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Abstract

Trainable Superpixel Segmentation is a plug-in developed for the ImageJ platform that
aims at providing its users with the ability to train models to segment images by classif-
ying superpixels using region-based image features. This project provides an underlying
library that can be used independently, a graphic interface for ease of use and an evalua-
tion protocol of the efficacy of the library. The evaluation of the developed library was
conducted through a ten-fold cross-validation and the results were compared with those
of the Trainable Weka Segmentation library. This document reports the planning, back-
ground research and development of the project. Finally, the development of the project
and the results obtained are discussed and further research is proposed.
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CHAPTER 1

Introduction

The technological advances in computing of the last decades have brought many inno-
vations to different fields of science, through sheer computing power to the building of
complex models the way of working in sciences have been thoroughly revolutionized.
Within the many innovations that the evolution in computing power has brought ima-
ge analysis tools have been in many different fields, ranging from microscopical image
analysis to astronomical image analysis. As we will later discuss, images can be interpre-
ted as collections of pixels, therefore collections of data, and, as such, they can be treated
the same way that other datasets are treated, opening the possibility of applying Machine
Learning techniques to image analysis. This project deals with a combination of image
analysis and Machine Learning with the aim of providing a tool for image segmentation
that can be used by scientists of different fields without the need for expertise in neither
image analysis nor Machine Learning.

Digital images are conjunctions of intensity measurements known as pixels, this measure-
ments are used usually for displaying in screens, but offer the opportunity to mathemati-
cally process the images and generate datasets from them. This has been taken advantage
of to develop a wide variety of image processing techniques, from exposure correction
techniques to advanced reconstruction techniques that allow for the digital reconstruction
of old and damaged pictures. Furthermore, this has led to a Machine Learning approach
to image analysis and processing.

Machine Learning techniques have been applied to image analysis and processing with
different aims such as face detection, edge detection or automatic text processing, but this
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2 Introduction

project focuses mainly in image feature extraction and image segmentation. As mentioned
before, digital images are conjunctions of intensity measurements and therefore these
measures can be treated as mathematical sets from which statistical values can be drawn.
As a result, different features can be extracted for each pixel or pixel region of an image.
Using these features, datasets can be generated where each pixel is represented by a set
or vector of features, and as such traditional Machine Learning dataset classification and
clustering techniques can be applied, generating new datasets of classified or clustered
pixels and their corresponding result images.

This project has been developed using ImageJ [24] as a basis for the processing of images;
this open source platform offers many different image processing capabilities and is host
to many different libraries and plug-ins that offer support for many different tools. For the
learning process, the WEKA library [30] has been used, a Machine Learning library that
offers easy to use state-of-the-art implementations of the most popular classification and
clustering technologies.

The main library that has been developed offers the ability of classifying images by using
corresponding superpixel images as a basis for feature extraction and classification. This
enables the creation of a more reduced dataset in contrast to per-pixel based processing
libraries.

Together with this library a graphical interface has been developed. It offers the same
capabilities of the library in an friendlier way of use. The GUI can be used for easier
prototyping and testing and offers a simpler approach for those not familiar with coding.

Finally, an evaluation has been conducted to compare the library that has been developed
to another library with similar capabilities. This evaluation has been conducted through
a scripting process that enabled an automatic handling of a dataset and the collection of
meaningful statistics. These statistics show that the library offers competitive results in
comparison to other libraries with similar objectives.

This document describes the different logistics of the developed project, the knowledge
basis on which the project is based, the specifics of the project that has been developed and
the conclusions that have been drawn from this project, finalizing with a chapter dedicated
to further research that could be developed after this project. Additionally appendix A
offers a user’s guide to the project and appendix B displays the results that were generated
by the evaluation process.



CHAPTER 2

Document of Project Aims

This chapter deals with the aims established for the project, the creation of stages into
which the project is divided, the specific tasks related to each phase, the expected calendar
and the different predicted risks and contingency plans. Figure 2.2 summarizes the plan
for the project.

2.1 Project reach

The main aim of this project is to develop a tool that provides supervised image classifi-
cation through the use of superpixels. To do this a library will be developed together with
a graphic interface for ease of use. Finally, an evaluation of the developed library will
be conducted to evaluate the effectiveness of the developed library against other related
publicly available tools.

In order to properly conduct this project, the tasks to be done will be divided into different
sections that can be more easily managed. As the different facets of the project build
upon each other, it is logical to expect that the project will have to be developed linearly
and it is not expected that different stages will be undertaken before others, however
some stages like those regarding reporting or background research may be developed
simultaneously, and due to the dynamic nature of software development some changes
may have to be made before developed artifacts to solve issues or lack of features that
have been uncovered in further phases of the development of the project.

3
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2.2 Project stages

The following tasks have been identified at the planning process of this project:

1. Planning:

Within this first part of the project the aims of the project will be defined and the
specific tools to be used within the project will be defined. Additionally, communi-
cation basis will be established with the project supervisors.

2. Background research

This project has three core theoretical concepts that need to be researched in order
to successfully carry out the developing of the artifact and its evaluation: image
processing, image segmentation and image segmentation method comparison. This
part of the project will focus on identifying state-of-the-art libraries and techniques,
and deciding what tools to use in this development and what other projects this
project will be compared with.

3. Library development

The start of the practical side of the project will be within this task, where a ba-
se library will be developed that will provide supervised superpixel classification
through the use of region-based image features.

4. GUI development

After the library has been implemented a GUI will be developed that will offer a
more accessible use of the aforementioned library. The interface will include all the
features offered by the library and provide an easier way of experimenting with it.

5. Evaluation

Once the library and the GUI have been developed, an evaluation will be carried
out where the library will be compared to other libraries and tools that offer image
segmentation capabilities. This evaluation will be performed through the use of an
automated script for an easier execution of different variables.

6. Reporting

All of the developments that will be carried out will be reported to the project su-
pervisors, and will later be redacted in this document.
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2.3 Project tasks

Each of the aforementioned phases can be further divided into specific tasks, this division
is intended to help in the planning and development of the project. Each task is descri-
bed together with a tentative hour planning, taking into account the predicted 300 hour
workload for the duration of the project.

2.3.1 Planning

1. Project objective definition: define specific tasks to be undertaken during project.
3 hours.

2. Project reach definition: define objectives to be reached and objectives that are
out of reach for the scope of the project. 1 hour.

3. Definition of communications with project supervisors: define communication
ways with project supervisors to ensure correct communications of project progress.
1 hour.

2.3.2 Background research

1. Development framework: choose the framework where the project will be deve-
loped on. 2.5 hours.

2. Image processing library: choose an image processing library for image input,
processing and output. 2.5 hours.

3. Feature extraction library: choose a library for input image feature extraction. 2.5
hours.

4. Machine Learning library: choose a library for Machine Learning. 2.5 hours.

5. Evaluation method research: choose specific metrics for evaluation and projects
that the project will be compared to. 10 hours.
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2.3.3 Library development

1. Project creation: creation of project and establishment of project repository. 1
hour.

2. Feature calculation development: use of a feature calculation library to extract
features from input image. 30 hours.

3. Classifier creation and training development: use of Machine Learning to gene-
rate and train classifier based one aforementioned features. 22 hours.

4. Result image creation development: applying the trained classifier to generate
result images. 15 hours.

5. Testing method development: generate tests to identify errors in development. 12
hours.

2.3.4 GUI development

1. Interface design: design an interface based on expected features and framework
capabilities. 5 hours.

2. Interface development: develop the interface based on design. 55 hours.

3. Utility merging from library: implement utilities using developed library. 10 hours.

4. Adding new utilities to library to accommodate GUI related new uses: imple-
ment new utilities to library if need arises. 25 hours.

5. GUI testing: test GUI to identify errors in development. 10 hours.

2.3.5 Evaluation

1. Evaluation script development: develop scripts to automate evaluation process.
10 hours.

2. Script execution: execute developed scripts. 5 hours.

3. Result formatting: format results to facilitate result interpretation. 5 hours.

4. Result interpretation: interpret generated results. 10 hours.
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2.3.6 Reporting

1. Planning reporting: plan structure and development of report. 5 hours.

2. Task development reporting: enumerate specific tasks to be developed for the
project. 10 hours.

3. Phase development reporting: group defined tasks into development phases. 10
hours.

4. Final report development: develop a final report describing project. 35 hours.

2.4 Project calendar

During the starting and main phases of the development of this project I will be staying
in Finland as part of an Erasmus exchange program. However this fact has been com-
municated before to the supervisors and it is not expected to interfere with the normal
development of the project; nevertheless, due to the work distribution of the studies ca-
rried out during that phase, even if the initial research for the project will start during
the 2017 Autumn period (September-December), the bulk of the project is expected to be
developed during the 2018 Spring period (January-May), when the work load from other
courses is expected to be lower. This will also enable an in person meeting during the
Winter break to solidify the planning of the project.

2.4.1 Project duration estimation

The project starts on the first of September, 2017, and is planned to have been completed
by the fifteenth of June, 2018, when the registration for the defense of the project is
expected to be made.

2.4.2 Phase distribution

Table 2.1 displays the phase distribution calendar. These dates are tentative and, as men-
tioned before, do not represent the work load of each phase, as it is expected that the work
load related to this project will be higher during the spring period of 2018. Additionally,
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Table 2.1: Phase distribution

Phase Start date End date
Planning 2017/09/01 2017/10/01
Background research 2017/10/01 2017/12/21
Library development 2018/01/15 2018/03/15
GUI development 2018/03/15 2018/05/15
Evaluation 2018/05/15 2018/06/01
Reporting 2017/09/01 2018/06/15

the reporting phase is set to be carried out during all of the project as it includes the de-
velopment of this document and the day to day reporting to the project supervisors of
the work that is being done. Finally, even if each phase is defined with a start and end
date it is to be expected that tasks related to different phases may be revisited during the
development of different phases as issues may arise, this can happen for example when
during GUI development or evaluation the need for new functionalities from the library
may arise, creating the need to revisit the library development phase.

2.5 Risk analysis

The following risks have been identified in relation with the project, together with a num-
ber of contingency plans to avoid or mitigate resulting losses:

• Software or hardware issues: the software side of the project will be carried out
using software tools that will provide version control and backup systems, this
means that in the case of hardware failure the developed work will not be lost,
and in the case of software failure only the work developed before the latest upload
will be lost, which should be of a few hours at most. Additionally, the develop-
ment of the report will be done using an on-line service that will provide on-line
backup. Finally, in the case of total hardware failure the university in which I will
be studying offers students with laptops in which I could continue to work until a
replacement had been acquired.

• Time loss due to unexpected schedule changes: if an unexpected issue may arise
that would lead to time loss the lax starting and ending dates of the different phases
of the project would allow for reallocation of tasks during the planned calendar to
avoid delays.
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• Information loss: as mentioned before, project related software will be managed
through a backup and version control system and project reporting will be managed
through a service that offers on-line backup, however other materials related to the
project such as testing data, testing results and other background research related
materials will need to be backed up too to avoid any possible losses.
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Phase Task Start time End time Total time
Planning 2017/09/01 2017/10/01 5

Project objective definition 3
Project reach definition 1
Definition of communications with
project supervisors 1

Background research 2017/10/01 2017/12/21 20
Development framework 2.5
Image processing library 2.5
Feature extraction library 2.5
Machine learning library 2.5
Evaluation method research 10

Library development 2018/01/15 2018/03/15 80
Project creation 5
Feature calculation development 30
Classifier creation and training
development 20

Result image creation development 15
Testing method development 10

GUI development 2018/03/15 2018/05/15 105
Interface design 5
Interface development 55
Utility merging from library 10
Adding new utilities to library to
accommodate GUI related new uses 1525

GUI testing 10
Evaluation 2018/05/15 2018/06/01 30

Evaluation script development 10
Script execution 5
Result formatting 5
Result interpretation 10

Reporting 2017/09/01 2018/06/15 60
Planning reporting 5
Task development reporting 10
Phase development reporting 10
Final report development 35

Total 300

Table 2.2: Summary of project plan



CHAPTER 3

Background Research

This chapter aims at providing a knowledge base with which to understand the project that
has been developed, by explaining the core concepts in which this project has founded,
while providing references for those interested in furthering their understanding of these
core concepts.

3.1 Image Analysis

A digital image has been defined as "a discrete representation of data possessing both spa-
tial (layout) and intensity (colour) information"[27], this representation of a digital image
provides the opportunity for a mathematical approach to image analysis, and therefore as
we will later discuss a Machine Learning approach.

In the quoted text a reference is made to a layout, this layout usually represented as a
two-dimensional array of values represents the distribution of the individual intensity va-
lues defined as pixels. However, it is worth considering that in specific applications such
as some biomedical applications three dimensional images can be found as a result of
other imaging techniques [11]. Although the development of this project has been focu-
sed on two dimensional images, the produced library should allow for its use on three
dimensional images as well.

Colour refers to the intensity measurements of each particular pixel location, in the case
of grayscale images this value is typically represented by a single value that displays

11
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different shades of gray ranging from black to white, represented as zero to a maximum
value [27]. Additionally, a representation of visual colours can be achieved through the
combination of different colour channels, the most typical of which is the RGB channel
separation, which assigns each pixel with three values, representing the intensity of Green,
Red and Blue colours [27].

Even if colour processing is not the focus of this project, it is worth mentioning that
different colour spaces exist that aim at providing with different approaches, such as that
of the Hue, Saturation and Value (HSV) colour space that provides a perceptual approach
to colour space [27]. In this project, colour images have been analyzed using the CIELAB
or Lab colour model; this model was developed by the CIE with the aim of representing
human perception of colour [7]. Further details about the specific treatment of colour
images will be provided in the next chapter.

3.2 Machine Learning

Although it is hard to summarize a vast field such as that of Machine Learning in a single
phrase, Machine Learning can be said to be the field of Artificial Intelligence concerned
with the process of learning as applied to a computer. In the introduction to the book
"Machine Learning: An Artificial Intelligence Approach"[22] Machine Learning is pre-
sented as the challenge of transferring the learning process to computers, and is said to be
"a most challenging and fascinating long-range goal in artificial intelligence". This intro-
duction provides too the separation of Machine Learning into three primary research foci:
Task-Oriented Studies, Cognitive Simulation and Theoretical Analysis. This project will
be focusing on the Task-Oriented side of Machine Learning, as the aim of the project is
the development of a tool that enables task-oriented model building and it’s not the explo-
ration of theoretical concepts within Machine Learning or the research into the process of
human cognition and its simulation.

More specifically, within Machine Learning this project focuses in the classification of da-
tasets, since the developed project aims at taking a dataset, an input image, and generating
a classified dataset, an image where each value has been labeled. Classification methods
can be categorized into supervised learning methods and unsupervised learning methods.
"Every instance in any dataset used by Machine Learning algorithms is represented using
the same features [...] if instances are given with known labels (the corresponding correct
outputs) then the learning is called supervised [...] in contrast to unsupervised learning,
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where instances are unlabeled."[17] this quote from a review of classification techniques
represents the core difference between supervised and unsupervised learning, the label, or
lack thereof. This difference results in a different approach to learning, as with one it is
possible to evaluate the results produced during training while with the other it is not.

While this project is related to both unsupervised and supervised learning —the superpixel
images that are used in the library are usually generated through the use of unsupervised
clustering techniques, and the developed library uses supervised learning to classify the
images— the project focuses on supervised learning, specifically on classifiers. The clas-
sifiers that have been used for the evaluation of this project have been selected from the
list of classifiers that the WEKA Machine Learning library offers, more detail about this
library will be offered in the following chapter. The following are a list of the classifiers
that have been used in the evaluation of the developed library:

• BayesNet: WEKA implementation of a Bayesian Network. It offers the basis for
different configurations of a Bayesian Network [5], but the default settings, which
were used in the evaluation process of this project, use the K2 algorithm as a search
algorithm, which is a hill climbing algorithm [8].

• J48: J48 is the WEKA implementation of the C4.5 tree building algorithm [21].
By default it generates pruned C4.5 decision trees, but can be modified to stop the
pruning.

• LogitBoost: LogitBoost is the WEKA implementation of an additive logistic re-
gression algorithm. "Boosting works by sequentially applying a classification algo-
rithm to reweighted versions of the training data and then taking a weighted majo-
rity vote of the sequence of classifiers thus produced"[12]. This boosting procedure
is applied here into the DecisionStump tree classifier. Decision stump classifiers use
one-level decision trees [15].

• RandomForest: It creates a combination of prediction trees in order to form a "fo-
rest"of these trees. The following formal definition of a random forest is provided
by Leo Breiman in [6]:

"A random forest is a classifier consisting of a collection of tree-structured clas-
sifiers {h(xxx,Θk),k = 1, ...} where the {Θk} are independent identically distributed
random vectors and each tree casts a unit vote for the most popular class at input
xxx."
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Figure 3.1: Segmentation of an image

• SMO: SMO implements John Platt’s sequential minimal optimization algorithm
[20] to train Support Vector Machines (SVMs). This implementation normalizes
all attributes and transforms nominal attributes into binary attributes. Additionally,
it solves multi-class problems using a pairwise classification, this means that each
class classification is pitted against each other in a pairwise manner.

Further specific details about the implementation and options offered by these classifiers
can be found in the WEKA API website1.

When using large datasets, it is common that these may either include invalid values or
biased distributions of classes. To solve this problem, it is common to use filters during
the preprocessing stage. In this project the datasets inferred displayed an unbalance in the
class distribution, to avoid this, a re-sampling filter was used. The WEKA implementation
of a re-sampling filter produces a random subsample of a dataset, and, when specified in
the options, produces a dataset with a uniform class distribution. This filter was applied
to the training datasets.

3.3 Image Segmentation

Image Segmentation is the process by which an image is partitioned into several segments.
One way of achieving this partition is by using pixel (or superpixel) classification or
clustering. Classification-based segmentation processes start with training sets where each
pixel of the image has already been classified as belonging to a class and with this a model
is built that can be later used to classify other pixels or sets of pixels. Clustering-based

1http://weka.sourceforge.net/doc.dev/

http://weka.sourceforge.net/doc.dev/
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Figure 3.2: Superpixel segmentation of an image

segmentation relies on feature extraction for each pixel and creates clusters of pixels with
similar or related features. Different algorithms may provide control over the amount of
clusters to be created but overall no previous information is given to the algorithm that
could guide the clustering other than what can be extracted from the image itself.

Image classification at any level (pixel, superpixel or whole image) is a core component
of computer vision. In fact, many of the main computer vision challenges such as image
segmentation, object detection or face detection can be reduced to a problem of image
classification [2]. This project deals specifically with image segmentation, but the core
processes that are developed as part of this library could be adapted to be used in the
aforementioned tasks. Figure 3.1 shows an example of the segmentation of an image, the
image to the left has been segmented into two distinct classes represented by the red and
green colours.

3.4 Pixel clustering: Superpixels

"Superpixel algorithms group pixels into perceptually meaningful atomic regions, which
can be used to replace the rigid structure of the pixel grid"[1], as explained in this quote
superpixel algorithms can be used to replace the meaningless grid representation of pixels,
providing a reduced dataset with which to work with by capturing image redundancy.
This reduction on the complexity of a dataset can be critical in certain computer vision
contexts, where the reduction of pixels into pixel regions will reduce the complexity of the
application of classification and therefore increase the speed and reduce memory usage.

Although this project does not deal with the generation of superpixel images it is worth
going briefly over the main classes of superpixel generating methods [1]:
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• Graph-based algorithms

Graph-based approaches treat pixels in an image as nodes in a graph, with edges
in this graph representing the similarity between neighboring pixels. Superpixels
are created thus by bundling together neighboring pixels through the use of a cost
function.

Graph-based algorithms include normalized cuts [25], which recursively partitions
the graph of all of the pixels through the use of contour and texture features and the
segmentation algorithm presented by Felzenszwalb and Huttenlocher [10] which
agglomerate pixels as nodes of a graph so that each superpixel is the minimum
spanning tree of the constituent pixels.

• Gradient-ascent-based algorithms

Gradient-ascent-based algorithms start with a rough clustering of pixels and iterati-
vely refine the clusters until a convergence criteria is met, such as a specific amount
of clusters or cohesion within clusters.

Gradient-ascend-based algorithms include Watershed [29] which performs a gra-
dient ascent starting from a local minima to produce separating lines.

The aforementioned review [1] provides further examples of these categories and analyzes
the different performances of these algorithms.

Figure 3.2 shows the superpixel segmentation of an image, the right image displays the
different areas that the algorithm has identified to result in a single superpixel. As shown
by the colours each of the region has a different label as these have not been classified.

3.5 Image Feature Extraction

As above mentioned digital images provide intensity measurements for each pixel in the
image, and thus information can be extracted from these values to gain information on
the contents of the image. These extracted features are the values that are going to be
used during pixel or superpixel classification, and therefore the different feature extraction
techniques will affect the later segmentation process.

A review by Ping Tian, D. [19] found that three main image feature categories could be
identified: colour features, texture features and shape features; this review listed strengths
and weaknesses of different features belonging to each category.



3.5 Image Feature Extraction 17

Colour features are extracted by analyzing the intensity values of different pixels or re-
gions of the image. Among the different intensity features, color moments or CMs are
identified as being "one of the simplest yet very effective"; these include features such as
standard deviation and skewness [19].

Texture features are extracted by analyzing groups of pixels, and due to their strong disc-
riminative capacity, texture features are commonly used in image retrieval and seman-
tic learning techniques [31]. The aforementioned review identified two main categories
within texture features: spatial textures and spectral textures [19]. Further studies such as
[31] identify specific methods for each of this two categories.

Shape feature extraction looks for "effective and perceptually important shape features"[32].
These features can be extracted by calculating features only from the boundary of the
shape or extracting features from the whole region enclosed by the shape [19]. This dif-
ferentiation results in the categorization of shape feature extraction techniques into two
different categories: contour based methods and region based methods [19].

The library that was used for the development of the project provides the following inten-
sity features:

• Max

Represents the maximum intensity value of the region.

• Min

Represents the minimum intensity value of the region.

• Mode

Represents the most common value of intensity of the region.

• Median

Represents the middle value of the intensities of the region.

• Mean

Represents the mean value (x) of intensities of the region:

x =
1
N

(
N

∑
i=1

xi

)

where N is the amount of pixels of the region.
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• Standard Deviation

Represents the standard deviation or σ of the region:

σ =

√
1
N

N

∑
i=1

(xi− x)2

where N is the amount of voxels (volumetric pixels) of the region and x is the mean
value of the region.

• Kurtosis

Kurtosis is the fourth standardized moment, defined as:

Kurt[X ] = E

[(
X−µ

σ

)4
]
=

µ4

σ4 =
E[(X−µ)4]

(E[(X−µ)2])2

where µ4 is the fourth central moment and σ is the standard deviation. However the
library used for feature extraction uses Kurt[X ]−3.

• Skewness

Skewness is the third standardized moment, defined as:

γ1 = E

[(
X−µ

σ

)3
]
=

µ3

σ3 =
E
[
(X−µ)3]

(E [(X−µ)2])3/2 =
κ3

κ
3/2
2

where µ is the mean, σ is the standard deviation, E is the expectation operator (the
expected value of a random variable), µ3 is the third central moment and κt are the
tth cumulants.

Additionally, the library also offers the same features calculated over all the neighboring
(adjacent) regions. Although these intensity measures are extracted from grayscale ima-
ges, these same features can be calculated from colour images by separating the different
channels and processing them individually.



CHAPTER 4

Description of the Developed Project

This chapter describes the project that has been developed, providing explanations of the
different artifacts and functionalities that have been produced as a result of this project.

4.1 Used software

4.1.1 Development framework

Due to the previous experience working with this framework and the availability of other
related libraries, this project has been developed using the ImageJ platform, and more
specifically using the Fiji distribution, which provides additional functionality to ImageJ
[23]. ImageJ provides an open source framework that allows a varied community of scien-
tists "ranging from experimental biologists to paleontologists to astronomers to computer
scientists"[24] to develop and share tools for image processing. In addition, Fiji provides
a further development by bundling standard libraries for computer vision research and
providing further support for plug-in development. This platform has achieved interna-
tional recognition, being used in every major academic research center throughout the
world. Fiji has facilitated the use of novel algorithms that otherwise would have required
biologists a great effort to access, therefore, it has enabled and eased cooperation among
fields.

19
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4.1.2 Machine Learning library

The Waikato Environment for Knowledge Analysis or WEKA, is a project that "aims
to provide a comprehensive collection of Machine Learning algorithms and data prepro-
cessing tools to researches and practitioners alike"[13], from preprocessing algorithms to
result interpretation utilities, going through classification and clusterization algorithms.
"Unlike other Machine Learning projects, the emphasis is on providing a working en-
vironment for the domain specialist rather than the Machine Learning expert"[14], this
excerpt from the abstract of a 1994 WEKA publication provides insight into why by 2009
they reported 1.4 million downloads since its release on SourceForge [13], it is an easy to
use library that doesn’t require users any previous deep knowledge of Machine Learning
in order to use it and allows scientists from multiple disciplines to use Machine Learning
algorithms.

While WEKA offers a variety of features, this project used the features regarding dataset
creation, dataset filtering and classifier training and application. Although WEKA offers
features for evaluation, after consideration it was decided to use another library that of-
fered label image comparisons to facilitate comparison with other libraries by using the
resulting images of the clustering.

4.1.3 Image feature extraction library

The MorphoLibJ provides a set of tools for image processing based on Mathematical
Morphology (MM) [18], defined as "a theory for the analysis of spatial structures [...] it
aims at analysing the shape and form of objects [...] the analysis is based on set theory,
integral geometry, and lattice algebra."[26]. It provides different functions for image pro-
cessing, but this project makes use specifically of its feature extraction capabilities and
it’s label image analysis capabilities.

As mentioned on the previous chapter, MorphoLibJ calculates the mean, standard de-
viation, maximum, minimum, median, mode, skewness and kurtosis of the intensity value
over regions of pixels or voxels, together with its neighboring regions. To do this, Morpho-
LibJ requires a grayscale image and a labeled image, and returns a table with the intensity
features per label.
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4.2 Library development

The first phase of the development of the project started with the development of a library
that would allow for the feature extraction and subsequent classification of images based
on a superpixel image and an input image. To do this a class was created that would be
responsible for the extraction of region features. This class would use the aforementioned
MorphoLibJ library to extract the features from the input images and would translate the
results into an Instances object that could be inputed into a WEKA classifier.

In order to allow the usage of colour images, an additional class was created that would
be responsible for the extraction of features from coloured images. To do this, the input
RGB image would be translated into the Lab colour space and a new grayscale image
would be generated from each of the three channels. Using these three grayscale images,
features would be extracted and then merged into a single Instances object. An example
of the splitting can be seen in figure 4.5.

Additionally, these classes offer the option to add a groundtruth image to the feature
extraction, this allows the creation of Instances objects with class attributes, and therefore
can later be used for training a classifier.

The main Java class of the library handles the contact with this classes and with the
WEKA library. It offers the functionality of region feature calculation, classifier training
and application into images, and probability map creation. Region features are calculated
through the aforementioned classes, after the main class checks whether the provided
input image is an RGB colour image or not. A classifier can be trained based on a list of
regions and classes, whereupon a new training dataset will be created that will include the
class labels that were provided in the aforementioned list, or through an already provided
training data that includes the necessary class labels. The trained classifier can then be
applied either to the loaded input image or a new input image can be provided together
with a corresponding label image. Additionally, probability maps can be created using
the trained classifier to calculate the probability distributions for each class per region;
the resulting image will be an image stack where each slice of the image represents the
probability that a pixel belongs to a class through its intensity, with higher intensity values
representing a higher probability of belonging to said class.

Figure 4.13 shows an example of a model building and testing process using this library.
Figure 4.6 shows the image used for the training of the model, with figure 4.7 showing
the corresponding superpixel image and figure 4.8 showing the groundtruth image. Figure
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Figure 4.1: original RGB image

Figure 4.2: L* channel Figure 4.3: a* channel Figure 4.4: b* channel

Figure 4.5: RGB image split into L* a* and b* channels
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Figure 4.6: Image to be used
on the training of the model

Figure 4.7: Label image of
training image

Figure 4.8: Groundtruth image
of training image

Figure 4.9: Testing image Figure 4.10: Label image of testing image

Figure 4.11: Resulting image
Figure 4.12: Groundtruth image of testing
image

Figure 4.13: Example of a superpixel labeled image model training and applying
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4.9 shows the image where the model will be tested, with its corresponding superpixel
image in figure 4.10. The results can be seen in figure 4.11, with figure 4.12 showing the
groundtruth corresponding to the testing image.

4.3 GUI development

Figure 4.14: Early design of GUI

Figure 4.15: Final design of GUI
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After the library was developed, a graphical user interface (GUI) was created to offer a
more accessible way of interacting with the library. The process started with a listing of
the features wanted to be offered in the GUI and with early designs of possible layouts.
Figure 4.14 shows an early design where the input image and its corresponding superpixel
image would be displayed side to side, this was later discarded in favour of the use of an
overlay to display the superpixel image and the result image. Figure 4.15 shows the final
design of the GUI.

The final version of the interface offers the following features:

• Region selection

The ImageJ multi-point tool provides region selection on the displayed image, the
label number related to the region that has been selected will be listed on the box
under the class button. Clicking the label number will display the point where the
label was selected. Additionally, double clicking on a number will delete that label
from the list.

The point selection is handled through an ImageJ class named ROI (Region Of
Interest), this class provides information about the location of a selection on an
image, and is used in this project to point to the label on the superpixel image.

• Train classifier

The classifier will be trained based on the regions that have been selected. To do
this, if the region features of the input image have not been calculated yet, they
will be, and a WEKA-compatible dataset will be created with them to represent all
the superpixels in the region feature space. After that dataset has been created, a
training subset will be created with the regions corresponding to the user-selected
points of each class. In all cases, the region features to use are those that have
been selected on the settings dialog. After the classifier has been trained, it will be
applied to the superpixels of the whole image, and an overlay will be displayed with
the resulting image. Additionally, the resulting image will be displayed on a new
ImageJ window.

• Toggle overlay

With this option, the displayed image will rotate over three different states: input
image 1) with no overlay, 2) with original superpixel image overlay, and 3) with
result overlay. In the case that a result has not been calculated yet only the first two
states will be cycled through. The different overlay options are shown in figure 4.16
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Figure 4.16: Different overlay options, from let to right: No overlay, superpixel overlay, result
overlay.

• Create result

If a segmentation result has already been calculated, a copy of the resulting image
will be created and displayed. If a result has not been calculated yet, a new one will
be created by training a classifier (if it has not been trained yet) or by applying an
already trained classifier.

• Get probability

Using the trained classifier, probability maps will be calculated for each class and an
image stack will be created and displayed, with each slice representing a probability
map for its corresponding class.

• Plot result

If a classifier has been trained, it will display a statistics window provided by the
WEKA library with information about the training.

• Apply classifier

The classifier will be applied. If a classifier has not been trained or loaded from file,
a new one will be trained based on the selected regions and assigned classes and it
will be applied to the current image.

• Load classifier

A dialog will be created offering the option to load a WEKA classifier from file.
These classifiers are stored as .model files. The program will check the classifier
to look for the number and name of classes that the classifier has been trained with
and will update the GUI accordingly.

• Save classifier

A dialog will be created offering the option to save the current WEKA classifier.
These classifiers are stored as .model files.
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• Create new class

A dialog will appear asking for the name of a new class, and the newly created class
will appear together with the default two classes.

• Settings

A settings dialog will appear. The settings dialog will offer the option to change
the selected features, the opacity of the overlay and the used WEKA classifier. The
features are displayed as a list of check boxes that can be selected or deselected to
indicate whether they should be used in the calculation of the features. The overlay
opacity can be selected either through a slider or through an input box where a value
can be introduced from 0 to 1, where 0.33 is the default value. Finally, a WEKA
classifier can be chosen and its options changed by clicking on the classifier text
box itself. This is handled through the WEKA library directly so all options offered
by WEKA are also offered here. Figure 4.17 shows the settings window.

Figure 4.17: Settings dialog

During the development of the GUI, a need arose for further implementations in the li-
brary. Mainly these changes reflected the need for a more dynamic access to the internal
variables of the library’s main class. The tests that were used to develop the library only
required a straight use of the library where the main variables were defined once and
didn’t require any further change during execution. However, the GUI offered its users
the option to change, save or load classifiers and change class labels.





CHAPTER 5

Evaluation

In order to draw meaningful conclusions about the developed project, an evaluation phase
was designed in which the library would be used to segment an image database, and the
results would be compared to results produced by other libraries.

5.1 Image database

The image database was kindly provided by the Centre of Applied Medical Research
(CIMA1). The database included 10 Tissue MicroArray Analysis (TMA) images and 10
corresponding hand-drawn label images.

5.1.1 Image content

TMA is a process by which tissue samples are collected and processed. This procedure
is commonly used in lung cancer detection. The database that has been used for this
evaluation corresponds to a set of lung tissue extractions. These images were acquired
and hand-labeled by experts and thus offer a great example of real-world use for the
library. The tissue images have been labeled with the following tags: tumoral, nontumoral
and background.

1https://cima.unav.edu/
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5.1.2 Preprocessing

The dataset was preprocessed by one of the thesis supervisors before being provided for
the evaluation, the changes made during the preprocessing were the following:

1. Scaling: due to the large size of the original TMA images, around 6000× 6000
pixels, the TMA images were rescaled to around 25%.

2. Histogram matching: the images were histogram matched to the first image of the
dataset as a way of normalizing the histograms of all images.

3. Superpixel segmentation: the superpixel images were generated through the use of
jSLIC [4] with default parameters.

4. In order to generate the groundtruth label images, the original hand-drawn images
were taken, and through the use of a majority voting method the different regions
on the aforementioned superpixel images were classified.

5.2 Comparison library

The developed library was compared against a library with a similar implementation and
goals, Trainable Weka Segmentation (TWS) [3]. This library, developed as part of a Fiji
plug-in, combines a collection of machine learning algorithms with a set of selected image
features to produce pixel-based segmentations.

5.2.1 Features

Due to the different methods for feature extraction the two libraries use, a selection had
to be made of which features to use in each library in order to allow for a fair comparison
of capabilities. The following were the final attributes selected for each library:

• Trainable Weka Segmentation:

– Original Gray scale intensity value of the pixel

– Hue Hue value of the HSB channels of the pixel

– Saturation Saturation value of the HSB channels of the pixel
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– Brightness Brightness value of the HSB channels of the pixel

– Mean_1.0 Mean of the pixels with a radius of 1 pixels from original pixel

– Minimum_1.0 Minimum of the pixels with a radius of 1 pixels from original
pixel

– Maximum_1.0 Maximum of the pixels with a radius of 1 pixels from original
pixel

– Median_1.0 Median of the pixels with a radius of 1 pixels from original pixel

– Mean_2.0 Mean of the pixels with a radius of 2 pixels from original pixel

– Minimum_2.0 Minimum of the pixels with a radius of 2 pixels from original
pixel

– Maximum_2.0 Maximum of the pixels with a radius of 2 pixels from original
pixel

– Median_2.0 Median of the pixels with a radius of 2 pixels from original pixel

– Mean_4.0 Mean of the pixels with a radius of 4 pixels from original voxel

– Minimum_4.0 Minimum of the pixels with a radius of 4 pixels from original
pixel

– Maximum_4.0 Maximum of the pixels with a radius of 4 pixels from original
pixel

– Median_4.0 Median of the pixels with a radius of 4 pixels from original pixel

– Mean_8.0 Mean of the pixels with a radius of 8 pixels from original pixel

– Minimum_8.0 Minimum of the pixels with a radius of82 pixels from original
pixel

– Maximum_8.0 Maximum of the pixels with a radius of 8 pixels from original
pixel

– Median_8.0 Median of the pixels with a radius of 8 pixels from original pixel

– Mean_16.0 Mean of the pixels with a radius of 16 pixels from original pixel

– Minimum_16.0 Minimum of the pixels with a radius of 16 pixels from original
pixel

– Maximum_16.0 Maximum of the pixels with a radius of 16 pixels from origi-
nal pixel
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– Median_16.0 Median of the pixels with a radius of 16 pixels from original
pixel

• Trainable Superpixel Segmentation:

– Mean−L Mean of L value of the pixels of the superpixel.

– Min−L Min of L value of the pixels of the superpixel.

– Max−L Max of L value of the pixels of the superpixel.

– Median−L Median of L value of the pixels of the superpixel.

– NeighborsMean−L Mean of L value of the pixels of the superpixel and the
neighboring pixels.

– NeighborsMin− L Min of L value of the pixels of the superpixel and the
neighboring pixels.

– NeighborsMax− L Max of L value of the pixels of the superpixel and the
neighboring pixels.

– NeighborsMedian−L Median of L value of the pixels of the superpixel and
the neighboring pixels.

– Mean−a Mean of a value of the pixels of the superpixel.

– Min−a Min of a value of the pixels of the superpixel.

– Max−a Max of a value of the pixels of the superpixel.

– Median−a Median of a value of the pixels of the superpixel.

– NeighborsMean− a Mean of a value of the pixels of the superpixel and the
neighboring pixels.

– NeighborsMin−a Min of a value of the pixels of the superpixel and the neigh-
boring pixels.

– NeighborsMax− a Max of a value of the pixels of the superpixel and the
neighboring pixels.

– NeighborsMedian− a Median of a value of the pixels of the superpixel and
the neighboring pixels.

– Mean−b Mean of b value of the pixels of the superpixel.

– Min−b Min of b value of the pixels of the superpixel.

– Max−bMax Mean of b value of the pixels of the superpixel.
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– Median−b Median of b value of the pixels of the superpixel.

– NeighborsMean− b Mean of b value of the pixels of the superpixel and the
neighboring pixels.

– NeighborsMin−b Min of b value of the pixels of the superpixel and the neigh-
boring pixels.

– NeighborsMax− b Max of b value of the pixels of the superpixel and the
neighboring pixels.

– NeighborsMedian− b Median of b value of the pixels of the superpixel and
the neighboring pixels.

As a result of this selection, both libraries had access to the same amount of attributes.

5.2.2 Samples

Due to the TSS library using superpixels as instances instead of pixels, and with the aim
of offering both libraries the same amount of training instances, a subset of pixels was
selected for the training of the TWS library. On average the superpixel segmented images
of the dataset have 3727.9 superpixels, therefore and in order to offer a balanced class
distribution of instances 3729 (1243∗3) would be taken for the TWS evaluation, and the
instances of the TSS library would be balanced through the use of the same filter that the
TWS library uses to add random balanced data. This has been further explained in chapter
3.2.

5.3 Evaluation method

For the evaluation a ten-fold cross-validation method was used, as the provided image
dataset was composed of ten images. This process worked by conducting ten different
evaluations, each of which was done by using nine of the images for the building of a
classifier and the remaining image for the evaluation.

5.3.1 Evaluation metrics

The following evaluation metrics were used in this evaluation:
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• Jaccard index: this index defined by Paul Jaccard in 1908 [16] measures similarity
and is defined as:

J(A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A|+ |B|− |A∩B|

Where A and B are the two intersecting areas. The result is a value between 0 and 1
where 0 represents no overlap and 1 represents perfect overlap.

• Dice coefficient: the Sørensen–Dice coefficient also known by Dice coefficient was
independently developed by both Sørensen [28] and Dice [9] and was defined as:

DSC =
2|A∩B|
|A|+ |B|

Where A and B are the two intersecting areas. The result is a value between 0 and 1
where 0 represents no overlap and 1 represents perfect overlap.

• Confusion matrices: confusion matrices allow for an easier visualization of correct
and incorrect instance classification by arranging in each row the predicted class
while presenting in each column the actual class. Additionally, the library that was
used to generate these, TWS, offers the precision and recall statistics together with
each confusion matrix. The resulting table can be seen in table 5.1.

True Positive or T P represents the number of real positive cases that have been
identified as such, True Negative or T N represents the number of real negative
cases that have been identified as such, False Positive or FP represents cases where
a positive case was predicted where a negative case existed, and False Negative
or FN represents cases where a negative case was predicted were a positive case
existed.

Precision is defined as
Precision =

T P
T P+FP

Recall is defined as
Recall =

T P
T P+FN

• Accuracy: drawn from the confusion matrix represents the percentage of correctly
classified instances over all instances. Calculated as:

Accuracy =
T P+T N

T P+FN +FP+T N
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Groundtruth Class A Groundtruth Class B Precision
Predicted A T P FP PrecisionA
Predicted B FN T N PrecisionB
Recall RecallA RecallB Accuracy

Table 5.1: A confusion matrix

Additionally, this process was conducted for each of the five classifiers that were mentio-
ned in the background research chapter: BayesNet, J48, LogitBoost, RandomForest and
SMO.

5.4 Evaluation scripting

As the evaluation process required the execution of processes multiple times for different
classifiers and different datasets, executing them manually was unfeasible. Thus, it was
decided to develop programs to implement the evaluation process. For the evaluation of
the TWS library through the use of the tutorials available in the corresponding wiki page2,
Beanshell scripts were developed for each classifier, and then a general script was develo-
ped that would execute sequentially all aforementioned scripts. These scripts loaded the
image dataset and carried out the ten-fold cross-validation process while storing the re-
sulting image and statistics. For the TSS library, Java code was developed that carried out
all of the ten-fold cross-validations in a single program. The scripts were executed on the
same computer through the same workload.

5.5 Evaluation results

As displayed in tables 5.2 and 5.3, on average the TSS obtained better results in all three
classification metrics. Although in certain classifiers TWS may obtain marginally better
results as seen in 5.1, 5.3 and 5.2 if only the best resulting classifiers were to be taken
into account, as would be in a real world application where the objective is to optimize
the results, TSS shows its ability to obtain competitive results. However, it is worth men-
tioning that the recall for tumoral sections as seen in figures 5.4 and 5.5 is higher for the
TWS library, indicating a higher success rate at identifying tumoral sections of the ima-
ges. However the rest of the metrics indicated on the aforementioned confusion matrices

2https://imagej.net/Scripting_the_Trainable_Weka_Segmentation

https://imagej.net/Scripting_the_Trainable_Weka_Segmentation
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indicate a better performance on the TSS library. Additionally, it is worth noting that over
both libraries RandomForest was the classifier that achieved the best results.

BayesNet J48 LogitBoost RandomForest SMO Average
Accuracy 0.8583 0.8356 0.8826 0.8880 0.8596 0.8648
Dice 0.8466 0.8217 0.8761 0.8795 0.8503 0.85484
Jaccard 0.7575 0.7226 0.7933 0.8008 0.7640 0.76764
Training time (ms) 513.7 1775.1 3353 14778.1 4691.3 5022.24

Table 5.2: Average results for 10 folds for the developed Trainable Superpixel Segmentation li-
brary

BayesNet J48 LogitBoost RandomForest SMO Average
Accuracy 0.8302 0.8375 0.8562 0.8679 0.8622 0.8508
Dice 0.8217 0.8297 0.8492 0.8621 0.8569 0.8439
Jaccard 0.7180 0.7253 0.7546 0.7716 0.7647 0.7468
Training time (ms) 453.5 2084.1 3322.4 14634.7 8294.7 5757.88

Table 5.3: Average results for 10 folds for Trainable Weka Segmentation library

Label GT background GT tumoral GT nontumoral Precision
Predicted background 34694680 121262 363284 0.9862
Predicted tumoral 54880 28629608 4086884 0.8736
Predicted nontumoral 759075 8148780 25380597 0.7402
Recall 0.9771 0.7759 0.8508 0.8676

Table 5.4: Aggregated Confusion Matrix of 10 folds and 5 classifiers for Trainable Superpixel
Segmentation
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Label GT background GT tumoral GT nontumoral Precision
Predicted background 33886653 154225 497605 0.9811
Predicted tumoral 122395 29778646 5978527 0.8299
Predicted nontumoral 1499587 6966779 23354633 0.7339
Recall 0.9543 0.8070 0.7829 0.8511

Table 5.5: Aggregated Confusion Matrix of 10 folds and 5 classifiers for Trainable Weka Segmen-
tation

Figure 5.1: Accuracy comparison per classifier

Figure 5.2: Jaccard comparison per classifier
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Figure 5.3: Dice comparison per classifier



CHAPTER 6

Conclusions

Throughout this document, the development of the project has been described, from the
planning process to the final evaluation of the developed library. One of the first steps that
was taken as part of this project was to specify the reach of the project, declaring clearly
the specific objectives that wanted to be undertaken throughout its duration. As part of
this initial writing the following objectives were defined: development of a library that
provides classification-based segmentation through the use of superpixels, development of
a graphic interface that facilitates the use of this library, and an evaluation of the developed
library. As exposed throughout this document, it is safe to assume that the overall goals
that were defined have been successfully met.

As a way of ensuring that the project would be developed following a structured path
that would ensure that the different goals that were set would be met by the end of the
project, different stages were defined, and throughout the development of the project this
stages have been followed. However, it is worth noting that some of these stages have been
retaken after they were supposed to have been finished, for example further background
research was made even after the evaluation process had started to fulfill the knowledge
base upon which the evaluation was being built on, as some of the metrics that were used
had not been properly researched before, or some library development was done during
the evaluation process to get information critical to the evaluation process. However, these
changes to the planning did not affect the development of the project in any critical way
or result in not meeting any of the specified goals.

The background research phase of the project was successful on identifying different
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concepts that were key in obtaining a library that produced competitive results, as shown
during the evaluation process. Additionally, the different libraries and frameworks se-
lected through this phase resulted in a complete and enabling environment in which to
successfully develop the project.

Overall and as reflected in the evaluation, the development of the library is considered
to have been successful. The library offers the capabilities that were set to be offered du-
ring the planning phase and the results obtained through the evaluation reflect competitive
capabilities. Although the developed GUI has not been evaluated, it is considered to be
successful as it offers a graphic way of interacting with the library, and the different fea-
tures that were set to be offered through it have been successfully implemented. Finally,
the evaluation was successful at providing representative metrics that provided proof of
the competitiveness of the developed library, while also providing graphs that allowed an
easier and more intuitive interpretation of the produced data.

In brief, the project is considered to have been successful on achieving the goals it was set
out to achieve, and considering the results produced during the evaluation, the resulting
library is considered to be competitive enough for further use.



CHAPTER 7

Further research

Although as described in the previous chapter the project was successful on its aims,
some further goals have been identified throughout its development. The following are
the different tasks that have been identified as possible research to be derived from the
work developed in this project:

• Further development of feature extraction. Although the available features provide
good information about the images that are being analyzed, further research and
development could be done to integrate different libraries that could offer more
features to be extracted from the images, providing more variables with which to
experiment looking to improve results.

• GUI evaluation. Through the use of a GUI evaluation framework, an evaluation
could be undertaken to ensure that the GUI that has been developed is usable for
experts outside the context of computer science, as it has only been used by the
developer of the project and the project supervisors.

• Further library evaluation. The library could be further evaluated by comparing it
to other state-of-the-art image segmentation libraries. Additionally, the library itself
could be further evaluated to identify optimal combinations of feature selection and
classifier selection for specific tasks such as the biomedical image dataset used in
this evaluation or other different tasks.
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• Further documentation. The code that has been developed as part of this project has
been documented through code comments, however further documentation through
UML graphs, library use examples or tutorials could facilitate the use of the library
and further contributions to the project.

Overall, this project has developed a base from which to further develop research into the
use of superpixel segmentation using the ImageJ framework, and, through its evaluation,
has proven that this approach to image segmentation can produce competitive results.
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APPENDIX A

User’s guide

The objective of this appendix is to provide a guide with which a user may be able to fully
comprehend the different features that are offered by the plug-in that was developed for
this project.

A.1 The library

The main functionalities of the library can be accessed through its main class Trainable-
SuperpixelSegmentation, however the classes that have been developed to generate the
Instances using the superpixel images for feature extraction, RegionFeatures and Region-
ColorFeatures, can be independently used too.

A.1.1 TrainableSuperpixelSegmentation

This is the main class of the library, responsible for receiving input images and processing
them to train classifiers, apply classifiers, generate result images and probability maps.

The class can be initialized through an empty constructor and then be populated by using
getters and setters, or through a constructor that takes some variables as input. Following
is a list of the different public functions provided by this library:

• TrainableSuperpixelSegmentation(ImagePlus originalImage, ImagePlus
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labels, ArrayList<RegionFeatures.Feature> features, AbstractClassifier

classifier, ArrayList<String> classes ) Creates and initializes an instan-
ce of TrainableSuperpixelSegmentation using the variables provided.

• calculateRegionFeatures() Calculates features for each region based on pre-
viously stablished selected features, input image, label image and class list. Returns
a boolean value that checks if region features have been created.

• getFeaturesByRegion() Returns a String with ARFF format with the features of
each region.

• trainClassifier(ArrayList<int[]> classRegions) Trains the classifier ba-
sed on previously created features and a list of regions corresponding to classes.
The classRegions variable has to have as a length the amount of classes and each
int array of of ints have the indexes of labels belonging to the class indicated by
its index in the ArrayList. Returns a boolean value that indicates the success of the
operation.

• trainClassifier() Trains the current classifier based on previously loaded trai-
ning data. Returns a boolean value that indicates the success of the operation.

• applyClassifier() Applies the current classifier to the already loaded input ima-
ge and returns the resulting image as an ImagePlus.

• applyClassifier(ImagePlus inImage, ImagePlus lbImage)Applies the al-
ready trained classifier to the input and label images, and returns the resulting image
as ImagePlus.

• getProbabilityMap() Applies the already trained classifier to the already loaded
input image to generate a probability map stack image, where each slice of the
image represents the probability map corresponding to that class.

• addFeatures(String[] features) Adds features to the selected feature list ba-
sed on a String array.

• Getters and setters Together with the aforementioned methods a number of
getters and setters are provided for ease of use.
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A.1.2 RegionFeatures and RegionColorFeatures

RegionFeatures and RegionColorFeatures provide a way of interacting with the Morpho-
LibJ library and generating WEKA library-compatible objects.

RegionFeatures

Region features implements an enum that lists the Features that can be obtained from the
MorphoLibJ Intensity Measures methods. this implementation makes it easier to add new
features when said library is updated, as the dependent classes can make use of a func-
tion getAllLabels() which provides a String array with all labels listed. Additionally,
functions to convert Features into Strings and Strings into Features are provided.

The enum Feature implements the following public methods:

• toString() Returns a String of the corresponding label.

• getAllLabels() Returns an array of Strings with all possible Features.

• numFeatures() Returns an int with the number of possible Features.

• fromLabel(String label) Returns the corresponding Feature of the provided
label.

Additionally, the following public functions are provided:

• calculateUnlabeledRegionFeatures( ImagePlus inputImage, ImagePlus

labelImage, ArrayList<Feature> selectedFeatures, ArrayList<String>

classes)

This function calculates the selected features of each region based on an input image
and a labeled image.

• calculateLabeledRegionFeatures( ImagePlus inputImage, ImagePlus labelImage,

ImagePlus gtImage, ArrayList<Feature> selectedFeatures, ArrayList<String>

classes)

This function calculates the selected features of each region based on an input image
and a labeled image and assigns them the corresponding class feature based on a
provided ground truth image.
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RegionColorFeatures

RegionColorFeatures relies on RegionFeatures to implement color image feature extrac-
tion. It works by converting RGB images into Lab images and then using the three sepa-
rate channels to calculate features independently, appending them with an -L, -a or -b.
The following public functions are provided:

• calculateUnlabeledColorFeatures(ImagePlus inputImage, ImagePlus labelImage,

ArrayList<RegionFeatures.Feature> selectedFeatures, ArrayList<String>

classes) This function converts the input image into Lab and calculates the selec-
ted features of each region based on an input image and a label image.

• calculateLabeledColorFeatures(ImagePlus inputImage, ImagePlus labelImage,

ImagePlus gtImage, ArrayList<RegionFeatures.Feature> selectedFeatures,

ArrayList<String> classes) This function converts the input image into Lab
and calculates the selected features of each region based on an input image and a la-
beled image and assigns them the corresponding class based on a provided ground-
truth image.

A.2 The GUI

The GUI serves as an easy-to-access interface to use the capabilities offered by the library.
As can be seen in figure A.1 the interface is separated into three distinct columns:

• The first column includes all the buttons concerning the training of the classifier and
the creation of result images and probability images, and the buttons concerning
the different options like the creation of a new class or the launching of the settings
dialog, together with the loading and applying of a classifier.

• The second column offers the display. In this display the input image is shown, so-
metimes the overlay will be displayed showing the corresponding superpixel image
or the resulting image. This display can be interacted with in order to select regions
to add to the different classes on the third column.

• The third column includes the different classes that have been created. By default
two classes will be created and more can be created through the button on the first
column. After selecting regions on the display they can be added to the different
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Figure A.1: GUI



50 User’s guide

Figure A.2: No overlay
Figure A.3: Superpixel over-
lay

Figure A.4: Result overlay

Figure A.5: Different overlay options

classes by the use of the Add to class buttons. Additionally, already added se-
lections can be displayed by selecting them on the boxes bellow the buttons and
deleted by double clicking the labels.

A.2.1 The Features

The GUI offers the following features:

• Region selection

By clicking on the displayed image multiple points can be selected, after the desi-
red regions have been selected by clicking the Add to class button the selected
regions can be added to the selected class. Additionally, the selected regions can be
displayed again by selecting them from the region list bellow the class and can be
deleted by double-clicking.

• Train classifier:

A classifier can be trained by pressing the Train classifier button, this will train
the classifier that can be specified in the Settings dialog based on the regions that
have been added to the classes.

• Toggle overlay

The input image will rotate over three different states of overlay display: No overlay,
superpixel image overlay and result overlay. In the case that a result has not been
calculated yet, only the first two states will be cycled through. The different overlay
options are shown in Figure A.5

• Create result
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If a result has already been created then a duplicate of said result will be displayed
on a new image, if it hasn’t then a new result will be calculated and then displayed.

• Get probability

Using the trained classifier, probability maps will be calculated for each class and
a layered image will be created, with each layer representing a probability map for
its corresponding class.

• Plot result

If a classifier has been trained, it will provide a statistics window provided by the
WEKA library.

• Apply classifier

If a classifier has been loaded or trained, it will be applied to the image, if it hasn’t
then a new classifier will be trained based on the settings.

• Load classifier

A dialog will be created offering the option to load a WEKA classifier. These clas-
sifiers are stored in .model files. The program will check the classifier to look for
the number of classes that the classifier has been trained with and will update the
GUI accordingly.

• Save classifier

A dialog will be created offering the option to save the current WEKA classifier.
These classifiers are stored in .model files. This classifiers can then be taken into
other programs that implement WEKA or into the WEKA workbench itself for
further inspection.

• Create new class

A dialog will appear asking for the name of a new class, and the newly created class
will appear together with the default two classes on the third column.

• Settings

A settings dialog will appear. The settings dialog will offer the option to change
the selected features, the opacity of the overlay and the used WEKA classifier. The
features are displayed as a list of check boxes that can be selected or deselected to
indicate whether they should be used in the calculation of the features. The overlay
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opacity can be selected either through a slider or through an input box where a
value can be selected from 0 to 1, where 0.33 is the default value. Finally, a WEKA
classifier can be chosen and its options changed by clicking on the classifier itself.
Figure A.6 shows the settings window.

Figure A.6: Settings dialog

A.3 Contributing

This plug-in has been developed using open source libraries and has been published as
an open source plug-in. As such, it is open for modifications and contributions in the
following Git-hub repository:

https://github.com/96jsalinas/Trainable_Superpixel_Segmentation

Contributions to this project can be done through pull requests and derivative work can be
done by creating new projects based on the code developed for this project. For possible
contributors the following resources are worth looking at:

• ImageJ Developer Resources: https://imagej.nih.gov/ij/developer/index.
html

• Developing plugins for ImageJ: https://imagej.net/Writing_plugins

https://github.com/96jsalinas/Trainable_Superpixel_Segmentation
https://imagej.nih.gov/ij/developer/index.html
https://imagej.nih.gov/ij/developer/index.html
https://imagej.net/Writing_plugins
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• Fiji homepage: https://fiji.sc/

• WEKA homepage: https://www.cs.waikato.ac.nz/ml/weka/

https://fiji.sc/
https://www.cs.waikato.ac.nz/ml/weka/




APPENDIX B

Evaluation Results

This appendix presents the whole results generated by the evaluation. Firstly the resulting
images of the training are presented and are followed by tables representing the generated
statistical results.

B.1 Image Results

Figures B.4 and B.7 show the resulting images from the evaluation using Trainable Su-
perpixel Segmentation together with the original images, while figures ?? and ?? show
the results from the evaluation using Trainable Weka Segmentation.

B.2 Table Results

This section presents the resulting tables from the evaluation.
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Figure B.1: TSS J48 results
Figure B.2: TSS LogitBoost
results

Figure B.3: TSS RandomFo-
rest results

Figure B.4: TSS evaluation results for J48, LogitBoost and RandomForest
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Figure B.5: TSS SMO results Figure B.6: TSS BayesNet results

Figure B.7: TSS evaluation results for SMO and BayesNet



58 Appendix B

Figure B.8: TWS J48 results
Figure B.9: TWS Logit-
Boost results

Figure B.10: TWS Random-
Forest results

Figure B.11: TWS evaluation results for J48, LogitBoost and RandomForest
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Figure B.12: TWS SMO results Figure B.13: TWS BayesNet results

Figure B.14: TWS evaluation results for SMO and BayesNet
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Table B.1: TSS BayesNet statistics folds 1-5

BayesNet
1 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 664717 862 799 0.998
Predicted tumoral 0 555729 10693 0.981
Predicted nontumoral 21931 261626 711171 0.715
Recall 0.968 0.679 0.984 0.867

Accuracy: 0.867
Dice: Label DiceCoefficient

1 0.983
2 0.803
3 0.828

Jaccard: Label JaccardIndex
1 0.966
2 0.67
3 0.707

Training time: 876
2 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 709987 0 15843 0.978
Predicted tumoral 0 538435 52450 0.911
Predicted nontumoral 20844 51293 363096 0.834
Recall 0.971 0.913 0.842 0.92

Accuracy: 0.92
Dice: Label DiceCoefficient

1 0.975
2 0.912
3 0.838

Jaccard: Label JaccardIndex
1 0.951
2 0.838
3 0.721

Training time: 669
3 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 676854 1632 9 0.998
Predicted tumoral 643 736347 184469 0.799
Predicted nontumoral 11851 16382 490788 0.946
Recall 0.982 0.976 0.727 0.899

Accuracy: 0.899
Dice: Label DiceCoefficient

1 0.99
2 0.879
3 0.822

Jaccard: Label JaccardIndex
1 0.98
2 0.784
3 0.698

Training time: 460
4 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 709094 0 0 1
Predicted tumoral 0 630023 118475 0.842
Predicted nontumoral 9333 233738 404482 0.625
Recall 0.987 0.729 0.773 0.828

Accuracy: 0.828
Dice: Label DiceCoefficient

1 0.993
2 0.782
3 0.691

Jaccard: Label JaccardIndex
1 0.987
2 0.641
3 0.528

Training time: 459
5 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 537287 67 988 0.998
Predicted tumoral 0 504712 47129 0.915
Predicted nontumoral 14241 208599 554209 0.713
Recall 0.974 0.707 0.92 0.855

Accuracy: 0.855
Dice: Label DiceCoefficient

1 0.986
2 0.798
3 0.804

Jaccard: Label JaccardIndex
1 0.972
2 0.664
3 0.672

Training time: 451



Evaluation Results 61

Table B.2: TSS BayesNet statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision
Predicted background 607692 0 27 1
Predicted tumoral 0 519280 48936 0.914
Predicted nontumoral 61741 173590 295076 0.556
Recall 0.908 0.749 0.858 0.833

Accuracy: 0.833
Dice: Label DiceCoefficient

1 0.952
2 0.824
3 0.675

Jaccard: Label JaccardIndex
1 0.908
2 0.7
3 0.509

Training time: 469
7 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 547316 605 194 0.999
Predicted tumoral 2398 682757 73512 0.9
Predicted nontumoral 19557 120011 653187 0.824
Recall 0.961 0.85 0.899 0.897

Accuracy: 0.897
Dice: Label DiceCoefficient

1 0.98
2 0.874
3 0.86

Jaccard: Label JaccardIndex
1 0.96
2 0.776
3 0.754

Training time: 441
8 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 596686 1047 180 0.998
Predicted tumoral 0 94040 16066 0.854
Predicted nontumoral 54808 485483 639300 0.542
Recall 0.916 0.162 0.975 0.705

Accuracy: 0.705
Dice: Label DiceCoefficient

1 0.955
2 0.272
3 0.697

Jaccard: Label JaccardIndex
1 0.914
2 0.158
3 0.535

Training time: 446
9 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 704992 988 32 0.999
Predicted tumoral 1270 904093 34291 0.962
Predicted nontumoral 14358 75595 651406 0.879
Recall 0.978 0.922 0.95 0.947

Accuracy: 0.947
Dice: Label DiceCoefficient

1 0.988
2 0.942
3 0.913

Jaccard: Label JaccardIndex
1 0.977
2 0.89
3 0.84

Training time: 450
10 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 1019003 2204 206 0.998
Predicted tumoral 0 296127 3987 0.987
Predicted nontumoral 95124 284665 595152 0.61
Recall 0.915 0.508 0.993 0.832

Accuracy: 0.832
Dice: Label DiceCoefficient

1 0.954
2 0.671
3 0.756

Jaccard: Label JaccardIndex
1 0.913
2 0.504
3 0.608

Training time: 416
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Table B.3: TSS J48 statistics folds 1-5

J48
1 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 608096 2621 738 0.995
Predicted tumoral 0 559745 35767 0.94
Predicted nontumoral 78552 255851 686158 0.672
Recall 0.886 0.684 0.949 0.832

Accuracy: 0.832
Dice: Label DiceCoefficient

1 0.937
2 0.792
3 0.787

Jaccard: Label JaccardIndex
1 0.881
2 0.655
3 0.649

Training time: 1963
2 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 724219 0 52140 0.933
Predicted tumoral 510 511219 118690 0.811
Predicted nontumoral 6102 78509 260559 0.755
Recall 0.991 0.867 0.604 0.854

Accuracy: 0.854
Dice: Label DiceCoefficient

1 0.961
2 0.838
3 0.671

Jaccard: Label JaccardIndex
1 0.925
2 0.721
3 0.505

Training time: 1767
3 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 675153 2509 8433 0.984
Predicted tumoral 4572 697571 238881 0.741
Predicted nontumoral 9623 54281 427952 0.87
Recall 0.979 0.925 0.634 0.85

Accuracy: 0.85
Dice: Label DiceCoefficient

1 0.982
2 0.823
3 0.733

Jaccard: Label JaccardIndex
1 0.964
2 0.699
3 0.579

Training time: 1889
4 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 715270 493 2479 0.996
Predicted tumoral 0 685128 202042 0.772
Predicted nontumoral 3157 178140 318436 0.637
Recall 0.996 0.793 0.609 0.816

Accuracy: 0.816
Dice: Label DiceCoefficient

1 0.996
2 0.783
3 0.623

Jaccard: Label JaccardIndex
1 0.992
2 0.643
3 0.452

Training time: 1668
5 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 537656 126 5753 0.989
Predicted tumoral 1731 495700 115687 0.808
Predicted nontumoral 12141 217552 480886 0.677
Recall 0.975 0.695 0.798 0.811

Accuracy: 0.811
Dice: Label DiceCoefficient

1 0.982
2 0.747
3 0.733

Jaccard: Label JaccardIndex
1 0.965
2 0.597
3 0.578

Training time: 1829
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Table B.4: TSS J48 statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision
Predicted background 644578 843 3055 0.994
Predicted tumoral 1287 494407 42031 0.919
Predicted nontumoral 23568 197620 298953 0.575
Recall 0.963 0.714 0.869 0.843

Accuracy:
Dice: Label DiceCoefficient

1 0.978
2 0.804
3 0.692

Jaccard: Label JaccardIndex
1 0.957
2 0.672
3 0.529

Training time: 1693
7 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 557115 6801 10020 0.971
Predicted tumoral 0 694086 104129 0.87
Predicted nontumoral 12156 102486 612744 0.842
Recall 0.979 0.864 0.843 0.888

Accuracy: 0.888
Dice: Label DiceCoefficient

1 0.975
2 0.867
3 0.843

Jaccard: Label JaccardIndex
1 0.951
2 0.765
3 0.728

Training time: 1720
8 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 635476 5493 13004 0.972
Predicted tumoral 2567 149664 35794 0.796
Predicted nontumoral 13451 425413 606748 0.58
Recall 0.975 0.258 0.926 0.737

Accuracy: 0.737
Dice: Label DiceCoefficient

1 0.974
2 0.389
3 0.713

Jaccard: Label JaccardIndex
1 0.948
2 0.242
3 0.554

Training time: 1752
9 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 716433 6192 2158 0.988
Predicted tumoral 0 890699 33104 0.964
Predicted nontumoral 4187 83785 650467 0.881
Recall 0.994 0.908 0.949 0.946

Accuracy: 0.946
Dice: Label DiceCoefficient

1 0.991
2 0.935
3 0.913

Jaccard: Label JaccardIndex
1 0.983
2 0.879
3 0.841

Training time: 1784
10 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 1089412 7787 24865 0.971
Predicted tumoral 6776 365597 223549 0.613
Predicted nontumoral 17939 209612 350931 0.607
Recall 0.978 0.627 0.586 0.786

Accuracy: 0.786
Dice: Label DiceCoefficient

1 0.974
2 0.62
3 0.596

Jaccard: Label JaccardIndex
1 0.95
2 0.45
3 0.424

Training time: 1686



64 Appendix B

Table B.5: TSS LogitBoost statistics folds 1-5

LogitBoost
1 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 682137 2666 2174 0.993
Predicted tumoral 0 586148 16081 0.973
Predicted nontumoral 4511 229403 704408 0.751
Recall 0.993 0.716 0.975 0.886

Accuracy: 0.886
Dice: Label DiceCoefficient

1 0.993
2 0.825
3 0.848

Jaccard: Label JaccardIndex
1 0.986
2 0.703
3 0.736

Training time: 3502
2 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 723439 0 34095 0.955
Predicted tumoral 510 535471 93904 0.85
Predicted nontumoral 6882 54257 303390 0.832
Recall 0.99 0.908 0.703 0.892

Accuracy: 0.892
Dice: Label DiceCoefficient

1 0.972
2 0.878
3 0.762

Jaccard: Label JaccardIndex
1 0.946
2 0.783
3 0.616

Training time: 3387
3 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 685377 2214 1390 0.995
Predicted tumoral 0 723583 189774 0.792
Predicted nontumoral 3971 28564 484102 0.937
Recall 0.994 0.959 0.717 0.893

Accuracy: 0.893
Dice: Label DiceCoefficient

1 0.995
2 0.868
3 0.812

Jaccard: Label JaccardIndex
1 0.989
2 0.766
3 0.684

Training time: 3358
4 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 714724 630 2473 0.996
Predicted tumoral 0 716241 173654 0.805
Predicted nontumoral 3703 146890 346830 0.697
Recall 0.995 0.829 0.663 0.845

Accuracy: 0.845
Dice: Label DiceCoefficient

1 0.995
2 0.817
3 0.68

Jaccard: Label JaccardIndex
1 0.991
2 0.69
3 0.515

Training time: 3315
5 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 550937 928 6204 0.987
Predicted tumoral 0 523084 67811 0.885
Predicted nontumoral 591 189366 528311 0.736
Recall 0.999 0.733 0.877 0.858

Accuracy: 0.858
Dice: Label DiceCoefficient

1 0.993
2 0.802
3 0.8

Jaccard: Label JaccardIndex
1 0.986
2 0.67
3 0.667

Training time: 3343
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Table B.6: TSS LogitBoost statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision
Predicted background 643704 29 52 1
Predicted tumoral 2399 545896 42139 0.925
Predicted nontumoral 23330 146945 301848 0.639
Recall 0.962 0.788 0.877 0.874

Accuracy: 0.874
Dice: Label DiceCoefficient

1 0.98
2 0.851
3 0.74

Jaccard: Label JaccardIndex
1 0.961
2 0.74
3 0.587

Training time: 3281
7 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 563155 9510 8737 0.969
Predicted tumoral 0 684178 91838 0.882
Predicted nontumoral 6116 109685 626318 0.844
Recall 0.989 0.852 0.862 0.892

Accuracy: 0.892
Dice: Label DiceCoefficient

1 0.979
2 0.866
3 0.853

Jaccard: Label JaccardIndex
1 0.959
2 0.764
3 0.743

Training time: 3394
8 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 636647 3306 9158 0.981
Predicted tumoral 2 273802 47030 0.853
Predicted nontumoral 14845 303462 599358 0.653
Recall 0.977 0.472 0.914 0.8

Accuracy: 0.8
Dice: Label DiceCoefficient

1 0.979
2 0.608
3 0.762

Jaccard: Label JaccardIndex
1 0.959
2 0.436
3 0.615

Training time: 3332
9 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 719608 5742 3495 0.987
Predicted tumoral 0 899454 30597 0.967
Predicted nontumoral 1012 75480 651637 0.895
Recall 0.999 0.917 0.95 0.951

Accuracy: 0.951
Dice: Label DiceCoefficient

1 0.993
2 0.941
3 0.922

Jaccard: Label JaccardIndex
1 0.986
2 0.889
3 0.855

Training time: 3340
10 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 1072605 5798 5271 0.99
Predicted tumoral 13992 511043 31649 0.918
Predicted nontumoral 27530 66155 562425 0.857
Recall 0.963 0.877 0.938 0.935

Accuracy: 0.935
Dice: Label DiceCoefficient

1 0.976
2 0.897
3 0.896

Jaccard: Label JaccardIndex
1 0.953
2 0.813
3 0.812

Training time: 3278
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Table B.7: TSS RandomForest statistics folds 1-5

RandomForest
1 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 683957 1905 716 0.996
Predicted tumoral 0 578439 9386 0.984
Predicted nontumoral 2691 237873 712561 0.748
Recall 0.996 0.707 0.986 0.887

Accuracy: 0.887
Dice: Label DiceCoefficient

1 0.996
2 0.823
3 0.85

Jaccard: Label JaccardIndex
1 0.992
2 0.699
3 0.74

Training time: 16937
2 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 727527 0 39920 0.948
Predicted tumoral 510 552845 70253 0.887
Predicted nontumoral 2794 36883 321216 0.89
Recall 0.995 0.937 0.745 0.914

Accuracy: 0.914
Dice: Label DiceCoefficient

1 0.971
2 0.911
3 0.811

Jaccard: Label JaccardIndex
1 0.944
2 0.837
3 0.682

Training time: 15086
3 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 679081 1672 329 0.997
Predicted tumoral 3315 741072 224170 0.765
Predicted nontumoral 6952 11617 450767 0.96
Recall 0.985 0.982 0.668 0.883

Accuracy: 0.883
Dice: Label DiceCoefficient

1 0.991
2 0.86
3 0.788

Jaccard: Label JaccardIndex
1 0.982
2 0.755
3 0.65

Training time: 14638
4 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 715826 493 2041 0.996
Predicted tumoral 0 750330 182932 0.804
Predicted nontumoral 2601 112938 337984 0.745
Recall 0.996 0.869 0.646 0.857

Accuracy: 0.857
Dice: Label DiceCoefficient

1 0.996
2 0.835
3 0.692

Jaccard: Label JaccardIndex
1 0.993
2 0.717
3 0.529

Training time: 14702
5 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 550353 677 5435 0.989
Predicted tumoral 0 547931 50601 0.915
Predicted nontumoral 1175 164770 546290 0.767
Recall 0.998 0.768 0.907 0.881

Accuracy: 0.881
Dice: Label DiceCoefficient

1 0.993
2 0.835
3 0.831

Jaccard: Label JaccardIndex
1 0.987
2 0.717
3 0.711

Training time: 14327
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Table B.8: TSS RandomForest statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision
Predicted background 652731 0 461 0.999
Predicted tumoral 0 549061 32124 0.945
Predicted nontumoral 16702 143809 311454 0.66
Recall 0.975 0.792 0.905 0.887

Accuracy: 0.887
Dice: Label DiceCoefficient

1 0.987
2 0.862
3 0.763

Jaccard: Label JaccardIndex
1 0.974
2 0.757
3 0.617

Training time: 14291
7 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 560789 7392 5862 0.977
Predicted tumoral 0 733804 83983 0.897
Predicted nontumoral 8482 62177 637048 0.9
Recall 0.985 0.913 0.876 0.92

Accuracy: 0.92
Dice: Label DiceCoefficient

1 0.981
2 0.905
3 0.888

Jaccard: Label JaccardIndex
1 0.963
2 0.827
3 0.799

Training time: 14485
8 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 632390 2105 6774 0.986
Predicted tumoral 0 201816 33780 0.857
Predicted nontumoral 19104 376649 614992 0.608
Recall 0.971 0.348 0.938 0.768

Accuracy: 0.768
Dice: Label DiceCoefficient

1 0.978
2 0.495
3 0.738

Jaccard: Label JaccardIndex
1 0.958
2 0.329
3 0.585

Training time: 14366
9 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 717562 6515 1291 0.989
Predicted tumoral 0 908446 22107 0.976
Predicted nontumoral 3058 65715 662331 0.906
Recall 0.996 0.926 0.966 0.959

Accuracy: 0.959
Dice: Label DiceCoefficient

1 0.992
2 0.951
3 0.935

Jaccard: Label JaccardIndex
1 0.985
2 0.906
3 0.878

Training time: 14873
10 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 1079960 5789 6239 0.989
Predicted tumoral 0 492912 43655 0.919
Predicted nontumoral 34167 84295 549451 0.823
Recall 0.969 0.845 0.917 0.924

Accuracy: 0.924
Dice: Label DiceCoefficient

1 0.979
2 0.881
3 0.867

Jaccard: Label JaccardIndex
1 0.959
2 0.787
3 0.765

Training time: 14076
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Table B.9: TSS SMO statistics folds 1-5

SMO
1 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 685632 1905 747 0.996
Predicted tumoral 0 440245 10008 0.978
Predicted nontumoral 1016 376067 711908 0.654
Recall 0.999 0.538 0.985 0.825

Accuracy: 0.825
Dice: Label DiceCoefficient

1 0.997
2 0.694
3 0.786

Jaccard: Label JaccardIndex
1 0.995
2 0.532
3 0.647

Training time: 5280
2 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 727467 0 41638 0.946
Predicted tumoral 0 535337 74548 0.878
Predicted nontumoral 3364 54391 315203 0.845
Recall 0.995 0.908 0.731 0.901

Accuracy: 0.901
Dice: Label DiceCoefficient

1 0.97
2 0.893
3 0.784

Jaccard: Label JaccardIndex
1 0.942
2 0.806
3 0.644

Training time: 4659
3 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 680375 1632 7838 0.986
Predicted tumoral 5002 736506 216923 0.768
Predicted nontumoral 3971 16223 450505 0.957
Recall 0.987 0.976 0.667 0.881

Accuracy: 0.881
Dice: Label DiceCoefficient

1 0.987
2 0.86
3 0.786

Jaccard: Label JaccardIndex
1 0.974
2 0.754
3 0.648

Training time: 4447
4 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 715826 497 2547 0.996
Predicted tumoral 0 730731 173578 0.808
Predicted nontumoral 2601 132533 346832 0.72
Recall 0.996 0.846 0.663 0.852

Accuracy: 0.852
Dice: Label DiceCoefficient

1 0.996
2 0.827
3 0.69

Jaccard: Label JaccardIndex
1 0.992
2 0.704
3 0.527

Training time: 4323
5 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 548530 59 2437 0.995
Predicted tumoral 0 374128 25515 0.936
Predicted nontumoral 2998 339191 574374 0.627
Recall 0.995 0.524 0.954 0.802

Accuracy: 0.802
Dice: Label DiceCoefficient

1 0.995
2 0.672
3 0.756

Jaccard: Label JaccardIndex
1 0.99
2 0.506
3 0.608

Training time: 4903
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Table B.10: TSS SMO statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision
Predicted background 649258 0 12 1
Predicted tumoral 0 371478 22844 0.942
Predicted nontumoral 20175 321392 321183 0.485
Recall 0.97 0.536 0.934 0.786

Accuracy: 0.786
Dice: Label DiceCoefficient

1 0.985
2 0.683
3 0.638

Jaccard: Label JaccardIndex
1 0.97
2 0.519
3 0.468

Training time: 4424
7 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 556321 3981 6766 0.981
Predicted tumoral 5640 733827 104581 0.869
Predicted nontumoral 7310 65565 615546 0.894
Recall 0.977 0.913 0.847 0.908

Accuracy: 0.908
Dice: Label DiceCoefficient

1 0.979
2 0.891
3 0.87

Jaccard: Label JaccardIndex
1 0.959
2 0.803
3 0.77

Training time: 4556
8 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 641794 2296 9396 0.982
Predicted tumoral 0 161666 54902 0.746
Predicted nontumoral 9700 416608 591248 0.581
Recall 0.985 0.278 0.902 0.739

Accuracy: 0.739
Dice: Label DiceCoefficient

1 0.984
2 0.406
3 0.707

Jaccard: Label JaccardIndex
1 0.968
2 0.254
3 0.547

Training time: 4667
9 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 718571 6643 1447 0.989
Predicted tumoral 0 929160 60807 0.939
Predicted nontumoral 2049 44873 623475 0.93
Recall 0.997 0.947 0.909 0.951

Accuracy: 0.951
Dice: Label DiceCoefficient

1 0.993
2 0.943
3 0.919

Jaccard: Label JaccardIndex
1 0.986
2 0.892
3 0.851

Training time: 4911
10 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 1101361 6608 7416 0.987
Predicted tumoral 1756 555615 66028 0.891
Predicted nontumoral 11010 20773 525901 0.943
Recall 0.989 0.953 0.877 0.951

Accuracy: 0.951
Dice: Label DiceCoefficient

1 0.988
2 0.921
3 0.909

Jaccard: Label JaccardIndex
1 0.976
2 0.854
3 0.833

Training time: 4743
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Table B.11: TWS BayesNet statistics folds 1-5

BayesNet
1 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 668133 1565 3834 0.992
Predicted tumoral 1453 674207 149414 0.817
Predicted nontumoral 17062 142445 569415 0.781
Recall 0.973 0.824 0.788 0.858

Accuracy: 0.858
Dice: Label DiceCoefficient

1 0.982
2 0.821
3 0.785

Jaccard: Label JaccardIndex
1 0.965
2 0.696
3 0.645

Training time: 767
2 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 691752 0 23715 0.967
Predicted tumoral 2243 563983 121419 0.82
Predicted nontumoral 36836 25745 286255 0.821
Recall 0.947 0.956 0.664 0.88

Accuracy: 0.88
Dice: Label DiceCoefficient

1 0.957
2 0.883
3 0.734

Jaccard: Label JaccardIndex
1 0.917
2 0.791
3 0.579

Training time: 464
3 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 671694 1902 2893 0.993
Predicted tumoral 2180 651127 189581 0.772
Predicted nontumoral 15474 101332 482792 0.805
Recall 0.974 0.863 0.715 0.852

Accuracy: 0.852
Dice: Label DiceCoefficient

1 0.984
2 0.815
3 0.757

Jaccard: Label JaccardIndex
1 0.968
2 0.688
3 0.61

Training time: 406
4 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 699151 1140 2852 0.994
Predicted tumoral 2070 549704 272232 0.667
Predicted nontumoral 17206 312917 247873 0.429
Recall 0.973 0.636 0.474 0.711

Accuracy: 0.711
Dice: Label DiceCoefficient

1 0.984
2 0.651
3 0.45

Jaccard: Label JaccardIndex
1 0.968
2 0.483
3 0.291

Training time: 403
5 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 534158 2063 10153 0.978
Predicted tumoral 1591 515312 118117 0.811
Predicted nontumoral 15779 196003 474056 0.691
Recall 0.969 0.722 0.787 0.816

Accuracy: 0.816
Dice: Label DiceCoefficient

1 0.973
2 0.764
3 0.736

Jaccard: Label JaccardIndex
1 0.948
2 0.619
3 0.582

Training time: 404
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Table B.12: TWS BayesNet statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision
Predicted background 621355 799 1393 0.996
Predicted tumoral 5114 579982 173494 0.765
Predicted nontumoral 42964 112089 169152 0.522
Recall 0.928 0.837 0.492 0.803

Accuracy: 0.803
Dice: Label DiceCoefficient

1 0.961
2 0.799
3 0.506

Jaccard: Label JaccardIndex
1 0.925
2 0.666
3 0.339

Training time: 395
7 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 547711 7916 20766 0.95
Predicted tumoral 1307 600377 106726 0.847
Predicted nontumoral 20253 195080 599401 0.736
Recall 0.962 0.747 0.825 0.832

Accuracy: 0.832
Dice: Label DiceCoefficient

1 0.956
2 0.794
3 0.778

Jaccard: Label JaccardIndex
1 0.916
2 0.659
3 0.636

Training time: 449
8 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 597019 3846 16093 0.968
Predicted tumoral 4054 463890 149795 0.751
Predicted nontumoral 50421 112834 489658 0.75
Recall 0.916 0.799 0.747 0.821

Accuracy: 0.821
Dice: Label DiceCoefficient

1 0.941
2 0.774
3 0.748

Jaccard: Label JaccardIndex
1 0.889
2 0.632
3 0.598

Training time: 407
9 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 699925 4762 5487 0.986
Predicted tumoral 694 794645 52859 0.937
Predicted nontumoral 20001 181269 627383 0.757
Recall 0.971 0.81 0.915 0.889

Accuracy: 0.889
Dice: Label DiceCoefficient

1 0.978
2 0.869
3 0.829

Jaccard: Label JaccardIndex
1 0.958
2 0.768
3 0.707

Training time: 399
10 Confusion Matrix Label Groundtruth background Groundtruth tumoral Groundtruth nontumoral Precision

Predicted background 989787 4106 6609 0.989
Predicted tumoral 9700 540533 194179 0.726
Predicted nontumoral 114640 38357 398557 0.723
Recall 0.888 0.927 0.665 0.84

Accuracy: 0.84
Dice: Label DiceCoefficient

1 0.936
2 0.814
3 0.693

Jaccard: Label JaccardIndex
1 0.88
2 0.687
3 0.53

Training time: 441
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Table B.13: TWS J48 statistics folds 1-5

J48
1 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

675907 4524 15579 0.971
1859 603586 107019 0.847
8882 210107 600065 0.733
0.984 0.738 0.83 0.844

Accuracy:
Dice: DiceCoefficient

0.978
0.789
0.778

Jaccard: JaccardIndex
0.956
0.651
0.637

Training time:
2 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

698380 756 26203 0.963
3302 529149 109431 0.824
29149 59823 295755 0.769
0.956 0.897 0.686 0.869

Accuracy:
Dice: DiceCoefficient

0.959
0.859
0.725

Jaccard: JaccardIndex
0.922
0.753
0.568

Training time:
3 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

677415 3976 14858 0.973
3290 662892 180236 0.783
8643 87493 480172 0.833
0.983 0.879 0.711 0.859

Accuracy:
Dice: DiceCoefficient

0.978
0.828
0.767

Jaccard: JaccardIndex
0.957
0.707
0.622

Training time:
4 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

707351 4526 6033 0.985
1578 558824 179914 0.755
9498 300411 337010 0.521
0.985 0.647 0.644 0.762

Accuracy:
Dice: DiceCoefficient

0.985
0.697
0.576

Jaccard: JaccardIndex
0.97
0.535
0.405

Training time:
5 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

541866 5169 26303 0.945
1978 539154 92645 0.851
7684 169055 483378 0.732
0.982 0.756 0.803 0.838

Accuracy:
Dice: DiceCoefficient

0.963
0.8
0.766

Jaccard: JaccardIndex
0.929
0.667
0.62

Training time:
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Table B.14: TWS J48 statistics folds 6-10

6 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision
625513 1626 3698 0.992
3565 567608 111669 0.831
40355 123636 228672 0.582
0.934 0.819 0.665 0.833

Accuracy:
Dice: DiceCoefficient

0.962
0.825
0.621

Jaccard: JaccardIndex
0.927
0.702
0.45

Training time:
7 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

554112 10571 30227 0.931
1502 598473 90679 0.867
13657 194329 605987 0.744
0.973 0.745 0.834 0.838

Accuracy:
Dice: DiceCoefficient

0.952
0.801
0.787

Jaccard: JaccardIndex
0.908
0.668
0.648

Training time:
8 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

603469 5092 16216 0.966
5654 469772 130070 0.776
42371 105706 509260 0.775
0.926 0.809 0.777 0.838

Accuracy:
Dice: DiceCoefficient

0.946
0.792
0.776

Jaccard: JaccardIndex
0.897
0.656
0.634

Training time:
9 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

708215 8136 18257 0.964
1292 809410 34959 0.957
11113 163130 632513 0.784
0.983 0.825 0.922 0.901

Accuracy:
Dice: DiceCoefficient

0.973
0.886
0.848

Jaccard: JaccardIndex
0.948
0.796
0.736

Training time:
10 Confusion Matrix Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

980836 5426 10847 0.984
12944 495845 243493 0.659
120347 81725 345005 0.631
0.88 0.851 0.576 0.793

Accuracy:
Dice: DiceCoefficient

0.929
0.743
0.602

Jaccard: JaccardIndex
0.868
0.591
0.43

Training time:
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Table B.15: TWS LogitBoost statistics folds 1-5

LogitBoost
1 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 676355 2053 5132 0.989
Predicted tumor 656 658264 74906 0.897
Predicted nontumor 9637 157900 642625 0.793
Recall 0.985 0.805 0.889 0.888

Accuracy: 0.888
Dice: Label DiceCoefficient

1 0.987
2 0.848
3 0.838

Jaccard: Label JaccardIndex
1 0.975
2 0.736
3 0.722

Training time: 3602
2 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 695884 61 19088 0.973
Predicted tumor 1045 548600 71698 0.883
Predicted nontumor 33902 41067 340603 0.82
Recall 0.952 0.93 0.79 0.905

Accuracy: 0.905
Dice: Label DiceCoefficient

1 0.963
2 0.906
3 0.804

Jaccard: Label JaccardIndex
1 0.928
2 0.828
3 0.673

Training time: 3319
3 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 679139 2125 2912 0.993
Predicted tumor 1818 684624 174624 0.795
Predicted nontumor 8391 67612 497730 0.868
Recall 0.985 0.908 0.737 0.878

Accuracy: 0.878
Dice: Label DiceCoefficient

1 0.989
2 0.848
3 0.797

Jaccard: Label JaccardIndex
1 0.978
2 0.736
3 0.663

Training time: 3409
4 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 707052 433 3027 0.995
Predicted tumor 1106 536579 192788 0.735
Predicted nontumor 10269 326749 327142 0.493
Recall 0.984 0.621 0.626 0.746

Accuracy: 0.746
Dice: Label DiceCoefficient

1 0.99
2 0.673
3 0.551

Jaccard: Label JaccardIndex
1 0.979
2 0.507
3 0.38

Training time: 3254
5 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 541242 2212 13758 0.971
Predicted tumor 779 537931 61577 0.896
Predicted nontumor 9507 173235 526991 0.743
Recall 0.981 0.754 0.875 0.86

Accuracy: 0.86
Dice: Label DiceCoefficient

1 0.976
2 0.819
3 0.803

Jaccard: Label JaccardIndex
1 0.954
2 0.693
3 0.671

Training time: 3370
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Table B.16: TWS LogitBoost statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision
Predicted background 627223 571 1328 0.997
Predicted tumor 1947 568851 114237 0.83
Predicted nontumor 40263 123448 228474 0.583
Recall 0.937 0.821 0.664 0.835

Accuracy: 0.835
Dice: Label DiceCoefficient

1 0.966
2 0.826
3 0.621

Jaccard: Label JaccardIndex
1 0.934
2 0.703
3 0.45

Training time: 3169
7 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 554521 7614 19208 0.954
Predicted tumor 646 617821 83644 0.88
Predicted nontumor 14104 177938 624041 0.765
Recall 0.974 0.769 0.859 0.856

Accuracy: 0.856
Dice: Label DiceCoefficient

1 0.964
2 0.821
3 0.809

Jaccard: Label JaccardIndex
1 0.93
2 0.696
3 0.679

Training time: 3361
8 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 607702 3562 10543 0.977
Predicted tumor 2335 502676 107417 0.821
Predicted nontumor 41457 74332 537586 0.823
Recall 0.933 0.866 0.82 0.873

Accuracy: 0.873
Dice: Label DiceCoefficient

1 0.955
2 0.843
3 0.821

Jaccard: Label JaccardIndex
1 0.913
2 0.728
3 0.697

Training time: 3250
9 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 708111 5205 8081 0.982
Predicted tumor 819 830264 30373 0.964
Predicted nontumor 11690 145207 647275 0.805
Recall 0.983 0.847 0.944 0.916

Accuracy: 0.916
Dice: Label DiceCoefficient

1 0.982
2 0.901
3 0.869

Jaccard: Label JaccardIndex
1 0.965
2 0.821
3 0.768

Training time: 3333
10 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 982085 3512 8809 0.988
Predicted tumor 10169 543473 267158 0.662
Predicted nontumor 121873 36011 323378 0.672
Recall 0.881 0.932 0.54 0.805

Accuracy: 0.805
Dice: Label DiceCoefficient

1 0.932
2 0.774
3 0.599

Jaccard: Label JaccardIndex
1 0.872
2 0.632
3 0.427

Training time: 3157
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Table B.17: TWS RandomForest statistics folds 1-5

RandomForest
1 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 676470 1673 4430 0.991
Predicted tumor 509 678175 79883 0.894
Predicted nontumor 9669 138369 638350 0.812
Recall 0.985 0.829 0.883 0.895

Accuracy: 0.895
Dice: Label DiceCoefficient

1 0.988
2 0.86
3 0.846

Jaccard: Label JaccardIndex
1 0.976
2 0.755
3 0.733

Training time: 14829
2 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 697611 40 19224 0.973
Predicted tumor 679 548788 77067 0.876
Predicted nontumor 32541 40900 335098 0.82
Recall 0.955 0.931 0.777 0.903

Accuracy: 0.903
Dice: Label DiceCoefficient

1 0.964
2 0.902
3 0.798

Jaccard: Label JaccardIndex
1 0.93
2 0.822
3 0.664

Training time: 14650
3 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 679818 1717 2147 0.994
Predicted tumor 1520 683979 151783 0.817
Predicted nontumor 8010 68665 521336 0.872
Recall 0.986 0.907 0.772 0.89

Accuracy: 0.89
Dice: Label DiceCoefficient

1 0.99
2 0.859
3 0.819

Jaccard: Label JaccardIndex
1 0.981
2 0.754
3 0.693

Training time: 14790
4 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 707113 553 2332 0.996
Predicted tumor 653 551231 176372 0.757
Predicted nontumor 10661 311977 344253 0.516
Recall 0.984 0.638 0.658 0.761

Accuracy: 0.761
Dice: Label DiceCoefficient

1 0.99
2 0.692
3 0.579

Jaccard: Label JaccardIndex
1 0.98
2 0.53
3 0.407

Training time: 14771
5 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 542361 1723 13127 0.973
Predicted tumor 661 563422 57509 0.906
Predicted nontumor 8506 148233 531690 0.772
Recall 0.983 0.79 0.883 0.877

Accuracy: 0.877
Dice: Label DiceCoefficient

1 0.978
2 0.844
3 0.824

Jaccard: Label JaccardIndex
1 0.958
2 0.73
3 0.7

Training time: 14585
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Table B.18: TWS RandomForest statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision
Predicted background 628879 431 1038 0.998
Predicted tumor 1406 579217 107325 0.842
Predicted nontumor 39148 113222 235676 0.607
Recall 0.939 0.836 0.685 0.846

Accuracy: 0.846
Dice: Label DiceCoefficient

1 0.968
2 0.839
3 0.644

Jaccard: Label JaccardIndex
1 0.937
2 0.723
3 0.475

Training time: 14466
7 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 553753 6709 14508 0.963
Predicted tumor 541 628897 76949 0.89
Predicted nontumor 14977 167767 635436 0.777
Recall 0.973 0.783 0.874 0.866

Accuracy: 0.866
Dice: Label DiceCoefficient

1 0.968
2 0.833
3 0.823

Jaccard: Label JaccardIndex
1 0.938
2 0.714
3 0.699

Training time: 14621
8 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 607276 3445 9251 0.98
Predicted tumor 1668 489800 90833 0.841
Predicted nontumor 42550 87325 555462 0.81
Recall 0.932 0.844 0.847 0.875

Accuracy: 0.875
Dice: Label DiceCoefficient

1 0.955
2 0.842
3 0.829

Jaccard: Label JaccardIndex
1 0.914
2 0.728
3 0.707

Training time: 14331
9 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 708259 5160 5693 0.985
Predicted tumor 370 830629 25613 0.97
Predicted nontumor 11991 144887 654423 0.807
Recall 0.983 0.847 0.954 0.919

Accuracy: 0.919
Dice: Label DiceCoefficient

1 0.984
2 0.904
3 0.874

Jaccard: Label JaccardIndex
1 0.968
2 0.825
3 0.777

Training time: 14626
10 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 998912 3669 5859 0.991
Predicted tumor 7090 524832 172542 0.745
Predicted nontumor 108125 54495 420944 0.721
Recall 0.897 0.9 0.702 0.847

Accuracy: 0.847
Dice: Label DiceCoefficient

1 0.941
2 0.815
3 0.712

Jaccard: Label JaccardIndex
1 0.889
2 0.688
3 0.552

Training time: 14678
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Table B.19: TWS SMO statistics folds 1-5

SMO
1 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 675717 1620 3756 0.992
Predicted tumor 498 621828 48900 0.926
Predicted nontumor 10433 194769 670007 0.766
Recall 0.984 0.76 0.927 0.883

Accuracy: 0.883
Dice: Label DiceCoefficient

1 0.988
2 0.835
3 0.839

Jaccard: Label JaccardIndex
1 0.976
2 0.717
3 0.722

Training time: 10250
2 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 695393 30 17907 0.975
Predicted tumor 666 553894 82829 0.869
Predicted nontumor 34772 35804 330653 0.824
Recall 0.952 0.939 0.766 0.902

Accuracy: 0.902
Dice: Label DiceCoefficient

1 0.963
2 0.903
3 0.794

Jaccard: Label JaccardIndex
1 0.929
2 0.823
3 0.659

Training time: 9256
3 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 679597 1941 2658 0.993
Predicted tumor 1772 672503 139907 0.826
Predicted nontumor 7979 79917 532701 0.858
Recall 0.986 0.891 0.789 0.889

Accuracy: 0.889
Dice: Label DiceCoefficient

1 0.99
2 0.857
3 0.822

Jaccard: Label JaccardIndex
1 0.979
2 0.751
3 0.698

Training time: 9639
4 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 706445 330 1984 0.997
Predicted tumor 846 507434 180643 0.737
Predicted nontumor 11136 355997 340330 0.481
Recall 0.983 0.587 0.651 0.738

Accuracy: 0.738
Dice: Label DiceCoefficient

1 0.99
2 0.654
3 0.553

Jaccard: Label JaccardIndex
1 0.98
2 0.485
3 0.382

Training time: 8520
5 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 540496 1392 7676 0.983
Predicted tumor 658 533784 46902 0.918
Predicted nontumor 10374 178202 547748 0.744
Recall 0.98 0.748 0.909 0.869

Accuracy: 0.869
Dice: Label DiceCoefficient

1 0.982
2 0.825
3 0.818

Jaccard: Label JaccardIndex
1 0.964
2 0.701
3 0.693

Training time: 6886
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Table B.20: TWS SMO statistics folds 6-10

6 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision
Predicted background 625875 438 820 0.998
Predicted tumor 1628 572088 112873 0.833
Predicted nontumor 41930 120344 230346 0.587
Recall 0.935 0.826 0.67 0.837

Accuracy: 0.837
Dice: Label DiceCoefficient

1 0.965
2 0.829
3 0.625

Jaccard: Label JaccardIndex
1 0.933
2 0.709
3 0.455

Training time: 7036
7 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 552985 6850 10943 0.969
Predicted tumor 394 595972 70828 0.893
Predicted nontumor 15892 200551 645122 0.749
Recall 0.971 0.742 0.888 0.855

Accuracy: 0.855
Dice: Label DiceCoefficient

1 0.97
2 0.811
3 0.812

Jaccard: Label JaccardIndex
1 0.942
2 0.681
3 0.684

Training time: 6984
8 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 606878 2990 8419 0.982
Predicted tumor 1846 483441 89755 0.841
Predicted nontumor 42770 94139 557372 0.803
Recall 0.932 0.833 0.85 0.873

Accuracy: 0.873
Dice: Label DiceCoefficient

1 0.956
2 0.837
3 0.826

Jaccard: Label JaccardIndex
1 0.915
2 0.719
3 0.703

Training time: 7648
9 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 707861 4626 6224 0.985
Predicted tumor 442 810246 26562 0.968
Predicted nontumor 12317 165804 652943 0.786
Recall 0.982 0.826 0.952 0.91

Accuracy: 0.91
Dice: Label DiceCoefficient

1 0.984
2 0.891
3 0.861

Jaccard: Label JaccardIndex
1 0.968
2 0.804
3 0.756

Training time: 8249
10 Confusion Matrix Label Groundtruth background Groundtruth tumor Groundtruth nontumor Precision

Predicted background 1021891 3639 5707 0.991
Predicted tumor 9858 550930 177099 0.747
Predicted nontumor 82378 28427 416539 0.79
Recall 0.917 0.945 0.695 0.866

Accuracy: 0.866
Dice: Label DiceCoefficient

1 0.953
2 0.834
3 0.739

Jaccard: Label JaccardIndex
1 0.91
2 0.716
3 0.587

Training time: 8479
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