
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2010, Article ID 570279, 10 pages
doi:10.1155/2010/570279

Review Article

Reconfigurable Multiprocessor Systems: A Review

Taho Dorta, Jaime Jiménez, José Luis Martı́n, Unai Bidarte, and Armando Astarloa

Department of Electronics and Telecommunications, University of the Basque Country, UPV/EHU, 48013 Bilbao, Spain

Correspondence should be addressed to Taho Dorta, taho.dorta@gmail.com

Received 28 February 2010; Revised 31 July 2010; Accepted 26 October 2010

Academic Editor: Viktor K. Prasanna

Copyright © 2010 Taho Dorta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modern digital systems demand increasing electronic resources, so the multiprocessor platforms are a suitable solution for them.
This approach provides better results in terms of area, speed, and power consumption compared to traditional uniprocessor digital
systems. Reconfigurable multiprocessor systems are a particular type of embedded system, implemented using reconfigurable
hardware. This paper presents a review of this emerging research area. A number of state-of-the-art systems published in this
field are presented and classified. Design methods and challenges are also discussed. Advances in FPGA technology are leading
to more powerful systems in terms of processing and flexibility. Flexibility is one of the strong points of this kind of system, and
multiprocessor systems can even be reconfigured at run time, allowing hardware to be adjusted to the demands of the application.

1. Introduction

Multiprocessor Systems-on-Chip (MPSoC) represent an
important trend in digital embedded electronic systems.
MPSoC are systems-on-chip with more than one processor.
New applications in modern embedded systems require
complex multiprocessor designs to reach Real-Time (RT)
deadlines while overcoming other critical constraints such as
power consumption and low area. MPSoC seem to be the
solution for such complex systems. A lot of applications such
as networking, multimedia, and control benefit from this
type of system. The perfect example of this is a cell phone.
Current models must offer low power consumption and
integrate a large number of functions such as audio and video
encoding, image processing, and Internet access. MPSoC
offer better performance with lower energy consumption
in this kind of complex systems compared to uniprocessor
embedded systems. Traditionally, the trend in uniprocessor
systems was to improve performance by increasing clock
frequency; now the trend is to work in parallel with lower
frequencies, in order to reduce energy consumption [1–3].

In the field of MPSoC, the reconfigurable or FPGA-
based multiprocessor is a new and increasingly important
trend. It facilitates rapid prototyping and allows research into
new architectures and communications techniques without
the problems of MPSoC ASIC production. The number
of papers published over the last three years has increased

significantly. Figure 1 shows the number of publications in
the Inspec database using “multiprocessor” and “FPGA” as
search keywords.

Reconfigurable Multiprocessor Systems, also known as
Multiprocessor-on-Programmable Chip (MPoPC) (or Soft
Multiprocessor), are normally presented as a way of making
prototype systems for subsequent implementation on an
ASIC. Now, not only prototypes are implemented using
FPGAs, but final designs too. The growth in FPGA capacity
allows designers to implement a complete multiprocessor
system in a single FPGA. The main FPGA companies offer
the possibility of using softcore processors specially designed
to fit well in the FPGA; also, some FPGAs allow the use
of hard-core processors. Furthermore, FPGAs are equipped
with on-chip memory blocks, peripherals, and interconnec-
tion circuitry. Run-time reconfigurability is one of the strong
points of FPGA-based multiprocessors systems. This feature
allows multiprocessor systems to be adapted to a particular
application, gaining flexibility in the designed system.

In the following section, we discuss the viability of
FPGA-based Multiprocessors. In Section 3, we provide some
examples of FPGA-based multiprocessors implemented by
the research community in recent years. In Section 4, we
examine the challenges of MPoPC. After that, a number of
different methods of design are presented. In the final section
of this paper, we highlight a number of important aspects
relating to MPoPCs.



2 International Journal of Reconfigurable Computing

2. Viability of FPGA-Based Multiprocessor
Systems

The first question we must ask is whether there is any
sense in implementing a multiprocessor system on an FPGA.
The answer is that it depends. The main disadvantage of
this kind of multiprocessor is reduced performance com-
pared with ASIC multiprocessor systems. However, FPGA-
Multiprocessor systems have a number of advantages that
compensate for this in some way.

(i) Flexibility and reconfiguration. The number of softcore
processors that can be included is limited only by the capacity
of the FPGA. Also, it is possible to configure each processor
independently adding cache, FPU modules, and so forth.

(ii) Less time-to-market. The design process does not include
the manufacture of the IC, with a considerable reduction in
design time.

(iii) Less cost. The process is cheaper. Nowadays a state-of-
the-art FPGA is relatively cheap, enabling own design with
a small work team. Furthermore, if there is an error in the
system design, this is not decisive.

(iv) Scalability. FPGA-based multiprocessors systems can
house an increasing number of microprocessors or periph-
erals if there are logic resources available in the FPGA.
Therefore, using FPGA is the best choice in certain cases.

(i) Low-volume, mission-critical designs (e.g., radar and
military applications).

(ii) Rapid design of new, reconfigurable multiprocessor
systems.

(iii) Research field. New architectures, memory hierar-
chies, interprocessor communication, and so forth,
can be developed.

(iv) Naturally-grown systems. Systems that have to be
able to grow in features depending on the stage of
development [4].

The use of FPGA technology provides numerous benefits
for the design of embedded systems. These benefits include
the ability to fix design bugs in the FPGA hardware,
upgrade a system in the field, or simply swap out hardware
functionality without redesigning the physical board that
contains the FPGA [5]. FPGAs already provide a compelling
time-to-market advantage over ASICs, and advanced tools
targeting the needs of high-end FPGA designers would help
establish clear leadership [6].

Ravindran et al. discuss the viability of soft multipro-
cessors [7, 8]. According to them, it is necessary to answer
these two questions: (a) Can soft multiprocessors achieve
performance levels competitive with custom multiprocessor
solutions? (b) How do we design efficient systems of soft
multiprocessors for a target application? In both papers, they
demonstrate the viability of soft multiprocessors.

90

80

70

60

50

40

30

20

10

0
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

13
17

14
19

16

27

51

80
77

66

P
u

bl
ic

at
io

n
s

(year)

Figure 1: FPGA multiprocessor publications trend (2010 Febru-
ary).

3. FPGA-Based Multiprocessor Systems

In this section, we describe several multiprocessor systems
implemented in FPGA. We have tried to include systems
that represent the different trends in architecture and appli-
cations. First, we provide a little background information
about MPSoC and FPGA-based multiprocessor systems.
We also present the most widely accepted classification of
MPSoCs: homogeneous and heterogeneous. Multiprocessor
systems can be also classified as shared-memory systems
or distributed-memory systems. We also highlight recent
advances in run-time reconfigurable multiprocessor systems
and give examples of these systems.

3.1. Main FPGA-Based Processors. In FPGA-based multipro-
cessor systems, the most widely used FPGA soft processors
are made by one of the two main FPGA companies: Xilinx
or Altera. The other option is to use open-source soft
processors.

Xilinx is the most widely used brand in MPoPC systems.
It supplies three main processors: softcore MicroBlaze (MB),
PicoBlaze (8 bits reduced soft processor), and hard-core
PowerPC. The number of PowerPcs is limited by the FPGA
model to a maximum of four. The number of MicroBlaze and
PicoBlaze processors is limited only by logic resources.

The MicroBlaze is a 32-bit RISC softcore processor. It
uses the Harvard memory architecture, that is, it has a sepa-
rate instruction memory and data memory. The MicroBlaze
can issue a new instruction every cycle, maintaining single-
cycle throughput under most circumstances. The shared-bus
solution is the CoreConnect On-Chip Peripheral Bus (OPB),
and every MicroBlaze has Fast Simplex Link (FSL) ports to
make efficient point-to-point connections [9].

PicoBlaze is based on an 8-bit RISC architecture and can
reach speeds of up to 100 MIPS in Virtex-4 family FPGAs.
The processors have an 8-bit address and data port for
access to a wide range of peripherals. The core license allows



International Journal of Reconfigurable Computing 3

Table 1: Main FPGA processor models.

Processor Company Type Bits Comments

MicroBlaze Xilinx RISC 32 bits Harvard

PowerPC Xilinx RISC 32 bits hard-core

PicoBlaze Xilinx RISC 8 bits open-source

Nios Altera RISC 16 bits obsolete

Nios II Altera RISC 32 bits 3 flavours

Leon 3 Gaisler RISC 32 bits open-source

OpenRisc 1200 OpenCores RISC 32 bits open-source

Mico32 Lattice RISC 32 bits open-source

them to be used freely, albeit only on Xilinx devices, and
they come with development tools. The PicoBlaze design
was originally named KCPSM which stands for “Constant
(K) Coded Programmable State Machine” (formerly “Ken
Chapman’s PSM”). Ken Chapman was the Xilinx systems
designer who devised and implemented the microcontroller.

The design flow provided by Xilinx for embedded
systems is the Embedded Development Kit (EDK), which
involves some limitations when implementing multiproces-
sor systems, even though it is widely used. These limitations
are explained in Section 5.1.

Altera is the second most widely used processor utilized
by researchers. It enables the use of Nios II (NII) processors,
Avalon bus, and the EDA tool SOPC Builder, which is used
as an aid in the development of multiprocessor systems.

Nios II is a 32-bit RISC embedded processor. Nios II
is the evolution of the previous 16-bit Nios architecture.
It is suitable for a wider range of embedded computing
applications, from DSP to system control. Unlike Microblaze,
Nios II is licensable for standard-cell ASICs through a
third-party IP provider, synopsys designware. Through the
designware license, designers can migrate Nios-based designs
from an FPGA-platform to a mass production ASIC-device.

Nios II has three mostly unparameterized variations:
Nios II/e, a small unpipelined 6-CPI processor with serial
shifter and software multiplication, Nios II/s, a 5-stage
pipeline with multiplier-based barrel shifter, hardware mul-
tiplication, and instruction cache, and Nios II/f, a large 6-
stage pipeline with dynamic branch prediction, instruction
and data caches, and optional hardware divider.

OpenRisc from OpenCores and Leon 3 from Gaisler are
two very common open core soft processors. Leon 3 has more
advanced functions than MicroBlaze and Nios II, but has the
limitation of occupying a large amount of logic resources, so
it is complicated to fit a large number of units in a single
FPGA. We believe that it may be a good choice when larger
FPGAs appear in the future.

Table 1 summarizes the main FPGA processor models
(PowerPC is the only processor in the table that is not
softcore).

3.2. Architecture Background. Normally the target appli-
cation of the FPGA-based multiprocessor determines the
architecture. There are three main system architectures: (1)
Master-Slave, (2) Pipeline, and (3) Net. Also, it is possible

to combine these: master-slave with pipeline, for instance, is
very common.

(1) In master-slave systems, one or more processors act
as the master processor, controlling the behaviour of
the other slave processors.

(2) The pipeline approach is useful with stream applica-
tions; the architecture is composite with a chain of
processors, every processor acting as a pipeline stage.
The tasks are partitioned in time resulting in better
performance if the application is adequate.

(3) Finally, net architecture refers to multiprocessor sys-
tems where there is no hierarchy between processors,
all processors being able to communicate with each
other when necessary. One example of this kind of
system is the symmetric multiprocessor (SMP). A
feature of SMPs is that all the processors are identical,
so they are homogeneous multiprocessor systems.

Another important issue is the way the communica-
tions connections are implemented physically. There are 3
approaches.

(1) Point-to-point, where the processors are connected
directly. High bandwidth is an advantage because it is
not necessary to share the communications channel,
but when systems grow this is not area efficient.

(2) Shared-bus, the traditional approach that derives
from uniprocessor systems. It is the best known
mechanism to communicate cores, but it is not
effective in terms of performance because the bus can
only be used by one processor at a time.

(3) The most recent and promising approach is the
network-on-chip (NoC). The basis of this method
of interconnecting cores, is to apply network back-
ground to on-chip systems. When there are a lot of
on-chip cores, it is the solution that best combines
area and performance. The idea is to use small routers
inside the chip to enable communications between all
cores of the system with low latencies.

There are two possible methods for exchanging infor-
mation between processors: shared-memory and message
passing.

(1) Shared-memory is used most frequently, one reason
for this being that FPGAs have a limited amount
of on-chip memory, so this method allows memory
saving. Shared-memory systems, like SMPs, have the
problem of synchronization and memory consis-
tency. In FPGA-based designs, it is an important issue
under research, because the most widely used soft
processors do not have any solution to deal with these
problems. Normally, shared-memory multiprocessor
systems use a shared bus but there are also some
systems with NoC interconnection.

(2) Message passing is mostly used in distributed mem-
ory systems [16] and consists of exchanging messages
between processors. A message passing protocol is
required.

Table 2 summarizes MPSoC architecture.



4 International Journal of Reconfigurable Computing

Interconnection network

P1

P2
P3

P4

Figure 2: Heterogeneous multiprocessor systems.

3.3. Classification. The traditional classification of MPSoCs
is heterogeneous, when there are different processors or
even accelerators in the same system (see Figure 2) and
homogeneous, when all the processors in the system are
identical (same Instruction Set Architecture) (see Figure 3).

Normally, application-specific systems are heteroge-
neous. This is the common type of MPSoCs, as in FPGA-
based multiprocessor systems. The reason is that MPSoC are
usually implemented for embedded applications that behave
intrinsically in a heterogeneous manner and require different
kinds of processors.

Homogeneous MPSoCs are normally general-purpose
systems, where all the processors are identical. In this kind
of system, it is possible to increase the number of processors
without changing the architecture (scalability property). It is
easier to develop software for homogeneous systems.

Different taxonomies can be found in the literature.
One is to classify systems in accordance with the memory
architecture. There are two types: shared-memory (Figure 4)
and distributed memory (Figure 5).

In shared-memory systems, all processors share the
same memory resources; therefore, all changes made by a
processor to a given memory location become visible to all
the other processors in the system.

From an architecture design viewpoint, shared-memory
machines are poorly scalable because of the limited band-
width of the memory.

Shared-memory systems require synchronization mech-
anisms such as semaphores, barriers, and locks since no
explicit communication exists. POSIX threads [17] and
OpenMP [18] are two popular implementations of the
thread model on shared-memory architectures.

In shared-memory architecture, different processes can
easily exchange information through shared variables; how-
ever, it requires careful handling of synchronization and
memory protection.

In distributed-memory systems, each processor has its
own private memory; therefore, one processor cannot read
directly in the memory of another processor. Data transfers
are implemented using message-passing protocols.

Distributed-memory machines are more scalable since
only the communication medium may be shared among
processors.

Interconnection network

PE PE

PE PE

Figure 3: Homogeneous multiprocessor systems.

Interconnection network

Memory

PE PE PE PE

Figure 4: Shared memory multiprocessor systems.

Table 2: MPSoC architecture.

System arch Comm arch Comm Method

Master-slave Point-to-point Message passing

Pipeline Shared bus Shared memory

Net NoC

Distributed-memory systems require mechanisms for
supporting explicit communications between processes.
Usually a library of primitives that allow writing in com-
munication channels is used. The Message Passing Interface
(MPI) [19] is the most popular standard.

In distributed-memory architecture, a communications
infrastructure is required in order to connect processing
elements and their memories and allow the exchange of
information.

We can also classify FPGA-MPSoC in (1) static recon-
figurable multiprocessor systems and (2) run-time recon-
figurable systems. Run-time reconfigurable systems repre-
sent state-of-the-art reconfigurable multiprocessors systems.
They use the dynamic reconfiguration FPGA feature to adapt
hardware at run-time to a specific application. So, we have
several dynamic modules which are loaded by an arbiter
depending on the target application. In Figure 6, a scheme
of a basic run-time reconfigurable system is depicted.

3.3.1. Heterogeneous FPGA-Based Systems. Most MPoPCs
are application specific. In this case, the system is application
dependent, so the architecture is designed to achieve the best



International Journal of Reconfigurable Computing 5

Interconnection network

M M M M

PE PE PE PE

Figure 5: Distributed memory multiprocessor systems.

performance for the specific application. This architecture
can be obtained by using design flow tools provided by FPGA
vendors (known as hand-tune design) or using custom tools
that obtain the architecture automatically from the specifica-
tions (known as automatic design) (see Section 5). There are
systems that target different areas: multimedia, networking,
control, and bioinformatics. First, we present application-
specific FPGA-based multiprocessor systems (Table 3).

Network application is implemented in [7]. The solu-
tion proposed for IPV4 packet forwarding is a master-
slave/pipeline approach. Communications among processors
is point to point using MicroBlaze Fast Simplex Link (FSL)
ports. There are different pipeline branches replicated in
space to increase throughput. To demonstrate the viability
of this solution, they compare the FPGA-based system
proposed to an ASIC MPSoC with the same functionality.
The FPGA-based system only loses a factor of 2.6X in
performance normalized to area.

In [10], a master-slave/point-to-point multiprocessor
system to control a laser-based transparency meter is
presented. The authors are non-FPGA experts but they
implemented the system successfully. According to them,
the design tools made by the main vendors are easy to use.
Tools abstract sufficient low-level details from the system
design, allowing designers to implement successful MPSoC
in a FPGA.

MPEG-4 Encoder is implemented in [11]. The system has
master-slave architecture with support for message passing
and shared SDRAM to interconnect NIOS processors. It uses
a shared bus to connect instruction-shared memory and
Heterogeneous IP Block Interconnection (HIBI) to connect
data-shared memory by the plug and play method. It is an
easy-to-scale computational system. Scalability is obtained
through special parallelization: every image is divided into
horizontal slices, and every slice is processed by 4 softcores in
a master-slave configuration.

A stream chip multiprocessor (CMP) architecture for
accelerating bioinformatic applications is presented in [12].
The architecture is master-slave/pipeline, and the memory
hierarchy is customized for the target application. It is easy
to increase the number of processors if there are enough logic
resources in the FPGA. They compare the use of CPU, GPU,
or FPGA for stream applications. GPU implementations
achieve an order-of-magnitude speed increase compared to

Table 3: Application-specific FPGA-Based multiprocessor systems.

Ref Application Syst arch Comm meth Comm arch

[7] Networking M-S/pipeline mess passing point-to-point

[10] Control M-S mess passing point-to-point

[11] MPEG-4 M-S shared mem shared bus/HIBI

[12] Bio M-S/pipeline mess passing point to point

[4] Industrial M-S shared mem shared bus

[13] Automotive Net shared mem shared bus

[14] Automotive pipeline mess passing point-to-point

[15] RT control pipeline mess passing point-to-point

optimized CPU implementations. Custom hardware imple-
mentations on FPGA of the test algorithm also exploit data
parallelism to achieve speedups over CPUs [25]. They intend
to make the prototype in FPGA and after migrate to GPU
implementation.

In [4] a master-slave shared-bus/shared-memory archi-
tecture is used for industrial applications. They use Nios
II softcore processors and an Avalon bus. In this paper,
the authors discuss the advantages of using FPGA-based
multiprocessor systems in industrial applications. Industrial
production machines have to be highly flexible in order to
satisfy changes deriving from the demand for new products.

The automotive sector is another area of application for
FPGA-based multiprocessor systems. Tumeo et al. present
a real-time solution [13]. This is a shared-bus/shared-
memory multiprocessor system, but offers the possibility
of exchanging small data packets using the message-passing
method through a crossbar.

Another solution for the automotive sector is presented
in [14], which proposes an NIOS II-based multiprocessor
system. The architecture is totally built for the occasion using
a pipeline approach, consisting of a chain of 15 processors
connected point to point. They use a distributed-memory
architecture where each processor executes independent
tasks, instead of parallelizing a unique task between the
different processors. The reason they give for not using
shared-memory architecture is that each task execution time
and access latency shared-memory are not the same and
therefore the shared bus became a bottleneck. However, with
the distributed-memory approach, each microprocessor has
local memory and the latency time is lower.

Real-time control applications are the target of the system
proposed by Ben Othman et al. [15]. The system has two
or three processors connected directly using MicroBlaze Fast
Simple Link ports.

A combination of processors and accelerators is proposed
by Claus et al. [26]. These systems achieve better results
regarding speed and area/power consumption compared to
architectures with only processors and no accelerators.

3.3.2. Homogeneous FPGA-Based Systems. While most of
today’s MPSoC systems are heterogeneous (the same
occurred in the case of FPGA-based multiprocessor systems)
in order to meet the targeted application requirements, in
the near future, homogeneous multiprocessor systems may



6 International Journal of Reconfigurable Computing

Bus
macro

Bus
macro

Static area
FPGA

Dynamic area 2

Dynamic area 1

Figure 6: Architecture of a basic run-time reconfigurable system.

become a viable alternative, bringing other benefits such as
run-time load balancing and task migration [16].

The homogeneous architectural style is used generally
for data-parallel systems. Wireless base stations, in which
the same algorithm is applied to several independent data
streams, are one example; motion estimation, in which
different parts of the image can be treated separately, is
another. Normally, homogeneous multiprocessor systems are
general purpose. In Table 4, a number of homogeneous
MPoPC systems are summarized.

MPLEM [20] is a homogeneous, general-purpose 80-
processor FPGA-based multiprocessor system.

Tseng and Chen [21] present a shared-bus/shared-
memory multiprocessor system implemented on an Altera
Cyclone. They use an instruction cache and Mutex core
provided by Altera for synchronization.

A NoC-based homogeneous multiprocessor system is
presented in [22]. This has 24 processors, is implemented
in a Xilinx Virtex-4, and is external DDR2 constrained. To
increase its compatibility and to facilitate the reutilization
of the architecture, the IP Open Core Protocol (OCP-IP)
standard is used to connect processor elements and NoC.
Network interfaces (NIs) translate OCP to the NoC protocol.
In this case, every MicroBlaze has an OCP adapter.

Almeida et al. utilizes 16 spartan3 Xilinx FPGAs to
validate a homogeneous distributed-memory multiprocessor
system [16].

Symmetric Multiprocessors (SMPs) are the best known
general purpose multiprocessor system. Huerta et al. [23]
explores FPGA capabilities for building Symmetric Mul-
tiprocessors systems. They implement a complete SMP
system on FPGA using softcore processors. The system
has centralized shared-memory architecture. The processors
have no cache because of cache coherency problems. Hung
et al. present a symmetric multiprocessor system with cache;
they propose an HW/SW solution for the cache coherency
problem [24]. An operating system with SMP functionalities
is presented in [27].

Table 5 presents the area-performance relation of the
main FPGA-based multiprocessor systems referenced previ-
ously. It is depicted the FPGA model, the use of area (S: Slices;
FF: Flip-Flops; LUT: Lookup Tables; LE: Logic Elements),
the use of on-chip memory, and the maximum speed of the
system.

Table 4: Homogeneous FPGA-Based multiprocessor systems.

Ref # CPU Syst Arch Comm meth Comm Arch

[20] 80 MB Net shared mem shared-bus

[21] 4 NiosII Net shared mem shared-bus

[22] 24 MB Net shared mem NoC

[23] 4 MB Net shared mem shared bus

[24] n Nios Net shared mem shared bus

[16] 16 NPU Net mess passing NoC

3.3.3. Run-Time Reconfigurable Systems. The new evolution
in reconfigurable multiprocessor systems is the run-time
reconfigurable system. This type of systems adds the dynamic
reconfigurability feature of FPGAs to the power of having
multiple processors. It adds a new degree of freedom in
the design of multiprocessor systems. This freedom allows
designers to adjust system performance at run-time obtain-
ing better efficiency in accordance with the application.
Göhringer et al. propose a new taxonomy for reconfigurable
multiprocessor systems [29]. This is an extension of the
taxonomy proposed and widely accepted by Flynn at 1966
[28] (see Figure 7). The new taxonomy is depicted in
Figure 8. The superclass of this classification is the RAMPSoC
[30]. Here, they propose a “meet-in-the-middle” design
flow, which is to combine traditional top-down design with
bottom-up approach. The bottom-up design is possible due
to run-time reconfigurability. It allows hardware to be re-
designed at run-time in order to obtain better efficiency in
terms of speed, area, and power for a specific application.

Hubner et al. presents some pioneering work in [31],
where run-time reconfigurability is proposed in multipro-
cessors systems at an early stage. Depending on the context,
a different algorithm will be re-configured. They utilize the
Dynamic Partial reconfigurable FPGA feature.

4. Design Challenges

The principal limitation of building a multiprocessor system
on a FPGA is the amount of logic resources, specifically
the amount of on-chip memory. Therefore, Shared-Memory
architectures are widely used. It is possible to share data
memory and/or instruction memory. The study by Kulmala
et al. [32] examines the efficiency of sharing instruction
memory.

Another solution is to use external memory to increase
the amount of memory. In this case, the number of external
memory blocks is limited by the package and pins of the
FPGA [20, 22]. If the multiprocessor system does not fit in
a single FPGA, it is possible to implement the system using a
multi-FPGA approach [33].

An important issue in shared-memory multiprocessor
systems is synchronization. The cores normally used in stan-
dard FPGA tool chains do not support atomic instructions
and rarely support advanced synchronization mechanisms.
For instance, the memory sharing mechanism (Mutex Core)
provided by Altera is not efficient for multiprocessor systems
[21]. Researchers present a number of ad-hoc solutions to
resolve this problem. The GALS approach is adopted by



International Journal of Reconfigurable Computing 7

Single Multiple
Si

n
gl

e
M

u
lt

ip
le

SISD

SIMD MIMD

MISD

Instruction stream
D

at
a

st
re

am

Figure 7: Flynn’s taxonomy [28].

using the Bisynchronization method in [22]. Two hardware
IP cores to perform lock and barrier functions are presented
in [34]. Huerta et al. present an HW Mutex IP solution in
[23].

Cache coherency is another critical point in FPGA-based
multiprocessor design. Normally, the simple softcores used
in such systems do not support any mechanism to guarantee
cache coherency. Hung et al. propose an ad-hoc HW/SW
solution [24].

Efficient on-chip communications between different
cores is required to accommodate the increasing number
of processors in FPGA-based multiprocessors. Traditional
bus-share approach is not bandwidth efficient. Network-on-
chip seems to be the best solution to interconnect cores
[35, 36]. There are several papers that examine NoC in
FPGA-based multiprocessor systems. The NoC approach is
efficient compared to the shared-bus approach when the
number of cores and data size increases [37, 38]. In [39],
resource-efficient communications architecture is presented.
Complete NoC-based multiprocessor systems implemented
in a FPGA are presented in [22, 40]. Heterogeneous IP
Block Interconnection (HIBI) is an approach designed and
used by Salminen et al. [41]. A Multistage Interconnection
Network (MIN) solution is presented in [42]. Göhringer
et al. present a thorough study of different reconfigurable
communication infrastructures targeting FPGA-based mul-
tiprocessors systems. They conclude that none of these fulfils
all the goals required for use in FPGA-based systems for high-
performance computing and present a new model: the star-
wheels network on chip. This is a combination of the packet-
switching and circuit-switching protocol [43].

Another important research area is parallel software
efficiency. To maximize the potential of multiprocessors, it is
necessary to develop parallel programming. In [44], Tumeo
et al. present a tool to test and validate pipeline applications.

5. Design Methodology

The main two ways of building multiprocessor systems in an
FPGA are: (a) manually, using the design flow provided by
FPGA companies or (b) automatically, mapping applications
to a specific architecture.

5.1. Hand Tuned Design. The first and most common
method is manual design using the design flow available
from FPGA companies. The two most commonly-used tools
are EDK from Xilinx and SOPC Builder from Altera. Their
advantage is the familiarity designers have with these tools
and their ease of use [10]. The problem is that it is a hand-
tuned method so it is difficult to explore all the design space
manually to get the best possible architecture for a specific
application [8]. This method may be a good choice to build
small systems where the architecture to be implemented is
known, or where there are not so many possibilities for
Design Space Exploration (DSE), so in these cases it is not
difficult to perform experiments and then choose the best
configuration.

Another important issue is that, with FPGA company
design flows, it is not possible to explore all the possibilities
for designing multiprocessor systems. Normally, these tools
are made to design uniprocessor systems so they have a
number of shortcomings when dealing with multiprocessor
systems. The most important shortcomings are as follows.

(i) Limitations in architectures for interprocessor com-
munication. The main design flows only allow
shared-bus and point-to-point communications.
Complex MPSoC may require a higher bandwidth
than a bus can offer or may need to be more area-
efficient than point-to-point connections. Bafumba-
Lokilo et al. [38] present a generic cross-bar network-
on-chip for FPGA MPSoCs, and suggest that FPGA
manufacturers should integrate such technology in
their standard development flow.

(ii) Lack of effective mechanisms to share resources.
Mutex Core provided by FPGA vendors seems to be
inefficient as a synchronization method for multipro-
cessor systems [21].

(iii) Limitation in IP cores. The cores that can be included
in one’s design are restricted by the vendor library.

Researchers try to solve these limitations by creating ad-hoc
IP blocks. These IP blocks act like add-ons to resolve this
specific limitation. Some examples are

(i) Efficient Synchronization. Tumeo et al. [34] intro-
duced two hardware synchronization modules for
Xilinx MicroBlaze Systems. The modules can be
completely integrated in the system using the EDK
tool chain.

(ii) Cache Coherency Problem. A cache coherency mod-
ule is presented in [24] as an IP Block. This paper
assesses the solution and reports good results in
performance.

(iii) An EDK-based tool is presented in [40]. It allows the
designer to abstract low-level details of EDK and to
create NoC-based systems rapidly.

(iv) Tumeo et al. also present a number of interesting
modules to improve the performance of multipro-
cessor systems on FPGA. An Interrupt controller is
presented in [45], and a DMA mechanism in [46].



8 International Journal of Reconfigurable Computing

Table 5: Area-performance relation.

Ref FPGA #proc Slices/LE % BRam % MHz

[7] Virtex II Pro 50 14 MB 11250 S 48 454 KB 87 100

[10] Virtex II Pro 30 2 MB
6434 FF

9675 LUT
23
35

80 KB 60 100

[11] Statrix EP1S40 1 N, 3 NII 20000 LE 50 314 KB 75 70

[12] Virtex II Pro 50 15 MB 22500 S 96 352 KB 67 80

[4] Cyclone EP1C20 3 NII 9000 LE 45 — — 50

[13] Virtex II Pro 30 4 MB — — — — 50

[14] Statrix II 2S60 15 NII 30000 LE 50 — — 100

[15] Virtex II Pro 30 3 MB 5268 S 38 108 KB 35 —

[22] FX-140 24 MB 55266 87 384 KB 69

Instruction stream

D
at

a
st

re
am

MultipleSingle

M
u

lt
ip

le
Si

n
gl

e

SISD
RIRD

SISD
RI

SIMD
RI

SIMD
RIRD

SISD
RD

SISD

SIMD

SIMD
RD

MISD
RD

MISD

MIMD

MIMD
RD

MISD
RIRD

MISD
RI

MIMD
RI

MIMD
RIRD

Reconfigurable instruction stream

Yes YesNo

Ye
s

Ye
s

N
o

R
ec

on
fi

gu
ra

bl
e

da
ta

st
re

am

Figure 8: New taxonomy for reconfigurable FPGA-based systems
proposed by Göhringer et al. [29].

It may be concluded that Xilinx EDK is the most commonly
used design flow [7, 10, 12, 13, 15, 20, 22, 23, 43], possibly
due to the fact that Xilinx is the largest FPGA vendor.
However, there are also several Multiprocessor systems using
Altera SOPC Builder design flow [4, 11, 14, 21, 24].

5.2. Automatic Synthesis Design. Another trend consists of
using automatic synthesis tools to map an application to an
architecture. The input parameters are: the application and,
sometimes, the platform for the architecture and the cores to
be used in the design. The result is a synthesized system that
fits in the FPGA target.

The problem with this method is that there are no
standards. Some automatic tools have appeared in the
research community, but they have not been standardized or
commercialized. So, they are not widely used. Nevertheless,
this is a very important research area, but is still on-
going. Several papers present frameworks to perform this
automation process; some of which we discuss here.

A promising possibility to increase designer productivity
by automating the simultaneous design tasks of application
mappings and IP selection is presented in [47]. Automation
is possible because they have found a Solvable Integer Linear

Programming (ILP) model that captures all the necessary
design trade-off parameters of such systems.

Jin et al. use ILP [8] to solve the exploration problem.
They propose an automated framework to assist the designer
in exploring the design space (DSE) of soft multiprocessor
microarchitectures. The objective is to identify the best
multiprocessor on the FPGA for a target application and
optimally map the application tasks and communications
links to this micro-architecture. The framework proposed is
evaluated improving the hand-tuned design presented in [7].
Therefore, DSE automation is important and becomes more
critical when the system to be designed consists of many
cores, due to in the fact that it offers greater possibilities for
architecture configuration.

ESPAM [48] is a tool for automated design, program-
ming, and implementation of multiprocessor systems on
FPGAs implemented by Nikolov et al. While state-of-the-
art development tools only support shared-bus architectures
and point to point, ESPAM is general enough to imple-
ment multiprocessor systems with different communications
topologies. ESPAM allows automated multiprocessor sys-
tems to be programmed in a way which significantly reduces
the design time. It uses Kahn Process Networks (KPN) to
specify the application.

MAMPS [49] presents a framework similar to ESPAM
but with significant improvements. The framework generates
application-specific architecture from the description of the
applications. This time Kumar et al. use SDF to specify the
application. This is the first flow that allows mapping of
multiple applications on a single platform. The flow allows
the designers to traverse the design space quickly.

Both ESPAM and MAPS are limited by FPGA hardware
resources. The amount of on-chip memory is the main
limiting factor. It limits the size of the multiprocessor system
in ESPAM and the number of applications that can be
implemented in MAMPS.

6. Conclusion

This paper surveys recent FPGA-based multiprocessor sys-
tems appearing in the literature. There has been a significant
increase in publications in this area over the last three years.



International Journal of Reconfigurable Computing 9

After revising the literature, we can draw the conclusion that
one of the most important issues with regard to designing
multiprocessor systems in FPGA is the use of block RAM.
The amount of on-chip RAM is fixed, and it limits the
number of processors that can be included in one’s design
more than logic resources. Therefore, it is important to
design memory-efficient systems. When building shared-
memory systems, cache coherency and synchronization are
critical aspects because the simple softcore processors offered
by FPGA vendors have certain shortcomings in these areas.
NoC is a weak point in design flows provided by vendors,
since they do not include this approach in their tools. In
our opinion, it is only a matter of time before they do
so. Other important challenges in multiprocessor design
are parallel software and automation of the design process.
There are a number of important advances in this area
but no standards have been established as yet. Run-time
reconfigurability uses the dynamic reconfiguration feature of
FPGAs to obtain a new degree of freedom in the design of
multiprocessor systems, making these systems more flexible
to target different applications using the same hardware.

Acknowledgments

This work has been supported by the Department of Edu-
cation, Universities and Research of the Basque Government
within the fund for research groups of the Basque university
system IT394-10.

References

[1] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor
system-on-chip (MPSoC) technology,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
27, no. 10, pp. 1701–1713, 2008.

[2] W. Wolf, “The future of multiprocessor systems-on-chips,” in
Proceedings of the 41st Design Automation Conference, pp. 681–
685, ACM, New York, NY, USA, June 2004.

[3] G. Martin, “Overview of the MPSoC design challenge,”
in Proceedings of the 43rd ACM/IEEE Design Automation
Conference, pp. 274–279, 2006.

[4] R. Joost and R. Salomon, “Advantages of FPGA-based mul-
tiprocessor systems in industrial applications,” in Proceedings
of the 31st Annual Conference of the IEEE Industrial Electronics
Society (IECON ’05), pp. 4451–4506, November 2005.

[5] C. Wright and M. Arens, “Fpga-based system-on-module
approach cuts time to market, avoids obsolescence,” FPGA and
Programmable Logic Journal, vol. 6, no. 6, 2005.

[6] S. Raje, “Catching the FPGA productivity wave,” Electronic
Design, vol. 52, no. 24, p. 20, 2004.

[7] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An FPGA-
based soft multiprocessor system for IPV4 packet forward-
ing,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL ’05), pp. 487–492,
August 2005.

[8] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An automated
exploration framework for FPGA-based soft multiprocessor
systems,” in Proceedings of the 3rd IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and Systems
Synthesis (CODES+ISSS ’05), pp. 273–278, ACM, Jersey City,
NJ, USA, September 2005.

[9] P. Huerta, J. Castillo, J. I. Mártinez, and V. López, “A
microblaze based multiprocessor SoC,” WSEAS Transactions
on Circuits and Systems, vol. 4, no. 5, pp. 423–430, 2005.

[10] J. Dykes, P. Chan, G. Chapman, and L. Shannon, “A
multiprocessor system-on-chip implementation of a laser-
based transparency meter on an FPGA,” in Proceedings of the
International Conference on Field Programmable Technology
(ICFPT ’07), pp. 373–376, December 2007.

[11] O. Lehtoranta, E. Salminen, A. Kulmala, M. Hännikäinen, and
T. D. Hämäläinen, “A parallel MPEG-4 encoder for FPGA
based multiprocessor SOC,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL
’05), pp. 380–385, August 2005.

[12] R. K. Karanam, A. Ravindran, and A. Mukherjee, “A stream
chipmultiprocessor for bioinformatics,” SIGARCH Computer
Architecture News, vol. 36, no. 2, pp. 2–9, 2008.

[13] A. Tumeo, M. Branca, L. Camerini et al., “A dual-priority
real-time multiprocessor system on FPGA for automotive
applications,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’08), pp. 1039–1044,
ACM, New York, NY, USA, March 2008.

[14] J. Khan, S. Niar, A. Menhaj, Y. Elhillali, and J. L. Dekeyser,
“An MPSoC architecture for the multiple target tracking
application in driver assistant system,” in Proceedings of the
19th IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP ’08), pp. 126–131,
July 2008.

[15] S. Ben Othman, A. K. Ben Salem, and S. Ben Saoud, “MPSoC
design of RT control applications based on FPGA SoftCore
processors,” in Proceedings of the 15th IEEE International
Conference on Electronics, Circuits and Systems (ICECS ’08), pp.
404–409, September 2008.

[16] G. M. Almeida, G. Sassatelli, and P. Benoit, “An adaptive
message passing mpsoc framework,” International Journal of
Reconfigurable Computing, vol. 2009, Article ID 242981, 20
pages, 2009.

[17] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming,
O’Reilly & Associates, Sebastopol, Calif, USA, 1996.

[18] “The openmp api specification for parallel progremming,”
http://openmp.org/wp.

[19] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message Passing Interface, MIT
Press, Cambridge, Mass, USA, 1994.

[20] G.-G. Mplemenos and I. Papaefstathiou, “MPLEM: an 80-
processor FPGA based multiprocessor system,” in Proceedings
of the 16th IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’08), pp. 273–274, April 2008.

[21] C.-Y. Tseng and Y.-C. Chen, “Design and implementation of
multiprocessor system on a chip (mpsoc) based on fpga,”
in Proceedings of the International Computer Symposium (ICS
’09), 2009.

[22] Z. Wang and O. Hammami, “External DDR2-constrained
NOC-based 24-processors MPSOC design and implementa-
tion on single FPGA,” in Proceedings of the 3rd International
Design and Test Workshop (IDT ’08), pp. 193–197, December
2008.

[23] P. Huerta, J. Castillo, J. I. Martı́nez, and C. Pedraza, “Exploring
FPGA capabilities for building symmetric multiprocessor
systems,” in Proceedings of the 3rd Southern Conference on
Programmable Logic (SPL ’07), pp. 113–118, February 2007.

[24] A. Hung, W. Bishop, and A. Kennings, “Symmetric multi-
processing on programmable chips made easy,” in Proceedings
of the Conference on Design, Automation and Test in Europe
(DATE ’05), vol. 1, pp. 240–245, March 2005.



10 International Journal of Reconfigurable Computing

[25] T. Oliver, B. Schmidt, D. Maskell, D. Nathan, and R. Clemens,
“Multiple sequence alignment on an FPGA,” in Proceedings of
the 11th International Conference on Parallel and Distributed
Systems Workshops (ICPADS ’05), vol. 2, pp. 326–330, IEEE
Computer Society, Washington, DC, USA, July 2005.

[26] C. Claus, W. Stechele, and A. Herkersdorf, “Autovision: a
run-time reconfigurable mpsoc architecture for future driver
assistance systems,” Information Technology Journal, vol. 49,
no. 3, pp. 181–187, 2007.

[27] P. Huerta, J. Castillo, C. Sánchez, and J. I. Martı́nez, “Oper-
ating system for symmetric multiprocessors on FPGA,” in
Proceedings of the International Conference on Reconfigurable
Computing and FPGAs (ReConFig ’08), pp. 157–162, Decem-
ber 2008.

[28] M. Flynn, “Very high-speed computing systems,” Proceedings
of the IEEE, vol. 54, no. 12, pp. 1901–1909, 1966.

[29] D. Göhringer, T. Perschke, M. Hübner, and J. Becker, “A
taxonomy of reconfigurable single-/multiprocessor systems-
on-chip,” International Journal of Reconfigurable Computing,
vol. 2009, Article ID 395018, 11 pages, 2009.

[30] D. Göhringer, M. Hübner, T. Perschke, and J. Becker, “New
dimensions for multiprocessor architectures: on demand
heterogeneity, infrastructure and performance through
reconfigurability—rhe RAMPSoC approach,” in Proceedings
of the International Conference on Field Programmable Logic
and Applications (FPL ’08), pp. 495–498, September 2008.

[31] M. Hubner, K. Paulsson, and J. Becker, “Parallel and flexi-
ble multi-processor system-on-chip for adaptive automotive
applications based on xilinx microblaze soft-cores,” in Pro-
ceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, p. 149a, April 2005.

[32] A. Kulmala, E. Salminen, and T. D. Hämäläinen, “Instruction
memory architecture evaluation on multiprocessor FPGA
MPEG-4 encoder,” in Proceedings of the IEEE Workshop on
Design and Diagnostics of Electronic Circuits and Systems
(DDECS ’07), pp. 1–6, April 2007.

[33] A. Kulmala, E. Salminen, and T. D. Hämäläinen, “Evaluating
large system-on-chip on multi-FPGA platform,” in Proceed-
ings of the 7th International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, vol. 4599 of
Lecture Notes in Computer Science, pp. 179–189, 2007.

[34] A. Tumeo, C. Pilato, G. Palermo, F. Ferrandi, and D. Sciuto,
“HW/SW methodologies for synchronization in FPGA,” in
Proceedings of the 7th ACM SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA ’09), pp. 265–268,
ACM, New York, NY, USA, February 2009.

[35] L. Benini and G. De Micheli, “Networks on chips: a new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[36] S. Kumar, A. Jantsch, M. Millberg et al., “A network on chip
architecture and design methodology,” in Proceedings of the
IEEE Computer Society Annual Symposium on VLSI, p. 117,
2002.

[37] H. C. Freitas, D. M. Colombo, F. L. Kastensmidt, and P. O.
A. Navaux, “Evaluating network-on-chip for homogeneous
embedded multiprocessors in FPGAs,” in Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS
’07), pp. 3776–3779, May 2007.

[38] D. Bafumba-Lokilo, Y. Savaria, and J.-P. David, “Generic
crossbar network on chip for FPGA MPSoCs,” in Proceedings
of the Joint IEEE North-East Workshop on Circuits and Systems
and TAISA Conference (NEWCAS-TAISA ’08), pp. 269–272,
June 2008.

[39] X. Wang and S. Thota, “Design and implementation of a
resource-efficient communication architecture for multipro-
cessors on FPGAs,” in Proceedings of the International Confer-
ence on Reconfigurable Computing and FPGAs (ReConFig ’08),
pp. 25–30, December 2008.

[40] S. Lukovic and L. Fiorin, “An automated design flow for NoC-
based MPSoCs on FPGA,” in Proceedings of the 19th IEEE/IFIP
International Symposium on Rapid System Prototyping (RSP
’08), pp. 58–64, June 2008.

[41] E. Salminen, A. Kulmala, and T. D. Hämäläinen, “HIBI-based
multiprocessor soc on FPGA,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’05),
vol. 4, pp. 3351–3354, May 2005.

[42] B. Neji, Y. Aydi, R. Ben-atitallah, S. Meftaly, M. Abid, and J.-
L. Dykeyser, “Multistage interconnection network for MPSoC:
performances study and prototyping on FPGA,” in Proceedings
of the 3rd International Design and Test Workshop (IDT ’08),
pp. 11–16, December 2008.

[43] D. Göhringer, B. Liu, M. Hübner, and J. Becker, “Star-wheels
network-on-chip featuring a self-adaptive mixed topology and
a synergy of a circuit- and a packet-switching communication
protocol,” in Proceedings of the 19th International Conference
on Field Programmable Logic and Applications (FPL ’09), pp.
320–325, September 2009.

[44] A. Tumeo, M. Branca, L. Camerini et al., “Prototyping
pipelined applications on a heterogeneous FPGA multipro-
cessor virtual platform,” in Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC ’09), pp. 317–
322, January 2009.

[45] A. Tumeo, M. Branca, L. Camerini et al., “An interrupt
controller for FPGA-based multiprocessors,” in Proceedings of
the International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (IC-SAMOS ’07), pp.
82–87, July 2007.

[46] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and
D. Sciuto, “Lightweight DMA management mechanisms
for multiprocessors on FPGA,” in Proceedings of the 19th
IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP ’08), pp. 275–280, July
2008.

[47] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub,
“Answer set versus integer linear programming for automatic
synthesis of multiprocessor systems from real-time parallel
programs,” International Journal of Reconfigurable Computing,
vol. 2009, Article ID 863630, 11 pages, 2009.

[48] H. Nikolov, T. Stefanov, and E. Deprettere, “Efficient auto-
mated synthesis, programing, and implementation of multi-
processor platforms on FPGA chips,” in Proceedings of the
International Conference on Field Programmable Logic and
Applications (FPL ’06), pp. 1–6, August 2006.

[49] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal,
“Multiprocessor systems synthesis for multiple use-cases of
multiple applications on FPGA,” ACM Transactions on Design
Automation of Electronic Systems, vol. 13, no. 3, pp. 1–27, 2008.


