shape memory polyurethanes characterization. Sensors 

(Switzerland) 17:2600–2611. 

33.  Mora-Murillo, LD, Orozco-Gutierrez, F, Vega-Baudrit, J, González-Paz R (2017) 

Thermal-Mechanical Characterization of Polyurethane Rigid Foams: Effect of 

Modifying Bio-Polyol Content in Isocyanate Prepolymers. J Renew Mater 

5:220–230. 

34.  Parameswaranpillai J, Ramanan SP, Jose S, et al (2017) Shape Memory 

Properties of Epoxy/PPO–PEO–PPO Triblock Copolymer Blends with Tunable 

Thermal Transitions and Mechanical Characteristics. Ind Eng Chem Res 

56:14069–14077. 

35.  Zhao X, Dong R, Guo B, Ma PX (2017) Dopamine-Incorporated Dual Bioactive 

Electroactive Shape Memory Polyurethane Elastomers with Physiological Shape 

Recovery Temperature, High Stretchability, and Enhanced C2C12 Myogenic 

Differentiation. ACS Appl Mater Interfaces 9:29595–29611. 

36.  Jeong HM, Ahn BK, Kim BK (2001) Miscibility and shape memory effect of 

thermoplastic polyurethane blends with phenoxy resin. Eur Polym J 37:2245–



Results and discussion. II. Shape Memory Behavior   157 

 

2252. 

37.  Kim Y, Park H, Kim B (2015) Triple shape-memory effect by silanized 

polyurethane/silane-functionalized graphene oxide nanocomposites bilayer. 

High Perform Polym 27:886–897. 

38.  Xu W, Wu S, Balamurugan GP, et al (2017) Evaluating shape memory behavior 

of polymer under deep-drawing conditions. Polym Test 62:295–301. 

39.  Bayan R, Karak N, Pokhrel K, et al (2017) Renewable resource derived aliphatic 

hyperbranched polyurethane/aluminium hydroxide–reduced graphene oxide 

nanocomposites as robust, thermostable material with multi-stimuli responsive 

shape memory features. New J Chem 41:8781–8790. 

40.  Ban J, Mu L, Yang J, et al (2017) New stimulus-responsive shape-memory 

polyurethanes capable of UV light-triggered deformation, hydrogen bond-

mediated fixation, and thermal-induced recovery. J Mater Chem A 5:14514–

14518. 

41.  Zhang Z, Qi X, Li S, et al (2018) Water-actuated shape-memory and 

mechanically-adaptive poly(ethylene vinyl acetate) achieved by adding 

hydrophilic poly (vinyl alcohol). Eur Polym J 98:237–245. 

42.  Zhao Z, Peng F, Cavicchi KA, et al (2017) Three-Dimensional Printed Shape 

Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized 

Poly(ethylene- co -methacrylic acid). ACS Appl Mater Interfaces 9:27239–

27249. 

43.  Chai Q, Huang Y, Kirley TL, et al (2017) Shape memory polymer foams 

prepared from a heparin-inspired polyurethane/urea. Polym Chem 8:5039–

5048. 

44.  Saleeb AF, Natsheh SH, Owusu-Danquah JS (2017) A multi-mechanism model 

for large-strain thermomechanical behavior of polyurethane shape memory 

polymer. Polymer (Guildf) 130:230–241. 

45.  Sonseca Á, Camarero-Espinosa S, Peponi L, et al (2014) Mechanical and shape-

memory properties of poly(mannitol sebacate)/cellulose nanocrystal 

nanocomposites. J Polym Sci Part A Polym Chem 52:3123–3133. 

46.  Li H, Luo Y, Gao X, et al (2017) Core–shell nano-latex blending method to 

prepare multi-shape memory polymers. Soft Matter 13:5324–5331. 



158  Chapter IV 

 

47.  Uto K, Ebara M (2017) Magnetic-Responsive Microparticles that Switch Shape 

at 37 °C. Appl Sci 7:1203–1211. 

 

 



 

 

 

 

 

 

Chapter V. 
RESULTS AND DISCUSSION. 

III. PERMEABILITY BEHAVIOR 

 

 

 

 

 

 

“¿Qué sería de la vida si no tuviésemos el coraje de intentarlo?”  

Vincent van Gogh 



  



Results and discussion. III. Permeability behavior   161 

 

 

 

 

 

Chapter V 

RESULTS AND DISCUSSION. 

III. PERMEABILITY BEHAVIOR 

 

 

5.1. Introduction 

ermeability behavior of the shape memory polyurethanes is described 

in the following chapter. Barrier materials owns the ability to restrict 

the passage of gases, vapors, and organic liquids through their 

boundaries 1–3. Polymeric materials dominate the barrier materials 

used in textile industry, being also found in other applications ranging 

from packaging industry to window films, because of their superior properties and 

low cost. The permeability or gas (vapor) transmission rate through any polymeric 

material is dependent upon two factors: the gas (or vapor) solubility and the rate of 

diffusion through the barrier. The solubility is dependent upon the chemical 

relationship between the permeant molecule (gas or vapor) and the polymer (barrier 

material); whilst the rate of diffusion is dependent upon the size of the permeant 

P 
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molecule and the amorphous configuration of the barrier polymer. The permeability 

coefficient measures the relative permeation behavior, and it is used to compare the 

permeability of different polymers. Permeability coefficient, in general, is defined as 

the amount of permeant molecule transported through a membrane, per unit area 

and time, under the action of a driving force gradient unit. This driving force gradient 

must be expressed in terms of a variable which is measured outside the membrane, 

such as pressure or concentration 4,5. The gases and vapors most often studied are 

water vapor, oxygen, carbon dioxide, and nitrogen. In this work, to measure 

permeability water vapor, oxygen and limonene vapor were used. 

Water vapor permeability is defined as fabric's ability to transport water vapor 

from skin surface through fabric to external environment 6,7. This water vapor can be 

transferred by diffusion of water vapors through layers; by absorption, transmission 

and desorption of water vapor by fibers; by adsorption and migration of water vapor 

along fiber surface; and by transmission of water vapor by forced convection. Water 

vapor transmission rate (WVTR) of shape memory polyurethanes (SMPUs) is of great 

importance when these SMPUs are going to be used in the textile sector, e.g., for the 

manufacture of shoes and garments 8–11. In order to keep the human body warm and 

comfortable, shoes and garments should have high WVTR values, which allows 

perspiration to evaporate promptly, especially when human bodies are in hot 

environments. Thus, relative humidity inside the shoes and garments will decrease 

when water vapor transfers through the SMPUs into the environment. In this way, 

the water vapor transport properties of textile fabrics are of considerable importance 

to determine the thermal comfort properties of clothing systems. During heavy work 

or in hot environments, a high degree of water vapor permeability (high WVTR) of 

the clothing materials supports the moisture transfer from the wearer skin through 

the textile layers into the environment. Human body produces heat in the form of 

sweat during its activity, and permeability is used to evaporate sweat, resulting in 

the dissipation of heat and cooling of the body. However, if water vapor cannot 

escape to atmosphere then relative humidity (RH) inside clothing increases, causing 

discomfort. Hence, knowledge of water vapor transmission is necessary 12,13.  

There are various test methods available for measuring water vapor 

permeability of the fabrics. They differ in the construction mechanisms, test 

conditions, measurement parameters, and units 8. Water vapor transmission rate, 

WVTR, is reported as the grams of water that will pass through a given area of 
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material in a specified time. Therefore, the usual units are grams per square meter 

per day at a specified temperature and relative humidity (g·mm·m-2·day-1). 

Other gas analyzed to test how shape memory polyurethanes behave was 

oxygen. Permeability of oxygen, PO2, is a very important parameter which must be 

controlled, not only in textile applications, but also in package applications. In the 

case of packaging, if oxygen is allowed to go into a package, it will break down organic 

compounds initiating or accelerating the decay process. Uncontrolled, this will 

promote food staleness and loss of nutritive value. In the case of fresh meat, a high 

rate of oxygen transmission is required to maintain the bright red color of meat. To 

meet this special requirement, special grades of cellophane, polyethylenes, and 

nitriles have been developed to provide the low water vapor transmission needed to 

avoid drying the meat while providing high oxygen transmission to maintain the color. 

This phenomenon of high transmission for oxygen combined with low transmission of 

water seems paradoxical but is very critical to these specialized needs 14,15. 

Permeability oxygen transmission is usually reported in cubic centimeters of gas that 

pass through a square meter of film in 24 h when the gas pressure differential on 

one side of the film, at a specified temperature, is one atmosphere greater than on 

the other side (cm3(STP)·cm·cm-2·s-1·cm Hg-1).  

Finally, limonene vapor transmission rate (LVTR) was measured. LVTR 

measurements were only performed with some shape memory polyurethanes. 

Limonene is a natural cyclic monoterpene, a clear colorless liquid at room 

temperature. Limonene, the naturally occurring chemical which is the major 

component in oil of oranges, is widely used as a flavor and fragrance. As it is known, 

odor is a relevant problem in footwear field, so that, it was considered that limonene 

would be an interesting molecule to analyze its permeability 16,17. The units of 

limonene vapor transmission rate are the same as the water vapor transmission rate 

because the procedure of analysis is the same (g·mm·m-2·day-1). 

 

5.2. Characterization of permeability behavior of 

shape memory polyurethanes 

There are different test methods for measuring the permeability of the shape 

memory polyurethanes performed in this work. The following measurements were 

https://pubchem.ncbi.nlm.nih.gov/compound/Limonene
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carried out at the Polymer Science and Technology Department of the University of 

the Basque Country (UPV/EHU) in Donostia – San Sebastian. As mentioned above, 

water vapor, oxygen and limonene vapor were used to know the permeability of the 

shape memory polyurethanes. This study was carried out in the systems S4 

(PTMG650MDI) and S7 (PTMG1000MDI), as well as in some samples of system S8 

(PTMG1000MDITDI_4 and PTMG1000MDITDI_5) and system S10 

(PTMG1000MDITDI_4_1 and PTMG1000MDITDI_5_1). 

 

5.2.1. Water vapor transmission rate 

The analysis of water vapor permeability was carried out by the gravimetric 

method. This gravimetric method allows to measure permeability of vapors and 

liquids. The used cell was made of Teflon, chemically inert (Figure 5.1). The 

schematic diagram of the permeability cell used to evaluate water permeability is 

shown in Figure 5.2. The weighing scale used was a Sartorius BP 210 D with a 

resolution of 10-5 g, and it was connected to a computer where time and weight loss 

were registered. The relative humidity (RH) was measured by a hygrometer, model 

HD 2017 TV. 

In the gravimetric method, the only requirement is to maintain constant the 

water vapor pressure difference between both sides of the sample during the test, 

under specified temperature conditions (Figure 5.2). However, it does not regulate 

which side should be the high humidity side 18,19. The cell was sealed to prevent vapor 

loss except through the test sample. An initial weight was measured in the weighing 

scale and then, the weight variation of the permeable cell was periodically weighed 

over time until results become linear. The weight loss was measured after 8 h. 

Attention should be paid in ensuring that all weight losses were due to water vapor 

transmission through the specimen. In summary, water vapor passes through the 

test film in determined conditions whilst weight loss was measured. At last, the water 

vapor permeability parameters were measured taking into account the sample area 

and thickness, the weighing interval, and the humidity difference on two sides of the 

sample. In these tests, the cell was placed in a chamber where the temperature was 

constant at 25 or 40ºC, depending on the experiment. Some of the samples were 

measured at both temperatures, 25 and 40ºC, because their glass transition 

temperatures were close to body temperature (T = 38ºC, horizontal line in some 
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figures), and it is important to evaluate WVTR below and above glass transition 

temperature. For each WVTR measurement, an average of three different readings 

was used. The result of WVTR was calculated using the equation 5.1 17: 

WVTR =  
m · l

A · (aint − aext)
 (5.1) 

 

Where WVTR is the water vapor transmission rate (g mm·m-2 day-1) 

m is the slope of the straight line obtained representing weight loss versus time 

(g·day-1) 

l is thickness of the film (mm) 

A is the area of the film (2.54 10-4 m2) 

aint is the humidity inside the cell, which is equal to 1 because water is in balance 

with its own vapor at working temperature 

aext is the humidity outside the cell, relative humidity (RH = 0.5) 

 

 

Figure 5.1. Teflon cell 

 

Figure 5.2. Schematic diagram of permeability cell used to evaluate water permeation 

through films  
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As mentioned above, WVTR was analyzed for system 4, system 7 (except for n 

= 1, 3.5), and also two samples of systems 8 and 10 in order to analyze and compare 

the effect of nanoparticles in the WVTR of SMPUs. All of them in the form of films 

(Table 5.1). 

Table 5.1. Composition of all the analyzed systems 

System Polyol Diisoyanate Diol n-TiO2 

4 PTMG (Mn = 650 g·mol-1) MDI 1,4-BD - 

7 PTMG (Mn = 1000 g·mol-1) MDI 1,4-BD - 

8 PTMG (Mn = 1000 g·mol-1) TDI/MDI 1,4-BD - 

10 PTMG (Mn = 1000 g·mol-1) TDI/MDI 1,4-BD 1 wt% 

 

In Table 5.2, the WVTR values for system 4 are tabulated whereas Figure 5.3 

shows the representation of the WVTR values versus n at 25ºC and 40ºC. Table 5.3 

exhibits the WVTR values for system 7 and in Figure 5.4 are shown WVTR at 25ºC 

and 40ºC. Moreover, in Table 5.4 are tabulated the WVTR values for some samples 

of systems 8-10. Finally, in Figure 5.5 is shown the comparative between system 4 

and system 7 at 25ºC.  

Table 5.2. Results of WVTR for system 4 at 25ºC and 40ºC 

System 4 
WVTR 

(g·mm·m-2 day-1) 

at 25ºC 

WVTR 

(g·mm·m-2 day-1) 

at 40ºC 

Tg 

(ºC) 

PTMG650MDI_0.5 25.06.2 - -10.2 

PTMG650MDI_1 12.84.5 - -3.0 

PTMG650MDI_1.5 11.12.8 - 6.3 

PTMG650MDI_2 12.01.8 - 10.9 

PTMG650MDI_2.5 6.71.2 - 15.7 

PTMG650MDI_3 4.01.2 - 23.1 

PTMG650MDI_3.5 9.9 1.0 18.46.0 40.4 

PTMG650MDI_4 9.4±0.9 10.14.2 46.6 

PTMG650MDI_4.5 Films too brittle - 62.4 
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Figure 5.3. WVTR at 25ºC and 40ºC for system 4 

 

Table 5.3. Results of WVTR for system 7 at 25ºC and 40ºC 

System 7 
WVTR 

(g mm·m-2 day-1) 

at 25ºC 

WVTR 

(g mm·m-2 day-1) 

at 40ºC 

Tg 

(ºC) 

PTMG1000MDI_0.5 60.32.7 - -30.9 

PTMG1000MDI_1.5 37.90.6 - -20.0 

PTMG1000MDI_2 22.82.8 - -18.4 

PTMG1000MDI_2.5 28.10.5 - -16.2 

PTMG1000MDI_3 18.24.4 - -12.5 

PTMG1000MDI_4 15.23.1 - -3.9 

PTMG1000MDI_4.5 16.43.9 17.03.5 52.5 
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Figure 5.4. WVTR at 25ºC and 40ºC for system 7 

 

Water vapor transmission rate of system 4 at 25ºC is represented in Figure 5.3. 

It can be seen that WVTR decreases from 25.0 to 9.4 g·mm·m-2·day-1 while hard-

segment content increases (n goes from 0.5 to 4). In system 7, a similar trend was 

observed (Figure 5.4). WVTR decreases from 60.3 to 16.4 g·mm·m-2·day-1 when n 

increases from 0.5 to 4.5. All these samples from systems 4 and 7 are composed of 

PTMG, with Mn= 650 or 1000 g·mol-1, respectively, MDI and BD. Therefore, in both 

systems, just varying n the NCO/OH relationship was modified. Once the NCO/OH 

ratio increases (i.e., the hard-segment/soft-segment ratio increases), WVTR 

decreases. This can be due to the fact that the presence of a high number of hard-

segments surrounding the soft-segments difficult the water vapor transmission 8. 

Moreover, when polyurethanes are slightly crosslinked the polymeric chains are 

positioned close to each other. Then, the free space for water vapor passage is 

limited, resulting in a reduction of WVTR. Therefore, WVTR was reduced because the 

water vapor pathway was restricted, not only due to the hard-segment/soft-segment 

ratio increasing, but also to the crosslinking caused by the reaction of the hardener 



Results and discussion. III. Permeability behavior   169 

 

NCO group with the urethane/urea 20. Actually, polyurethanes with higher hard-

segment exhibited the greatest reduction in WVTR. 

Furthermore, it is obvious that, in all analyzed samples, the WVTR of these films 

increases when temperature increases (from 25 to 40ºC), although in some of the 

cases this effect is not significant. Higher temperatures cause the soft-segments to 

become more flexible, so the water vapor molecule can pass through more readily 

21. Indeed, with the increase in the temperature, the motion of soft-segment 

molecular chains results in a significant increase in the free volume. Such increase in 

free volume can provide more paths for water vapor to pass through the films. Thus, 

WVTR increases with the increase of temperature (e.g. for PTMG1000MDI_4.5 sample 

in system 7, WVTR increases from 16.4 to 17.0 g·mm·m-2·day-1 when temperature 

rises from 25 to 40ºC). Therefore, it is evident that as these polyurethane films are 

temperature-sensitive in the measured temperature range from 25 to 40ºC (its glass 

transition temperature is within or near these values), the smart water vapor 

permeability of the SMPU films mainly depends on the increase in the free volume, 

that is, depends on the microstructure and morphology of the materials. 

Finally, water vapor transmission rate was analyzed for polyurethane films with 

nanoparticles (1 wt% TiO2) to test the effect of adding this component. Table 5.4 

shows the WVTR results obtained for two samples without (PTMG1000MDITDI_4, 

PTMG1000MDITDI_5) and with TiO2 nanoparticles (PTMG1000MDITDI_4_1, 

PTMG1000MDITDI_5_1). 

 

Table 5.4. Results of WVTR for system 8 and 10 

Systems 8 and 10 WVTR (g mm·m-2 day-1) 

at 25ºC 

Tg 

(ºC) 

PTMG1000MDITDI_4 9.80.9 23.8 

PTMG1000MDITDI_5 5.3 0.8 40.2 

PTMG1000MDITDI_4_1 6.40.3 30.8 

PTMG1000MDITDI_5_1 8.40.1 40.6 

 

Theoretically, the PU film should become less permeable to water vapor with 

the increase of TiO2 nanoparticles content because the water vapor path is restricted. 

However, the WVTR results obtained were not conclusive. PTMG1000MDITDI_4 
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sample decreases its WVTR when nanoparticles were added, whereas 

PTMG1000MDITDI_5 sample behaves in the opposite way. This disparity in the WVTR 

results may be due to the synthesis procedure. If during the synthesis procedure the 

nanoparticles dispersion is not uniform, not homogenous films are obtained, causing 

errors in WVTR measurements. Therefore, no conclusions can be drawn from this 

study, although it seems that the presence of TiO2 nanoparticles (1 wt%) do not have 

at important influence on the water vapor permeability of this kind of SMPUs 22. 

Figure 5.5 shows the WVTR comparative study between system 4 (PTMG650) 

and system 7 (PTMG1000). In both systems, as mentioned above, it can be observed 

that WVTR decreases severely while hard-segment content increases (n increases). 

Moreover, it seems that the PTMG molecular weight affects the WVTR. In fact, WVTR 

values are higher when the PTMG molecular weight is larger (system 7) for all n 

values. Therefore, the soft-segment of polyurethane can be used as a water vapor 

channel for the development of breathable fabric and adhesives. 
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Figure 5.5. Comparison between WVTR of system 4 and system 7 at 25ºC 
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5.2.2. Oxygen Permeability 

Oxygen transmission rate (OTR) is the steady state rate at which oxygen gas 

permeates through a film at specified conditions of temperature and relative 

humidity. Values are expressed in (cm3(STP)·cm·cm-2·s-1·cm Hg-1) 23,24. 

The measurements of the oxygen permeability were done using a MOCON OX-

TRAN Model 2/21 gas permeability tester (USA) in accordance with ASTM standard 

D3985 and ISO 15105-1,2. The oxygen permeability through the polyurethane films 

was tested at 760 mm Hg, 0% of relative humidity and 23ºC. The duration of the 

experiment was 24 h, and each OTR measurement was made twice. The result of 

OTR was calculated in Barrer (a non-SI unit of gas permeability used in the 

membrane technology): 

 

1 𝐵𝑎𝑟𝑟𝑒𝑟 =  10−10 ·
𝑐𝑚3(𝑆𝑇𝑃) · 𝑐𝑚

𝑐𝑚2 · 𝑠 · 𝑐𝑚 𝐻𝑔
 

 

ASTM Standard D3985 Test Method for OTR covers a procedure for determine 

the oxygen transmission steady state rate through plastics in different forms, 

including films. For homogeneous materials, it provides the determination of the 

oxygen gas transmission rate (OTR) and the oxygen gas permeability (PO2). The 

oxygen gas transmission rate is determined after the sample has been equilibrated 

in a dry test environment. In this context, “dry” environment is considered to be one 

in which the relative humidity is RH < 1%. The equipment has two testing cells in 

order to realize two measurements at the same time. Each testing cell is divided into 

two chambers (Figure 5.6). The sample is mounted as a sealed semi-barrier between 

these two chambers at ambient atmospheric pressure. One chamber (the inside 

chamber) is slowly purged by a stream of a mixture of nitrogen and hydrogen, 

whereas the other (the outside chamber) contains oxygen. As the oxygen gas 

permeates through the polyurethane film, the nitrogen/hydrogen carrier gas 

transports it to the detector called Coulox. Then, it produces an electrical current that 

is converted by the computer into a magnitude proportional to the amount of oxygen 

flowing into the detector per unit time 25. 
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Figure 5.6. Side view of test cell diagram (copyright MOCON)  

 

Table 5.5 and Table 5.6 show the values of oxygen permeability (PO2) for 

systems 4 and 7, respectively. Moreover, Figure 5.7 and Figure 5.8 represent the 

oxygen permeability for those systems at two different temperatures, 25ºC and 40ºC. 

As it can be seen, results for PO2 show a behavior similar to that of WVTR, previously 

reported. Thus, the oxygen permeability decreases when hard-segment content 

increases. For example, PO2 at 25ºC for systems 4 and 7 varied from 4.20 to 0.39 

barrer and from 8.55 to 1.10 barrer, respectively, when n increases (hard-segment 

content rises). In addition, when the temperature increases up to 40ºC, the oxygen 

permeability increases in both systems. For example, from 0.46 to 0.7 barrer in 

system 4 (PTMG650MDI_3.5 sample), and from 1.1 to 1.6 barrer in system 7 

(PTMG1000MDI_4.5 sample). This effect is due to a higher temperature causes the 

soft-segments to become more flexible such that the oxygen can pass through more 

readily 21,26. 
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Table 5.5. Results of oxygen permeability for system 4 at 25ºC and 40ºC 

System 4 
PO2 

(barrer) 

at 25ºC 

PO2 

(barrer) 

at 40ºC 

Tg 

(ºC) 

PTMG650MDI_0.5 4.200.20 - -10.2 

PTMG650MDI_1 2.86±0.00 - -3.0 

PTMG650MDI_1.5 3.300.10 - 6.3 

PTMG650MDI_2 1.19±0.00 - 10.9 

PTMG650MDI_2.5 1.05±0.00 - 15.7 

PTMG650MDI_3 0.50±0.00 - 23.1 

PTMG650MDI_3.5 0.46±0.05 0.70±0.00 40.4 

PTMG650MDI_4 0.39±0.05 0.53±0.02 46.6 

PTMG650MDI_4.5 Films too brittle - 62.4 
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Figure 5.7. Permeability of oxygen at 25ºC and 40ºC for system 4 
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Table 5.6. Results of oxygen permeability for system 7 at 25ºC and 40ºC 

System 7 
PO2 

(barrer) 

at 25ºC 

PO2 

(barrer) 

at 40ºC 

Tg 

(ºC) 

PTMG1000MDI_0.5 8.550.28 - -30.9 

PTMG1000MDI_1.5 6.310.33 - -20.0 

PTMG1000MDI_2 4.93±0.24 - -18.4 

PTMG1000MDI_2.5 4.30±0.15 - -16.2 

PTMG1000MDI_3 4.05±0.20 - -12.5 

PTMG1000MDI_3.5 3.09±0.25  -7.6 

PTMG1000MDI_4 2.49±0.00 - -3.9 

PTMG1000MDI_4.5 1.10±0.02 1.6±0.80 52.5 
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Figure 5.8. Permeability of oxygen at 25ºC and 40ºC for system 7 
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Table 5.7 presents the measurements of oxygen permeability for some samples 

of systems 8 and 10 in order to test the behavior of the material with and without 

nanoparticles. As it can be seen, oxygen permeability almost does not change when 

polyurethane films with TiO2 nanoparticles were analyzed. This behavior is similar to 

that already reported for the water vapor transmission rate. At this point, it should 

be taken into account that, as mentioned in the section 5.2.1, the synthesized films 

were heterogeneous and nanoparticles were not well dispersed 27. 

 

Table 5.7. Results of oxygen permeability for system 8 and 10 

Systems 8 and 10 
PO2 

(barrer) 

at 25ºC 

Tg 

(ºC) 

PTMG1000MDITDI_4 1.8±0.10 23.8 

PTMG1000MDITDI_5 0.8±0.00 40.2 

PTMG1000MDITDI_4_1 1.6±0.00 30.8 

PTMG1000MDITDI_5_1 1.5±0.07 40.6 

 

Oxygen permeability at 25ºC for systems 4 and 7 is shown in Figure 5.9. The 

only difference between these two systems is the soft-segment content. In both 

systems the soft-segment was PTMG, but Mn = 650 g·mol-1 for system 4 whilst Mn = 

1000 g·mol-1 for system 7. It can be seen that the oxygen permeability of the 

polyurethane films was affected dramatically by the soft-segment content, which it 

is related to the PTMG molecular weight. In this way, the soft-segment content 

increases with the increase of molecular weight. Thus, for n = 0.5, values of oxygen 

permeability double, from 4.20 to 8.55 barrer for Mn = 650 g·mol-1 and Mn = 1000 

g·mol-1, respectively. This is because when molecular weight increases, the motion 

of soft-segment molecular chain results in a significant increase in paths for oxygen 

to pass through the films. 
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Figure 5.9. Comparison between oxygen permeability for system 4 and system 7 at 25ºC 

 

5.2.3. Limonene vapor transmission rate 

One of the main objectives in footwear sector is to improve the properties of 

shoes regarding the aroma, due to the problems generated for the odor inside shoes 

28. Therefore, it was thought that permeability of other gas which owns aroma, like 

limonene vapor, could be measured. Thus, limonene vapor transmission rate (LVTR) 

was also measured. The monoterpene is a naturally occurring chemical which is the 

major component in oil of orange. Currently, d-limonene is widely used as a flavor 

and fragrance (Figure 5.10) 29,30. 

 

https://pubchem.ncbi.nlm.nih.gov/compound/d-limonene
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Figure 5.10. Molecular structure of limonene 

 

The analysis of limonene vapor permeability was carried out by a gravimetric 

method in the same way as for water vapor permeability, already explained in section 

5.2.1. In these tests, the cell was placed in a chamber where the temperature was 

kept constant at 25ºC, as it is shown in Figure 5.11. The weight loss was measured 

after 8 h. LVTR measurement was only realized once in all samples and some of them 

were repeated twice. This was because this new procedure was realized for the first 

time in laboratories of Donostia-San Sebastian and the behavior of limonene in this 

method to calculate the permeability was unknown. The result of LVTR was calculated 

using the following equation: 

 

LVTR =  
m · l

A · (aint − aext)
 (5.1) 

 

Where LVTR is limonene vapor transmission rate (g mm·m-2 day-1) 

m is the slope of the straight line obtained representing weight loss versus time 

(g·day-1) 

l is thickness of the film (mm) 

A is the area of the film (2.54 10-4 m2) 

aint is the humidity inside the cell, the wet side of the specimen, RH = 1 because 

limonene is in balance with its own vapor at working temperature. 

aext is the humidity outside the cell, the dry side of the specimen. Relative 

humidity (RH) ≅ 0 because in this area, the concentration of limonene is 

practically 0. 
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Figure 5.11. Schematic diagram of permeability cell used to evaluate limonene permeation 

through films 

 

In Table 5.8 and Table 5.9 are tabulated the results of the experiments of 

limonene vapor transmission rate for systems 4 and 7, respectively. Figure 5.12 and 

Figure 5.13 show the trends of LVTR for those systems. It can be seen that in system 

4, the LVRT values do not seem to follow a clear trend because LVTR increases and 

decreases, whereas in system 7 LVTR decreases as hard-segment contents increases 

(n rises). Thus, a clear tendency is not appreciated. Theoretically, LVTR should 

decrease when hard-segment content increases just as it happens in system 7 and 

in the other permeabilities (water vapor and oxygen) calculated for these systems. 

This could be explained because in this method, vapor pressure at room temperature 

was not high enough to pass through the polyurethane films, so that the LVTR values 

were not reliable 31. 

Limonene vapor permeability is relevant because this component is often used 

as a standard system to test aroma barrier. However, it has been checked that this 

method is not effective to measure limonene permeability of the SMPU films. 

Therefore, it seems necessary to optimize the method before repeating the 

measurements. 
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Table 5.8. Results of LVTR for system 4 at 25ºC 

System 4 
LVTR 

(g mm·m-2 day-1) 

at 25ºC 

Tg 

(ºC) 

PTMG650MDI_0.5 2.0 -10.2 

PTMG650MDI_1 1.0 -3.0 

PTMG650MDI_1.5 1.1 6.3 

PTMG650MDI_2 8.3 10.9 

PTMG650MDI_2.5 15 15.7 

PTMG650MDI_3 93 23.1 

PTMG650MDI_3.5 103 40.4 

PTMG650MDI_4 16 46.6 

PTMG650MDI_4.5 Films too brittle 62.4 
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Figure 5.12. LVTR at 25ºC for system 4 
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Table 5.9. Results of LVTR for system 7 at 25ºC 

System 7 
LVTR 

(g mm·m-2 day-1) 

at 25ºC 

Tg 

(ºC) 

PTMG1000MDI_0.5 52 -30.9 

PTMG1000MDI_1.5 21 -20.0 

PTMG1000MDI_2 23 -18.4 

PTMG1000MDI_2.5 6 -16.2 

PTMG1000MDI_3 2 -12.5 

PTMG1000MDI_3.5 15 -7.6 

PTMG1000MDI_4 12 -3.9 

PTMG1000MDI_4.5 9 52.5 
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Figure 5.13. LVTR at 25ºC for system 7 
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Table 5.10 presents the results of limonene vapor transmission rate (LVTR) for 

some samples of systems 8 and 10. As mentioned in sections 5.2.1 and 5.2.2, LVRT 

values for the system 10 (samples with 1 wt% TiO2 nanoparticles) should also 

decrease, not increase, when hard-segment content increases (n rises). However, 

the experimental results show just the opposite trend. Thus, for system 10, LVTR 

value increases from 17 to 63 barrer indicating that the measurement procedure was 

not correct and it is necessary to improve it. 

 

Table 5.10. Results of LVTR for system 8 and 10 

Systems 8 and 10 LVTR (g mm·m-2 day-1) 

at 25ºC 

Tg 

(ºC) 

PTMG1000MDITDI_4 283 23.8 

PTMG1000MDITDI_5 9 2 40.2 

PTMG1000MDITDI_4_1 177 30.8 

PTMG1000MDITDI_5_1 639 40.6 

 

 

 

5.3. Conclusions  

In this chapter, water vapor transmission rate (WVTR), oxygen transmission 

rate (OTR) and limonene vapor transmission rate (LVTR) were measured and 

analyzed in some polyurethane films. Used methods for water vapor and oxygen 

permeability have provided satisfactory results. On the contrary, LVTR 

measurements have not been completely correct due to a non-optimized procedure. 

It can be concluded that water vapor transmission rate and oxygen permeability 

decrease when the hard-segment content in polyurethane increases. This may be 

due to a higher difficulty with the motion of the vapor molecules when they go 

through the film as the hard-segment content increases in the polyurethane matrix. 

This causes a lack of molecular mobility which makes the pass of gases through the 

film more difficult. 
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Besides, WVTR and OTR of polyurethane films increase as temperature 

increases (from 25 to 40ºC) in all analyzed samples, although in some cases this 

effect is not significant. It could be related to the flexibility of polymers, considering 

that an increase in the temperature leads to more movement in the soft-segment 

chains and thus, gases may pass through the polyurethane film more easily because 

of a significant increase in the free volume. 

It is worth remarking that an increase in the molecular weight of the polyol 

(from 650 to 1000 g·mol-1), permeability rises too. Increasing the molecular weight, 

the length of the soft-segments increases, that is, the hard-segment/soft-segment 

ratio decreases. This behavior can be important for the development of breathable 

fabrics and adhesives, where the soft-segment of the polyurethanes may be used as 

channels to improve its permeability. 

Furthermore, the variations of WVTR and oxygen permeability, when 

nanoparticles of TiO2 were added, were not relevant. The problem seems to be the 

synthesis procedure because the obtained films with nanoparticles were not 

homogenous, presumably because of the mode of dispersion of small domains within 

the PU film so that, the values of permeability are not reliable.  

Finally, the conclusion is that these shape memory polyurethane films have 

potential applications in different fields such as in textile sector that could promote 

sweat evaporation and humidity control. Moreover, barrier properties of polyurethane 

films make them promising candidates for food and pharmaceutical packaging 

applications. However, further studies are needed to improve the synthesis and 

processing method, for example, in order to increase the dispersion of the 

nanoparticles in the polyurethanes.  
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APPLICATION IN TEXTILES 

 

 

 

 

 

 

“En ekvation jämställer två välkända ting och ger oss förståelsen av det 

tredje, det outsägbara” 

“An equation equals two well-known things and gives us an understanding of the 

third, the unexplainable” 

Faig Ahmed 

https://es.wikipedia.org/wiki/%C3%84
https://es.wikipedia.org/wiki/%C3%85_(letra)
https://es.wikipedia.org/wiki/%C3%84
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Chapter VI 

APPLICATION IN TEXTILES 

 
 

6.1. Introduction 

hape memory polymers (SMPs), which can be stimulated by 

different external stimuli such as temperature, pH, chemicals or 

light 1,2, are defined as polymeric materials with the ability to sense 

and respond to these stimuli in a predetermined way (for example, 

changing their shape), as mentioned in Chapter I 3–6. 

Thermoresponsive shape memory polymers can be designed taking 

polymer networks in which its polymer chains are able to fix a given deformation by 

cooling below a certain transition temperature. This transition temperature can be a 

glass transition or a melting point. Therefore, thermoresponsive SMPs can be 

triggered for promising applications in biomedicine, automotive, aerospace and also 

in the textile sector 7. Different types of smart polymers have applications in textile 

technology. Among them, there are a variety of shape memory polymers that can be 

used in the textile sector with specific processing techniques, such as finishing, 

S 
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spinning, weaving or laminating. In fact, in the textile sector, the use of SMPs is 

relatively new due to it is too hard to meet the stringent requirements on mechanical 

strength and thermal stability of fibers. This makes the majority of commercially 

available SMPs unsuitable for textile fibers 8,9. Moreover, to make shape memory 

polymer fabrics, SMPs need to have a high molecular weight, suitable viscosity and 

melting point. Smart polymers used in textiles usually appear in various forms such 

as film, fiber, solution, microcapsules, nonwoven or gel to meet different processing 

requirements in textiles 10–13. Functionalities, in textile sector, include aesthetic 

appeal, comfort, fantasy design (color changing), wound monitoring, smart wetting 

properties, and protection against extreme environmental variations. In recent 

decades, shape memory polyurethane (SMPU) fibers have aroused much attention 

because, in the form of fiber, SMPUs are more easily applied in textiles. SMPUs use 

their soft-segments as transition segments for the shape memory effect (SME) 14–21. 

However, although many researchers have tried to develop the fibers from pellet, 

unfortunately it is too difficult to create monofilaments due to the specific properties 

of polyurethanes such as mechanical strength, viscosity, flexibility or elasticity 22–26.  

The aim of this chapter was to prepare a kind of novel polyurethane fibers 

(Figure 6.1) with shape memory effect through thermal stimulus. From these fibers 

produced by melt spinning from different shape memory polyurethanes pellets, 

knitted fabric samples were then created.  

 

 

Figure 6.1. Schematic representation of a polyurethane fiber 
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Previously to the preparation of fibers, SMPUs were synthesized using the 

prepolymer method as explained in Chapter II 27,28, with a soft-segment glass 

transition temperature close to the body temperature. Moreover, a commercial 

polyurethane, named DIAPLEX MM4520, was also evaluated in order to make 

comparative studies between this polyurethane and the synthesized SMPUs. All the 

SMPUs were characterized by different techniques such as thermogravimetric 

analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis 

(DMA) and tensile test. On the other hand, shape memory capabilities of the 

developed fabrics were measured by thermomechanical analysis (TMA).  

In this chapter, the applications of shape memory polyurethanes in textiles and 

the clothing sector are elucidated. Furthermore, the associated constraints on 

fabrication of textiles and their potential applications in the near future are discussed. 

Therefore, the obtained results show that these fibers could be attractive candidates 

for potential applications, such as breathable fabrics, moisture management textiles 

and biomedical wearable devices (Figure 6.2). 

 

  

 

Figure 6.2. Applications of the fibers produced 
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6.2. Preparation of SMPU fibers and fabrics 

In this section, and considering that the employed materials (polyol, 

diisocyanates, chain extender...), the polyurethane synthesis and characterization 

methods have already been described in Chapter II, only the preparation of the SMPU 

fibers and fabrics are explained. Fibers and fabrics were prepared in the department 

of Textile Technology, faculty of textiles at University of Borås (Sweden). Table 6.1 

shows the different shape memory polyurethanes that are studied in this chapter. 

 

Table 6.1. SMPUs used for producing fibers and textiles (n = 4.5, 3 and 2.5)  

Sample code Polyol Diisocyanate BD 

PTMG1000TDI 1 

1 

1 

5.5 

4 

3.5* 

4.5 

PTMG650TDI 3 

PTMG650MDITDI 2.5 

MM4520 Commercial sample 

*50% weight of TDI and 50% weight of MDI 

 

First, shape memory polyurethane pellets were dried in a vacuum oven for 1 

hour at a temperature of 70ºC. After that, the SMPU fibers were prepared by a melt 

spinning method. For this purpose, a piston spinning machine was utilized (FOURNÉ 

Polymertechnik, Germany) followed by two godet rolls and a winding unit (Figure 

6.3). Depending on the type of polyurethane, a different set of processing 

parameters, such as piston temperature (Tpist), volumetric flow rate (Vpist) of polymer 

melt and roller speeds (vr1, vr2), was used 29,30 (Table 6.2). In order to get 

monofilaments, a spinneret with a 0.5 mm diameter was attached at the outlet of the 

piston spinning machine. Before inserting the polymer in the piston machine, it was 

heated for 1.5 hours and then about 50 g of the polymer were used for each batch. 

After introducing the polymer into the piston machine, it took about 30-40 min before 

starting the actual spinning when the polymer strands started to come out of the 

spinneret. A specific speed of both take-off roller (r1) and drawing roller (r2) was 

adjusted according to the required draw down ratio. Samples with the same 

processing conditions were prepared to make drawn fibers with different draw ratios 

(DR= vr2 / vr1). In this work, the used draw ratio was equal to 1 in the solid-state 
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over the two godet rolls. In this case, the first roll was heated to an appropriate 

temperature (Tr1) (around the glass transition temperature of each polymer, which 

is 38ºC for synthesized polyurethanes and 45ºC for the commercial one) and the 

second roll had the room temperature (Tr2) (25oC) 31. After drawing, the fibers were 

collected on bobbins at the take-up unit.  

 

 

Figure 6.3. Piston spinning machine used to produce fiber 

 

Table 6.2. Summary of the suitable conditions for the piston spinning 

Sample code 

Piston Godet 1 Godet 2 

Vpist 

(cm3
·min-1) 

Tpist 

(ºC) 

vr1 

(m·min-1) 

Tr1 

(ºC) 

vr2 

(m·min-1) 

Tr2 

(ºC) 

PTMG1000TDI 0.6 190 10 40 10 25 

PTMG650TDI 0.8 190 10 40 10 25 

PTMG650MDITDI 0.7 205 10 40 10 25 

MM4520 0.7 210 10 40 10 25 
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Once the fibers were produced, the textile structures were made in a Dubied hand 

driven knitting machine (Figure 6.4). The pattern of knitting is shown in Figure 6.5, 

and Figure 6.6 shows the real fiber and fabric structure. 

 

 

Figure 6.4. Knitting machine used to produce fabrics 

 

 

Figure 6.5. Schematic representation of the polyurethane textile in a knitting machine 
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Figure 6.6. Filament yarn (a) and fabric (b) from shape memory polyurethane produced in 

laboratory 

 

Fibers and fabrics were characterized using the same characterization 

techniques described in Chapter II such as thermogravimetric analysis (TGA), 

differential scanning calorimetry (DSC), dynamic mechanical analyses (DMA) and 

thermomechanical analyses (TMA). Polyurethane fibers were measured on a TA-

Instruments DMA Q800, specific for fibers, at University of Borås, in a temperature 

range between -40 to 150ºC. Moreover, optical microscopic images of all 

polyurethane fibers were acquired using a Nikon SMZ800 at University of Borås. 

Finally, the tensile tests were carried out according to ISO 527 standard in a Tinius 

Olsen H10KT testing machine with extensometer in order to evaluate the mechanical 

properties of the fibers. Five dumbbell-shaped specimens were examined for each 

sample in the machine direction of the fibers. The gauge length was 100 mm while 

the test speed was 10 mm·min-1. The capacity of used load cell was 10 N.  

 

6.3. Results and discussion 

In order to evaluate the performance of the self-made fibers and fabrics, 

comparison experiments were carried out between polyurethane fibers, fabrics and 

pellets. 
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6.3.1. Thermogravimetric analysis (TGA) 

The thermal stability of the synthesized and commercial polyurethanes, in the 

form of both pellet and fiber, was evaluated by TGA and derivative thermogravimetric 

(DTG) analysis. The initial decomposition temperatures (T5%), defined as the 

temperature at 5% weight loss; the temperatures at the maximum degradation rate 

(Tmax,1, Tmax,2 and Tmax,3) for each degradation step, obtained from the minimum in 

DTG curves; and the weight percentages of residue remaining at the end of the 

degradation (wt% residue) are listed in Table 6.3. As an example, Figures 6.7.a and 

6.7.b show respectively the TGA and DTG curves for the PTMG650TDI in the form of 

both fiber and pellet. In Figure 6.7.a it can be seen a weight loss between 290 and 

450ºC, which can be attributed to the decomposition of the SMPUs. On the one hand, 

the 5% weight loss of the SMPU pellets occurred between 284.6 and 323.8ºC. On the 

other hand, the 5% weight loss of the SMPU fibers occurred between 281.5 and 

304.2ºC, which indicates that the thermal stabilities of all fibers are high enough for 

their use in textiles 32. Table 6.3 also shows that the wt% residue increases in 

polyurethane fibers in comparison with polyurethane pellets.  

Therefore, it was demonstrated that the composite fibers were successfully 

fabricated and possessed stable thermal properties, which were determined by the 

network structure. 

 

Table 6.3. Thermal properties of synthesized and commercial polyurethanes 

Sample code 
T5% 

(ºC) 

%wt 

residue 

Tmax,1 

(ºC) 

Tmax,2

(ºC) 

Tmax,3 

(ºC) 

PTMG1000TDI 
Pellet 284.6 2.54 322.4 414.9 - 

Fiber 281.5 5.88 307.2 418.1 - 

PTMG650TDI 
Pellet 285.9 1.06 328.7 418.7 - 

Fiber 284.2 3.92 319.3 408.0 - 

PTMG650MDITDI 
Pellet 296.1 4.43 332.7 360.4 425.7 

Fiber 293.9 8.61 317.0 340.3 425.3 

MM4520 
Pellet 323.8 9.05 341.4 380.0 426.1 

Fiber 304.2 11.39 315.1 360.7 409.5 
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Figure 6.7. Comparison of TGA (a) and DTG (b) curves for PTMG650TDI pellet and fiber 

polyurethanes.  

 

6.3.2. Differential scanning calorimetry (DSC) 

In this study, the thermal properties of shape memory polyurethanes were 

tested by DSC. The comparison between DSC curves of the PTMG650TDI pellets and 

polyurethane fibers are shown, as an example, in Figure 6.8. Moreover, the detailed 

results of the DSC tests about all pellets and fibers are summarized in Table 6.4. The 

orientation of the developed soft-segments due to elongation during spinning 

increased the transition temperature, Tg. Therefore, the glass transition temperatures 

(Tg,DSC), measured in the second heating cycle, of the polyurethane fibers and pellets 

are similar to each other, except for those of PTMG1000TDI (deviation of 20ºC), 

although SMPU fibers showed a slightly higher Tg than that one for PU pellets due to 

elongation 11,33. For example, for the commercial polyurethane MM4520, the Tg for 

the pellet form is 37.8ºC and for the fiber form is 39.7ºC. The same trend occurs for 

the synthesized ones, where Tg of PTMG650MDITDI pellets is 9.2ºC and for the fiber 

form is 9.9ºC. This result indicates that once the pellet entered into the piston 

spinning to produce fibers, the domains of the polymer are more ordered in the new 

fibers than in the original pellet, so that glass transition temperature is higher. It is 

evident that all polyurethanes are amorphous because of the absence of endothermic 

peaks as reported in literature 10,32. 
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Table 6.4. Glass transition temperature and elastic modulus of synthesized and commercial 

polyurethanes 

Sample code Tg, DSC (ºC) E’(MPa) Tg, DMA (ºC) 

PTMG1000TDI 
Pellet -27.4 2068 37.9 

Fiber -5.1 2592 61.3 

PTMG650TDI 
Pellet 6.6 2176 37.5 

Fiber 6.7 4718 59.2 

PTMG650MDITDI 
Pellet 9.2 2793 37.2 

Fiber 9.9 4483 59.5 

MM4520 
Pellet 37.8 3147 52.5 

Fiber 39.8 3125 64.3 
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Figure 6.8. Comparison of differential scanning calorimetric analysis of PTMG650TDI pellet 

and fiber polyurethanes  
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6.3.3. Dynamic mechanical analysis (DMA) 

The elastic modulus (E’) and loss tangent (tanδ) of both the prepared shape 

memory fibers and pellets over the temperature range from -40ºC to 100ºC are 

presented, as an example, for PTMG650TDI polyurethane in Figure 6.9. As shown in 

Table 6.4, dynamic mechanical analysis proves that the pellets synthesized 

previously in our laboratory 28 (PTMG1000TDI, PTMG650TDI and PTMG650MDITDI) 

exhibit a glass transition temperature close to 37-38ºC. Therefore, these SMPUs were 

chosen for this study because the similarity between its Tgs and body temperature 

made them good candidates for its application in textiles. Regarding the pellets of 

commercial polyurethane, the glass transition temperature of MM4520 (52.5ºC) is 

higher than the body temperature. Even so, it was contrasted with synthesized 

polyurethanes due to DIAPLEX is a relevant commercial shape memory polyurethane 

applied to textiles, so that it is remarkable to compare this material with the ones 

synthesized in laboratory. As shown in Table 6.4, it is observed that the glass 

transition temperature of fibers is higher than the glass transition temperature of 

pellets, at approximately 20ºC. This trend of Tg, fibers higher than Tg, pellets was 

coincident with the tendency found in the DSC tests. 

Moreover, storage modulus for fibers produced with synthesized polyurethanes 

is higher than the storage modulus for pellets, whereas in the case of the commercial 

polyurethane, storage modulus is similar for both fiber and pellets. As an example, 

in Table 6.4, it can be seen that storage modulus of PTMG650TDI pellets is 

2176.8 MPa and for fibers this value increases to 4718 MPa. It can be due to the 

conditions supported by the polyurethane during the piston spinning process, such 

as drawing, which could change the properties of the final material (fibers) regarding 

the original one (pellets) 34,35. 

 

6.3.4. Optical microscopy 

Figure 6.10 shows the optical microscope images of both PTMG650TDI and 

MM4520 polyurethane fibers, obtained at a draw ratio equal to 1. It can be seen that 

the surface in MM4520 fibers is rougher than the one in PTMG650TDI fibers. On the 

other hand, PTMG650TDI fibers are more flexible and elastic than MM4520 fibers. 

This is obviously due to the reagents or additives used in the process of synthesis.  



200  Chapter VI 

 

 

Therefore, a thicker and rougher polymer surface was obtained for commercial 

fibers and a more elastic polymer surface was obtained for PTMG650TDI fibers 36. 

Thus, fibers obtained from synthesized polyurethanes present an advantage for 

future applications in the textile sector greater than the commercial ones.  

-40 -20 0 20 40 60 80 100

0.0

0.5

1.0

T (ºC)

ta
n


 

 

 

1

10

100

1000

 Fiber

 Pellet

S
to

ra
g
e 

M
o
d
u
lu

s 
(M

P
a
)

 

 

Figure 6.9. Comparison of DMA curves of PTMG650TDI pellet and fiber polyurethanes 

 

  

Figure 6.10. Optical microscopic images of PTMG650TDI (a) and MM4520 (b) polyurethane 

fibers obtained in piston spinning 

(b) (a) 
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6.3.5. Mechanical testing 

The stress–strain curves of all the polyurethane fibers, obtained from both the 

synthesized and commercial polyurethanes, are presented in Figure 6.11. Table 6.5 

shows the tensile strengths (E), elongation at break (εb) and fracture toughness (UT) 

of all SMPU fibers at room temperature. The commercial SMPU showed a clear yield 

point, whereas the synthesized SMPUs did not show a clear yield point. Furthermore, 

the synthesized polyurethanes own more elasticity than the commercial one. In 

addition, fibers produced from synthesized polyurethanes showed the presence of a 

neck type deformation and a very long plastic region. On the contrary, the 

commercial polyurethane presented a lower plastic region 35,37. Relating tenacity, the 

commercial polyurethane tenacity increases significantly compared with synthetized 

ones. It was also observed that elongation at break is higher in synthesized 

polyurethanes (761% for PTMG1000TDI) than in the commercial polyurethane 

(64.4% for MM4520). On the other hand, the commercial polyurethane owns a high 

elastic modulus (0.92 MPa for PTMG1000TDI and 5.30 MPa for MM4520). This may 

be due to the synthesis procedure of polyurethanes and the type of reagents or 

additives used during this process, as mentioned before. Depending on the reagents, 

both the soft and hard-segment content are different. This may be responsible for 

the lower tenacity and higher elongation because soft-segments tend to orient 

themselves in the direction of the stretch, whereas the hard-segments remain 

perpendicular to the stretch direction 38,39. Hence, the tensile properties of SMPUs 

synthetized in laboratory are good enough for applications in the textile industry and 

medical areas, between others. Nevertheless, synthetized polyurethanes are slightly 

better than DIAPLEX MM4520 due to their elastic properties. Finally, it could be 

concluded that polyurethane fibers exhibited excellent mechanical properties. 
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Table 6.5. Mechanical properties of synthesized and commercial polyurethane fibers 

Sample code 

Elastic 

Modulus 

E (MPa) 

Secant 

Modulus 

E* (MPa) 

Elongation 

at break 

εb (%) 

Fracture 

toughness 

UT (MJ·m-3) 

PTMG1000TDI 0.92±0.12 0.92 761.0 227.5 

PTMG650TDI 2.49±0.34 2.47 548.3 294.2 

PTMG650MDITDI 1.38±0.17 1.39 307.2 62.6 

MM4520 8.76±0.12 10.60 64.4 20.5 
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Figure 6.11. Comparison of tensile test of synthesized and commercial polyurethane fibers 
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6.3.6. Shape Memory Behavior 

In this chapter, all characterizations of both synthesized and commercial 

polyurethanes have been performed on fibers produced in a piston spinning machine. 

In addition, from these fibers, fabrics produced in a knitting laboratory have been 

selected to evaluate their shape memory effect. This will lead to a better 

understanding of their performance in the textile field.  

Shape memory fabrics are materials that are able to return to a preprogrammed 

shape because of an external stimulus, generally temperature 40. The glass transition 

temperature was assumed to serve as the Ttrans for the shape memory behavior. 

Therefore, in this study and as mentioned in the section 6.2 of this chapter, fabrics 

were produced by a knitting machine in the department of Textile Technology, faculty 

of textiles at University of Borås, to test the shape memory behavior of fabrics made 

from synthesized pellets. Figure 6.12 shows photographs of two of the developed 

fabrics. The experimental results are tabulated in Table 6.6.  

Table 6.6. Properties of the synthesized shape memory polyurethanes and shape memory 

fabric  

Sample code Rf (%) Rr (%) 

PTMG1000TDI 
Pellet 76.9 100 

Plain knit 81.8 100 

PTMG650TDI 
Pellet 86.4 99.7 

Plain knit 84.7 100 

PTMG650MDITDI 
Pellet 61.9 98.2 

Plain knit 24.8 99.9 

MM4520 
Pellet 46.1 87.1 

Plain knit 83.4 100 

 

It is evident that both pellets and fabrics show a shape memory effect, except 

PTMG650MDITDI which is not able to maintain the fixity shape. Figure 6.13 suggests 

that the PTMG650MDITDI fabric cannot fix the temporary elongation completely while 

cooled from Thigh to the ambient temperature. It could be seen that shape recovery 

ratios for the SMPUs, both pellet and fabric, show excellent recovery (more than 

99.9% in almost all samples). Relating to shape fixity, the samples of PTMG1000TDI 

and PTMG650TDI show good and similar shape fixity, regardless if they are pellet or 
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fabric. As shown in Figure 6.14, Rf of PTMG650TDI in the form of pellet is 86.4% and 

for the fabric form is 84.7%. In the case of commercial polyurethane and 

PTMG1000TDI, the shape fixity of the fabrics is better than the results obtained from 

the pellets. This could be explained because soft and hard-segments are both well 

oriented. 

Shape recovery of all samples was excellent because elongation of the fibers 

occurred during the spinning step and the orientations of the soft and hard-segments 

were well established except for PTMG650MDITDI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12. Shape memory fabrics made from PTMG650TDI (a) and DIAPLEX MM4520 (b) 

a 

b 
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Figure 6.13. Shape memory behavior of synthetized and commercial fabric polyurethanes 
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Figure 6.14. Comparison of shape memory effect for PTMG650TDI pellet and PTMG650TDI 

plain fabric 
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6.4.  Conclusions 

It is well-known that polymers have gained an important place in day-to-day 

life because of their specific properties which make them applicable in a wide range 

of applications. Among them, shape memory polyurethanes are playing an 

increasingly important role in the textile industry. Previous remarkable research 

works focused on the design and fabrication of fibers by melt spinning and knitted 

fabrics of SMPUs. In this chapter, it was demonstrated that synthesized and 

commercial fibers were successfully fabricated and possesses stable thermal 

properties. Moreover, the tensile properties of SMPUs synthetized in our laboratory 

are slightly better than the commercial one. Relating to shape recovery ratios, SMPUs 

in the form of fabrics show excellent recovery (more than 99.9% in almost samples). 

Finally, it can be concluded that synthesized polyurethane fibers are good enough for 

future applications in textile industry or medical areas among others. 
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Horas dulces / horas amargas, / de todas se nutre la vida. / Toma hoy esta 

flor / y olvida sus espinas. 

Joxantonio Ormazabal 
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Chapter VII 

CONCLUSIONS AND FINAL 

CONSIDERATIONS 

 

 

 

hape memory polymers (SMPs) are those able to change their shape 

upon the application of an external stimulus. Recently, the research 

on SMPs has been focused mainly on the development of thermally 

induced SMPs for a wide range of applications such as biomedical, 

aerospace, electrical, textile and footwear industry.  

In this work, a thorough study of shape memory polyurethanes (SMPUs) has 

been presented. First, numerous synthesis with different experimental conditions of 

shape memory polyurethanes were performed by the prepolymer method. Soft-

segment was composed of poly(ethylene glycol) (PEG) or poly(oxytetramethylene) 

glycol (PTMG) and hard-segment was composed of a chain extender (1,4-butanediol, 

S  
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BD) and a diisocyanate: 2,4-toluene diisocyanate (TDI), 4,4′-methylene diphenyl 

diisocyanate (MDI) or a 50% weight mixture between MDI and TDI. Second, relevant 

shape memory polyurethane features such as thermogravimetric behavior, 

thermomechanical properties, permeability, and shape memory effect were 

characterized. Besides, fibers and fabrics were created from those shape memory 

polyurethanes with transition temperatures (Tg) close to the body temperature, in 

order to use them as a final product in footwear sector. Therefore, the objectives 

proposed in Chapter I have been fulfilled and finally, general conclusions have been 

presented. 

Regarding the thermogravimetric analysis, it could be concluded that all the 

polyurethanes synthesized in this work display a typical two-stage degradation, 

except those synthesized with a mixture of diisocyanates (TDI+MDI) which present 

three stages. Anyway, all synthetized SMPUs show good thermal stability with initial 

decomposition temperatures higher than 275°C.  

Furthermore, both differential scanning calorimetry (DSC) and dynamic 

mechanical analysis (DMA) showed that glass transition temperature of 

polyurethanes (Tg) increases with the hard-segment content (higher n). Both 

methods indicated that PEG-based SMPUs own glass transition temperatures lower 

than PTMG-based SMPUs.  

Relating to mechanical properties, both types of polyurethanes show a huge 

versatility. When the soft phase is very large (low n), the material cannot withstand 

the applied stress and is easily deformed. On the contrary, at high n values, hard-

segments prevent macromolecules moving too far out of position, yielding lower 

elongation at break (εb) values but increasing the elastic modulus (E). Overall, the 

obtained experimental findings through this work highlight the potential of SMPUs for 

applications in which a vibration isolation is needed over a wide range of 

temperatures. These may include manufacturing of soles for footwear, isolators for 

large industrial equipment and isolation systems for vibration-sensitive instruments 

such as scanning electron microscopes among others. 

Moreover, the study of the shape memory effect showed that almost all SMPU 

samples were characterized by shape fixity ratios higher than 85% and shape 

recovery ratios near 99%. Besides, depending on the hard-segment content, the 

shape memory effect varies between MDI-based SMPUs and TDI-based SMPUs, 

finding TDI-shape memory properties superior to MDI-based SMPUs. Relating to 
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SMPUs with TiO2 nanoparticles, the results demonstrated that the addition of 

nanoparticles enhances slightly the shape fixity and shape recovery ratios of SMPUs. 

This research work has also shown that both water vapor transmission rate and 

oxygen permeability decrease when the hard-segment content in the polyurethane 

increases. It is worth remarking that an increase in the molecular weight of the polyol 

(from 650 to 1000 g·mol-1), permeability rises too. To sum up, shape memory 

polyurethane films have potential applications in different fields such as in textile 

sector, where they could promote sweat evaporation and humidity control. Moreover, 

barrier properties of polyurethane films make them promising candidates for food 

and pharmaceutical packaging applications. However, further studies are needed to 

improve the synthesis and processing method, for example, in order to increase the 

dispersion of the nanoparticles in the polyurethanes.  

Finally, it was demonstrated that fibers and fabrics were successfully fabricated 

from synthesized and commercial SMPUs, and possess stable thermal properties. 

Relating to shape recovery ratios, SMPUs in the form of fabrics showed excellent 

recovery (more than 99.9% in almost samples). To sum up, it is found that 

synthesized polyurethane fibers are good enough for future applications in textile 

industry or medical areas among others. 

In conclusion, considering the foregoing, PTMG-based SMPUs could be more 

promising thermal-induced shape memory polymers than PEG-based SMPUS and, 

especially, TDI-based SMPUs. These polyurethanes could be able to provide 

promising applications in several fields as textile, footwear, biomedicine, automotive, 

aerospace, etc. Thus, the principal advantages of synthesized SMPUs fibers versus 

commercial ones are the price, the simple process of synthesis and the flexibility to 

vary their properties such as glass transition temperature. 

 

  



216  Chapter VII 

 

 

Future work 

This work represents a first approach to get a new generation of synthesized 

polyurethane fibers that can act as future active materials with applications in textile 

industry. However, there is still a lot of work to do to get a final application. For future 

work, the research of shape memory polymers could be continued in the related 

areas of textile and footwear. Therefore, some further efforts need to be made in the 

following directions:  

- To study the use of different stimuli (electrical, magnetic or chemical), or 

their combination, to be able to create textile actuators. 

- To improve the efficiency of fibers and fabric methods of preparation. 

- Two-way recovery of polymers in one cycle and multiple cycles should be 

researched. 

- To synthesize other shape memory polyurethanes in order to obtain a 

broader variety of properties. 

- Novel shape memory polymeric systems should be developed using 

biocompatible and biodegradable polymers, especially biocompatible 

SMPUs, with antimicrobial properties. 

 

Moreover, future studies should be focus on trying to obtain final products for 

commercial purposes to benefit demand for higher quality of life. Finally, other 

application fields should be explored with new polymers and new functionalities. 
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Figure A.1. TGA (a) and DTG (b) curves for system 1, PEG1000TDI 
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Figure A.2. TGA (a) and DTG (b) curves for system 2, PEG1000MDI 
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Figure A.3. TGA (a) and DTG (b) curves for system 3, PTMG650TDI 



224  Appendix A 

 

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

 

 
W

ei
g
h
t 

(%
)

T (ºC)

 n = 0.5

 n = 1

 n = 1.5

 n = 2

 n = 2.5

 n = 3

 n = 3.5

 n = 4

 n = 4.5

~ 

(a)

600 620 640 660 680 700 720 740 760 780
0

5

10

15

20

W
ei

g
h
t 

(%
)

T (ºC)

 

 

0 100 200 300 400 500 600 700
-2.0

-1.5

-1.0

-0.5

0.0
 

 

D
er

iv
a
te

 W
ei

g
h
t 

(%
/º

C
)

T (ºC)

 n = 0.5

 n = 1

 n = 1.5

 n = 2

 n = 2.5

 n = 3

 n = 3.5

 n = 4

 n = 4.5

~ 

(b)
 

 

Figure A.4. TGA (a) and DTG (b) curves for system 4, PTMG650MDI 



TGA and DTG curves    225 

 

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100
W

ei
g
h
t 

(%
)

T (ºC)

 n=1.5

 n=2

 n=2.5

 n=3

 n=3.5

(a)

600 650 700 750 800

4

6

8

W
ei

g
h

t 
lo

ss
 (

%
)

T (ºC)

 

0 100 200 300 400 500 600 700 800
-0.20

-0.15

-0.10

-0.05

0.00

 

 

D
er

iv
a
te

 w
ei

g
h
t 

(%
/º

C
)

T (ºC)

 n=1.5

 n=2

 n=2.5

 n=3

 n=3.5

(b)

 

Figure A.5. TGA (a) and DTG (b) curves for system 5, PTMG650TDI+MDI 
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Figure A.6. TGA (a) and DTG (b) curves for system 6, PTMG1000TDI 
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Figure A.7. TGA (a) and DTG (b) curves for system 7, PTMG1000MDI 
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Figure A.8. TGA (a) and DTG (b) curves for system 8, PTMG1000TDI+MDI 
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Figure A.9. TGA (a) and DTG (b) curves for system 9, PTMG650/MDI+TDI/1%TiO2 
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Figure A.10. TGA (a) and DTG (b) curves for system 10, PTMG1000/MDI+TDI/1%TiO2 
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Figure A.11. TGA (a) and DTG (b) curves for system 11, PTMG1000/MDI+TDI/3%TiO2 
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Figure B.1. DSC curves for system 1, PEG1000TDI 
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Figure B.2. DSC curves for system 2, PEG1000MDI 
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Figure B.3. DSC curves for system 3, PTMG650TDI 
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Figure B.4. DSC curves for system 4, PTMG650MDI 
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Figure B.5. DSC curves for system 5, PTMG650TDI+MDI 
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Figure B.6. DSC curves for system 6, PTMG1000TDI 
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Figure B.7. DSC curves for system 7, PTMG1000MDI 
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Figure B.8. DSC curves for system 8, PMG1000TDI+MDI 
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Figure B.9. DSC curves for system 9, PTMG650/MDI+TDI/1%TiO2 
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Figure B.10. DSC curves for system 10, PTMG1000/MDI+TDI/1%TiO2 
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Figure B.11. DSC curves for system 11, PTMG1000/MDI+TDI/3%TiO2
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Figure C.1. DMA curves for system 1, PEG1000TDI 
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Figure C.2. DMA curves for system 2, PEG1000MDI 



250  Appendix C 

 

-100 -80 -60 -40 -20 0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 n = 3

 n = 3.5

 n = 4

 n = 4.5

 n = 5

 n = 5.5

T (ºC)

 

 

 

ta
n



~ 

1

10

100

1000

 

 

E
' 
(M

P
a
)

 

Figure C.3. DMA curves for system 3, PTMG650TDI 
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Figure C.4. DMA curves for system 4, PTMG650MDI 
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Figure C.5. DMA curves for system 5, PTMG650TDI+MDI 
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Figure C.6. DMA curves for system 6, PTMG1000TDI 
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Figure C.7. DMA curves for system 7, PTMG1000MDI 
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Figure C.8. DMA curves for system 8, PTMG1000TDI+MDI 
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Figure C.9. DMA curves for system 9, PTMG650/MDI+TDI/1%TiO2 
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Figure C.10. DMA curves for system 10, PTMG1000/MDI+TDI/1%TiO2 
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Figure C.11. DMA curves for system 11, PTMG1000/MDI+TDI/3%TiO2 
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SHAPE MEMORY BEHAVIOR – ONE CYCLE 

-2 0

0

20

40

60

80

0

100

200

300

400

500

600

700

800

0.0

0 .5

1 .0

1 . 5

2 . 0

 n = 3.5

 n = 4.5

 n = 5.5
D

is
p

la
c
e
m

e
n

t 
(µ

m
)

F (N
)

T (ºC)

 

Figure D.1. Three-dimensional thermomechanical response for system 1, PEG1000TDI 
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Figure D.2. Three-dimensional thermomechanical response for system 2, PEG1000MDI 
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Figure D.3. Three-dimensional thermomechanical response for system 3, PTMG650TDI 
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Figure D.4. Three-dimensional thermomechanical response for system 4, PTMG650MDI, F = 

5 N (a) and F = 10 N (b) 
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Figure D.5. Three-dimensional thermomechanical response for system 5, PTMG650TDI+MDI 
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Figure D.6. Three-dimensional thermomechanical response for system 6, PTMG1000TDI 
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Figure D.7. Three-dimensional thermomechanical response for system 7, PTMG1000MDI, 

F = 5 N (a) and F = 10 N (b) 
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Figure D.8. Three-dimensional thermomechanical response for system 8, 

PTMG1000TDI+MDI 
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Figure D.9. Three-dimensional thermomechanical response for system 9, 

PTMG650/MDI+TDI/1%TiO2 
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Figure D.10. Three-dimensional thermomechanical response for system 10, 

PTMG1000/MDI+TDI/1%TiO2 
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Figure D.11. Three-dimensional thermomechanical response for system 11, 

PTMG1000/MDI+TDI/3%TiO2 
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SHAPE MEMORY BEHAVIOR – SIX CYCLES 
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Figure D.12. Three-dimensional thermomechanical response for system 1, PEG1000TDI – 6 

cycles 
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Figure D.13. Three-dimensional thermomechanical response for system 2, PEG1000MDI – 6 

cycles 
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Figure D.14. Three-dimensional thermomechanical response for system 3, PTMG650TDI – 6 

cycles 
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Figure D.15. Three-dimensional thermomechanical response for system 4, PTMG650MDI – 6 

cycles 
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Figure D.16. Three-dimensional thermomechanical response for system 5, 

PTMG650TDI+MDI – 6 cycles 
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Figure D.17. Three-dimensional thermomechanical response for system 6, PTMG1000TDI – 

6 cycles 
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Figure D.18. Three-dimensional thermomechanical response for system 7, PTMG1000MDI – 

6 cycles 
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Figure D.19. Three-dimensional thermomechanical response for system 8, 

PTMG1000TDI+MDI – 6 cycles 
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Figure D.20. Three-dimensional thermomechanical response for system 9, 

PTMG650/MDI+TDI/1%TiO2 – 6 cycles 
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Figure D.21. Three-dimensional thermomechanical response for system 10, 

PTMG1000/MDI+TDI/1%TiO2 – 6 cycles 
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Figure D.22. Three-dimensional thermomechanical response for system 11, 

PTMG1000/MDI+TDI/3%TiO2 – 6 cycles 
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