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Abstract

Background: Different studies show evidence that several unicellular organisms display a cellular metabolic structure
characterized by a set of enzymes which are always in an active state (metabolic core), while the rest of the molecular
catalytic reactions exhibit on-off changing states. This self-organized enzymatic configuration seems to be an intrinsic
characteristic of metabolism, common to all living cellular organisms. In a recent analysis performed with dissipative
metabolic networks (DMNs) we have shown that this global functional structure emerges in metabolic networks with a
relatively high number of catalytic elements, under particular conditions of enzymatic covalent regulatory activity.

Methodology/Principal Findings: Here, to investigate the mechanism behind the emergence of this supramolecular
organization of enzymes, we have performed extensive DMNs simulations (around 15,210,000 networks) taking into account
the proportion of the allosterically regulated enzymes and covalent enzymes present in the networks, the variation in the
number of substrate fluxes and regulatory signals per catalytic element, as well as the random selection of the catalytic
elements that receive substrate fluxes from the exterior. The numerical approximations obtained show that the percentages
of DMNs with metabolic cores grow with the number of catalytic elements, converging to 100% for all cases.

Conclusions/Significance: The results show evidence that the fundamental factor for the spontaneous emergence of this
global self-organized enzymatic structure is the number of catalytic elements in the metabolic networks. Our analysis
corroborates and expands on our previous studies illustrating a crucial property of the global structure of the cellular
metabolism. These results also offer important insights into the mechanisms which ensure the robustness and stability of
living cells.
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Introduction

The cellular metabolism, conformed by the interactions among

thousands of enzymes and other biochemical molecules, is a

reactive structure densely integrated through an intricate network

which constitutes one of the most complex dynamic systems in

nature. The molecular structures and the individual topological

organization of a great part of the enzymes are well understood,

but the characteristics of the functional dynamics that they

conform as a whole are still unknown.

In an attempt to get a more accurate comprehension of the

global metabolic phenomena, we have developed a reactive

dynamical system called dissipative metabolic network (DMN)

which is basically formed by groups of enzymatic sets intercon-

nected by several substrate fluxes and allosteric and covalent

regulatory signals. Enzymatic allosteric modulation may be both

positive (activation of the catalytic rates) and negative (inhibition of

the reactive process). The regulation by means of the covalent

interactions generates ‘‘all or nothing’’ answers. Each catalytic set

of a DMN (called metabolic subsystem or catalytic element of the

network) represents a discrete module of several enzymes

functionally associated, which may operate within far from

equilibrium conditions, and consequently present both steady

states and oscillatory reactive patterns (these dynamical behaviors

are also called dissipative processes [1]).

Different studies have shown that the enzymes may conform

functional catalytic associations [2,3] e.g., there is evidence that

83% of the proteins of Saccharomyces cerevisiae form complexes

containing anywhere from two to eighty three proteins [4]; likewise,

after assigning individual proteins to protein complexes, these

studies have shown the emergence of a higher-order organization

structure of the S. cerevisiae proteome conformed by a modular

network of biochemical interactions between protein complexes [4].

On the other hand, numerous experimental observations both in

prokaryotic and eukaryotic cells have shown the spontaneous

emergence of molecular oscillations in the enzymatic processes
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[5–7]. Many of these metabolic oscillations are periodic [5–8], for

instance, there are oscillatory biochemical processes involved in:

biosı́ntesis of phospholipids [9], cytokinins [10], cyclins [11],

transcription of cyclins [12], gene expression [13–16], microtubule

polymerization [17], membrane receptors activities [18], intracellular

amino acid pools [19], membrane potential [20], intracellular ph [21],

cyclic AMP concentration [22], respiratory metabolism [23],

NAD(P)H concentration [24], glycolysis [25], intracellular calcium

concentration [26], metabolism of carbohydrates [27], beta-oxidation

of fatty acids [28], metabolism of mRNA [29], proteolysis [30], urea

cycle [31], Krebs cycle [32], and protein kinase activities [33].

Likewise, numerous works have been carried out on the

mathematical models of metabolic rhythms [1,6,8, and 34].

According to these studies on enzymatic complexes and

metabolic oscillations, our DMNs are dynamic systems with

interconnected metabolic subsystems which represent enzymatic

sets dissipatively structured (their activity may be oscillatory or

steady state) and therefore individual enzymatic molecules are not

considered in the networks.

In our first work with DMNs we found different global

metabolic structures, but particular attention was focused on one

of them, characterized by having a set of metabolic subsystems

always locked into active states while the rest of catalytic elements

present dynamics of on-off changing states; it was suggested that

this kind of functional self-organization could be common to all

living cells [35].

Other studies, implementing a flux balance analysis applied to

metabolic networks, produced additional evidence of a global

functional structure in which a set of metabolic reactions belonging

to different anabolic pathways remain active under all investigated

growth conditions, conforming a metabolic core, whereas the rest of

reactions belonging to different pathways are only conditionally

active [36–38]. The existence of the global metabolic structure was

verified for Escherichia coli, Helicobacter pylori, and Saccharomyces cerevisiae.

The metabolic core is the set of catalytic reactions always active under

all environmental conditions, while the rest of the reactions of the

cellular metabolism are only conditionally active being turned on in

specific metabolic conditions. The core reactions conforms a single

cluster of permanently connected metabolic processes where the

activity is highly synchronized representing the main integrators of

metabolic activity. Two types of reactions are present in the metabolic

core: the first type are essential for biomass formation both for

optimal and suboptimal growth, while the second type of reactions

are required only to assure optimal metabolic performance [37,38].

In a recent study with DMNs, we observed (under particular

conditions of different levels of enzymatic covalent regulatory

activity) an asymptotic trend towards 100% of the networks

displaying the global configuration with metabolic core when the

number of metabolic subsystems is incremented: this suggested

that the number of catalytic elements could be the fundamental

element for the emergence of the observed global structure [39].

Here, in order to investigate the mechanisms behind the

emergence of the self-organized global functional structure we have

considered new important elements which were not taken into

account in our previous studies. Concretely, we have performed here

an exhaustive analysis with around 15,210,000 DMNs, exploring a

large rank of topological architectures, taking into account:

– The proportion of the allosteric activation signals, allosteric

inhibition signals and regulatory signals of covalent modulation

present in the network.

– The variable number of substrate fluxes and regulatory signals

that each metabolic subsystem can receive.

– The random selection of the metabolic subsystems that receive

substrate fluxes from exterior.

Likewise, we have researched the dynamics of metabolic

subsystems functionally unviable, and we have also computed

the sizes of metabolic cores, comparing with the results from

Almaas et al., [37].

Our analysis reinforces and expands on our previous work and

we have concluded that the number of enzymatic complexes

(catalytic elements of the networks) is the crucial factor for the

emergence of a global functional structure with metabolic cores.

Likewise, these studies have allowed us to relate this new structure

with the robustness and stability of living cells.

Results

Dissipative metabolic networks (DMNs) are dynamical systems

basically formed by N interconnected elements, called metabolic

subsystems or catalytic elements of the networks. Each metabolic

subsystem represents a group of enzymes aggregated in cluster and

dissipatively structured (the catalytic processes can present both

stationary and oscillatory activity regimes). These enzymatic sets

are considered as individual catalytic entities and receive both

input fluxes (the substrates of the enzymatic reactions) and

regulatory signals, which may be of three types: activatory (positive

allosteric modulation), inhibitory (negative allosteric modulation)

and all-or nothing type (which correspond with the regulatory

enzymes of covalent modulation).

As an example, we have first considered a simple DMN formed

by two subsystems (MSb1 and MSb2) arranged in series with two

feedback loops of regulatory signals (figure 1). The metabolic

subsystem MSb1 receives an outer input flux of substrate and is

activated by the second subsystem (in the MSb2 there is an

allosteric enzyme of positive modulation). The MSb2 is totally

inhibited by the first subsystem (in the MSb1 there is a regulatory

enzyme of covalent modulation).

We have fixed as control parameter the d threshold value in the

regulatory signals of total inhibition which represents the level of

the enzymatic covalent regulatory activity. The rest of the network

parameters are described in the example of the materials and

methods section.

After the numerical resolution, at small threshold values, for

0#d#0.37, the MSb1 presents a single oscillatory behaviour of

one-period and the second metabolic subsystem is inactive (the

Figure 1. Dissipative metabolic network with only two metabolic
subsystems. DMN formed by two subsystems (MSb1 and MSb2) and two
feedback loops of regulatory signals. Each metabolic subsystem represents
a discrete module of several functionally associated enzymes, which may
operate in far from equilibrium conditions, and consequently may present
both steady states and oscillatory catalytic patterns. The MSb1 receives an
outer input flux of substrate and is activated by the second subsystem (+)
in which there is an allosteric enzyme of positive modulation. In the MSb1
there is a regulatory enzyme of covalent modulation and the MSb2 may be
totally inhibited by the first subsystem (-T).
doi:10.1371/journal.pone.0007510.g001

Metabolic Cores
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small threshold values represent a high level of the enzymatic

covalent regulatory activity which provokes the total inhibition of

the MSb2).

A qualitative change in the dynamical structure of the network

emerges for 0.38,d,0.70: the MSb1 is always locked in an on

state while the MSb2 is in an on-off switching state.

The dynamical patterns that emerge for these d values are

simple. For 0.38#d#0.51 the first subsystem exhibits transitions

between two periodic oscillations and the MSb2 presents one

steady state when it is active. This steady state is replaced for one

periodic pattern in the range of 0.51,d#0.61.

A third periodic behaviour appears in the range 0.61,d#0.68

in both metabolic subsystems. The MSb1 exhibits three periodic

oscillations and the second subsystem presents transitions between

a periodic pattern and a steady state when it is active (figure 2).

The modification of the control parameter in the range of

0.68,d#0.70 leads to the emergence of a new periodic oscillation

in both subsystems (four oscillations in the MSb1 and 2 periodic

patterns and one steady state in the MSb2).

When the parameter achieves a determinate value, 0.70,d#1,

the two subsystems are always active. For 0.70,d#0.75 the MSb1

exhibits four periodic oscillations and the Msb2 presents

transitions between a steady state and a periodic pattern.

As d increases the temporal structure of the metabolic

subsystems becomes more complex with cycles of transitions with

8, 12, 30, 46 etc., patterns.

Finally, for 0.9,d#1 deterministic chaotic transitions can be

observed (figure 2). The network formed by only two metabolic

subsystems spontaneously auto-organizes, provoking the emer-

gence of a very complex behavior in which each subsystem

presents infinite transitions between different periodic patterns. In

this dynamical situation, both metabolic subsystems modify

uninterruptedly their activity so that it never repeats itself for

arbitrarily long periods of time.

The mechanism that determines these behaviours in both

subsystems is not prefixed in any of the parts of the system. There

is neither feedback with oscillatory properties nor other rules that

determine the system to present complex transitions in the output

activities of the metabolic subsystems. The complex dynamic

behaviours which spontaneously emerge in the network have their

origin in the regulatory structure of the feedback loops, and in the

nonlinearity of the constitutive equations of the system.

In this paper, our main goal is to investigate the mechanism

behind the emergence of the supramolecular organization of the

cellular metabolic activities.

There are two fundamental kinds of processes that may affect

the global functional structure which should be taken into account

in our study: the internal metabolic activities of the cells during the

growth conditions and the different metabolic structures that

characterize the distinct cell types.

The studies of Almaas et al., [37,38] have shown that the

internal metabolic activities are adjusted to environmental changes

through two distinct mechanisms:

Flux plasticity, involving changes in the active catalytic reactions

when the organism is shifted from one growth condition to

another; these reactive reorganizations result in changes in the

intensity of the substrate fluxes.

Structural plasticity, resulting in changes in the dynamic

structure of substrate fluxes that present on-off changing states, so

previously inactive catalytic processes are turned on while

previously active pathways are turning off and viceversa.

We have considered these processes by means of random

changes in: the parameters associated to the flux integration

functions, the coefficients of the regulatory signals, and the initial

conditions in the activities of all metabolic subsystems. Likewise,

we have taken into account the external perturbations by means of

random changes in the values of the outer flux parameters and by

performing a random selection of the metabolic subsystems that

receive substrate fluxes from the exterior.

The different metabolic structures that the distinct cellular types

may present have been considered by means of changes in: the

proportion of the allosteric activation signals, allosteric inhibition

signals and regulatory signals of covalent modulation, the variable

number of substrate fluxes and regulatory signals that each

metabolic subsystem can receive, the number of metabolic

subsystems, the number of input fluxes for each subsystem, the

number of input regulatory signals for each metabolic subsystem

and the topology of all flux and regulatory signal interconnections.

Taking into account these metabolic elements, we have

performed here an exhaustive analysis with around 15,210,000

DMNs in order to simulate extensively different metabolic

conditions and to investigate the mechanisms behind the

emergence of the self-organized global metabolic structure.

We first studied 2,700,000 random metabolic networks whose

only common characteristic is having three regulatory signals

(rs = 3) and two input fluxes (f = 2) per subsystem (figure 3), with the

goal of measuring what percentage of the networks exhibit global

self-organization depending on the proportion of allosteric and

covalent regulatory signals per metabolic subsystem l, and the

number of subsystems n.

The first control parameter l was varied in steps of 10 in the

interval [10%, 90%] (i.e., a 10% of l means that 10% of the

overall regulatory feedbacks in the network are allosterics signals

and the remaining 90% are regulatory signals of covalent

modulation).

Figure 2. Dynamical catalytic patterns in a DMN formed by two
subsystems. (a) In the MSb1 a cycle of three periodic oscillations
emerges. (b) The MSb2 presents an on-off switching state under the
same parametric conditions as the MSb1 and exhibits regular transitions
between a periodic pattern and a steady state when it is active. (c) In
the MSb1 deterministic chaotic patterns can be observed; the metabolic
subsystem modify uninterruptedly their catalytic activity so that it never
repeats itself for arbitrarily long periods of time. The activity Ac
developed by each metabolic subsystem is represented as a function of
the time t.
doi:10.1371/journal.pone.0007510.g002
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To simplify, we have considered the allosteric signals (activators

or inhibitors) in equal proportion, i.e., if l= 30% means that a

30% of the overall regulatory feedbacks in the network are

allosterics signals provoking that in a 15% of the metabolic

subsystem activities can be enhanced, in other 15% can be

inhibited.

In the DMNs, three fundamental kinds of global configurations

may emerge (see [39] for more details): all metabolic subsystems

always present cycles of activity-inactivity (the corresponding

analysis about their emergence are in figure 3a), all catalytic

elements are unable to change their state (each subsystem is always

on or is always off ) (figure 3b), and networks characterized by the

presence of a metabolic core (figure 3c).

The first analysis shows how the DMNs that exhibit the two first

global configurations (figures 3a and 3b) display a fast decrease in

the percentages of networks without metabolic cores as a function

of the number of subsystems, converging to 0% for all l values. In

particular, in the networks with all subsystems always on-off

(figure 3a) and a high number of allosteric signals (70%ƒlƒ90%)

the approximations that we have calculated are equal to 0% when

n = 180 and the rest of networks with less percentage of allosteric

signals per subsystems (10%ƒlƒ60%) makes it for 180vnƒ350;

the DMNs with all catalytic elements unable to change their state

(figure 3b) becomes 0% for 200ƒnƒ350 except when l= 90%

which decreases their percentage very slowly in functions of n

being the value obtained in our approximations of 0% for n = 700

(this point is not represented in the figure 3b). However, the

analysis shows a fast growth in the percentage of networks with

metabolic cores (figure 3c) as a function of the number of

subsystems, converging slowly to 100%. So, for n = 130 the

networks go over the 95% threshold, and all the DMNs present

these kind of global structure when the nets reach n = 350

elements, except for l= 90%, in which case the percentage varies

very slowly as a function of n, reaching 99.5% for n = 350 and

100% for n = 700.

In each estimate of the percentages of DMNs the average of

10,000 random metabolic networks were calculated, and the

criterion followed to determinate the activity of each metabolic

subsystem was to take the corresponding state between the iterations

200 and 300. All the percentages have been estimated according to

these averages with groups of 10.000 different DMNs; therefore our

results are an approximation to the exact value.

Next, to analyze the emergence of these global structures in

more complex situations, similar statistical measurements were

also carried out with four groups of DMNs in which different

relationship between the number of regulatory signals (rs) and the

fluxes ( f ) per subsystem were taken into account (i.e., rs = 4 f = 2,

rs = 5 f = 3, rs = 7 f = 3 and rs = 8 f = 4, figures 4a to 4d).

In Figure 4a the random DMNs (belonging to the kind rs = 4

and f = 2) show an increase in the percentage of networks with

metabolic cores as a function of the number of subsystems until to

converge slowly to 100%. The networks with others global

functional structures without metabolic cores goes disappearing as

the number of subsystems increases. The percentages for n = 5 are

3.5% (l= 10%) and 21.4% (l= 90%), and for n = 290 all the nets

to overcome the 95%.

In the Figure 4b it can be seen that the percentages of DMNs (of

the kind rs = 5 and f = 3) with metabolic cores grow with the

Figure 3. Effect of the number of subsystems on the three main global functional structures. Percentage of DMNs that exhibit,
respectively, (a) all their catalytic elements in an on-off regime, (b) all the metabolic subsystems unable to change the state and (c) a set of metabolic
subsystems conforming a metabolic core while the rest of catalytic elements exhibit an on-off changeable state. In the horizontal axes the l value, the
proportion of allosteric and covalent regulatory signals and the number of subsystems n are displayed (a 10% of l means that a 10% of the overall
regulatory feedbacks in the network are allosterics signals and the 90% remaining are regulatory signals of covalent modulation). In these analyses, all
the DMNs were performed with three regulatory signals and two input fluxes per metabolic subsystem.
doi:10.1371/journal.pone.0007510.g003
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number of subsystems for all l values, and for n = 600 our

approximations allow to observe that the networks, independently

of their structural topology of fluxes and regulatory signals, acquire

an only global structure with metabolic cores. The percentages for

n = 10 are 12% (l= 10%) and 44.4% (l= 90%). The rank of

growth for the first 100 metabolic subsystem (that is, the difference

of the percentage between n = 100 and n = 10) are 59.6 for

l= 10%, and 45.4 for l= 90%. For n = 400 all the DMNs with

metabolic cores to overcome the 95%.

In figure 4c, like previous analyses, the percentages of DMNs

with cores simulated with seven regulatory signals and three input

fluxes per subsystem (rs = 7 f = 3) converge slowly to 100% at

n = 800. The minimum percentages are 6.4% (n = 10 and

l= 10%) and 43.9%. (n = 10 and l= 90%). For n = 550 all the

nets surpass the 95% level.

Finally, the figure 4d also allows to observe that the DMNs (of

the kind rs = 8 f = 4) conformed by high n values independently of

their structural topology of fluxes and regulatory signals acquire an

only global dynamic configuration characterized by present a

metabolic core. The minimum percentages are 2.7% (n = 10 and

l= 10%) and 45.8%. (n = 10 and l= 90%). The rank of growth

for the first 100 metabolic subsystem (the difference of the

percentage between n = 100 and n = 10) are 40.5 for l= 10% and

45.8 for l= 90%. As it happened in the previous analyses, not all

the networks require the same number of catalytic elements to

converge to 100%, some of them require a smaller number of

metabolic subsystems, for example some percentage of the

networks with cores to overcome the 95% for n = 220, l= 20%

and 70%ƒlƒ90%.

In our analyses, we have observed large deviations in the

percentages of networks with metabolic cores as a function of the

number of subsystems for intermediate ranges of l, e.g., in figure 4

for n = 200 and l= 50% the values are the following ones: (4a)

rs = 4 f = 2, 94.5%; (4b) rs = 5 f = 3, 99%; (4c) rs = 7 f = 3, 70.6%;

and (4d) rs = 8 f = 4, 69%.

The analyses with DMNs also show that the structural levels of

allosteric and covalent regulatory activity affect to the size of the

metabolic cores and consequently to the percentage of catalytic

elements locked into an on-off switching state (Table 1). It should be

stressed that both the subsystems always on and always on-off are

parts of the same whole, dynamic reactive organization and that

one kind cannot exist without the other.

The sizes of the metabolic cores (percentages of catalytic

elements that are always active) ranged between 44.6% and 0.7%

and their distribution is skewed toward low values since 71% of the

studied networks show sizes that range between 7.6% and 0.7%,

with a mean of 2%.

The lowest values of the sizes correspond to the DMNs with

bigger number of regulatory signals and fluxes per catalytic

element and similar proportion of allosteric and covalent

regulatory signals per metabolic subsystem (40%ƒlƒ60%). The

maximum values of the core sizes emerge when in the overall of

the networks most of the regulatory signals are of covalent

modulation (l= 90%).

Figure 4. Analyses of DMNs with different number of regulatory signals and fluxes per metabolic subsystem. Percentage of DMNs that
exhibit metabolic cores belonging to four kind of metabolic networks with different number of regulatory signals (rs) and the fluxes (f) per catalytic
element: rs = 4 and f = 2 (figure a), rs = 5 and f = 3 (figure b), rs = 7, f = 3 (figure c) and rs = 8, f = 4 (figure d). In the horizontal axes the l value, the
proportion of allosteric and covalent regulatory signals per network and the number of metabolic subsystems n are represented.
doi:10.1371/journal.pone.0007510.g004
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As expected, we have found that the DMNs studied inevitably

present catalytic elements always in an inactive state because

certain random connections in the fluxes and regulatory signals

convert them in functionally unviable.

In fact, the percentage of these inactive subsystems may be notably

large in the nets that contain few subsystems (i.e., for rs:7-f:3, n = 10

and l= 10% is a 71.29% and for rs:5-f:3, n = 10 and l = 10% is a

68.4%). However, the numerical results show how, when the number

of subsystems increases, the percentage of catalytic elements always

inactive descends quickly, trending asymptotically to zero.

The figure 5 shows an example of this dynamical behaviour.

The maximum percentage of the catalytic elements always inactive

is 72.6% for l= 10% and n = 5 descending to 0.003% for n = 380.

The DMNs with lower values of l (consequently with bigger

percentage of covalent modulation regulatory signals) and small n,

present higher percentages of subsystems always off.

In all analyses, for large n values, the numerical evidence shows

that, on the one hand, the percentage of catalytic elements always

inactive descends quickly, trending asymptotically to zero and, on

the other hand, virtually all random networks spontaneously

acquire a unique global dynamic configuration characterized by

presenting a metabolic core, and that the approximations that we

have obtained are 100% for all l values. These data seem to

indicate that the crucial element for the emergence of a global

functional configuration characterized by presenting a metabolic

core is a high number of metabolic subsystems.

Discussion

To investigate the mechanism behind the emergence of a

supramolecular organization of the cellular metabolism charac-

terized by the emergence of a sets of enzymes which are always in

an active state (metabolic core), while the rest of the molecular

catalytic reactions exhibit on-off changing states we have analyzed

extensive DMN simulations, exploring a wide variety of

topological architectures with different allosteric and covalent

regulatory conditions under different numbers of substrate fluxes

and regulatory signals per each metabolic subsystem.

Our results show that the percentages of DMNs with metabolic

cores grow with the number of subsystems converging to 100% for

all cases. These results seem to indicate that this global structure is

an emergent property which arises in all the dissipative metabolic

networks with a relatively high number of metabolic subsystems,

independently of their structural topology of fluxes, regulatory

signals and the different number of allosteric and covalent

enzymes present in each network.

These data corroborate and expand on our previous studies

[39]. Therefore it can be concluded that the fundamental element

Table 1. Size of the metabolic cores.

l f = 2 rs = 3 f = 2 rs = 4 f = 3 rs = 5 f = 3 rs = 7 f = 4 rs = 8

10% 6.3% 2.2% 11.3% 11.4% 16.8%

20% 6.% 1.7% 7.6% 4.7% 6.7%

30% 5.9% 1.5% 5.6% 1.9% 2.5%

40% 6.4% 1.6% 4.6% 1% 1.1%

50% 7.6% 1.9% 4.6% 0.7% 0.7%

60% 9.8% 2.5% 5.7% 0.9% 0.9%

70% 13.8% 3.8% 8.9% 1.6% 2%

80% 21.5% 6.3% 17.6% 4.% 6.9%

90% 36.8% 13.2% 44.6% 19% 37%

Percentages of catalytic elements per network always active. The l value is the
proportion of allosteric and covalent regulatory signals; rs and f represent the
number of regulatory signals and fluxes per catalytic element. The data are the
average percentage of 10,000 random metabolic networks for a fixed l and for
n = 500.
doi:10.1371/journal.pone.0007510.t001

Figure 5. Effect of the number of metabolic subsystems on the catalytic elements always inactive. The figure displays the percentages of
the metabolic subsystems always inactive per network as a function of the proportion of allosteric and covalent regulatory signals l, and the number
of subsystems n. When the number of the catalytic elements n increases the percentage of metabolic subsystems always inactive descends quickly,
trending asymptotically to zero. These numerical analyses correspond to DMNs with four regulatory signals and two input fluxes per catalytic
element.
doi:10.1371/journal.pone.0007510.g005
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for the spontaneous emergence of a global metabolic configura-

tion, characterized by presenting a metabolic core, is the number

of metabolic subsystems belonging to the network.

In cellular conditions, the enzymes and the rest of proteins

present multiplicity of copies. For instance, the metabolic network

of E. coli K12, one of the best studied cellular organisms, only

presents 4,377 genes, 4,290 encode proteins of which 931

correspond to enzymes [40] organized in the cytoplasm and

membranes in 165 metabolic pathways [41]. Despite this small

number of genes, the number of all synthesized proteins including

the enzymes is very high about 3,600,000 (1,000,000 of them

being of cytoplasmic proteins, excluding 900,000 ribosomal

proteins which under different growing conditions conform

between 10,000 and 60,000 ribosomes) [42]. Likewise, the inner

membrane proteins are about 200,000 and the outer membrane

proteins are about 300,000 [42].

On the other hand, Gavin et. al., in [4] found that an 83% of

proteins of Saccharomyces cerevisiae form complexes containing

anywhere from two to eighty three proteins; over 90% of these

aggregates had at least one component that was not found in other

sets and the whole enzymatic structure is conformed by a modular

network of biochemical interactions between protein complexes.

Our numerical results show that the emergence of the global

structure with a metabolic core depends on the number of

dissipatively structured enzymatic sets.

The high multiplicity of copies of the enzymes and the

corresponding multiplicity of metabolic subsystems could ensure

the spontaneous emergence of the cellular metabolic structure.

We have found that the sizes of the metabolic cores (percentages

of catalytic elements that are always active) ranged between 44.6%

and 0.7% (table 1) and their distribution is skewed toward low

values since 71% of the studied networks show sizes that range

between 7.6% and 0.7%, with a mean of 2.%.

By means of flux-balance analysis the percentage of enzymatic

reactions belonging to the core was 36.2% of all different reactions

in H. pylori (138 of 381), 11.9% in E. coli (90 of 758) and 2.8% in

S. cerevisiae (33 of 1,172) [36,37].

In our numerical simulations we have taken into account tree

kinds of fundamental changes in the DMNs that may affect the

emergency of the observed global metabolic structure: the internal

activity of the metabolic subsystems, the external perturbations

and the structural changes that can affect the networks.

We have looked at more than 15 million different networks, and

the changes in the internal activity of the metabolic subsystems,

the structural changes in the DMNs and the external perturbations

do not make the functional structure disappear.

Our results indicate that despite the presence of these

perturbations, a relatively high number of catalytic elements

ensure the emergence of the global metabolic self-organization

characterized by a metabolic core in all the cases that we have

analyzed. When the networks achieve a determinate number of

subsystems they maintain theirs global funcional configurations

despite external and internal perturbations.

The DMNs conformed by a relatively high number of subsystems

seems to be robust dynamical systems because their topological

organization and their network constituent elements can be altered

strongly with very little consequence for the overall functional structure.

Robustness is particularly advantageous to cellular organisms.

On one hand, it is fundamental to allow the maintenance of the

global functional structure despite of the environmental perturba-

tions. On the other hand, this property is considered to be

fundamental to facilitate evolvability [43].

The stability of a global reactive structure with metabolic core

contrasts with the instability of chaotic patterns which can emerge

in certain metabolic processes at the cellular level (e.g., in

intracellular free amino acid pools [19], respiratory metabolism

[44], photosynthetic reactions [45], glycolysis [46], krebs cycle

[47], peroxidase-oxidase reactions [48], membrane potential [49],

nuclear translocation of the transcription factor [50], NAD(P)H

concentration [51], cyclic AMP concentration [52], ATP concen-

tration [53], intracellular calcium concentration [54]).

DMNs also exhibit simultaneously stable global configurations

with metabolic cores and different steady states, regular oscillations

and chaotic reactive transitions in the activity of different

metabolic subsystems [39].

The existence of chaotic dynamics in the activity of some

metabolic subsystems integrated in a robust global functional

structure may constitute a biological advantage since the sensitivity

of the reactive chaotic behaviors to initial conditions may permit

fast and specific metabolic responses during adaptation to the

environmental perturbations.

The high number of catalytic elements that characterize the

living cells seems to be the fundamental element for the emergence

of a singular cellular metabolic structure able to self-organize

spontaneously, conforming a metabolic core of reactive processes

that remain active under different growth conditions while the rest

the molecular catalytic reactions exhibit structural plasticity.

Understanding the elemental principles governing the cellular

metabolic structure as well as their nexus with central cytological

processes may be one of the most important goals of the post-

genomic era.

Methods

1. Dissipative Metabolic Networks Model
The model takes into account the fact that the cellular

organization at the molecular level presents two relevant dynamic

characteristics: the presence of enzymes aggregated in clusters and

the emergence of dissipative catalytic patterns.

In agreement with these considerations, the dissipative meta-

bolic networks are dynamical systems basically formed by a given

number of interconnected elements, called metabolic subsystems

or catalytic elements of the network, each of which represents a

modular set of enzymes aggregated in clusters whose activity can

present steady state patterns or nonlinear periodic oscillations with

different levels of complexity comprising an infinite number of

distinct activity regimes.

We assume that the activity of the i-th metabolic subsystem is

defined by

yi(t)~BizAisin(v it);

where Ai is the amplitude of oscillation, Bi is the baseline and vi is

the oscillation frequency. Moreover, in order that yi(t)w0 we

assume that 0ƒAiƒBi and we also suppose that the means and

the frequencies are bounded values, so there exist Bmax and vmax

such that

BiƒBmax and v iƒv max Vi:

In this way, the activity of each metabolic subsystem yi(t) can be

characterized by three variables xi,1, xi,2 and xi,3, with values

between 0 and 1 such that

Bi~xi,1Bmax,
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Ai~xi,2Bi,

v i~xi,3v max,

The subsystem is inactive when xi,1~0, and is in a steady state

when xi,2~0 or xi,3~0.

Fix 0vTvz? and let Dt~T=M be a bit time interval during

which the oscillations are constant, in the m-th time interval

between tm{1~(m{1)Dt and tm~mDt, the activity of the i-th

subsystem is represented by the vector xm
i ~(xm

i,1,xm
i,2,xm

i,3) and the

state matrix

Xm~

xm
1

..

.

xm
N

0
BB@

1
CCA~

xm
1,1 xm

1,2 xm
1,3

..

. ..
. ..

.

xm
N,1 xm

N,2 xm
N,3

0
BB@

1
CCA,

characterizes the whole DMN system, where N is the total number

of subsystems.

To study the evolution of the whole system, we assume that each

subsystem receives two different kinds of inputs:

– The substrates of the biochemical reactions.

– Regulatory signals of three types: activatory, inhibitory and

total inhibitory.

These inputs may produce a change in the activity and

regulatory signals sent to other subsystems. Moreover, according

to experimental observations from [33], the output activity must

be stationary or periodic.

Each subsystem processes inputs to produce outputs in two

stages:

1. An intermediate activity is obtained using the flux integration

functions.

2. The received regulatory signals originate a regulatory signal

integration which varies the intermediary activity.

2. Flux integration
Let us suppose that the i-th subsystem receives flux from the j-th,

its intermediate values zm
i will be computed by three flux

integration functions

zm
i,1~F1 xm

j,1,pi,1

� �
,

zm
i,2~F2 xm

j,2,pi,2

� �
,

zm
i,3~F3 xm

j,3,pi,3

� �
,

Where pi,1, pi,2 and pi,3 are parameters associated to the flux

integration function which are characteristic of each metabolic

subsystem, and the Fi are piecewise linear approximations for

nonlinear functions obtained in [55] by Goldbeter and Lefever in

their studies about the oscillations for glycolytic subsystems. In this

paper, the functions will be the following:

F1 x,pð Þ~F2 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:5
x{0:3ð Þ if 0:3vxƒ0:8,

p

0:1
0:9{xð Þ if 0:8vxƒ0:9,

0, if xw0:9,

8>>>>>>>><
>>>>>>>>:

and

F3 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:6
x{0:3ð Þ if 0:3vxƒ0:9,

p, if xw0:9:

8>>>>><
>>>>>:

When a subsystem receives flux from at least two subsystems, we

compute the arithmetic mean.

3. Regulatory signal integration
In this second stage, the intermediary values are modified using

the signals integration functions, which depend on the combina-

tion of the received regulatory signals and their corresponding

parameters (regulatory coefficients). In the metabolic subsystems,

the existence of some regulatory enzymes (both allosteric and

covalent modulation) permits the interconnection among them.

The allosteric enzymes present different sensitivities to the

effectors, which can generate diverse changes on the kinetic

parameters and in their molecular structure; likewise, the

enzymatic activity of covalent modulation also presents different

levels of regulation depending on the sensitivity to other activators

or inhibitors.

These effects on the catalytic activities are represented in the

dynamical system by the regulatory coefficients and consequently

each signal has an associated coefficient which defines the intensity

of its influence. There exist three kinds of signals integration

functions:

– Activation function AC.

– Inhibition function IN.

– Total inhibition function TI.

In this way, to compute xmz1
i from zm

i the i-th subsystem

receives enzymatic regulatory signals from r subsystems and they

work sequentially computing

zm
i ~ xm

i

� �0? xm
i

� �1? xm
i

� �2? . . . . . .? xm
i

� �r
~xmz1

i

where each step depends on the signal type. From xm
i

� �s
to

xm
i

� �sz1
if the signal is AC and is received from the j-th MSb

xm
i,k

� �sz1

~AC xm
i,k

� �s

,xm
j,k,qi,k

� �
~1{ qi,k{1ð Þxm

j,kz1
� �

1{ xm
i,k

� �s� �

for k = 1; 2; 3 and qi,k are regulatory coefficient to each allosteric

activity signal which represents the sensitivity to the allosteric effectors.

If the allosteric signal is inhibitory

xm
i,k

� �sz1

~IN xm
i,k

� �s

,xm
j,k,qi,k

� �
~ qi,k{1ð Þxm

j,kz1
� �

xm
i,k

� �s

,
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and, finally, if the signal is of the total inhibition type

xm
i,k

� �sz1

~TI xm
i,k

� �s

,xm
j,k,d

� �
~

xm
i,k

� �s

, if xm
j,kvd

0, if xm
j,k§d ,

8<
:

where d, the threshold value, is the regulatory coefficient

associated to each enzymatic activity signal of covalent modulation

which defines the intensity of its influence.

5. Random metabolic network generations
First, we have fixed with control parameters the following elements:

– The number of subsystems in the DMN.

– The number of input fluxes for each subsystem (in this paper

the number of output fluxes for each subsystem is not a fixed

parameter so that the metabolic subsystems can present

different outputs, (as it happens in cellular conditions).

– The number of input regulatory signals for each metabolic

subsystem (similar considerations as with output fluxes have

been applied for regulatory output connections). These

regulatory signals can come from any element of the network

and do not require any flux relationship. Therefore, there are

not elements with single fluxes and all the metabolic subsystems

have fluxes and regulatory signals.

– The proportion of the allosteric activation signals, allosteric

inhibition signals and regulatory signals of covalent modulation

present in the network (l parameter).

– The proportion of the metabolic subsystems receiving substrate

fluxes from the exterior (one external flux per metabolic

subsystem).

Having fixed these elements, the structure of each network has

been randomly configured (following the uniform distribution)

including: the topology of flux interconnections and regulatory

signals, the pi parameters associated to the flux integration

functions, the qi regulatory coefficients to the allosteric activities,

the selection of the metabolic subsystems that receive substrate

fluxes from the exterior (here 8% of the total), the values of the

outer flux parameters v , A and B as well as the initial conditions in

the activities of all metabolic subsystems.

The values of pi and qi are a random number between 0 and 1.

The changes in the parameters pi modify the flux integration

function, which are piecewise linear approximations for the

nonlinear functions obtained in [56] by Goldbeter and Lefever.

The values of qi close to 0 represent a low level of influence of the

allosteric regulatory signals, and the values of qi close to 1 represent

a high level of influence of the allosteric regulatory signals. The

random value of these pi and qi parameters originates metabolic

networks with a great variety of activities in each subsystem.

We have taken the constants Amax, Bmax, and v max equal 2,

anyway, in this paper only the qualitative aspects of the activity have

been considered (here, we are mainly interested in the percentages of

DMNs with or without metabolic cores, i.e.: if the subsystem is active

or inactive, and this is independent of Amax, Bmax, and v max values).

Finally, given T and M we calculate the activity matrices Xm for

m = 1, …, M using the flux integration functions and the regulatory

signals.

6. Activity of the metabolic subsystems
We consider a certain number of transitions and, in the k-th stage,

the activity of the metabolic subsystem is described by a function of

the form y(t) = B+Asin(v t), where B~xk
1Bmax, A~xk

2B and

v~xk
3v max and where Bmax and v max are given fixed parameters

independent of the stage number and of the subsystem. The

duration of the harmonic oscillation is a given parameter Th

independent also of the stage and of the subsystem. In between two

stages, a mixed transition regime is maintained with a duration Ttr

independent of the stage number and of the subsystem. If the

transition goes from the k-th stage to the (k+1)-th stage then, during

the Ttr seconds of transition regime, the activity is given by a

function of the form y tð Þ~C1 tð Þy1 tð ÞzC2 tð Þy2 tð Þ, where y1 tð Þ is

the activity corresponding to the prolongation in time of the

previous harmonic activity in the k-th stage, and y2 tð Þ is the back-

propagation in time of the subsequent harmonic activity in the

(k+1)-th stage. The numbers C1 tð Þ and C2 tð Þ depend on time and

indicate the weights with which the activities of the subsystem in the

previous and posterior stage are present during the transition time.

At the beginning of the transition, say at t~t0, C1 t0ð Þ is 1 and

C2 t0ð Þ is 0, and at the end of the transition, say at t~t1, C1 t1ð Þ is 0

and C2 t1ð Þ is 1. In the rest of the transition times C1 tð Þ and C2 tð Þ
vary affinely. Thus, C1 tð Þ~ t{t1

t0{t1
, C2 tð Þ~ t{to

t1{t0
: Putting all this

together, during the transition time the activity is given by

y tð Þ~ t{t1

t0{t1
xk

1Bmaxzxk
1xk

2Bmax sin xk
3v maxt

� �� �
z

t{t0

t1{t0
xkz1

1 Bmaxzxkz1
1 xkz1

2 Bmax sin xkz1
3 v maxt

� �� �
:

The transition regimes are combinations of two harmonic

oscillations with non-constant coefficients C1 tð Þ and C2 tð Þ depend-

ing on time. Thus, the introduction of these transition regimes

provokes the emergence of nonlinear oscillatory behaviors.

7. Example
We will consider the simple MN formed by two subsystems

arranged in series with two feedback loops of regulatory signals. The

MSb1 is activated by the second subsystem and the MSb2 is totally

inhibited by the first subsystem when this one reaches a determinate

threshold value (figure 1). The MSb1 input flux value is

x�1,1~0:25, x�1,2~0:17, x�1,3~0:33, with p1,1~0:82,p1,2~0:69,
p1,3~0:74: The parameter values for the integration functions of

MSb2 are: p2,1~0:81, p2,2~0:90, p2,3~0:72: The catalytic

dissipative element MSb1 is activated by the second MSb, with

q1,1~0:29, q1,2~0:03, q1,3~0:09 and the MSb2 is totally

inhibited by MSb1, with a threshold d= 0.18.

The initial state is

x1
1,1~0:54, x1

1,2~0:19, x1
1,3~0:77,

x1
2,1~0:36, x1

2,2~0:49, x1
2,3~0:79:

We will describe next in detail the way of obtaining the second state.

After the flux integration stage we reach an intermediary state

z1
1,1~F1 0:25,0:82ð Þ~0:375,

z1
1,2~F2 0:17,069ð Þ~0:175,

z1
1,3~F3 0:33,0:74ð Þ~0:512,

z1
2,1~F1 0:54,0:81ð Þ~0:6488,

z1
2,2~F2 0:19,0:90ð Þ~0:225,

z1
2,3~F3 0:77,0:72ð Þ~0:7068,

After the signal regulatory integration stage we obtain the

following state

Metabolic Cores
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x2
1,1~AC 0:375,0:36,0:29ð Þ~0:53475,

x2
1,2~AC 0:175,0:49,0:03ð Þ~0:5671225,

x2
1,3~AC 0:512,0:79,0:09ð Þ~0:8628232,

x2
2,1~TI 0:6488,0:54,0:2ð Þ~0,

x2
2,2~TI 0:225,0:19,0:2ð Þ~0,

x2
2,3~TI 0:7068,0:77,0:2ð Þ~0:

In the DMN the first metabolic subsystem will fall into a single

active state, corresponding to a periodic oscillation, and the second

subsystem is locked into an inactive state.
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39. De La Fuente IM, Martı́nez L, Pérez-Samartı́n AL, Ormaetxea L, Amezaga C,

et al. (2008) Global Self-organization of the cellular metabolic structure. Plos
One 3: e31001–19.

40. Csaba P, Balázs P, Martin J, Lercher P, Csermely S, et al. (2006) Chance and

necessity in the evolution of minimal metabolic networks. Nature 440: 667–670.

41. Karp PD (2001) Pathway Databases: A Case Study in Computational Symbolic

Theories. Science 293: 2040–2044.

42. Cyber Cell Database Statistics. http://redpoll.pharmacy.ualberta.ca/CCDB/
cgi-bin/STAT_NEW.cgi.

43. Kitano H (2004) Biological Robustness. Nature reviews Genetics 5: 826–837.

44. Jules M, Francois J, Parrou JL (2005) Autonomous oscillations in Saccharomyces

cerevisiae during batch cultures on trehalose. FEBS 272: 1490–1500.
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