
eman ta zabal zazu

Universidad

del País Vasco

Euskal Herriko

Unibertsitatea

Bilboko Ingeniaritza Eskola

Teknologia Elektronikoa Saila

DOCTORAL THESIS.

Contributions to the Fault Tolerance of

Soft-Core Processors Implemented in

SRAM-based FPGA Systems

Author: Julen Gomez-Cornejo Barrena

Supervisor: Dr. Aitzol Zuloaga

Bilbao, June 2018

(cc)2018 JULEN GOMEZ-CORNEJO BARRENA (cc by 4.0)

ii

Eskerrak - Thanks

Lan hau aurrera atera ahal izan dut inguruan izan dudan jendearen laguntza eta
babesari esker. Lehenik, nire zuzendaria izan den Aitzol Zuloaga eskertu nahiko
nuke. Era berean, lan honetan eragin zuzena izan duten Uli Kretzschmar eta Igor
Villalta lankideei esker berezia luzatu nahi nieke. Bestalde, Iraide López eskertu
nahi dut dokumentuaren portadaren diseinuarekin laguntzeagatik.

Ezin ahaztu APERT taldeko parte diren edo izan diren gainontzeko lankide eta
lagunak, esker bereziak: Iñigo Kortabarria, Iñigo Mart́ınez de Alegŕıa, Jon An-
dreu, Carlos Cuadrado, José Luis Mart́ın, Armando Astarloa, Jésus Lázaro, Jai-
me Jiménez, Unai Bidarte, Edorta Ibarra, Naiara Moreira, Vı́ctor López, Ángel
Pérez, Asier Matallana, Itxaso Aranzabal, Oier Oñederra, Estafania Planas, Mar-
kel Fernández, David Cabezuelo, Iker Aretxabaleta eta Endika Robles. Baita ere,
Javier Del Ser, Roberto Fernández eta Leire Lopez-i eskeinitako laguntza bihotzez
eskertu nahi nieke.

I also would like to thank all the kind people from the Computer Architecture
and Embedded Systems research group for making me feel like home during the
stay at TU Ilmenau, especially to Bernd Däne.

Ezin ahaztu, nire ondoan egon diren eta jasan nauten familia, lagunak eta Ufa.
Eta bereziki eskerrak zuri ama, eredu zarelako.

Bukatzeko, UPV/EHU erakundea eta euskal gizartea eskertu nahi nituzke nire
doktoretza aurrera eramateko baliabideak jartzeagatik.

Bilbon, 2018ko Ekainean.

iv Agradecimientos

Laburpena

Zirkuitu elektronikoak integrazio-maila apartetara iritsi dira diseinu eta ekoizpen
tekniken garapenari esker. Hau dela eta, gaur egun posible da sistema osatu
eta konplexuak gauzatzea gailu bakar batean. Kontzeptu honi SoC (System-on-
Chip) deritzo. FPGA (Field Programmable Gate Array) teknologia da sistema
horiek gauzatzeko euskarri interesgarrienetakoa, batez ere eskeintzen duen mal-
gutasunari esker, bere inguruan ematen ari diren etengabeko ikerkuntza berrien
garrantzia ahaztu gabe.

FPGAek duten konfigurazio ahalmenari esker, funtzio ezberdinetarako programa-
tuak izateko aukera eskeintzen dute. SRAM eta flash teknologietan oinarritutako
FPGA batzuek eskeitzen duten errekonfigurazio partzial dinamikoaren gaitasuna
batuz gero, potentzial ikaragarrizko teknologia dela baiezta daiteke. Errekonfigu-
razio partzial dinamikoari esker, posiblea da FPGA baten matrizean konfiguratu-
tako zirkuitoaren zati bakar bat aldatzea, bitartean gainontzeko zirkuitu-atalak
funtzionatzen jarraitu dezaketelarik. Era horretan, hainbat diseinu partzial era-
biltzeko aukera dago, FPGAaren baliabideen erabilera murriztuz.

Erradiazio kosmikotik datozen partikula energetikoekiko duten sentikortasuna da
SRAM eta flash teknologietan oinarritutako gailuen erabilerak suposatzen duen
arazo garrantzitsuenetakoa bat. Horien eraginez, hainbat arazo gerta daitez-
ke, arazo arbuiagarrigarrietatik hasita, arazo benetan larrietara iritsi arte. Izan
ere, gizakiak arriskuan jar daitezke alor konkretu batzuen sistemetan hutsegi-
teak izanez gero, esaterako: trenbide garraioetan, automozioan edo egiaztatze
industrialean.

Hutsegite horiek sor ditzaketen arazoek hutsegite-tolerantzia kontzeptuaren ga-
rrantzia indartzen dute. Sistema digitaleei atxikitutako ezaugarria da hutsegite-
tolerantzia. Horren bidez, funtzionamenduan kalitate maila jakin bat bermatzen
da akatsen aurrean. Horrela, sistema hariek hutsegiteen efektuak jasan behar di-
tuzte aldioro, funtzionamendu egokia mantenduz. Helburu hori lortzeko gogortze

vi Laburpena

teknikak atxikitzen zaizkie, hori da, erredundantzia software edota hardwarean
oinarritutako teknikak, esate baterako.

Bestalde, eguneroko bizitzan erabiltzen diren produktu elektroniko gehienek siste-
ma txertatuak izaten dituzte beraien diseinuetan. Sistema txertatu horien baitan
prozesadore bat edo gehiago izatea da ohikoena. Sistemen konplexutasun-mailak
gora egiten duen heinean, oso interresgarria suertatzen da aurrediseinatutako eta
frogatutako sistema elektronikoen erabilera. IP core (Intellectual Property co-
res) bezala ezagutzen dira sistema hauek. Bereziki, azken urteotan zabaldu da
IP core bidezko prozesadoreen (soft-core prozesadore bezala ezagunak) erabilerak
garrantzia irabazi du.

Lan honetan, SRAM motako FPGA teknlogietan implementatutako soft-core
prozesadoreen hutsegite-tolerantzia bermatzeko tekniken inguruan ikerketa buru-
tu da. Era berean, prozesadore horien hutsegiteei aurre egiteko gogortze teknika
berriak proposatzen dira. Hala nola, lockstep metodologia berriak, TMR im-
plementazioetan moduluen sinkronizaziorako teknikak, kaltetutako interfazedun
memorien datuen berreskurapena, etb. Bestalde, erabiltzaile-datuak bitstream-
ren bidez maneilatzea ahalbideratzen duten teknikak proposatu dira. Teknika
horiek nahitaezkoak izan dira aurkeztutako zenbait hutsegite-tolerantzia handi-
tzeko tekniken garapenerako.

Resumen

Gracias al desarrollo de las tecnoloǵıas de diseño y fabricación, los circuitos
electrónicos han llegado a grandes niveles de integración. De esta forma, hoy
en d́ıa es posible implementar completos y complejos sistemas dentro de un único
dispositivo incorporando gran variedad de elementos como: procesadores, oscila-
dores, lazos de seguimiento de fase (PLLs), interfaces, conversores ADC y DAC,
módulos de memoria, etc. A este concepto de diseño se le denomina comúnmente
SoC (System-on-Chip).

Una de las plataformas para implementar estos sistemas que más importancia está
cobrando son las FPGAs (Field Programmable Gate Array). Históricamente la
plataforma más utilizada para albergar los SoCs han sido las ASICs (Application-
Specific Integrated Circuits), debido a su bajo consumo energético y su gran
rendimiento. No obstante, su costoso proceso de desarrollo y fabricación hace
que solo sean rentables en el caso de producciones masivas. Las FPGAs, por el
contrario, al ser dispositivos configurables ofrecen, la posibilidad de implementar
diseños personalizados a un coste mucho más reducido. Por otro lado, los conti-
nuos avances en la tecnoloǵıa de las FPGAs están haciendo que éstas compitan
con las ASICs a nivel de prestaciones (consumo, nivel de integración y eficiencia).

Ciertas tecnoloǵıas de FPGA, como las SRAM y Flash, poseen una caracteŕısti-
ca que las hace especialmente interesantes en multitud de diseños: la capacidad
de reconfiguración. Dicha caracteŕıstica, que incluso puede ser realizada de for-
ma autónoma, permite cambiar completamente el diseño hardware implementado
con solo cargar en la FPGA un archivo de configuración denominado bitstream.
La reconfiguración puede incluso permitir modificar una parte del circuito con-
figurado en la matriz de la FPGA, mientras el resto del circuito implementado
continúa inalterado. Esto que se conoce como reconfiguración parcial dinámica,
posibilita que un mismo chip albergue en su interior numerosos diseños hardware
que pueden ser cargados a demanda. Gracias a la capacidad de reconfiguración,
las FPGAs ofrecen numerosas ventajas como: posibilidad de personalización de

viii Resumen

diseños, capacidad de re-adaptación durante el funcionamiento para responder a
cambios o corregir errores, mitigación de obsolescencia, diferenciación, menores
costes de diseño o reducido tiempo para el lanzamiento de productos al mercado.

Los SoC basados en FPGAs allanan el camino hacia un nuevo concepto de in-
tegración de hardware y software, permitiendo que los diseñadores de sistemas
electrónicos sean capaces de integrar procesadores embebidos en los diseños pa-
ra beneficiarse de su gran capacidad de computación. Gracias a esto, una parte
importante de la electrónica hace uso de la tecnoloǵıa FPGA abarcando un gran
abanico de campos, como por ejemplo: la electrónica de consumo y el entreteni-
miento, la medicina o industrias como la espacial, la aviónica, la automoviĺıstica
o la militar.

Las tecnoloǵıas de FPGA existentes ofrecen dos v́ıas de utilización de procesado-
res embebidos: procesadores hard-core y procesadores soft-core. Los hard-core son
procesadores discretos integrados en el mismo chip de la FPGA. Generalmente
ofrecen altas frecuencias de trabajo y una mayor previsibilidad en términos de
rendimiento y uso del área, pero su diseño hardware no puede alterarse para ser
personalizado. Por otro lado, un procesador soft-core, es la descripción hardware
en lenguaje HDL (normalmente VDHL o Verilog) de un procesador, sintetizable
e implementable en una FPGA. Habitualmente, los procesadores soft-core suelen
basarse en diseños hardware ya existentes, siendo compatibles con sus juegos de
instrucciones, muchos de ellos en forma de IP cores (Intellectual Property co-
res). Los IP cores ofrecen procesadores soft-core prediseñados y testeados, que
dependiendo del caso pueden ser de pago, gratuitos u otro tipo de licencias. De-
bido a su naturaleza, los procesadores soft-core, pueden ser personalizados para
una adaptación óptima a diseños espećıficos. Aśı mismo, ofrecen la posibilidad
de integrar en el diseño tantos procesadores como se desee (siempre que haya
disponibles recursos lógicos suficientes). Otra ventaja importante es que, gracias
a la reconfiguración parcial dinámica, es posible añadir el procesador al diseño
únicamente en los casos necesarios, ahorrando de esta forma, recursos lógicos y
consumo energético.

Uno de los mayores problemas que surgen al usar dispositivos basados en las
tecnoloǵıas SRAM o la flash, como es el caso de las FPGAs, es que son especial-
mente sensibles a los efectos producidos por part́ıculas energéticas provenientes
de la radiación cósmica (como protones, neutrones, part́ıculas alfa u otros iones
pesados) denominados efectos de eventos simples o SEEs (Single Event Effects).
Estos efectos pueden ocasionar diferentes tipos de fallos en los sistemas: desde
fallos despreciables hasta fallos realmente graves que compromentan la funcio-
nalidad del sistema. El correcto funcionamiento de los sistemas cobra especial
relevancia cuando se trata de tecnoloǵıas de elevado costo o aquellas en las que

ix

peligran vidas humanas, como por ejemplo, en campos tales como el transporte
ferroviario, la automoción, la aviónica o la industria aeroespacial.

Dependiendo de distintos factores, los SEEs pueden causar fallos de operación
transitorios, cambios de estados lógicos o daños permanentes en el dispositivo.
Cuando se trata de un fallo f́ısico permanente se denomina hard-error, mientras
que cuando el fallo afecta el circuito momentáneamente se denomina soft-error.
Los SEEs más frecuentes son los soft-errors y afectan tanto a aplicaciones comer-
ciales a nivel terrestre, como a aplicaciones aeronáuticas y aeroespaciales (con
mayor incidencia en estas últimas). La contribución exacta de este tipo de fallos
a la tasa de errores depende del diseño espećıfico de cada circuito, pero en general
se asume que entorno al 90% de la tasa de error se debe a fallos en elementos de
memoria (latches, biestables o celdas de memoria). Los soft-errors pueden afectar
tanto al circuito lógico como al bitstream cargado en la memoria de configuración
de la FPGA. Debido a su gran tamaño, la memoria de configuración tiene más
probabilidades de ser afectada por un SEE.

La existencia de problemas generados por estos efectos reafirma la importancia
del concepto de tolerancia a fallos. La tolerancia a fallos es una propiedad relativa
a los sistemas digitales, por la cual se asegura cierta calidad en el funcionamiento
ante la presencia de fallos, debiendo los sistemas poder soportar los efectos de
dichos fallos y funcionar correctamente en todo momento. Por tanto, para lo-
grar un diseño robusto, es necesario garantizar la funcionalidad de los circuitos
y asegurar la seguridad y confiabilidad en las aplicaciones cŕıticas que puedan
verse comprometidos por los SEE. A la hora de hacer frente a los SEE existe la
posibilidad de explotar tecnoloǵıas espećıficas centradas en la tolerancia a fallos,
como por ejemplo las FPGAs de tipo fusible, o por otro lado, utilizar la tecno-
loǵıa comercial combinada con técnicas de tolerancia a fallos. Esta última opción
va cobrando importancia debido al menor precio y mayores prestaciones de las
FPGAs comerciales.

Generalmente las técnicas de endurecimiento se aplican durante la fase de di-
seño. Existe un gran número de técnicas y se pueden llegar a combinar entre si.
Las técnicas prevalentes se basan en emplear algún tipo de redundancia, ya sea
hardware, software, temporal o de información. Cada tipo de técnica presenta
diferentes ventajas e inconvenientes y se centra en atacar distintos tipos de SEE
y sus efectos. Dentro de las técnicas de tipo redundancia, la más utilizada es la
hardware, que se basa en replicar el módulo a endurecer. De esta forma, cada una
de las réplicas es alimentada con la misma entrada y sus salidas son comparadas
para detectar discrepancias. Esta redundancia puede implementarse a diferentes
niveles. En términos generales, un mayor nivel de redundancia hardware implica
una mayor robustez, pero también incrementa el uso de recursos. Este incremento

x Resumen

en el uso de recursos de una FPGA supone tener menos recursos disponibles para
el diseño, mayor consumo energético, el tener más elementos susceptibles de ser
afectados por un SEE y generalmente, una reducción de la máxima frecuencia
alcanzable por el diseño. Por ello, los niveles de redundancia hardware más utili-
zados son la doble, conocida como DMR (Dual Modular Redundancy) y la triple
o TMR (Triple Modular Redundancy).

La DMR minimiza el número de recursos redundantes, pero presenta el problema
de no poder identificar el módulo fallido ya que solo es capaz de detectar que se
ha producido un error. Ello hace necesario combinarlo con técnicas adicionales.
Al caso de DMR aplicado a procesadores se le denomina lockstep y se suele com-
binar con las técnicas checkpoint y rollback recovery. El checkpoint consiste en
guardar periódicamente el contexto (contenido de registros y memorias) de ins-
tantes identificados como correctos. Gracias a esto, una vez detectado y reparado
un fallo es posible emplear el rollback recovery para cargar el último contexto
correcto guardado. Las desventajas de estas estrategias son el tiempo requerido
por ambas técnicas (checkpoint y rollback recovery) y la necesidad de elementos
adicionales (como memorias auxiliares para guardar el contexto).

Por otro lado, el TMR ofrece la posibilidad de detectar el módulo fallido me-
diante la votación por mayoŕıa. Es decir, si tras comparar las tres salidas una
de ellas presenta un estado distinto, se asume que las otras dos son correctas.
Esto permite que el sistema continúe funcionando correctamente (como sistema
DMR) aún cuando uno de los módulos quede inutilizado. En todo caso, el TMR
solo enmascara los errores, es decir, no los corrige. Una de las desventajas más
destacables de ésta técnica es que incrementa el uso de recursos en más de un
300%. También cabe la posibilidad de que la salida discrepante sea la realmente
correcta (y que por tanto, las otras dos sean incorrectas), aunque este caso es bas-
tante improbable. Uno de los problemas que no se ha analizado con profundidad
en la bibliograf́ıa es el problema de la sincronización de procesadores soft-core
en sistemas TMR (o de mayor nivel de redundancia). Dicho problema reside en
que, si tras un fallo se inutiliza uno de los procesadores y el sistema continua
funcionando con el resto de procesadores, una vez reparado el procesador fallido,
éste necesita sincronizar su contexto al nuevo estado del sistema.

Una práctica bastante común en la implementación de sistemas redundantes es
combinarlos con la técnica conocida como scrubbing. Esta técnica basada en la
reconfiguración parcial dinámica, consiste en sobrescribir periódicamente el bits-
tream con una copia libre de errores apropiadamente guardada. Gracias a ella,
es posible corregir los errores enmascarados por el uso de algunas técnicas de
endurecimiento como la redundancia hardware. Esta copia libre de errores suele
omitir los bits del bitstream correspondientes a la memoria de usuario, por lo que

xi

solo actualiza los bits relacionados con la configuración de la FPGA. Por ello, a
esta técnica también se la conoce como configuration scrubbing. En toda la lite-
ratura consultada se ha detectado un vacio en cuanto a técnicas que propongan
estrategias de scrubbing para la memoria de usuario.

Con el objetivo de proponer alternativas innovadoras en el terreno de la toleran-
cia a fallos para procesadores soft-core, en este trabajo de investigación se han
desarrollado varias técnicas y flujos de diseño para manejar los datos de usuario
a través del bitstream, pudiendo leer, escribir o copiar la información de registros
o de memorias implementadas en bloques RAMs de forma autónoma. Aśı mismo
se ha desarrollado un abanico de propuestas tanto como para estrategias lockstep
como para la sincronización de sistemas TMR, de las cuales varias hacen uso
de las técnicas desarrolladas para manejar las memorias de usuario a través del
bitstream. Estas últimas técnicas tienen en común la minimización de utilización
de recursos respecto a las estrategias tradicionales. De forma similar, se propo-
nen dos alternativas adicionales basadas en dichas técnicas: una propuesta de
scrubbing para las memorias de usuario y una para la recuperación de informa-
ción en memorias implementadas en bloques RAM cuyas interfaces hayan sido
inutilizadas por SEEs.

Todas las propuestas han sido validadas en hardware utilizando una FPGA de
Xilinx, la empresa ĺıder en fabricación de dispositivos reconfigurables. De esta
forma se proporcionan resultados sobre los impactos de las técnicas propuestas en
términos de utilización de recursos, consumos energéticos y máximas frecuencias
alcanzables.

xii Resumen

Abstract

In the last years, the integration level of electronic circuits has been widely in-
creased with the development of design and manufacturing techniques. As a
result, complex system can be implemented inside of a single device. This high
level of integration concept, in connection with design, is commonly known as
SoC (System-on-Chip). One of the most interesting platforms to implement these
systems are the FPGAs (Field Programmable Gate Array), due to their flexibility
and the continued innovation in their technology.

The FPGAs can be programmed with different configurations to perform distinct
functions. This capacity together with the partial dynamic reconfiguration of
some SRAM-based or flash-based FPGAs, provide them with a valuable potential.
The employment of partial dynamic reconfiguration permits modifying just one
part in the array of the FPGA, while the rest of the circuit remains unchanged.
Consequently, FPGAs may be programmed by different partial designs, increasing
their functionality and decreasing the resource usage.

However, one of the most remarkable problems using SRAM and flash technolo-
gies is that certain FPGAs are especially sensitive to effects caused by energetic
particles from the cosmic radiation. Owing to these effects, different system fail-
ures can be produced, from worthless ones to really serious ones. The worst
failures might even hinder the correct performance of several important systems
in relation to railway, automotion or industrial control. Hence, a wrong per-
formance of these systems might cause permanent damages in highly expensive
equipment and even endanger the human life itself.

The existence of these problems as a result of the aforesaid effects makes the
importance of the fault tolerance concept unavoidable. Fault tolerance, is a
property related to digital systems and ensures certain quality of operation in
the presence of failures. Because of fault tolerance, the systems are supposed
to work properly at any time even though failures take place. For this purpose,

xiv Abstract

hardening techniques are applied to these systems, such as, ones which are based
on the redundancy of software and/or hardware.

On the other hand, most of the electronic devices which are used daily make use
of embedded systems which incorporate one ore more processor cores for the exe-
cution of the different tasks. In addition, the increase in complexity of the designs
makes the electronic systems which have been designed and tested beforehand
more attractive. Those designs are called IP cores (Intellectual Property cores).
Due to those reasons, the utilization of processor IP cores (known as soft-core
processors) in FPGA designs is gaining momentum.

Following this idea this work performs a research in the field of fault tolerance
for SRAM based FPGA designs especially focusing on soft-processors. With the
aim of improving the well established hardening techniques, this work proposes
several approaches that deal with distinct aspects related to fault tolerance. In
this way, three lockstep (a dual redundancy based technique) approaches, five
synchronization methods for repaired modules in modular redundancy schemes,
a method to recover information from memories with damaged interfaces and a
user-data scrubbing approach are proposed in this work. Several of these pro-
posed methods are based on the utilization of two methodologies to manage user
data of both, flip-flops and BRAMs, through the bitstream that have been also
developed in this work.

The proposed methods provide the designers with valuable tools when developing
fault tolerant designs implemented in SRAM based FPGA devices.

Contents

Laburpena v

Resumen vii

Abstract xiii

List of Figures xix

List of Tables xxiii

List of Acronyms xxv

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Structure of the Document . 5

2 Soft-Core Processors Implemented in SRAM Based FPGAs 7
2.1 General Aspects of Soft-Core Processors 9

2.1.1 Basic Architectures of Soft-Core Processors 10
2.1.2 Soft-Core Processor IPs . 12

2.2 SRAM Based FPGAs . 20
2.2.1 Introducing Programmable Logic Devices 20
2.2.2 Architecture of 7 Series Devices and Zynq-7000 All Pro-

grammable SoC by Xilinx 24
2.2.3 Zynq-7000 All Programmable SoC 32
2.2.4 Bitstream Structure of 7 series FPGAs 37
2.2.5 Managing Data Content by Utilizing the Bitstream 40

2.3 Radiation Effects on Soft-Core Processors implemented in SRAM
FPGAs . 46

xvi Contents

3 Hardening Soft-Core Processors Implemented in SRAM FPGAs 53
3.1 Scrubbing . 55
3.2 Hardware Redundancy . 59

3.2.1 Dual Modular Redundancy 62
3.2.2 Triple Modular Redundancy 66

3.3 Other Types of Redundancy . 69
3.3.1 Data Redundancy . 69
3.3.2 Software Redundancy . 72
3.3.3 Time Redundancy . 74

3.4 Dynamic Partial Reconfiguration to Fix Permanent Faults 76
3.4.1 Detection of Permanent Faults 76
3.4.2 Repairing Permanent Faults 77
3.4.3 Synchronization of Repaired Modules 80

3.5 Other Fault Tolerance Approaches 83
3.6 Evaluation of Hardening Techniques 86

3.6.1 Physical Fault Injection Techniques 88
3.6.2 Bitstream Based Fault Injection Techniques 92

3.7 Conclusions . 98

4 Contributions in Fault Tolerance for Soft-Core Processors 103
4.1 PICDiY: Target Soft-Core Processor 104

4.1.1 PICDiY’s Architecture . 105
4.1.2 PICDiY’s Instructions . 111

4.2 Bitstream Based BRAM Approach: Contribution in BRAM Data
Management through the Bitstream in 7 Series 114
4.2.1 Proposed Method to Obtain the Bitstream Structure of

Data in BRAMs . 115
4.2.2 Managing Data Content of BRAMs with the BBBA 119

4.3 Approach to Manage Data of Registers with the Bitstream 123
4.3.1 Proposed Flow to Protect/Unprotect Partial Regions in 7

series . 126
4.3.2 Proposed Flow to Generate Equal Implementations of a

Design in Different Reconfigurable Regions 129
4.4 Data Content Scrubbing Approach 131
4.5 Approach to Extract Data From Damaged Memories Using the

BBBA . 133
4.6 Lockstep Approaches . 135

4.6.1 Hardware Based Fast Lockstep Approach 135
4.6.2 Bitstream Based Low Overhead Lockstep Approach 139
4.6.3 Bitstream Based Autonomous Lockstep Approach 143
4.6.4 Lockstep Approaches Overview 145

Contents xvii

4.7 Proposed Synchronization Approaches for Repaired Soft-Core Pro-
cessors in Hardware Redundancy Based Schemes 146
4.7.1 Cyclic Resets Based Synchronization Approach 149
4.7.2 Memory and Address Force Based Synchronization Approach151
4.7.3 Synchronization Approach Based on Using an Interruption

and a Synchronization Memory 152
4.7.4 Complete Hardware-Based Synchronization Approach . . . 153
4.7.5 Complete Bitstream-Based Synchronization 155
4.7.6 Synchronization Approaches Overview 158

5 Validation of Fault Tolerance Approaches 159
5.1 Experimental Setup . 160
5.2 Validation of PICDiY Soft-Core Processor 162
5.3 Validation of the Bitstream Based BRAM Approach 166
5.4 Validation of the Approach to Manage Data of Registers with the

Bitstream . 171
5.5 Validation of the Data Content Scrubbing Approach 176
5.6 Validation of Approach to Extract Data From Damaged Memories

Using the BBBA . 177
5.7 Validation of the Lockstep Approaches 178
5.8 Validation of the Synchronization Approaches 183

6 Conclusions and future work 189
6.1 Conclusions . 189
6.2 Main Contributions . 191
6.3 Scientific Publications in the Context of this Work 193
6.4 Future work . 194

A Hardware Implementation details of the Proposed Approaches 197

List of Figures

1.1 FPGA application fields examples. 2

2.1 Block diagram of Harvard architecture. 10
2.2 Block diagram of Von Neumann architecture. 11
2.3 Block diagram of PicoBlaze. 14
2.4 Block diagram of SPARC core. 17
2.5 Picture of a silicon array of the XC157. 21
2.6 Block diagram of the Xilinx XC2064 logic cell array. 22
2.7 Arrangement of CLBs and switch matrices within the FPGA. . . . 25
2.8 7 series CLB example. 25
2.9 7 series flip-flop and flip-flop/LATCH block symbols. 26
2.10 VHDL code example of a flip-flop with INIT and SRVAL values. . 26
2.11 RAMB36 Block RAM primitive symbol. 28
2.12 CAPTUREE2 primitive symbol. 28
2.13 STARTUPE2 primitive symbol. 29
2.14 ILA core symbol. 31
2.15 Diagram of the functional blocks that constitute the Zynq-7000. . . 33
2.16 Replacing reconfigurable modules with the dynamic partial recon-

figuration. 36
2.17 A relocation alternative. 44
2.18 Flow chart of a context capture and restoration alternative. 45
2.19 Flow chart of an FPGA protection and unprotection alternative. . 45
2.20 Classification of Single Event Effects 48
2.21 Configuration memory SEU example in an FPGA design. 50

3.1 On-chip scrubbing. 56
3.2 Scrubbing with an external device. 57
3.3 Scrubbing with a hard processor in a SoC device. 58
3.4 Example of hardware redundancy with N modules. 60

xx List of Figures

3.5 Intermediate voter for the interconnection of tripled modules. . . . 62
3.6 Error detection in a DMR scheme. 63
3.7 Flow charts of lockstep approaches. 64
3.8 Basic error detection implementation for a DMR setup. 65
3.9 Examples of different TMR scenarios. 67
3.10 Voter alternatives for TMR approaches. 68
3.11 Example of error detection using Hamming code. 71
3.12 Example of a basic time redundancy scheme. 74
3.13 Flow chart for detection and correction of permanent faults. 77
3.14 Permanent error repair with tiling strategy. 79
3.15 Permanent error repair with spare reconfigurable partitions. 80
3.16 Block diagram of the PIHS3TMR. 82
3.17 Block diagram of the HETA approach. 86
3.18 The Isochronous Cyclotron U-120M. 91
3.19 ISIS pulsed neutron source at the Science and Technology Facilities 91
3.20 Different laser testing setups. 92
3.21 Basic flow of bitstream based fault injection. 93
3.22 Different bitstream based fault injection setups. 95

4.1 Block diagram of the PIC16. 106
4.2 Block diagram of the PICDiY. 107
4.3 STATUS register. 107
4.4 PCL and PCLATH registers. 108
4.5 State diagram of IDC’s FSM. 109
4.6 Mapping of PICDiY’s user-data memory and registers. 110
4.7 Byte-oriented file register operations instruction format. 111
4.8 Bit-oriented file register operations instruction format. 113
4.9 Literal operations instruction format. 113
4.10 Control operations instruction format. 113
4.11 Block diagram of the implementation scheme. 115
4.12 Example of the flow used to determine the BRAM data location

in the bitstream. 117
4.13 Flow diagram of the BRAM copy procedure. 120
4.14 Different copying types. 121
4.15 Context save and restore approach for 7 series devices with external

memory. 124
4.16 Effect of the RESET AFTER RECONFIG=TRUE property in FPGA pro-

tection. 126
4.17 Approach to unprotect several regions in 7 series devices based on

the RESET AFTER RECONFIG property. 128
4.18 Flow chart of the Location Constraints Flow. 130

List of Figures xxi

4.19 Flow charts of the Data Content Scrubbing Approach. 133
4.20 Example of an SEU affecting the interface of a BRAM. 134
4.21 Simplified example of extracting and relocating data from a dam-

aged memories. 134
4.22 Simplified block diagram of the HW Fast Lockstep approach. . . . 136
4.23 Finite state machine diagram of the adapted FSM. 137
4.24 Original and adapted registers. 138
4.25 Simplified block diagram of the Bitstream Based Low Overhead

Lockstep approach. 141
4.26 Context saving strategies. 142
4.27 Simplified block diagram of the Bitstream Based Autonomous

Lockstep Approach. 143
4.28 State diagram of the Lockstep Controller block. 144
4.29 SEU recovery process and impact of synchronization times. 148
4.30 Simplified diagram of the Reset Sync approach. 149
4.31 Proposed software flows when using Reset Sync 150
4.32 Simplified diagram of the Force Sync approach. 151
4.33 Simplified diagram of the Interrupt Sync approach. 153
4.34 Simplified diagram of the Hw Sync approach. 154
4.35 Simplified diagram of the Bitstream Sync approach. 156
4.36 Synchronization routine of the Bitstream Sync approach. 157

5.1 ZedBoard Zynq-7000 ARM/FPGA SoC development board. 160
5.2 Flow chart of the utilized validation strategy. 161
5.3 TestApp experimental setup. 162
5.4 Output operation and FPGA interface for PicoBlaze. 165
5.5 Block diagrams of the implemented approaches. 168
5.6 Device image of the design with placement constraints from Vivado.172
5.7 Fragment of the .ll file from the design with placement constraints. 172
5.8 Device image of the TMR design without placement constraints

from Vivado. 174
5.9 Device image of the TMR design witht placement constraints from

Vivado. 175
5.10 Test procedure for the lockstep approaches validation. 178
5.11 Test procedure for the synchronization validation. 183

A.1 Vivado block design of the validation setup for the Approach to
Manage Data of Registers with the Bitstream. 198

A.2 Vivado block design of the validation setup for the Approach to
Extract Data From Damaged Memories Using the BBBA. 199

A.3 Vivado block design of the validation setup for the HW Fast Lockstep.200

xxii List of Figures

A.4 Vivado block design of the validation setup for the Bitstream Based
Low Overhead Lockstep. 201

A.5 Vivado block design of the validation setup for the Bitstream Based
Autonomous Lockstep. 202

A.6 Vivado block design of the validation setup for the Reset Sync. . . 203
A.7 Vivado block design of the validation setup for the Force Sync. . . 204
A.8 Vivado block design of the validation setup for the Interrupt Sync. 205
A.9 Vivado block design of the validation setup for the Hw Sync. . . . 206
A.10 Vivado block design of the validation setup for the Bitstream Sync. 207

List of Tables

2.1 Packet header types (R: reserved bit; x: data bit). 38

2.2 Frame Address Register (FAR) format. 39

4.1 Instruction set of the PICDiY. 112

4.2 FAR addresses of BRAM columns in Z7020. 116

4.3 Bit distribution example of the first data word of the first 18K
BRAM in Z7020. 118

4.4 Data organization example of one frame of a 18K BRAM column
in Z7020. 119

4.5 Init addresses (hex) of 18K BRAMs in Z7020. 119

4.6 Lockstep approaches overview. 145

4.7 General synchronization objects and accessibility for PICDiY, Pi-
coBlaze and MicroBlaze processors. 148

4.8 Synchronization methods overview. 158

5.1 Implementation results summary of the soft-core processors
(@100MHz). 164

5.2 Primitive utilization of the soft-core processors (@100MHz). 164

5.3 Comparison of FSM coding examples for PICDiY and PicoBlaze
processors. 166

5.4 Implementation results summary of BRAM data copy and com-
parison tests (@100MHz). 170

5.5 Implementation results summary of a reconfigurable TMR imple-
mentation with and without placement constraints (@60MHz). . . 176

5.6 Primitive utilization of a reconfigurable TMR implementation with
and without placement constraints (@60MHz). 176

5.7 Implementation results summary of the lockstep approaches, a sin-
gle PICDiY and a coarse grained TMR (@60MHz). 180

xxiv List of Tables

5.8 Primitive utilization of the lockstep approaches, a single PICDiY
and a coarse grained TMR (@60MHz). 181

5.9 Implementation results summary of the synchronization approaches
(@60MHz). 186

5.10 Primitive utilization of the synchronization approaches (@60MHz). 187

List of Acronyms

ALU Arithmetic Logic Unit
AMBA Advanced Micro-controller Bus Architecture
APU Aplication Processor Unit
ASIC Application Specific Integrated Circuit

ASMBL Advanced Silicon Modular Block
ASTERICS Advanced System for the TEst under Radiation of Integrated

Circuits and Systems
BBBA Bitstream Based BRAM Approach
BRAM BlockRAM

BSD Berkeley Software Distribution
CISC Complex Instruction Set Computer
CLB Configurable Logic Block
CLK Clock
CMD Command Register

CMOS Complementary Metal-Oxide Semiconductor
CMT Clock Management Tiles
COTS Commercial Off-The-Shelf
CPLD Complex Programmable Logic Device
CPU Controling Process Unit
CRC Cyclic Redundancy Check

CSoPC Configurable-System-on-Chip
DD Displacement Damage
DFI Direct Fault Injection

DMIP Dhrystone Million Instructions Per Second
DSP Digital Signal Processor
DUT Device Under Test

xxvi List of Acronyms

ECC Error Correction Code
EDAC Error Detection and Correction
EDC Error Detection Code

EMIO Extended Multiplexed I/O
EPLD Erasable Programmable Logic Device
FAR Frame Address Register
FDRI Frame Data Input Register
FDRO Frame Data Output Register

FI Fault Injection
FIFA Fault-Injection Fault Analysis tool
FITO FPGA-based Fault Injection Tool
FPGA Field Programmable Gate Array
FSBL First Stage Boot Loader
FSM Finite State Machine

FUSE Fault injection Using Semulation
GNU General Public License
GPIO General Purpose Input/Ouputs
GSR Global Set Reset
HAL Hardware Abstraction Layer
HDL Hardware Description Languaje
IDC Instruction Decode and Control
IDE Integrated Device Electronic
ILA Integrated Logic Analyzer
IOB Input-Output-Block
IP Intellectual Proprietary

IPF In-place X-Filing
ISR Interrupt Service Routine

KCPSM Constant(K) Coded Programmable State Machine
LET Linear Energy Transfer

LGPL GNU Lesser General Public License
LRR Least Recently Replaced
LUT Look-Up Table
MBU Multiple Bit Upset

MCSoPC Multiprocessor-Configurable-System-on-Chip
MCU Multiple Cell Upsets
MIO Multiplexed I/O
MIPS Million Instructions Per Second

xxvii

MIT Massachusetts Institute of Technology
MMU Memory Management Unit
MPU Memory Protection Unit

NETFI NETlist Fault Injection
PL Programmable Logic

PLD Programmable Logic Device
PowerPC Performance Optimization With Enhanced RISC - Performance Computing

PS Processing System
PWM Pulse-Width Modulation
RAM Random Access Memory
RCRC Reset Cyclic Redundancy Check
RISC Reduced Instruction Set Computer
ROM Read Only Memory
RTC Real Time Clock
RTL Register-Transfer-Level

SCFIT Shadow Components-based Fault Injection Technique
SCHJ Self-Checking Hardware Journal
SEB Single Event Burnout
SEE Single Event Effect
SEFI Single Event Functional Interrupt

SEGR Single Event Gate Rupture
SEL Single Event Latch-up
SEM Soft Error Mitigation
SER Soft Error Rate
SET Single Event TransientMBU
SEU Single Event Upset
SFR Special Function Registers
SHE Single Hardware Errors

SIHFT Software Implemented Hardware Fault Tolerance
SoC System-On-Chip
SOI Silicon on Insulator

SoPC System-on-Programmable-Chip
SPARC Scalable Processor Architecture
SPLD Simple Programmable Logic Device
SRAM Static Random Access Memory
SWIFT Software Implemented Fault Tolerance

TID Total Ionizing Dose

xxviii List of Acronyms

TMR Triple Modular Redundancy
UART Universal Asynchronous Receiver Transmitter
VHDL VHSIC Hardware Description Languaje
VLSI Very-Large-Scale Integration

Chapter 1

Introduction

Nowadays, thanks to the continuous improvement of technology, complex systems
that incorporate a wide range of components (processors, oscillators and phase-
locked loops, external interfaces, ADCs and DACs, memory modules, etc.) can
be integrated in a single device. This concept is commonly known as System-on-
Chip (SoC). Several technologies are available to be used as an implementation
platform for SoC, such as, Application-Specific Integrated Circuits (ASICs), Field
Programmable Gates Arrays (FPGAs) or Application Specific Standard Products
(ASSPs). ASICs are devices utilized to develop specific applications. Hence, they
can be considered as custom made chips, mainly designed and used by a single
company. The main benefits of this technology are high performance and low
power consumption. Nevertheless, their development is very complex process
(resource-intensive and time-consuming). Due to this, ASICs’ cost effectiveness
is directly related to the production volume. While large production volumes
provide reduced per-unit costs, small ones generate prohibitive results. The de-
sign and development of ASSPs is similar to ASIC’s, providing the same benefits
and drawbacks. The most remarkable difference comparing with ASICs is that
ASSPs are more general-purpose devices, making possible to be used by different
customers.

FPGAs, especially SRAM-based ones, are lately gaining momentum as an al-
ternative to implement SoCs due to the advantages they provide. FPGAs are
integrated circuits that contain a huge number of programmable fabric that can
be configured to implement desired functions. One of the most relevant features
of certain FPGA types, like flash or SRAM based FPGAs, is their reconfiguration
capability. It makes them suitable for achieving customizable designs, capable of

2 Introduction

re-adapting in the field in response to the changes and correct possible issues, pro-
viding high flexibility, obsolescence mitigation, differentiation, low non-recurring
engineering costs and short time to market with adequate levels of integration,
power consumption and performance.

FPGA-based SoCs pave the way towards a new concept of hardware and software
integration. As a consequence, designers can take advantage of the complex
computation power of an embedded processor and the mentioned benefits of
FPGAs. Furthermore, these SoC systems also are also suitable to create custom
accelerators that enhance the performance of designs adapted to the requirements
of particular applications. Hence, as Figure 1.1 illustrates, much of the electronic
products used in daily life are starting to utilize SoCs implemented in FPGAs,
such as, consumer electronics and entertainment industry [12, 13], automotive
industry [14, 15], medicine [16, 17], military [18, 19], space and avionics [20, 21],
etc.

����

Figure 1.1: FPGA application fields examples.

SoC designs commonly incorporate one (or more) processor core(s) [22] for the
execution of the different tasks or to control the overall system. In many cases
the processor can be considered as one of the most crucial elements of a SoC. Em-
bedded processors are available either as built-in hard-cores or soft-cores (using
the FPGA reconfigurable logic resources). Although hard-core processors provide
better performance [23] [24], their usability is restricted. This is because, in case
of having, the amount of embedded processors available in each SoC is very lim-
ited. In contrast, soft core processors are more flexible, since a large number of
soft-core processors can be implemented (depending on the available resources of

1.1 Motivation 3

the device) [25]. Besides, several soft-core processors with different architectures
and complexities are available, enabling an accurate adaptation of the designs to
specific requirements. An additional advantage is that due to the reconfiguration
capability of FPGAs, soft-core processors can be implemented only on neces-
sary cases, reducing the power consumption and maximizing the functionality of
FPGA implementations. Furthermore, soft-cores can be designed independently
of the platform [26], achieving greater immunity to obsolescence than the circuit
or logic level descriptions.

1.1 Motivation

The continued innovation in the technology for developing and manufacturing
FPGAs has allowed to increase the integration level. For instance, the latest
Xilinx UltraScale+ are 16 nm FinFET+ based devices. This high integration
enables features, such as, high capacity, low-power consumption and faster oper-
ation. However, the high integration level comes with different drawbacks. One
of the most relevant one is the increase of the susceptibility to space radiation
induced faults [27]. Hence, a susceptibility that initially was a problem in avionic
or spacial applications, has become an actual concern even for ground-level ap-
plications. The group of different possible effects of these faults is called Single
Event Effects (SEEs). When working with SRAM based FPGA, the most critical
effect of this group are SEUs. SEUs are non-permanent soft errors [28] produced
by contaminant alpha particles in electronics or when protons and cosmic rays
from outer space interact with the atmosphere and generate subatomic particles
that collide with silicon atoms. SEUs can affect FPGAs flipping bits in both,
user memories or the configuration memory. SEUs located in the configuration
memory are the most critical case because they can alter the implemented design
by changing the configuration of crucial elements or their interconnections. The
repercussion of the SEUs on the configurations relies on the application in which
the FPGA device is implemented, including the number of configuration bits.
FPGAs typically have one order of magnitude more configuration memory than
BRAM [29–31]. However, faults in user memories can also be critical. Besides,
some applications may contain a considerably large user memory. Hence, the
reliability of user memories is also a concern in terms of fault tolerance.

As a result of an upset the entire system or a critical part of it can be unavailable
or present malfunction. For this reason, in certain applications, especially in
fields related to human safety or very valuable technologies, such as railway,
avionic or spacial applications the result of a single error can be catastrophic. In
those cases, high levels of reliability are required, which demands to apply fault

4 Introduction

tolerance techniques to harden the designs.

Plenty of fault tolerance approaches have been proposed in the literature to in-
crease the robustness of FPGA designs. Most of them are based on adopting some
redundancy level distinct fields, like hardware, software, time or data. Other,
methods exploit the dynamic partial reconfiguration capability of FPGAs. In
any case, despite that all the alternatives can increase the reliability of FPGA
implementations, each solution affects negatively to original designs in terms of
resource overhead, performance penalty and/or availability.

Among the different options the most extended techniques to harden soft-core
processor designs are based on both, double and triple, modular hardware redun-
dancies. This is because they provide adequate reliability levels and acceptable
performance penalties. However, the price to pay is the increase of hardware
overhead.

The scarcity of low hardware-overhead demanding solutions has motivated to
research for new alternatives that contribute to increase the fault tolerance level
of soft-core processor designs for SRAM FPGAs, without drastically increasing
the resource overhead. The increase of resource utilization commonly implies
a variety of drawbacks, such as, higher power consumption, more resources are
susceptible to induced faults, longer datapaths (which means on performance
penalty), etc.

On the other hand, as it has been observed there is a lack of alternatives to
manage user data through the bitstream, especially for the case of newer FPGA
devices, like Xilinx 7 series. Bearing in mind the idea that a bitstream based user
data management could provide new ways to harden FPGA designs, it has been
also considered especially convenient to conduct a research in this field.

1.2 Objectives

The major objectives of this work can be summarized in the following ideas:

• To make an analysis of the state-of-the-art in fault-tolerance techniques to
harden SRAM-based designs focusing on soft-core processors. This study
includes different redundancy based schemes and reconfiguration based
techniques.

• To propose new approaches to harden for soft-core processors implemented
in SRAM-based FPGAs or improve existing ones in terms of reliability,
hardware overhead, performance penalty and/or availability.

1.3 Structure of the Document 5

• To study the possibility of utilizing the bitstream to manage user data to
provide new ways to harden FPGA designs and propose novel methods to
exploit the potential of this approach.

• To design and implement different FPGA-based designs and tests in order
to validate the proposed approaches, including several comparisons with
well stablished schemes in order evaluate the results.

1.3 Structure of the Document

In addition to the actual introduction chapter, this document is divided into five
main chapters:

• Chapter 2. The most remarkable aspects of soft-core processors, including
the relevant IPs, and the most outstanding features and the architecture of
SRAM-based FPGAs (especially focusing on the Zynq and the 7 series by
Xilinx) are presented in Chapter 2. This chapter also discusses about the
structure of the bitstream and the approaches available to manage user data
utilizing it. This chapter closes introducing radiation effects on soft-core
processors implemented in SRAM FPGAs related to the fault tolerance.

• Chapter 3. The state of the art of techniques to provide fault tolerance of
SRAM-based FPGAs applicable to soft-core processors are introduced in
Chapter 3. This chapter also introduces the main fault tolerance evaluation
methods, including the physical fault injection methods and the bitstream
based fault injection methods.

• Chapter 4. Chapter 4 presents the main contributions of this work, in-
cluding a specifically designed soft-core processor IP and bitstream based
approaches to manage user data from both, BRAM memories and registers.
Based on those two main contributions different approaches related to fault
tolerance application are also proposed in this chapter.

• Chapter 5. The validation of the different proposed approaches and the
utilized evaluation platform are presented in Chapter 4. The results ob-
tained in different validation and comparison tests are also provided.

• Chapter 6. The document closes with Chapter 6, which summarizes the
entire work and provides an outlook to future researches based on the ap-
proaches proposed in it.

6 Introduction

Chapter 2

Soft-Core Processors
Implemented in SRAM
Based FPGAs

Electronic systems and electronic products used in daily life usually incorporate
one (or more) processor core(s) [22] for the execution of the different tasks, thanks
to their wide compatibility with high-level applications. Due to the tendency of
obtaining compact designs and the benefits that they provide, such as flexibility,
hardware and software cost reduction, obsolescence mitigation and hardware ac-
celeration [23, 32], embedded processors are gaining relevance over Commercial
Off-The-Shelf (COTS) processors. Embedded processors can be implemented as
hard-cores (also known as hard-macros) or soft-cores. While a soft-core is imple-
mented in logic fabric, a hard-core processor is built similar to regular integrated
circuits but maintaining a direct connection with the logic fabric. Although hard
core processors may provide better performance and predictability [23] [24], their
use may be limited taking into account that each implementation platform (in
the case of having any) has a limited and, usually, small number of processors.
In addition, hard-core designs are fixed designs that cannot be modified. In con-
trast, soft core processors are more flexible, since a large number of soft core
processors can be implemented (depending on the available logic resources of
the implementation platform). Besides, several soft-core processors with various
architectures and complexities are available, enabling accurate adaptations of de-
signs to specific requirements. Due to their platform independence [26], a wide
range of soft-cores are available.

8 Soft-Core Processors Implemented in SRAM Based FPGAs

Two principal technologies are available to be used as an implementation platform
for soft-core processors [33, 34]: Application Specific Integrated Circuits (ASICs)
and Field Programmable Gate Arrays (FPGAs).

When implementing complex systems, ASIC circuits are more efficient in terms
of resource usage compared to FPGA. It takes less logic gates to implement
the same application in ASIC than in FPGA. In addition, FPGA designs lead
to a higher power consumption and lower processing speed compared to similar
designs implemented in ASICs [35]. Nevertheless, using ASICs the design process
is extremely slow and the manufacturing requires high production volumes to be
economically feasible.

FPGA systems offer several advantages like low cost design, powerful and easy
software design environments, simulation and synthesis, short time to market
and reconfigurability. Due to that, FPGAs provide high capability to imple-
ment complex designs with a reasonable level of idle power consumption. One of
the greatest benefits provided by this technology is the dynamic reconfiguration
capability of SRAM-based FPGAs. Thanks to this feature an entire hard imple-
mentation, or a part of it, can be completely modified even during operation.

These benefits make SRAM-based FPGAs one of the most remarkable candidates
to implement soft-core processors. Although a soft-core processor implemented
in SRAM-based FPGAs is commonly slower (it is limited by the speed of its
technology) than its hard equivalent [23, 24], it provides interesting features [25]
like flexibility and low design cost. This flexibility means that it is possible to
customize the design for the applications that require particular characteristics as
in [36]. Since the programming is done in Hardware Description Language (HDL)
language with a high level of abstraction, the design task can be performed in a
straightforward fashion. Another benefit of SRAM-based soft-core processors is
that they can be implemented only when required. It is also possible to instan-
tiate as many cores as desired (bearing in mind the limitations of the FPGA),
maximizing the functionality and saving energy and logic resources. Considering
that soft-cores can be designed independent to platform [26] and that FPGA
implementation can be updated thanks to the reconfiguration, SRAM FPGA de-
signs based soft-core processor provide a high level of immunity to obsolescence.
As stated in [37], the obsolescence of Motorola 6800 hard processor present in
some equipment of French nuclear plants became a problem. The study devel-
oped in [37] compares a soft-core version of the 6800 hard processor as a solution
to cope with processor obsolescence.

An embedded soft-core processor uses the logic resources of the FPGA to build
the different elements, such as internal memory, registers, processors and internal
peripheral buses and external peripheral controllers. The more elements are

2.1 General Aspects of Soft-Core Processors 9

added to the processor, the larger power and usability are provided. Nevertheless,
a big size comes with a performance reduction and higher FPGA area usage. Due
to these reasons, the selection of a proper soft-core is a relevant decision to be
adopted by designers. An interesting strategy may be to utilize different small
soft-core processors in a large system, as in [38, 39], in a way that they can
manage different small tasks (not critical in terms of time by themselves) to the
main processor with more strict coupling with the hardware circuits.

This chapter opens with Section 2.1, discussing basic aspects of soft-core proces-
sors, including the common basic architectures and the most relevant IP cores
available. Next, the technology of SRAM FPGAs is presented in Section 2.2, fo-
cusing on Xilinx 7 series devices. This section also introduces the structure of the
bitstream of these devices and available methods to manage user data through
its utilization. This chapter closes discussing radiation effects in SRAM FPGAs,
especially targeting soft-core processor implementations.

2.1 General Aspects of Soft-Core Processors

Soft-core processors share the majority of features with their COTS counterparts.
In fact, a large number of soft-core available processors are based on the design
of classic microcontrollers or processing units. The more generalised soft-core
is, the less closely it fits the low-level target architecture. Thus, the less effi-
ciency is obtained in terms of area and performance. Thanks to the flexibility
provided by a soft-core design, the basic architecture of original designs can be
customized, enabling to develop soft-core implementations highly coupled with
specific requirements. Nevertheless, the price to pay when making adaptations
is a higher designing effort and the possibility of damaging the design. Hence,
the designing process of a soft-core processor requires a trade-off between several
aspects like, portability, efficiency, performance, power consumption, scalability,
maintainability, extensibility, complexity, customisability, design-cost and devel-
opment tool-chain support.

When customizing a design, aspects, such as, the available number of in/out
ports, interfaces for memories or communications buses, timers, different periph-
erals, etc. have to be considered. Although they can increase the flexibility
and functionality, they also come with a hardware overhead and a performance
penalty. For that reason, while some of the developed soft-cores implement com-
plete microcontroller architectures, other designs only implement the processor
section.

Although each processor design has its own characteristics and elements, there

10 Soft-Core Processors Implemented in SRAM Based FPGAs

are some fundamental components shared by them. The core piece of a processor
is the controller mechanism, which can be a single module or it can be divided in
various blocks. It is usually implemented by utilizing Finite State Machine (FSM)
structures and its purpose is to manage and synchronize the different elements.

Another crucial element is the Arithmetic Logic Unit (ALU), which performs
arithmetic and bitwise logic operations. Due to the inherent need of storing
various data, such as, instructions, user data or execution information, memory
components are other elementary aspects in processor’s architectures. Since each
storage function requires different characteristics, distinct memory elements are
usually implemented, like registers, memory stacks or large memory modules.

2.1.1 Basic Architectures of Soft-Core Processors

The most crucial aspect of a soft-core processor is its architecture because it
determines the entire design. Harvard and Von Neumann are the two prevalent
architectures.

The Harvard architecture (Figure 2.1), is a simple structure that includes an ALU,
a control unit, two memories and input/output ports. As it can be seen from the
figure, it separates physically the storage and signal pathways for the program
memory and the data memory. Thanks to this feature, each memory can have its
own specific characteristics (word width, address depth, timing, implementation
technology, etc.). Besides, a Harvard architecture also provides simultaneous
access to more than one memory system. Thus, it is possible to concurrently
access to program and data memories. There are also various modified Harvard
versions that add supplementary features to the original architecture, such as,
separate program and data caches or the ones that provide a pathway between
the program memory and the control unit. Its utilization is especially extended
in microcontrollers and DSP units.

���

��������

��	�

�����

�	
��

������
�

�	
��

���

Figure 2.1: Block diagram of Harvard architecture.

2.1 General Aspects of Soft-Core Processors 11

As Figure 2.2 depicts, the Von Neumann architecture is simpler than the Harvard.
It consists of a Central Processing Unit (CPU) that includes an ALU and a control
unit, a shared memory for user data and program instructions and input/ouput
devices. The shared memory and the usage of the same bus implies that it is
not possible to read an instruction and to write/read to/from the memory at
the same time. During program execution the CPU fetches a single instruction
from the shared memory and executes it. This sequential instruction execution
produces a relatively slow operation. This problem is usually referred as the Von
Neuman Bottleneck. For this reason, usually the common application scope of
this architecture usually are interface and control applications.

����������	
����	���

������	���

�����

�������	���

��������	�
����������

������

Figure 2.2: Block diagram of Von Neumann architecture.

Another decision that has to be adopted when designing a processor is to deter-
mine its instruction set. The two major strategies in this context are the Reduced
Instruction Set Computing (RISC) and the Complex Instruction Set Computing
(CISC):

• The CISC strategy is based on utilizing a single instruction to execute
various low-level operations, enabling multi-step operations or different ad-
dressing modes within a single instruction. To do so, this strategy focuses
on building the complex instructions in the hardware. Thanks to this a
CISC architecture can complete tasks with few instructions which reduces
the memory needs. In addition, a CISC scheme significantly reduces com-
plier’s work.

• The RISC strategy relies on the idea that a simplified instruction set can
provide higher performance levels due to the more limited usage of clock
cycles to execute each instruction. To adopt this strategy implies more
instructions and, hence, larger program memories. In addition, the com-
piler has to perform more work to convert high-level code into assembler.
Nevertheless, the utilization of reduced instruction strategies demands less
hardware to implement the functionality of the instructions. Another sig-
nificant advantage is that due to the uniform demand of clock cycles from

12 Soft-Core Processors Implemented in SRAM Based FPGAs

instructions, it is possible to utilize pipelining, which enables to increase
performance.

The number of clock cycles required to execute each instruction is a relevant
factor, which is known as instruction cycle. In many cases the demanded cycles
may vary depending on the instruction type. For instance, some processors need
more cycles to execute conditional branches than regular instructions. In any
case, the less clock cycles needed for each instruction, the faster is executed the
program. Execution with reduced clock cycles commonly comes with hardware
complexity. Which on the other hand, can affect the design’s overall performance
and/or the resource overhead. In [39], three versions of the same microcontroller
were developed, each of them with different structures of the instruction cycle: a
single clock cycle with a dual clock, a double clock cycle, and a single clock cycle.
The results obtained in terms of maximum achievable frequency were 36 MHz,
86.1 MHz and 55 MHz, respectively. In addition, the third version significantly
increased the hardware overhead. Due to those aspects, a good design practice
is to study the application or system requirements (system’s clock frequency,
available resources, etc.) in order to make a trade-off decision that fits better.

2.1.2 Soft-Core Processor IPs

Soft-core designs are usually available as Intellectual Property (IP) cores, which
can be protected under intellectual property laws or patents. An IP core is a
reusable unit of logic design that belongs to a designer or to a party. Hence,
once a soft-core IP has been designed, it is available to be re-used across several
designs. IPs often are available in HDL, such as, VHDL or Verilog, providing a
synthesizable Register-Transfer Level (RTL) description. This allows developers
to adapt designs at functional level by modifying the HDL code. However, consid-
ering that not all the IP vendors offer support or warranty for modified designs,
this possibility can be an arduous task depending on the situation. In cases where
vendors find protection against reverse engineering, the IP cores are provided as
netlists. A netlist is a generic gate-level description of the connectivity of circuit
elements.

Thanks to their adaptability, reusability, potential and the relative ease of de-
signing HDL models, there is a remarkable quantity of soft-core IP processors
available. Depending on the objective of developers, their utilization scope can
be commercial or a decentralized development model that encourages open collab-
oration, known as open source. Commercial IP cores are commonly distributed
under restrictive commercial licenses that have to be purchased by the client.
Open source is commonly distributed under more flexible and free licenses. A

2.1 General Aspects of Soft-Core Processors 13

remarkable aspect of the open-source project is that, since they are based on
community-work (which implies constant improvement), they can be classified in
different stages of development, starting from the initial alpha and beta phases
to the stable or mature categories.

One of the most remarkable open-source site is OpenCores [40]. OpenCores is a
community for development of hardware IP cores as open source. Despite of the
fact that OpenCores initially was a commercially owned organization, since 2015
is an independent Free and Open Source Silicon Foundation (FOSSi). Its site
hosts source code of a great number of digital hardware projects including vari-
ous sof-core processors. Projects from OpenCores have been used in a number of
researches and even in private companies. Most of the projects in OpenCores use
the GNU Lesser General Public License (LGPL) [41], a free software license that
permits developers and vendors to utilize the IP without being required to release
the source code of their own designs. However, any modification done in a com-
ponent under LGPL has to be shared with the OpenCores community. Another
widely used license is the Berkeley Software Distribution (BSD) [42], which is
less restrictive and disclaims any warranty. Sourceforge is another relevant open
source site that contains several soft-core processor projects. Nevertheless, the
scope of this site is more general since it gathers a wide range of project types.

Several publications have compared most of the existing soft-core processors [23–
25, 43–48]. For that reason, the following section only covers a brief summary of
some of the most remarkable soft-core processors available from both, the major
vendors and the open-source community.

Commercial Soft-Core Processor IPs

Most of FPGA vendors provide one or more soft-core processors to be used with
their devices. These IPs are optimized for the vendor’s technology which, usually
are platform dependant. Other commercial vendors that do not manufacture
hardware are exclusively focused on designing IPs. In these cases, the designed
IPs have in general platform independence, which enables to implement them in
different devices. In the following, a brief description of the major commercial
soft-core processor IPs is presented.

• MicroBlaze. The MicroBlaze is a Xilinx’s proprietary 32-bit soft-core
processor. It has a RISC architecture that can be customized with different
peripheral and memory configurations. It is highly optimized for Xilinx
devices, in a way that occupies significantly less area than the majority of
its counterparts, such as the OpenRISC 1200 or the LEON. Due to these

14 Soft-Core Processors Implemented in SRAM Based FPGAs

benefits, the MicroBlaze has been widely used in a number of projects
[8, 21, 49–62].

• PicoBlaze. The PicoBlaze is a 8-bit proprietary soft-core processor pro-
vided by Xilinx. This small RISC microcontroller developed by Ken Chap-
man [38], is one of the most popular small soft-cores when using Xilinx
devices [54, 58, 60, 63–76]. As Figure 2.3 shows, it is a simple design which
has been a key factor for its success. The PicoBlaze was released under
the KCPSM name. Despite that the official meaning of this acronym is
Constant(K) Coded Programmable State Machine, the initial meaning was
related with its creator (”Ken Chapman’s PSM”). Xilinx provides distinct
PicoBlaze versions for its device families (KCPSM, KCPSM2, KCPSM3
and KCPSM6). Third parties like Mediatronix and open-source projects
provide various development tool-sets for the PicoBlaze.

1Kx18

Instruction

PROM

64-Byte

Scratchpad RAM

Instruction

Decoder

16 Byte-Wide

RegistersIN_PORT

INTERRUPT

OUT_PORT

PORT_ID

Constants

P
ro

g
ra

m
 C

o
u
n
te

r

C
A

L
L
/R

E
T

U
R

N

S
ta

c
k

ALU

IE Enable

C Carry

Z Zero

Figure 2.3: Block diagram of PicoBlaze.

• Nios. Nios was Altera’s first 16-bit soft-core processor that was later re-
placed by the newer Nios II version. NiosII is a 32-bit soft-core designed
specifically for the Intel (formerly Altera) family of FPGAs. It has a Hard-
ware Abstraction Layer (HAL) architecture. Intel also allows to choose
different Nios II versions (Nios II/f ”Fast”, Nios II/e ”Economy” and Nios
II/s ”Standard”), each of them being optimized for specific applications.
In addition, a software tool chain is available for all versions that permits
to customize a set of peripherals, instruction, memories, and I/O circuitry.
Bearing in mind that Nios II is limited to operating systems that utilize a
simplified protection and virtual memory-model, an optional Memory Man-
agement Unit (MMU) can be implemented. This MMU allows to work with
hardware-based paging and protection operating systems, like the Linux
kernel. Finally, an also optional and more simpler Memory Protection Unit
(MPU) is available to provide a similar memory protection. The main ben-

2.1 General Aspects of Soft-Core Processors 15

efit of using the MPU over the MMU is its better performance. Despite
that the usage of this soft-core is less extended, various studies have used
it. In [77], UT Nios, an adaptation of the Nios II, was introduced.

• Cortex - M1. This proprietary soft-core is a 32-bit RISC ARM processor
licensed by ARM Holdings plc. Its design is based on the ARMv6-M archi-
tecture and is especially optimized for FPGAs. It has a three-stage pipeline,
configurable instruction and data memories, and 1 to 32 interrupts. The
utilization of this core in the literature is more limited.

• Xtensa. Xtensa is a set of 32-bit soft-core processors with RISC architec-
ture featured by Tensilica. These are highly adaptable IPs that allow to
customize several features like bus width, cache size, memory management
and interrupt control. In addition, thanks to the supplied tools, users can
extend Xtensa’s instruction set by introducing new instructions.

• TSK3000A. TSK3000A is a 32-bit, no royalty-free, Wishbone-compatible
and platform independent RISC soft-core processor from Altium Limited.
It provides a fast register access and a zero-wait state block RAM amount
that can be defined by the user, with a dual-port access. It has a five-stage
pipeline and it can handle up to 32 interrupts that work in two modes
(standard and vectored). Altium also provides the TSK51/52 IP, an 8-bit
Intel 8051 instruction set compatible soft-core processor.

• eSi-RISC. As its name indicates, it is a RISC soft-core processor archi-
tecture developed by Ensilica. This IP has a five-stage pipeline, supports
multiprocessing, can handle up to 32 interrupts and is available in five ver-
sions: eSi-1600, eSi-1650, eSi-3200, eSi-3250 and eSi-3260. While the first
two IPs feature 16-bit data-path implementations, the rest feature 32-bit
data-paths. Its instruction set can be freely intermixed. It supports both,
floating-point and fixed-point arithmetic.

• Other propietary IPs. Further to the mentioned IPs, additional com-
mercial soft-core processors are available, such as the ARC by Synopsys
Inc., MCL51 and MCL86 by MicroCore Labsm, etc.

Open-Source Soft-Core Processor IPs

The majority of the open-source soft-core processors are based on existing ar-
chitectures. While in many cases the reference design for these IPs is a classic
hardware processor or a microcontroller, in other cases the IPs are open-source
and platform independent version of a proprietary soft-core. Besides, some de-
signers have developed new soft-core processor architectures. The majority of

16 Soft-Core Processors Implemented in SRAM Based FPGAs

these new architectures are simple 8-bit processors. Due to the huge amount
of open-source soft-core processors available, the aim of the following list is to
enumerate the most relevant ones, especially focusing on small processors.

• LatticeMico32. LatticeMico32 is an 32-bit soft-core processor optimized
for FPGAs devices. Despite being developed by Lattice Semiconductor
Corporation, this is an open source soft-core licensed under a free IP core
license that can be implemented in FPGAs from any vendors. Both the
processor IP and the development tool-set are provided in a source-code
form. It has a RISC Harvard architecture and enables the possibility of
combining its two buses by using its bus arbitration logic. It is a relatively
small IP that has a six-stage pipeline. It can handle up to 32 interrupts
and is available in three basic configurations (basis, standard and full).

• LatticeMico8. The LatticeMico8 is an 8-bit soft-core processor from Lat-
tice Semiconductor Corporation. It combines an 18-bit instruction set with
32 general purpose registers to provide flexibility with a reduced resource
consumption and it only takes two cycles per instruction. As the Lat-
ticeMico32, it is licensed under a free open IP license and can be imple-
mented in devices from different vendors.

• OpenRISC 1200. The OpenRISC project, which gathers a series of de-
signs based on the OpenRISC 1000 RISC architecture (the crown jewel
project of the OpenCores community). Different cores are available, includ-
ing 32 and 64-bit processors that support floating point and vector process-
ing. The OpenRISC 1200 is a Verilog core, especially designed for FPGA
implementations. The OpenRISC community provides a GNU toolchain
for the OpenRISC that supports development in C and C++. Due to its
characteristics, it is an accepted architecture, utilized in both, commercial
and non-commercial scenarios.

• SPARC based soft-cores. The Scalable Processor Architecture (SPARC),
depicted in Figure 2.4, has inspired a large number of implementations, in-
cluding some popular soft-core designs. Its RISC architecture, initially
designed by Sun Microsystems Inc., has various revisions. In 2006, Sun Mi-
crosystems released the source-code of the UltraSPARC T1 soft-core pro-
cessor in open-source soft-core processor form. It is named OpenSPARC
and is one of the few, if not the only, available 64-bit soft-core architectures.
Two years later Sun Microsystems also released the upgraded OpenSPARC
T2 version in open-source form.

The UltraSPARC T1 is a complex multi-core design which utilizes too many
resources to be implemented in many FPGAs. Due to that, Simply RISC

2.1 General Aspects of Soft-Core Processors 17

Store BuffersStore Buffers

File

Registers
File

Registers

Strand

Instruction

Registers

Strand

Instruction

Registers

Strand

Instruction

Registers

I-Cache

Store Buffers
ALU

Strand

Instruction

Registers
Decode

File

Registers
File

Registers

Store Buffers

D-Cache

External

Interface

Strand

Scheduler

Figure 2.4: Block diagram of SPARC core.

developed the size reduced S1 soft-core based on its architecture but only
containing the CPU core and a Wishbone controller.

One of the most popular version of the SPARC is the LEON. This IP
is a very popular soft-core processor based on the instruction set of the
SPARC-V8 processor and that can be used in FPGAs by different vendors.
Despite that the LEON project was originally developed by the European
Space Research and Technology Centre, time after it was distributed by
Gaisler Research Inc. in 2008, Aeroflex Inc. acquired Gaisler Research,
which in 2014 was also acquired by Cobham plc. Due to this, nowadays
the LEON IPs are distributed by Cobham Gaisler AB. Two license modes
are available for LEON. While the first alternative is a fee-free LGPL/GPL
FLOSS license, the second option is a proprietary license. This config-
urable soft-core is provided in five versions: LEON2, LEON2-FT, LEON3,
LEON3-FT and LEON4. LEON2 is the most basic version, which includes
a five-stage pipeline and does not support symmetric multiprocessing. The
upgraded LEON3 version provides superior features like symmetric multi-
processing support and a seven-stage pipeline. The last upgraded version
is the LEON4 which includes new characteristics like a static branch pre-
diction added to the pipeline and higher potential performance. Finally,
LEON2-FT and LEON-FT are the fault tolerant versions of LEON2 and
LEON3 IPs, respectively. FT versions are popular in space-related fault
tolerance applications [78, 79]. Despite that they do not provide all the
features of original versions, FT IPs offer protection against induced faults.
This is achieved applying hardware triplication based hardening techniques
to the flip-flops and utilizing error detection and correction methods with
memories. The usage of LEON processors is widely extended in the lit-
erature [52, 80–96]. In [90], the SPARC core from a LEON3 soft-core is

18 Soft-Core Processors Implemented in SRAM Based FPGAs

substituted by a MIPS based core, adapting its functionality to different
buses and peripherals.

• MicroBlaze based soft-cores. The extended use of the MicroBlaze from
Xilinx has motivated the development of several open-source alternatives.
The most representative ones are: aeMB (beta), MB-Lite (stable), Open-
Fire Processor Core (alpha) and myBlaze (mature) from OpenCores and se-
cretBlaze developed by LIRMM, University of Montpellier. Although each
of them provides distinct features, for instance not implementing floating-
point support or utilizing different stage pipelines, all of them are MicroB-
laze compatible cores. In addition, [97] proposes a multiprocessor system
based on the MicroBlaze.

• PicoBlaze based soft-cores . This popular soft-core from Xilinx has also
inspired different platform-independent open-source projects like the Pa-
coBlaze (beta) and the copyBlaze (mature), available in Verilog and VHDL
respectively. In [26], another platform-independent version was presented.
As this work itself states, making adaptations in the highly optimized de-
sign of the PicoBlaze commonly comes with a resource overhead and per-
formance penalty.

• 8080 based soft-cores. Released in 1974 by Intel, the 8080 is considered
one of the first usable microprocessors. Its architecture inspired different
processors such as the Am9080 by AMD, Z80 by Zilog of the upgraded
8085 version by Intel. Several soft-core processors have been also devel-
oped inspired in its designs. Some of the most remarkable ones are avail-
able in OpenCores community: Lightweight 8080 compatible (stable), T80
cpu (stable), Wishbone High Performance Z80 (stable), z80control (alpha)
and 80e - Z80/Z180 compatible processor extended by eZ80 instructions
(stable).

• 6800 based soft-cores The MC6800, known as 6800, is an 8-bit processor
with a Von Neumann architecture released by Motolora in 1974. Its use
was widely extended in control designs for computer peripherals and test
equipment. OpenCores provides different soft-cores based on this processor:
System68 (stable), System11 (alpha), 68HC05/68HC08 (stable) and HC11
compatible Gator Microprocessor (stable).

• 6502 based soft-cores. The 6502 is another classic architecture that was
developed in 1975 by two of the former designers of the 6800. Due to its
reduced price, this microcontroller became very popular in its time. Open-
Cores provides several soft-core alternatives based on this design: T65 CPU
(stable), ag 6502 soft core with phase-level accuracy (beta), CPU6502 TC -

2.1 General Aspects of Soft-Core Processors 19

CPU65C02 TC Processor Soft Core with accurate timing (stable), T6507LP
(beta) and Lattice 6502 (beta), which is a 6502 based core optimized for
FPGAs from Lattice.

• PIC16 based soft-cores. PIC is a series of microcontrollers developed by
Microchip Technology, based on the PIC1650 by General Instrument’s Mi-
croelectronics Division. Since its first release in 1976, the microcontrollers
from the PIC series have gained a remarkable acceptance in both the in-
dustrial field and the hobbyists community. One of the most remarkable
versions is the PIC16, which is an 8-bit minimalistic design with a Harvard
RISC architecture. Aspects like its reduced price, wide availability, exten-
sive user base, large documentation and the free development tools available
have helped to increase its relevance. This popularity has motivated the de-
velopment of a number of PIC16 based soft-cores, many of the available in
OpenCores: RISC 16F84, PPX16 MCU (stable), ClaiRISC (stable), MINI-
RISC core (stable), RISC5x (stable), risc16f84 (stable). In addition, several
soft-cores based on the PIC16 architecture have been proposed in the litera-
ture, such as the CQPIC [98], the UMASScore [45] and the microcontroller
from [39]. In [99], a PIC16F84A based FPGA design was presented, which
improves the power stability over the commercial microcontroller.

• 8051 based soft-cores. In 1980 Intel released the 8051 microcontroller
based on the previous 8048, 8051 and 8052 units. Its 8-bit Harvard archi-
tecture has also been a reference for several soft-core implementations. The
most relevant IPs from OpenCores are: T51 MCU (stable), Lightweight
8051 compatible CPU (beta), Turbo 8051 (beta) and 8051 core (alpha). In
[100], the LP805X, a low power, modular and adaptable implementation of
the 8051 was presented.

• AVR compatibles. The AVR microcontroller developed by Atmel is an-
other reference design for various soft-core implementations. Initially de-
signed to execute C code, its simple RISC Harvard architecture and its ease
of programming are the main reasons for its popularity. OpenCores pro-
vides several open-source soft-cores: AVR Core (stable), AVR HP (stable),
Hyper Pipelined AVR Core (stable) and AVRtinyX61core (beta).

• Other soft-core processors. A large number of additional soft-core im-
plementations are available based on other architectures or designed from
scratch. The most remarkable IPs are: the DSPuva16 [34] by the Univer-
sity of Valladolid, the MicroSimplez based on the architecture presented in
[101], the MSL16 proposed in [102] and the DSP block based iDEA soft-core
processor developed in [103].

20 Soft-Core Processors Implemented in SRAM Based FPGAs

2.2 SRAM Based FPGAs

Field Programmable Gate Arrays (FPGAs) are one of the most interesting plat-
forms for implementing soft-core processors, thanks to their flexibility, perfor-
mance, low-cost design and short time to market. Furthermore, their reconfig-
uration capability makes them suitable for achieving flexible designs, capable of
re-adapting in the field in response to changes and correct possible issues. This
provides high reliability and obsolescence mitigation. For these reasons, the plat-
form selected in this work is a SoC device that includes an SRAM-based FPGA.
The following section summarizes the most relevant aspects of FPGAs, focusing
on the SRAM-based FPGAs and the Zynq device used in this work.

2.2.1 Introducing Programmable Logic Devices

FPGAs are Programmable Logic Devices (PLDs) utilized in electronic designs to
implement reconfigurable digital circuits. Unlike monolithic integrated circuits
that integrate fixed designs, PLDs are manufactured with an unsettled function.
This feature makes possible developing customized hardware designs that couple
closely with requirements of the application.

Before the rise of PLD technologies, the only available programmable devices
where memories, such as ROMs (Read Only Memories), PROMs (Programmable
ROMs), EPROMs (Erasable PROMs) and EEPROMs (Electrically Erasable
PROMs). Despite they were a valuable alternative to store data, they presented
several drawbacks, such as a slow operation (compared with dedicated logic cir-
cuits), unreliable asynchronous function, high power consumption and high costs.
Besides, due to the lack of input/output registers they were not a stand-alone
alternative to implement sequential logic designs.

Due to the described limitations, there was a significant need for new approaches.
This is the reason why the XC157 Multi-Gate Array (released by Motorola in
1968) depicted in Figure 2.5 (obtained from its data sheet) was a milestone in
the history of programmable logic devices. This first programmable logic de-
vice was a simple gate array with 30 input/output pins and 12 gates. In the
following years several devices arose, such as the TMS2000 from Texas Instru-
ments Inc., the first erasable PLD developed by General Electric, the DM7575 (a
mask-programmable logic array) from National Semiconductor or the MMI 5760
(programmable associative logic array) by General Electric.

Since these first release the programmable logic technology has experimented a
huge evolution offering a wide range of devices. Despite the complexity and the

2.2 SRAM Based FPGAs 21

Figure 2.5: Picture of a silicon array of the XC157.

variety of available technologies, programmable logic devices can be divided in
three major families: Simple Programmable Logic Devices (SPLDs), Complex
Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays
(FPGAs).

SPLDs are the simplest, smallest and cheapest type of PLD. SPLDs are mainly
comprised of a small number of interconnected macrocells, which are composed
by different elements, like flip-flops or combinatorial logic. Due to this small
number of macrocells they provide a limited logic capacity. The concept of
SPLD gathers several type of devices, such as Programmable logic arrays (PLAs),
Programmable Array Logics (PALs), Generic Array Logics (GALs) or Field-
programmable Logic Arrays (FPLAs). The technologies for the majority of
SPLDs are either fuse or non-volatile memory cells (EPROM, EEPROM, Flash,
etc.).

CLPDs can be considered as single-chip programmable devices containing a struc-
ture of several SPLD-like modules. They usually have a fast pin-to-pin delay that,
once programmed, can lock their design. The structure of these devices consists of
macrocells that contain the fabric logic with a sea-of-gates, a switch matrix and a
functional block. CPLDs are considered coarse-grain devices. The configuration
of all the resources is stored in its own (on-chip) memory. Although the number of
gates is considerably larger than in SPLDs, it is a moderate quantity when com-
paring with other technologies. Due to this limited complexity they are generally
used for glue logic applications. Bearing in mind the manufacturers and device
families available, the CPLD’s technology can be based on EPROM, EEPROM,
Flash, or SRAM cells. The concept of CPLD brings together various devices like

22 Soft-Core Processors Implemented in SRAM Based FPGAs

Erasable Programmable Logic Devices (EPLDs), Simple Programmable Logic
Devices (SPLDs), etc.

At the beginning of the 1980’s there was a gap in the digital electronic business.
On the one hand, they were configurable SPLD and CPLD technologies that
provide a fast designing but couldn’t implement large or complex applications.
On the other hand, ASIC technology was able to support highly complex designs
that required an extremely expensive and complicated design process. In order
to fulfil this gap Xilinx Inc. released the XC2064, in 1985, which is considered
the first commercial FPGA device. Figure 2.6 (obtained from its data sheet)
shows the entire block diagram of the XC2064, which was based on the CMOS
technology, that also used SRAM cells for configuration functions.

Figure 2.6: Block diagram of the Xilinx XC2064 logic cell array.

Despite that originally FPGAs started competing with CPLDs sharing similar
application scopes, thanks to their evolution, FPGAs increased their capabilities
and speed taking over new application fields. Nowadays, FPGAs are utilized to
implement complete and autonomous SoC designs. Basically FPGAs are inte-
grated circuits that can be configured by the final user after the manufacturing
process. They are fine-grain devices, since they are composed by a large number
of small logic blocks that contain distinct logic resources. Those logic blocks are
distributed following an array structure and are interconnected with reconfig-
urable connections. Due to this FPGAs offer higher complexity and versatility
levels. Distinct architectures are used to manufacture FPGAs. Some of the most
relevant are: the CMOS based and one-time programmable Antifuse FPGAs
widely used in fault tolerant space application, the CMOS and static memory

2.2 SRAM Based FPGAs 23

based reprogrammable SRAM FPGAs and the CMOS and Flash-erase EPROM
technology based Flash FPGAs.

While some of the first technologies, such as Fuse, PROM and EPROM have be-
come obsolete, new technologies are being investigated. Remarkable technologies
are PCM based non-volatile SRAMs [104, 105]. Nowadays, thanks to its high
capability and relatively reduced cost the prevalent technology are the SRAM
based FPGAs.

FPGA market is facing a relevant globalization process. This process in which
some enterprises acquire or merge with competition companies and others simply
cease activity: As a consequence it has generated major changes in the FPGA
market. For instance, Tabula shut down its activity on 2015 or Actel Corpo-
ration was acquired by Microsemi Corporation on 2010. Nevertheless, the most
remarkable change came when, in 2015, Intel acquired Altera Corporation, one of
the two historical leaders of the industry. Xilinx Inc., the other principal vendor
continues growing and overtaking Intel, and hence leads the market. In addition
to the two majors, different vendors provide FPGA devices, such as Achronix
Semiconductor, Lattice Semiconductor Corporation or e2v. QuickLogic, which
previously backed away from the FPGA market, has returned with the ArcticPro
eFPGA IP.

Nowadays, Xilinx offers a wide spectrum of products to address different range
of system requirements demanded by the market. In this way, Xilinx provides a
multi-node product portfolio, which bearing in mind the different manufacturing
technologies can be divided in four series:

• Spartan-6 (45 nm): Highly optimized FPGAs in terms of cost and size.

• 7 series (28 nm): They gather a wide range of devices, starting from low
cost to high-end FPGAs.

• Ultrascale (20 nm): High integration level and routability improvements.

• Ultrascale+ (16 nm): The latest architectures, one step further in inte-
gration.

Despite Ultrascale devices are the high-end product of Xilinx, 7 series devices
offer the best cost-efficiency trade-off. Gathering some of the most remarkable
products of Xilinx catalogue, 7 series provide solutions for a wide range of design
requirements.

24 Soft-Core Processors Implemented in SRAM Based FPGAs

2.2.2 Architecture of 7 Series Devices and Zynq-7000 All
Programmable SoC by Xilinx

Xilinx 7 series include four FPGA families (Spartan-7, Artix-7, Kintex-7 and
Virtex-7) and the Zynq-7000 all programmable SoC whicht are based on a 28 nm
high-k metal gate process technology. Each device of the different families targets
a particular market segment. They offer distinct alternatives in terms of price
range, form factor, high-end connectivity bandwidth, logic resources capacity, sig-
nal processing capability, etc. The technical evolution of 7 series devices has lead
to considerably enhance system performance with 2.9 Tb/s of I/O bandwidth,
obtaining capacities of up to 2 million logic cells and cutting power consumption
by 50% compared with previous generations [106].

Despite that in many cases the synthesis tool decides and assigns the resources
without needing any action from the designer, it is advisable to understand some
concepts of the architecture and logic resources of FPGAs to take advantage of
its full potential.

As Figure 2.7 shows, the architecture of 7 series devices, like most FPGAs, is
based on a logic block array structure interconnected with the general routing
network via switch matrices and surrounded by a periphery of I/O blocks. This
reprogrammable network of signal paths is called routing. Due to the variety
of resources and the interconnection options available, in most designs several
routing alternatives that may produce different results in terms of efficiency or
performance can be obtained. The complexity of the designs and the intercon-
nection features require the usage of routing and placement tools. These tools
provide optimized routings by using various analysis and algorithms. Although
that in some cases it can help to understand and improve the design, generally
is not necessary to acquire a specific knowledge about interconnection features.
Usually the routing process is transparent to developers.

7 series FPGAs include several dedicated resources and primitives, some of the
most relevant ones are introduced in the following lines.

Configurable Logic Block (CLB)

In Xilinx devices the fundamental building logic blocks used for implementing
both, combinational and sequential circuits, are named Configurable Logic Block
(CLB) [1]. As Figure 2.8 illustrates, each of the 7 series CLBs (which are iden-
tical to the CLBs of Virtex-6 FPGAs) contains two slices that are comprised by
the following resources: four Look-Up Tables (LUTs), wide-function multiplex-
ers, eight flip-flops and a dedicated high-speed carry logic. Depending on the

2.2 SRAM Based FPGAs 25

FPGA

Switch Matrix

I/O Block

Configurable
Logic Block

Figure 2.7: Arrangement of CLBs and switch matrices within the FPGA.

configuration, the slices utilize these resources to implement arithmetic, logic or
ROM functions. Moreover, there are some special slices that can store data as
distributed 64-bit RAM or as shift registers (a 32 bits register or a dual 16-bit
register). While regular slices are named SLICEL, the special slices are called
SLICEMs. A CLB can be comprised of two SLICEL or a SLICEL and a SLICEM.
Around the 2/3 of the slices are SLICELs and the remaining 1/3 are SLICEMs.

Switch

Matrix
Slice
(0)

Slice
(1)

COUT COUT

CIN CIN

CLB

Figure 2.8: 7 series CLB example.

In 7 series FPGAs each slice contains four LUTs or logic-function generators.
A remarkable feature of LUTs is that propagation delay through them is the
same no matter the function implemented. In addition, each LUT can be set as

26 Soft-Core Processors Implemented in SRAM Based FPGAs

6-input and a single output LUTs or as 5-input and independent outputs dual
LUTs (LUT5). The outputs of LUT5s can be optionally registered in flip-flops.
Four of the eight flip-flops from each SLICE can be configured as latches, while
the remaining flip-flops cannot be utilized. Apart from regular LUTs, each slice
contains three additional multiplexers that can be utilized to combine up to four
LUTs enabling functions of eight inputs.

As Figure 2.9 (obtained from [1]) shows each flip-flop of 7 series devices provides
SRHIGH/SRLOW (SRVAL) and INIT0/INIT1 (INIT) options. Determined by the
HDL design, each option and its value are configured and stored in the bitstream.
The example from Figure 2.10 shows a VHDL code for a flip-flop where both INIT
and SRVAL values can be determined. While SRVAL values are controlled by the
local SR control signal, INIT values are mainly utilized during the initialization
after reconfiguration. However, INIT values can be updated performing a context
capture with the CAPTUREE2 primitive.

INIT1
INIT0
SRHIGH
SRLOW

SR

D

CE

CK

Q

(a) Flip-flop block.

INIT1
INIT0
SRHIGH
SRLOW

SR

D

CE

CK

QLATCH
FF

(b) Flip-flop/LTACH
block.

Figure 2.9: 7 series flip-flop and flip-flop/LATCH block symbols.

��������	��
������	�����

�������

������������

�����

�����������������
��������������
���

���������������� !"������
���

�������������������#���$��

����������������

�������������������#��%&'("�)�

�������������������

�����������

�����������

%&%"��%&%"���
���

! *+���! �,-��
���

Figure 2.10: VHDL code example of a flip-flop with INIT and SRVAL values.

2.2 SRAM Based FPGAs 27

Block RAM (BRAM)

When using FPGAs, apart from the external memories, memory elements can
be implemented using dedicated Block RAM (BRAM) modules [2] or distributed
general-purpose fabric logic. While distributed memories are more appropriate
for storing small amounts of data and allow aster access, BRAMs are the de facto
design selection if the application stores and manages lots of data. They are pro-
vided with customizable characteristics such as, data width and depth, single
or dual input port, control ports and a protection based Error-Correcting Code
(ECC). Hence, the designer should select the most adequate memory implemen-
tation depending on the specifications of the design. Otherwise, an improperly
designed application with overestimated storage requirements would make the
synthesizer reserve more memory space out of the FPGA logic slices than really
needed.

BRAMs in Xilinx’s FPGAs are very flexible. Each BRAM can be configured as
a single or dual-port memory and can be set as a single 36 KB memory block
or two independent 18 KB memory blocks that share nothing but the stored
data. The 36 KB BRAMs are composed by a pair of 18KB BRAMs (top and
bottom). Figure 2.11 (obtained from [2]) depicts the I/O ports of the RAMB36
primitive. Different 36 KB or 18 KB BRAMs can be chained together to form
larger memories. Moreover, when using the dual port configuration, both ports
can be implemented with different width. In this way, each port can be configured
as 32Kx1, 16Kx2, 8Kx4, 4Kx9 (or x8), 2Kx18 (or x16), 1Kx36 (or 32) or 512x72
(or x64).

BRAMs are also equipped with an optional ECC protection based on a Hamming
code. Each 64-bit-wide BRAM utilizes eight additional Hamming code bits to
carry out single-bit error corrections and double-bit error detections during read-
ings. The use of this feature can save logic resources from the FPGA, but also
adds several drawbacks [107]. The ECC requires two clock cycles to complete
the reading process, which in many cases may penalize the system with an extra
clock cycle latency. Furthermore, when the data width is not a multiple of 64, a
double-bit upset can point out errors in the unused bits.

CAPTUREE2 primitive

The CAPTUREE2 primitive [3] (Figure 2.12 obtained from [3]), is a tool provided
by Xilinx for 7 series devices. It offers the possibility to capture the state of user
registers and store it in the bitstream by driving the GCAPTURE command. An
alternative to the utilization of the CAPTUREE2 primitive is to load the GCAPTURE
by writing the 0x0000000C command in the CMD register through the bitstream.

28 Soft-Core Processors Implemented in SRAM Based FPGAs

Figure 2.11: RAMB36 Block RAM primitive symbol.

By virtue of this functionality, current register (flip-flop and latch) values can
be stored in the configuration memory by triggering the CAP input from this
primitive. Once the CAP has been asserted, the content of registers is captured
at next low-to-high clock transition. These register values are stored in the same
configuration memory cell that programs the init state configuration of registers
(INIT values). These register values can be read from the device along with all
other configuration memory contents utilizing the readback function. Although
the default option is to capture data after every trigger when transition on CLK

while CAP is asserted, this primitive provides the ONESHOT=TRUE attribute to limit
the readback operation to a single data capture. One significant limitation of this
primitive is that it does not capture the content of SRL, LUT RAM and BRAM.

CAPTUREE2
CAP

CLK

Figure 2.12: CAPTUREE2 primitive symbol.

2.2 SRAM Based FPGAs 29

Another relevant limitation of this method is that it stores in the bitstream
the content of all the registers from the device, even when only some particular
registers are needed to be captured. Hence, the information of the registers that
should remain unchanged would also be updated. In order to solve this problem,
the resources of the device that must remain unchanged have to be protected by
setting certain bits of the bitstream. This process requires a complex bitstream
modification process, especially bearing in mind that Xilinx has not released
enough information for 7 series devices bitstream.

To take advantage of the CAPTUREE2 primitive, it is necessary to previously know
the location of each data bit in the bitstream. The most straightforward way to
obtain this information is to use Xilinx’s software (Vivado, ISE, etc.) to generate
the logic location text file (*.ll).

STARTUPE2 primitive

The STARTUPE2 is a primitive that features an interface that relates the user
logic resources with the status signal and the configuration logic control. This
primitive can be utilized in an implementation to obtain user control over certain
selected configuration signals during the operation. As Figure 2.13 (obtained
from [4]) illustrates, it provides with different input and output ports, some of
them being associated with the startup sequence. The startup sequence, which
lasts a minimum of eight clock cycles, is an initialization process managed by an
eight-phase sequence that is commonly performed after loading the configuration
bitstream. The specific order of the initialization phases can be varied by the
user through bitstream commands.

Figure 2.13: STARTUPE2 primitive symbol.

One of the most relevant ports of this primitive is the GSR (Global Set/Reset).
The GSR resets the device by driving the GRESTORE command. This active high in-
put port leads an asynchronous set/reset signal that enables to initialize CLB/IO

30 Soft-Core Processors Implemented in SRAM Based FPGAs

flip-flops and DSP registers of the entire device in their initial state. The ini-
tialization values of flip-flops are determined by the INIT0/INIT1 options (2.9)
defined in the bitstream. Furthermore, INIT values can be updated with actual
values of registers via GCAPTURE command. A remarkable aspect of the utilization
of GSR signal is that it does not require general-purpose routing.

In 7 series FPGAS the GRESTORE command can be driven with the GSR signal
of the STARTUPE2 or loading the 0x0000000A command in the CMD register.
GRESTORE command is commonly asserted during the initialisation process after
configuring the FPGA to load the INIT values. Considering that the skew and
release processes are done asynchronously, some flip-flops may be released in
different clock cycles causing metastable events. For this reason, it is advisable
to stop the clock before asserting the GSR signal and to wait until it spreads across
the entire device. Another recommendable practice when using the GSR signal
is to cluster tightly all the registers in order to minimize the path length.

Other Resources

Other remarkable resources available in 7 series FPGAs are the I/O banks, DSP
slices, clocking resources and the ILA core.

• Devices from the 7 series feature high-performance and high-range I/O
banks, each of them containing (with some exceptions) 50 SelectIO pins
that can be configured for different standards. While high-performance I/O
banks are designed for high-speed interfacing with low voltages (up to 1.8V),
high-range I/O banks are tailored to support a variety I/O standards with
higher voltages (up to 3.3V). 7 series FPGAs contain different combinations
of these banks distributed along the periphery of the device. Moreover,
additional I/O logic design primitives that provide specific features are
available.

• An FPGA contains several clocking resources distributed (CLBs, BRAMs,
DSPs, etc.) in different clock regions, which number varies depending on
the device. Each clock region spans 50 CLBs from top to bottom up within
an horizontal clock row. The management of regional and global I/O and
clocking resources from 7 series devices enables to meet both simple and
complex clocking requirements. This clock management is performed by
utilizing the Clock Management Tiles (CMTs) that enable different func-
tionalities, such as removing skews, synthesis of the clock frequency and
jitter filtering. When utilizing clock management functions, it is advisable
to avoid the use of non-clock resources, like the local routing. On the other
hand, utilizing global clock trees permits clocking the synchronous elements

2.2 SRAM Based FPGAs 31

placed within the devices. 7 series FPGAs also support user clocks by using
the dedicated clock-capable inputs available in each I/O bank.

• FPGAs usually include several dedicated Digital Signal Processors (DSPs),
which are used to enhance the performance and save resources, like bi-
nary multipliers and accumulators, when implementing fully parallel algo-
rithms. In 7 series FPGAs the DSP element is the DSP48E1 slice, which
provides a small footprint, full adaptability, low-power consumption and
high speed. In addition to signal processing applications, DSPs are useful to
enhance several functions, like memory address generators, wide dynamic
bus shifters, etc. Some of the most relevant features of DSP slices are:
a 25x18 2’s-complement multiplier, a 48-bit accumulator, a power saving
pre-adder, a single-instruction-multiple-data arithmetic unit and a pattern
detector.

• 7 series FPGAs integrate a customizable Integrated Logic Analyzer (ILA)
IP core, Figure 2.14 shows its symbol (obtained from [5]). When utilizing
the Vivado Desing Suite from Xilinx, this enables to monitor internal signals
of an implementation. This logic analyser supports a number of features,
such as boolean trigger equations or edge transition triggers. It also enables
to utilize multiple probe ports that may be combined into a single condition
or triggering. Bearing in mind that the ILA is a synchronous core, the clock
constraints of the design are also included in the elements inside the ILA
core. The ILA core utilizes resources from the FPGA to implement different
features, such as BRAMs to store the processed data. This aspect has to be
considered when analysing the utilization reports of implemented designs.

Figure 2.14: ILA core symbol.

32 Soft-Core Processors Implemented in SRAM Based FPGAs

2.2.3 Zynq-7000 All Programmable SoC

Zynq-7000 All Programmable SoC [6] is a remarkable example of the newest de-
vices based on the SoC concept. It integrates an ARM-based processor system
with the reconfigurable fabric logic of the Xilinx 7 series FPGAs. Two Zynq
models are available: the single-core Zynq-7000S and the dual-core Zynq-7000.
The main difference of the Zynq architecture over previous FPGAs with em-
bedded hard processors (i.e. the PowerPC) is that, while previous devices were
FPGA-centric models, Zynq is a processor-centric platform. Moreover, thanks
to the huge number of traces (over 10.000) that connect the Processing Sys-
tem (PS) to the FPGA fabric, it provides the device with a wide bandwidth
connection between the Processing System and the Programmable Logic (PL).
Hence, it requires less infrastructure. Zynq also supports several features includ-
ing two 12 bit analog-to-digital converters, three Phase-Locked Loops (PLLs),
two JTAG debug ports, an integrated block for PCI express designs, low-power
serial transceivers, etc. In this way, the Zynq SoC makes it possible to exploit
the logic as an auxiliary resource that may be used to increase the performance
of deployed applications. Zynq also offers different strategies to reduce the power
consumption: shutting down the PL, dynamically reducing the clock speed in the
PS or standby the ARM processor.

As shown in Figure 2.15 extracted from [6], Zynq is divided in two main regions
(PS and PL) with separate power domains. Thanks to the power detachment
of both regions, when required, the PL can be selectively power down. Since
the PL uses the same FPGA technology from Xilinx 7 series devices, it includes
all their previously presented logic resources (CLBs, BRAMs, DSP48E1, etc.).
On the other hand, the PS allows to operate stand-alone programs and operating
systems, such as Linux, and manages both boot and configuration processes. The
PS can be divided into four main parts:

• Application Processor Unit (APU). It consists of a single or dual-
core ARM Cortex-A9 MPCore that boots immediately at power-up and
can work with several operating systems without dependence of the pro-
grammable logic. It can operate in single processor and asymmetric or
symmetric dual processor modes, and supports single and double precision
floating point operations.

• I/O Peripherals. They support several industry-standard interfaces for
external communication, including distinct General Purpose Input/Ouputs
(GPIOs), two Gigabit Ethernet Controllers, two SD/SDIO Controllers,
USB Controllers, two SPI Controllers, two CAN Controllers, two UART
Controllers, two I2C Controllers and PS MIO I/Os. Up to 54 GPIO signals

2.2 SRAM Based FPGAs 33

are available for device pins routed through the Multiplexed I/O (MIO)
and 192 GPIO signals communicate the PS and the PL via the Extended
MIO (EMIO).

• Memory interfaces. It includes static and dynamic memory interface con-
trollers. While the static memory controller enables to work with NAND
and Quad-SPI flash, parallel NOR flash, and parallel data bus interfaces,
the dynamic memory controller supports DDR2, LPDDR2, DDR3 and
DDR3L memories.

• Interconnection elements. These elements provide communication be-
tween the PL, the APU, the memory interface and I/O peripherals via a
non-blocking multilayered ARM AMBA AXI interconnection, which sup-
ports simultaneous master-slave operations.

Figure 2.15: Diagram of the functional blocks that constitute the Zynq-7000.

34 Soft-Core Processors Implemented in SRAM Based FPGAs

Zynq Reset

The system reset process is a sequence that initializes the system and executes the
First Stage Boot Loader (FSBL) from the selected boot memory. This process
provides the user with the possibility to customize the PS and PL. The Zynq
supports several reset types whitin the PS. For instance, a peripheral reset that
resets a subsystem controlled by software or a power-on reset which resets the
complete system. These reset sources conform the system reset, which drives
reset signals to each module and system. Various alternatives are available to
initiate a reset process:

• A hardware reset driven by the system reset signal (PS SRST B) and the
power-on reset signal (PS POR B)

• A a software reset able to generate both system-level or a sub-module reset.

• A reset generated by the JTAG controller, which can reset both the entire
system or a debug portion of the PS.

• A reset generated by the three watchdog timers available.

Xilinx also provides the LogiCORE IP Processor System Reset Module that
enables to reset the complete PS, including the processor and peripherals. This
core allows to customize several parameters by enabling or disabling different
features in order to adapt it to user’s specifications.

Zynq Boot

The boot of Zynq-7000 devices is a two-stage process managed by the PS. It
enables to choose between a non-secure booting or a secure booting (JTAG dis-
abled) that supports 256-bit AES, 256-bit SHA and 2048-bit public key decryp-
tion/authentication. During the booting process the ARM (or one of the ARMs)
reads the boot program from the on-chip ROM, executes it and copies a FSBL
code from of the flash memories (or downloaded through JTAG) to the on-chip
memory. FSBL boot code can be entirely controlled by the user, enabling the
customization of the boot code. After loading the FSBL, it is executed by the
ARM, providing the possibility of loading the bitstream to configure the PL.

Reconfiguration on the Zynq

One of the most remarkable features of 7 series FPGAs, like most SRAM-based
FPGAs, is that they can be reconfigured dynamically (while system running)

2.2 SRAM Based FPGAs 35

[108]. The configuration and reconfiguration processes are done by loading spe-
cific configuration bit stream files, named configuration bitstreams or .BIT files.
The reconfiguration process can be performed by external systems (e.g. a micro-
processor or a PC) or the FPGA can load bitstreams himself from an external
non-volatile memory module.

Xilinx provides two data paths connected to special configuration pins to config-
ure its 7 series FPGAs: the low pin demanding serial datapath and the parallel
datapath (8-bit, 16-bit, or 32-bit) that provides higher performance and access
to several standard interfaces. The pins from these datapaths serve as an in-
terface for different configurations: master and slave serial configuration, master
and slave SelectMAP parallel configuration, JTAG/boundary-scan configuration,
master serial and byte peripheral interface flash configuration. Moreover, the
Zynq can reconfigure itself by the programmable logic, or by any other process-
ing system through the device configuration interface (DevC). This interface is
supported by a dedicated DMA controller capable of transferring bitstreams from
an external memory through the Processor Configuration Access Port (PCAP).
The 7 series FPGAs also have an Internal Configuration Access Port (ICAPE2)
[3], which provides the user logic with access to the 7 series FPGA configura-
tion interface. In [109], both existing internal configuration interfaces, PCAP
and ICAPE2, have been extensively evaluated in other to select the most conve-
nient alternative. An additional architecture has been implemented in order to
dynamically reconfigure the FPGA without the Processing System at the maxi-
mum bandwidth of 400 MB/s.

Besides reprogramming the entire device, most SRAM-based FPGAs feature par-
tial reconfiguration, enabling to reconfigure a specific region while the rest of re-
gions of the FPGA continue running. Due to this feature, it is possible to reduce
both cost and area usage. Moreover, bearing in mind that a partial bitstream
gathers only the information of the target reconfigurable zone, it contains much
less information than a complete bitstream. Hence, the utilization of partial re-
configuration schemes allows to reduce the bitstream storage requirements and
reconfiguration time.

Designing partial reconfigurable implementations is analogous to designing vari-
ous complete reconfigurable designs that share certain resources. The first step
is to designate a reconfigurable region, which has to be defined determining both
a proper placement and an adequate size of the reconfigurable region. A proper
floorplanning requires to consider several aspects, such as the resources demanded
by the different designs to be loaded, the size and placement of the static zone or
the other reconfigurable regions, etc. A wide number of 7 series FPGAs resources,
like CLBs, BRAMs, DSPs or routing elements are available for reconfiguration

36 Soft-Core Processors Implemented in SRAM Based FPGAs

purposes. Nevertheless, several components like clocks and clock management
blocks (e.g. BUFG, BUFR, MMCM and PLL), I/O and I/O related components,
serial transceivers and some dedicated elements (e.g. BSCAN, STARTUP, ICAP
and XADC) do not support reconfiguration. These non-reconfigurable elements
must be placed in the static region of the device.

The regular way to configure an FPGA is to load at first a complete bitstream
that contains one of the partial reconfiguration designs. After configuring the
entire device, the partial bitstream can be loaded to partially reconfigurable re-
gions, while the rest of the FPGA remains uninterrupted. After reconfiguration,
it is advisable to initialize reconfigurable modules in order to ensure a predictable
starting situation. Another recommendable practice is to disconnect the recon-
figurable and the static regions during the reconfiguration process by utilizing
decoupling logic.

The partial reconfiguration can also be used to reduce power consumption by
disabling certain region(s). In [110], partial reconfiguration is utilized to replace
circuits during idle periods with power saving circuits. In a similar way, [111]
proposes to utilize empty bitstreams to blank partially reconfigurable regions.

Figure 2.16 illustrates an outstanding benefit of the partial reconfiguration, which
is the feasibility of adapting the design in the field by loading distinct circuits
within the reconfigurable region. This aspect enables to improve the fault tol-
erance, accelerates the configurable computing and provides real-time flexibility
making it possible to develop new techniques in design security.

FP
GA

Figure 2.16: Replacing reconfigurable modules with the dynamic partial
reconfiguration.

One of the most significant drawbacks of the reconfiguration process is its dura-
tion, which is limited by the maximum frequencies of the configuration interfaces.
For instance, the PCAP’s maximum frequency is 100 MHz. However, although its
theoretical speed of reconfiguration is 400 MB/s, the real speed decreases because
of the internal ARM interconnect architecture [112]. In addition, the duration
of the reconfiguration process varies depending on the size of bitstream to be

2.2 SRAM Based FPGAs 37

configured. Hence, partial bitstreams are less time demanding than complete
ones. The common duration of this process goes from microseconds to millisec-
onds [113]. A possible solution to reduce the reconfiguration time is to compress
the bitstream, however it requires to previously process the bitstream and limits
it usability. In [114], an alternative reconfiguration controller coined as ZyCAP
was presented, which improves the reconfiguration throughput in Zynq when
compared to standard methods. This controller allows overlapped executions,
enhancing the system performance. ZyCAP can be used with soft-processors,
but driver software modifications are required. In [112] an adaptive partial re-
configurable system to maximize the output performance is proposed reducing
the reconfiguration time to 12% over a full configuration time.

2.2.4 Bitstream Structure of 7 series FPGAs

Bearing in mind that the hardware platform of this work is a Xilinx Z-7020
Zynq-7000 All Programmable SoC and that it makes use of its reconfiguration
capability, some aspects of the configuration bitstream of the Xilinx 7 series
family must be introduced.

The information around the bitstream is limited, especially since 1998, when the
XC6200 series were discontinued [115]. Vendors have published scarce informa-
tion about the bitstream composition of their devices, but the majority of them
are still unknown. Thanks to various studies, the knowledge about the bitstream
has continued growing over the last years [116, 117]. However, there is a lack of
studies dealing with the new Xilinx 7 series devices.

In [118], a bitstream generator that does not use reverse-engineering was pre-
sented. This generator is able to imprint small changes onto existing bitstreams
and to embed the bitstream generation inside the system that it targets. Al-
though it does not support the full set of device resources, it is a good example
of the potential of this field. In [119], a bitstream manipulation tool for Xilinx
FPGAs based on C language and capable of creating partial bitstreams was pre-
sented. Although this work was implemented in a Xilinx Virtex II Pro FPGA,
several aspects of the structure of the bitstreams exposed in this contribution
are useful to understand the bitstream’s composition of Xilinx 7 series FPGAs.
Following this baseline, this section presents several interesting aspects of the 7
series bitstream based on previous literature, Xilinx’s documentation [4, 120] and
several off-line tests performed within for this research work.

The 7 series configuration memory is organized in frames that are tiled about the
FPGA. A frame is the smallest addressable segment of the configuration memory
and, for this reason, all operations have to act upon whole configuration frames.

38 Soft-Core Processors Implemented in SRAM Based FPGAs

The frame size is 101 words (32 bits), but may vary across families. Frames are
organized with an interleaving mechanism, which imposes that adjacent bits do
not belong to the same frame. This is a protection strategy against SEUs in
consecutive bits, avoiding two errors in the same frame, but also making more
difficult the inference of the location of the data content in the bitstream. There
is a correspondence between the information in the bitstream and the tile map
of the device. Therefore, the number of frames of the bitstream depends on the
configuration array size and the additional options of the bitstream. In most
cases of the FPGA’s resources, the mapping of memory addresses to resources
is unknown, because this relation is usually extremely complex. However, some
specific resources, such as CLBs, DSP blocks and BRAM columns are represented
explicitly in the bitstream addressing. The efforts in this work have been focused
on understanding the distribution of data in BRAM columns.

The bitstream file starts with a header consisting of a concatenation of different
command words. All commands are executed by reading or writing the different
configuration registers of the FPGA. The commands can send two packet types:
Type 1 and Type 2 (used to write long blocks). Both packets consist of a header
followed by a specific data section. This data section contains the number of 32-
bit words specified by the word count portion of the header. Table 2.1 shows the
format of the header of each packet type. The opcode field defines the function
mode, which can be read, write or no operation. The register address field in
the Type 1 packet indicates the address of the target register of the operation at
hand. The Type 2 does not use the register address field, because it must always
follow a Type 1 packet and it uses its packet address. Between the available 20
registers, the most interesting ones for this research are the Cyclic Redundancy
Check (CRC), the Frame Address Register (FAR), the Frame Data Input (FDRI),
the Frame Data Output (FDRO) and Command (CMD). The data stored in the
CRC register is used to carry out error detection over the bitstream data. The
FAR is used to set the address of the FPGA logic over which the reading or
writing process is performed.

Table 2.1: Packet header types (R: reserved bit; x: data bit).
(a) Type 1.

Header Type Opcode Register Address Reserved Word Count
[31:29] [28:27] [26:13] [12:11] [10:0]
001 xx RRRRRRRRRxxxxx RR xxxxxxxxxxx

(b) Type 2.

Header Type Opcode Word Count
[31:29] [28:27] [26:0]
010 RR xxxxxxxxxxxxxxxxxxxxxxxxxxx

2.2 SRAM Based FPGAs 39

As shown in Table 2.2, the FAR register is split into 5 parts: block type (CLB,
I/O, CLK, BRAM content or CFG CLB), top/bottom bit, row address, col-
umn address and minor address. The FDRI register is used to configure frame
data at the address specified in the FAR register. The FDRO register provides
readback data for configuration following the address stored in the FAR register.
Finally, the CMD is used for the commands, such as, RCRC (Reset Cyclic Redun-
dancy Check), START (FPGA initialization) and DESYNC(end of configuration
to desynchronize the device).

Table 2.2: Frame Address Register (FAR) format.

Address Type Bit Index
Block Type [25:23]

Top/Bottom Bit 22
Row Address [21:17]

Column Address [16:7]
Minor Address [6:0]

The first words of the bitstream header define the boot sequence and provide ad-
ditional information for synchronization purposes. The next commands specify
the width of the configuration bus. Then, a set of optional commands specify
parameters related with transfer bitrate, encryption, authentication and CRC
check. The last part of the header defines the address in the configuration mem-
ory and the amount of words that are going to be loaded. The header is followed
by the body, which contains the information that is stored in the device. The
structure of this is usually not specified by the FPGA manufacturers, and the
only way to obtain information is reverse engineering. Finally, the trailer defines
the finishing sequence, which contains CRC verification, the start command (op-
tionally) and finally the DESYNQ command to end the communication. Along
the entire bitstream many no operation (0x20000000) words are included. After
performing several tests it has been observed that the data content of BRAMs
cannot be written through the bitstream if the BRAM segment contains these
0x20000000 words. Due to this, is can be assumed that these 0x20000000 words
act as mask words to protect/unprotect BRAM content against rewriting.

Bearing in mind that the FPGA configuration can be complete or partial, com-
plete or partial bitstreams are accordingly produced. Both options share many
common aspects, but several particular differences deserve special attention. To
begin with, the complete bitstream uses the START command for starting the
device, which it is not necessary for its partial counterpart. This occurs because
the partial reconfiguration is usually performed dynamically, i.e. while the device
is running. In the case of a complete bitstream, the FAR is filled with 0’s and the
number of words stored in the FDRI register corresponds to the total words of
the entire bitstream. The FAR and number of words of the bitstream are strictly

40 Soft-Core Processors Implemented in SRAM Based FPGAs

related to the defined reconfigurable region. As a result, if the reconfigurable
region is deployed over no consecutive zones following the address of the FAR,
the bitstream is divided in different fragments. Each fragment is defined by its
particular FAR and word amount. Therefore, the partial bitstream indicates the
FAR and word amount of each resource column used in the design. For this rea-
son, partial bitstreams have been used in this work to extract information about
the data content of BRAMs.

The word amount stored in the FDRI register is a multiple of the frame size.
Each frame is related to the configuration bits and initial values of a particular
column of resources. Each resource may have a different number of frames, and
these values may also vary among device families. In the case of the Z7020
device used in this study, the total number of frames is 10008. After several
partial configuration experiments it has been observed that each column of slices
includes 36 frames, each column of DSPs contains 28 frames and each column of
BRAMs embeds 28 configuration frames and 128 data content frames.

The Z7020 device has a total number of 133 CLB columns, 11 DSP48 columns
and 14 BRAM columns. Hence, the total number of configuration frames in this
device is 5502 and the total number of BRAM data frames is 1972. Given the
total number of frames of the complete bitstream, it can be assumed that the
remaining frames are used for the configuration of other resources, such as IOBs
or BUFGPs. However, since these resources cannot be used in partial bitstreams
it is complex to determine the exact number of frames that they possess.

Xilinx enables to generate a logic location text file (*.ll) which contains the lo-
cation of each user data bit in terms of relative offset to a frame of the entire
design. In this way, knowing the location of a particular region, it can easily find
the nets of the design that belong to the partial region. This file can be generated
with the software provided by Xilinx, such as ISE or VIVADO.

2.2.5 Managing Data Content by Utilizing the Bitstream

Memories are essential elements in SoC designs as a standard way to store data
on a temporary or permanent basis. This data may have different purposes.
In SRAM FPGA based systems the most common functionality is to store in-
formation of specific applications, entire programs or sequences of instructions,
program state information and/or configuration information of the device. As it
has been introduced, when implementing memory elements in FPGAs the two
alternatives that can be used, which are the BRAM resources and the distributed
general-purpose logic fabric. In the case of soft-core processors, while program
and data memories are commonly implemented as BRAM structures, the small

2.2 SRAM Based FPGAs 41

memory elements, such as the registers, are implemented by utilizing distributed
fabric logic.

The standard way to access and manage data in memory modules is to use their
input ports, such as data output, data input, write-enable and address.
This access method requires a control mechanism to manage the inputs and
read the outputs in a coordinated fashion. This is often accomplished by a
memory controller, which can be implemented in different ways, such as using
soft-core or hard processors, specific IP cores or custom FSM based modules.
Frequently, additional elements are also required, like bus interfaces or auxiliary
memories to store processed data. The implementation of all the above elements
demands the usage of a variety of resources of the FPGA, further increasing the
resource overhead. Besides, if it is required to read or write large amounts of
data, resources committed to storing such data will be blocked and unavailable
for other purposes. For example, it is not possible to read the data from the first
two memory addresses while the last ten data addresses are being written.

Due to the limitations of standard data management, there are several scenarios
where new data management alternatives could improve some applications or
solve different existing issues. Bearing in mind that the user data is also stored
in the configuration bitstream, the idea of using this bitstream to manage data
content is an attractive alternative.

The impossibility of modifying data content of ROM memories, widely used as
program memories in soft-core processors represents another relevant issue since
this functionality may be needed in order to change the purpose of a processor or
to recover after an SEU in the program memory. The regular way to modify the
content of a ROM memory in an FPGA design is to re-synthesize and re-deploy
the entire design with the new data onto the FPGA. In the best case scenario,
if the program memory has been implemented as a reconfigurable partition, only
this part should be re-synthesized and re-implemented. Following this approach,
the program memory is implemented as a RAM in [39], and a dedicated IP core
loads new memory content during the system operation by using a serial interface.
However, this scheme increases requirements in terms of logic resources, and an
upset in the input port of the memory may lead to changes in the memory
content, increasing the probability of malfunction due to SEUs. Thus, modifying
the program memory could be a good application example for a bitstream based
data content management.

Another scenario where a bitstream based management can be an interesting
alternative is the damage of the interfaces on memory resources. Thus, as a
consequence of an SEU, an error can disable or affect to relevant ports of the
memory, which it is likely to provoke permanent damages. Moreover, if ports

42 Soft-Core Processors Implemented in SRAM Based FPGAs

such as, address, reset, clock or data output are affected by the fault, it could
make it unsuitable to recover the information stored in memories when resort-
ing to conventional, off-the-self methods. This scenario can be a critical issue
when the memory has not been hardened and the information stored has a spe-
cial operational relevance. The extraction of such information by utilizing the
data content stored in the bitstream could allow recovering the information in a
straightforward manner.

Considering the direct relation between the integrity of the user data and the
reliability, several fault tolerance related strategies could also take advantage of
a bitstream based data management.

Bearing in mind the potential benefits that can be obtained with this strategy,
there is a scarcity of investigations around this strategy. The lines below present
the most significant works proposed in the literature, especially focusing in Xilinx
devices.

When reading and writing back user data from one memory block to another, two
main cases can be found: Homogeneous and heterogeneous architectures. While
homogeneous memory modules share main characteristics, such as size, shape,
and used resources (with only different fabric locations), heterogeneous modules
support distinct features due to the usage of different resources and granular-
ity levels. Data management utilizing the bitstream is more straightforward in
the case of homogeneous implementations, since it mainly requires simple bit-
stream manipulations in order to relocate the data. Nevertheless, the utilization
of heterogeneous architectures restraints the designing process.

In any case, extracting and writing user data content through the bitstream
requires certain knowledge of its structure. Thus, they are device dependant
strategies. While devices from the 7 series by Xilinx share the majority of the
characteristics of the bitstream structure, many of them are different in previous
FPGA series from the same vendor. Thus, despite in several cases the flows and
the main ideas can be adapted to different devices, the developed approaches are
commonly related with a particular FPGA vendor, a particular FPGA series or
even to a particular device.

With the latest FPGA series (Virtex-4, Virtex-5, Virtex-6, Spartan-3A, Spartan-
3AN, Spartan-3A DSP, Spartan-6 and 7 Series), Xilinx offers the possibility to
use the Data2MEM [121] data translation software to initialize BRAMs. Among
other features, Data2MEM can replace the contents of BRAMs in configuration
bitstreams in a straightforward fashion, without requiring any implementation
tool. However, this application undergoes several limitations. One of the most
relevant is that this software must be executed by an operating system (Windows

2.2 SRAM Based FPGAs 43

or Linux). In addition, this program requires previously generated files to create
the output files, such as BRAM Memory Map (BMM) files or Linkable Format
(ELF) files. The configuration bitstream files to be updated by the tool must be
created without compression and/or encryption. To sum up, this is a quite com-
plex solution, not supported for partial bitstreams, feasible only for data writing
in BRAMs and not for reading. It is therefore not proper data management
approaches for autonomous standalone systems based on partial reconfiguration.

Jbits [122] was one of the first tools reported to be able to modify the bitstream,
including the data content. It consisted on a set of Java classes that provided
an application program interface into the configuration bitstream for XC4000
and Virtex families by Xilinx (by utilizing the SelectMAP interface). One of
the biggest advantages of this approach was that it did not require additional
hardware structures. Nevertheless, it came with a poor data efficiency. This was
because it required to read the entire bitstream, while the user data only uses a
relative small percentage of the bitstream. This tool became obsolete and it is
not suitable for 7 series devices.

The work presented in [7] is a step forward towards bitstream based data content
management. As Figure 2.17 extracted from that work describes, the approach
proposed focuses on saving an relocating the context a of a soft-core processor,
by extracting (and writing back once processed) the bitstream through the Se-
lectMAP interface. In this process the entire configuration data is not read back,
but only the frames that contain the target information. This context extraction
is done while reading the configuration data and requires to stop the clock of the
particular hardware task to prevent chances during the read process. In [123],
a similar approach that proposes a partial displacement defragmentation algo-
rithm for heterogeneous reconfigurable systems was presented. However, these
approaches have several drawbacks. The most remarkable one is that, since they
are only usable with the old one-dimensional partial reconfiguration FPGA fam-
ilies from Xilinx, they cannot be utilized in the newest devices. In addition, they
require high processing effort (the use of tools, such as a configuration manager,
PARTBIT software and the REPLICA filter) and to use a complex database to
store the placement of each data bit.

Further approaches focused on dealing with newer Xilinx devices that support
two-dimensional partial reconfiguration can be found. The approach presented
in [61] is capable of capturing, storing and copying the content of flip-flops within
a Virtex-V FPGA device on a particular reconfigurable region by utilizing the
bitstream in combination with the STARTUP VIRTEX5 primitive, the GCAPTURE

commands and the ICAP interface. In a later work [8], the previous approach
was extended to enable to copy the content of flip-flops between heterogeneous

44 Soft-Core Processors Implemented in SRAM Based FPGAs

FPGA
SelectMAP

State

Extraction

Filter

Configuration

Manager
(Read/Write)

State

Inclusion

Filter

REPLICA2Pro

Filter
(Task Relocation)

Database Entry

Writeback

Read

Partial
Readback
Bitstream

Partial
Readback

Partial Writeback
Bitstream

States Values

State Location

Partial Bitstream

States Values

New Column Location

1 D-Placement Approach

Current Location of Task

Figure 2.17: A relocation alternative.

reconfigurable regions by processing captured bitstreams. In [124], the same
authors present an implementation of preemptive hardware multitasking for par-
tially reconfigurable FPGAs that enables configuration prefetching and reuse.
This approach based on their previous works reduces configuration overheads,
improving the system performance.

As Figure 2.18 obtained from [8] describes, the strategy of the mentioned works
follow different steps. The first is to capture the state of the flip-flops by using
either the GCAPTURE command or the STARTUP VIRTEX5 block. It is advisable
to stop the clocks before capturing the data in order to ensure that the register
system is in a stable state. In a next step the captured data is stored in an
external memory. After, if it is necessary (for instance due to data relocation
purposes), this information can be processed creating a new partial bitstream.
This bitstream processing can be a complicated task bearing in mind the com-
plexity of the bitstream structure, especially when a large number of registers
are utilized. This processing is mainly done by utilizing the information from
the logic location text file (*.ll). The next step is to download the bitstream to
the FPGA, which can be done in any moment because the changes don’t take
effect until the GSR signal from the the STARTUP VIRTEX5 primitive is trigged. An
alternative to the STARTUP VIRTEX5 primitive is to toggle the GSR signal by using
the GRESTORE command.

The main challenge of using this strategy is that by default the GSR signal copies
all INT0/INT1 bits to all the flip-flops, changing the content of all the regis-
ters of the device. Since, in many application only some particular register are
needed to be affected by the context restoring process an additional strategy has

2.2 SRAM Based FPGAs 45

Capture
context

Store Data
Data relocation

process
(optional)

Download
bitstream

Trig GSR
signal

Figure 2.18: Flow chart of a context capture and restoration alternative.

to be followed. Every stack of configuration resource is related with a specific
bit, commonly named mask bit. GCAPTURE/GRESTORE commands only affect the
state of the flip-flops not marked with the mask bit. Each column is related to
a single frame in the mask column. In this way, for every mask frame set, the
entire related column in the clock region of DSP/CLB is protected/unprotected.
Further information of this bit (for Virtex-V devices) can be found in either [30]
or in [8]. This feature makes it possible to protect/unprotect specific areas de-
termining which resources are to be modified. In this way, [8, 61] follow the
strategy depicted in Figure 2.19 (extracted from [8]). Since the entire FPGA
design is unprotected by default, in a first step the entire FPGA design is pro-
tected. When context is needed to be saved the target region has to be protected
before capturing the data. After, capturing data the target region can optionally
be protected, in any case before restoring the context the target region has to be
unprotected. After finishing context saving/restoring processes the target region
can be protected in order to avoid undesired changes in future startup sequences.

Protect
entire FPGA

Un-protect
target region

Protect
target region

Initially unprotected
FPGA

target region target region target region target region

Capture/
Restore

Figure 2.19: Flow chart of an FPGA protection and unprotection alternative.

In general terms, these published approaches present some common drawbacks.
First, they require a controller module and a memory block to store the read
data. In addition, considering that the reconfiguration is a time demanding
process, the price to pay when using these strategies is a low availability. Another
limitation of these approaches is that they require to disable the CRC feature of
the generated bitstream. This is because due to the modification of the bitstream
content the original CRC value would not be valid, making unsuitable to use it
for the reconfiguration. Hence, the utilization of the CRC feature would require
to generate the new CRC value which requires a high processing effort. Finally,

46 Soft-Core Processors Implemented in SRAM Based FPGAs

no approaches have been proposed to perform such applications in newer devices,
such as, 7 series vy Xilinx.

In summary, despite of the presented disadvantages, bitstream based user data
content management techniques provide an alternative access to data content
without increasing the area overhead and without interfering the logic of the
FPGA logic which, in many cases, can be an interesting way to overcome certain
limitations of the classic memory management.

2.3 Radiation Effects on Soft-Core Processors
implemented in SRAM FPGAs

Thanks to the continued innovation in the technology for developing and manu-
facturing electronics, the integration level has been increasing, enabling features,
such as, high capacity, low-power consumption and fast devices. However, the
high integration level comes with a drawback since it increases the susceptibility
to induced faults [27]. These faults are mainly generated by contaminant alpha
particles [28] or ionizing radiation from protons and cosmic rays from outer space
which interact with the atmosphere and generate subatomic particles that collide
with solid-state devices and integrated circuits [125]. Alpha particles are caused
by impurities (mostly Thorium and Uranium) in integrated circuit encapsulate
compounds and by atmospheric neutrons that slam into the silicon.

The effects provoked by space radiation can be mainly divided into two categories
[126]: Single Event Effect (SEE) and accumulative effects like Total Ionizing Dose
(TID) or Displacement Damage (DD). SEE are the result from the prompt effects
of a strike by a single ionizing particle in a sensitive region of the device. TID is
caused by the gradual accumulation of ionizing dose deposition over a long time.
Finally, DD is the consequence of an accumulation of crystal lattice defects lead
by high energy radiation.

In the case of FPGA devices, the different technologies (SRAM, flash, and anti-
fuse) present distinct susceptibility levels to radiation effects [127], mainly because
of the specific characteristics of their switch technology. Nevertheless, due to the
utilization of CMOS based logic modules they share some level of susceptibility
to SEE and TID. The switch of the non-volatile anti-fuse and flash devices is
completely immune to SEE, for this reason they are less sensitive to them than
their SRAM counterparts. Regarding TID, while the switch of anti-fuse devices
are immune to these effects, it is known that they affect SRAM and flash based
FPGAs [128–130].

2.3 Radiation Effects on Soft-Core Processors implemented in SRAM
FPGAs 47

Due to its benefits as a platform for soft-core implementation described in 2.2, the
scope of this work is the reliability of SRAM FPGA technology. Although both
accumulative effects and SEE are a main concern for SRAM designers, SEE are
the prevalent case of study in the literature [131–136]. A reason for this is that,
although there is a risk of performance degradation and an eventual malfunction,
the effects of TID and DD do not commonly lead to system-level failures (as long
as the degradation does not surpasses system tolerances). In addition, as [137]
states the effect given by TID neglected in the typical task cycle and environment.
The mitigation of TID effects is typically done by using radiation hardened by
process techniques and/or shielding. On the other hand the hardening by design
in SRAM FPGA is quite expensive in terms of resource usage since the majority
of switches should to be hardened.

Since the first detection in 1975 [138], SEEs have become a main issue in space
applications [62, 83, 139–142] because when the devices work in this environment
they are directly exposed to space radiation. Nevertheless, despite the fact that
at ground level and avionics systems are less exposed to radiation effects due to
the planet’s atmospheric and magnetic radiation shields, they are also sensitive
to SEE [143]. In fact, the first reference to deal with SEE, published in the early
60’s [144], was related with microelectronics at terrestrial level. The detection
of SEE in terrestrial applications [145] came few years after the mentioned first
detection at space level. Since then, the concern on SEE has continuously been
increasing due to several factors. One of them is that, thanks to their obvious
benefits, the application fields of microelectronics also continues growing daily. In
fact, trying to imagine application fields with no presence of electronics is a tricky
task. In addition, several of these application fields, such as, medical, military,
avionics, space or automotive. require high fault tolerance levels. Another rele-
vant factor is the continuous technology shrinking, for instance, Xilinx and Altera
have presented 16nm and 14nm devices [146, 147], respectively. This density in-
crease demands lower polarization voltages, which increases the susceptibility to
SEE, since the necessary energy to generate upsets for charged particles is also
decreased [148] and a single particle strike can affect more than a single transistor
at a time. The increase of working frequencies is another relevant aspect factor.
Due to this speed boost, the delay levels of logic gates are becoming comparable
to the duration of SEE, leading to a higher error propagation probability. On
the other hand, studies like [149] by the NASA in 2009 or the newer ones [150],
reveal that the intensity of cosmic beans is increasing.

SEE gather a number of effects caused high energy particles that have been
classified in two main groups in the literature [126, 151, 152]: soft errors and
hard errors. Figure 2.20 summarizes the different SEE types.

48 Soft-Core Processors Implemented in SRAM Based FPGAs

SEE
(Single Event Effects)

SEL
(Single Event Latch-Up)

SEB
(Single Event Burnout)

SEGR
(Single Event
Gate Rupture)

SET
(Single Event Transient)

SEU
(Single Event Upset)

SEFI
(Single Event

Functional Interrupt)

SBU
(Single Bit Upset)

MBU
(Multiple Bit Upset)

Soft Errors (Recoverable) Hard Errors (Unrecoverable)

Figure 2.20: Classification of Single Event Effects

Soft errors are non-destructive upsets that can be self-corrected in time or that
can be corrected by rewriting a memory element. It has to be mentioned that,
although these effects do not cause a permanent damage in the device in which
the effect occurred they can lead to permanent faults in the system in which that
device resides. These effects can be divided in three subclasses:

1. Single Event Upsets (SEUs). They appear when high-energy particles
provoke bit-flips in memory elements (flip-flop, latch, SRAM, or flash).
Depending on the quantity of flipped bits they can be categorized as Multi
Bit Upsets (MUBs) or Single Bit Upsets (SBU). Despite the fact that SBUs
are known to be the most prevalent type of SEE, MUBs are also studied in
the literature [153].

2. Single Event Transients (SETs). The effect caused by a transient is
determined by its duration and magnitude, and by if the transient is latched
turning it into an upset at system level. They occur when a high energy
particle impacts FPGA’s internal interconnection system inducing a current
or voltage spike. Depending on when the impact occurs and the pulse-
width the SET could be registered, and as a consequence, it may propagate
thought the circuit and, eventually, provoke errors. When this latching of
occurs the SET becomes an SEU. In the rest of scenarios the repercussion
of these effects is negligible. The increase of clock frequencies increments
the likelihood of an SET registration, and as a consequence, increases the
probability of faults.

3. Single Event Function Interrupts (SEFIs). SEFIs cause a malfunction
in the device, such as, reset or lock up. They usually are related with upsets
in a bit or a register of device’s control [154].

2.3 Radiation Effects on Soft-Core Processors implemented in SRAM
FPGAs 49

Hard errors are permanent or unrecoverable upsets. These types of SEE are also
divided in three subclasses:

1. Single Event Latch-up (SEL). This is an induced circuit latch-up. An
SEL can be either permanent or fixable by power cycling.

2. Single Event Burnout (SEB). An SEB occurs when a high-energy parti-
cle strikes a transistor source causing a short-circuit due to forward biasing.
An SEB can lead to overheating related issues.

3. Single Event Gate Rupture (SEGR). An SEGR is the damaging
burnout of a gate insulator in a power MOSFET.

Xilinx states in [151] that their FPGA devices are not susceptible to latch-up and
gate rupture caused by neutron radiation. In addition, Xilinx space-grade parts
are said to be immune to latch-up from heavy ions as well.

Among all the SEE types, SEUs are the prevalent source of errors in SRAM
FPGAs [73, 155], especially those produced by radiation [151]. SEUs can affect
not only user memory bits but also configuration bits in FPGA based design.
Bearing in mind that the configuration memory determines the entire functional-
ity of devices (interconnection and configuration of resources, data content, etc.),
SEUs in configuration memory can provoke a wide variety of issues in designs.
They can even affect the power consumption of the device [156]. Hence, they are
a special concern. Figure 2.21 shows an example of an SEU in the configuration
memory affecting the functionality of the hardware implementation. SEUs in user
memory are less likely to happen, because generally this data content is an order
of magnitude smaller than configuration memory’s content. However, the relative
upset ratio is very much alike in both, user and configuration memories. Follow-
ing this idea, in FPGA designs with big data module implementations or complex
registers systems, the risk becomes higher. Despite that an SEU in user’s data
does not affect the functionality of designs, depending of the application both
types of SEUs can lead to a critical malfunction.

Although most frequently SEUs affect to configuration memory, many bits of
the bitstream are unused. In fact, it is considered that in a regular design less
than 20% of the configuration bitstream bits are critical to designs’ functionality
[157]. The quantity of critical bit vary depending on different implementation
factors of a design, such as, resource quantity, routing, type of resources utilized,
designed application, etc. Nevertheless, the critical bit rate is usually a small
number [158, 159]. In the majority of cases a bit-flip in configuration memory
does not affect the functionality.

The Soft Error Rate (SER) in a relevant concept when evaluating fault tolerance

50 Soft-Core Processors Implemented in SRAM Based FPGAs

Configuration memory

FPGA

D Q D Q D Q

Figure 2.21: Configuration memory SEU example in an FPGA design.

of a design [160]. The SER is the rate at which an FPGA (or other electronic
devices/systems) is predicted to undergo soft errors. The exact contribution of
SEE to SER vary depending on the design. For instance, asynchronous designs
are less susceptible to SEE than synchronous ones [161]. However, asynchronous
versions of digital designs are normally 10 times slower and they need 10 times
more resources. The SER is determined by two factors: Failure in Time (FIT)
and Meant Time to Failure (MTTF), also known as Mean Time Between Failures
(MTBF). As Equation 2.1 shows, FIT is the measure of failure rate in 109 device
hours. On the other hand, MTTF defined in Equation 2.2 is the mean of the
life allocation for the number of devices under operation or expected lifetime
duration of an individual.

FIT = Fail quantity · 109 · (Device quantity ·Working hours) (2.1)

MTBF (h) =
Fail quantity · 109

Device quantity · FIT
(2.2)

2.3 Radiation Effects on Soft-Core Processors implemented in SRAM
FPGAs 51

In SRAM FPGAs the SER can be estimated performing fault injection cam-
paigns, simulations or analytic approaches [162–165]. The Rosetta Experiment
is the most remarkable exponent of SER estimation performed by Xilinx. This
experiment was conducted in 2005 [166] and it linked two well-known techniques
of estimating atmospheric neutron SEUs and undocumented real effects of atmo-
spheric particles on electronic devices. Thanks to that, it correlated atmospheric
upsets to simulated results, and to beam tests. Due to the publication of this
article several previous works, such as, the JEDEC89A standard [167] were cor-
rected. It also showed that the sensibility to atmospheric radiation is at least
eight times lower than Boeing predicted [143]. The Rosetta Experiment contin-
ues performing a wide range of studies at ten different altitudes and analysing
new trends of Xilinx devices [168].

Another aspect to be considered is the resource overhead since it is directly
related with the fault tolerance. First, the more resources utilized in an FPGA
implementation, the more resources are susceptible to induced faults. Secondly,
the number of bits from the configuration memory sensitive to SEE increases with
the resource overhead. In addition, more utilized resources means more resources
to be hardened when hardening a design. In conclusion, the reduction of resource
overhead is a highly recommendable practice in terms of fault tolerance.

Once the most significant aspects of the SRAM based FPGA technology have
been introduced, the next chapter gathers the most significant alternatives to
harden designs implemented in such devices, specially focusing on soft-core im-
plementations.

52 Soft-Core Processors Implemented in SRAM Based FPGAs

Chapter 3

Hardening Soft-Core
Processors Implemented in
SRAM FPGAs

An ideal design should always work without malfunction. Nevertheless, in a real
scenario, especially when dealing with SRAM based FPGAs, electronic designs
are exposed to certain risks. A dependable design should try both, to avoid the
impact off errors and to repair the produced ones. Related with those ideas, two
concepts have to be remarked: availability and reliability. While availability is
determined by the mean time to repair after a failure, reliability is determined
by the design itself, the platform utilized and the operation-environment. It is
important to obtain a proper balance of both concepts. For instance, a design
with poor reliability level but with a fast repairing method most probably will
meet its goals in presence of faults. On the other hand, a very reliable design that
needs complex and time demanding repairing techniques perhaps will not achieve
its goals after an error. Reliability is a valuable characteristic, but availability
is what the final user is going to experience. In order to provide satisfactory
reliability and availability levels for FPGA designs, an adequate fault tolerance
level must be guaranteed. Due to this, increasing fault tolerance level of SRAM
designs is one of the main objectives of this research work. Different strategies
can be adopted to increase the fault tolerance level of FPGA designs in order to
avoid possible negative consequences of induced faults.

The most obvious way to mitigate faults is to improve production aspects to

54 Hardening Soft-Core Processors Implemented in SRAM FPGAs

manufacture less susceptible technology. In fact, several manufacturers have de-
veloped hardened FPGA products [169–173]. Regularly these devices are regu-
larly based on older technologies (i.e. anti-fuse FPGAs), offering significantly less
resources and lower working frequencies at higher prices than the newest commer-
cial FPGAs. An alternative strategy that is being followed is to use packagings
with lower alpha particle content. Manufacturers like Xilinx have progressed
from low alpha to ultra-low alpha materials. Nevertheless, these are not secure
enough to ignore the package alpha contribution to the atmospheric alpha upset
rate. Another fabrication aspect to improve fault tolerance is to provide higher
susceptibility to SRAM cells utilized to store the configuration memory and the
BRAM content. However, despite of all the efforts to improve the fabrication
processes, the fast grown of configuration memories makes it a hard race.

Another alternative that can be utilized to harden electronic designs against both
SEEs and TIDs is to protect them with shielding. Although that provides proper
reliability levels, it is not practical for most applications since the amount of
material required to build the shield is too expensive, e.g., as much as 30 meters
of water for neutrons with high energy [174]. It also increases the weight and size
of designs, which in many cases could be a significant limitation.

A further relevant way to harden FPGA based designs is trying to avoid using of
unsafe design practices. Several examples can be found in [175], such as, avoiding
use of asynchronous reset signals, not incorporate more circuitry than necessary,
distribute the clock signals inside the FPGA in a safe and stable way, perform
a worst/best case timing analysis, an adequate floorplanning, etc. Despite these
aspect could improve the reliability of a design, commonly they are not enough
to guarantee a certain fault tolerance level.

Nevertheles, due to the limitations and drawbacks of presented strategies, there
is a main tendency of utilizing commercial SRAM FPGAs and providing them
with fault tolerance by using design-based hardening techniques [49, 89]. Hence,
an adequately hardened design implemented in a commercial FPGA represents
an attractive alternative, even for space applications [176], due to their flexibility,
good working frequencies and their competitive price.

When implemented in SRAM FPGA, soft-core processors are exposed to the same
risks than any FPGA design. Nevertheless, their architecture may require to
exploit certain specific aspects. This fact has motivated a number of researches,
like in [79] where the reliability analysis of a LEON 3FT soft-core processor
(designed to be fault tolerant in a low ion flux operational environment) has
been done. The research presented in [155] is a remarkable reliability study of a
soft-core processor. In this case, a methodology to evaluate the critical elements
when exposing the device to SET effects is proposed using an in-house developed

3.1 Scrubbing 55

PIC18 soft-core processor. Bearing in mind the relevance of the fault tolerance
issue, this research work seeks to contribute with new hardening alternatives to
harden soft-core processors implemented in SRAM FPGAs, improving existing
techniques and providing new alternatives. Hence, a study of existing hardening
techniques to harden soft-core processors implemented in SRAM FPGAs is a
especially relevant step.

The present chapter gathers the most relevant fault mitigation techniques to
increase the reliability and availability levels of SRAM based FPGA designs, es-
pecially focusing on soft-core processors. In this way, Section 3.1 presents the
scrubbing, which a widely utilized technique for mainly repair fault in the con-
figuration memory. Next, Section 3.2 introduces hardware redundancy based
techniques, giving special importance to Dual Modular Redundancy (DMR) and
Triple Modular Redundancy (TMR), the most utilized redundancy levels. Sec-
tion 3.3.1 continues presenting techniques based on other types of redundancy
(time, software and data). The utilization of Dynamic Partial Reconfiguration
(DPR) based approaches to fix permanent faults is studied in Section 3.4. Section
3.5 introduces other, less utilized but interesting approaches to harden designs.
All presented hardening strategies are summarized in Section 3.7. Finally, this
chapter closes with Section 3.6, which discusses about the most remarkable fault
tolerance evaluation alternatives utilized to determine the reliability level of de-
signs.

3.1 Scrubbing

The most straightforward method to account for and overcome potential faults is
the so-called bitstream scrubbing [57, 95, 177] which takes advantage of the par-
tial reconfiguration capability of FPGAs. It is performed by rewriting a known
bitstream (named golden bitstream) with a correct configuration. The scrub-
bing cleans upsets from the configuration memory, prevents the accumulation of
configuration upsets and significantly reduces the probability of two SEUs being
present at the same time.

Two strategies can be adopted to decide when performing the scrubbing. The
first consists in periodically reconfiguring the device by utilizing the golden bit-
stream. This strategy is known as blind scrubbing [178]. The second strategy is
based on carrying out the scrubbing after a fault detection [179]. Based on this
strategy, [180] presented the lazy scrubbing approach. This method was applied
to a hardware redundancy based scheme in which, the configuration bitstream
was read from all replicated modules analyzing data and offsets to repair the

56 Hardening Soft-Core Processors Implemented in SRAM FPGAs

faulty module. As this work stated the lazy scrubbing demands less power and
resource overhead, and produces less single point of failures than the traditional
scrubbing. There is also the possibility of combining both strategies. In this way,
a periodical scrubbing can be scheduled to be performed in convenient stages
maintaining the possibility of triggering and emergency scrubbing after a fault
detection.

The scrubbing requires some type of control mechanism to communicate with
the reconfiguration interface in order to load the golden bitstream. Due to the
complexity of this task the prevalent solution is to utilize a processor as scrubbing
controller. Another fundamental requirement is a memory module to store the
golden bitstream. Following these ideas three predominant scenarios [73] can be
introduced:

• On-chip scrubbing. As Figure 3.1 shows this is the most compact so-
lution, since no external element is required. A soft-core based scrubbing
controller implemented in the same FPGA [181] carries out the bitstream
rewriting process by reading the golden bitstream from a BRAM based
memory block and downloading it to itself through the internal configura-
tion port (i.e., ICAP, PCAP). The main benefits of this auto-configuration
process are simplicity and self-sufficiency. Nevertheless, it presents a critical
drawback: the control logic and the gold bitstream storage are implemented
in the FPGA fabric they are susceptible to SEE, providing a low reliability
level. In [182], a fault tolerant ICAP scrubber was presented to overcome
this limitation. It consist in triplicating the internal ICAP circuit. However,
it does not avoid the presence of single point of failures.

����������������������������������

����������������������������������

����������������������������������

������	
��������������

��������	
�

��������

��

��������������

��������������

��������������

����������������

�����	
��������������

���
����	
���������

����������

Figure 3.1: On-chip scrubbing.

• External scrubbing. Another alternative is to utilize an external device
to implement the scrubbing controller and the bitstream storage memory

3.1 Scrubbing 57

[178, 183]. In this case the scrubbing controller performs the scrubbing
through the external configuration port (i.e., JTAG, SelectMap). Figure
3.2 presents this scheme. The main advantage of this approach is the higher
fault tolerance level, especially when the external device presents high reli-
ability. As happens in [83] where the scrubbing controller is implemented in
an external anti-fuse FPGA and the golden bitstream is stored in a hard-
ened memory. The main drawback of this alternative is the complexity,
since such a design requires higher power consumption (two devices to be
feed), more physical space and additional hardware (communication buses,
conditioners, etc.). Hence, this alternative demands a bigger design effort
and increases the design’s size, which is likely to increase the costs.

����������������������������������

����������������������������������

����������������������������������

������	
��������������

����

��������

��

����	
��������

��������������������

��������������������

��������������������

��������������������

����������������

�����	
��������������

���
����	
���������

Figure 3.2: Scrubbing with an external device.

• SoC scrubbing. Finally, as Figure 3.3 shows, the third alternative is
based on the utilization an SoC device, such as, the Zynq by Xilinx. In this
case a hard processor performs the scrubbing process utilizing the internal
configuration port, while the golden bitstream is stored in an SoC’s memory
block, like a DDR module. This is a medium-cost compact solution, after
all an SoC device is likely to be more expensive than a simple FPGA but
cheaper than implementing a two devices based system. It also presents an
adequate reliability due to the high fault tolerance level of hard processors.
The main drawback of this approach is that makes use of a valuable resource
of the SoC, due to the fact that an SoC commonly has only one or two hard
processors. Nevertheless, the utilization of this approach only demands the
hard processor while the scrubbing process. This means that during the
time between scrubbings the hard processor is suitable for other tasks.
Lower scrubbing frequencies mean higher availability of the hard processor.

Bearing in mind that the bitstream controls both functionality (configuration and

58 Hardening Soft-Core Processors Implemented in SRAM FPGAs

�����������������������������

�����������������������������

�����������������������������

������	
��������������

��������	
�

��������

��
�������������

�������������

�������������

����������������

�����	
��������������

���
����	
���������

������
��

��	��
�	����	

���	�

Figure 3.3: Scrubbing with a hard processor in a SoC device.

interconnection of logic resources) and user data content (BRAM, registers, etc.),
two types of scrubbing can be defined: configuration and memory (data content)
scrubbing. While the configuration content is a static portion, the data content
is generally constantly changing during the operation. By virtue of this fact,
while the configuration is valid for almost all cases, the data content scrubbing is
only suitable for certain cases, such as soft-core processors’ program memories.
The most elementary approach is to perform a complete scrubbing by rewriting a
bitstream with both, configuration and data content information. This scenario
requires a power-cycling, which needs to stop the application. Hence, it is not a
valid solution for applications that need to be continuously active.

In addition, as a result of the data content rewriting the system is brought back to
a previous state of operation, which is a handicap. For this reason, the common
practice is to perform a configuration scrubbing repairing the static portion of the
configuration memory that controls the logic of the FPGA. This can be performed
in an straightforward fashion thanks to the possibility of masking the bits related
to data content. On the contrary, the logic configuration bits of the bitstream
cannot be masked and for this reason few data content scrubbing solution are
available.

In [184], a user memory scrubbing approach to clean errors in memories was
proposed. This user memory scrubbing hinges on the addition of an FSM based
module to the design. Similar approach were presented in [182, 185]. These
methods increase resource overhead and need to use a second memory port. Since
Xilinx FPGA BRAMs can only be implemented as single or dual-port memories,
if a BRAM memory block is already being used as a dual-port memory this

3.2 Hardware Redundancy 59

approach not be feasible. In [177], the memory coherence problem is described,
which occurs when configuration data contain user information that is updated by
system-level user operations between the configuration readback and writeback
operations. It proposes a dirty-bit technique which deals with this problem.
Although it shows to outperform previous approaches, it also comes along with
a performance penalty.

Xilinx also provides with the possibility of taking advantage of the ECC protec-
tion of the bitstream by utilizing the so-called Soft Error Mitigation (SEM) Core
[186] or the SEU controller macro [74]. They check the ECC code for SEUs in
the configuration memory repairing it when it is necessary. In [187], a similar
strategy was presented.

The main weakness of the scrubbing resides in its slowness. The reconfiguration
is a time demanding process due to the limitations of configuration interfaces. In
addition the more data is to be rewritten (bigger partial bitstreams) the more time
is required. Different solutions can be adopted to alleviate this handicap. The
most straightforward, as presented in [95, 188], is to use the placing constraints to
locate the utilized resources in near placements. Due to this, the size of the partial
bitstream is likely to be smaller. Nevertheless, placement constraints limit the
freedom of the implementation software that can lead to worst results in terms
of resource usage an performance. Other researches propose compressing the
bitstream [189] to shrink it and reduce the duration of the partial reconfiguration
process. Nevertheless, these methods are relatively complex since they require a
compression mechanism, and they are also time demanding.

Considering that scrubbing is not able to repair certain elements of the FPGA
(digital clocks managers, power on resets, selectMAP interfaces, etc.) it is not
a definitive solution. In addition, considering the time demand on the reconfig-
uration operation, even in scenarios where a periodical scrubbing is a suitable
alternative, the frequency of the scrubbing process is usually lower than appli-
cation’s, and hence the scrubbing by itself is not generally sufficient. Due to
these factors, the majority of approaches utilize the scrubbing in combination
with other hardening techniques, like hardware redundancy based approaches
[52, 53, 83, 189–195].

3.2 Hardware Redundancy

Hardware-based techniques result to be the most frequently addressed by both
industry and academia in diverse technological architectures [196]. In the case of
FPGA designs, these techniques are a widely used solution to harden them. As

60 Hardening Soft-Core Processors Implemented in SRAM FPGAs

Figure 3.4 depicts, they mainly consist in replicating the hardware modules and
using a comparison mechanism for detecting the presence of faults. The replicated
module can consist of a mere flip-flop or a complete design. When applying redun-
dancy the replicated modules can be exactly identical or functionally equivalent.
Despite that [62] states that replicating the functionality provides better results,
because of its design effort demand, the most utilized alternative is to replicate
the exact hardware module. Redundancy can also be implemented in different
platform alternatives depending on the needs. The most simple alternative is to
replicate specific modules in the same FPGA device. Another alternative is to
implement the same module in different FPGAs but in the same board. While
the last option is to utilize multiple boards with the same FPGA designs. The
replication of modules in a single FPGA is obviously the most straightforward
and the cheaper option. In any case, these techniques are useful to make designs
more robust against both user and configuration memory upsets.

������
��	

���
�����

������
��	

������
��	

������
��	

����������

���������

���
�����

Figure 3.4: Example of hardware redundancy with N modules.

Different levels of hardware redundancy can be adopted, going from the Dual
Modular Redundancy (DMR) to the Quadruple (QMR) [72] or higher. Higher
redundancy levels commonly provide higher fault tolerance but also bring higher
usage of resources. Therefore, it is very convenient to find a right balance between
reliability and overhead depending on the requirements of each application. One
of the most common redundancy levels when utilizing processors is DMR, which
introduces the lowest resource overhead. The other most established redundancy
level definitely is the Triple Modular Redundancy TMR [197], because of its good
reliability/overhead relation.

An advisable strategy is to floor plan separately within the FPGA substratum,
when the design requirements allow it. This procedure helps to reduce the prob-
ability of one faulty module affecting other modules. This concept is known as
Spatial Diversity [191].

3.2 Hardware Redundancy 61

Taking into account that it provides the output of the entire system, the most
relevant element of a hardware redundancy scheme is the comparison mechanism.
Depending on the adopted hardware redundancy approach the implementation of
this element requires different characteristics. However, it mostly is a relatively
simple implementation. Hence, a small number of configuration bits are related
to it. For this reason, an SEU in the comparator block is an unlikely situation.
Nevertheless, if such scenario occurs, the response of the entire system will be
affected. These fatal consequences commonly demand to apply an additional
redundancy based hardening to the comparator block. In any case, regardless of
the redundancy level or the hardening of the comparator block, there is always
a risk of an SEU in the output of the comparator. This situation represents a
single point of failure, since if the output fails, the reliability of the entire system
is compromised. Therefore, it has to be remarked that, despite of their valuable
results as hardening solutions, hardware redundancy techniques cannot provide
an absolute fault tolerance.

Another relevant aspect related to hardware redundancy is the granularity level.
Three general granularity levels are defined in the literature [198]: logic level
(fine grained), block level (medium grained) and a complete module level (coarse
grained). The robustness level rises when redundancy is performed on fine gran-
ular modules [199–201].

Considering that more voters have to be implemented, fine grained implementa-
tions come with a price in terms of FPGA resources usage and design complexity.
Nevertheless, fine granularity offers the possibility of prioritizing which elements
are tripled depending on the available space, as [202] proposes. In this way, the
most sensitive components can be mitigated first and, if the available area al-
lows, others may also be hardened. [203] proposes the utilization of intermediate
voters, like depicted in Figure 3.5, to connect different replicated partitions in
order to eliminate single point of failures in the interconnections. In [204], three
different algorithms for determining where to insert voters were proposed. Be-
sides, a fine granularity may reduce the performance since the voters are added
to the critical path. In addition, as [205] states depending on the design, a bigger
number of voters does not assure better performance for all scenarios. This is
because the physical placement of resources can affect to their effectiveness.

On the other hand, the design of coarse-grained redundancies demands the lowest
design effort and it utilizes less area than fine grained ones. Coarse grained imple-
mentations are capable to mask all single points of failure within the replicated
modules, but they are unsafe against the accumulation of errors or some multiple
error types. For these reasons, depending on the system requirements, design-
ers should select a trade-off among robustness level, overhead and performance,

62 Hardening Soft-Core Processors Implemented in SRAM FPGAs

applying different granularity levels.

.

.

.

In1

In2

In3

Out2
.

Out3

Out1

.

. .

.

.

.

.
. .

.

.

.

.

Figure 3.5: Intermediate voter for the interconnection of tripled modules.

3.2.1 Dual Modular Redundancy

Dual Modular Redundancy (DMR) or Duplication With Comparison (DWC) is
one of the prevailing hardware redundancy based strategies. The main advantage
over higher redundancy levels is that the DMR requires less hardware overhead.
This is an interesting characteristic when designing complex architectures, such
as soft-core processors [86, 89, 189, 206, 207]. When the duplication is applied to
processors, the structure is named lockstep. This approach is based on utilizing
two identical processors executing the same application in parallel, feed by the
same inputs and comparing the outputs. Most commonly, the output checking
process is done at every clock cycle. Both processors must be synchronized to
start at the same time initialized with the same context.

As is shown in Figure 3.6, when an input discrepancy is detected an error flag is
triggered. A DMR scheme permits to detect errors but neither mask nor correct
them. This is because it is not possible to identify the faulty module, requiring
a further solution that will stop the operation. Figure 3.7(a) depicts the most
basic approach, which is to restart the process or program after detecting a fault.
A further straightforward solution is to perform a configuration scrubbing like in
[189]. However, since the scrubbing does not affect to the state of the registers
and the memory content, this strategy is only valid for errors in logic and not for
registered data. In [66], the RESO method was introduced to detect the faulty
core and to switch the correct core to output. The idea behind this approach
is to modify the operands before performing the re-computation so that a fault
affects different parts of the circuits. Due to this, the computations are carried
out twice, once on the basic input and once on the shifted input.

Due to obvious reasons, both presented approaches are not commonly sufficient to
meet requirements of most applications. In this way, the prevalent approach when

3.2 Hardware Redundancy 63

Soft-core

µP

Soft-core

µP

SEU

Error
Comparator

= Data
Output

Figure 3.6: Error detection in a DMR scheme.

implementing a DMR based hardening is to combine it with checkpointing and
rollback techniques [66, 80, 208–211]. Both techniques can be also combined with
configuration scrubbing [52, 212]. Checkpointing consists in periodically saving
an error free state. Hence, after a correct result in the comparison the check-
pointing may be executed (depending on the checkpointing frequency). On the
other hand, rollback consists in going back to the previous saved error free state
by loading the context saved in the checkpointing. An alternative method based
on a Self-Checking Hardware Journal (SCHJ) was presented in [81]. The SCHJ
method relies on the utilization of a specialized self-checking hardware journal to
design a hardened a soft-core processor. Thanks to the use of this journalization
the soft-core processor designed in this work achieves a fast rollback.

The checkpointing technique can be performed by software, by adding instruc-
tions for data saving to the program; or by hardware, by implementing data
saving mechanisms. In both alternatives, a backup memory space to store the
saved checkpoint is always required. The checkpointing frequency determines
the fault tolerance level [213]: higher checkpointing frequency means higher fault
tolerance but also lower both operation speed and availability, because check-
pointing requires stopping the system so as to read memory a save data from
modules and registers. As it can be observed in Figure 3.7(c) checking and sav-
ing the context of both processors at every execution cycle provides the shortest
error recovery times, but usually comes with a performance reduction. Other-
wise, as Figure 3.7(b) describes, low checkpointing frequencies come with worst
recovery results and more danger of error propagation. Hence, in all the cases
checkpointing requires software or hardware overhead and generates some level
of performance penalty. For these reasons a trade-off decision has to be adopted
during the designing process.

In DMR schemes the comparator only needs to identify a discrepancy. Hence,
as shown in Figure 3.8, the comparator mechanism is more basic than TMR
(or higher). In [214], two voters were proposed in order to implement them by
using abundant and underused carry-chains in Xilinx FPGAs. The comparator

64 Hardening Soft-Core Processors Implemented in SRAM FPGAs

S1 S2 S3 S4 S5 S1= = = = =

SEU

Restart

(a) Basic lockstep based (whithout checkpointing).

S1 S2 S3 S4 S5 S3= = = = =

SEU

Backup BackupBackup
S1 S3 S3

Chckpnt Chckpnt Rollback

(b) Lockstep combined with checkpointing and rollback (low checkpoint-freq.).

S1 S2 S3 S4 S5 S4= = = = =

SEU

Backup Backup Backup BackupBackup
S1 S2 S3 S4 S4

Chckpnt Chckpnt Chckpnt Chckpnt Rollback

(c) Lockstep combined with checkpointing and rollback (high checkpoint-freq.).

Figure 3.7: Flow charts of lockstep approaches.

3.2 Hardware Redundancy 65

of DMR approaches is a sensitive element, since an error in the comparison may
lead to flag as erroneous a correct output, and vice versa. For this reason, the
voter can be also harden applying to it hardware redundancy strategies.

In1

In2

Out

Error

.

Figure 3.8: Basic error detection implementation for a DMR setup.

The granularity concept can be also applied in DMR schemes as was proposed
in [215], where DMR+ a technique to protect flip-flops in Xilinx FPGAs was
presented. Comparing with TMR it obtains a significant hardware overhead
reduction, the same circuit delay and only a slightly worse reliability.

A relevant aspect to be considered is the susceptibility of context-saving backup
memories. Since an error in them may lead to a faulty rollback they should
be hardened with, for instance, a TMR protection or an error correction code
strategy.

In [163], an remarkable lockstep approach based on the utilization of the bitstream
was presented. Thanks to it, a hardware resource overhead is avoided. The er-
ror detection is done comparing the configuration bitstream with a previously
obtained golden bitstream. Hence, the error detection does no check register’s
or memories’ content and the error detection speed is limited to the bitstream
reading speed. This approach also performs the checkpointing by reading the
content of flip-flops through the bitstream. Thanks to this, the operation is not
affected during the checkpointing, but the checkpoint-frequency is limited. This
approach presents the limitation of not saving the content of user memories. On
the other hand, due to the use of the Select-Map interface, the implementation of
this approach requires external hardware. This hardware consists of an auxiliary
board to manage the bitstream operation the hardware requirements are higher.
In [216], the author introduces a similar approach based on the bitstream uti-
lization. In this case, the error detection is done by using the extended hamming
code in each configuration frame and the checkpointing of flip-flops content is
performed utilizing the ICAP interface and the GCAPTURE primitive. Bearing
in mind that the ICAP utilizes FPGA’s logic resources, it is exposed to induced
faults that could affect its internal logic. This an unlikely but possible situation
that would override the reliability of the approach. In addition, like in the previ-
ous approach, data content of user memories is not targeted. It is important to
remark that these approaches are not suitable for newer 7 series devices.

66 Hardening Soft-Core Processors Implemented in SRAM FPGAs

3.2.2 Triple Modular Redundancy

Unlike what happens with DMR, TMR and higher redundancy levels enable the
possibility of identifying the faulty module and provides higher fault tolerance
levels. However, increasing the redundancy level also implies a resource overhead
directly related with the redundancy level. Among the different hardware re-
dundancy alternatives the Triple Modular Redundancy (TMR) is considered to
be the most extended one to harden FPGA designs because it offers a remark-
able trade-off between reliability and resource overhead. Since first introduced in
[217] this technique has become in a standard hardening approach inspiring a vast
number of researches in the literature [54, 59, 66, 137, 218–223]. Nevertheless,
its biggest handicap is the resource overhead, which is usually about %200. The
work [224] presents a TMR alternative with a resource overhead reduction. It
proposes to implement a TMR scheme composed by a full precision module and
two reduced precision modules. These two reduced-precision blocks will generate
an upper and lower bound on the correct function output. The research itself
states that despite the acceptable results with complex functions, the result with
simple operations are not efficient in terms off fault tolerance.

Essentially in a TMR scheme, three exactly alike or functionally equivalent units
of the element to be hardened are used. Once the element is tripled, the final
output is determined by a majority voting. Thanks to that, as is shown in 3.9(a),
even when a fault is present in one of the three replicas, a voter would still be
fed with two correct values. Hence, the wrong third result is masked providing a
valid output without stopping the operation.

However, as depicted in Figure 3.9(b), when multiple errors are induced in dif-
ferent modules at the same time provoking an equal faulty output, they can be
set as correct. This is an unlikely but possible situation. Another remarkable
drawback of using a voter is that in the best scenario errors are masked but not
corrected. Hence, when utilizing hardware redundancy there is an inherent risk
of accumulation of SEUs. Due to this, as it has been mentioned in section 3.1
the common practice is to combine it with the scrubbing.

Considering the crucial relevance of the voter in these type of schemes, its design
is a main concern [191, 225, 226]. Figure 3.10(a) depicts the most basic voting
and as it can be observed it consists of three 2-input AND gates connected to a
3-input OR gate. This scheme is capable of providing a correct output in presence
of a faulty module. However, this affirmation presumes that the voter cannot be
affected by induced faults, which does not match reality.

When a fault affects the voter it can provoke wrong behaviour, from partial
failures to total disruptions. The criticalness of such scenario have motivated a

3.2 Hardware Redundancy 67

Soft-core

µP (A)

Soft-core

µP (B)

Soft-core

µP (C)

VOTER

SEU

Data
Output

Faulty
Module

(A)

(a) Correct voting under an SEU in a TMR
scheme.

Soft-core

µP (A)

Soft-core

µP (B)

Soft-core

µP (C)

VOTER

SEU

Data
Output

SEU
Faulty
Module

(C)

Wrong

(b) Wrong voting due to MBUs in a TMR
scheme.

Figure 3.9: Examples of different TMR scenarios.

number of researches [227–229]. An alternative to harden the voter can be to trip-
licate it like in [230], where a suitable partition of the replicated module/voter
structure is implemented in different devices. However, its hardware overhead
and the fact that the three outputs have to be voted at same point, make this
alternative not advisable for many situations. In the article [231], a voter reliabil-
ity study and a novel voter (depicted in Figure 3.10(b)) implemented using XOR
gates, priority encoders and multiplexers was presented. This approach increases
the reliability of the voter by six times but also the resource overhead. Figure
3.10(c) portrays the approach presented in [232]. In this case, the proposed voter
obtains higher robustness than the basic voter but less than [231]. The main ben-
efit of this voter is a resource overhead reduction over even the basic voter. In
[233], a deep analysis of the reliability of the previously presented majority voter
approaches was introduced, proposing a new voter hardened for TMR designs.
Figure 3.10(d) shows this voter which is composed by several OR and AND gates.
This scheme is similiar to the voter’s proposed in [232]. Nevertheless, it improves
the resilience to potential internal and/or external faults. [87] presents a complex
voter composed by different logic gates and managed by an external controller,
which detect and recover from permanent faults. [234] proposed a scan-chain
based approach applied to the inputs and outputs of each one of the flip-flops in
the circuit to detect any functional fault affecting the majority voter, enabling to
determine which module has to be fixed. Furthermore, extending the scan chain
to inside the module and wrapping on it the different combinational blocks and
registers enables the precise location of the fault.

Despite all these approaches improve the reliability over a basic TMR voter, they
are not capable to eliminate the presence of a single point of failure in the output

68 Hardening Soft-Core Processors Implemented in SRAM FPGAs

of the final voter.

A totally different approach was presented in [226], where an ICAP-based voting
is proposed in order to overcome the consequences of faults in the voter. In this
case the voting is performed by an external processor after reading the content of
the ouputs registers of each module from the bitstream through the ICAP recon-
figurable port and utilizing the GCAPTURE primitive. Nevertheless this approach
does not solve the problem of multiple errors in different modules provoking an
equal faulty output. In a similar way, it does not prevent the accumulation of
errors in registers and data memories. The approach presented in [235] also uti-
lizes the ICAP to read the bitstream and detect errors. However, it requires
an external device to implement a watchdog timer. Another similar strategy
was presented in [236], where the error detection is performed through a direct
readback and comparison of the current configuration bitstream. This approach
increases the hardware usage since the fault detection and recovery is performed
outside the FPGA by a dedicated on-board CPU via the SelectMAP port. In
general bitstream based voting methods present low availability due to their time
requirements.

As a conclusion, despite they increase the reliability level, all the published ap-
proaches present hardware overhead or a single point of failure, and in the ma-
jority of them both.

.

.

.

In1

In2

In3

Out

(a) Basic voter.

.

.

.

In1

In2

In3

Out

Priority

Encoder

2:1

MUX

(b) Voter approach from [231].

.
In1

In2

In3

Out2:1

MUX

(c) Voter approach
from [232].

Out

.
.
.

In1

In2

In3

.

(d) Voter approach from [233].

Figure 3.10: Voter alternatives for TMR approaches.

3.3 Other Types of Redundancy 69

In contrast to coarse grained, the implementation of fine grained TMR schemes
can be a tedious task. To help the designers to deal with providing TMR hard-
ening to design, several software tools are available. The TMRTool by Xilinx
[237] is a remarkable tool when working with Xilinx’s Virtex-4QV and Virtex-
5QV FPGAs. Nevertheless, since it has been discontinued, new tools has to be
considered especially when working with newer devices, such as the Zynq. An-
other relevant tool is the BLTmr developed at Brigham Young University (in
collaboration with Los Alamos National Laboratory) [202]. BLTmr is a CAD
tool to implement partial TMR designs by applying selective triplication in order
to target the most sensitive components of designs, hence, reducing the hardware
overhead. Another alternative is Synplify Premier by the Synopsys, Inc. [238].
This software offers multiple options for implementing error detection and mit-
igation circuitry, such as, memory protection by inferring error correcting code
(ECC) memory primitives and by inserting triple modular redundancy (TMR) on
BRAMs to mitigate single-bit errors, safe FSM implementation and fault-tolerant
FSMs with Hamming-3 encoding. In [236], a set of tools that allow to manipulate
partial bitstreams to perform fine and coarse grained redundancy was presented.

3.3 Other Types of Redundancy

As an alternative to hardware redundancy other three redundancy types can be
applied: data redundancy, time redundancy and software redundancy. Each type
exploits distinct features providing specific benefits and introducing particular
drawbacks. The present section introduces the features of each type, discussing
the most remarkable approaches proposed in the literature.

3.3.1 Data Redundancy

Data redundancy is another remarkable fault tolerance alternative to harden
SRAM based FPGA designs. This concept is based on adding additional data
in order to be able of verifying and even correcting the original information.
Data redundancy is mainly used to reduce error rates in memories, which is
especially interesting in SRAM based ones. The prevalent alternative is the use
of built-in Cyclic Redundancy Check (CRC) and Error Correction Code (ECC)
or Error Detection and Correction (EDAC) strategies [59, 60, 73, 239]. With
these techniques a bit-flip can be detected, automatically corrected and even
recorded, with the possibility of saving a time stamp for further actions. ECC
techniques can be implemented in hardware or by software [240]. With software

70 Hardening Soft-Core Processors Implemented in SRAM FPGAs

ECC approaches, transient faults in the combinational logic are not stored in
storage cell, and bit-flips in the storage cells can be avoided or instantly corrected.

However, single-bit errors may cause failures in software ECC if an error occurs
when reading data from a memory and it is coincident with the time between the
last scrubbing and the time of reading. In contrast, hardware ECC checks all the
data read from the memory correcting single-bit errors. Hence, bearing in mind
that hardware ECC provides better reliability, it is a most advisable strategy.

Thanks to the reliability and the limited hardware overheard introduced by these
techniques, they are a widely used alternative to TMR schemes when harden-
ing memories in FPGA designs [194, 241]. While TMR boost the reliability by
increasing significantly the area of memory cells (especially with fine granular-
ity), ECC codes produces a small hardware overhead but it needs large logic
blocks (with multiple levels) to implement coders and decoders, which increases
the length of the critical paths. Due to this, the convenience of each approach
depends on the design needs.

Several ECCs are available in the literature [242, 243], such as, Hamming,
One-Step Majority-Logic Decoder (serial and parallel), Majority Gate, Bose
Chaudhuri Hocquenghem, Berger, m-Of-n, m-Out-n, Residue codes, Reed,
Solomon, Hsiao, Checksum, etc. One of the most utilized is the Hamming code
[66, 75, 192, 194, 241, 244, 245]. As depited in Figure 3.11, it adopts the parity
concept, but uses more than a single parity bit. To detect k -single bit error, the
minimum number of bit positions at which the corresponding symbols are dis-
tinct or minimum hamming distance (D) is D= k+1. A code word of n bits with
m data bits and p check bits, where n = m+p, can correct (D-1)/2 errors and
can detect D-1 errors. Moreover, with the addition of an extra parity bit, it can
be determined whether it is 1-bit or 2-bit error. Nevertheless, even being a good
candidate to be used in memories or register files, the Hamming code can be a
non advisable alternative in some scenarios. Specially when the huge number of
bits leads to long path of serial XOR gates in the decoding and coding modules.
In this scenario a suitable alternative is to divide the data in smaller data words.
As [241] states, in the case of data words up to 16 bits, the difference in area and
delay between hamming code and TMR is nearly negligible. Due to this a TMR
scheme is commonly an interesting alternative for blocks made-up of registers
and pipelines, while Hamming ECC is more appropriate to harden register files
and embedded memories.

Xilinx has a built-in ECC module to protect the BRAM structures [192]. This
module is developed for BRAM primitives of data widths greater than 64 bits
[246] by using Hamming code. Its goal is to detect and correct errors with a good
performance and small resource utilization. Using this module one single bit error

3.3 Other Types of Redundancy 71

1 0 1 1 1 10 0 0 0 0

1 0 1 1 1 10 0 0 0 0

1 0 1 1 1 10 0 0 0 0

1 0 1 1 1 10 0 0 0 0

0(Corrupted bit: 7TH) 1 11

Figure 3.11: Example of error detection using Hamming code.

can be automatically corrected and double errors can be detected. However, its
use presents some drawbacks. For instance, the need of 2 clock cycles for data
reading, which implies an extra clock cycle latency. To solve this problem, [54]
it presents a hardware interface which solves the synchronization problem by
“looking ahead” the next instruction. But the drawback of this approach is the
resource overhead. Another drawback when using Xilinx ECC module for BRAM
can be found when the data width chosen by user is not a multiple of 64, because
a double-bit error signal may point out errors that have occurred in the unused
bits. In addition, when using the Built-In ECC there are some limitations, such
as, the non-availability of Byte-Write enable, RST[AB] Pin and the “output reset
value” options and the impossibility of initialization. This last limitation is an
important disadvantage for the process of writing the instructions in the program
memory. Another problem when utilizing the built-in ECC is the synchronization
of the BRAM memory block and the user application. Since, while processors
mainly expects memories with a latency of a single clock-cycle, ECC BRAM
implementations need two clock-cycles to read data. To circumvent this issue,
in [54] a hardware interface called EPA (ECC Processor Adaptor), which looks
ahead for the next instruction, was presented. [247] presents a similar approach.
The implementation of these interfaces, comes which a resource overhead.

In addition to the hardware based ECC approaches, vendors offer harden-
ing alternatives for the bitstream. Xilinx provides the Frame ECC logic
(FRAME ECC VIRTEX6 primitive) for Virtex-6 and 7 Series FPGAs [248]. It
enables de possibility of detecting single or double bit errors in configuration
frame data thanks to the use of a 13-bit Hamming code parity value that is
calculated based on the frame data generated by BitGen. During the readback
porcess (by utilizing SelectMAP, JTAG, or ICAP interfaces), the Frame ECC
logic generates a syndrome value utilizing all the bits in the frame (including the

72 Hardening Soft-Core Processors Implemented in SRAM FPGAs

ECC bits). If no bit change happens from the original programmed values, the
[12:00] bits from the SYNDROME word are all zeros. On the contrary, if a fault
provokes a bit-flip (including the ECC bits), the [11-0] bits from the SYNDROME
word indicate its location. If the flipped bits are two or more, the [12:00] bits
from SYNDROME are indeterminate. In this scenario, the error output of the
block is asserted. In addition, after reading each frame the syndrome valid signal
is asserted. Repairing flipped bits demands a user design since the frame ECC
logic does not repair them. Xilinx provides an SEU controller IP [186] capable of
repairing, an even injecting, configuration-frame faults. In any case, the design
has to be able to save at least one data-frame or be able to fetch original data-
frames for reloading them. In [248], it is addressed that the simplest operation is
to read the frame through the configuration interface, store it in a BRAM, anal-
yse it and if it required repair it before writing it back. However, if the BRAM
which stores the frame is affected by an induced fault, the entire design can be
compromised.

Different alternatives have been proposed in the literature to deal with the frame
ECC issue. In [249] an embedded IP core, which can be implanted into the
FPGAs to detect and correct soft errors automatically was proposed. [250] also
presents an SEU-Monitor System which is able of injecting, detecting and correct-
ing single-bit errors and injecting and detecting double-bit errors in the FPGA
configuration memory. On the other hand, in [251] a low-cost ECC was presented
to detect and correct MBUs in configuration frames. This code is based on the
conception of Erasure codes and utilized vertical and horizontal parity-bits to
avoid redundant data. It also proposed the utilization of Mutation codes. As
it states by using Erasure or Mutation codes the delay can be reduced. This
approach does not demand alterations in the FPGA design. The parity bit oper-
ation is performed for all configuration frames increasing the computation time.

3.3.2 Software Redundancy

Software redundancy is a well known alternative to the hardware redundancy
when protecting processors because it does not require any modification at hard-
ware level. Hence, the impact in terms of hardware overhead is very limited.
Software redundancy is based on replicating the program code and adding extra
instructions to perform comparison functions. Due to this fact, software based
approaches require to increase program memories. Another remarkable draw-
back is the performance penalty generated by the execution of a larger number
of instructions.

Another software based approach commonly utilized in combination with software

3.3 Other Types of Redundancy 73

redundancy is the utilization of consistency checks. This technique consists in
periodically executing a specific set of instructions with the purpose of verifying
the faultlessness of memories and their functionality.

In [252, 253], similar software redundancy approaches were presented. Depending
on if the faults provoke errors in the program execution flow or in the stored data,
different strategies were proposed. In order to deal with errors in the program
execution, a modification of the application code by introducing new instructions
is done, either in low assembler code or high-level code. Due to this, a checking
is performed allowing to know if faults have affected the expected instruction
flow. When working with errors affecting stored data, proposed methods mainly
consist in providing information redundancy in order to store several copies of
the information and in adding consistency checks. Thanks to the utilization of a
proper combination of these approaches, permanent and transient errors can be
detected and repaired. In addition, their use provides the capability of addressing
fault detections without the need of additional hardware.

In [254], the so-called N-version programming technique was presented. This clas-
sical approach hardens program with an high-level code, which mainly consists in
tripling the instruction and utilizing a majority voting. Hence, the performance
penalty is significant. In addition, since this approach demands a triplication of
instructions and data, it demands bigger memory modules.

The approach proposed in [255] hardens programs against transient faults without
the drawback that comes with tripled instructions. It also reduces the perfor-
mance penalty over the instruction triplication. This fault tolerance method is
able to overcome SEUs in processor-based system memory. The basis of this ap-
proach is to duplicate the program variables and the operations and performing a
checksum, which is updated every time the content of a variable is written. The
fault detection is done by checking the coherence of both copies. An error re-
covery procedure, which corrects the error by relying on the duplicated variables
and the stored checksum, is launched after detecting an error.

The Software Implemented Fault Tolerance (SWIFT) approach presented in [256]
is a software redundancy technique designed to detect upsets in processor’s mem-
ories and registers. The SWIFT approach can be divided in two parts. The first
part’s goal is to protect the processor against upsets in data by instruction du-
plication. While the second part’s aim is to protect the design against control
errors but utilizing a software control-flow monitoring. The study [94] extends
the intended use of SWIFT to protect the processor logic and routing. It also
performs consistency checks as an interrupt service routine to detect upsets in
the logic and routing leading to the units.

74 Hardening Soft-Core Processors Implemented in SRAM FPGAs

Software based approach are dependant of the specific program. Hence, the re-
sults in terms of overhead, reliability and performance penalty obtained with
their use may vary depending on the software programmed in the device. Differ-
ent works, such as presented in [257, 258], focus on providing strategies to obtain
reliable software in order to harden unreliable hardware designs. These kind of
techniques are out of the scope of this work.

3.3.3 Time Redundancy

Time redundancy based techniques attempt to reduce the hardware overhead of
hardware redundancy approaches at the expense of using extra time [259–263].
As depicted in Figure 3.12, these techniques are based on performing the same or
functionally equivalent operation several times and comparing each result. After
detecting an error it is possible to perform an additional operation in order to
check if the error persists. They mainly add low hardware overhead to designs
but performance penalty instead. For this reason, they are mainly advisable to
be used in designs where the area is a more critical aspect than the temporal
efficiency.

Data
Output

Faulty
Module

(A)

Reg1

Reg2

Reg3

Hardened

Element
(e.a. Soft-core µP)

CLK

CLK+ 1

CLK+ 2

Time
Domain
Voter

SEU

Figure 3.12: Example of a basic time redundancy scheme.

There are two main strategies when hardening a design with time redundancy:

• To repeat the calculation in different instants and compare results. While
the negative aspect of this strategy is low execution performance, the ad-
vantage is that it requires low hardware overhead. It also provides the
capability of detecting transient and even permanent errors.

• To store data in different instants and detect discrepancy. This strategy
avoids to repeat the calculations and they can be utilized to detect and
mask transient errors.

3.3 Other Types of Redundancy 75

Although redundancy based techniques are especially suitable to detect or/and
mask transient fault due to their temporal character, they can be utilized in
combination with coding and decoding techniques to improve the detection of
permanent faults [264].

In [193], an approach based on a temporal data sampling mechanism was pre-
sented for error detection and correction. It is based on sampling data at three
different time intervals, requiring three clocks for proper operation. This work
states that thanks to the utilization of this approach the performance can be
increased by 55.93 percent over conventional TMR schemes, while providing near
100% fault coverage.

The approach proposed in [265] is an hybrid technique that combines hardware
and time redundancies with some special consideration to provide a dissimilar
condition for hard copies over the time. The main advantage of the proposed
method is that it reduces SEU propagation among the replicated modules. The
results of this study conclude that reliability of the harden design increases up
to 70 times with respect to a standard TMR.

The logic-level circuit transformation technique based on time redundancy for
the automatic insertion of fault-tolerance properties was proposed in [266]. This
approach permits to adapt the time redundancy dynamically. In this way, the
fault-tolerance characteristics can be traded-off for throughput during the run-
ning. This permits to activate the hardening only in critical situations.

In [267], automated behavioural design flow based on a parametrizable architec-
ture to enable time redundancy of loosely coupled hardware accelerators mapped
as slaves onto a memory mapped shared bus was presented. The proposed method
concurrently re-computes the output twice or thrice from each hardware accelera-
tor while sending and receiving data from and to the master to detect soft-errors.
This scheme makes it possible to determine if a transient fault has been pro-
duced. Thanks to re-computing three times, masking the errors is also suitable.
Despite that the proposed approach reduces the hardware overhead, it cannot
guarantee full fault tolerance if the performance of the design to be harden has
to be preserved.

Although time redundancy presents lower resource overhead than hardware re-
dundancy, it requires some kind of logic to store the results of the different re-
dundant operations, perform the comparisons, etc. Bearing in mind that this
storing and control logic is susceptible to induced faults, the utilization of this
type of techniques requires additional hardening strategies to avoid single points
of failure. Due to this, they can be considered as complementary tools for certain
type of design able to tolerate their inherent performance penalty. These type

76 Hardening Soft-Core Processors Implemented in SRAM FPGAs

of hardening techniques are mainly program/application dependant, and for this
reason they are out of the scope of this work.

3.4 Dynamic Partial Reconfiguration to Fix Per-
manent Faults

While transient faults can be fixed by reprogramming strategies, such as scrub-
bing, permanent faults produced by Single Hardware Errors (SHE), SEGRs,
SELs, SEBs, the TID or the ageing of the die, demand the utilization of spare
elements to avoid the use of damaged resources [268]. Due to this, the approaches
proposed to overcome from permanent faults are based on utilizing a combination
of different techniques, such as, hardware redundancy, permanent fault detection,
partial reconfiguration and repaired module synchronization.

3.4.1 Detection of Permanent Faults

The first step before adopting any repairing action is to determine whether the
detected fault is transient or permanent. A straightforward solution is described
in Figure 3.13. First, the error has to be detected during the application run-
ning, by utilizing a technique with error detection capability, like DMR or TMR.
After detecting the error a repairing strategy, like scrubbing, must be applied to
fix configuration errors. After performing the repairing process a second error
detection has to be performed in order to detect the error persistence. In this
step, the MTBF has to be analysed, since it is assumed that a permanent fault
has produced if two faults are reported at the same element in a time interval
smaller than the MTBF. Following the fault identification, the fault fixing mech-
anism based on partial reconfiguration has to be launched. Once again, after the
repairing process a fault persistence check has to be conducted in order to ensure
the correctness of the design. If the fault persist the error can be classified as
unrecoverable. In [268, 269], different algorithms to determine the presence of
permanent errors based on the same idea were presented.

In addition to this, [270] proposed a LUT and CLB level approach to detect
permanent faults in a TMR scheme. Despite that this of approach provides an
easy identification in both, the replicated modules and the voter, it is technology
dependant and its implementation implies significant complexity. A special voter
mechanism to detect permanent faults was proposed in [87]. This voter utilizes
three input signals that are derived by a special controller which employs two

3.4 Dynamic Partial Reconfiguration to Fix Permanent Faults 77

internal registers to identify permanent errors. In [271], an algorithm for the dis-
crimination of faults in FPGAs based on their recovery possibility was proposed.
This algorithm is executed each time an error signal from the independently re-
coverable areas detects a fault. The identification of a permanent fault is based
on the analysis of the fault’s frequency thanks to recording of faults in subsequent
observations.

Error Fixing
(Scrubbing, e.a.)

DPR Repair
(Partial bitstream,

Sync., e.a.)

Run

Application

Error Detection
Error

Persistence

Error

Persistance

Unrecoverable Error

NO NO NO

YES YES YES

Permanent Error

Figure 3.13: Flow chart for detection and correction of permanent faults.

3.4.2 Repairing Permanent Faults

The replacement of faulty resources by utilizing dynamic partial reconfiguration
permits reprogramming the FPGA using alternative configurations with the same
logic design, but implemented with a different set of fault-free resources and omit-
ting the faulty ones. This strategy commonly requires to generate previously the
different back-up partial bitstreams, and to store them in a fault tolerant memory
(i.e. a hardened memory or a memory implemented in a reliable technology). In
addition a controlling mechanism is required to perform operations, such as, sys-
tem management, permanent faults identification, reconfiguration, synchroniza-
tion tasks, etc. Due to its importance, this module has also to be implemented
in a fault tolerant manner. Bearing in mind that this alternative makes use of
partial reconfiguration is closely dependent on the FPGA technology selected. In
addition, the utilization of a partial configuration, with the technology available
nowadays, implies a reduction of the MTBF.

In [180], the jiggling approach which avoids the use of previously generated bit-
streams was introduced. The jiggling repairs permanent errors generating alter-
native configuration bitstreams for a faulty module by making use of the healthy
modules. In this way, this technique utilizes the remaining healthy functional
modules as a template for an algorithm which can generate different bitstream
versions of the demanded behaviour that avoid the utilization of faulty resources.
The algorithm creates mutations using single bit-flips in the FPGA configuration
bitstream of the faulty module. This apporach also reserves spare resources to

78 Hardening Soft-Core Processors Implemented in SRAM FPGAs

relocate generated modules. In this way, permanent faults can be repaired until
all the spare elements are consumed.

This idea can be carried out in different granularities. The most utilized one is
the fine granularity known as the tiling technique [21, 60, 191, 191, 269, 272],
which is described in Figure 3.14 extracted from [9]. It consists in pre-generating
several partial bitstreams of the same design for the same reconfigurable block
in order to avoid the utilization of the faulty tile. Each of the pre-generated
partial bitstreams has to contain a forbidden zone. Thanks to that, a permanent
error can be masked by downloading a convenient partial bitstream, in which the
forbidden zone overlaps the faulty tile. A straightforward way to define the for-
bidden zone when utilizing devices by Xilinx, is to utilize placement constraints,
like PROHIBIT [273]. The smaller is the forbidden zone (finer granularity) the
more partial bitstreams have to be generated, increasing the developing time
and the external memory space need. A solution to decrease data size of par-
tial bitstreams is the usage of compression techniques, as proposed in [189]. In
addition to this, as is stated in [9], storage needs can be noticeably reduced by
generating only the differential bitstream between two adjacent columns. This is
because whether a forbidden zone corresponds to a column the number of needed
partial bitstreams equals the number of columns utilized by the target block.
In [274, 275], CLB column overlapping strategies were proposed. The utiliza-
tion of adjacent columns requires to use strict constraints in order to generate
the almost equal (except for the forbidden zone) partial bitstreams. In addition
the occurrence of persistent errors inside the configuration frame that contains
a permanent fault within a column can generate relevant issues. This happens
because, since a tile may contain data content shared by several modules. The
reconfiguration process can affect not only damaged modules, but also adjacent
correct modules corrupting the stored data. To avoid this problem additional
strategies, such as, the utilization of a checkpointing and rollback mechanism,
are utilized.

In [276], a self-healing strategy with fault diagnosis was proposed. This process
is carried out by executing evolutionary runs which generate evolved circuits that
can avoid the faults being accumulated in the configuration matrix.

A coarse-grained approach can be adopted when the tiling is not able to repair
a permanent fault. In this case, the strategy consists in reserving spare reconfig-
urable partitions for the different modules [21, 206]. Figures from 3.15(a) explains
this idea applied to a TMR scheme. As Figure 3.15(a) shows, during normal oper-
ation the three modules work together while three spare reconfigurable partitions
remain reserved as backup spaces. After the detection of a permanent fault, the
faulty block is discarded while the remaining modules continue working. In the

3.4 Dynamic Partial Reconfiguration to Fix Permanent Faults 79

AA

A

D

D

DC

B

BB

B

AA

A

D

D

D

B

BB

B

AA

A

D

D

B

BB

B

C

C

AA

A

B

BB

B

C

C

AA

A

B

BB

B

C

C

D

D

D

t=1 t=2 t=3 t=4 t=5

t=6 t=7 t=8 t=9 t=10

Next error:

Unrecoverable

A A

A

B

B

B

B

C

C

D

D

D

A

A

B

B

B

B

C

C

D

D

D

B

B

B

B

C

C

D

D

D AA

A

B

BB

D

D

DC

C

AA

A

D

D

DC

C

Start

B D

CA
Working

Tiles

Failure tile

Error-source tile

Reconfigured tile

Spare tile

Figure 3.14: Permanent error repair with tiling strategy.

repairing process a new partial bitstream containing a version of the module is
written into the FPGA, as is shown in 3.15(b). Thanks to this approach, the
utilization of a defective hardware is avoided in a straightforward fashion. This
method permits to implement repaired modules in distant reconfigurable regions
along the FPGA. This idea can be especially interesting when a remarkable area
has been damaged which permanent faults. Nevertheless, the main drawback of
this method is that a substantial area remains unavailable to be reserved as spare
reconfigurable partitions. The number of spare partition is a design decision, the
more partitions reserved the more possibility of obtaining alternative error-free
spaces. Hence, it increases the unavailable device-area and requires to gener-
ate and store more partial bitstreams. As is stated in [189], a medium-grained
spare allocation strategy obtains better results in both storage and performance
frequency overhead. However, a coarse-grained approach presents better reliabil-
ity level than a fine-grained approach (especially when the faults take place in
attached slices).

Some references suggest the possibility of transforming the TMR scheme into a
DMR system when a faulty module cannot be recovered [277, 278]. Neverthe-
less, this implies to lost the benefits of the TMR strategy and also demands to
implement the additional mechanism necessary for DMR schemes.

80 Hardening Soft-Core Processors Implemented in SRAM FPGAs

 µP1

 µP2

 µP3

Reconf. Part.1

Reconf. Part.2

Reconf. Part.3

Voting

Logic

Spare

Reconf. Part.1

Spare

Reconf. Part.2

Spare

Reconf. Part.3

SHE

FPGA

(a) Permanent error detection.

 µP2

 µP3

Defective

Reconf. Part.

Reconf. Part.2

Reconf. Part.3

Voting

Logic

Spare

Reconf. Part.2

Spare

Reconf. Part.3

FPGA

 µP1

Spare. Part.

(b) Faulty module repair.

Figure 3.15: Permanent error repair with spare reconfigurable partitions.

3.4.3 Synchronization of Repaired Modules

In the majority of cases a reconfiguration by itself does not suffice for recovering
faulty systems hardened by the combination of hardware redundancy and partial
reconfiguration techniques. If the repaired instance features some kind of internal
state, it needs to be synchronized with the rest of the healthy instances after the
reconfiguration.

The straightforward way to synchronize a redundancy scheme is to reset the
entire system and to start the execution in all the replicas at the same point.
Nevertheless, this kind of approach provides poor availability results. Another
alternative to obtain higher availability levels is the utilization of the combination
of checkpointing and rollback techniques, which has been widely discussed in
3.2.1.

A common synchronization technique for redundancy based schemes is the so
called roll-forward [60, 68, 68, 89, 210, 213]. This technique consists in copying
the correct state from the fault-free replicas and downloading it to the repaired
unit. This approach avoids the utilization of any re-computation process and, as
is stated in [263], it presents lower performance overhead and increases the reli-
ability over re-starting and re-executing the entire process. The main drawback
of this approach is that if error-free modules continue operating, their states con-
tinue changing which makes this approach unsuitable for this scenario. A solution

3.4 Dynamic Partial Reconfiguration to Fix Permanent Faults 81

for this issue is to pause the system during the synchronization, which comes with
a significant performance reduction. The approach presented in [279] proposes a
modified roll-forward approach that also includes checkpointing. After detecting
an error, the three replicas stop operation while the inputs are buffered. After
repairing the faulty module, the buffered data feed the three instances. This
approach does not add any re-computation delay. Nevertheless, it increases re-
source overhead because of the required buffers and the synchronization reduces
the system’s availability. In addition, it is less capable of recovering multiple
faults than the voting scheme.

In [280], the ScTMR technique was introduced. This technique proposes a roll-
forward approach which re-utilizes the scan chain implemented in the processors
for testability purposes to recover the system’s fault-free state. This avoids any
re-computation and meets the specifications for real-time systems adding a low
resource overhead. Although this approach significantly decreases susceptibility,
it is unable to recover the system from simultaneous errors in two modules and
from masked errors in single faulty modules. In [87], an updated version of this
approach that addresses the shortcomings of ScTMR was presented. In this case,
the proposed technique named scan chain-based multiple error recovery TMR
(SMERTMR) is a roll-forward technique for TMR-based designs which offers the
capability of fault recovery in the presence of multiple masked error and also two
faulty modules. This technique is only applicable to systems where the replicas
are always synchronized and it introduces a performance penalty.

The work presented in [10] proposes a present-input and healthy-state based syn-
chronization method for TMR schemes called PIHS3TMR, which is depicted in
Figure 3.16 (obtained from [10]). This real-time approach avoids the utilization of
checkpointing and provides availability during the synchronization process with-
out stopping the operation. The PIHS3TMR is based on modifying the FSM by
introducing a healthy present state and a synchronization control signal. This ap-
proach is an interesting synchronization alternative. However, its implementation
for more complex designs like soft-core processors can be impractical.

The so-called known-blocking method was presented in [86]. This approach in-
creases de reliability of soft-core processors implemented in SRAM FPGAs by
utilizing TMR in combination with DPR. Its key feature is to avoid system from
blocking situations. To perform this technique the both processors that are still
running properly are lead to a known safe-loop (all outputs reset to low logic
level). Due to this, the system continues running in a safe mode. Although this
approach enables the possibility of non stopping the system, the processors are
not available for the target application. Hence, it cannot continue working during
the safe-loop.

82 Hardening Soft-Core Processors Implemented in SRAM FPGAs

Combinational

Logic Circuits

Flip-Flops

inputs

x

MODULE Y

x0y

xiy

q0

qm

...

...q0h

qmh

...

q0y

qmy

...

...

healthy

state Qh

sync ctrly

native

state Qy

z0y

ziy

...

d0y

dky

...

c0

cpn

...

outputs

z

Clk

inputs

excitation

inputs D

Figure 3.16: Block diagram of the PIHS3TMR.

Another synchronization method valid for small FSM was proposed in [281],
introducing the notion of state prediction. This suggests that each FSM has (at
least) one state to which the machine always returns after a finite amount of
time. Therefore, by setting the FSM of a reconfigured module to this state it
is possible to wait for the other two instances to reach this point during their
normal operation, and thereafter continue seamlessly operating with all three
instances. The work presented in[282] proposes a similar approach which deals
with the synchronization of a recovered module in a TMR scheme. It suggests to
perform the synchronization while the other two modules kept running, waiting
for a predictive a future state in which converge. These approaches are useful for
simple designs, such as, FSMs. Nevertheless, they are not advisable alternatives
for complex architectures where future states cannot be predicted.

Synchronization has been also considered in [59], where a fault tolerant MicroB-
laze architecture using TMR and DPR was presented. In that work, three Mi-
croBlaze processors sharing peripherals and memory are implemented in partially
reconfigurable regions. The peripherals and the shared memory are protected by
TMR and ECC, respectively. Sharing one memory between the three proces-
sors reduces synchronization to a process of reading and writing to the memory.
Whenever the processors write data to the memory a voting process is started.
It masks wrong data from the newly reconfigured instance, by storing the correct
values sent from the two remaining functional instances. In a subsequent read
cycle the three processors can read the synchronized value back to their memo-
ries. While this synchronization approach is suitable for MicroBlaze processors,
it is not applicable to all processor architectures. For the MicroBlaze processor
it is possible to access all registers of relevance for synchronization, such as e.g.
the stack pointer, the status register and the program counter. In this manner, a
synchronization by reading and writing to the shared memory becomes feasible.

3.5 Other Fault Tolerance Approaches 83

On the contrary, many other popular processor architectures (e.g. PicoBlaze or
PIC) do not provide reading access to all registers representing the state of the
processor.

Another related contribution which uses rollback is the work [60], where the
synchronization between two MicroBlaze processors operating in (DMR) is ad-
dressed. After one of those processors is partially reconfigured, a similar technique
to state prediction is used. Once the faulty processor has been identified, the roll-
forward is executed to set the processor to a state the other MicroBlaze will reach
in the future. Since the state is assumed to only consist of the program counter,
a synchronization similar to the one in [59] is required after the roll-forward to
update the register contents. Hence, this method presents to the same drawbacks
as those previously identified for the shared memory approach in [59].

In [50], an approach based on the use of the TOPPERS/JSP open-source RTOS
kernel was introduced. It utilizes three MicroBlaze processors in a TMR scheme.
After detecting a fault and reconfiguring the faulty module, an interruption in
the RTOS triggers the synchronization process. As the work states, this approach
requires a large area usage and it decreases the maximum operating frequency of
the design.

Another synchronization approach that consists of a down-counter to determine
when the newly reconfigured module has re-established its state was proposed
in [283]. To carry out this approach, a countdown value is set to the latency
in clock cycles of the longest path through the component. In this way, the
outputs of the reconfigured block are ignored until the resynchronization. The
application scope of this approach is very limited, since applications need to
present a cyclic behaviour to return a previous state, where all the three modules
can be synchronized.

3.5 Other Fault Tolerance Approaches

Apart from the mainly established fault tolerance strategies presented in previous
sections, different approaches that explore alternative solutions have also been
proposed in the literature. Although they can be suitable in some scenarios,
most of them have a limited application scope. For this reason, their adequacy
will depend on the particular application to be hardened.

A fault tolerance approach based on the concept of self-stabilization, utilized in
distributed computing, was presented in [85, 91]. The research proposed a self-
recovering algorithm for processors (hard-core and soft-core). It follows the idea

84 Hardening Soft-Core Processors Implemented in SRAM FPGAs

of that the self-stabilization permits to distributed systems to reach a correct state
regardless of in which state has been initialized with in a finite number of execu-
tion steps. The proposed algorithm utilizes a specific interruption code combined
with asynchronous interruption signals at random clock cycles to modify the con-
tent of memory cells randomly. In the presence of corrupt data cause by failures,
the algorithm leads the system to an arbitrary configuration that corrects the
behaviour in a finite amount of time. The approach focuses on specific resources,
such as, registers (special and general purpose), internal SRAM, memoy caches,
etc. Due to this approach, the system can bear transient failures, especially those
failures that do not affect the code executed by any node. However, since this
approach is program dependant and especially focused on preserving the con-
vergence of transmitted data, its application scope is limited. In addition, the
approach is not effective if an error affects one of the registers that contain the
variables utilized by the processor while executing the self-converging program.

The approach presented in [239] is another algorithm-based hardening alterna-
tive. The proposed Algorithm-Based Fault Tolerance (ABFT) technique reduces
the susceptibility by 99% with a limited resource overhead (about 25%) by hard-
ening both the datapath and the configuration memory. The application scope
for the ABFT is linear-algebra operations. However, as the author states, for ap-
plications that are not comprised of linear algebra operations the ABFT cannot
provide sufficient protection.

A different strategy was proposed in [284] where the configuration bitstream
is modified by the hardware inside the chip. A controller implemented with
logic resources of the FPGA manages the bitstream adaptation following two
algorithms (Modify Placement and Modify Routing). This approach affects the
design negatively in terms of area and performance. Besides, bearing in mind that
the controller is implemented with logic resources of the FPGA it is susceptible
to induced faults.

Other fault tolerance approaches hinge on design aspects in order to harden
FPGA based designs. In [65], a methodology for the hardware/software co-
design of embedded systems has been proposed. This method takes the advan-
tage of different software and hardware strategies (hardware or software redun-
dancy, etc.). It presents the concept of Software Implemented Hardware Fault
Tolerance (SIHFT), which allows to achieve a trade-off solution that meets the
specific requirements of designs. In this way, after defining the specific require-
ments, different SIHFT approaches are used in an incremental way in order to
obtain a concrete number of candidate implementations of the software. After
that, all of these generated candidates are compared to estimate the code and
execution time overheads. After discarding the implementations that not meet

3.5 Other Fault Tolerance Approaches 85

requirements, the selected candidates are tested by an SEU emulation tool. The
ones that present better fault tolerance results are again tested in deeper fault
injection campaigns identifying the critical elements in order to protect them
with hardware redundancy. In this way, a range of trade-offs hardware/software
implementations is obtained. Although the positive results achieved hardening
a PicoBlaze based design this approach is a software and hardware dependant
solution and it demands high design efforts.

Another alternative to harden FPGA systems in the design process is to harden
designs during the synthesis like in [285], where the In-place X-Filing (IPF) tech-
nique was introduced. The IPF is a synthesis-based algorithm that masks SEUs
at a logic level in both LUTs and interconnects. This approach requires to anal-
yse the configuration bits in other to identify the bits with no failure rate. This
process demands some kind of analysis mechanism such as a logic simulation. Af-
ter identifying the bits with no failure rate, they are filled in order to mask errors.
The more of these bits are reconfigured to mask errors, the smaller failure rate
is obtained. The utilization of this solution also requires a high design effort and
its results are dependant of the number or configuration bits with no failure rate.
In addition, the results in terms of resource overhead of performance obtained
when utilizing this kind of approaches may be worst than the ones achieved when
utilizing vendor’s tools, which are optimized for their devices.

In [11], a hybrid error-detection technique based on assertions and a non-intrusive
enhanced watchdog module to recognize induced faults in processors, named
HETA, was introduced. This technique depicted in Figure 3.17 (obtained from
[11]), utilizes the combination of software-based techniques in tandem with a
non-intrusive hardware module. By virtue of this idea, the approach analyses
and adds static instructions to the original program-code. During operation it
also constantly updates the content of a signature register, which is connected to
different program nodes. These program nodes are the basis for the error detect-
ing control flow. On the other hand, the purpose of the hardware module is to
detect incorrect jumps to unused memory positions and control flow loops. This
approach utilizes 66% less resources than a TMR implementation. However, the
reliability level is lower and the performance is considerably reduced.

An approach inspired by the immune system that can be found in higher organ-
isms was presented in [286]. The proposed hardware immune system is based
on the negative-selection algorithm, which utilizes binary matching rules to dis-
criminate invalid states. These matching rules are implemented utilizing the logic
resources of the FPGA in order to obtain a higher operation speed with more log-
ical gates cost. Bearing in mind that almost hardware systems can be represented
as an individual or a set of interconnected FSM, the discrimination methods are

86 Hardening Soft-Core Processors Implemented in SRAM FPGAs

Enhanced

HW Module

Processor

Program

Memory

address

data

read_write

Figure 3.17: Block diagram of the HETA approach.

implemented using an FSM in order to represent the system to be immunized.
The detection of faults is performed following the idea that an error creates an
invalid state. In this way a controller module brings together the inputs, com-
bining them with previous states to generate different strings for the FSM and
the detection. Monitoring the internal states of the FPGA makes it possible to
detect an error before it propagates to the output. The results in terms of capac-
ity and performance are non optimal and the utilization of an internal controller
compromises the reliability of the entire design.

3.6 Evaluation of Hardening Techniques

After designing hardening techniques it is necessary to evaluate the fault toler-
ance level that they provide. Nevertheless, apart from the hardening technique to
be evaluated, several factors affect the tolerance level of a hardened design, such
as, the platform device, the environment, the design itself or even the running ap-
plication. Due to this, the evaluation process is frequently performed in different
levels. The first evaluation could be to check the concept to be designed itself by
analysing its architecture (the selection and configuration of the elements, etc.).
Being the root of the whole designing process, taking care of those aspects could
significantly improve the result for future steps. Another aspect to be previously
analysed is the reliability of the device to be utilized as an implementation plat-
form. This task is usually performed by manufacturers. The exponent of this
idea is the previously presented Rosetta Experiment [166] in which Xilinx is con-
tinuously evaluation the reliability level of their devices under several conditions,
such as, different altitudes and geographic locations.

3.6 Evaluation of Hardening Techniques 87

After obtaining a satisfactory design, the hardening strategy has to be selected. A
number of features have to be considered before adopting a design decision, such
as, the available resources, the acceptable performance penalty, susceptibility and
availability levels, etc. An aspect that helps to optimize the hardening approach
to fit with these requirements is to detect the most susceptible elements and
evaluate their reliability. This analysis permits to identify in which elements has
to be focused when hardening the entire system. Finally, after developing and
applying the different hardening strategies the entire design has to be validated
in order to confirm its robustness. The idea of fault tolerance evaluation is also
utilize to hardening techniques as a way to validate the effectiveness of developed
approaches.

Fault tolerance evaluation of a particular design also considers the determination
of the critical or essential bits from the configuration memory. A bit can be
classified as critical if its faulty state can affect the functionality. Not all the
bit from the bitstream are critical. In fact in regular designs less than 20% of
the configuration memory bits are usually classified as essential or critical to the
functionality of a design [157, 289]. Nevertheless, their reliability is a crucial
factor, since they jeopardize the integrity of the entire design.

Considering the typical error rates, analysing the reliability during normal op-
erating conditions would drastically delay the designing process. Hence, several
strategies have been proposed to estimate systems’ behaviour under the presence
of errors.

The easiest fashion to evaluate the fault tolerance level of a design is to simu-
late a fault by utilizing an HDL simulator [200, 245]. Several HDL simulators
are available. There are commercial releases like Modelsim by Mentor Graph-
ics or Vivado Simulator by Xilinx, or open-source software, such as, Verilator
by Veripool and OSS CVC by Tachyon Design Automation. These alternatives
provide a straightforward way to analyse the behaviour of a design by utiliz-
ing its HDL file due to the observability and controllability provided. This is
especially helpful to improve hardening techniques, since it enables to adjust dif-
ferent characteristics and check them in a relative easy way. HEARTLESS [290],
MEFISTO-C [291] and VERIFY [292] remarkable simulation based tools and
methods. Comparing with other existing strategies simulation is a very time de-
manding alternative. In addition, considering that these simulations in a better
scenario are post-synthesis simulations, the accuracy obtained is limited because
they are many physical aspects that can’t be checked.

Another alternative is to use circuit instrumentation to substitute cells of the tar-
get device by equivalent instrumentation hardware cells, obtaining a prototyped
design. In [293], an approach called Autonomous Emulation which follows this

88 Hardening Soft-Core Processors Implemented in SRAM FPGAs

idea was presented. The AMUSE (Autonomous MUltilevel emulation system for
Soft Error evaluation) approach presented in [294] extends this idea to emulate
SETs. SETs are more difficult to evaluate than SEUs because they are many
more possible SETs than SEUs. For this reason, this approach implements all
demanded functionalities in the FPGA along with the circuit model, without re-
quiring any FPGA-host iteration which improves the injection speed. However,
bearing in mind that the circuit tested is not exactly the target design itself, the
accuracy of the obtained results is not optimal.

The most effective and extended way to evaluate the fault tolerance of a design
is to inject faults in it. In these cases the device to be tested is usually referred
as Device Under Test (DUT). The two main strategies to inject faults in SRAM
based FPGA designs are to induce faults physically by utilizing radiation emitting
devices and to inject fault in the bitstream [11, 265]. Each of them offer different
benefits that also come with their subsequent drawbacks. Another alternative is
to combine both strategies, like in [295], in order to obtain the benefits of both
worlds. These two strategies have inspired a large number of researches, some
of the most relevant ones and the main characteristics of these strategies are
discussed in the following lines.

3.6.1 Physical Fault Injection Techniques

Physical Injection Techniques are the most realistic and fast way to inject faults
in SRAM-Based FPGA systems since they can simulate the real environment in
a direct fashion. In addition, they don not require to have access to RTL and
netlists of designs. They consist in exposing the DUT to a certain radiation level
by utilizing specific instrumentation. The most common physical fault injection
techniques are laser testing and particle beam testing. Although the utilization
of these techniques provides the most realistic results, they require the utilization
of very expensive machinery (in the range of $100K per day) and they provide a
small sample of faults. Despite the combination of multiple techniques is not the
most extended practice, the work [20] proposes a complete and deep fault toler-
ance evaluation which performs multiple tests. It includes simulation modeling,
fault emulation and laser fault injection. Nevertheless, the most remarkable fact
is that the DUT has been also tested in a flight experiment, as part of the Space
Test Program-Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). Ex-
posing devices to space radiation in real-time is one the most accurate approaches
that can be adopted. However, this is not an available alternative for regular de-
signers, since the economical cost and the time. In addition, as is mentioned in
[296], in some cases it is necessary to reset and reprogram the device increasing
the time requirements.

3.6 Evaluation of Hardening Techniques 89

The characterization of the resistance of a device to induced errors is done by
the cross section (σ), given by expression 3.1 [297]. Fluence (φ) is the particle
density (particle number per 1 cm2 area), utilized to describe the output of the
laser beam. n in the quantity of configuration bits utilized in the DUT. Finally,
e is the number of detected errors.

σ =
e

φ× n
(3.1)

There are two validation schemes to evaluate the fault tolerance when utilizing
these fault injection methods [298]:

• Static test This test type is useful to determine the device static cross
area, which is defined as the ratio between the fluence of hitting particles
and the SEU quantity. Their main advantage is that they provide a way
to quantify the device’s susceptibility to a particular radiation type. Static
test are based on initializing the DUT with a golden copy of the bitstream,
which is used as a reference in periodical comparisons between it and the
bitstreams read after the different radiation exposures.

• Dynamic test These test are utilized to evaluate the device dynamic cross
section, which is defined as the ratio between the fluence of hitting particles
and the quantity of SEUs that cause incorrect outputs. These test are a
valuable tool to determine the sensitivity of a particular FPGA implemen-
tation to a particular radiation type. Dynamic tests consists in checking
outputs during the running of a specific application implemented in a de-
vice. To obtain valuable information, the inputs have to be predefined and
the outputs have to be pre-calculated. An alternative, solution is a parallel-
execution of an equal or equivalent application implemented in a stable and
secure platform and utilize it as a reference. There is also the possibility
of reading back the bitstream of the DUT in case of mismatch in order to
determine the faulty resource.

After performing one of these or both tests the results have to be collected and
analysed in order to identify the modifications in the resources of the FPGA
induced by SEUs [70, 298]. In [298], the CILANTO (CIrcuit-Level ANalysis
TOol) is utilized for this task. This tool takes advantage of a database with a
relation of configuration memory bits and the related FPGA resources. In this
way, it can be used to carry out a bit-level comparison between the gold copy of
the bitstream and the recollected data.

Depending on the technology and physical principles used, physical fault injection
techniques can be divided in two groups: Particle-beam testing and laser testing.

90 Hardening Soft-Core Processors Implemented in SRAM FPGAs

Particle-Beam Testing

Particle beam testing is the most extended physical fault injection method [128,
178, 297–300]. This testing consists in exposing the DUT to radiation beams
that produce a particular quantity of particles per second per area. The SEU
is generated when an ionized particle interacts with a sensitive area portion of
the FPGA, producing bit-flips. Three different particle types can be produced
for these test: Heavy-ion, Proton and Neutron. Each of them is more relevant in
specific environments at certain time intervals. Based on these concepts different
tests can be performed, like in [301] where neutrons test, high energy protons
test, thermal neutrons test and alpha foil test were conducted.

The concept of Linear Energy Transfer (LET) is closely related to particle-beam
testing. LET is the amount of ionizing energy transferred to the material in
the from of ionizations and excitations. Hence, LET can help to determine the
potential radiation damage.

The main objective of heavy-ion tests is to determine the lowest LET rate that
produces detectable SEUs. Despite different LET ranges can be found in the
space, the more prevalent LET for heavy-ion particles are those with high LET.
Before performing heavy-ion tests the adequate dose has to be determined [299].

Protons commonly present lower LET rates compared with heavy-ions. Protons
can produce ionization directly or indirectly. While in direct ionization the proton
itself creates the charge that provokes the SEU, in indirect ionization the charge is
produced by a collinsion a proton-nucleus. Despite both ways can generate SEEs
in electronics, only indirect ionization has been demonstrated to affect FPGA’s
logic. This is because the direct ionization does not generate sufficient charge.
The configuration memory of SRAM FPGAs have shown to be highly susceptible
to protons [302]. Figure 3.18 shows the Isochronous-Cyclotron located at the
Nuclear Physics Institute of the Academy of Sciences of the Czech Republic,
which can provide proton beams tests. Scheduling of particle beam facilities is
quite difficult and rigid.

Neutrons are generated by the spallation process [298], which consists in bom-
barding a heavy-metal target (tungsten) with pulses of highly energetic protons.
Due to this process neutrons are produced from the nuclei of the target atoms.
The energy of the produced neutrons is normally reduced through a modera-
tor module. Due the high cost of the infrastructure, only a limited number of
dedicated facilities able to perform test based on neutron beams matching the
terrestrial flux are available, such as, ISIS, LANSCE, TRIUMF, and RCNP.

In general terms, fault tolerance evaluation by particle beam technologies presents

3.6 Evaluation of Hardening Techniques 91

Figure 3.18: The Isochronous Cyclotron U-120M.

Figure 3.19: ISIS pulsed neutron source at the Science and Technology Facilities

the challenge of synchronizing, locating and controlling the bean precisely. Hence,
the implementation of an accurate SEU injection at a precise area in the FPGA
is a complicated task. Moreover, the risks that come with the utilization of this
technology demand special precautions for managing the radiation source, and
running with the vacuum interface.

Laser Testing

The principle of this type of test is that when the laser energy is accumulated in
a semiconductor it produces free charge carriers that are able to generate upsets.
In fact, the impact of laser induced faults in SRAM-based FPGAs are analogous
to SEUs produced by energetic particles [303]. Unlike particle beam, laser testing
offers a finer control in means of space and time. Due to this, laser tests permit

92 Hardening Soft-Core Processors Implemented in SRAM FPGAs

to have a precise control of the injection target to the micron level. Different
laser-testing setups are shown in Figure 3.20(a) and Figure 3.20(b).

(a) Laser testing setup from [303]. (b) Laser testing setup by Riscure Inc.

Figure 3.20: Different laser testing setups.

The laser pulse can ionize a specific region of the DUT, inducing bit-flips in
both, combinational or sequential logic elements. Unlike collision tests, due to
the differences in the physical fault mechanisms of both methods, laser testing
is not able to characterize the rates of raw faults. Nevertheless, thanks to the
precision in the transient fault generation it is possible to characterize the fault-
to-error probability. Another interesting characteristic is that, unlike bitstream
based fault injections, the laser testing permits to create realistic multi-bit upsets
and SETs.

Like in particle bean testing, one of the main drawbacks of this method is that
the technology necessary perform the test is highly costly. The preparation and
development efforts demanded for a system-level test are high also. Another
problem when utilizing laser testing at application-levels is to inject single faults
per application execution [304]. The work [295] circumvents this problem by
driving a trigger signal to a control block that opens or closes a specific shutter
in the laser path, while the energy magnitude is measured by a photo-detection
based module. Maintaining the laser correctly aligned during the entire test is
another challenging task.

3.6.2 Bitstream Based Fault Injection Techniques

Bitstream based fault injection techniques, also known as fault emulation tech-
niques, are an inexpensive and a widely extended tool [73, 85, 87, 198, 234, 239,

3.6 Evaluation of Hardening Techniques 93

305–307] to characterize specific design implementations. They enable to col-
lect huge amount of data due to continuous injection over a period of hours or
months and they are a valuable tool for studying the behaviour of DUT under
the presence of bit errors. Despite being less realistic than radiation test, the
results obtained with these techniques are highly accurate. For this reason, fault
emulation is commonly utilized as a complementary tool to physical injection.

They mainly consist in reconfiguring the DUT with a corrupted configuration
bitstream and checking its behaviour in order to evaluate the reliability. Figure
3.21 shows the basic flow of a bitstream based fault injection.

��������
���	��
����
��������

��	����
��������

�
�����
��������

�����
��������
�������
���

�������

�������

�������

������

�������

�������

�

Figure 3.21: Basic flow of bitstream based fault injection.

First, the corrupted bitstream has to be created. The usual way is to flip the
desired bits of the configuration bitstream. When determining the critical bits of
a particular implementation, an alternative is to generate as much of corrupted
bitstream as configuration bits in order to check the effects produced of each
configuration bit. Another way is to generate random positions of the corrupted
bits like in [307]. Considering the large amount of bits of a configuration bit-
stream, these alternatives require lots of time and large memory storages. Since
the reconfiguration is a time demanding process, the size of the bitstream to be
loaded will directly affect the duration of the fault injection process. Due to
this, instead of loading the entire bitstream, an alternative is to generate partial
bitstreams and utilize the dynamic partial reconfiguration capability of SRAM-
based FPGA [308, 309]. This practice reduces both, the injection time and the

94 Hardening Soft-Core Processors Implemented in SRAM FPGAs

memory demand to store the different corrupted bitstreams.

If the hardening approach is focused on the memory elements, it is relevant to
put special efforts in injecting errors in the stored data. This strategy requires to
study the bitstream structure. In the case of Xilinx devices the .ll location file it
is a very helpful resource. However, it requires certain level of processing effort.

The second step in the basic fault injection flow is to reprogram the FPGA with
the corrupted file. Since this can be done utilizing different configuration inter-
faces, this aspect directly involves the experimental setup. Figure 3.22(a) shows
the most inexpensive strategy, which is to utilize a single FPGA device, as both,
DUT and fault injector. Despite this approach can be practical to test particular
design portions, it requires to perform a deep study of the implementation and
its bitstream and it does not permit to perform a complete fault injection test.
This is because it implies to implement the fault injection logic in the DUT itself.
Hence, a faulty bitstream could also affect the fault injection, and even the test
logic. A widely extended practice, as Figure 3.22(b) depicts, is to utilize and
additional external board to the manage the reconfiguration of the DUT [310].
This scheme avoids the possibility of corrupting the fault injection logic itself.
Nevertheless, it increases the costs due to the need of additional devices. An
in-between solution is to utilize SoC devices like in [165], where the Zynq device
has been utilized. As Figure 3.22(c) shows, in this case the Processing System
manages the creation of the corrupted bitstream and downloads it through the
PCAP interface to configure the programmable logic. This approach avoids both,
the need of additional hardware and corrupting the fault injection controller.

After reconfiguring the FPGA with the corrupted bitstream the functionality has
to be tested by running the test application and comparing the results obtained
with reference values. There are several alternatives to obtaining these reference
results. The most simple one is to pre-calculate and store the responses of the
application to be tested under specific inputs and conditions. In this way after
running the application the results can be compared with the pre-calculated
responses. Another alternative is to utilize an additional implementation of the
target application and run both, the DUT and the replica in parallel, checking
the outputs in runtime.

An extended practice to increase the efficiency of functionality tests is to utilize
test vectors. This implies that each injected fault is tested with a vector of
different inputs. Bearing in mind that different input can affect to distinct bits
this strategy opens the range of possible generated errors. After performing the
actual test the results obtained can be saved in a file permitting to run a next
test. In this way all the obtained results can be analysed in future fault tolerance
evaluations.

3.6 Evaluation of Hardening Techniques 95

1010101010110101001101110110100101

1110101010101101010100100101010101

0100101001010111000110111001001111

(Configuration bitstream)

FPGA device

DUT

application

00010100101010

11000001011101

10111111001010
(Original bitstream)

Configuration interface

Fault injector
controller

BRAM

?

(a) Autonomous internal fault in-
jection scheme.

1010101010110101001101110110100101

1110101010101101010100100101010101

0100101001010111000110111001001111

(Configuration bitstream)

DUT board (FPGA) External board

Configuration interface

00010100101010

11000001011101

10111111001010
(Original bitstream)

Fault injector
controller

External Memory

(b) External fault injection scheme.

10101010101101010011110100101

11101010101011010101101010101

01001010010101110001101001111

(Configuration bitstream)

FPGA fabric

Configuration interface

SoC Device

00010100101010

11000001011101

10111111001010
(Original bitstream)

Fault injector
controller

DDR Memory

Proccesing
System

(c) SoC fault injection scheme.

Figure 3.22: Different bitstream based fault injection setups.

96 Hardening Soft-Core Processors Implemented in SRAM FPGAs

Several fault injection tools have been presented in the literature. Some of the
most representative ones are listed in the lines below:

• Xilinx provides a so called Soft Error Mitigation Controller (SEM) [186]
that can be used to inject, detect and correct errors in the configuration
memory of 7 series devices. Nevertheless, it is only suitable for the config-
uration memory and not for BRAMs or distributed memories. Regarding
BRAMs, Xilinx offers a fault injection mechanism for BRAMs with its
CORE Generator. However, due to its limitations this mechanism is not
practical for many applications.

• Fault Injection (FI) tool presented in [311] is a bitstream based tool for
Virtex FPGAs that addresses only configuration memory cells and user
registers. This tool is especially designed to fit with the requirements of
those applications in which the FPGA undergoes in frequent reconfigura-
tions. It modifies the configuration bitstream while this is loaded into the
device without utilizing standard synthesis tools making it independent to
the system utilized. Nevertheless, since this tool cannot access to the built-
in FSM state transitions it requires the utilization additional fault injection
techniques to test them.

• XRTC Virtex-5 Fault Injector is another fault injection tool for Virtex
devices presented in [312]. This FPGA fault injection system for testing
digital FPGA circuits has been designed in conjunction with the Xilinx
Radiation Test Consortium. The main goal is that it achieves a high cus-
tomization and full bitstream coverage at a high fault injection rates.

• FPGA-based Fault Injection TOol (FITO) proposed in [313] permits to
inject faults emulating SEUs and SETs at RTL level of an FPGA design
by adding extra ports and connections to the flip-flops.

• FLIPPER tool presented in [314], as its name suggests, is able to provoke
bit-flips within the configuration memory utilizing the partial reconfigura-
tion capability of SRAM-FPGAs.

• Fault injection Using SEmulation FUSE [315] is a tool that includes the
concept of semulation (a combination of simulation and emulation). It per-
mits to take advantage of the benefits of both techniques: the higher fault
injection speed of the emulation and the flexibility and the observability of
the HDL simulation.

• Shadow Components-based Fault Injection Technique (SCFIT) [93] tool
is also based on the semulation. It utilizes TCL scripts to access to the
FPGA by using the JTAG configuration interface.

3.6 Evaluation of Hardening Techniques 97

• Flexible on-chip fault Injector for run-time Dependability validation with
target specific COmmand language, FIDYCO [316] is a tool that combines
both hardware and software schemes. While, the hardware includes the tar-
get FPGA implementation, the software is located in an external computer.
Due to the flexibility provided by this tool, the designer is able to test a va-
riety of components. It mainly consists in moving the fault injector towards
the target and after it, translating the target to the FPGA.

• Direct Fault Injection (DFI) [96] is focused on injecting errors in soft-core
processors implementations. This approach is a combination of multiple
fault-injection methods such as FITO, FUSE, etc.

• NETlist Fault Injection (NETFI) [317] is a tool that permits to inject
faults in designs written in any HDL language (Verilog, VHDL, etc.). The
main idea of this approach resides on modifyin the built-in FPGA resources
that are to be used by the netlist after the synthesis process.

• Fault-Injection Fault Analysis tool (FIFA) [318] allows to inject faults at
RTL level. It implements two versions of the DUT in the FPGA device.

• The platform presented in [319] called FT-UNSHADES2 is an approach
focused on carrying out the fault injection utilizing a hardware assistant
that can accelerate the analysis process. It uses a mother board connected
to two daughter boards. It has different operating modes to deal with ASICs
and FPGAs. The FPGA mode injects the fault utilizing the bitstream.
However, it also has an additional Beam Testing mode to be used with the
system inserted in an ion beam. This mode allows to place one daughter
board exposed to the ion beam and maintain the other safe in other to
compare them acting as a coincidence detector.

• Advanced System for the TEst under Radiation of Integrated Circuits and
Systems (ASTERICS) is a platform used in [91]. This upgraded version
of the THESIC+ platform, is built utilizing two FPGAs. While the first one
manages the communication between a computer and the ASTERIC board
utilizing a hard processor, the second contains the DUT with the user design
to be tested, the injection module and the memory controller. A watchdog
implemented in the first board checks the possible errors generating a loss
in the sequence.

• In [310], a low hardware overhead injection approach for FPGA designs,
avoiding the need of special injection boards was presented. This works
offers two fault injection approaches: An external SEU flow which is a fault
injection approach managed by an external device, and a single bit error
test flow, that utilizes the internal reconfiguration obtaining a high injection

98 Hardening Soft-Core Processors Implemented in SRAM FPGAs

performance.

• The work [320] proposes a high-speed fault injection system along with a
methodology able to test the sensitivity of a design’s bitstream to SEUs.
This system is especially designed for soft-core processors and it also can
be utilized for radiation testing purposes.

One relevant drawback of these techniques is that they are not able to inject
faults across all sequential elements of the design, especially when the design
utilizes proprietary IP cores, where physical mapping is unspecified. Another
drawback is that these techniques tend to overemphasize cache and register er-
rors [295]. Due to the inherent nature of bitstreams these techniques are highly
technology dependant. Although the flows and concepts can be utilized in dif-
ferent devices, the implementation of each approach has to be adapted to the
particular specifications of the DUT, which may require to investigate its design.

Despite the utilization of this tool represents a very helpful aspect, to investigate
new fault injection approaches is out of the scope of this work.

3.7 Conclusions

Taking into account the diverse application fields and the different soft-core pro-
cessor implementations available, providing them with fault tolerance requires
trade-off decisions to develop a tailored design. The aspect to evaluate mainly
are the hardware overhead, the reliability level, the performance penalty and the
availability. The work presented in [287] proposes several models to evaluate
the reliability and availability of the most relevant fault tolerance techniques for
SRAM-based FPGAs. This kind of researches provide valuable information to
obtain appropriate mitigation schemes.

The most relevant item to be hardened in any FPGA design is the configuration
memory, since it manages the settings, interconnections and data content of al-
most the components within the device. Many manufacturers provide ECC based
protection for the configuration memory. However, due to its limitations (i.e. it is
not able to repair multiple errors), in some cases this hardening technique is not
sufficient. In those scenarios, a periodical configuration scrubbing is a remarkable
complementary alternative. This technique is able to repair most of configura-
tion errors, even those masked in hardware redundancy schemes. Nevertheless,
this technique comes with some drawbacks, such as, lack of protection for data
content, time demand and requirement of a controller mechanism. Hence, both
the ECC and scrubbing techniques are mainly combined (or substituted) with

3.7 Conclusions 99

other hardening methods, like hardware, data, software or time redundancies.

Data redundancy techniques are based on encoding data when writing it in mem-
ory and decode it when reading, for checking and fixing errors. The advantages of
ECC techniques are good performance and small resource utilization, especially
with large data width. This is because the added encoding data decreases propor-
tionally with data width. Software redundancy based techniques increase fault
tolerance level with a low resource overhead. However, they are time demanding
and relatively reliable strategies. The benefits or drawbacks of these techniques
are closely related to the characteristics of each application program. Time re-
dundancy based approaches offer similar features: the reduced hardware overhead
impact comes with a performance penalty and an improvable reliability. Hence,
the most utilized approaches are based on hardware redundancy. Despite being
resource demanding techniques, they offer high availability and dependability.

When hardening a soft-core processor with a hardware redundancy scheme, the
two main alternatives are TMR and lockstep combined with checkpointing and
rollback. While TMR provides higher reliability and availability the area impact
of the lockstep is smaller. After selecting the redundancy level, an appropriate
granularity has to be adopted, choosing between a range of possibilities that
start from the lower hardware overhead and simply design of coarse grained
implementation and that end in the higher reliability level of a fine grained one.
Is has to be remarked that due to the use of a voter, hardware redundancy
schemes always present a single point of failure.

In any case, considering that a soft-core processor consists of several elements, it
is interesting to analyse the different alternatives to harden each of them. While
elements, such as, the ALU, the control logic, etc. based on logic operations,
have to be hardened with hardware redundancy, user memory elements may
accept distinct techniques like ECC strategies.

There are four main user data storage elements in a soft-core processor. The
first one is the program memory, which is a read only memory. The second is
the data memory block that can be read and written. The third are the regis-
ters, that can be user registers (read/write) or special function registers (only
read or read/write). Last but no least, there is a stack memory block, that
can’t be accessed. Bearing in mind the unique characteristics of each memory
element, the available methods and their adequacy for each module may differ.
Recent spacial experiments have proved that BRAMs are especially sensitive to
radiation-induced upsets, indicating that distributed RAM based memory struc-
tures present higher reliability leveld [288]. Hence the study of BRAM protecting
techniques gains special relevance.

100 Hardening Soft-Core Processors Implemented in SRAM FPGAs

When hardening data and program memories the most suitable alternatives are
an ECC encoding and TMR implementation. DMR scheme is not a valid option
for these modules, since the errors can only be detected and cannot be fixed,
requiring an additional backup memory block to save the checkpoints. In fact, the
use of this backup memory together with the duplicated memory blocks implies
a TMR implementation. When selecting an ECC hardening, the data memory
requires both encoding and decoding modules, while the program memory only
needs a decoding module, because the coding has to be done in the programming
process. There are not big implementation differences between data and program
memory blocks when picking out a TMR hardening. Is has to be remembered
that both, ECC and TMR, do not repair fault but mask them. This problem
could be less crucial in the case of data memories, since in many application cases
the data is constantly be re-written during program execution, cleaning masked
errors. For program memories, a memory data scrubbing would be an interesting
alternative to wipe the masked faults.

The stack memory can be hardened with TMR or ECC approaches because,
DMR scheme does not offer a proper reliability. Depending on the depth of
this module, ECC can be too costly in terms of area. In this way, a TMR
implementation is the adequate alternative to harden this element in most cases.
Bearing in mind that the stack memory is mostly frequently being written during
the program execution, the masked errors are likely to been wiped during the
program execution. Nevertheless, considering that an error in the stack memory
can affect the entire execution flow of the program, it is highly advisable to harden
it properly.

On the other hand, when hardening registers the most advisable method is the
TMR. Considering the small data width of registers and that each register de-
mands its own coding and encoding logic the resource overhead added by the
ECC makes it unreasonable to use it. An alternative to use an ECC strategy
reducing the resource overhead can be to utilize a single ECC coding/decoding
combined with a multiplexer. However, the integrity of the multiplexer could
compromise the reliability of the entire system. The reason to discard a DMR
hardening is the same as in data and program memory blocks.

Regarding the evaluation of the fault tolerance level of a hardened soft-core pro-
cessors the most suitable alternatives are bitstream based fault injection or/and
physical fault injection strategies. While bitstream based fault injection tech-
niques provide an inexpensive way to estimate the failure rate, physical fault
injection strategies offer more accurate information at higher costs. Although
both strategies provide valuable information, they also require complex and time
consuming experimental setups. Due to this, in some scenarios more basic alter-

3.7 Conclusions 101

natives like modifying the hardware design to provoke faults, could offer faster
and adequate enough ways to evaluate the correctness of a hardening strategy.

Considering all these aspects it can be stated that there is no hardening solution
that is completely efficient for all types of designs, so the implementation of
fault tolerant architectures and its validation requires a special study of system’s
characteristics and the application requirements.

102 Hardening Soft-Core Processors Implemented in SRAM FPGAs

Chapter 4

Contributions in Fault
Tolerance for Soft-Core
Processors

This chapter introduces the different approaches developed in this work that have
been focused on improving the fault tolerance of soft-core processors implemented
in SRAM based FPGAs. These approaches address different aspects related to
fault tolerance. Thus, in some cases they improve specific deficient features of
existing techniques and in others propose new alternatives to circumvent known
issues.

The first contribution presents the PICDiY, a soft-core processor developed
specifically for this work. This soft-processor offers simplicity, modularity and
self-sufficiency, making it easily adaptable. Due to those features it has been
utilized as an experimental subject to develop and test the fault tolerance ap-
proaches presented.

In next contributions two novel approaches that deal with the data management
utilizing the bitstream have been developed. While one approached focuses on
managing BRAM data the other deals with register’s data. Both novel data man-
agement approaches have been utilized as a basis to develop new fault tolerance
approaches. roaches.

The rest of the contributions deal with different fault tolerance aspects: data con-
tent scrubbing, extracting data from BRAM memories with damaged interfaces,

104 Contributions in Fault Tolerance for Soft-Core Processors

checkpointing and rollback in locktstep schemes and synchronization of repaired
soft-core processors in TMR schemes. Although most of the proposed techniques
have been applied to the PICDiY soft-core processor, the majority of them can
be adapted to other soft-cores and even other types of architectures for SRAM
FPGA based designs.

4.1 PICDiY: Target Soft-Core Processor

The amount of logic resources required to implement a soft-core processor de-
pends on several factors, such as, data width, memory size, special features, etc.
The more elements and larger data widths selected in the designing of a soft-core
processor, the larger usability and processing capability are obtained. Never-
theless, usually the price to pay is a resource overhead and also a performance
penalty due to the increase of critical paths’ length. In addition to the obvious
lower area availability, the resource overhead generally implies several drawbacks:
higher power consumption, since logic elements need to be powered; more logic
resources susceptible to errors, decreasing the fault tolerance level of the design;
and in relation with hardening techniques, more logic resources have to be repli-
cated when implementing redundancy schemes. Thus, from the designers’ point
of view, a simple and clear design of a small processor composed by the com-
mon and basic elements of most common architectures is an interesting platform
in order to develop new fault tolerance approaches, where a big processor would
bring unnecessary complexity. Furthermore, the simplicity of the target processor
comes with a significant reduction of the amount of time demanded by synthesis
and implementation tools. Due the presented benefits of utilizing small architec-
tures, an 8-bit small processor has been selected as a candidate to be used with
the different proposed tests and approaches.

The first step in the study of new hardening alternatives for soft-core processors
has been the definition of the target soft-core processor. After studying the
different existing IP soft-core processors it has been decided to design a new soft-
core processor from scratch. The main reason to make this decision has been to
have a total control of all the aspects of the architecture which would expand
the customization potential. Modifying the design of existing IPs is mostly a
tedious work that commonly comes with unexpected issues. For instance, in
[321] a PicoBlaze IP was adapted for synchronization purposes, as a result, the
obtained design offered worse characteristics than the original design. The reason
for this negative effect is that the PicoBlaze has such a highly optimized and
complex design to fit perfectly in Xilinx’s devices and to provide them with high
performance and small resource usage, that even small changes could lead the

4.1 PICDiY: Target Soft-Core Processor 105

synthesizer to deteriorate this optimization level. Similar results were obtained
in [322, 323] where the original design of the PicoBlaze was modified to obtain a
platform independent version of this IP.

In a next step ,it has been decided to base the design of the target soft-core
processor on the PIC16 microcontroller due to several reasons: it is a RISC ar-
chitecture that offers a good code density [43]; its Harvard architecture uses a
minimalist design which allows fast access and a different bus width for instruc-
tion and data (a 14-bits width for the program memory and 8-bits width for
the data memory); it has a good execution speed (each instruction takes 4 clock
cycles); it is a simple, efficient and stand-alone device; it works properly with
state machines; and it is a well known architecture that can be encountered in
many engineering applications [324–326]. Furthermore, the existing free toolkits
available for the PIC microcontroller can be used to develop application software
like IDEs (Integrated Development Environment). Thus, the PICDiY has ade-
quate characteristics for a number applications, such as, memory peripherals or
reconfiguration interface tasks where larger processors would be wasted.

The next subsection describes the architecture of the designed 8-bit and platform-
independent soft-core processor, which for the sake of simplicity will be referred
to it as PICDiY throughout the document.

4.1.1 PICDiY’s Architecture

The design of the PICDiY has been developed from scratch by utilizing VHDL
language and basing on PIC16’s functionality, its architecture’s block diagram
and its instruction set. Figure 4.1, obtained from the 16F84A data sheet, shows
the block diagram of the PIC16. In order to obtain the simplest design, non
essential elements of PIC16’s architecture have been discarded. The dismissed
components are the timers (Power-up, oscillator Start-up, Watchdog and TMR0)
and certain ports (only two ports are included). In addition, several adaptations
have been introduced in order to optimize the architecture’s characteristics and
functionality. Thanks to all these modifications, the design developed in this work
is a small processor with flexible functionality and complete self-sufficiency. The
main features of the architecture, the different components and the adaptations
made are discussed in detail through this section.

As shown in Figure 4.2, the PICDiY consist of different blocks: the Arithmetic
Logic Unit (ALU), the program counter, the Instruction Decoder and Controller
(IDC), the 8-level stack, program and data memory blocks, address and data
multiplexers and the different special function registers. Due to its Harvard ar-
chitecture, separate storage and buses for instructions and data are implemented,

106 Contributions in Fault Tolerance for Soft-Core Processors

FLASH
Program
Memory

Program Counter
13

Program
Bus

Instruction Register

8 Level Stack
(13-bit)

Direct Addr

8

Instruction
Decode &

Control

Timing
Generation

OSC2/CLKOUT
OSC1/CLKIN

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

MCLR VDD, VSS

W reg

ALU

MUX

I/O Ports

TMR0

STATUS reg

FSR reg

Indirect
Addr

RA3:RA0

RB7:RB1

RA4/T0CKI

EEADR

EEPROM
Data Memory

64 x 8
EEDATA

Addr Mux

RAM Addr

RAM
File Registers

EEPROM Data Memory

Data Bus

5

7

7

RB0/INT

14

8

8

1K x 14

68 x 8

Figure 4.1: Block diagram of the PIC16.

allowing faster access and different bus width for instruction and data. The
widths are 14 bits for the program memory and 8 bits for the data memory. The
data bus includes a multiplexer structure, not shown in the figure to facilitate
the comprehension. Control signals, such as, enables, mux controls, etc. (which
mainly are generated by the IDC) are also omitted for the same reason. The
processor also has an 8-bit PORTA, clock, reset and interrupt inputs (both clock
and reset inputs are also not shown in the figure) and an 8-bit PORTB output
directly connected to the PORTB register. In this way, PORTA and PORTB
are physical connections between the processor and external peripherals for data
transmission. Only two ports are implemented for achieving a minimal usage
of FPGA resources, nevertheless, the number of ports can be easily changed by
modifying the VHDL files of the design.

The special function registers are an area of data memory dedicated to registers
that are required for configuration and control, which can not be used as general
purpose registers by the user. Since each of the special function register has a spe-
cific functionality, in the case of the PICDiY, each of them have been implemented
on separated blocks outside the data memory block. In this way, the PICDiY con-
tains seven register-blocks (FSR, STATUS, PCL, PCLATH, INTCON, PORTB
and W) of eight bit width. The registers related to the discarded components

4.1 PICDiY: Target Soft-Core Processor 107

Interruption

Port B (OUT)

Port A (IN)

Program

Memory

Program Counter

Port B Reg

FSR Reg

STATUS Reg

INTCON Reg

Data

Memory

Addres MUX

Data MUX

ALU

W Reg

Instruction

Decode

& Control

14

8

5

11
14

13 8

8

8

7

7

goto

direct adress indirect adress

RAM adress

data bus

5
PCLATH Reg

PCL Reg
8

8-Level

Stack

13

Figure 4.2: Block diagram of the PICDiY.

(TMR, EEDATA, EEADR, OPTION, TRISA, TRISB, EECON1 and EECON2)
have not been implemented in the PICDiY due to obvious reasons.

The STATUS register is one of the most relevant registers when programming
the processor, since it contains the arithmetic status of the ALU, the RESET
status and the bank select bit for the data memory. As all the special function
registers, the STATUS register can be the destination for any instruction. Figure
4.3 shows the different bits of the STATUS register. The first three bits are the
carry (C), digit carry (DC) and zero (Z) flags of the ALU, respectively and their
values vary depending on the results of logical or arithmetic operations. Bits
three and four (power down and watchdog timer timeout) are unused since they
are related to functions not implemented in the PICDiY. Finally, bit five (RP0)
and bit six (RP1) are the bank selection bits. Bearing in mind that PICDiY’s
data memory has only two banks, RP1 is not used. However, it could be used in
future adaptations if a larger data memory is required.

IRP RP1 RP0 TO PD Z DC C

bit0bit1bit2bit3bit4bit7 bit6 bit5

(unused) (unused) (unused) (unused)

Figure 4.3: STATUS register.

108 Contributions in Fault Tolerance for Soft-Core Processors

The FSR (File Select Register) is used for indirect addressing to other file regis-
ters. If a file register address is loaded into the FSR register, the content of that
file register can be indirectly read or written. This register is usually used as a
pointer to a block of locations. Reading the FSR itself indirectly results in a 00h,
while writing to itself indirectly results in a no-operation (STATUS bits could be
altered).

The PCL register (Program Counter Low Byte) and the PCLATH (Program
Counter Latch High) registers are used to store instruction’s addresses to be
loaded in the program counter. Both registers, which are fully readable and
writable, are required because the length of the program counter can be up to 13
bits (depending of the depth of the Program Memory). Figure 4.4 depicts how
the bits are distributed when data is load to the program counter and, as it can
be observed, several bits of the PCLATH register are unused. Since the depth of
the program memory can be modified, the quantity of the unused bits may vary.
For instance, in the case of a program memory of 256 instructions depth the eight
bits of the PCL are sufficient, leaving all the five bits of the PCLATH unused.
The adaptation of these characteristics require minor changes in the HDL design.

bit0bit1bit2bit3bit4bit7 bit6 bit5bit10 bit9 bit8

bit0bit1bit2bit3bit4bit7 bit6 bit5bit0bit1bit2bit3bit4bit7 bit6 bit5

Program Counter (13bit)

PCL Register (8bit)PCLATH Register (8 bit)

- - - - -

bit12 bit11

Figure 4.4: PCL and PCLATH registers.

The INTCON is a readable and writable register utilized to control the interrup-
tions. Since a single type of interruption is implemented for the PICDiY, only
the seventh bit is used to store the interruption state. The management of this
bit is performed by the IDC.

The W register (Working register) is used for ALU operations as an operand.
It is not an addressable register. Nevertheless, it can be read and written by
using some instructions, because it also can be used to store the results of oper-
ations. For instance, MOVWF and MOVF instructions can move the values from the
W register to any location in the data memory, and vice-versa.

The ALU (Arithmetic Logic Unit) is an 8-bit block responsible for performing
arithmetic operations such as adding, subtracting, decreasing and increasing,
logic operations such as AND, OR, XOR and IOR and other operations like

4.1 PICDiY: Target Soft-Core Processor 109

�������

�������

�������

������	

��������������

���������������

�������������

��������������������

������������

Figure 4.5: State diagram of IDC’s FSM.

shifting (right or left within a register), swapping or not operation. Depending
on the 8th bit of the instruction word, the result is sent to the W register (when
’0’) or to another register (when ’1’) like RAM Data memory, FSR or PORTB.
According to which instruction is executed, the ALU can affect values of zero,
carry or digit carry bits of the STATUS register.

The IDC is responsible of managing the processor’s resources. After decoding
each instruction, it controls different elements of the processor, such as, the ALU,
the multiplexers, the different registers, the DATA memory and even the program
counter. It is implemented as four states Finite States Machine (FSM). This is
the reason why the execution of each instruction takes four clock cycles. Figure
4.5 presents the IDS’s FSM and as it can be observed, in the first state the IDC
activates the instruction reading from the program memory. The second state
depending of the instruction, is used to read data or to load the correct next
instruction on the program counter, when CALL, GOTO or RETURN instructions are
executed. In the third state, if necessary, the IDC enables the writing in the
data memory. Finally, the last state is used for data stabilization and for the
interruption management.

In PIC16’s architecture the data memory is divided into two areas. The first area
is composed by the special function registers, while the second is the user-data
memory. Since, the PICDiY’s special function registers are implemented in sep-
arate blocks, its data memory block includes only the user-data memory, which
has been implemented utilizing the dedicated BRAMs [327] in order to optimize
the utilization of resources when using Xilinx FPGAs. In this way, the synthe-
sizer will use the Xilinx FPGAs dedicated BRAM resources, avoiding the use of
distributed RAM that would use more logic cells. Nevertheless, memories can
be easily implemented in other vendors’ devices by using their specific resources,

110 Contributions in Fault Tolerance for Soft-Core Processors

thus, maintaining platform independence. The data memory is banked in two
blocks to permit a larger memory storage and each bank extends up to 7Fh (128
bytes). As it has been commented before, the bank selection is done by writing
the STATUS register’s RP0 bit. In this way, Bank 0 is selected by clearing the
RP0 bit of the STATUS register and the selection of Bank 1 is done by setting
this bit to one. All the data memory addresses can be accessed either directly
by utilizing the absolute address of each register or indirectly. When indirect
option is selected, using the zero address in the data memory, the processor uses
the FSR register to store the data in the correct address. Indirect addressing
also utilizes the value of the RP0 bit to access the banked areas of data memory.
Figure 4.6 shows the mapping of the memories. As it can be seen, the first twelve
locations of each bank are reserved for the special function registers and the re-
maining locations are used for the user-data memory. The reason to reserve those
initial addresses unused is to maintain coherence with PIC16’s architecture and
its instruction set. In this way, despite the fact that the special function registers
are implemented outside the data memory module, they can be accessed using
their original addresses thanks to the IDC, which controls the enable port of each
register.

���

���

���

���

���

���

���

�	�

�
�

���

���

��

	��

���

������

���

������

������

�����

�����

������ !�����"

��

��#�$%���

&#&��'

$

$

$

$

������

���

������

������

�����

�����

������ !�����"

��

��#�$%���

&#&��'

$

$

$

$

���

���

���

���

���

���

���

�	�

�
�

���

���

��

���

���

��(�

�����))

��(�

�����))����� �����

Figure 4.6: Mapping of PICDiY’s user-data memory and registers.

4.1 PICDiY: Target Soft-Core Processor 111

The program memory block is responsible to store the instructions to be executed
by the processor. Similarly to the data memory block, it is implemented by using
BRAMs. However, the data length is 14 bits. Another remarkable difference is
that it is implemented as a read only memory. Thus, the instructions must be
written in the HDL file. In favour of easing the programming task, the HEX2VHD
for PICDiY software has been developed in this work. This software generates
a VHDL file of the program memory from a HEX file. This HEX file can be
obtained in a straightforward fashion by using a PIC16-compatible IDE, like the
MPLAB by Microchip Technology Inc.

The program counter block manages the execution sequence of program memory’s
instructions, loading the next instruction or jumping to another one when CALL,
GOTO, RETURN, indirect instructions or an interrupt are executed. It is a 13 bit
block capable of addressing an 8K x 14 memory space.

4.1.2 PICDiY’s Instructions

The RISC architecture of the PICDiY, allows higher CPU operating frequencies
and implies that it has a reduced number of instructions, which means simplicity
in programming, since it is necessary to manage just a small number of instruc-
tions. As Table 4.1 shows, the processor uses 33 instructions of a 14 bit width,
divided into byte-oriented file register operations (18 instructions), bit-oriented
file register operations (4 instructions) and literal and control operations (11 in-
structions). It has to be remarked that, due to the removal of the timers, PIC16’s
SLEEP and CLRWDT instructions are not available. Each instruction takes a sin-
gle machine cycle consisting of four clock periods for the execution, that is an
improvement over the PIC16, since it uses two machine cycles for instructions
which modify the value of the program counter. All of the instruction are stored
in the program memory.

Figure 4.7 shows the general instruction format for byte-oriented file register
operations. As it can be observed, the highest five bits are mainly used to define
the opcode, the 7th bit is used to set the direction of result’s value (d) for the
ALU and the lowest 7 bits are the file registers address.

������ � ��	
��
���
�������
��

�� � � � �

��	
�� ��	
� ��	
��

Figure 4.7: Byte-oriented file register operations instruction format.

Figure 4.8 shows bit-oriented file register operations instruction format. The

112 Contributions in Fault Tolerance for Soft-Core Processors

Instruction Description Instruction Code Flags STATUS

Byte-Oriented File Register Operation

ADDWF f, d f + W 00 0111 dfff ffff C, DC, Z

ANDWF f, d f AND W 00 0101 dfff ffff Z

CLRF f Clear f 00 0001 1fff ffff Z

CLRW - Clear W 00 0001 0fff ffff Z

COMF f, d Complement f 00 1001 dfff ffff Z

DECF f, d Decrement f 00 0011 dfff ffff Z

DECFSZ f, d Decrement f, skip if 0 00 1011 dfff ffff -

INCF f, d Increment f 00 1010 dfff ffff Z

INCFSZ f, d Increment f, skip if 0 00 1111 dfff ffff -

IORWF f, d f OR W 00 0100 dfff ffff Z

MOVF f, d Move f 00 1000 dfff ffff Z

MOVWF f Move W to f 00 0000 1fff ffff -

NOP - No operation 00 0000 0xx0 0000 -

RLF f, d Rotate left f through carry 00 1101 dfff ffff C

RRF f, d Rotate right f through carry 00 1100 dfff ffff C

SUBWF f, d f - W 00 0010 dfff ffff C, DC, Z

SWAPF f, d Swap nibbles in f 00 1110 dfff ffff -

XORWF f, d f OR W 00 0110 dfff ffff Z

Bit-Oriented File Register Operation

BCF f, b Bit clear f 01 00bb bfff ffff -

BSF f, b Bit set f 01 01bb bfff ffff -

BTFSC f, b Bit test, skip if clear 01 10bb bfff ffff -

BTFSS f, b Bit test, skip if set 01 11bb bfff ffff -

Control and Literal Operations

ADDLW k Literal + W 11 111x kkkk kkkk C, DC, Z

ANDLW k Literal AND W 11 1001 kkkk kkkk Z

CALL k Call a subroutine 10 0kkk kkkk kkkk -

GOTO k Go to k address 10 1kkk kkkk kkkk -

IORLW k Literal OR W 11 1000 kkkk kkkk Z

MOVLW k Move literal to W 11 00xx kkkk kkkk -

RETFIE - Return from interrupt 00 0000 0000 1001 -

RETLW k Return with literal in W 11 01xx kkkk kkkk -

RETURN - Return from subroutine 00 0000 0000 1000 -

SUBLW k Literal - W 11 110x kkkk kkkk C, DC, Z

XORLW k Literal XOR W 11 1010 kkkk kkkk Z

Table 4.1: Instruction set of the PICDiY.

4.1 PICDiY: Target Soft-Core Processor 113

highest four bits are used to define the opcode, the next three bits are used to
specify which bit will be written and the lowest 7 bits are the file registers address.

������ �

�� �� � �

� � ��	
��
���
�������
��

����	
 ����	 ����	

Figure 4.8: Bit-oriented file register operations instruction format.

Figure 4.9 shows the general instruction format for literal operations, where the
highest six bits are generally used to define the opcode and the other 8 bits are
the literal value.

������

�� � � �

����	
�	����������
���	
� ���	
�

Figure 4.9: Literal operations instruction format.

In the case of GOTO and CALL control instruction, which are depicted in Figure
4.10, the highest three bits define the opcode and the other bits are used to set
the destination address.

������

�� �� �� �

����	

������ �������

Figure 4.10: Control operations instruction format.

In order to store the actual instruction address when CALL instruction or an
interrupt are executed, the program counter is connected with the 8-level stack,
where the processor can store up to 8 addresses. It has to be noticed that the
depth of the stack limits the number of CALL instructions to be used, since it
can lead to a stack overflow. Nevertheless, the depth of the stack can easily be
changed according to the application needs.

The interrupt system works level triggered and due to this, the interrupt signal
must have certain specifications. First, the interrupt signal is active high and
since the interrupt attention is done in one of the four states of the FSM, it is
necessary that the interrupt signal remains stable at least four clock cycles to
ensure that the interrupt signal is detected. There is also a maximum duration
for the interrupt signal, as long as a signal that lasts for a long time, can call the
interruption routine more than a single time. This maximum duration depends
on the number of executed instructions in the interruption routine. In the worst

114 Contributions in Fault Tolerance for Soft-Core Processors

case, after the execution of the RETURN FROM INTERRUPT instruction the interrupt
signal must be in low level. When, in order to respond to external events, the
interrupt input is set to high level and the interrupt conditions are fulfilled, the
program counter changes the program flow jumping to the fourth address of the
program memory to execute the interrupt routine, after this execution it continues
from the previous point on.

As the presented features imply, thanks to the basic and modular architecture
of 8-bits, an easily adaptable, self-sufficient and platform-independent soft-core
processor has been designed.

4.2 Bitstream Based BRAM Approach: Contri-

bution in BRAM Data Management through

the Bitstream in 7 Series

Due to their particular characteristics and the differences in the architectures of
the bitstream, the existing methods for Virtex-V devices cannot be utilized to
manage data using the bitstream in 7 series devices. No methods able to extract
or write user data in BRAM memories nor in registers of 7 series by Xilinx devices
have been found in the literature during this research work.

This section introduces the Bitstream Based BRAM Approach (BBBA) to ac-
cess and manage the content of BRAM based memories using the configuration
bitstream. This approach is able to access and manage data in BRAM based
memory designs for 7 series FPGA SoC implementations. It access to the con-
figuration bitstream to manage the data content of different BRAMs. Since this
method does not add extra elements to the original design, there is no impact on
the resource usage. This is relevant because the resource overhead involves longer
datapaths, more power consumption, worse susceptibility and less resources avail-
able. Besides, although it is not a recommended procedure in the majority of
cases, it provides the possibility of accessing the memory even when it is being
read or written. Therefore, some of the common drawbacks of classical memory
management strategies can be solved by using the proposed BBBA approach,
such as, the resource overhead, the appearance of single points of failure or the
lower availability of memory blocks. This and several other advantages unleashes
a myriad of possibilities when working with BRAM memories. In addition, unlike
other existing techniques related to different devices, by virtue of the use of the
PCAP it avoids single point of failures that appear when utilizing reconfiguration
interfaces that make use of logic resources like the ICAP port.

4.2 Bitstream Based BRAM Approach: Contribution in BRAM Data
Management through the Bitstream in 7 Series 115

4.2.1 Proposed Method to Obtain the Bitstream Structure
of Data in BRAMs

The aim of this method is to manage different BRAMs of the FPGA by solely
resorting to the bitstream. For that purpose it is necessary to read and generate
bitstreams containing the data to be loaded in such memories. As it has been pre-
sented in Section 2.2.4 Xilinx provides certain information about the bitstream in
[4, 120] and in the .ll location file generated by Vivado during the write bitstream
process. However, the information about the bitstream composition provided by
manufacturer is not detailed enough. In addition, the utilization of the data pro-
vided by the .ll location file demands a huge processing effort and big memory
storage to manage big data blocks. For these reasons reverse engineering has
been performed so as to find out relevant information about the structure of data
in BRAMs. In this section, the utilized setup and the different flows and software
programs are described in depth.

As it has been previously introduced, the target device selected for this work is
the Xilinx Z-7020 Zynq-7000 All Programmable SoC. Figure 4.11 shows a sim-
plified block diagram of the overall scheme utilized. The I/O peripheral signals
of the programmable logic and the Processing System are connected through the
Extended Multiplexed I/O (EMIO) interface, allowing the I/O peripheral con-
troller to access the programmable logic. The Processing System reaches the
configuration data through the PCAP interface in order to perform a readback,
which stands for the process of reading the bitstream data from the configuration
memory. The software running in the Processing System used for the readback
has been developed using the XDevCfg library. During the bitstream processing a
DDR memory peripheral has been used to store the bitstream and additional ap-
plication data. This simple approach permits isolating the configuration memory
from any other component in the design.

Partial

Bitstream

Bitstream
PCAP

Processing

System
(ARM9)

Memory
(DDR) Programmable

Logic
(FPGA)

Config. memory

EMIO

interface

Figure 4.11: Block diagram of the implementation scheme.

The FAR address of each of the 14 BRAM columns has been identical to de-

116 Contributions in Fault Tolerance for Soft-Core Processors

termine in wich words of the bitstream the data content of BRAMs is stored.
This information can be extracted from the .ll location file. However, it has been
decided to to use reverse engineering for verification purposes. In this way, a
reconfigurable region for each BRAM column has been created, and thereafter
the generated partial bitstreams have been examined. The FAR addresses of all
BRAM columns obtained are shown in table 4.2. In the next step each BRAM
column has been studied under different implementations within the FPGA sec-
tion. Considering that each column of the Z7020 contains 20 18K BRAMs, this
set of implementations consists of 20 memories of 512Kb depth and 32 bits each.
Using this memory size, each 18K-sized BRAM is entirely utilized. In order to
ease the interpretation of the obtained data, all BRAMs have been specifically
arranged by following an increasing order by using location constraints. The
implementation also includes an FSM based memory filler module to write the
data in all addresses in the memories and a multiplexer to selectively activate the
write-enable ports.

Table 4.2: FAR addresses of BRAM columns in Z7020.

Resource FAR (hex) Resource FAR (hex)
BRAM1 0x00c20000 BRAM8 0x00c00180
BRAM2 0x00c20080 BRAM9 0x00c00200
BRAM3 0x00c20100 BRAM10 0x00c00280
BRAM4 0x00c20180 BRAM11 0x00800100
BRAM5 0x00c20200 BRAM12 0x00800180
BRAM6 0x00c20280 BRAM13 0x00800200
BRAM7 0x00c00100 BRAM14 0x00800280

Figure 4.12 depicts an example of the utilized flow to determine in which words
of the bitstream is located the data of each 18K BRAM. Starting with the first
(BRAM which is located in the bottom part of the device), the memory filler
module writes zeroes in all data positions within the memory. Right after that,
the portion of bitstream of the column defined by the specific FAR and the
number of frames of a BRAM column are read by using the readback functionality.
This content is stored in the DDR memory. Subsequently, a similar process is
done but writing all ones (0xFFFFFFF) instead. The data content obtained
in both bitstreams is compared, storing the address and the content of each
different word in a spreadsheet. These steps have been performed for every of
the 20 memories of each column, after which new implementations have been
carried out by changing the location constraints and by using a proper FAR to
study all BRAM columns.

Different conclusions have been drawn from the analysis of the obtained infor-
mation. To begin with, it has been confirmed that the content of each BRAM
is distributed along the partial bitstream of its BRAM column. This is probably

4.2 Bitstream Based BRAM Approach: Contribution in BRAM Data
Management through the Bitstream in 7 Series 117

Top
18Kb BRAM

#2

Bottom
18Kb BRAM

#1

36 Kb

BRAM

#1

Top
18Kb BRAM

#4

Bottom
18Kb BRAM

#3

36 Kb

BRAM

#2

Top
18Kb BRAM

#20

Bottom
18Kb BRAM

#19

36 Kb

BRAM

#10

BRAM column = 0

FAR = 0x00C200

Write
0x00000000

Read

Bitstream

Write
0xFFFFFFFF

Read

Bitstream

Comp.Bitstr.
+

Save Data

Next 18K BRAM

Figure 4.12: Example of the flow used to determine the BRAM data location in
the bitstream.

due to the interleaving mechanism. Moreover, there is no direct correspondence
between the data bits of an implemented memory and the data bits within the
bitstream. Table 4.3 shows an example of data distribution for a single 32-bit
data word over the bitstream. In this plot, the memory is constrained to the first
18K BRAM of the first column and the data content written is all ones. The
first column of the table indicates the bit position in the data word. The second
column shows the relative position of the word in the data portion of the partial
bitstream. Finally, the last column denotes which bit of the particular word of
the bitstream is affected by changes in the memory. The next memory words fol-
low different distribution rules to place their bits in the bitstream. In some cases
changes in a single bit of the user memory may lead to changes in two bits of the
bitstream. Regarding the amount of data bits to handle, inferring the complex
relation between them requires a big processing effort. Even though working at
bit level is interesting in certain applications where the memory space of words to
be managed is not so big, in general it is not as practical as working with entire
BRAMs. For this reason this approach has focused on managing data content
of entire BRAMs instead of controlling changes over single bits or words, hence
paving the way towards future developments. Anyway, if working at bit level is
demanded, it is recommended to utilize the information from the .ll location file.

118 Contributions in Fault Tolerance for Soft-Core Processors

Table 4.3: Bit distribution example of the first data word of the first 18K BRAM
in Z7020.

N. Bit Word Addr. N. Bit in Word N. Bit Word Addr. N. Bit in Word
0 0 0 16 2 0
1 0 16 17 2 8
2 1 0 18 1940 0
3 1 16 19 1940 16
4 2 16 20 1941 0
5 3 0 21 1941 16
6 3 16 22 1942 16
7 4 0 23 1943 0
8 0 8 24 1943 16
9 0 24 25 1944 0
10 1 8 26 1940 8
11 1 24 27 1940 24
12 2 24 28 1941 8
13 3 8 29 1941 24
14 3 24 30 1942 24
15 4 8 31 1943 8

The remaining conclusions are related to the location of data words within the
bitstream. First, the location scheme of data words in each column is the same.
That is to say, all BRAM columns have the same word organization structure to
store data within the bitstream. Second, the data content of each 18K BRAM is
placed by performing cyclic jumps along the frames of the bitstreams of BRAM
columns. These jumps can be noted in Table 4.4, which depicts an example of
the data organization within one frame of the two 18K BRAMs (top and bottom)
that compose a 36K BRAM. The data content written in the memories for this
example is all ones, thus the data content in all words of the frame is composed
of ’F’s. The jump sequence begins with an address jump defined by the product
of the frame number (relative to the partial bitstream of the BRAM column)
and by the initial address of the particular BRAM. Table 4.5 displays the initial
addresses for each 18K BRAM of a BRAM column in the Z7020. The next four
addresses are also consecutively used to store data. Thereafter a jump of 101
words to continue in the next frame. As it can be also observed in Table 4.4,
the data organization in the top 18K BRAM differs from that in the bottom 18K
BRAM. For instance, referring to Figure 4.12 the data in the first 18K BRAM
is arranged differently when compared to the second or the fourth BRAM, but
similar to its third or fifth counterpart. In the case of 36K BRAMs, since they
are composed by a 18K BRAM pair (top and bottom), the organization in all of
them is the same. Albeit feasible the inference of the relationship between the top
and bottom 18K BRAM has been discarded due to its complexity (it is necessary
to process at bit level) and subsequent lack of practicability for real applications.
In this way, this approach supports the inner data exchange between BRAMs at

4.2 Bitstream Based BRAM Approach: Contribution in BRAM Data
Management through the Bitstream in 7 Series 119

the same deployment level (i.e. top-top or bottom-bottom).

Table 4.4: Data organization example of one frame of a 18K BRAM column in
Z7020.

Data word address Data in bottom BRAM Data in top BRAM
Init addr. + (frame number × 101) + 0 FFFFFFFF FFFF0000
Init addr. + (frame number × 101) + 1 FFFFFFFF FFFFFFFF
Init addr. + (frame number × 101) + 2 FFFFFFFF FFFFFFFF
Init addr. + (frame number × 101) + 3 FFFFFFFF FFFFFFFF
Init addr. + (frame number × 101) + 4 0002FFFF FFFFFFFF

Table 4.5: Init addresses (hex) of 18K BRAMs in Z7020.
BRAM num. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Init addr. 0 5 A F 14 19 1E 23 28 2D 33 38 3D 42 47 4C 51 56 5B 60

4.2.2 Managing Data Content of BRAMs with the BBBA

As argued in Section 2.2.5, the Bitstream Based BRAM Approach (BBBA) pro-
vides a great potential for a number of applications. Apart from data reading
and writing, the most essential operations required to implement many common
applications are data copy and comparison. This section delves into these two
operations, with emphasis on how to apply them using the bitstream.

BRAM Content Copy using the Bitstream

The process to copy the data stored in BRAMs using the bitstream can be held
in two main scenarios: 1) data copy of entire BRAM columns and 2) data copy
of individual BRAMs. Although the concepts of the latter case are also directly
applicable to groups of consecutive BRAMs of 18K or 36K, for the sake of sim-
plicity and clarity, this document will refer to individual 18K BRAMs. At this
point it is also important to recall that, in the case of 18K BRAMs, if the source
BRAM is a top 18K BRAM the destination must be also a top BRAM (and vice
versa). Moreover, it is important to remark that it is not necessary to implement
the destination memory in a reconfigurable region of the design, this approach
works properly in both, reconfigurable and non configurable areas.

When dealing with single BRAMs, two subcases can be also distinguished de-
pending on whether the data stored in the destination BRAM can be overwritten
or not. Overwriting data is useful when the content of all the BRAMs of the col-
umn is not relevant, since this method writes the copied data in the destination
BRAM and resets the rest of data bits of the other BRAMs within the column.

120 Contributions in Fault Tolerance for Soft-Core Processors

The second sub-case arises when the content of other BRAMs from the desti-
nation column want to be preserved, which comes along with penalties in terms
of code and execution overheads. From a global perspective, all the aforemen-
tioned cases comply with the flow diagram shown in Figure 4.13, which hinges on
reading the partial bitstream of the source BRAM and copying its data content
into the destination BRAM column. The main difference between the three cases
resides in the frame reading and data processing tasks.

Read frames

Create header

(Destiny FAR)

Process frame's data

(Copying / comparing)

Create trailer

Disable CRC

Transfer

bitstream

n> n. frames

n=n+1

n=0

Figure 4.13: Flow diagram of the BRAM copy procedure.

The first task of the flow consists of creating the header of the new partial bit-
stream that will be transferred with the copied data. The header of the BRAM
column’s partial bitstream is composed by 30 words of 32 bits. This header is
almost the same for each BRAM column, being the difference that the 27th word
of this header contains the FAR address of the destination BRAM column.

After creating the header, the data content must be stored. This task is carried
out in two steps that are performed for each frame within the partial bitstream of
the BRAM column. First, the frames of the source and, if needed (only necessary
when the data overwriting has to be avoided), the destination BRAMs have to
be read by utilizing the readback functionality. The data content from the source
frame has to be processed in order to organize it properly for the destination
BRAM. After performing a readback, several bits of the obtained bitstream are
set to logic high. Since, these bits are the mask bits that protect the content of
BRAMs, they must be reset in order to transfer the bitstream successfully. Each

4.2 Bitstream Based BRAM Approach: Contribution in BRAM Data
Management through the Bitstream in 7 Series 121

Source

Column

Dest.

Column

Bitstream processing SW

- Source FAR

- Destination FAR

10101010100010011001011

01010101010101000001100

(Readback) (Transf.)

Dest.

Column

(a) Entire BRAM column
copy.

Source

Column

Dest.

Column

Bitstream processing SW

- Source FAR + Init Address

- Destination FAR+ Init Address

10101010100010011001011

01010101010101000001100

(Readback) (Transf.)

Dest.

Column

(b) BRAM copy with
overwriting.

Source

Column

Dest.

Column

Bitstream processing SW

- Source FAR + Init Address

- Destination FAR + Init Address

10101010100010011001011

01010101010101000001100

(Readback) (Transf.)

Dest.

Column

(c) BRAM copy without
overwriting.

Figure 4.14: Different copying types.

of these bits is located in the 18th position of the 4th, 14th, 24th, 34th, 44th, 55th,
65th, 75th, 85th and 95th words of the data section of each frame. For this reason,
during the processing task all set bits have to be reset by resorting to a binary
mask.

The specific data processing performed on the data content differs among applica-
tion cases. Figure 4.14 exemplifies the three most basic scenarios: entire BRAM
column copy, single BRAM copy overwriting the rest of the BRAMs of the col-
umn and single BRAM copy without overwriting. However, based on these cases
it is possible to implement more complex applications, such as, copying various
BRAMs into different locations or swapping data between distinct columns, etc.

The most elementary case is to copy entire BRAM columns. Taking into account
1) that the data organization has found to be equal in all BRAM columns and
2) that the content of the destination BRAM column is not necessary, only the
source frames have to be read, copying them directly onto the destination frames.
Obviously, in this case all BRAMs from the destination column are overwritten.

In the case of copying single BRAMs with overwriting, the process is slightly
different because the data read from the source frame must be reorganized to be
placed properly in the destination BRAM. Thus, the exact placing of the source

122 Contributions in Fault Tolerance for Soft-Core Processors

and destination BRAMs must be known. The use of placement constraints is
very useful in this context, but it is also possible to determine the placement
by analysing the implementation results. Based on the known positions of the
BRAMs in the columns and by using Table 4.5 the initial addresses can be ob-
tained. With this information and following the address jump pattern described
in the previous subsection data can be properly arranged and written in the new
partial bitstream. It is important to note that if the source BRAM and the des-
tination BRAM are placed in the same column, the content of the source BRAM
will be lost.

Copying single BRAMs without overwriting is more complex, especially in terms
of program code (in quantitative more than twenty times more lines of code than
with overwriting), because it is necessary to take into account several hypotheses.
The data of the destination column must be read and copied in the new partial
bitstream, and the bit set must be reset in all the words where they are set
in the readback. By contrast, the cases with overwriting only require resetting
the words of the read BRAM because the rest of data words are sent empty.
Another singular aspect when copying without overwriting is that if source and
destination columns are the same, the program is more efficient since only one
readback must be performed for each frame. In any case, the initial addresses
of source and destination BRAMs and the address jump pattern must be known
beforehand.

After organizing and writing all the data, the trailer must be added in the end
of the created partial bitstream. Most of the trailer words mean ”no operation”
(NOP) words, but it also contains CRC data. Considering that as it has been
mentioned the CRC method for 7 series is still unknown [117], these words related
to the CRC are written with the NOP word. In this manner, the trailer is the
same for all created partial bitstreams. Finally, the produced partial bitstream is
transferred to the device via PCAP port, reconfiguring dynamically and partially
the specific logic portion.

BRAM Content Comparison using the Bitstream

BBBA can be also used to compare the data content of different BRAM columns
or single BRAMs. In both cases, if the data content is changing during the
running process it is advisable to halt the system so also avoid data changes during
the bitstream reading process and obtain a correct result. However, in those cases
where the information stored in BRAMs remains unchanged for certain time
(i.e. program memories) the comparison can be performed without stopping
the system. Depending on the requirements the comparison can be performed in

4.3 Approach to Manage Data of Registers with the Bitstream 123

terms of different levels of depth. When the comparison aims at only determining
whether the contents of the memories are equal to each other (as in e.g. the
detection of SEUs) the detection of the first discrepancy suffices for stopping the
comparison process. In other cases, a deeper comparison can be required for e.g.
determining the fraction of unequal bits. To perform this comparison between
entire BRAM columns the only information required is the FAR of each BRAM
column. By using the readback function all the frames can be read and compared
directly.

When working tackling single BRAMs different scenarios can be held. When the
BRAMs to be compared are placed in the same position of different columns the
way to proceed can be the same to the column comparison. The main difference
is that is not necessary to compare all words within each frame. Provided that
the initial address and the address jump pattern are known it is possible to know
which specific words should be compared. If the BRAMs to be compared are
placed in different positions within the same (or different) BRAM columns, the
data content has to be processed in the same way that the copying cases in order
to compare the right data words. In this case also, comparing BRAMs of the
same column is more efficient than comparing BRAM from different column,
since it is only necessary to read the partial bitstream of a single column. It
has to be reminded again that this approach works with top or bottom 18K
BRAMs separately. For this reason, top 18K BRAMs are compared with other
top BRAMs and vice versa with bottom 18K BRAMs.

4.3 Approach to Manage Data of Registers with

the Bitstream

Similar to what occurs with the process of managing data of BRAMs, the ap-
proaches to manage data of register using the bitstream developed for Virtex-
V devices are not applicable to 7 series. When dealing with memory mod-
ules implemented as distributed memory, the strategy from [8, 61] could be a
valuable starting point, making several adaptations. First, STARTUP VIRTEX5

and CAPTURE VIRTEX5 primitives of Virtex-V devices have to be replaced by
STARTUPEE2 and CAPTUREE2 primitives of 7 series, respectively. An additional
interesting adaptation is to substitute ICAP interface by the PCAP interface,
avoiding the utilization of additional resources necessary to implement the ICAP.

Nevertheless, the adaptation of these approaches to 7 series devices presents a
relevant issue, since unlike with Virtex-V devices, Xilinx has not released any
information about protection/unprotection bits of 7 series. Hence, the only option

124 Contributions in Fault Tolerance for Soft-Core Processors

Bitstream

Context A
(Main Reg.)

External Mem.

Capture

Save

Bitstream

Context A
(Main Reg.)

Target Region
(INIT Values)

Main Region

(INIT Values)

Main Region

(Context A)

Target Region
(Context A)

Context A
(Target)

(a) Context save.

Bitstream External Mem.

Capture

Download
Bitstream

Bitstream

Context A
(Main Reg.)

Main Region

(Context A)

Target Region
(Context A)

Main Region

(Context B)

Target Region
(Context B)

Context A
(Target)

Bitstream

Context A
(Main Reg.)

Main Region

(Context B)

Target Region
(Context A)

Toggle
GSR

(b) Context restore.

Figure 4.15: Context save and restore approach for 7 series devices with external
memory.

available nowadays is to capture and to restore content of all the registers in the
device. This implies a relevant limitation, especially when to read/write data
from/to particular areas is needed. In such case, as Figure 4.15 depicts, the
process of context saving and restoring requires a relatively tedious approach.
The first step to save the context is to capture the state of all registers. In an
initial state the bitstream contains the INIT values predefined in the VHDL. In
case of triggering the capture signal without protecting any region, the content
of all flip-flops is stored in specific locations of the bitstream. Thus, the data
of the target region has to be extracted from the entire bitstream and saved
in an external memory (i.e. a DDR memory). This action requires to utilize
and process the information from the previously generated logic location text file
(*.ll). In order to avoid overwriting the actual value of the rest of flip-flops, it
is necessary to capture their context in order to merge it with the previously
stored one. Once the merge process is done, the created partial bitstream can be
downloaded to the FPGA updating the content of the flip-flops memory loaded
by the GSR signal. It has to be taken into account that the GSR signal has no
timing specifications and that it spreads across the device slowly. Hence, it is
advisable to stall the system for a certain period and/or to cluster the register
tightly.

This presented alternative does not require to modify the bitstream and it is

4.3 Approach to Manage Data of Registers with the Bitstream 125

valid for any design (even for the not reconfigurable ones). However, it is a time
demanding process, since it requires several operations (i.e. saving the context
into the external memory, capturing the actual state, downloading partial bit-
streams, etc.) in each context saving/restoring action. This implies a significant
time demand. It also requires an external memory and processing the bitstream
to extract the data for each capture and restore. To circumvent these drawbacks,
this work proposes a method to unprotect as many as need reconfigurable regions.
I this way, maintaining the rest of the design protected the necessity of saving
the data from the other regions (those can are to be protected) can be avoided.

On the other hand, when utilizing a bitstream based strategy to copy the content
of registers from one reconfigurable region to others’, one of the biggest draw-
back is the processing effort demanded. This aspect gains special relevance in
designs with a significant amount of registers, such as soft-core processors. The
main reason behind this disadvantage is that, even using the same HDL design
for different reconfigurable blocks, due to the default resource placement free-
dom of the implementation tool, it creates a distinct implementation for each
block. This results in different locations for the same resource in the different
reconfigurable blocks. Hence, the location of each data bit within the bitstream
varies, increasing the complexity of the relocating processing when copying data
through the bitstream. In this scenario, the source and destination locations of
each data bit of each flip-flop must be identified in the .ll file in order to utilize
this information during the copying process. It also implies that, in the majority
of cases, the copying of each data bit requires a combination of a reading and a
writing operations. In addition, in several cases the portion of the destination
bitstream (the bitstream portion where the captured data is going to be copyied)
has to be read in order to preserve the content of other registers that save the
content in the same bitstream frame. This case also requires a process to merge
the captured content with the saved information of the destination bitstream. All
those steps have to be performed in each context saving/restoring action, which
results in a remarkable instruction overhead. It also requires a complete study of
the .ll file.

For this reason, an interesting solution could be to obtain exactly alike imple-
mentations in the different regions for each design, placing each resource in the
same positions of different columns (reconfigurable regions). This would allow
to perform the copying process by copying entire bitstream portions and using
a significantly simpler relocation process and avoiding the need of data merging.
Hence considerably reducing the number of instruction required. However, ob-
taining identical implementation of a design in different reconfigurable regions is
a tedious task. Therefore, this work proposes a design flow which allows to ease
this task by making use of the location constraints.

126 Contributions in Fault Tolerance for Soft-Core Processors

4.3.1 Proposed Flow to Protect/Unprotect Partial Regions
in 7 series

Following the idea suggested in [124], an interesting alternative could be utilized
to read and write registers’ data of a particular region without affecting the rest of
the device. As that work states, a property named RESET AFTER RECONFIG=TRUE

[108] can be utilized with 7 series devices to implement partially reconfigurable
modules in order to avoid the manual unprotection/protection actions. When
implementing partial reconfigurable designs with this property in 7 series (for
UltraScale devices is always enabled), the partial bitstream created by Vivado
contains the commands to protect the rest of the device (including static and
remaining partial regions), maintaining the actual partial region unprotected.
Hence, this property enables to protect a particular partial region in a straight-
forward fashion. Nevertheless, as Figure 4.16 shows, this method can only un-
protect (open padlock) a single partial region at once. As it can be observed,
every downloaded partial bitstream unprotects the target reconfigurable module
and protects (closed padlock) the rest of the device, even if the a partial re-
configurable module has been previously unprotected. Thus, there is no way to
unprotect more than one partial region in the same device.

FPGA

PBLOCK_B

STATIC AREA

PBLOCK_A

EMPTY DESIGN

PBLOCK_B

STATIC AREA

PBLOCK_A PBLOCK_B

STATIC AREA

PBLOCK_A

FPGA FPGA FPGA

Complete
Bitstream

A Partial
Bitstream

B Partial
Bitstream

01010110000101
10101011011110
10101010010101

01010110000101
10101011011110
10101010010101

01010110000101
10101011011110
10101010010101

RESET_AFTER_RECONFIG=TRUE RESET_AFTER_RECONFIG=TRUE

Figure 4.16: Effect of the RESET AFTER RECONFIG=TRUE property in FPGA protection.

With the aim of solving the issue of unprotecting more than a single partial re-
gion in 7 series devices, a novel design flow has been developed in this work.
As a first step, two reconfigurable regions (PblockA and PblockB) have been
designed. In the implementation process only PblockA has been implemented
with the RESET AFTER RECONFIG property. After that, both generated partial
bitstreams have been analysed and compared. The comparison has shown re-
markable differences in the content, making it difficult to identify any special
bit or command word. However, after a further analysis, a special word in 51st
position of the frame with a particular content (0xE00009BC) has been observed

4.3 Approach to Manage Data of Registers with the Bitstream 127

through the partial bitstream. Afterwards, a new comparison has been performed
to detect discrepancies in the 0xE00009BC special word. The comparison results
indicate that only two 0xE00009BC words appear in the A partial bitstream
and do not appear in the B partial bitstream. Hence, it has been initially as-
sumed that these two words were the protection words for the B reconfigurable
region. In this way, different tests has been carried out modifying the partial
bitstream of PblockA, downloading it and performing physical tests. These tests
have concluded that erasing one of both special words has an effective protect-
ing/unprotecting effect of PblockB.

Using the obtained information from the test the procedure described in Figure
4.17 has been developed. It utilizes the RESET AFTER RECONFIG=TRUE property
in combination with the edition of the partial bitstream, as a straightforward
method to protect or unprotect as many as desired partially reconfigurable mod-
ules. This edition only requires to erase or to add the proper 0xE00009BC special
word of the previously generated partial bitstream.

Once the partial regions have been unprotected, the content of the registers of
the unprotected regions can be easy read and written by using the GCAPTURE

and the GRESTORE, respectively without affecting the protected regions. When
using the RESET AFTER RECONFIG=TRUE property it is advisable to also utilize
the SNAPPING MODE constraint, which automatically creates legal reconfigurable
blocks. This method, combined with a proper bitstream processing, also enables
to modify data of registers, for instance for copying the content from one register
to another.

The proposed method has a number of advantages and drawbacks that should
be taken into account in order to choose the most adequate solution for each
design. The most remarkable benefit of this alternative is that it is relatively
fast, especially when capturing and restoring the context, because both GCAPTURE

and GRESTORE operations are not time consuming processes. Thus, the time
requirements are related to the time needed by the GSR signal to spread across
the partial reconfigurable circuit, which is design dependant. In addition, this
approach does not demand any additional element, neither external memories
nor logical resources.

The most relevant drawback of this approach is the need of implementing par-
tially reconfigurable blocks. In fact, when using the RESET AFTER RECONFIG=TRUE

property, the partially reconfigurable module’s height must align to clock region
boundaries, which means occupying an entire column of resources (there is no
block width restriction). Depending on the design, this could limit the avail-
able resources for other purposes. It is interesting to mention that in UltraScale
devices there is no height requirement, since the RESET AFTER RECONFIG=TRUE

128 Contributions in Fault Tolerance for Soft-Core Processors

VHDL design in Vivado

STATIC AREA

P
B

L
O

C
K

_
A

P
B

L
O

C
K

_
B

Complete
Bitstream

01010110000101
10101011011110
10101010010101

A Partial
Bitstream

01010110000101
10101011011110
10101010010101

RESET_AFTER_RECONFIG

B Partial
Bitstream

01010110000101
10101011011110
10101010010101

Generate
Bitstream

(DPR)

Edit Bitstream
(Erase 0xE00009BC)

Edited
Bitstream

01010110000101
10101011011110
10101010010101

FPGA

PBLOCK_B

STATIC AREA

PBLOCK_A

EMPTY DESIGN

PBLOCK_B

STATIC AREA

PBLOCK_A

FPGA FPGA

Complete
Bitstream

01010110000101
10101011011110
10101010010101

Edited
Bitstream

01010110000101
10101011011110
10101010010101

Figure 4.17: Approach to unprotect several regions in 7 series devices based on
the RESET AFTER RECONFIG property.

4.3 Approach to Manage Data of Registers with the Bitstream 129

property is always enabled. Moreover, if the XADC component is used, its inter-
face cannot respond during the partial reconfiguration period, blocking its access.
Another remarkable disadvantage of the use of the RESET AFTER RECONFIG=TRUE

property is that, since the partial bitstream created contains the commands to
protect the rest of the device and to unprotect the partial region, the size of the
bitstream significantly increases.

Another important limitation when using approaches that utilize partial recon-
figuration schemes is that the maximum achievable operating frequency of the
design can be reduced. Although two identical designs, one static and another
reconfigurable, can be logically exactly equal from an RTL description point of
view, the way both are synthesized and implemented is significantly different.
The partial reconfiguration flow demands to synthesize each reconfigurable mod-
ule out of context, which limits cross-boundary optimizations. The reason for this
is to guarantee that logical interfaces between static and reconfigurable partitions
remain fixed. During the implementation, the Pblocks are required to physically
divide the static and reconfigurable partitions. This implies layout requirements
that also restrict the optimization of the placement process.

4.3.2 Proposed Flow to Generate Equal Implementations
of a Design in Different Reconfigurable Regions

This section presents the proposed design flow to obtain identical implementa-
tions of a particular HDL design in distinct reconfigurable regions, which for the
sake of simplicity, will be referred to it as Location Constraints Flow. This flow
is specially interesting in some desings that make use of hardware redundancy
strategies. The main problem when trying to obtain three alike implementations
resides in the implementation tool, which in order to optimize the design pro-
cess, places each resource of the replicated instances in different locations. This
generates totally distinct implementations.

Since the partial bitstream generated for each reconfigurable block only can be
used in its particular reconfigurable region, the most suitable solution is to utilize
location constraints when implementing each instance. Nevertheless, the utiliza-
tion of location constraints with a high number of resources, and specially in
reconfigurable designs, is a tedious procedure.

The most simple alternative is to place all the resources of each instance manually
in the same custom positions of each resource column utilized by the different
reconfigurable regions. After synthesizing the entire HDL design, this placement
task can be easily done by means of Vivado’s graphical interface by selecting
each resource within the netlist and dragging it to the chosen resource position.

130 Contributions in Fault Tolerance for Soft-Core Processors

In designs with a high resource usage, this task can be highly time consuming.
An alternative to ease this placement task is to utilize TCL commands of Vi-
vado. Nevertheless, this requires to previously obtain the information of both,
the netlist and the device’s resources locations. In any case, the designing costs
of this alternative are significantly high. But worse still is the fact that using
this strategy requires a deep designing knowledge in order to obtain a proper
implementation. Bearing in mind the advanced algorithms utilized by Vivado’s
implementation tools, it is highly unlikely that a designer could obtain such an
efficient implementation as Vivado. Hence, using this alternative implies high
designing costs and low efficiencies.

In order to overcome these drawbacks, this work proposes the Location Con-
straints Flow shown in Figure 4.18. This flow based on utilizing the resource
placement of one of the instances generated by Vivado to place the resources of
the rest of the instances.

Route design
&

Write bitstream

Implement
design

 Generate
 .xdc file

Unplace
design

Place design
(constraints)

Figure 4.18: Flow chart of the Location Constraints Flow.

The Location Constraints Flow starts by implementing the previously synthesized
design. This results in an implementation containing the resource placement of
each instance. Due to this, it is possible to take advantage of the processing effort
carried out by Vivado to generate an optimized implementation. Once a proper
implementation has been obtained, the next goal is to utilize the placement of
one reference instance to generate new placements for the rest of the instances.
Due to this, in a second step, the write_xdc TCL command is used in order to
obtain the placement of all the resources of a design. This command generates
a .xdc file that specifies the particular cell utilized by each resource, providing a
detailed list that contains the placement of all resources utilized by each instance.
Bearing in mind that there is a possibility of trying to relocate a resource in a
location occupied by other resource from the original implementation, it is highly
advisable to first unplace all resources. For this task, a script can be generated by
using the unplace_cell TCL command combined with the information extracted
from the .xdc file. Once the resources have been unplaced, the next step is
to place them in their proper locations based on the locations of the reference
instance. This step can be also carried out following the same TCL script based
strategy. Nevertheless, in this case it is necessary to specify the new locations to
the place_cell command. This can be carried out in a straightforward fashion
by simply changing the number of column (X coordinate) of each SLICE from

4.4 Data Content Scrubbing Approach 131

the reference instance. Once the placement constraint script has been loaded,
the route_design and write_bitstream commands can be executed to obtain
the bitstream and to create the complete and the partial bitstreams.

Thanks to the proposed Location Constraints Flow, an implementation with a
proper placement can be obtained with minimal designing costs. In addition,
it almost preserves the implementation tool’s efficiency, barely affecting perfor-
mance when compared with an unconstrained design.

4.4 Data Content Scrubbing Approach

Related to soft-core processors, performing data content scrubbing is an inter-
esting technique to fix errors in memories. This is because most used techniques
to harden memory elements (TMR, ECC, etc.) mask errors and do not cor-
rect them. Nevertheless, data content scrubbing is mainly advisable for program
memories, because the content remains unchanged. For the rest of memory ele-
ments (data memory, registers, etc.) the data scrubbing usually is not practical
because the content is constantly updated during operation. However, even with
those elements, in certain cases, this method could be an interesting alternative
to initialize specific memory positions or registers. For instance, this could help
to avoid the need of initialization instructions after resetting the system.

When creating a partial bitstream that includes initialized memory elements the
bitstream generated contains the initialization data for such elements. Down-
loading this partial bitstream would refresh data content of memory elements
initialized by design. Despite this procedure could be considered as a data con-
tent scrubbing method, it has to be remarked that this implies to reconfigure the
entire reconfigurable block. Hence, the reconfiguration will affect all elements
of the reconfigurable region, which in many cases could not be feasible. In ad-
dition, this practice requires to stop the operation of the reconfigurable block
and commonly resetting it. Moreover, since the partial bitstream contains many
more frames in addition to the frames with the data content, it increases the time
demand of reconfiguration.

In order to circumvent these issues, a Data Content Scrubbing Approach for mem-
ory modules implemented with BRAMs based on the previously presented BBBA
is proposed. It utilizes its simple implementation scheme shown in Figure 4.11.
The proposed approach consists in downloading the data content of the BRAM
memory by applying the BRAM copying method (with the BBBA). Depending
on the number and placement of the BRAMs utilized by the remaining memory
modules of the design, the most suitable alternative has to be chosen. This is

132 Contributions in Fault Tolerance for Soft-Core Processors

because it has to be determined if the actual content of the remaining BRAMs
has to be preserved or not. Thus, while in cases where a BRAM column only
contains memory blocks to be scrubbed, all the three proposed alternatives are
suitable. In implementations in which program and data memories are placed in
the same BRAM column, the BRAM copy without overwriting approach has to
be adopted in order to preserve the information of data memory. Bearing in mind
that the BRAM copy without overwriting approach demands higher processing
effort, and consequently more time, it is advisable to avoid its utilization, when
it is possible.

Considering that depending on the design the BRAM column could be overwrit-
ten or not, two design flows are proposed to perform data content scrubbing. As
it can be seen in Figure 4.19, both flows share the first four steps, which are used
to obtain the golden copy bitstream. The first step is to configure the FPGA
by downloading the bitstream. In a next step, a readback process is performed
through the PCAP interface. Thanks to this, the data obtained is properly
structured and can be utilized to create the partial golden copy bitstream file in
a straightforward fashion. These first steps could be substituted by extracting the
data from the bitstream file. However, due to the complex data distribution in
the bitstream file this process would require a high processing effort. In addition,
each design requires specific processing due to the different BRAM locations.

Once the golden copy is obtained and stored in an external memory (i.e. a DDR)
the scrubbing process can be triggered. In the case that the remaining BRAMs of
the BRAM column can be overwritten the golden copy can be directly download
as is described in Figure 4.19(a). But in cases were they cannot be overwritten,
as depicted in 4.19(b), a readback operation has to be performed in order to
store the actual data content and to be able of merging it with the golden copy.
Depending on the design this process may require to stop the clock signal in order
to assure stable information.

In this way, in contrast to what [184] states, by using BBBA it is feasible to
perform an user memory scrubbing in BRAM based structures by using the bit-
stream information. Just as it occurs with the configuration scrubbing, neither
resource overhead nor performance penalty are incurred by the design. In addi-
tion, thanks to this proposed approach, the memory coherence problem described
in Section 3.1 can be solved. Besides, in designs where the BRAM column can
be overwritten the configuration scrubbing can performed in runtime without
stopping the system, thus, without adding any performance penalty.

One limitation of this approach is the scrubbing frequency, since the time de-
manded by BBBA affects to the time between consecutive scrubbings, which is
less the upper bound for the majority of the applications. Another drawback of

4.5 Approach to Extract Data From Damaged Memories Using the
BBBA 133

Configure FPGA

 Readback (bitstream)

Trig Scrubbing?

Create Golden copy

Download
Golden copy

Yes

(a) Content scrubbing with overwriting.

Configure FPGA

 Readback (bitstream)

Trig Scrubbing?

Create Golden copy

Yes

Readback
BRAM content

 Merge read with
Golden Copy

Download
Created bitstream

(b) Content scrubbing without overwrit-
ing.

Figure 4.19: Flow charts of the Data Content Scrubbing Approach.

this technique is that it demands a Processing System and an external memory.

4.5 Approach to Extract Data From Damaged

Memories Using the BBBA

A potential consequence of SEUs is the damage on the interfaces of memory re-
sources. Thus, as Figure 4.20 describes, if such an error disables or affects to
relevant ports of the memory it is likely to provoke permanent damages. More-
over, if ports, such as, address, reset, clock or data output are affected by the
fault, this can eliminate any possibility of recovering the data stored in memories,
at least with regular off-the-self methods. This case can be more likely to happen
in cases where memories have not been hardened. This situation could be espe-
cially critical if the information stored has a special value. The method based on
the BBBA technique proposed in this section allows to recover the data content
stored in BRAM based memories with damaged interfaces in a straightforward
manner.

Due to the simplicity of this approach it could be considered as a specific ap-
plication of the BBBA. Considering that it only uses the BBBA it shares its
implementation scheme shown in Figure 4.11, requiring a Processing System and
an external memory. It is mainly based on utilizing the bitstream information

134 Contributions in Fault Tolerance for Soft-Core Processors

Configuration memory

FPGA

DI

DIP

RDADDR

RDCLK

DO

DOP

RDEN

REGCE

SSR

WE

WRADDR

WRCLK

WREN

64

8

15

8

15

64

8

36 Kb Memory Array

Figure 4.20: Example of an SEU affecting the interface of a BRAM.

FPGA device fragment

PCAP

Readback

Processing

System

1010101010010010101

0101010010000010100

0010011001101010110

0101010010011011010

0000101001000001100

0101010010000011010

0101010010000011001

0111101001000001100

0101010000011000111

0101001000001001100

0101000111001001100

1001011001000001100

DDR memory

Damaged

BRAMs

(a) Extracting data from BRAMs.

FPGA device fragment

PCAP

Reconfig.

Processing

System

1010101010010010101

0101010010000010100

0010011001101010110

0101010010011011010

0000101001000001100

0101010010000011010

0101010010000011001

0111101001000001100

0101010000011000111

0101001000001001100

0101000111001001100

1001011001000001100

DDR memory

Relocated

BRAMs

(b) Relocating saved data.

Figure 4.21: Simplified example of extracting and relocating data from a damaged
memories.

4.6 Lockstep Approaches 135

obtained after using the BBBA as described in Figure 4.21(a). After acquiring
the bitstream portion with data content, different alternatives can be utilized
decode it. Since obtaining data content directly from a bitstream is a complex
process, the most effortless way is to relocate the saved bitstream downloading it
to a not damaged memory of the design with a similar implementation as shown
in Figure 4.21(b). However, since this is an unlikely scenario, an alternative can
be to implement the original design (or a simpler design with only the damaged
design) in an additional FPGA device and downloading the read bitstream. Log-
ically, this approach is not suitable in cases where the fault affects the bitstream
content related to the BRAM data.

4.6 Lockstep Approaches

This section proposes three approaches to deal with the most challenging issues
of lockstep schemes, which are related to checkpointing and rollback processes.
While the first approach adopts a full hardware solution to provide fast check-
pointing and rollback, the second applies the BBBA to reduce resource usage by
utilizing bitstream information. Finally, the third proposed approach combines
the first two methods to provide a trade-off solution.

All three approaches have been developed focusing on recovering from faults in
user memory elements. In this way, a fault fixing of the configuration memory
has not been considered. Nevertheless, it is possible to add this aspect to the
approaches by performing a configuration scrubbing after the error detection. In
this case, it is necessary to mask configuration bits related to user data content
elements of the golden copy to protect saved data against overwriting during the
scrubbing.

The proposed approaches have been applied to the PICDiY designed in this work.
However, they can be adapted to other existing soft-core processors in a straight-
forward manner. In addition, different ideas from proposed techniques can be
also applied to other designs that share characteristics with soft-core processors,
like memory modules. Hence, these approaches can be valuable tools when hard-
ening soft-core processors with DMR techniques, providing the designers with
more alternatives when making trade-off design decisions.

4.6.1 Hardware Based Fast Lockstep Approach

This section presents a novel lockstep approach which is focused on circumvent-
ing the problem of the latency in context saving (checkpointing) and reloading

136 Contributions in Fault Tolerance for Soft-Core Processors

(rollback) processes. This approach has been named as HW Fast Lockstep. The
reduced latency of the HW Fast Lockstep is obtained by introducing hardware
changes in the design of the soft-core processor. Following the line of research
of this work, the selected soft-core processor to work with has been the PICDiY.
Utilizing this design as a basis, several adaptations have been made to achieve
a fast context saving and restoring lockstep approach. Furthermore, a Lockstep
Controller and a Backup Memory modules (for the context saving) have been
added to the architecture. However, the storing elements must also be hardened
to achieve an effective fault tolerance level. For this reason, data and program
memories are protected by an ECC encoding and decoding implementation.

Figure 4.22 shows the implemented lockstep system in which two units of the
adapted processor work at the same time and share program and data memories.
As it can be observed, this approach implies a medium grained DMR scheme. The
Lockstep Controller block manages the behaviour of the system in presence of
errors and the synchronization of both processors. The sharing of memories and
registers between the processors is performed using two different mixer blocks.
Thus, there is a mixer structure for the program memory that merges the data
address and the read enable inputs from each processor. There is also a mixer
for the data memory which merges the data address and writes enable inputs
and data input / output. The last mixer is used to mix the data off the registers
of both processors (FSR, STATUS, PCLATH, INTCON, PORTB and WORK)
and its output is connected to the backup memory for a direct context saving.
These mixer blocks are continuously comparing the signals from the processors
and they report to the Lockstep Controller when a discrepancy is detected. When
that happens, the Lockstep Controller forces the context load of the IDC blocks
of both processors, loading the last correct context saved in the backup memory.

�������

�����	

���
������

���������

�����

�����

�����	

���

����

�������

��
���

�����

�����

��
�����

����������
���
���

���
���
�

���
���

����

���

�����

���
�������

�������

��
���

�

Figure 4.22: Simplified block diagram of the HW Fast Lockstep approach.

Several aspects of the original PICDiY design have had to be modified. One

4.6 Lockstep Approaches 137

of the most important adaptation has been made in the IDC module. Since it
controls most of the elements during the execution of instructions, it has been
modified to adapt its behaviour. The FSM of four states that manages the IDC
has been adapted by adding an new state to perform the context saving and
reloading. Figure 4.23 shows the flow diagram of the adapted FSM. As it can
be observed, in the absence of errors the execution follows the original sequence
of four states. In the first state, the IDC activates the instruction reading from
the program memory. The second state, depending on the loaded instruction,
is used to read data or to load the next instruction on the program counter
when CALL, GOTO or RETURN instructions are executed. In the third state, if
necessary, the IDC enables writing data memory or registers and the fourth state
is used for data stabilization, interruption attention management and context
saving in the backup memory. Thanks to the adaptation, during the fourth
state, each processor sends out a signal to the Lockstep Controller to be used
in the synchronization of both processors. When an error is detected the state
machine changes to the new context reload state, loading the last correct context
saved into both processors. The checkpointing is regularly performed every 4
clock cycles without any extra latency for the processors. In the same way, the
rollback only takes a 2 extra clock cycles.

��������	
��	��

�
	������	�
��

����
��

���������	�
�

�������	����	�
�

��	�

��	��

���	��	�������

����������	��	

�����	����

�

�����	����

�

�����	����

�

�����	����

�

Figure 4.23: Finite state machine diagram of the adapted FSM.

Another significant modification has been made in the processor’s registers to
permit data load simultaneously. As shown in Figure 4.24. an extra data input
controlled by an extra write enable input has been added to each register. Due to
this, when the Lockstep Controller sends the reload command, all the information
saved in the backup memory can be reloaded simultaneously in the registers

138 Contributions in Fault Tolerance for Soft-Core Processors

without any latency.

Data In

WE

Reset

Data OutREG

(a) Original regis-
ter.

BackUp In

WE

Reset

Data Out
REGData In

BackUp WE

(b) Modified regis-
ter.

Figure 4.24: Original and adapted registers.

By reason of their critical importance, a fault strategy has been adopted to
protect memory blocks, which as in the original design, are implemented with
BRAMs. Due to the extra clock latency addition and the possible errors caused
by double-bit faults in unused bits, the Xilinx’s built-in ECC fabric has been
discarded. These drawbacks have motivated the implementation of custom ECC
generation and checking modules particularly adapted to the designed approach.
Hamming code has been selected for the implementation of these modules, which
is a widely utilized, robust and simple code. Considering that the data word
width of the designed processor is 8-bit, the ECC code needs at least 5-bit to
detect and correct a single error and detect a double error. In the case of the
program memory, the instruction word width is 13 bits, so the ECC code needs
at least 6 bits. The 8-level stack memory of the processor has been also adapted
by using the same ECC strategy. Different ECC checking modules are used to
detect and auto-correct single errors in the data, the 8-level stack and the program
memories during reading operation, but they don’t correct errors in the memory
array. They only present corrected data in the output. Nevertheless, the errors in
data and stack memories should be overwritten with the next data store during
the normal operation. In addition, a double error detection output is available,
which can be used to indicate uncorrectable errors.

In the case of memory elements sensitive to accumulative errors, like data mem-
ory positions that are not overwritten during the program execution or program
memories, additional strategies have to be adopted. In the case of the program
memory, the proposed Data Content Scrubbing Approach can be utilized to per-
form periodic scrubbings. The most adequate scrubbing frequency is application
and program dependant. An alternative to harden non overwritten data memory
positions is to modify the original program by adding extra software instructions
in order to perform a overwriting operation of these positions.

On the other hand, the ECC generation modules are used only by the data and
8-level stack memories. As long as the program memory data has to be initialized

4.6 Lockstep Approaches 139

with the correct instructions during the synthesis and implementation processes,
a ECC generation module would not be useful in the case of this memory. As
a result, a visual basic application has been developed to generate the program
memory HDL modules. This application uses the .HEX file generated by the
assembler with the source code to create the program memory VHDL file with
the ECC encoded data.

The implementation of the backup memory for the processor context saving de-
mands a different method, because a parallel load of the data of all registers is
necessary to achieve a low latency context saving. Taking into account that the
Xilinx BRAM structure can only write to a single memory address at the same
time, the data has been saved using a register structure. Considering this fact,
the ECC alternative has been discarded for the hardening of the backup memory,
because it will dramatically increases the overhead. So, the strategy adopted has
been the DMR implementation. In this case, this is adequate because the prob-
ability of two consecutive SEUs is usually very low [174]. So, if an SEU affects
a register it is extremely rare that another SEU will affect the backup memory
simultaneously. In the same way, if an SEU affects the backup memory it is
not probable that one of the processors will be affected by another SEU at the
same time, and the wrong data will be overwritten in the next context saving.
Nevertheless, if this rare situation occurs it will be detected by the comparators
of the backup memory.

Thanks to the proposed architecture, a lockstep approach which performs a fast
checkpointing and rollback is obtained. Due to this fact, the saving process can
be regularly performed every 4 clock cycles without causing any extra latency,
nor affecting the processor’s performance. In the same way, a context loading
process can be achieved only with 2 extra clock cycles. The main drawback
of this approach is that the logic added to the design increases the hardware
overhead. For this reason, it also reduces the maximum achievable operating
frequency. Finally, it has to be remarked that this design can be implemented in
FPGA devices from different vendors and the main ideas of this approach can be
adapted to designs based on different soft-core processors.

4.6.2 Bitstream Based Low Overhead Lockstep Approach

The Bitstream Based Low Overhead Lockstep approach is focused on performing
the rollback and checkpointing processes by making use of the bitstream in order
to limit the resource overhead. Figure 4.25 represents the simplified scheme of this
approach. As it can be observed, in this minimalistic approach the FPGA fabric
contains two soft-core processors connected to a comparator. This scheme also

140 Contributions in Fault Tolerance for Soft-Core Processors

includes the Processing System, which is responsible for performing the check-
pointing and rollback processes. These operations are performed via PCAP in-
terface and controlling both, STARTUPEE2 and CAPTUREE2 primitives. In order
to stop the clock when it is necessary, the Processing System also controls the
design’s clock signal by using the CLOCKING WIZARD IP. With the aim to protect
the content of registers of the rest of the design when utilizing the STARTUPEE2

primitive a reconfigurable region has been created. While both utilized soft-core
processors are contained in the reconfigurable region, the rest of the design re-
mains in the static region. Thanks to the use of a single reconfigurable region
with the RESET AFTER RECONFIG=TRUE property, the generated partial bitstream
contains by default the instructions necessary to protect (closed padlock) the
static region and unprotect (open padlock) the reconfigurable region.

Although both processors can also be implemented in two different reconfigurable
regions, this strategy does not provide significant benefits. Since in DMR schemes
it is not possible to determine which is the faulty module, it is not necessary to
independently repair nor relocate each processor in the presence of permanent
errors. However, in some cases, it could be necessary depending on design re-
quirements. For instance, implementing two independent reconfigurable modules
provide more design flexibility when relocating them in case of permanent errors.
In this case, the second reconfigurable region has to be unprotected by using the
proposed design flow to protect/unprotect partial regions (introduced in Section
4.3).

During the normal operation (absence of errors) the Processing Systems performs
a checkpointing by reading the partial bitstream of each soft-core processor copy.
In this way, the data content from BRAM memories is extracted utilizing the
BBBA and saved in the external memory (DDR). In a similar way, the content
of registers can be obtained using the CAPTUREE2 primitive and processing the
read partial bitstream based on the information of the .ll file.

Two strategies can be adopted to perform the storage of the context in the ex-
ternal memory. As Figure 4.26(a) shows, the first one consists in reading the
context of a single processor. After, the read data has to be processed in or-
der to create a proper partial bitstream for the second processor. Thus, both
partial bitstreams with the context of the processors are stored and ready to be
used in future rollbacks. Bearing in mind that the bitstream readback’s time
demand increases with the bitstream size, this alternative results faster. Never-
theless, this approach also requires a high processing effort to create the second
partial bitstream. This processing effort depends on the registers quantity and
their floorplanning. For instance, if both processors have similar floorplanning,
which could be obtained by utilizing placement constraints, the processing effort

4.6 Lockstep Approaches 141

Contex

Storage

Bitstream

PCAP

Config. Memory

Bitstream

FPGA

EMIO
interface

P1

Error
!

P2

Comparator

=?

01010101010101111010101010111000
11001010101100010101010111000101
01011110001010111101010101011111

CAPTUREE2

STARTUPEE2

CAP

GSR

Processing
System
(ARM)

DDR

Pblock (reconfig. Region)

Static Region

CLOCKING

WIZARD

Clk_CE

Figure 4.25: Simplified block diagram of the Bitstream Based Low Overhead Lockstep

approach.

can be lower. The second alternative, as depicted in Figure 4.26(b), is to read
partial bitstreams with the context of both processors and store them. Since
this approach needs to read double information, the readback takes more time.
However, when dealing with small processors like the PICDiY the time increase
could be negligible. On the other hand, this strategy does not require to process
the bitstream making the storing process faster. Hence, in this case, the second
strategy has been adopted.

Storing the context in an external DDR provides higher reliability than storing
it the FPGA fabric, since as [328] states the probability of having a radiation-
induced error in data stored in the DDR is significantly lower. Besides, it is also
possible to duplicate data stored in the DDR in order to increase the reliability,
since commonly this software redundancy implies minimal costs in terms of data.

Nevertheless, storing data in a DDR memory demands a significant processing
effort. For this reason, to use the configuration memory to store the content of
registers is an interesting alternative way to avoid the need of any processing.
After running the GCAPTURE command, the content of flip-flops is stored in their
respective INIT0/INIT1 positions. Hence, the information is automatically stored
in the configuration memory. This implies that after performing the checkpoint-

142 Contributions in Fault Tolerance for Soft-Core Processors

Config. Memory

P1

10101010101

10101001101

10110100101

11101010101

01101010100

00101010101

01001010010

P2

10101010101

10101001101

10110100101

11101010101

01101010100

00101010101

01001010010

Partial

Bitstream

Partial

Bitstream

Processing

System
(ARM)

PCAP interface

Context

Storage

Bitstream

Relocation

DDR

P1
Context

Bitstream

P2
Context

Bitstream

(a) Context saving of a single processor.

Config. Memory

P1 P2

10101010101

10101001101

10110100101

11101010101

01101010100

00101010101

01001010010

Partial
Bitstream

Partial
Bitstream

PCAP interface

10101010101

10101001101

10110100101

11101010101

01101010100

00101010101

01001010010

DDR

P1
Context

Bitstream

P2
Context

Bitstream

101101001011011010010110110100101

Processing

System
(ARM)

(b) Context saving of both processors.

Figure 4.26: Context saving strategies.

ing the context of registers is stored in two way: in the reconfiguration memory
and in hardware resources. Bearing in mind this fact, the case of simultaneous
errors in INIT0/INIT1 positions of the bitstream and the flip-flop resources is an
unlikely scenario. Hence, considering that it is not necessary to process the bit-
stream to extract the content of flip-flops and the adequate robustness provided,
this strategy has been adopted instead of using the external DDR to store the
content of registers.

After detecting a failure due to discrepancy in the outputs of both processors,
the comparator asserts an error signal, which is connected with the Processing
System via EMIO interface. This signal triggers the rollback recovery process.
This process is performed by downloading the data memory content saved in the
DDR memory (by using the BBBA) and triggering the GRESTORE command with
the STARTUPEE2 primitive to restore the saved content of registers.

This approach allows to perform both, rollback and checkpointing with a minimal
impact in terms of resource overhead. Its main handicap is a relatively high
time demand, which comes due to the utilization of the BBBA. It also requires
the utilization of the Processing System and an external memory to control the
different processes and store context, respectively.

4.6 Lockstep Approaches 143

4.6.3 Bitstream Based Autonomous Lockstep Approach

In order to circumvent the main drawbacks of both proposed lockstep approaches
a third alternative, depicted in Figure 4.27, which in a way is a halfway solution
between them has been developed. Despite the low overhead of the Bitstream
Based Low Overhead Lockstep, it implies the need of external elements (Process-
ing System and a context saving memory) and it demands much time. Due to
this, some ideas from the HW Fast Lockstep have been added to the Bitstream
Based Autonomous Lockstep Approach, obtaining a trade-off solution.

STARTUPEE2

GSR

CAPTUREE2

CAP

Program

Memory

(ECC

Protected)

Data

Memory

(ECC

Protected)

DMR

Controller

OutputInput

Pblock (Reconfigurable Region) Static RegionStatic Reg.

CLOCKING
WIZARD

CLK_out_CE

Processor

1

Processor

2

Error

Figure 4.27: Simplified block diagram of the Bitstream Based Autonomous Lockstep

Approach.

Like in the case of the HW Fast Lockstep approach, both processors can be
located in separate reconfigurable regions. Also in this case, due to the lack of
benefits and the complexity of this option, both soft-core processors have been
implemented in the same reconfigurable region. Thanks to that, the generated
partial bitstream protects the static area and unprotects the reconfigurable region
by default, without requiring bitstream changes.

Bearing in mind that managing BRAM content with the bitstream requires the
utilization of the Processing System and an external memory, as proposed in
the the HW Fast Lockstep, a shared ECC hardened memory strategy has been
implemented to protect both, data and program memories.

The most relevant module of this approach is the Lockstep Controller block, which

144 Contributions in Fault Tolerance for Soft-Core Processors

detects discrepancies between both processors’ outputs and controls checkpoint-
ing and rollback processes. This module is based on an FSM structure which is
shown in Figure 4.28. The first four states are mainly utilized to run synchro-
nized with four states FSM of the PICDiY’s. The second state is also used to
perform the context saving by triggering the CAP port of the CAPTUREE2 prim-
itive. In the fourth state, the outputs of both processors are compared. In case
of discrepancy, whether the error is unrecoverable or not has to be determined.
This is done by utilizing a register to control if the error has been produced also
in the previous FSM cycle. In case of a non permanent error the recovering pro-
cess starts by stepping into the fifth state, which stops clocks of processors and
triggers the GSR signal from the STARTUPEE2 primitive. Bearing in mind that
the GSR is asynchronous and it spreads across the device relatively slow a sixth
state is used as a waiting state to ensure that all registers are properly set. The
sixth state follows to the second state to synchronize with the four-states FMS of
PICDiY processors. In the case of defining the error as unrecoverable the FSM
gets stuck in the seventh state. An unrecoverable error may be due to two or
more faulty bits in memories (ECC fault) or due to permanent errors. In the
case of ECC fault, reseting both processors and the rest of the system can be a
feasible solution. On the other hand, a permanent error scenario will require a
relocation of both processors in a different fabric logic region.

Capture

error free

=? Compare

State 1 (µP Sync)

 State 2 (µP Sync)

 State 4 (µP Sync)

State 3 (µP Sync)
Trig GSR

Stop CLK=

 State 5 (Error)

error Permanent
?

No action

No action

State 7 (Error)

Unrecoverable
Error

Wait (GSR)

Stop CLK

 State 6 (Error)

=

yes

no

Figure 4.28: State diagram of the Lockstep Controller block.

In addition to the relatively fast lockstep and rollback processes, a relevant ben-
efit of this approach is that, since no bitstream data read, write nor relocation is

4.6 Lockstep Approaches 145

required, the registers’ context recovering does not need any processing system
nor external memory. Hence, this approach can be considered as autonomous
in terms of the need of external elements. Nevertheless, due to the ECC imple-
mentation to harden the data memory a resource overhead is introduced. Since
this hardware overhead also implies the increase of data paths, the maximum
achievable operating frequency of the design decreases.

4.6.4 Lockstep Approaches Overview

Three different lockstep approaches have been proposed to deal with the issues
that arise with the utilization of the checkpointing and rollback techniques follow-
ing distinct strategies. Table 4.6 summarizes their most relevant characteristics.

Table 4.6: Lockstep approaches overview.

Characteristic HW Fast Low Overhead Autonomous

HW overhead high low moderate

HW modifications high no moderate

Time demand low high low

Performance penalty high low moderate

Platform independence yes relative relative

PS requirement no yes no

The HW Fast Lockstep approach achieves a high checkpoint frequency and a fast
rollback recovery with platform independence. It also avoids the need of any bit-
stream processing. However, since it demands considerable hardware adaptations
to add the different elements, it increases the hardware overhead and reduces the
maximum achievable operating frequency.

The Bitstream Based Low Overhead Lockstep approach utilizes the BBBA de-
veloped in this work as a basis to perform the rollback and the checkpointing
and does not introduce any resource overhead. Thanks to this fact, it does not
affect to the maximum operating frequency of the design. Another relevant ad-
vantage of this approach is that it does not require any adaptation of the target
processor. Nevertheless, the prize to pay when utilizing this approach is a low
checkpointing frequency and a relatively slow rollback recovery due to the time
demand of bitstream readback and writing processes. The BBBA also requires
to use the Processing System and an external memory to store the context. De-
spite that in Zynq based designs this could be an negligible issue due to its dual
ARM processor, the adaptation of this approach depends on technical aspects

146 Contributions in Fault Tolerance for Soft-Core Processors

of the hardware platform utilized. Hence, it could be considered as a relatively
platform-independent solution.

The Bitstream Based Autonomous Lockstep approach combines several aspects of
the two previous methods, implying a trade-off solution. In this way, it utilizes
the Approach to Manage Data of Registers with the Bitstream to save and load
the context of registers and protects data and program memories following an
ECC strategy. Due to this it also avoids the need of processing the bitstream.
In this way, this approach provides an autonomous fast checkpoint and recovery
processes with a moderate hardware overhead. The drawbacks of this method
are related to the implementation of the ECC logic, which increases the hardware
overhead and reduces the maximum frequency. Furthermore, due to the usage of
different Xilinx primitives is a platform dependant technique. However, it could
be possible to adapt the main ideas to other vendor’s technology.

All the proposed approaches provide different solutions, depending on the re-
quirements of the application to be designed. When the availability is a crucial
aspect the HW Fast Lockstep approach could be more advisable. On the other
hand, in applications that don’t demand real time response, the Bitstream Based
Low Overhead Lockstep approach could be a good candidate in order to save
resources and power. The Bitstream Based Autonomous Lockstep approach is a
halfway solution that provides fast context saving and recovering operations but
requires small adaptations on designs to be hardened.

4.7 Proposed Synchronization Approaches for

Repaired Soft-Core Processors in Hardware
Redundancy Based Schemes

This section addresses the scarcity of investigations around synchronization in
hardware redundancy based systems by proposing, implementing and evaluating
five different synchronization methodologies. Since the triple redundancy method
is one of the most established redundancy levels, the approaches in this section
will be based on TMR (Triple Modular Redundancy) schemes. Nevertheless,
the majority of concepts presented can be applied to other redundancy levels.
The five approaches span a broad spectrum of possible alternatives from minimal
hardware overhead to completely hardware-based synchronization. This allows
balancing the trade-off between implementation cost and synchronization speed,
depending on the requirements of the target application at hand. The perfor-
mance of the proposed techniques is verified and compared to each other on the

4.7 Proposed Synchronization Approaches for Repaired Soft-Core
Processors in Hardware Redundancy Based Schemes 147

PICDiY processor. However, all the approaches are of general nature and can
easily be migrated to other processor architectures. The presented methods are
furthermore not restricted to a set-up implementing TMR and DPR (Dynamic
Partial Reconfiguration). They are applicable to any TMR protected processor
system to recuperate a processor element, which was forced out of sync by an
SEE.

When implementing a combination of TMR and DPR for the realization of fault
tolerant systems, a pure reconfiguration of a faulty module is not sufficient given
that the reconfigured module comprises of an internal state. This synchronization
is especially critical for processors, because their state is composed of a number
of different registers. For the PICDiY processor the following elements need to
be synchronized: the program counter, the stack-pointer and the stack content,
the special function registers (FSR, STATUS, INTCON, PCL, PCLATH and
INTCON) and the data memory. These elements will be referred to as synchro-
nization objects in the remainder of this work.

In general, finding an adequate synchronization strategy for a given application
implies balancing a trade-off. On the one hand, adding specialized hardware
for the processor synchronization will enable a very fast synchronization process.
On the other hand, implementing the synchronization with little extra, or none,
hardware combined with software will result in less implementation overhead and
a lower impact on the critical path of the design.

The structure of the synchronization method impacts the duration of two sub-
steps of the whole recovery process. Firstly, the time required to copy the correct
values of the different synchronization elements to a recently reconfigured proces-
sor instance in the coarse-grain TMR setup. This time will be called copy-time.
The second aspect of the synchronization speed is the time from the detection of
an error by the voter until the point in time where the system is ready to start
the synchronization process. This second time is named wait-for-sync. Some
approaches can not begin directly with the synchronization, but they first need
to finish ongoing calculations before CPU time can be spent for updating a re-
configured processor instance in the system. The time from the detection of an
error to the re-synchronization has implications on the overall system robustness,
because in this time period the TMR system operates only with two functional
instances, making it vulnerable to consecutive SEUs.

The whole SEU recovery process is illustrated in Figure 4.29, where the time re-
quirement is defined by the sum of four components: the time needed to detect the
error, the wait-for-sync time, the time consumed for repairing the SEU by partial
reconfiguration and the copy-time. Whereas the time for partial reconfiguration
is proportional to the size of the reconfigured partition and the reconfiguration

148 Contributions in Fault Tolerance for Soft-Core Processors

Table 4.7: General synchronization objects and accessibility for PICDiY, PicoBlaze
and MicroBlaze processors.

Synchronization object PICDiY PicoBlaze MicroBlaze

CPU-flags read/write no access read/write

Stack-pointer no access no access read/write

Stack-content no access no access read/write

Program counter read/write no access read/write

CPU registers read/write read/write read/write

Data memory read/write read/write read/write

speed, the time to detection is not affected by the synchronization approach, and
is only application dependent and hence is considered beyond the scope of this
work.

copy

time

t

normal

operation

time to

detection

wait for

sync

normal

operation

time for error

reparation (DPR)

recover

SEU by DPR

synchronization approach dependent

total fault recovery time

sync

end

sync

start
SEU

detection

SEU

Figure 4.29: SEU recovery process and impact of synchronization times.

In the following, different synchronization approaches are presented for the exam-
ple of the PICDiY processor. The synchronization objects of this specific archi-
tecture are summarized in Table 4.7. This table also contains the synchronization
objects of the PicoBlaze, a close alternative and the MicroBlaze processor, a more
powerful and complex processor architecture. Despite of the simpler architecture
of the PICDiY and the PicoBlaze, they are more demanding in terms of syn-
chronization. For the MicroBlaze all synchronization objects are accessible via
software. However, the PICDiY and the PicoBlaze have an inherent need for
additional hardware when a complete synchronization is desired because some
elements are neither readable nor writable by software.

It needs to be noticed that this work does not consider the program memory
as a synchronization object. This is because when a program memory mod-
ule is repaired by utilizing DPR its content is also initialized by the bitstream.
Nevertheless, among the proposed approaches the BBBA based one is the only
that could synchronize the program memory since it is implemented as a ROM.

4.7 Proposed Synchronization Approaches for Repaired Soft-Core
Processors in Hardware Redundancy Based Schemes 149

The only way to address the synchronization of this module by the other four
approaches would be to implement it as a writable memory block.

4.7.1 Cyclic Resets Based Synchronization Approach

The first synchronization approach proposed is based on applying a cyclic reset
to the three processors as indicated in Figure 4.30. This approach will be referred
as Reset Sync.

��� ���

���
�	
��

��
��
 ��
 ��

Figure 4.30: Simplified diagram of the Reset Sync approach.

This reset based strategy allows bringing all TMR instances of the PICDiY back
to a known state and restarting the program execution from the scratch with all
three PICDiY in parallel. No changes in the original PICDiY design’s implemen-
tation are required. In this approach the BRAM memory on Xilinx devices is not
cleared by a reset. The software on the PICDiY processors consequently needs
to initialize all registers or scratchpad locations before the first usage.

There are different possibilities for triggering the synchronization reset:

• The PICDiY sets a flag in a shared memory upon termination of their
calculations. When at least two instances have set the flag, a reset may be
issued.

• A timer is implemented programming it to the worst-case runtime of the
given software and is started together with the PICDiYs. The expiring
timer will trigger a reset.

• The instruction bus addresses of the PICDiYs are supervised to detect the
end of the program.

150 Contributions in Fault Tolerance for Soft-Core Processors

• Very simple applications, where it is admissible to lose one packet, may
trigger the reset directly upon detection of an SEU.

For the first three possible trigger methods, the worst-case of the synchronization
time wait-for-sync is one complete algorithm runtime. On the other hand, the
copy-time does not exist because no values are copied.

Bearing in mind that this proposed approach does not synchronize the device
in its entirety, some aspects must be considered for the software running on the
processors. This fact implies that the are software restrictions when utilizing this
technique. On this purpose, the two different software flows shown in Figure 4.31
are hereafter presented in order to enable its utilization.

Start

 Execute
Program

While (1)

reset

(a)

Sync?
yes

no

Start

 Execute
Program

While (1)

reset

(b)

Figure 4.31: Proposed software flows when using Reset Sync

The flow chart in Figure 4.31(a) schedules a reconfiguration after each iteration of
the algorithm implemented on the processor. After the software finishes its exe-
cution a waiting state is entered (e.g. an endless loop). After it has been detected
that at least two processors reached this waiting state or after the expiration of
a synchronization timer a resynchronization is triggered. This is executed inde-
pendently of whether a fault occurred or not, in order to leave the waiting state
and prepare the following iteration of the algorithm.

A software flow triggering reconfigurations only if necessary is presented in Figure
4.31(b). After finishing one calculation iteration the processors read the TMR-
protected information of the system voter if a resynchronization is required. If this
is the case, then the software flow proceeds to a waiting state as in Figure 4.31(a)
and waits for synchronization by reset. If, on the other hand, no synchronization
is required, the processors may directly continue with the next calculation.

4.7 Proposed Synchronization Approaches for Repaired Soft-Core
Processors in Hardware Redundancy Based Schemes 151

4.7.2 Memory and Address Force Based Synchronization
Approach

The Reset Sync approach implies a high number of restrictions to the software
running on the hardware. One important restriction is that it is not possible
to leave permanent data in the processor registers or in its internal memory.
Although this memory is not affected by the resets, it can not be assumed to be
error-free, because it is not synchronized by any means.

This drawback is addressed in this synchronization approach based on memory
and address jump forces, which would be referred as Force Sync. (Figure 4.32),
which builds upon and enhances a synchronization idea presented in [59] based
on a shared memory. Adding a TMR-protected shared memory to the system
allows a synchronization of the processors by concurrent writing to this memory,
followed by a concurrent reading of the data. The actual synchronization of the
data is executed when all PICDiYs write concurrently to the TMRmemory, where
the voters on the input of the TMR memory are able to mask an incorrect input
from one processor. The proposed method utilizes a synchronization memory of
only one byte (i.e. the datawidth of the PICDiY) yielding in a minimal hardware
overhead.

P1 P2

TMR
Voter

P3

Voter
Sync
Memory

Figure 4.32: Simplified diagram of the Force Sync approach.

The synchronization process is triggered by externally forcing a GOTO instruction
to all three PICDiY instances. The destination of this GOTO is the synchroniza-
tion software sequence, which is executed by all processors simultaneously. At the
same time the program counters of the PICDiYs are synchronized utilizing this
simple method. In the synchronization sequence all PICDiY memory locations
requiring synchronization are first written to and then read from the synchroniza-
tion memory. It needs to be ensured that the synchronization is only triggered
when the processors are not serving any interrupt. The software restriction ac-

152 Contributions in Fault Tolerance for Soft-Core Processors

companying this approach demands to utilize similar program flows as proposed
for Reset Sync (in Section 4.7.1). However, in the case of the Force Sync, the
reset has to be replaced by the execution of the GOTO instruction.

The rationale behind forcing a GOTO to execute the synchronization code as op-
posed to using an Interrupt Service Routine (ISR) is that the Force Sync approach
follows a ”black box” approach, which does not require changes in the implemen-
tation of the used processor. Using an ISR for synchronization would require a
synchronization of the processor stack, which would imply changes to be made
to the HDL code of the processor.

The synchronization time wait-for-sync in the Force Sync approach has a worst-
case of the complete algorithm runtime, whereas the copy-time equals the best
case of 16 clock cycles per each byte of synchronized register or data memory
address. Each writing and reading requires two instructions (MOVWF and MOVF),
which each takes four cycles.

4.7.3 Synchronization Approach Based on Using an Inter-
ruption and a Synchronization Memory

This third synchronization approach, that will be referred as Interrupt Sync, uses
a synchronization memory and the synchronization software residing in the ISR.

Under this approach the processors do not need to wait for the current calcu-
lation to finish, but it is possible to almost directly react on a detected SEU
by assigning the synchronization interrupt. Along with this improvement comes
the need for modifications in the PICDiY implementation. When using an ISR
for synchronization, it is essential to synchronize the processor stack in order to
synchronize the return addresses of all processors, because before entering the
ISR the program counter of the reconfigured processor will have a different value
than the other two.

In Figure 4.33 the Sync Control block represents the logic block added to the
overall system for the synchronization of the stack-pointer and the stack content.
As these elements are not software accessible, it is not possible to implement the
Interrupt Sync in the same ”black box” fashion as Force Sync and Reset Sync
approaches. The Sync Control module is a FSM based structure that, once the
synchronization has been triggered, synchronizes the stack content. This process
is carried out by reading and voting the stack position of each PICDiY and
writing the voted data in the three processor instances. This strategy requires to
adapt the PICDiY to give access of the stack memory ports to the Sync Control
block.

4.7 Proposed Synchronization Approaches for Repaired Soft-Core
Processors in Hardware Redundancy Based Schemes 153

P1 P2

TMR
Voter

P3

Voter
Sync
Memory

int

int int intint

Sync
Control

Figure 4.33: Simplified diagram of the Interrupt Sync approach.

The advantages of this synchronization approach become visible when focusing
on the wait-for-sync synchronization time. This is reduced to be only a few cycles
long, namely the time needed for triggering the interrupt. The copy-time remains
almost the same as in Force Sync, since the software for the copying is identical
and the Sync Control block only takes 16 clock cycles to synchronize the stack
content. Nevertheless, due to the demanded adaptations, this approach increases
both, the resource overhead and designing costs. In the case of the PICDiY
processor the design costs are limited. However, when using other processors
these costs depend on the complexity of the soft-core design and the designer
skills. For instance, adapting the PicoBlaze requires a substantial designing effort.

4.7.4 Complete Hardware-Based Synchronization Approach

The fourth proposed approach is a completely hardware based synchronization
method that follows a similar strategy to the HW Fast Lockstep. This approach
with the largest hardware overhead is illustrated in Figure 4.34 and it will be
referred as Hw Sync. In this case, the Sync Control module is expanded to
control the synchronization of the registers and the data memory as well without
requiring any specific synchronization software.

This approach requires to increase the FSM structure of the Sync Control module
in order to be able to synchronize the stack memory, the registers and the data
memory. It also requires notable adaptations in the processor design to give
access to the Sync Control module to the data and control ports of all memory
elements (registers and memories). With these modifications, all registers can be
synchronized at once. On the other hand, synchronizing both, stack and data

154 Contributions in Fault Tolerance for Soft-Core Processors

P1 P2

TMR
Voter

P3

int

int int int

Sync
Control

Figure 4.34: Simplified diagram of the Hw Sync approach.

memories, requires to access all data positions during the reading and writing
processes.

When the hardware based synchronization is executed, simultaneous access to
registers or memories must be avoided. As almost all PICDiY instructions use
registers in their operations, this work proposes to stall the processor while the
hardware based synchronization takes place. An easy implementation of this
stalling can be achieved by externally forcing all PICDiY instruction addresses
to the fourth position of the program memory. This address is the interrupt en-
trance point and thus always implies an unconditional jump to the ISR. Another
alternative is to use a dedicated buffered clock output of the Clocking Wizard.

A tailored optimization of the stall time can be achieved in a variety of ways. If
e.g. the usage of the memory in the first part of the ISR is forbidden, the stalling
can be as short as the register synchronization time. The stalling can also be
shortened, when only a subset of data memory locations require synchronization.

The Hw Sync approach has the same short wait-for-sync time as the Interrupt
Sync, but it has a significantly reduced synchronization time for the registers
and data content (copy-time). Whereas software based synchronization in the
PICDiY takes 16 clock cycles (two MOV instructions for reading and other two for
writing) per memory cell, hardware based synchronization needs only two cycles
(single cycle for reading and another for storing). In this case, considering a 128
address depth data program and the 7 special registers to be synchronized this
approach takes 272 clock cycles for this task. An additional benefit of hardware
synchronization is that the copying of registers and data memory can be executed
in parallel. The most significant drawbacks of this approach are the impact in the

4.7 Proposed Synchronization Approaches for Repaired Soft-Core
Processors in Hardware Redundancy Based Schemes 155

hardware overhead and the performance penalty introduced by the adaptation.
Another relevant aspect to be considered is the high designing effort required to
modify the design.

4.7.5 Complete Bitstream-Based Synchronization

The fifth and last proposed synchronization approach, utilizes the Bitstream
Based BRAM Approach (BBBA) and the Approach to Manage Data of Registers
with the Bitstream presented in this work to synchronize BRAM based memories
and registers data respectively. Due to this approach, that will be referred as
Bitstream Sync, data memory and registers are synchronized with no software
nor hardware restrictions and without increasing the resource overhead.

As it can be observed in Figure 4.35, this approach shares several aspects with
the previously proposed Bitstream Based Autonomous Lockstep Approach. Nev-
ertheless, in this case the synchronization is done by extracting the context from
the partial bitstream of one the two correct processors and copying it to the
partial bitstream of the repaired module. Considering that the CAPTUREE2 prim-
itive only captures content of flip-flops from non protected areas, it is mandatory
to edit created partial bitstream following the proposed method based on the
RESET AFTER RECONFIG=TRUE property to unprotect (open padlock) the three re-
configurable modules (PblockA, PblockB, and PblockC) and protect the static
area (closed padlock).

Figure 4.36 explains the flow of the synchronization routine. Initially as Figure
4.36(a) shows, each of the three replicas is connected to the TMR Controller
module, which detects discrepancies and identifies the faulty processor. After de-
tecting an error (Figure 4.36(b)) this information is sent to the Processing System
which triggers the partial reconfiguration of the faulty module (Figure 4.36(c)).
Once the synchronization routine has started, as shown in Figure 4.36(d), the
first step is to stop the clocks of processor (which in this case is done by enabling
the Clk Out CE from the Clocking Wizard) IP to assure a complete stall. Next,
the context of registers is captured by triggering the CAP port from the CAPTUREE2
primitive. Then the context of the repaired processor has to be updated. This
process is summarized in Figure 4.36(e). In order to obtain the captured context
and data from BRAMs a bitstream readback of the partial bitstream of one of
the correct processors is performed. This information is processed to relocate the
context data creating a new partial bitstream for the repaired processor. Once
downloaded the created bitstream, in the final step depicted in Figure 4.36(f), the
context of all processors is restored by triggering the GRS signal of the STARTUPEE2
primitive. After waiting for the propagation of the GSR signal the clock can be

156 Contributions in Fault Tolerance for Soft-Core Processors

Contex

Storage

Bitstream

PCAP

Config. Memory

Bitstream

FPGA

EMIO
interface Faulty block #

!

01010101010101111010101010111000
11001010101100010101010111000101
01011110001010111101010101011111

CAPTUREE2

STARTUPEE2

CAP

GSR

Processing
System
(ARM)

DDR

PblockA PblockB

Static Area

CLOCKING

WIZARD

Clk_Out_CE

PblockC

P1 P2

TMR
Controller

P3

Figure 4.35: Simplified diagram of the Bitstream Sync approach.

activated to resume to normal operation.

Considering that by default each processor commonly presents distinct imple-
mentations due to the default resource placement freedom of the implementation
tool this implies a complex process of copying and relocating the bitstream data.
This drawback gains importance bearing in mind the size of soft-core proces-
sors which gather a significant quantity of memory elements to be synchronized.
Hence, it requires a big processing effort, especially taking into account that each
design implementation requires to the Processing System to specifically adapt the
data relocation processes. For this reason, the BRAMs of each soft-core proces-
sor have located in the same position of each BRAM column by using placement
constraints. In a similar way, the registers of each of the three replicas have
been implemented following the proposed Location Constraints Flow. Thanks to
both strategies three alike implementations in each reconfigurable region can be
obtained. This strategy reduces complexity of the bitstream manipulation pro-
cess because, in this case, each replica of the tripled memory resources presents
similar data structure and locations within the bitstream.

This approach provides the remarkable benefits of not requiring hardware adapta-
tions. Hence, the utilization of the Bitstream Sync does not increase the hardware

4.7 Proposed Synchronization Approaches for Repaired Soft-Core
Processors in Hardware Redundancy Based Schemes 157

P1

Context A

10101010

01010100

00100110

01010100

00001010

01010100

P2

Context A

10101010

01010100

00100110

01010100

00001010

01010100

P3

Context A

10101010

01010100

00100110

01010100

00001010

01010100

V
O
T
E
R

No
error

Clk
running

Bitstreams
(INIT values)

(a) Normal operation.

P1

Context B

P2

Context B

P3

Context B

V
O
T
E
R

Error!

Clk
running

Bitstreams
(INIT values)

10101010

01010100

00100110

01010100

00001010

01010100

10101010

01010100

00100110

01010100

00001010

01010100

10101010

01010100

00100110

01010100

00001010

01010100

(b) Error detection: a faulty processor.

P2

Context C

P3

Context C

V
O
T
E
R

Error!

Clk
running

Bitstreams
(INIT values)

10101010

01010100

00100110

01010100

00001010

01010100

10101010

01010100

00100110

01010100

00001010

01010100

10101010

01010100

00100110

01010100

00001010

01010100

(c) Repare processor (reconfigure).

P1

Context -

10101010

01010100

00100110

01010100

00001010

01010100

P2

Context D

11111111

11000011

11001111

00011100

00111000

01111110

P3

Context D

11111111

11000011

11001111

00011100

00111000

01111110

V
O
T
E
R

Error!

Stop
Clk

=

Bitstreams
(INIT values)

(d) Capture context.

P1

Context -

10101010

01010100

11001111

00011100

00111000

01111110

P2

Context D

P3

Context D

V
O
T
E
R

Error!

11111111

11000011

11001111

00011100

00111000

01111110

Clk
stopped

=

Bitstreams
(INIT values)

11111111

11000011

11001111

00011100

00111000

01111110

(e) Relocate data and reconfigure processor.

P1

Context D

P2

Context D

P3

Context D

V
O
T
E
R

No
error

Wait GSR /
resume Clk

Bitstreams
(INIT values)

11111111

11000011

11001111

00011100

00111000

01111110

11111111

11000011

11001111

00011100

00111000

01111110

11111111

11000011

11001111

00011100

00111000

01111110

Trig GSR

(f) Final synchronization phase.

Figure 4.36: Synchronization routine of the Bitstream Sync approach.

158 Contributions in Fault Tolerance for Soft-Core Processors

overhead. Nevertheless, the price to pay is a high time demand and the necessity
of the Processing System and an external memory. In addition, the utilization
of the RESET AFTER RECONFIG=TRUE property increases the size of generated par-
tial bitstreams, which results in higher reconfiguration times and requires more
memory space to store the bitstreams.

Despite that in the case of this work the processing and bitstream manipulation
tasks are carried out by the Zynq’s ARM processor, in devices without hard-
processors this bitstream manipulation could be developed utilizing an additional
soft-core processor or and FSM based module. However, these kind of alternatives
could limit the advantages in terms of hardware overhead described initially.

4.7.6 Synchronization Approaches Overview

An overview of all the five proposed approaches is given in Table 4.8. It summa-
rizes the synchronization strategy for all synchronization elements of the PICDiY
processor. The entry SW represents the synchronization via synchronization-
memory, HW represents a modification to the processor, Bitstream represents
the synchronization via Bitstream and a dash indicates that the element is not
synchronized. The synchronization methods for the program counter manifest
the biggest differences for the first four approaches. Whereas Reset Sync relies
on resetting this register, Force Sync works by forcing a GOTO instruction to up-
date this value. On the contrary, Interrupt Sync and Hw Sync only synchronize
the stack while being in the ISR and the program counter is updated upon re-
turning from the interrupt. On the other hand, Bitstream Sync synchronizes
all memory elements by utilizing the bitstream. Thanks to this, neither hard-
ware modifications nor the addition of new software to the soft-core processor
are required.

Table 4.8: Synchronization methods overview.

Sync. object Reset Force Interrupt HW Bitstream

ALU-flags - - HW HW Bitstream

Stack-pointer - - HW HW Bitstream

Stack-content - - HW HW Bitstream

CPU registers - SW SW HW Bitstream

Data memory - SW SW HW Bitstream

Program
counter

reset forced
GOTO

on ISR
return

on ISR
return

Bitstream

Chapter 5

Validation of Fault
Tolerance Approaches

After introducing the different contributions focused on improving existing fault
tolerance techniques for SRAM-based FPGAs, this chapter introduces a detailed
analysis of the proposed approaches. Aspects such as, impact on resource over-
head, effects in terms of performance penalty, availability and functionality are
evaluated utilizing a hardware platform. The results extracted from these experi-
ments provide relevant information for fault-tolerance designers in order to make
trade-off decisions and to choose the best solution to fit with design specifications.

In Section 5.1 the basis of the experimental setup is introduced, by means of
describing the hardware platform and the employed test application. Section 5.2
validates the designed soft-core processor and compares it with two representative
soft-core processor IPs. Section 5.3 evaluates the proposed BBBA approach to
manage BRAM data through bitstream and compares it with a basic FSM based
implementation. In next Section, Section 5.4, the proposed Approach to Manage
Data of Registers with the Bitstream is validated by using basic implementations
which include 8-bit registers in different scenarios. In a next step, the test to
refute the Data Content Scrubbing Approach is described in Section 5.5. Sec-
tion 5.6 follows describing the evaluation of the Approach to Extract Data From
Damaged Memories Using the BBBA. Furthermore, in Section 5.7 the validation
of the three proposed lockstep approaches is detailed. Finally, Section 5.8 deals
with the validation of the different proposed approaches to synchronize repaired
soft-core processors in hardware redundancy based schemes.

160 Validation of Fault Tolerance Approaches

5.1 Experimental Setup

All experimental setups of this research work have been implemented in a general
purpose development board from AVNET named ZedBoard [329], which is de-
picted in depicted in Figure 5.1. Zedboard includes a Xilinx Zynq-7000 AP SoC
XC7Z020-CLG484 device that contains tightly coupled 7-series programmable
logic and dual-core ARM Cortex-A9 centric processing-system. The leading po-
sition of Xilinx in the field of all programmable FPGAs and SoCs devices makes
this device a remarkable candidate to be used as a validation platform. Due to its
advanced technology, Xilinx’s products are widely used in several fields, such as,
medical devices, industrial control, etc. For instance, NASA has recently utilized
Xilinx technology to implement the scope of CubeSat Launch initiative [141].

Figure 5.1: ZedBoard Zynq-7000 ARM/FPGA SoC development board.

The software utilized to develop and implement the different FPGA designs has
been Vivado Design Suite (16.2). It provides the tools needed to develop com-
plex designs, optimizing the implementation for Xilinx devices, providing IP sub-
systems reuse and accelerating the design process by enabling to work at a high
level of abstraction.

Due to the PIC16 instruction set compatibility of the PICDiY processor, the
programming has been done using MPLAB IDE8.76 IDE by Microchip Technol-
ogy Inc. to obtain the .HEX files with the application programs. After that,

5.1 Experimental Setup 161

the processors program memory block has been generated using a visual basic
application developed for this work combined with previously generated .HEX
files to generate the VHDL file of the programmed program memory.

Additional software like PuTTY [330] has also been utilized to perform serial
communications between ZedBoard and computer. PuTTY is a free implemen-
tation of Telnet and SSH for Windows and Unix platforms.

In order to obtain reliable and comparable results in the different validation tests
the methodology shown in Figure 5.2 has been mainly followed. Once the VHDL
code of the design has been properly written and checked, the first validation step
has been to synthesize and simulate it. This step has been done by using Vivado
16.2 and its simulator. Different configurations have been thoroughly simulated,
starting with independently checking of each module or IP that constitute the
system and ending with full design simulations. In several cases the debugging
of this physical implementation process has been performed with the help of
Vivado’s Integrated Logic Analyzer (ILA), which permits to visualize internal
signals of the FPGA design. After debugging and improving the designs, the
next step has been to implement and generate the bitstream to be download into
the FPGA. Also Vivado 16.2 suite was employed to carry out these processes.

VHDL
Design

Synthesis
and

Simulation

Physical
Implementation

Test
Application

Comparison
(Optional)

Figure 5.2: Flow chart of the utilized validation strategy.

In a further phase, the designs have been validated by running real case appli-
cations on the soft-core processors under test. This have provided the insight
into correctness of the results obtained in a real world scenario. Despite that in
some cases specific applications have utilized, the mainly used one has been a
RS232 serial transmission based application, which hereinafter will be referred
to as TestApp. This application sends a sequence of ASCII characters stored
in the program memory thanks to a finite state machine based program. The
communication setup uses 8-bits data word without parity and a single stop bit.
The baud rate of 9600 is generated with a special block in the FPGA but outside
the processor design, is based on a counter based structure. The signal generated
on the baud generation block is connected to the processors interrupt inputs and
the transmission process is performed by a specific interrupt routine. Thanks to
that, with the correct setting in the baud rate generation block, the transmission
can work with different baud rates and with distinct clock frequencies. The ba-
sic experimental setup (a stand-alone processor) is presented in Figure 5.3. The
FPGA transmits the information generated by the processor through output port

162 Validation of Fault Tolerance Approaches

to the computer, where PuTTY is running, via COM serial port. TestApp has
been considered adequate for test purposes because, in spite of being a relatively
simple mechanism, it makes use of distinct elements of processors (registers, data
memory, ports, interruption, etc.), its instructions and programming structures.
In addition, a transmission application requires high availability to maintain spec-
ifications of the protocol which makes it an interesting validation example. On
the other hand, the lack of complexity of the application allows to avoid using
extended external elements, which has helped to focus on the characteristics of
the processor.

RS-232

Port
Out_Port

In_port

Interrupt

ASCII

Chars#

CLK

Transmit

FPGA

Soft-Core
Processor

Baud Rate

Generator

COM

PC

Chars#
Check

Chars#

Figure 5.3: TestApp experimental setup.

Finally, the majority of proposed designs have been compared with similar ex-
isting designs or solutions in order to refute obtained results. Which in each
particular case has required to analyse distinct existing solutions in order to
choose the most representative alternatives as comparison subjects. With the
aim of obtaining comparable results, all designs have been implemented select-
ing the same synthesis and implementation strategies oriented to optimize the
performance: Flow PerfOptimized high (Vivado Synthesis 2016) for syntheses
and Performance ExplorePostRoutePhys-Opt(Vivado Implementation 2016) for
implementations.

5.2 Validation of PICDiY Soft-Core Processor

The first step of the design validation has been to simulate all elements of the
PICDiY (registers, IDC, memories, etc.). Then, the entire processor design has
been checked by simulating all the instructions have been validated in a phys-
ical implementation by utilizing the ILA analyser. Finally, the processor has
been validated for distinct applications implemented in ZedBoard, including the
TestApp.

5.2 Validation of PICDiY Soft-Core Processor 163

After the validation process the PICDiY has been compared with other 8-bit
soft-core processors in order to evaluate it. Two processors have been chosen for
this task: a widely used soft-core processor and a PIC based one.

The first selected soft-core processor has been the PicoBlaze, since is a prevailing
IP for Xilinx based designs [58, 67, 69, 70]. Being optimized for 7-series devices,
it presents a very reduced size (small as 26 slices depending on device family)
and high performance (up to 240 MHz). In addition, it is highly integrated
for implementing non-time critical state machine and presents a predictable fast
interrupt response. All these characteristics make the PicoBlaze an ideal reference
for a comparison.

Regarding the second soft-core processor, different IP cores based on the PIC16’s
architecture are available (CQPIC, PPX16mcu, RISC5X, RISC16F84, MINI-
RISC, Synthetic PIC, UMASS, etc.). All of these cores differ slightly in their
architectures, but they all implement the main features of a PIC16 microcon-
troller. The selected PIC16 based soft-core processor has been the PPX16mcu
[331]. The main reason to select the PPX16mcu has been that it is the closest
alternative to the PICDiY, since PPX16mcu is a minimalist open source version
that does not has neither Watchdog nor EEPROM. PPX16mcu is a single cycle
and, four times faster, VHDL implementation of the 16F84.

For the comparison tests, the three soft-core processors have been implemented
with the same timing constraints (100 MHz) and without including the logic re-
sources necessary to implement the Testapp. Additional implementations have
been also performed in order to determine the maximum frequency achievable
with each soft-core processor. Implementation results (at 100 MHz) are shown
in Table 5.1. As it can be observed, PICDiY presents a significantly lower device
utilization compared to PPX16mcu, while PicoBlaze is the one with the lowest
overhead. As this table shows, those results are closely related with the dynamic
power consumption of each soft-core. Due to the limited resource usage of the
analysed soft-cores, there is only a slight difference between them. In any case,
these results prove that the power consumption of the three soft-cores is moder-
ate. Regarding the maximum achievable frequencies, the tests have shown that
PicoBlaze provides the best results (150 MHz). On the other hand, the maximum
frequencies for PICDiY and PPX16mcu are similar.

Furthermore, Table 5.2 shows a detailed list of the primitives utilized by each im-
plementation. Apart from the resource overhead information given by this table,
it is interesting to note that PICDiY uses distributed memory resources (RAMS64E
and RAMS32 primitives) instead of BRAM blocks to implement the data memory
module. This is because Vivado changes the initial BRAM based implementation
defined by the VHDL design in order to meet the timing constraints. Additional

164 Validation of Fault Tolerance Approaches

tests with more moderate timing constraints (e.a. 90 MHz) have shown that
Vivado implements the data memory by using a RAMB18E1 primitive. A similar
situation has been observed in case of PPX16mcu. While in a 100 MHz design
all memories are implemented with distributed memory resources, a design with
lower frequency utilizes a RAMB18E1 primitive.

Table 5.1: Implementation results summary of the soft-core processors
(@100MHz).

Resource PICDiY PPX16mcu PicoBlaze
Slice LUTs 266 478 130
Slice Registers 82 223 114
F7 Muxes 17 2 16
F8 Muxes 8 - 8
Block RAM Tile 0.5 - 0.5
fmax (MHz) 107 110 150
Dynamic p. (W) 0.129 0.120 0.123
Static p. (W) 0.125 0.125 0.125

Table 5.2: Primitive utilization of the soft-core processors (@100MHz).

Primitive PICDiY PPX16mcu PicoBlaze
FDRE 80 119 111
FDCE - 66 3
FDSE 2 - -
FDPE - 38 -
CARRY4 8 9 10
LUT1 1 16 1
LUT2 32 53 1
LUT3 11 54 1
LUT4 18 55 1
LUT5 37 100 42
LUT6 131 173 76
MUXF7 17 2 16
MUXF8 8 - 8
RAMB18E1 1 - 1
RAMD32 - 12 24
RAMS32 7 4 8
RAMD64E - 24 -
RAMS64E 32 - 32

Further aspects must be considered when comparing three soft-core processors.
Although the functionality and programming of PPX16mcu is quite similar to
PICDiY’s, PPX16mcu requires extra instructions to configure ports, since they
can work as input or output. In this way, compared to PICDiY’s, the program
code of PPX16mcu needs six extra instructions to configure both, input and
output ports. Besides, while PPX16mcu needs eight clock cycles to execute
instructions with conditional jumps, PICDiY needs only 4 clock cycles for all the

5.2 Validation of PICDiY Soft-Core Processor 165

instructions, which increases the performance. This aspect is especially relevant
in FSM based designs.

On the other hand, there are several differences between PICDiY and PicoBlaze
that deserve to be remarked. One of the most relevant is that PicoBlaze is
platform dependent and is only suitable for Xilinx’s devices, while PICDiY is
platform independent and can be implemented in FPGAs from any vendor. Con-
sidering that the design of PicoBlaze is highly optimized for Xilinx devices, any
attempt to export its architecture results in an increase of resource utilization
and a lower maximum frequency. This aspect can be observed by analysing the
different efforts made to obtain platform independent soft-cores based on the Pi-
coBlaze [26, 322, 323]. Another interesting aspect is that, as Figure 5.4 shows,
commonly the output port of PicoBlaze has to be registered in order to synchro-
nize the reading with the strobe signal, causing an increase in resource utilization.
Analysing programming aspects, PicoBlaze only uses two clock cycles to execute
each instruction and the data loading is done with a single instruction (LOAD),
while PICDiY needs two (MOVW + MOVWF). However, PICDiY offers better char-
acteristics to deal with multiple conditional branches. This is because none of
PicoBlaze instructions gives access to the program counter. The example pre-
sented in Table 5.3 demonstrates PicoBlaze needs more instructions than PICDiY
to carry out these programming structures. In this example, PicoBlaze needs to
go through the complete list of instructions to reach the last case. Depending
on the number of programmed cases, this can be a critical aspect especially in
certain applications. For instance, a program containing a FSM with many states
would demand a huge number of instructions, affecting the performance.

m

n8

8
Register sX

Register sY /
Literal kk

OUT_PORT[7:0]

WRITE_STROBE

PORT_ID[7:0]

PicoBlaze IP Core

D

En

Q

Clk

FPGA Logic

Figure 5.4: Output operation and FPGA interface for PicoBlaze.

Considering these aspects, it has been concluded that the PICDiY is an ade-
quate candidate to be used as a target processor for different approaches. Spe-
cially taking into account that it is an adaptation-friendly processor thanks to
its modularity.

166 Validation of Fault Tolerance Approaches

Table 5.3: Comparison of FSM coding examples for PICDiY and PicoBlaze
processors.

N. Instr. PICDiY PicoBlaze
1 MOVF state, w COMP state,0
2 ADDWF PLC, F JUMP Z, state0
3 GOTO state0 COMP state,1
4 GOTO state1 JUMP Z, state1
5 GOTO state2 COMP state,2
6 GOTO state3 JUMP Z, state2
7 GOTO state4 COMP state,3
8 GOTO state5 JUMP Z, state3
9 GOTO state6 COMP state,4

10 GOTO state7 JUMP Z, state4
11 GOTO state8 COMP state,5
12 GOTO state9 JUMP Z, state5
13 GOTO state10 COMP state,6
14 JUMP Z, state6
15 COMP state,7
16 JUMP Z, state7
17 COMP state,8
18 JUMP Z, state8
19 COMP state,9
20 JUMP Z, state9
21 COMP state,10
22 JUMP Z, state10

5.3 Validation of the Bitstream Based BRAM

Approach

In order to assess in practice the performance of the proposed Bitstream Based
BRAM Approach (BBBA), a ZedBoard has been utilized as an experimental plat-
form. The validation of the proposed approach has been carried out by means
of several tests based on the scheme presented in Figure 4.11. The systems im-
plemented for these tests are aiming at reading, copying, writing and comparing
different data blocks from different BRAM columns, single 18K BRAMs and
36K BRAMs. The performance scores analysed in this study are the resource
overhead, the execution time and the availability.

In the first step the bitstream approach has been compared with a common
implementation. Most of the memory controllers are based on the use of proces-
sors, previously generated generic IP cores or specifically built FSMs. In order
to account for the worst case scenario in terms of execution time, the content
written in both memories has been equal. As a consequence, the comparing pro-
cedure traverses the entire memory space and, hence, the highest execution time
is achieved. A dedicated soft-core processor would be a waste of resources; there-

5.3 Validation of the Bitstream Based BRAM Approach 167

fore, in this case, a FSM based controller is the most efficient and fastest method
to control the memories.

The implemented test applications are memory copying and memory comparing.
For each application, different tests have been performed including entire BRAM
column and single BRAM experiments. Both applications have been designed
to be commanded by a ready signal, which permits choosing when the action
at hand is executed over the second memory. In this way, both approaches (the
FSM based and the bitstream based) feature the same functionality. However,
in all tests the ready signal has been set to active, so as to avoid the effect of
the waiting time in the measurement of processing time. All applications begin
by fully writing the source memory, which has not been taken into account when
measuring the processing time. Thereafter, the next step to perform the data copy
process is to read the source memory, for which the application waits the ready

signal from the destination memory. Upon receiving this signal, the data content
is copied to the destination memory and cross-checked with the original data of
the source memory in order to detect data discrepancies. To this end, once the
writing process is done the cross-check starts by reading the first memory. After
receiving the ready signal from the second memory, the data therein are read
and compared to the previously read memory. In order to account for the worst
case scenario in terms of execution time and evaluate the highest execution time
case, the content written in both memories has been equal. No errors have been
detected and all the memory addresses have been analysed during the comparing
processes.

Figure 5.5 depicts the simplified block diagrams of the different testing designs
implemented in the programmable logic part of the Zynq device. The original
system has been implemented as a reference in order to evaluate the resource
overhead. As shown in 5.5(a), it consists of different modules where the most
relevant ones are the two memory blocks, the FSM based memory filler, the pulse
counter and the output logic. The two memory blocks are the target memories,
which are equally implemented with different sizes depending on the test to be
addressed. The memory filler is an FSM based module used to fill the memories
with specific test data. The pulse counter, which is composed by a counter and
an FSM, measures the time spent by each approach. Finally, the output logic
selects the signals to be displayed as outputs.

As evinced Figure in 5.5(b), the proposed BBBA is similar to the original system
scheme. This is because it does not need any logic resource. The only difference
is that the pulse counter is controlled by the ARM processor available in the
processing system part of the Zynq device, which is only necessary to measure
the time. The number of instructions to be executed by the ARM vary depending

168 Validation of Fault Tolerance Approaches

Output

Logic

Memory

Filler

Mem

A

(BRAM)

Mem

B

(BRAM)

Pulse

Counter

(a) Original system.

Output

Logic

Memory

Filler

Mem

A

(BRAM)

Mem

B

(BRAM)

Pulse

Counter

ARM Proces.

(b) System with the BBBA.

Memory

Filler
Output

Logic

Mem

A

(BRAM)

Mem

B

(BRAM)

Pulse

Counter

FSM App.

M

U

X

M

U

X

Auxiliar Mem.

(c) System with the FSM applications.

Figure 5.5: Block diagrams of the implemented approaches.

5.3 Validation of the Bitstream Based BRAM Approach 169

on the location of the BRAMs and the possibility of data overwriting. Both
applications, memory copying and memory comparing, have been implemented
with source and destination BRAMs in the same or different column and with or
without overwriting.

Figure 5.5(c) presents the scheme for the FSM based memory copying and mem-
ory comparing operations. In this case, further modifications have been incor-
porated with respect to the original scheme. The most remarkable one is the
addition of the FSM application module. For each test (copying and comparing)
a specific FSM has been implemented, minimizing the number of states for an
efficient coupling. In order to wait the ready signal, an auxiliary BRAM memory
has been allocated in these modules. Both FSM applications also manage the
pulse counter module. Finally, additional multiplexer modules have been added
to manage the inputs of the target memories. As opposed to BBBA, when using
FSMs there is no functional difference related to the location of the BRAMs, nor
any the problem of data overwriting of the rest of BRAMs from the same BRAM
column.

Table 5.4 summarizes the results of copying and comparing tests. In both tests,
the analysed parameters are the same. The first five columns (Slice Registers,
Slice LUTs, Occupied Slices, LUT FF pairs and 18K BRAMs) quantify the usage
of FPGA resources. The number in parenthesis indicates the relative resource
overhead with respect to the original system. The remaining parameter is the
time used to perform each application extracted from the pulse counter module.
It should be noted that, since the Processing System presents a non-deterministic
response (due to uncontrollable side conditions e.g. hardware interruptions and
hardware-software communication), there are small variations in the measured
time for each experiment. Consequently, the provided scores represent averaged
values after 10 experiments. In the same table, the first two rows correspond to
the parameters of the original system without any additional element with the
aim of being used as a reference. In this case, since no data operation is involved,
there is no information for the time parameter. The next four rows are the values
of the monitored parameters corresponding to the FSM based applications. Last
but no least, the results of the bitstream manipulation based applications are
shown in the last parameter set.

The conclusions drawn by observing the above table support the research hy-
pothesis stared in Section 4.2. The BBBA based applications obtain significantly
better results in terms of resources overhead. While the overhead in BBBA is
essentially zero, the overheads of the FSM based approaches are between 50%
and 180%. However, the results also confirm that the BBBA based applications
are the most time consuming options in the benchmark. Different performed

170 Validation of Fault Tolerance Approaches

Table 5.4: Implementation results summary of BRAM data copy and comparison
tests (@100MHz).

S
li
ce

R
eg
is
te
rs

S
li
ce

L
U
T
s

B
R
A
M
s

T
im

e
(m

s)

BRAM 88 84 2 -

O
ri
g.

BRAM Columns 110 529 40 -

BRAM Copy 135 (53%) 235 (80%) 3 (50%) 0.001
BRAM Column Copy 165 (50%) 703 (33%) 60 (50%) 0.02

F
S
M

BRAM Comp. 111 (26%) 198 (35%) 3 (50%) 0.001
BRAM Column Comp. 141 (28%) 614 (16%) 60 (50%) 0.02

BRAM Copy(Same column / Overwr.) 88 (0%) 84 (0%) 2 (0%) 2.5
BRAM Copy(Same column / No Overwr.) 88 (0%) 84 (0%) 2 (0%) 10.7

BRAM Copy(Dif. column / Overwr.) 88 (0%) 84 (0%) 2 (0%) 2.8
BRAM Copy(Dif. column / No Overwr.) 88 (0%) 84 (0%) 2 (0%) 12.1

BRAM Column Copy 110 (0%) 529 (0%) 40 (0%) 10,2

B
it
st
re
am

BRAM Comp.(Same column) 88 (0%) 84 (0%) 2 (0%) 2.5
BRAM Comp.(Dif. column) 88 (0%) 84 (0%) 2 (0%) 4.7

BRAM Column Comp. 110 (0%) 529 (0%) 40 (0%) 13.1

test have shown that the most time consuming phase is the bitstream process-
ing necessary to read, create or compare partial bitstreams. Since this approach
utilizes Xilinx general purpose functions, an optimization of these functions to
fit with the bitstream management approaches could provide significantly better
timing results. Another limitation is imposed by the maximum PCAP frequency
(100 MHz). This limitation has a direct impact on the velocity of the bitstream
writing and reading processes, since it limits the communication speed between
the bitstream processing block and FPGA. Increasing this maximum frequency
can be an interesting improvement, since it could increment the execution speed
of the approach.

Moreover, it has been also confirmed via additional off-line experiments that the
processing time varies depending on the relative location of the BRAMs and
the possibility of overwriting the information of the destination memory, hence
elucidating that the quickest cases are copying and comparing BRAMs allocated
in the same column.

5.4 Validation of the Approach to Manage Data of Registers with the
Bitstream 171

5.4 Validation of the Approach to Manage Data
of Registers with the Bitstream

The validation of the Approach to Manage Data of Registers with the Bitstream
has been performed in a simple manner and most of tests have been performed
during the developing process of the technique. Non-essential elements have
been avoided to elude any possible impact in bitstream’s content and structure.
Considering that it is a very particular approach no alternatives have been found
to be compared with.

The development and validation design is shown in Figure A.1, which has been
obtained from the utilized Vivado’s project. In this design, the reset ports of the
two 8-bit register modules are managed by the Processing System via EMIO inter-
face. The Processing System also controls the CAP and GSR ports from CAPTUREE2

and STARTUPEE2 primitives, respectively. With the aim of maintaining simplicity
and a faithful physical reading, the data input and output ports are connected
directly to ZedBoard’s switches and LEDs, respectively. The switch connected
to the first data bit also controls the multiplexer, providing the possibility of
visualizing the connection between both registers in real time. The bitstream is
readback from the FPGA combining the PCAP and the Processing System, and
stored in the DDR memory. The content of INIT values are obtained from the
bitstream thanks to the location of flip-flop’s content provided by a previously
generated .ll file.

In a first validation step, the functionally of GRESTORE and GCAPTURE commands
have been checked in a non-reconfigurable design with successful results. In
addition, several data content copying experiments have been conducted with
this setup. The basis of these tests has been a basic procedure. First, as Figure
5.6 shows, specific placement constraints have been used in order to utilize the
same flip-flops of different resource columns for both registers. As showed in
segments of .ll files represented in Figure 5.7, it has been confirmed that same
structures (same frame offsets) are contained in the bitstream for the data of
both registers, differing only in the FARs. Utilizing this information, the content
of one registers has been copied to the other with the bitstream confirming the
viability of the proposed approach.

After the first experiment, one of the registers has been implemented as reconfig-
urable module enabling the RESET AFTER RECONFIG=TRUE property, maintaining
the other register and the rest of the design in the static region. In this second ex-
periment, the combination of information extracted from read bitstreams, the .ll
file and LEDs has proved that the utilization of the RESET AFTER RECONFIG=TRUE

property protects the static area from the effect of the GCAPTURE command. In ad-

172 Validation of Fault Tolerance Approaches

Figure 5.6: Device image of the design with placement constraints from Vivado.

REGISTER_A

 <offset> <FAR> <frame offset> <information>

Bit 15982243 0x0040221f 3 Block=SLICE_X106Y50 Latch=AQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[0]

Bit 15982244 0x0040221f 4 Block=SLICE_X107Y50 Latch=AQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[4]

Bit 15982268 0x0040221f 28 Block=SLICE_X106Y50 Latch=BQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[1]

Bit 15982269 0x0040221f 29 Block=SLICE_X107Y50 Latch=BQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[5]

Bit 15982273 0x0040221f 33 Block=SLICE_X106Y50 Latch=CQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[2]

Bit 15982274 0x0040221f 34 Block=SLICE_X107Y50 Latch=CQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[6]

Bit 15982298 0x0040221f 58 Block=SLICE_X106Y50 Latch=DQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[3]

Bit 15982299 0x0040221f 59 Block=SLICE_X107Y50 Latch=DQ Net=Two_regs_i/reg8_black_box_0/U0/inst/o_Data[7]

REGISTER_B

Bit 24275555 0x0042221f 3 Block=SLICE_X106Y0 Latch=AQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[0]

Bit 24275556 0x0042221f 4 Block=SLICE_X107Y0 Latch=AQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[4]

Bit 24275580 0x0042221f 28 Block=SLICE_X106Y0 Latch=BQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[1]

Bit 24275581 0x0042221f 29 Block=SLICE_X107Y0 Latch=BQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[5]

Bit 24275585 0x0042221f 33 Block=SLICE_X106Y0 Latch=CQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[2]

Bit 24275586 0x0042221f 34 Block=SLICE_X107Y0 Latch=CQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[6]

Bit 24275610 0x0042221f 58 Block=SLICE_X106Y0 Latch=DQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[3]

Bit 24275611 0x0042221f 59 Block=SLICE_X107Y0 Latch=DQ Net=Two_regs_i/reg8_black_box_1/U0/inst/o_Data[7]

Figure 5.7: Fragment of the .ll file from the design with placement constraints.

5.4 Validation of the Approach to Manage Data of Registers with the
Bitstream 173

dition, it has been demonstrated that when generating bitstreams, the size of the
bitstream considerably increases by enabling the RESET AFTER RECONFIG=TRUE

property. In this example in particular, it has been observed that while the
size of a regular .bit file is 88.492 bytes, the size of a .bit file generated the
RESET AFTER RECONFIG=TRUE property is 240.108 bytes. As a consequence, an
increase of 271.3% in the size of the bitstream has been detected. The main rea-
sons for this elevated percentage is that, considering the small size of the partial
bitstream, the instructions added to the bitstream to protect the reconfigurable
region imply a significant data overhead. In bigger reconfigurable designs the
impact of these instruction is be lower.

In a further step, the proposed approach to protect/unprotect partial regions in
7 series devices by editing the partial bitstream has been validated. In this case,
both registers have been implemented in each reconfigurable Pblock. After edit-
ing one of the generated partial bitstreams by erasing the proper 0xE00009BC
special words, it has been downloaded so as to reconfigure the FPGA. The infor-
mation provided by the LEDs and bitstream readbacks in different GCAPTURE and
GRESTORE tests have successfully demonstrated that both reconfigurable regions
are unprotected while the static region remains protected.

The final validation step has been to test the proposed flow to generate equal
implementations of a design in different reconfigurable regions. In this case, a
TMR design with three instances of the PICDiY soft-core processor have been
implemented in three reconfigurable regions (Pblock0, Pblock1 and Pblock2). In
this first implementation all resources of each instance have been freely placed
by the tool. Thus, as can be observed in Figure 5.8 obtained from the device
diagram of Vivado, the three resultant implementations present distinct place-
ments. Afterwards, the Location Constraints Flow has been utilized to generate
three equal implementation (selecting the Pblock0 as a reference). As it can be
observed in Figure 5.9 the resource placement of the three entities within three
Pblocks. In a similar way, the generated partial bitstreams of the three Pblocks
have been compared in order to check if the location of data bits within the bit-
stream is the same. Furthermore, as Tables 5.5 and 5.6 demonstrate the resource
usage of both implementations is almost the same. Table 5.5 also confirms that
the proposed design flow does not affect the implementation in terms of power
consumption and maximum operation frequency.

174 Validation of Fault Tolerance Approaches

Figure 5.8: Device image of the TMR design without placement constraints from
Vivado.

5.4 Validation of the Approach to Manage Data of Registers with the
Bitstream 175

Figure 5.9: Device image of the TMR design witht placement constraints from
Vivado.

176 Validation of Fault Tolerance Approaches

Table 5.5: Implementation results summary of a reconfigurable TMR implemen-
tation with and without placement constraints (@60MHz).

Resource Bitstream Bitstream w/place
Slice LUTs 678 679
Slice Registers 187 187
F7 Muxes 3 3
Block RAM Tile 3 3
fmax (MHz) 80 80
Dynamic p. (W) 1.668 1.668
Static p. (W) 0.161 0.161

Table 5.6: Primitive utilization of a reconfigurable TMR implementation with and
without placement constraints (@60MHz).

Resource Bitstream Bitstream w/place
FDRE 181 181
FDSE 6 6
CARRY4 24 24
LUT1 3 3
LUT2 90 90
LUT3 47 47
LUT4 55 55
LUT5 109 109
LUT6 405 405
MUXF7 3 3
RAMB18E1 6 6
RAMS32 21 21
CAPTUREE2 1 1
STARTUPE2 1 1
PS7 1 1
PLLE2 ADV 1 1

5.5 Validation of the Data Content Scrubbing
Approach

Bearing in mind that the Data Content Scrubbing Approach is directly based
on the previously validated Bitstream Based BRAM Approach (BBBA), its val-
idation has been a straightforward operation. A PICDiY IP has been utilized
to implement the TestApp. In a first step, the content of the program mem-
ory BRAM of the processor has been readback and stored as a golden copy in
the external DDR memory. After that, several corrupted versions of the golden
copy have been generated, by flipping different data-related bits. The corrupted
partial bitstreams have been utilized to perform several error injection tests.

Thanks to performed tests it has been proved that this approach successfully
performs a scrubbing of the data content of BRAMs without affecting the rest
of resources. Hence, neither resource overhead increase nor performance penalty

5.6 Validation of Approach to Extract Data From Damaged Memories
Using the BBBA 177

has been observed. Due to the lack of data content scrubbing alternatives this
approach has not been compared against other approaches.

5.6 Validation of Approach to Extract Data
From Damaged Memories Using the BBBA

Similar to what happens in the case of the Data Content Scrubbing Approach’s
validation, the validation of the Approach to Extract Data From Damaged Mem-
ories Using the BBBA is based on the validation of the Bitstream Based BRAM
Approach (BBBA). Figure A.2 shows the block diagram of the utilized imple-
mentation extracted from Vivado. The design contains two memory blocks, with
a depth of 256 8-bit words, extracted from the PICDiY design. Both memories
can be written or read by the FSM based BRAM Filler block. An additional
enable port has been used to select, via external switch, if each memory has to
be written. The outputs of both memories are connected to a multiplexer module
in order to select which ones are shown on the LEDs. The validation design also
includes the Processing System to perform readbacks and reconfigure the FPGA
through PCAP interface.

The blue module in Figure A.2 represents the memory block that has been im-
plemented as a reconfigurable module, while the rest of modules, including the
green memory block, has been located in the static region. The reconfigurable
module has been utilized as a target memory block. In this way, the generated
partial bitstream has been utilized to create several corrupted files by flipping
different bits. After distinct error injection attempts the interface of the target
memory block has been damaged impeding to read data. Next, with the aim of
extracting data content of the damaged memory, the BBBA has been used to
copy the bitstream portion with the required information to the memory block
on the static area. This have provided the possibility of successfully extract all
the stored information.

This validation test has proved the efficacy of the Data Content Scrubbing Ap-
proach, which can recover data from BRAM based data memories without affect-
ing the design in terms of resource usage and performance.

178 Validation of Fault Tolerance Approaches

5.7 Validation of the Lockstep Approaches

In order to evaluate the correct functionality of the lockstep approaches, the
three proposed methods have been physically tested by running the TestApp in
a ZedBoard.

Despite partial reconfiguration based injection provides a wider range of results,
especially in terms of robustness, it increases design and implementation times.
Furthermore, considering the vast existing literature the lockstep has been proven
to be a consolidated and thoroughly analysed technique in terms of robustness.
Thus, bearing in mind these aspects and that proposed approaches are focused on
improving both checkpointing and rollback processes, fault simulation tests have
been carried out by manually flipping data bits from user registers rather than
partial reconfiguration based fault injections. This strategy has considerably
simplified test tasks, enabling to focus them on the correct behaviour of the
approaches.

As depicted in Figure 5.10, one of the processors has been corrupted by modifying
certain registers by an additional input to force errors. The most significant
signals, such as outputs of lockstep controller, W register or IDC have been
monitored by Integrated Logic Analyzer (ILA) module from Vivado.

Lockstep
Controller

P1 P2

Integrated Logic Analyzer (ILA)

P1

P2

Error
port

OriginalAdapted

error!

Figure 5.10: Test procedure for the lockstep approaches validation.

In both, Bitstream Based Low Overhead Lockstep and Bitstream Based Au-
tonomous Lockstep approaches, the duplicated PICDiY processors have been
implemented in a single same reconfigurable region. Thus, reducing the com-
plexity of checkpointing and rollback processes. In addition, this permits
to avoid the need of editing partial bitstreams and the utilization of the

5.7 Validation of the Lockstep Approaches 179

RESET AFTER RECONFIG=TRUE property to protect static regions.

The validation tests have been executed following these steps:

1. Configure the entire device and constantly run the TestApp.

2. Observe the context before the error injection with ILA.

3. Emulate a failure by triggering the adapted register’s error signal.

4. Check correct rollback (compare with pre-fault injection context) using ILA.

This validation flow has been utilized in all three proposed approaches. It is
important to observe the context before injecting the fault in order to be able to
check if the rollback has been performed successfully. For this reason, fault injec-
tions and pre-error context checkings have been carried out taken into account
the checkpointing frequency of each method. Due to its time demand, monitor-
ing the entire rollback process of the Bitstream Based Low Overhead Lockstep
approach would require a huge resource usage. Thus, this approach has been
partially monitored with ILA by utilizing the Processing System and the EMIO
interface in order to define trigger events related to specific moments and only
capture signals in required instants.

During different performed tests all three proposed lockstep approaches have
been able to successfully recover from induced errors, proving the validity of all
proposed methods.

The obtained results are summarized in Table 5.7. As it can be observed, the
first column includes the results for a single PICDiY. This data has been used
as the reference value for the percentage information. The next three columns
contain the results of each of the three proposed approaches. The last column
includes the results for a coarse-grained TMR implementation included for com-
parison purposes. Regarding the information provided, while the first five rows
of the table are a summary of the utilized resources, the next three rows contain
timing related information (maximum operating frequency and the time require-
ments for both checkpointing and rollback processes). Finally, the last two rows
provide information of the power consumption (static and dynamic). The imple-
mentations utilized to obtain these results do not include the logic resources used
for error-injections and the TestApp, and the employed ILA module. For a fair
comparison, all the results have been obtained implementing the designs with
the same clocking constraints (60 MHz). Table 5.8 includes primitive utilization
results, providing with further information in terms of resource utilization.

As results reveal the HW Fast Lockstep approach provides very fast checkpointing
and rollback operations. Nevertheless, the hardware increase introduced is sub-

180 Validation of Fault Tolerance Approaches

T
a
b
le

5
.7
:
Im

p
le
m

e
n
ta

tio
n

r
e
su

lts
su

m
m

a
r
y

o
f
th

e
lo
c
k
ste

p
a
p
p
r
o
a
c
h
e
s,

a
sin

g
le

P
IC

D
iY

a
n
d

a
c
o
a
r
se

g
r
a
in

e
d

T
M

R
(@

6
0
M

H
z
).R

e
so

u
rc
e

P
IC

D
iY

H
W

F
a
st

L
o
w

O
v
e
rh

e
a
d

A
u
to

n
o
m
o
u
s

T
M

R
S
lice

L
U
T
s

232
(100%

)
690

(297%
)

400
(172%

)
435

(188%
)

7
26

(313%
)

S
lice

R
eg
isters

74
(100%

)
272

(368%
)

130
(176%

)
141

(1
91%

)
193

(261%
)

F
7
M
u
x
es

1
(100%

)
28

(2800%
)

2
(200%

)
34

(3400%
)

3
(300%

)
F
8
M
u
x
es

(100%
)

2
(-%

)
14

(-%
)

B
lo
ck

R
A
M

T
ile

1
(100%

)
1

(200%
)

2
(100%

)
1

(20
0%

)
3

(600%
)

f
m

a
x
(M

H
z)

107
(100%

)
64

(60%
)

85
(79

%
)

70
(65

%
)

90
(84%

)
C
h
eck

p
o
in
t
tim

e
(m

s)
-

3
.33

×
10
−

8
2.64

1
.67

×
10
−

8
-

-
R
o
llb

a
ck

tim
e
(m

s)
-

6
.67

×
10
−

8
0.03

3
.33

×
10
−

8
-

-
D
y
n
a
m
ic

p
.
(W

)
0.133

(100%
)

0.139
(105%

)
1.638

(1232%
)

0.125
(92%

)
0.139

(10
5%

)
S
ta
tic

p
.
(W

)
0.125

(100%
)

0.125
(100%

)
0.160

(100%
)

0.125
(100%

)
0.125

(100%
)

5.7 Validation of the Lockstep Approaches 181

T
a
b
le

5
.8
:
P
r
im

it
iv
e
u
ti
li
z
a
ti
o
n

o
f
th

e
lo
c
k
st
e
p

a
p
p
r
o
a
c
h
e
s,

a
si
n
g
le

P
IC

D
iY

a
n
d

a
c
o
a
r
se

g
r
a
in

e
d

T
M

R
(@

6
0
M

H
z
).

R
e
so

u
rc
e

P
IC

D
iY

H
W

F
a
st

L
o
w

O
v
e
rh

e
a
d

A
u
to

n
o
m
o
u
s

T
M

R
F
D
R
E

72
(1
00

%
)

26
6

(3
69

%
)

12
6

(1
75

%
)

13
6

(1
89

%
)

18
7

(2
60

%
)

F
D
S
E

2
(1
00

%
)

6
(3
00

%
)

4
(2
00

%
)

5
(2
50

%
)

6
(3
00

%
)

C
A
R
R
Y
4

8
(1
00

%
)

19
(2
38

%
)

16
(2
00

%
)

16
(2
00

%
)

24
(3
00

%
)

L
U
T
1

1
(1
00

%
)

2
(2
00

%
)

2
(2
00

%
)

3
(3
00

%
)

L
U
T
2

3
0

(1
00

%
)

61
(2
03

%
)

60
(2
00

%
)

64
(2
13

%
)

90
(3
00

%
)

L
U
T
3

1
3

(1
00

%
)

99
(7
62

%
)

26
(2
00

%
)

25
(1
92

%
)

47
(3
62

%
)

L
U
T
4

1
7

(1
00

%
)

36
(2
12

%
)

34
(2
00

%
)

31
(1
82

%
)

56
(3
29

%
)

L
U
T
5

3
6

(1
00

%
)

15
9

(4
42

%
)

72
(2
00

%
)

14
1

(3
92

%
)

11
1

(3
08

%
)

L
U
T
6

13
2

(1
00

%
)

31
5

(2
39

%
)

26
7

(2
02

%
)

20
4

(1
55

%
)

40
2

(3
05

%
)

M
U
X
F
7

1
(1
00

%
)

28
(2
80

0%
)

2
(2
00

%
)

34
(3
40

0%
)

3
(3
00

%
)

M
U
X
F
8

2
14

(-
%
)

R
A
M
B
18

E
1

2
(1
00

%
)

2
(1
00

%
)

4
(2
00

%
)

2
(1
00

%
)

6
(3
00

%
)

R
A
M
S
3
2

7
(1
00

%
)

26
(3
71

%
)

14
(2
00

%
)

14
(2
00

%
)

21
(3
00

%
)

C
A
P
T
U
R
E
E
2

1
(-
%
)

1
(-
%
)

S
T
A
R
T
U
P
E
2

1
(-
%
)

1
(-
%
)

P
S
7

1
(-
%
)

P
L
L
E
2
A
D
V

1
(1
00

%
)

1
(1
00

%
)

1
(1
00

%
)

1
(1
00

%
)

1
(1
00

%
)

182 Validation of Fault Tolerance Approaches

stantial, reaching almost the same overhead as the TMR implementation (over
the 300%). Due to this similar resource overhead in both implementations the
power consumption is the same. Although this is not a significant overhead and
power consumption reduction for a lockstep approach (compared to the TMR),
these results could be improved when applying the approach to larger processors.
The reason for this overhead in the HW Fast Lockstep approach resides in the
relation between the number of resources used to implement the processor and
additional resources needed for its adaptation. This additional logic implies a
significant increase in the overhead due to required modifications of registers and
IDC module, and the implementation of context backup and lockstep modules.
Nevertheless, applying the approach to a larger processor should not imply a
proportional increase of resources usage. Hence, the obtained results should be
improved in comparison with a TMR implementation, which will always increase
its overhead proportionally. Another relevant drawback of this approach is the
performance penalty introduced in the design. In this case, due to the increase of
data paths the maximum operation frequency reached decreases a 40% comparing
with the design with a single PICDiY.

Moreover, it has been demonstrated that Bitstream Based Low Overhead Lockstep
is the less resource consuming approach. Related with this fact, the performance
penalty introduced is moderate, decreasing only the 21%. However, the weakest
point of this approach is the time demand of the checkpointing operation since it
utilizes the BBBA. Another handicap of this approach is its the power consump-
tion. The utilization of the Processing System increases drastically the power
consumption, specially the dynamic power. However, in designs where the Pro-
cessing System is already utilized, this power increase can be considered inherent
to the design. Hence, applying this hardening approach in such scenarios will not
imply any increase of the power consumption.

The Bitstream Based Autonomous Lockstep provides interesting trade-off results.
Its hardware overhead is comparable to the results of the Bitstream Based Low
Overhead Lockstep. On the other hand, the results in terms of checkpointing and
rollback speed are even better that the HW Fast Lockstep. The main drawback of
this technique is that several data paths are increased, specially due to the logic
introduced for the ECC hardening of memories. Hence, it noticeably decreases
the maximum operation frequency. Related with the power consumption this
approach presents remarkable results. After performing a deeper analysis of the
power results it has been observed that the power consumption is related to the
MMCM primitive used by the Clocking Wizard. Unlike the other implementations
this one requires to configure the Clocking Wizard to generate a second clocking
signal (used to be able to halt the design). This different configuration appears
to reduce the power consumption of the MMCM primitive.

5.8 Validation of the Synchronization Approaches 183

In general terms, all proposed lockstep approaches have demonstrated to be suc-
cessful. Although each implementation provides different benefits and present dis-
tinct drawbacks it can be concluded that the most balanced solution is Bitstream
Based Autonomous Lockstep. Finally, compared to the TMR all the proposed
lockstep approaches introduce lower hardware overhead. Nevertheless, they also
add higher performance penalty, obtaining lower maximum operation frequencies.

5.8 Validation of the Synchronization Approaches

Similar to when validating the lockstep approaches, the fault emulation of the
synchronization approaches has been focused on checking the correct synchro-
nization behaviour. Considering that the synchronization issue appears after re-
pairing damaged modules, partial reconfiguration based fault injection techniques
enable a very straightforward testing method for the proposed synchronization
approaches. Opposed to a complete fault injection (as the experiments executed
for the PicoBlaze in [332]), the simplified injection method of altered partial bit-
streams proposed in this work focuses mainly on the correct error detection and
recovery, rather than determining the robustness of the complete setup.

In Figure 5.11 the test approach is showcased for the processor instance µP1.
Several corrupted versions of the PICDiY processor instance have been created
by editing the original partial bitstream. In this way, a correct bitstream for
each partition containing a PICDiY processor and some corrupted bitstreams
are created to force the processor out of sync. Due to this, the fault injection
and the repairing processes can be performed in straightforward manner.

���
������	

�����
��������

�����

��

��	��

���
������	

���

���

���

���

������	

������	���

������	���

������	���

��	����	������������� !���"���#

���

���

���

Figure 5.11: Test procedure for the synchronization validation.

184 Validation of Fault Tolerance Approaches

A synchronization test is executed as follows:

1. Configure the entire device.

2. Emulate a failure by loading a corrupt partial bitstream.

3. Repair the failure by loading the correct partial bitstream.

4. Trigger synchronization routine.

5. Check correct synchronization using ILA.

The use of ILA permits to validate the synchronization process on the actual
FPGA by monitoring the external processor signals, such as the instruction ad-
dress for observation of the program counter and also internal signals like the
stack pointer for validation of Interrupt Sync and Hw Sync approaches. In order
to circumvent possible issues with the trigger settings when using ILA for both
partial reconfiguration and logic analysis, the synchronization has been triggered
manually instead of invoking this step automatically after a partial reconfigura-
tion. Due to the time required by the BBBA technique, in the case of Bitstream
Sync the utilization of ILA has required a special treatment. Consequently, each
test has consisted in two captures, one triggered with the synchronization and the
other after applying the BBBA approach. This is because monitoring the entire
process would require a huge resource usage (especially BRAMs) to implement
the ILA in the FPGA.

All five proposed synchronization methods have been implemented on the Zed-
Board to validate their correct operation. Fault injection tests have been exe-
cuted as defined previously. After repairing faulty modules the synchronization
has been triggered. Functional behaviours have been validated by observing the
synchronization processes of the different approaches with the ILA.

Results of the different synchronization approaches are unveiled in Table 5.9,
where the values of the different implementations are summarized as absolute
values and in relation to Reset Sync (in brackets). As it can be observed in the
first five rows that contain a resource utilization summary, the Hw Sync approach
introduces the biggest hardware overhead. Besides, while Force Sync and Inter-
rupt Sync approaches increase the resource utilization moderately, both, Reset
Sync and Bitstream Sync approaches, do not affect the hardware overhead. Sim-
ilar conclusions can be obtained from Table 5.10, which includes the utilization
of primitives. Considering the proposed approaches, the increase in resource re-
quirements is significant, especially if a high degree of hardware synchronization
is supported. When implementing a processor as small as the PICDiY, adding
modules such as the synchronization memory or the Sync Control block has a
stronger relative weight as compared to bigger processors. Regarding power con-

5.8 Validation of the Synchronization Approaches 185

sumption, Bitstream Sync presents the worst results due to the use of the Pro-
cessing System. The power consumption results of the rest of implementations
are closely related with the resource overhead: higher resource utilization comes
with higher power consumption. Furthermore, although the are not big differ-
ences in the possible operation frequency for all designs (90 MHz), the Bitstream
Sync approach presents the lowest value (80 MHz).

Another relevant information included in Table 5.9 is the synchronization time
demanded for each approach implementation. As it can be observed, despite its
limitations, the Reset Sync approach synchronizes the system instantaneously.
On the contrary, the Bitstream Sync is the most time consuming method. This
is because of the time needed to read, process and write the bitstream. The syn-
chronization times for the rest of approaches depends on the number of registers
and memory positions to be synchronized. It has to be remarked that the re-
sults of these approaches are closely dependant of the system clocking frequency.
Besides, for these tests the worst case scenario has been considered, synchroniz-
ing all the registers and the entire data memory. In this way, the Force Sync
needs 0.036 ms (112 clock cycles for the 7 special registers and 2048 clock cycles
for 128 positions of the data memory) to synchronize the design. Similarly, the
Interrupt Sync needs 0.0363 ms. This slight difference resides in the need of 16
clock cycles to synchronize the stack. Finally, Hw Sync significantly improves the
synchronization time to 0.0045 ms (272 clk cycles).

Based on the trade-off between the three factors of the synchronization ap-
proaches (the FPGA resource overhead, the synchronization speed and the el-
ements which support synchronization) different applications might benefit from
different synchronization techniques. A simple algorithm, like the Advanced En-
cryption Standard (AES), does not require a very elaborate synchronization. If
the key does not need to be stored, a cyclic reset (Reset Sync) might be a suffi-
cient solution. If only a small amount of data needs to be kept on the processor
(for example in cyclic sensor readouts) Force Sync is a suitable option. The last
readouts can be kept in the scratchpad memory and the rest of the system can
be forced to a sync whenever this is required. Both, Interrupt Sync and Hw Sync
approaches, represent almost no restrictions to the device software and only mi-
nor considerations need to be taken into account for the development of the ISR.
Bitstream Sync is able to synchronize all memory elements of a design without
any software restrictions. However, its time demand makes it suitable only for
applications with loose time constraints.

186 Validation of Fault Tolerance Approaches

T
a
b
le

5
.9
:
Im

p
le
m

e
n
ta

tio
n

r
e
su

lts
su

m
m

a
r
y

o
f
th

e
sy

n
c
h
r
o
n
iz
a
tio

n
a
p
p
r
o
a
c
h
e
s
(@

6
0
M

H
z
).

R
e
so

u
rc
e

R
e
se
t

F
o
rc
e

In
te
rru

p
t

H
W

B
itstre

a
m

S
lice

L
U
T
s

675
(100%

)
684

(101%
)

760
(113%

)
1008

(149%
)

67
9

(100%
)

S
lice

R
eg
isters

187
(100%

)
205

(110%
)

239
(128%

)
437

(234%
)

18
7

(100
%
)

F
7
M
u
x
es

3
(100%

)
3

(100%
)

36
(1200%

)
57

(1900%
)

3
(100%

)
F
8
M
u
x
es

6
(-%

)
21

(-%
)

B
lo
ck

R
A
M

T
ile

3
(100%

)
3

(100%
)

3
(100%

)
3

(10
0%

)
3

(100%
)

f
m

a
x
(M

H
z)

90
(100%

)
90

(100%
)

90
(100%

)
90

(10
0%

)
8
0

(8
9%

)
S
y
n
c.

tim
e
(m

s)
-

0.036
0.0363

0.0045
1
2.9

D
y
n
a
m
ic

p
.
(W

)
0.139

(100%
)

0.139
(100%

)
0.140

(101%
)

0.147
(106%

)
1.66

8
(1
200000%

)
S
ta
tic

p
.
(W

)
0.125

(100%
)

0.125
(100%

)
0.125

(100%
)

0.125
(100%

)
0.161

(129%
)

5.8 Validation of the Synchronization Approaches 187

T
a
b
le

5
.1
0
:
P
r
im

it
iv
e
u
ti
li
z
a
ti
o
n

o
f
th

e
sy

n
c
h
r
o
n
iz
a
ti
o
n

a
p
p
r
o
a
c
h
e
s
(@

6
0
M

H
z
).

R
e
so

u
rc
e

R
e
se
t

F
o
rc
e

In
te
rr
u
p
t

H
W

B
it
st
re

a
m

F
D
R
E

18
1

(1
00

%
)

19
9

(1
10

%
)

23
3

(1
29

%
)

43
0

(2
38

%
)

18
1

(1
00

%
)

F
D
S
E

6
(1
00

%
)

6
(1
00

%
)

6
(1
00

%
)

7
(1
17

%
)

6
(1
00

%
)

C
A
R
R
Y
4

24
(1
00

%
)

24
(1
00

%
)

24
(1
00

%
)

27
(1
13

%
)

24
(1
00

%
)

L
U
T
1

3
(1
00

%
)

3
(1
00

%
)

9
(3
00

%
)

56
(1
86

7%
)

3
(1
00

%
)

L
U
T
2

90
(1
00

%
)

90
(1
00

%
)

78
(8
7%

)
85

(9
4%

)
90

(1
00

%
)

L
U
T
3

47
(1
00

%
)

48
(1
02

%
)

94
(2
00

%
)

27
0

(5
74

%
)

47
(1
00

%
)

L
U
T
4

55
(1
00

%
)

64
(1
16

%
)

45
(8
2%

)
60

(1
09

%
)

55
(1
00

%
)

L
U
T
5

1
08

(1
00

%
)

10
9

(1
01

%
)

14
8

(1
37

%
)

18
8

(1
74

%
)

10
9

(1
01

%
)

L
U
T
6

4
03

(1
00

%
)

40
2

(1
00

%
)

39
2

(9
7%

)
42

3
(1
05

%
)

40
5

(1
00

%
)

M
U
X
F
7

3
(1
00

%
)

3
(1
00

%
)

36
(1
20

0%
)

57
(1
90

0%
)

3
(1
00

%
)

M
U
X
F
8

6
(-
%
)

21
R
A
M
B
18

E
1

6
(1
00

%
)

6
(1
00

%
)

6
(1
00

%
)

6
(1
00

%
)

6
(1
00

%
)

R
A
M
D
3
2

72
(-
%
)

72
(-
%
)

R
A
M
S
3
2

21
(1
00

%
)

21
(1
00

%
)

24
(1
14

%
)

24
(1
00

%
)

21
(-
%
)

C
A
P
T
U
R
E
E
2

1
(-
%
)

S
T
A
R
T
U
P
E
2

1
(-
%
)

P
S
7

1
(-
%
)

P
L
L
E
2
A
D
V

1
(1
00

%
)

1
(1
00

%
)

1
(1
00

%
)

1
(1
00

%
)

1
(-
%
)

188 Validation of Fault Tolerance Approaches

Chapter 6

Conclusions and future work

6.1 Conclusions

In this work, a basis for fault tolerance of SRAM-based FPGA implementations,
especially focusing on soft-core processor designs, has been presented. In order
to provide a context, the technology of SRAM FPGAs has been introduced em-
phasizing certain aspects of 7 series Xilinx devices. In direct relation with fault
tolerance of SRAM FPGAs, the issue of radiation induced faults (mostly single
events upsets) has been also discussed, studying their adverse effects.

The spotlight of the state of the art pivots around hardening techniques for SRAM
based designs, focusing on soft-core processors. Considering that induced faults
can affect both user data and configuration memories, different strategies have
been studied in this field. Most of existing hardening techniques are based on
providing different redundancy types, such as, hardware, data, software or time.
Existing hardening techniques improve reliability levels but they also come with
drawbacks, such as, resource overhead, performance penalty, appearance of single
points of failure or availability. It has to be remarked that resource overhead also
yields lower maximum frequencies (longer data paths), higher power consump-
tion (more active elements), worst fault tolerance (more susceptible elements) and
less resources available for implementation purposes. Among the studied redun-
dancy types the prevalent one is the hardware redundancy due to the reliability
and availability levels that it provides. The most extended redundancy levels
are the Triple Modular Redundancy (TMR) and the Dual Modular Redundancy
(DMR). While DMR techniques provide less resource usage, TMR approaches

190 Conclusions and future work

present higher reliability and availability levels. When applying DMR strategies
to soft-core processors they are commonly implemented combining checkpointing
and rollback techniques. That introduces either hardware overhead and perfor-
mance penalty to designs. On the other hand, one of the most recurrent issues
when utilizing TMR schemes to harden soft-core processor designs is the synchro-
nization after repairing modules with reconfiguration. Due to this, in this work
the need for synchronization techniques has been underlined when using hardware
redundancy techniques and partial reconfiguration for building reliable systems.
Furthermore, bearing in mind that TMR strategies only mask errors and do not
fix them, the accumulation of masked errors is a recurrent potential problem. The
most utilized technique to address this issue is to perform bitstream scrubbings.
This technique consists in reloading correct partial bitstreams in order to correct
masked configuration errors. The state of the art have highlighted an important
gap in user data content scrubbing.

Additionally, another area of interest in the state of the art has been addressed
in order to investigate the possibility of managing user data content through the
bitstream. This possibility has been considered because its potential to provide
useful features to existing hardening techniques. Distinct approaches related to
this topic have been published. Nevertheless, the state of the art has highlighted
a scarcity of methods addressing the features of newer FPGA devices like 7 series
by Xilinx.

Based on the knowledge acquired in the state of the art, distinct approaches
haven been developed. Five different synchronization approaches for TMR (or
higher) and partial reconfiguration protected soft-core processor designs have
been proposed so as to cover a wide spectrum of synchronization complexity
levels. In a similar way three different lockstep approaches have been developed
to provide distinct solutions able to fit to specific DMR scenarios.

On the other hand, two approached to manage user data content through the
bitstream have been proposed. While one is suitable to manage the content of
BRAM based memories, the other targets managing content of registers. Both
approaches represent a new way to manage user data without introducing hard-
ware overhead in designs, opening new application paths. In addition, thanks to
the use of dynamic partial reconfiguration these new data management strategies
can be performed in runtime. For this reason, despite its higher time demand,
proposed techniques does not degrade the system overall performance in a num-
ber of applications. Thanks to bitstream based data management it is feasible to
modify entire programs or single instructions without making any new synthesis
or implementation. Both techniques have been applied to distinct fault toler-
ance schemes proposing new approaches, such as, user data content scrubbing

6.2 Main Contributions 191

and data extraction from memories with damaged interfaces. These bitstream
based techniques have been also utilized in two of the three proposed locksted ap-
proaches. In a similar way, the bitstream based user data management has been
utilized in one of the five proposed approaches to synchronize repaired soft-core
processors in hardware redundancy schemes.

All proposed approaches have been validated in both simulations and in actual
FPGA implementation, by executing different kinds of applications. The selected
hardware platform has been a Zynq SoC based board. In addition, the PICDiY,
a specifically designed 8-bit modular soft-core processor, has been developed for
this work. The PICDiY has been utilized as a target unit in both designing and
validation processes of proposed soft-core processor hardening approaches. The
correct operation of all suggested methods has been proven and the advantages
and disadvantages have been thoroughly discussed. Different application scenar-
ios have been suggested depending on the implementation and features of the
proposed approaches.

6.2 Main Contributions

This section lists the main contributions of this thesis, providing a brief descrip-
tion of each point and including a reference to the corresponding section of the
manuscript where the topic is discussed in detail.

1. Soft-core processor. The PICDiY, an 8-bit soft-core processor has been
developed in this work. Its minimalist design and complete self-sufficiency
provide interesting characteristics to be used in several scenarios without
significantly impacting the design’s resource usage. In addition its modu-
larity makes it a great candidate for adaptations, enabling it to fit closely
to specific designs. Thanks to its platform-independence it can be imple-
mented in devices from any vendor. In addition, free Basic based tools
have been developed to generate the program memory HDL modules of the
soft-core processor. The architecture of PICDiY is introduced in Section
4.1.

2. BRAM content management through bitstream. The proposed ap-
proach is able to read and write the data content from BRAMs in FPGA
based designs by reading and processing the information stored in the bit-
stream. Thanks to this method it is possible to extract, load, copy or
compare the information of BRAMs without neither resource overhead nor
performance penalty in the design. It can also be applied to existing designs
without the need of re-synthesizing. These advantages makes it an interest-

192 Conclusions and future work

ing tool to carry out several existing applications improving relevant aspects
and it also opens the doors to the design of cutting-edge applications. For
this reason it has been utilized in several of the proposed approaches. De-
spite this approach has been developed focusing on Zynq, it is possible to
migrate several of this ideas to other Xilinx devices. Section 4.2 describes
the approach in depth.

3. Registers data management through bitstream. This method en-
ables to manage data content of registers utilizing the bitstream. Thanks
to the proposed method the content of registers can be captured or written
without significantly affecting the resource usage nor design’s performance.
A relevant benefit of this technique is that in several scenarios can be uti-
lized autonomously, with no need of any processing module. This approach
includes two design flows to carry out this data management. While the
first proposed flow allows to protect/unprotect partial regions, the second
permits to generate equal implementations of a design in different reconfig-
urable regions. Developed for 7 series devices by Xilinx, several concepts
proposed in this approach can be adapted to other Xilinx devices. Details
of this method are presented in Section 4.3.

4. Data content scrubbing. This technique permits to performs data con-
tent scrubbings in BRAM based memories. Bearing in mind that memory
hardening techniques mainly mask errors and they do no fix them, it is an
interesting alternative to correct masked errors in memories. Related with
soft-core processors it is especially interesting to repair program memory
modules. Section 4.4 provides the relevant aspects of this approach.

5. Extract data from damaged memories. Induced faults can affect mem-
ory interfaces impeding to obtain the stored information. Despite that the
probability of such scenario is not especially high, this situation can be
critical when the stored data is sensitive information. Section 4.5 presents
the proposed method to recover data from damaged BRAM memories.

6. Lockstep approaches for soft-core processors. Three approaches are
proposed providing different solutions for the common issues of checkpoint
and rollback techniques when hardening soft-core processors in lockstep
schemes. Each approach focuses on improving specific features, such as, re-
duced hardware overhead, minimum checkpoint frequency and fast rollback.
Features of each proposed approaches are detailed in Section 4.6.

7. Synchronization of hardware redundancy protected soft-core pro-
cessors. Five approaches are proposed to deal with the synchronization
problem that arises after partially reconfiguring a faulty soft-copre proces-

6.3 Scientific Publications in the Context of this Work 193

sor module. Each approach provides different solutions in terms of resource
usage, self-sufficiency, synchronization and availability. These techniques
are valuable tools that could help designers when trade-off decisions have
to be made. Section 4.7 discusses the main characteristics of proposed
techniques.

6.3 Scientific Publications in the Context of this
Work

In this Section all scientific publications published during the development process
of this work are presented. The publication are divided into journal publications
and conference publications.

Journal publications

J1) I. Villalta, U. Bidarte, J. Gomez-Cornejo, J. Jiménez and J. Lázaro.
“SEU Emulation in Industrial SoCs Combining Microprocessor and FPGA”,
Reliability Engineering & System Safety, vol. 170, pages 53 - 63, 2018. Im-
pact Factor (JCR): 3.153. Ranking: Q1.

J2) I. Villalta, U. Bidarte, J. Gomez-Cornejo, J. Jiménez and A. Astarloa.
“Estimating the SEU Failure Rate of Designs Implemented in FPGAs in
Presence of MCUs”, Microelectronics Reliability, vol. 78, pages 85 - 92,
2017. Impact Factor (JCR): 1.371. Ranking: Q3.

J3) J. Gomez-Cornejo, A. Zuloaga, I. Villalta, J. Del Ser, U. Kretzschmar
and J. Lázaro. “A Novel BRAM Content Accessing and Processing Method
based on FPGA Configuration Bitstream”, Microelectronic Engineering,
vol. 49, pages 64 - 67, 2017. Impact Factor (JCR): 1.025. Ranking: Q3.

J4) U. Kretzschmar, J. Gomez-Cornejo, A. Astarloa, U. Bidarte and J. Del
Ser. “Synchronization of Faulty Processors in Coarse-Grained TMR Pro-
tected Partially Reconfigurable FPGA Designs”, Reliability Engineering &
System Safety, vol. 151, pages 1 - 9, 2016. Impact Factor (JCR): 3.153.
Ranking: Q1.

Conference publications

C1) I. Villalta, U. Bidarte, J. Gomez-Cornejo, A. Zuloaga, and C. Cuadrado,
“Emulation of Multiple Cell Upsets in FPGAs”, Conference on Design of

194 Conclusions and future work

Circuits and Integrated Systems (DCIS), Barcelona (Spain), 2017.

C2) I. Villalta, U. Bidarte, J. Gomez-Cornejo, J. Jiménez and C. Cuadrado,
“Effect of Different Design Stages on the SEU Failure Rate of FPGA Sys-
tems”, Conference on Design of Circuits and Integrated Systems (DCIS),
Granada (Spain), 2016.

C3) I. Villalta, U. Bidarte, J. Gomez-Cornejo, J. Lázaro and C. Cuadrado,
“Dependability in FPGAs, a Review”, Conference on Design of Circuits and
Integrated Systems (DCIS), Estoril (Portugal), 2015.

C4) U. Kretzschmar, J. Gomez-Cornejo, N. Moreira, U. Bidarte and A. As-
tarloa. “A versatile FPGA Demonstration Platform for academic Use”,
Tecnoloǵıas, Aprendizaje y Enseñanza de la Enseñanza de la Electrónica
(TAEE), 2014.

C5) J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, J. Jiménez.
“Study of Implementation Alternatives for a Lockstep Approach in FPGA
Soft Core Processors”, Conference on Design of Circuits and Integrated
Systems (DCIS), Donostia (Spain), 2013.

C6) J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, A. Astar-
loa. “Fast Context Reloading Lockstep Approach for SEUs Mitigation in a
FPGA Soft Core Processor”, Conference of the IEEE Industrial Electronics
Society (IECON), Vienna (Austria), 2013.

C7) J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, A. Astar-
loa. “Interface Tasks Oriented 8-bit Soft-Core Processor”. FPGAworld,
Tampere (Finland), 2012.

C8) J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, A. Astarloa.
“Implementación en FPGA de un Procesador Soft-Core PIC16”. Seminario
Anual de Automática, Electrónica Industrial e Instrumentación (SAAEI),
Guimarães (Portugal), 2012.

6.4 Future work

This Section proposes some lines of research in order to give continuity to the
work presented in this thesis. These lines are the following:

• Further analysis of proposed fault tolerance approaches. The ex-
perimental work presented in this manuscript has been focused on validat-
ing proposed approaches in terms of functionality. In particular, the aim

6.4 Future work 195

of validation tests carried out for synchronization and lockstep have been
focused on determining correct error detection and recovery behaviours,
rather than to evaluate the robustness level of designs. An interesting
further step could be applying complete fault injection emulation tests in
order to obtain more accurate results in terms of fault tolerance. Similarly,
applying physical fault injection campaigns could provide additional valu-
able information. Another interesting alternative is to apply the proposed
hardening approaches to additional soft-core processors. The case of more
complex processors, such as, LEON3 [334] or Mico32 [333] is an interesting
option to obtain complementary information, especially in terms of impact
in the resource overhead.

• Improve time specifications of the bitstream based approaches.
The most remarkable drawback of the approaches based on manipulating
bitstream is their time demand. The main reason for this time consumption
resides in the bitstream reading, manipulation and transferring processes.
The programs utilized for these approaches are based in Xilinx functions
that can be optimized to obtain a faster responses. Hence, an interest-
ing path is to optimize the programs used in the proposed approaches by
customizing Xilinx functions. For instance, the bitstream reading is done
frame by frame, and consequently is it affects the overall processing time
of the proposed method. Therefore, the optimization of the functions to
read more than one frame at once (i.e. bulk read) could make the tech-
nique faster. Another, aspect that limits the speed of the approaches is the
limited speed of the configuration port. Thus, an interesting research line
could be to investigate new ways to enhance the reconfiguration speed. A
remarkable example in this direction is the ZyCAP [114]. It is reported that
the ZyCAP achieves a reconfiguration throughput of 382 MB/s, improving
over PCAP by almost 3x.

• Adapt the bitstream based approaches to different technologies.
Proposed approaches have been closely developed for Xilinx 7 series device.
An interesting research line can be to adapt these approaches to other fam-
ilies from Xilinx and even to other vendors’ devices, such as, Intel (Altera),
Microsemi, etc.

• Expand the application scope of bitstream based approaches. Be-
sides fault tolerance related scenarios, the bitstream based approaches pro-
posed in this paper pave the way for other avant garde applications. For
instance, it may serve as a novel method to store data under privacy re-
quirements. Since by using proposed approaches based on the bitstream,
memories can be managed without using any port, the existence of such

196 Conclusions and future work

memory resources can be hidden in the design, implementing them as iso-
lated memory blocks that can be accessed with no buses. Another example
of a possible application is the management with multiprocessor systems
shared memory. In order to guarantee the memory coherence and min-
imize the performance overhead, different protocols have been proposed
[335, 336]. Proposed bitstream based approaches could represent an in-
teresting alternative to avoid the use of these complex protocols, buses
and interconnections. This could simplify designs by enabling new ways
of exchanging data between processors. It even makes it possible for one
processor of the system to change or adjust the functionality of another by
only changing a number of instructions of its program memory.

Appendix A

Hardware Implementation
details of the Proposed
Approaches

This appendix contains the block diagrams of the validation designs extracted
from Vivado, which provide further implementation details. In these designs
additional logic resources, such as, error-injection and TestApp logic or the ILA
are not included.

In these Vivado block designs, certain specific components, such as, STARTUPEE2
and CAPTUREE2 primitives, and the Processing System, are highlighted in pur-
ple. Similarly, in the implementations that make use of different PICDiY in-
stances, the PICDiY modules and their output signals are highlighted with dif-
ferent colours (blue, green or red).

198 Hardware Implementation details of the Proposed Approaches

o
u
t_

D
a
ta

[7
:0

]

M
U

X
_

2
to

1
_

g
e
n
_

0

M
U

X
2
to

1
g
e
n

v
1

0

In
_

0
[7

:0
]

In
_

1
[7

:0
]

In
_

s
e
l

O
u
t_

m
u
x
[7

:0
]

in
_

D
a
ta

[7
:0

]

re
g
8
_

b
la

c
k
_

b
o
x
_

1

re
g
8
_

b
la

c
k
_

b
o
x
_

v
1
_

0

in
_

D
a
ta

[7
:0

]

c
lk

_
in

re
s
e
t

e
n
1

o
u
t_

D
a
ta

[7
:0

]

c
lk

_
in

S
T

A
R

T
U

P
E

2
_

IP
_

0

S
T

A
R

T
U

P
E

2
_

IP
_

v
1
_

0

in
_

c
lk

in
_

G
S

R

o
u
t_

E
O

S

o
u
t_

C
F

G
C

L
K

o
u
t_

C
F

G
M

C
L
K

o
u
t_

P
R

E
Q

p
ro

c
e
s
s
in

g
_

s
y
s
te

m
7
_

0

Z
Y

N
Q

7
 P

ro
c
e
s
s
in

g
 S

y
s
te

m

G
P

IO
_

0

G
P

IO
_

O
[7

:0
]

D
D

R

F
IX

E
D

_
IO

U
S

B
IN

D
_

0

F
C

L
K

_
C

L
K

0

F
C

L
K

_
R

E
S

E
T

0
_

N

re
g
8
_

b
la

c
k
_

b
o
x
_

0

re
g
8
_

b
la

c
k
_

b
o
x
_

v
1
_

0

in
_

D
a
ta

[7
:0

]

c
lk

_
in

re
s
e
t

e
n
1

o
u
t_

D
a
ta

[7
:0

]

E
M

IO
_

7
_

to
_

s
e
p
a
ra

te
1
s
_

0

E
M

IO
_

7
_

to
_

s
e
p
a
ra

te
1
s
_

v
1
_

0

in
_

B
U

S
[7

:0
]

o
u
t_

0

o
u
t_

1

o
u
t_

2

o
u
t_

3

o
u
t_

4

o
u
t_

5

o
u
t_

6

o
u
t_

7

C
a
p
tu

re
e
_

IP
_

0

C
a
p
tu

re
e
_

IP
_

v
1
_

0

c
lk

_
in

in
_

c
a
p
tu

re
e

F
IX

E
D

_
IO

D
D

R

F
ig
u
r
e
A
.1
:
V
iv
a
d
o
b
lo
c
k
d
e
sig

n
o
f
th

e
v
a
lid

a
tio

n
se

tu
p
fo
r
th

e
A
p
p
ro
a
c
h
to

M
a
n
a
g
e
D
a
ta

o
f
R
e
g
is
te
r
s
w
ith

th
e
B
its

tre
a
m
.

199

In
_

s
e
l

in
_

re
a
d

in
_

fi
ll

B
la

c
k
B

o
x
_

R
A

M
_

0

B
la

c
k
B

o
x
_

R
A

M
_

v
1
_

0

c
lk

e
n

w
e

a
d
r[

7
:0

]

d
a
ta

_
in

[7
:0

]

d
a
ta

_
o
u
t[
7
:0

]
in

_
e
m

p
ty

B
R

A
M

_
F

IL
L
E

R
_

F
F

_
0

B
R

A
M

_
F

IL
L
E

R
_

F
F

_
v
1
_

1

in
_

c
lk

in
_

rs
t

in
_

e
m

p
ty

in
_

fi
ll

in
_

re
a
d

o
u
t_

d
a
ta

[7
:0

]

o
u
t_

a
d
d
r[

7
:0

]

o
u
t_

w
e
n
a

o
u
t_

fi
ll_

d
o
n
e

o
u
t_

e
m

p
t_

d
o
n
e

O
u
t_

m
u
x
[7

:0
]

M
U

X
_

2
to

1
_

g
e
n
_

0

M
U

X
_

2
to

1
_

g
e
n
_

v
1
_

0

In
_

0
[7

:0
]

In
_

1
[7

:0
]

In
_

s
e
l

O
u
t_

m
u
x
[7

:0
]

e
n
B

e
n
A

D
D

R

F
IX

E
D

_
IO

p
ro

c
e
s
s
in

g
_

s
y
s
te

m
7
_

0

Z
Y

N
Q

7
 P

ro
c
e
s
s
in

g
 S

y
s
te

m

G
P

IO
_

0

D
D

R

F
IX

E
D

_
IO

U
S

B
IN

D
_

0

F
C

L
K

_
C

L
K

0

F
C

L
K

_
R

E
S

E
T

0
_

N

R
A

M
_

P
IC

D
iY

_
0

R
A

M
_

P
IC

D
iY

_
v
1
_

1

c
lk

e
n

w
e

a
d
r[

7
:0

]

d
a
ta

_
in

[7
:0

]

d
a
ta

_
o
u
t[
7
:0

]

F
ig
u
r
e

A
.2
:

V
iv
a
d
o

b
lo
c
k

d
e
si
g
n

o
f
th

e
v
a
li
d
a
ti
o
n

se
tu

p
fo
r
th

e
A
p
p
ro
a
c
h

to
E
x
tr
a
c
t
D
a
ta

F
ro

m
D
a
m
a
g
e
d

M
e
m
o
r
ie
s

U
s
in

g
th
e
B
B
B
A
.

200 Hardware Implementation details of the Proposed Approaches

R
A
M
_
E
C
C
_
G
e
n
_
0

R
A
M
_
E
C
C
_
G
e
n
_
v
1
_
0

in
_
d
a
ta
[7
:0
]

o
u
t_
d
a
ta
[1
2
:0
]

In
p
u
t_
re
g
is
te
r_
3

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt[0
:0
]

in
te
rru
p
t[0
:0
]

L
o
c
k
s
te
p
_
c
o
n
tro
lle
r_
1

L
o
c
k
s
te
p
_
c
o
n
tro
lle
r_
v
1
_
0

in
_
S
T
A
T
E
1

in
_
S
T
A
T
E
2

in
_
E
R
R
_
B
c
k
U
p

in
_
E
R
R
_
R
O
M

in
_
E
R
R
_
R
A
M

in
_
P
O
R
T
_
B
1
[7
:0
]

in
_
P
O
R
T
_
B
2
[7
:0
]

o
u
t_
P
O
R
T
_
B
[7
:0
]

o
u
t_
e
n
_
B
c
k
U
p

o
u
t_
e
rro
r

R
O
M
_
E
C
C
_
C
h
e
c
k
_
0

R
O
M
_
E
C
C
_
C
h
e
c
k
_
v
1
_
0

in
_
d
a
ta
[1
9
:0
]

e
rro
r_
o
u
t

o
u
t_
d
ire
c
t[6
:0
]

o
u
t_
k
[7
:0
]

o
u
t_
ID
C
[1
3
:0
]

o
u
t_
g
o
to
[1
0
:0
]

e
rro
r_
o
u
t

R
O
M
_
M
IX
_
B
O
X
_
0

R
O
M
_
M
IX
_
B
O
X
_
v
1
_
0

in
_
R
O
M
_
a
1
[7
:0
]

in
_
R
O
M
_
a
2
[7
:0
]

in
_
R
O
M
_
e
n
1

in
_
R
O
M
_
e
n
2

o
u
t_
R
O
M
_
a
[7
:0
]

o
u
t_
R
O
M
_
e
n

o
u
t_
e
rro
r_
to
_
R
O
M

P
IC
_
D
IY
_
0

P
IC
_
D
IY
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T

P
O
R
T
B
[7
:0
]

F
S
R
_
in
[7
:0
]

W
R
_
in
[7
:0
]

S
R
_
in
[7
:0
]

IN
T
C
O
N
_
in
[7
:0
]

P
C
L
A
T
H
_
in
[2
:0
]

P
O
R
T
B
_
in
[7
:0
]

P
C
_
in
[1
1
:0
]

F
S
R
_
o
u
t[7
:0
]

W
R
_
o
u
t[7
:0
]

S
R
_
o
u
t[7
:0
]

IN
T
C
O
N
_
o
u
t[7
:0
]

P
C
L
A
T
H
_
o
u
t[2
:0
]

P
O
R
T
B
_
o
u
t[7
:0
]

P
C
_
o
u
t[1
1
:0
]

c
o
m
p
_
e
rro
r

s
ta
c
k
_
E
C
C
_
e
rro
r

o
u
t_
s
ta
te
D

o
u
t_
R
O
M
_
e
n

o
u
t_
R
O
M
_
a
[7
:0
]

in
_
R
O
M
_
o
u
t_
d
ire
c
t[6
:0
]

in
_
R
O
M
_
o
u
t_
k
[7
:0
]

in
_
R
O
M
_
o
u
t_
ID
C
[1
3
:0
]

in
_
R
O
M
_
o
u
t_
g
o
to
[1
0
:0
]

o
u
t_
R
A
M
_
w
e

o
u
t_
R
A
M
_
a
d
r[7
:0
]

o
u
t_
R
A
M
_
d
a
ta
_
in
[7
:0
]

in
_
R
A
M
_
d
a
ta
_
o
u
t[7
:0
]

s
ta
c
k
_
E
C
C
_
e
rro
r

In
p
u
t_
re
g
is
te
r_
0

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt[0
:0
]

in
_
R
S
T

R
A
M
_
0

R
A
M
_
v
1
_
0

c
lk

w
e

a
d
r[7
:0
]

d
a
ta
_
in
[1
2
:0
]

d
a
ta
_
o
u
t[1
2
:0
]

B
a
c
k
U
p
R
A
M
_
1

B
a
c
k
U
p
R
A
M
_
v
1
_
0

c
lk

reF
S
R
_
in
[7
:0
]

W
R
_
in
[7
:0
]

S
R
_
in
[7
:0
]

IN
T
C
O
N
_
in
[7
:0
]

P
C
L
A
T
H
_
in
[2
:0
]

P
O
R
T
B
_
in
[7
:0
]

P
C
_
in
[1
1
:0
]

F
S
R
_
o
u
t[7
:0
]

W
R
_
o
u
t[7
:0
]

S
R
_
o
u
t[7
:0
]

IN
T
C
O
N
_
o
u
t[7
:0
]

P
C
L
A
T
H
_
o
u
t[2
:0
]

P
O
R
T
B
_
o
u
t[7
:0
]

P
C
_
o
u
t[1
1
:0
]

ro
m
_
1

ro
m
_
v
1
_
1

in
_
c
lk

in
_
e
n

in
_
a
d
d
r[7
:0
]

o
u
t_
d
a
ta
[1
9
:0
]

B
a
c
k
U
p
R
A
M
_
M
IX
_
B
O
X
_
0

B
a
c
k
U
p
R
A
M
_
M
IX
_
B
O
X
_
v
1
_
0

in
_
F
S
R
1
[7
:0
]

in
_
W
R
1
[7
:0
]

in
_
S
R
1
[7
:0
]

in
_
IN
T
C
O
N
1
[7
:0
]

in
_
P
C
L
A
T
H
1
[2
:0
]

in
_
P
O
R
T
B
1
[7
:0
]

in
_
P
C
1
[1
1
:0
]

in
_
F
S
R
2
[7
:0
]

in
_
W
R
2
[7
:0
]

in
_
S
R
2
[7
:0
]

in
_
IN
T
C
O
N
2
[7
:0
]

in
_
P
C
L
A
T
H
2
[2
:0
]

in
_
P
O
R
T
B
2
[7
:0
]

in
_
P
C
2
[1
1
:0
]

o
u
t_
F
S
R
[7
:0
]

o
u
t_
W
R
[7
:0
]

o
u
t_
S
R
[7
:0
]

o
u
t_
IN
T
C
O
N
[7
:0
]

o
u
t_
P
C
L
A
T
H
[2
:0
]

o
u
t_
P
O
R
T
B
[7
:0
]

o
u
t_
P
C
[1
1
:0
]

e
rro
r_
B
c
k
P

In
p
u
t_
re
g
is
te
r_
1

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[7
:0
]

in
_
c
lk

o
u
t_
p
o
rt[7
:0
]

in
p
u
t_
p
o
rt[7
:0
]

o
u
t_
p
o
rt[7
:0
]

In
p
u
t_
re
g
is
te
r_
2

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[7
:0
]

in
_
c
lk

o
u
t_
p
o
rt[7
:0
]

P
IC
_
D
IY
_
1

P
IC
_
D
IY
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T

P
O
R
T
B
[7
:0
]

F
S
R
_
in
[7
:0
]

W
R
_
in
[7
:0
]

S
R
_
in
[7
:0
]

IN
T
C
O
N
_
in
[7
:0
]

P
C
L
A
T
H
_
in
[2
:0
]

P
O
R
T
B
_
in
[7
:0
]

P
C
_
in
[1
1
:0
]

F
S
R
_
o
u
t[7
:0
]

W
R
_
o
u
t[7
:0
]

S
R
_
o
u
t[7
:0
]

IN
T
C
O
N
_
o
u
t[7
:0
]

P
C
L
A
T
H
_
o
u
t[2
:0
]

P
O
R
T
B
_
o
u
t[7
:0
]

P
C
_
o
u
t[1
1
:0
]

c
o
m
p
_
e
rro
r

s
ta
c
k
_
E
C
C
_
e
rro
r

o
u
t_
s
ta
te
D

o
u
t_
R
O
M
_
e
n

o
u
t_
R
O
M
_
a
[7
:0
]

in
_
R
O
M
_
o
u
t_
d
ire
c
t[6
:0
]

in
_
R
O
M
_
o
u
t_
k
[7
:0
]

in
_
R
O
M
_
o
u
t_
ID
C
[1
3
:0
]

in
_
R
O
M
_
o
u
t_
g
o
to
[1
0
:0
]

o
u
t_
R
A
M
_
w
e

o
u
t_
R
A
M
_
a
d
r[7
:0
]

o
u
t_
R
A
M
_
d
a
ta
_
in
[7
:0
]

in
_
R
A
M
_
d
a
ta
_
o
u
t[7
:0
]

e
rro
r_
o
u
t_
1

in
_
C
L
K

R
A
M
_
E
C
C
_
C
h
e
c
k
_
0

R
A
M
_
E
C
C
_
C
h
e
c
k
_
v
1
_
0

in
_
d
a
ta
[1
2
:0
]

o
u
t_
d
a
ta
[7
:0
]

e
rro
r_
o
u
t

c
lk
_
w
iz
_
0

C
lo
c
k
in
g
W
iz
a
rd

re
s
e
t

c
lk
_
in
1

c
lk
_
o
u
t1

re
s
e
t

B
a
c
k
U
p
R
A
M
_
0

B
a
c
k
U
p
R
A
M
_
v
1
_
0

c
lk

reF
S
R
_
in
[7
:0
]

W
R
_
in
[7
:0
]

S
R
_
in
[7
:0
]

IN
T
C
O
N
_
in
[7
:0
]

P
C
L
A
T
H
_
in
[2
:0
]

P
O
R
T
B
_
in
[7
:0
]

P
C
_
in
[1
1
:0
]

F
S
R
_
o
u
t[7
:0
]

W
R
_
o
u
t[7
:0
]

S
R
_
o
u
t[7
:0
]

IN
T
C
O
N
_
o
u
t[7
:0
]

P
C
L
A
T
H
_
o
u
t[2
:0
]

P
O
R
T
B
_
o
u
t[7
:0
]

P
C
_
o
u
t[1
1
:0
]

R
A
M
_
M
IX
_
B
O
X
_
0

R
A
M
_
M
IX
_
B
O
X
_
v
1
_
0

in
_
w
e
1

in
_
w
e
2

in
_
a
d
r1
[7
:0
]

in
_
a
d
r2
[7
:0
]

in
_
d
a
ta
1
_
in
[7
:0
]

in
_
d
a
ta
2
_
in
[7
:0
]

o
u
t_
w
e

o
u
t_
a
d
r[7
:0
]

o
u
t_
d
a
ta
[7
:0
]

o
u
t_
e
rro
r

s
ta
c
k
_
E
C
C
_
e
rro
r_

F
ig
u
r
e
A
.3
:
V
iv
a
d
o

b
lo
c
k

d
e
sig

n
o
f
th

e
v
a
lid

a
tio

n
se

tu
p

fo
r
th

e
H
W

F
a
s
t
L
o
c
k
s
te
p
.

201

F
IX

E
D

_
IO

D
D

R

re
s
e
t

c
lk

_
w

iz
_

0

C
lo

c
k
in

g
 W

iz
a
rd

re
s
e
t

c
lk

_
in

1
c
lk

_
o

u
t1

in
_

c
lk

S
T

A
R

T
U

P
E

2
_

IP
_

0

S
T

A
R

T
U

P
E

2
_

IP
_

v
1
_

0

in
_

c
lk

in
_

G
S

R

o
u
t_

E
O

S

o
u
t_

C
F

G
C

L
K

o
u
t_

C
F

G
M

C
L
K

o
u
t_

P
R

E
Q

E
M

IO
_

7
_

to
_

s
e
p
a
ra

te
1
s
_

0

E
M

IO
_

7
_

to
_

s
e
p
a
ra

te
1
s
_

v
1
_

0

in
_

B
U

S
[7

:0
]

o
u
t_

0

o
u
t_

1

o
u
t_

2

o
u
t_

3

o
u
t_

4

o
u
t_

5

o
u
t_

6

o
u
t_

7

in
p
u
t_

p
o
rt

[7
:0

]

p
ro

c
e
s
s
in

g
_

s
y
s
te

m
7
_

0

Z
Y

N
Q

7
 P

ro
c
e
s
s
in

g
 S

y
s
te

m

G
P

IO
_

0

G
P

IO
_

O
[7

:0
]

D
D

R

F
IX

E
D

_
IO

C
o
re

0
_

n
F

IQ

F
C

L
K

_
C

L
K

0

F
C

L
K

_
R

E
S

E
T

0
_

N

In
p
u
t_

re
g
is

te
r_

0

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o

rt
[7

:0
]

in
_

c
lk

o
u

t_
p

o
rt

[7
:0

]

in
_

R
S

T
_

h
ig

h

In
p
u
t_

re
g
is

te
r_

3

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o

rt
[0

:0
]

in
_

c
lk

o
u

t_
p

o
rt

[0
:0

]

C
a
p
tu

re
e
_

IP
_

0

C
a
p
tu

re
e
_

IP
_

v
1
_

0

c
lk

_
in

in
_

c
a
p
tu

re
e

in
te

rr
u
p
t

In
p
u
t_

re
g
is

te
r_

1

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o

rt
[0

:0
]

in
_

c
lk

o
u

t_
p

o
rt

[0
:0

]

B
la

c
k
B

o
x
_

P
IC

D
iY

x
2
_

0

B
la

c
k
B

o
x
_

P
IC

D
iY

x
2
_

v
1
_

0

IN
T

E
R

R
U

P
T

_
x
2

P
O

R
T

A
_

x
2
[7

:0
]

P
O

R
T

B
_

1
[7

:0
]

P
O

R
T

B
_

2
[7

:0
]

in
_

C
L
K

_
x
2

in
_

R
S

T
_

h
ig

h
_

x
2

L
o
c
k
s
te

p
_

c
o
n
tr

o
lle

r_
0

L
o
c
k
s
te

p
_

c
o
n
tr

o
lle

r_
v
1
_

0

in
_

P
O

R
T

_
B

1
[7

:0
]

in
_

P
O

R
T

_
B

2
[7

:0
]

o
u
t_

P
O

R
T

_
B

[7
:0

]

o
u
t_

e
rr

o
r

In
p
u
t_

re
g
is

te
r_

2

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt

[7
:0

]

in
_

c
lk

o
u
t_

p
o
rt

[7
:0

]
o
u
t_

p
o
rt

[7
:0

]

F
ig
u
r
e
A
.4
:
V
iv
a
d
o

b
lo
c
k

d
e
si
g
n

o
f
th

e
v
a
li
d
a
ti
o
n

se
tu

p
fo
r
th

e
B
it
s
tr
e
a
m

B
a
s
e
d

L
o
w

O
v
e
r
h
e
a
d

L
o
c
k
s
te
p
.

202 Hardware Implementation details of the Proposed Approaches

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
0

In
O
u
t
R
e
g
is
te
r
G
e
n
v
1
0

In
_
p
o
rt[0
:0
]

In
_
C
L
K

O
u
t_
p
o
rt[0
:0
]

in
te
rru
p
t

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
3

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
v
1
_
0

In
_
p
o
rt[0
:0
]

In
_
C
L
K

O
u
t_
p
o
rt[0
:0
]

in
_
R
S
T
_
lc
k
s
tp

o
u
t_
e
rro
r[0
:0
]

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
2

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
v
1
_
0

In
_
p
o
rt[0
:0
]

In
_
C
L
K

O
u
t_
p
o
rt[0
:0
]

u
til_
v
e
c
to
r_
lo
g
ic
_
0

U
tility

V
e
c
to
r
L
o
g
ic

O
p
1
[0
:0
]

O
p
2
[0
:0
]

R
e
s
[0
:0
]

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
1

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
v
1
_
0

In
_
p
o
rt[0
:0
]

In
_
C
L
K

O
u
t_
p
o
rt[0
:0
]

in
_
R
S
T

B
la
c
k
B
o
x
_
L
c
k
s
te
p
_
A
u
to
1
P
B
_
0

B
la
c
k
B
o
x
_
L
c
k
s
te
p
_
A
u
to
1
P
B
_
v
1
_
0

in
p
u
t_
P
O
R
T
A
[7
:0
]

in
p
u
t_
IN
T
E
R
R
U
P
T

in
p
u
t_
C
L
K

in
p
u
t_
R
S
T
_
h
ig
h

o
u
tp
u
t_
e
rro
r

o
u
tp
u
t_
P
O
R
T
B
1
[7
:0
]

o
u
tp
u
t_
P
O
R
T
B
2
[7
:0
]

L
o
c
k
s
te
p
_
c
o
n
tro
lle
r_
0

L
o
c
k
s
te
p
_
c
o
n
tro
lle
r_
v
1
_
0

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

in
_
P
O
R
T
_
B
1
[7
:0
]

in
_
P
O
R
T
_
B
2
[7
:0
]

o
u
t_
P
O
R
T
_
B
[7
:0
]

o
u
t_
C
a
p
tu
re

o
u
t_
G
S
R

o
u
t_
c
lk
_
c
trl

o
u
t_
fa
ta
l_
e
rro
r

o
u
t_
p
o
rt[7
:0
]

C
a
p
tu
re
e
_
IP
_
0

C
a
p
tu
re
e
_
IP
_
v
1
_
0

c
lk
_
in

in
_
c
a
p
tu
re
e

c
lk
_
w
iz
_
0

C
lo
c
k
in
g
W
iz
a
rd

c
lk
_
o
u
t2
_
c
e

re
s
e
t

c
lk
_
in
1

c
lk
_
o
u
t1

c
lk
_
o
u
t2

re
s
e
t

in
_
C
L
K

S
T
A
R
T
U
P
E
2
_
IP
_
1

S
T
A
R
T
U
P
E
2
_
IP
_
v
1
_
1

in
_
c
lk

in
_
G
S
R

in
p
u
t_
p
o
rt[7
:0
]

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
4

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
v
1
_
0

In
_
p
o
rt[7
:0
]

In
_
C
L
K

O
u
t_
p
o
rt[7
:0
]

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
5

In
_
O
u
t_
R
e
g
is
te
r_
G
e
n
_
v
1
_
0

In
_
p
o
rt[7
:0
]

In
_
C
L
K

O
u
t_
p
o
rt[7
:0
]

F
ig
u
r
e
A
.5
:
V
iv
a
d
o

b
lo
c
k

d
e
sig

n
o
f
th

e
v
a
lid

a
tio

n
se

tu
p

fo
r
th

e
B
its

tre
a
m

B
a
s
e
d

A
u
to
n
o
m
o
u
s
L
o
c
k
s
te
p
.

203

re
s
e
t

c
lk

_
w

iz
_

0

C
lo

c
k
in

g
 W

iz
a
rd

re
s
e
t

c
lk

_
in

1
c
lk

_
o
u
t1

in
_

c
lk

B
la

c
k
B

o
x
_

P
IC

D
IY

_
0

B
la

c
k
B

o
x
_

P
IC

D
IY

_
v
1
_

0

P
O

R
T

A
[7

:0
]

IN
T

E
R

R
U

P
T

in
_

C
L
K

in
_

R
S

T
_

h
ig

h

P
O

R
T

B
[7

:0
]

In
p
u
t_

re
g
is

te
r_

4

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt

[0
:0

]

in
_

c
lk

o
u
t_

p
o
rt

[0
:0

]
fa

ta
l_

e
rr

o
r[

0
:0

in
p
u
t_

p
o
rt

[7
:0

]

In
p
u
t_

re
g
is

te
r_

0

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt

[7
:0

]

in
_

c
lk

o
u
t_

p
o
rt

[7
:0

]
In

p
u
t_

re
g
is

te
r_

3

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt

[7
:0

]

in
_

c
lk

o
u
t_

p
o
rt

[7
:0

]
o
u
t_

p
o
rt

[7
:0

]

B
la

c
k
B

o
x
_

P
IC

D
IY

_
1

B
la

c
k
B

o
x
_

P
IC

D
IY

_
v
1
_

0

P
O

R
T

A
[7

:0
]

IN
T

E
R

R
U

P
T

in
_

C
L
K

in
_

R
S

T
_

h
ig

h

P
O

R
T

B
[7

:0
]

T
M

R
_

V
O

T
E

R
_

0

T
M

R
_

V
O

T
E

R
_

v
1
_

0

in
A

[7
:0

]

in
B

[7
:0

]

in
C

[7
:0

]

v
o
te

d
_

o
u
t[
7
:0

]

fa
ta

lit
y

fa
u
lt
_

d
e
te

c
te

d

e
rr

o
rN

[1
:0

]
in

_
R

S
T

_
h
ig

h

In
p
u
t_

re
g
is

te
r_

2

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt

[0
:0

]

in
_

c
lk

o
u
t_

p
o
rt

[0
:0

]

B
la

c
k
B

o
x
_

P
IC

D
IY

_
2

B
la

c
k
B

o
x
_

P
IC

D
IY

_
v
1
_

0

P
O

R
T

A
[7

:0
]

IN
T

E
R

R
U

P
T

in
_

C
L
K

in
_

R
S

T
_

h
ig

h

P
O

R
T

B
[7

:0
]

in
te

rr
u
p
t

In
p
u
t_

re
g
is

te
r_

1

In
p
u
t

re
g
is

te
r

v
1

1

in
_

p
o
rt

[0
:0

]

in
_

c
lk

o
u
t_

p
o
rt

[0
:0

]

F
ig
u
r
e
A
.6
:
V
iv
a
d
o

b
lo
c
k

d
e
si
g
n

o
f
th

e
v
a
li
d
a
ti
o
n

se
tu

p
fo
r
th

e
R
e
s
e
t
S
y
n
c
.

204 Hardware Implementation details of the Proposed Approaches

re
s
e
t

c
lk

_
w

iz
_

1

C
lo

c
k
in

g
 W

iz
a
rd

re
s
e
t

c
lk

_
in

1
c
lk

_
o
u
t1

in
_

c
lk

B
la

c
k
B

o
x
_

P
IC

D
IY

_
0

B
la

c
k
B

o
x
_

P
IC

D
IY

_
v
1
_

0

P
O

R
T

A
[7

:0
]

IN
T

E
R

R
U

P
T

in
_

C
L
K

in
_

R
S

T
_

h
ig

h

P
O

R
T

B
[7

:0
]

In
p
u
t_

re
g
is

te
r_

3

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt[7

:0
]

in
_

c
lk

o
u
t_

p
o
rt[7

:0
]

o
u
t_

p
o
rt[7

:0
]

V
o
te

r_
re

s
e
t

T
M

R
_

V
O

T
E

R
_

0

T
M

R
_

V
O

T
E

R
_

v
1
_

0

in
A

[7
:0

]

in
B

[7
:0

]

in
C

[7
:0

]

c
lk

_
in

rs
t_

in

v
o
te

d
_

o
u
t[7

:0
]

fa
ta

lity

fa
u
lt_

d
e
te

c
te

d

e
rro

rN
[1

:0
]

In
p
u
t_

re
g
is

te
r_

0

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt[0

:0
]

in
_

c
lk

o
u
t_

p
o
rt[0

:0
]

B
la

c
k
B

o
x
_

P
IC

D
IY

_
1

B
la

c
k
B

o
x
_

P
IC

D
IY

_
v
1
_

0

P
O

R
T

A
[7

:0
]

IN
T

E
R

R
U

P
T

in
_

C
L
K

in
_

R
S

T
_

h
ig

h

P
O

R
T

B
[7

:0
]

in
te

rru
p
t

In
p
u
t_

re
g
is

te
r_

1

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt[0

:0
]

in
_

c
lk

o
u
t_

p
o
rt[0

:0
]

S
y
n
c
M

e
m

o
_

0

S
y
n
c
M

e
m

o
_

v
1
_

0

in
A

[7
:0

]

in
B

[7
:0

]

in
C

[7
:0

]

c
lk

_
in

e
rro

r_
in

v
o
te

d
_

o
u
t[7

:0
]

In
p
u
t_

re
g
is

te
r_

4

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt[0

:0
]

in
_

c
lk

o
u
t_

p
o
rt[0

:0
]

fa
ta

l_
e
rro

r[0
:0

]

in
_

R
S

T
_

h
ig

h

In
p
u
t_

re
g
is

te
r_

2

In
p
u
t_

re
g
is

te
r_

v
1
_

1

in
_

p
o
rt[0

:0
]

in
_

c
lk

o
u
t_

p
o
rt[0

:0
]

B
la

c
k
B

o
x
_

P
IC

D
IY

_
2

B
la

c
k
B

o
x
_

P
IC

D
IY

_
v
1
_

0

P
O

R
T

A
[7

:0
]

IN
T

E
R

R
U

P
T

in
_

C
L
K

in
_

R
S

T
_

h
ig

h

P
O

R
T

B
[7

:0
]

F
ig
u
r
e
A
.7
:
V
iv
a
d
o

b
lo
c
k

d
e
sig

n
o
f
th

e
v
a
lid

a
tio

n
se

tu
p

fo
r
th

e
F
o
rc
e
S
y
n
c
.

205

T
M
R
_
V
O
T
E
R
_
0

T
M
R
_
V
O
T
E
R
_
v
1
_
0

in
A
[7
:0
]

in
B
[7
:0
]

in
C
[7
:0
]

c
lk
_
in

rs
t_
in

v
o
te
d
_
o
u
t[
7
:0
]

fa
ta
lit
y

fa
u
lt
_
d
e
te
c
te
d

e
rr
o
rN
[1
:0
]

B
la
c
k
B
o
x
_
P
IC
_
S
y
n
c
M
o
d
_
2

B
la
c
k
B
o
x
_
P
IC
_
S
y
n
c
M
o
d
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

in
_
s
ta
c
k
_
s
y
n
c
_
w
e

in
_
s
ta
c
k
_
s
y
n
c
_
d
a
ta
[6
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
a
d
d
r[
2
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
c
tr
l

in
_
s
ta
c
k
_
s
y
n
c
_
S
P
_
rt
n
[2
:0
]

o
u
t_
s
ta
c
k
_
s
y
n
c
_
S
P
_
s
e
n
d
[2
:0
]

o
u
t_
s
ta
c
k
_
d
a
ta
[6
:0
]

P
O
R
T
B
[7
:0
]

fa
ta
l_
e
rr
o
r[
0
:0
]

In
p
u
t_
re
g
is
te
r_
4

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[0
:0
]

In
p
u
t_
re
g
is
te
r_
2

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[0
:0
]

in
_
R
S
T
_
h
ig
h

S
y
n
c
M
e
m
o
_
0

S
y
n
c
M
e
m
o
_
v
1
_
0

in
A
[7
:0
]

in
B
[7
:0
]

in
C
[7
:0
]

c
lk
_
in

v
o
te
d
_
o
u
t[
7
:0
]

o
u
t_
p
o
rt
[7
:0
]

In
p
u
t_
re
g
is
te
r_
3

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[7
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[7
:0
]

B
la
c
k
B
o
x
_
P
IC
_
S
y
n
c
M
o
d
_
1

B
la
c
k
B
o
x
_
P
IC
_
S
y
n
c
M
o
d
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

in
_
s
ta
c
k
_
s
y
n
c
_
w
e

in
_
s
ta
c
k
_
s
y
n
c
_
d
a
ta
[6
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
a
d
d
r[
2
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
c
tr
l

in
_
s
ta
c
k
_
s
y
n
c
_
S
P
_
rt
n
[2
:0
]

o
u
t_
s
ta
c
k
_
s
y
n
c
_
S
P
_
s
e
n
d
[2
:0
]

o
u
t_
s
ta
c
k
_
d
a
ta
[6
:0
]

P
O
R
T
B
[7
:0
]

In
p
u
t_
re
g
is
te
r_
1

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[0
:0
]

in
it
_
s
y
n
c

S
y
n
c
_
C
tr
l_
1

S
y
n
c
_
C
tr
l_
v
1
_
0

in
_
s
ta
c
k
_
A
[6
:0
]

in
_
s
ta
c
k
_
B
[6
:0
]

in
_
s
ta
c
k
_
C
[6
:0
]

c
lk
_
in

in
_
rs
t_
h
ig
h

in
_
s
ta
rt
_
s
y
n
c

in
_
S
P
A
[2
:0
]

in
_
S
P
B
[2
:0
]

in
_
S
P
C
[2
:0
]

s
y
n
c
_
w
e

s
y
n
c
_
a
d
d
r[
2
:0
]

s
y
n
c
_
c
tr
l_
o
u
t

o
u
t_
s
y
n
c
_
P
IC
s

o
u
t_
v
o
te
d
_
S
P
[2
:0
]

o
u
t_
v
o
te
d
_
d
a
ta
[6
:0
]

In
p
u
t_
re
g
is
te
r_
0

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[0
:0
]

V
o
te
r_
re
s
e
t

in
_
c
lk

B
la
c
k
B
o
x
_
P
IC
_
S
y
n
c
M
o
d
_
0

B
la
c
k
B
o
x
_
P
IC
_
S
y
n
c
M
o
d
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

in
_
s
ta
c
k
_
s
y
n
c
_
w
e

in
_
s
ta
c
k
_
s
y
n
c
_
d
a
ta
[6
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
a
d
d
r[
2
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
c
tr
l

in
_
s
ta
c
k
_
s
y
n
c
_
S
P
_
rt
n
[2
:0
]

o
u
t_
s
ta
c
k
_
s
y
n
c
_
S
P
_
s
e
n
d
[2
:0
]

o
u
t_
s
ta
c
k
_
d
a
ta
[6
:0
]

P
O
R
T
B
[7
:0
]

c
lk
_
w
iz
_
1

C
lo
c
k
in
g
W
iz
a
rd

re
s
e
t

c
lk
_
in
1

c
lk
_
o
u
t1

re
s
e
t

F
ig
u
r
e
A
.8
:
V
iv
a
d
o

b
lo
c
k

d
e
si
g
n

o
f
th

e
v
a
li
d
a
ti
o
n

se
tu

p
fo
r
th

e
I
n
te
r
r
u
p
t
S
y
n
c
.

206 Hardware Implementation details of the Proposed Approaches
B
la
c
k
B
o
x
_
P
IC
D
iY
_
H
W
S
y
n
c
_
m
o
d
_
0

B
la
c
k
B
o
x
_
P
IC
D
iY
_
H
W
S
y
n
c
_
m
o
d
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

in
_
R
E
G
s
_
e
n
_
S
y
n
c

in
_
s
ta
c
k
_
s
y
n
c
_
w
e

in
_
s
ta
c
k
_
s
y
n
c
_
d
a
ta
[6
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
a
d
d
r[2
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
c
trl

in
_
s
ta
c
k
_
s
y
n
c
_
S
P
_
rtn
[2
:0
]

in
_
P
C
_
in
_
S
y
n
c
[1
1
:0
]

o
u
t_
P
C
_
o
u
t_
S
y
n
c
[1
1
:0
]

in
_
S
ta
tu
s
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
S
ta
tu
s
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
W
re
g
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
W
re
g
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
F
S
R
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
F
S
R
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
P
o
rtB
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
P
o
rtB
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
P
C
L
A
T
C
H
_
in
_
S
y
n
c
[2
:0
]

o
u
t_
P
C
L
A
T
C
H
_
o
u
t_
S
y
n
c
[2
:0
]

in
_
IN
T
C
O
N
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
IN
T
C
O
N
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
c
trl

in
_
R
A
M
_
s
y
n
c
_
d
a
ta
_
in
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
a
d
d
r_
in
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
w
e
_
in

o
u
t_
R
A
M
_
d
a
ta
_
o
u
t[7
:0
]

o
u
t_
s
ta
c
k
_
s
y
n
c
_
S
P
_
s
e
n
d
[2
:0
]

o
u
t_
s
ta
c
k
_
d
a
ta
[6
:0
]

P
O
R
T
B
[7
:0
]

re
s
e
t

c
lk
_
w
iz
_
1

C
lo
c
k
in
g
W
iz
a
rd

re
s
e
t

c
lk
_
in
1

c
lk
_
o
u
t1

in
_
c
lk

V
o
te
r_
re
s
e
t

In
p
u
t_
re
g
is
te
r_
0

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt[0
:0
]

in
p
u
t_
p
o
rt[7
:0
]

In
p
u
t_
re
g
is
te
r_
5

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[7
:0
]

in
_
c
lk

o
u
t_
p
o
rt[7
:0
]

B
la
c
k
B
o
x
_
P
IC
D
iY
_
H
W
S
y
n
c
_
m
o
d
_
1

B
la
c
k
B
o
x
_
P
IC
D
iY
_
H
W
S
y
n
c
_
m
o
d
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

in
_
R
E
G
s
_
e
n
_
S
y
n
c

in
_
s
ta
c
k
_
s
y
n
c
_
w
e

in
_
s
ta
c
k
_
s
y
n
c
_
d
a
ta
[6
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
a
d
d
r[2
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
c
trl

in
_
s
ta
c
k
_
s
y
n
c
_
S
P
_
rtn
[2
:0
]

in
_
P
C
_
in
_
S
y
n
c
[1
1
:0
]

o
u
t_
P
C
_
o
u
t_
S
y
n
c
[1
1
:0
]

in
_
S
ta
tu
s
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
S
ta
tu
s
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
W
re
g
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
W
re
g
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
F
S
R
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
F
S
R
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
P
o
rtB
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
P
o
rtB
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
P
C
L
A
T
C
H
_
in
_
S
y
n
c
[2
:0
]

o
u
t_
P
C
L
A
T
C
H
_
o
u
t_
S
y
n
c
[2
:0
]

in
_
IN
T
C
O
N
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
IN
T
C
O
N
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
c
trl

in
_
R
A
M
_
s
y
n
c
_
d
a
ta
_
in
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
a
d
d
r_
in
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
w
e
_
in

o
u
t_
R
A
M
_
d
a
ta
_
o
u
t[7
:0
]

o
u
t_
s
ta
c
k
_
s
y
n
c
_
S
P
_
s
e
n
d
[2
:0
]

o
u
t_
s
ta
c
k
_
d
a
ta
[6
:0
]

P
O
R
T
B
[7
:0
]

S
y
n
c
_
C
trl_
0

S
y
n
c
_
C
trl_
v
1
_
0

in
_
s
ta
c
k
_
A
[6
:0
]

in
_
s
ta
c
k
_
B
[6
:0
]

in
_
s
ta
c
k
_
C
[6
:0
]

c
lk
_
in

in
_
rs
t_
h
ig
h

in
_
S
T
A
R
T
_
s
y
n
c

in
_
S
P
A
[2
:0
]

in
_
S
P
B
[2
:0
]

in
_
S
P
C
[2
:0
]

o
u
t_
S
P
_
s
y
n
c
_
w
e

S
P
_
s
y
n
c
_
a
d
d
r[2
:0
]

S
P
_
s
y
n
c
_
c
trl_
o
u
t

o
u
t_
v
o
te
d
_
S
P
[2
:0
]

o
u
t_
v
o
te
d
_
s
ta
c
k
_
d
a
ta
[6
:0
]

o
u
t_
S
y
n
c
_
F
IN
IS
H
E
D

in
_
R
E
G
s
_
e
n
_
S
y
n
c

rtn
_
A
_
P
C
_
in
_
S
y
n
c
[1
1
:0
]

rtn
_
A
_
S
ta
tu
s
_
in
_
S
y
n
c
[7
:0
]

rtn
_
A
_
W
re
g
_
in
_
S
y
n
c
[7
:0
]

rtn
_
A
_
F
S
R
_
in
_
S
y
n
c
[7
:0
]

rtn
_
A
_
P
o
rtB
_
in
_
S
y
n
c
[7
:0
]

rtn
_
A
_
P
C
L
A
T
C
H
_
in
_
S
y
n
c
[2
:0
]

rtn
_
A
_
IN
T
C
O
N
_
in
_
S
y
n
c
[7
:0
]

rtn
_
B
_
P
C
_
in
_
S
y
n
c
[1
1
:0
]

rtn
_
B
_
S
ta
tu
s
_
in
_
S
y
n
c
[7
:0
]

rtn
_
B
_
W
re
g
_
in
_
S
y
n
c
[7
:0
]

rtn
_
B
_
F
S
R
_
in
_
S
y
n
c
[7
:0
]

rtn
_
B
_
P
o
rtB
_
in
_
S
y
n
c
[7
:0
]

rtn
_
B
_
P
C
L
A
T
C
H
_
in
_
S
y
n
c
[2
:0
]

rtn
_
B
_
IN
T
C
O
N
_
in
_
S
y
n
c
[7
:0
]

rtn
_
C
_
P
C
_
in
_
S
y
n
c
[1
1
:0
]

rtn
_
C
_
S
ta
tu
s
_
in
_
S
y
n
c
[7
:0
]

rtn
_
C
_
W
re
g
_
in
_
S
y
n
c
[7
:0
]

rtn
_
C
_
F
S
R
_
in
_
S
y
n
c
[7
:0
]

rtn
_
C
_
P
o
rtB
_
in
_
S
y
n
c
[7
:0
]

rtn
_
C
_
P
C
L
A
T
C
H
_
in
_
S
y
n
c
[2
:0
]

rtn
_
C
_
IN
T
C
O
N
_
in
_
S
y
n
c
[7
:0
]

s
n
d
_
P
C
_
o
u
t_
S
y
n
c
[1
1
:0
]

s
n
d
_
S
ta
tu
s
_
o
u
t_
S
y
n
c
[7
:0
]

s
n
d
_
W
re
g
_
o
u
t_
S
y
n
c
[7
:0
]

s
n
d
_
F
S
R
_
o
u
t_
S
y
n
c
[7
:0
]

s
n
d
_
P
o
rtB
_
o
u
t_
S
y
n
c
[7
:0
]

s
n
d
_
P
C
L
A
T
C
H
_
o
u
t_
S
y
n
c
[2
:0
]

s
n
d
_
IN
T
C
O
N
_
o
u
t_
S
y
n
c
[7
:0
]

rtn
_
R
A
M
_
d
a
ta
A
[7
:0
]

rtn
_
R
A
M
_
d
a
ta
B
[7
:0
]

rtn
_
R
A
M
_
d
a
ta
C
[7
:0
]

s
n
d
_
R
A
M
_
s
y
n
c
_
c
trl

s
n
d
_
R
A
M
_
s
y
n
c
_
d
a
ta
_
in
[7
:0
]

s
n
d
_
R
A
M
_
s
y
n
c
_
a
d
d
r_
in
[7
:0
]

s
n
d
_
R
A
M
_
s
y
n
c
_
w
e
_
in

in
_
R
S
T
_
h
ig
h

In
p
u
t_
re
g
is
te
r_
2

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt[0
:0
]

in
it_
s
y
n
c

In
p
u
t_
re
g
is
te
r_
1

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt[0
:0
]

B
la
c
k
B
o
x
_
P
IC
D
iY
_
H
W
S
y
n
c
_
m
o
d
_
2

B
la
c
k
B
o
x
_
P
IC
D
iY
_
H
W
S
y
n
c
_
m
o
d
_
v
1
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

in
_
R
E
G
s
_
e
n
_
S
y
n
c

in
_
s
ta
c
k
_
s
y
n
c
_
w
e

in
_
s
ta
c
k
_
s
y
n
c
_
d
a
ta
[6
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
a
d
d
r[2
:0
]

in
_
s
ta
c
k
_
s
y
n
c
_
c
trl

in
_
s
ta
c
k
_
s
y
n
c
_
S
P
_
rtn
[2
:0
]

in
_
P
C
_
in
_
S
y
n
c
[1
1
:0
]

o
u
t_
P
C
_
o
u
t_
S
y
n
c
[1
1
:0
]

in
_
S
ta
tu
s
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
S
ta
tu
s
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
W
re
g
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
W
re
g
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
F
S
R
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
F
S
R
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
P
o
rtB
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
P
o
rtB
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
P
C
L
A
T
C
H
_
in
_
S
y
n
c
[2
:0
]

o
u
t_
P
C
L
A
T
C
H
_
o
u
t_
S
y
n
c
[2
:0
]

in
_
IN
T
C
O
N
_
in
_
S
y
n
c
[7
:0
]

o
u
t_
IN
T
C
O
N
_
o
u
t_
S
y
n
c
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
c
trl

in
_
R
A
M
_
s
y
n
c
_
d
a
ta
_
in
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
a
d
d
r_
in
[7
:0
]

in
_
R
A
M
_
s
y
n
c
_
w
e
_
in

o
u
t_
R
A
M
_
d
a
ta
_
o
u
t[7
:0
]

o
u
t_
s
ta
c
k
_
s
y
n
c
_
S
P
_
s
e
n
d
[2
:0
]

o
u
t_
s
ta
c
k
_
d
a
ta
[6
:0
]

P
O
R
T
B
[7
:0
]

In
p
u
t_
re
g
is
te
r_
3

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[7
:0
]

in
_
c
lk

o
u
t_
p
o
rt[7
:0
]

o
u
t_
p
o
rt[7
:0
]

T
M
R
_
V
O
T
E
R
_
0

T
M
R
_
V
O
T
E
R
_
v
1
_
0

in
A
[7
:0
]

in
B
[7
:0
]

in
C
[7
:0
]

c
lk
_
in

rs
t_
in

v
o
te
d
_
o
u
t[7
:0
]

fa
ta
lity

fa
u
lt_
d
e
te
c
te
d

e
rro
rN
[1
:0
]

In
p
u
t_
re
g
is
te
r_
4

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt[0
:0
]

fa
ta
l_
e
rro
r[0
:0

F
ig
u
r
e
A
.9
:
V
iv
a
d
o

b
lo
c
k

d
e
sig

n
o
f
th

e
v
a
lid

a
tio

n
se

tu
p

fo
r
th

e
H
w

S
y
n
c
.

207

C
a
p
tu
re
e
_
IP
_
0

S
T
A
R
T
U
P
E
2
_
IP
_
0

In
p
u
t_
re
g
is
te
r_
5

In
p
u
t
re
g
is
te
r
v
1
1

in
_
p
o
rt
[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[0
:0
]

in
te
rr
u
p
t[
0
:0
]

B
la
c
k
B
o
x
_
P
IC
D
IY
_
2

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

P
O
R
T
B
[7
:0
]

fa
ta
l_
e
rr
o
r[
0
:0

In
p
u
t_
re
g
is
te
r_
1

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[0
:0
]

In
p
u
t_
re
g
is
te
r_
4

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[7
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[7
:0
]

in
p
u
t_
p
o
rt
[7
:0
]

T
M
R
_
V
O
T
E
R
_
1

T
M
R
_
V
O
T
E
R
_
v
1
_
0

in
A
[7
:0
]

in
B
[7
:0
]

in
C
[7
:0
]

v
o
te
d
_
o
u
t[
7
:0
]

fa
ta
lit
y

fa
u
lt
_
d
e
te
c
te
d

e
rr
o
rN
[1
:0
]

B
la
c
k
B
o
x
_
P
IC
D
IY
_
1

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

P
O
R
T
B
[7
:0
]

o
u
t_
p
o
rt
[7
:0
]

In
p
u
t_
re
g
is
te
r_
0

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[7
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[7
:0
]

In
p
u
t_
re
g
is
te
r_
3

In
p
u
t_
re
g
is
te
r_
v
1
_
1

in
_
p
o
rt
[0
:0
]

in
_
c
lk

o
u
t_
p
o
rt
[0
:0
]

in
_
R
S
T
_
h
ig
h
[0
:0
]

B
la
c
k
B
o
x
_
P
IC
D
IY
_
0

P
O
R
T
A
[7
:0
]

IN
T
E
R
R
U
P
T

in
_
C
L
K

in
_
R
S
T
_
h
ig
h

P
O
R
T
B
[7
:0
]

D
D
R

F
IX
E
D
_
IO

re
s
e
t

c
lk
_
w
iz
_
0

C
lo
c
k
in
g
W
iz
a
rd

re
s
e
t

c
lk
_
in
1

c
lk
_
o
u
t1

in
_
c
lk

E
M
IO
_
7
_
to
_
s
e
p
a
ra
te
1
s
_
0

E
M
IO
_
7
_
to
_
s
e
p
a
ra
te
1
s
_
v
1
_
0

in
_
B
U
S
[7
:0
]

o
u
t_
0

o
u
t_
1

o
u
t_
2

o
u
t_
3

o
u
t_
4

o
u
t_
5

o
u
t_
6

o
u
t_
7

p
ro
c
e
s
s
in
g
_
s
y
s
te
m
7
_
0

Z
Y
N
Q
7
P
ro
c
e
s
s
in
g
S
y
s
te
m

G
P
IO
_
0

G
P
IO
_
I[
7
:0
]

G
P
IO
_
O
[7
:0
]

D
D
R

F
IX
E
D
_
IO

U
S
B
IN
D
_
0

C
o
re
0
_
n
F
IQ

F
C
L
K
_
C
L
K
0

F
C
L
K
_
R
E
S
E
T
0
_
N

S
T
A
R
T
U
P
E
2
_
IP
_
v
1
_
0

in
_
c
lk

in
_
G
S
R

o
u
t_
E
O
S

o
u
t_
C
F
G
C
L
K

o
u
t_
C
F
G
M
C
L
K

o
u
t_
P
R
E
Q

C
a
p
tu
re
e
_
IP
_
v
1
_
0

c
lk
_
in

in
_
c
a
p
tu
re
e

F
ig
u
r
e
A
.1
0
:
V
iv
a
d
o

b
lo
c
k

d
e
si
g
n

o
f
th

e
v
a
li
d
a
ti
o
n

se
tu

p
fo
r
th

e
B
it
s
tr
e
a
m

S
y
n
c
.

Bibliography

[1] Xilinx Corp., “7 series FPGAs configurable logic block UG474 (v1.8),”
Xilinx Documentation, http://www.xilinx.com, 2016.

[2] Xilinx Corp., “7 series FPGAs memory resources UG473 (v1.12),” Xilinx
Documentation, http://www.xilinx.com, 2016.

[3] Xilinx Corp., “Vivado design suite 7 series FPGA and Zynq-7000 all pro-
grammable SoC libraries guide UG953 (v2014.4),” Xilinx Documentation,
http://www.xilinx.com, 2014.

[4] Xilinx Corp., “7 series FPGAs configuration UG470 (v1.9),” Xilinx Docu-
mentation, http://www.xilinx.com, 2014.

[5] Xilinx Corp., “Integrated logic analyzer PG172 (v6.2),” Xilinx Documen-
tation, http://www.xilinx.com, 2016.

[6] Xilinx Corp., “Zynq-7000 all programmable SoC technical reference manual
UG585 (v1.9.1),” Xilinx Documentation, http://www.xilinx.com, 2014.

[7] H. Kalte and M. Porrmann, “Context saving and restoring for multitask-
ing in reconfigurable systems,” in International Conference on Field Pro-
grammable Logic and Applications. IEEE, 2005, pp. 223 – 228.

[8] A. Morales-Villanueva and A. Gordon-Ross, “HTR: On-chip hardware task
relocation for partially reconfigurable FPGAs,” in Reconfigurable Comput-
ing: Architectures, Tools and Applications. Springer Berlin Heidelberg,
2013, vol. 7806, pp. 185 – 196.

[9] A. Kanamaru, H. Kawai, Y. Yamaguchi, and M. Yasunaga, “Tile-based
fault tolerant approach using partial reconfiguration,” in International
Workshop on Applied Reconfigurable Computing. Springer, 2009, pp. 293
– 299.

210 BIBLIOGRAPHY

[10] R. Yao, J. Wu, M. Wang, X. Zhong, P. Zhu, and J. Liang, “State synchro-
nization technique based on present input and healthy state for repairable
TMR systems,” IEICE Electronics Express, pp. 20 161 000 – 20 161 000,
2016.

[11] J. Azambuja, M. Altieri, J. Becker, and F. Kastensmidt, “Heta: Hybrid
error-detection technique using assertions,” IEEE Transactions on Nuclear
Science, pp. 2805 – 2812, 2013.

[12] B. Tietche, O. Romain, B. Denby, and F. Dieuleveult, “FPGA-based simul-
taneous multichannel FM broadcast receiver for audio indexing applications
in consumer electronics scenarios,” IEEE Transactions on Consumer Elec-
tronics, pp. 1153 – 1161, 2012.

[13] C. Ttofis, C. Kyrkou, and T. Theocharides, “A low-cost real-time embed-
ded stereo vision system for accurate disparity estimation based on guided
image filtering,” IEEE Transactions on Computers, pp. 2678 – 2693, 2016.

[14] M. Komorkiewicz, K. Turek, P. Skruch, T. Kryjak, and M. Gorgon,
“FPGA-based Hardware-in-the-Loop environment using video injection
concept for camera-based systems in automotive applications,” in Design
and Architectures for Signal and Image Processing (DASIP), 2016, pp. 183
– 190.

[15] A. Melzer, F. Starzer, H. Jager, and M. Huemer, “Real-time mitigation
of short-range leakage in automotive FMCW radar transceivers,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1 – 5, 2016.

[16] M. Schirmer, F. Stradolini, S. Carrara, and E. Chicca, “Fpga-based ap-
proach for automatic peak detection in cyclic voltammetry,” in Interna-
tional Conference on Electronics, Circuits and Systems (ICECS), 2016, pp.
65 – 68.

[17] E. Min, Y. Jung, H. Lee, J. Jang, K. Kim, S. Joo, and K. Lee, “Develop-
ment of a multipurpose gamma-ray imaging detector module with enhanced
expandability,” IEEE Transactions on Nuclear Science, pp. 1 – 7, 2017.

[18] W. Pawgasame, “Evaluation of digital codings on the soc-based software-
defined radio for the military communication,” in Asian Conference on
Defence Technology (ACDT), 2017, pp. 81 – 87.

[19] H. Irwanto, “Development of instrumentation, control and navigation
(ICON) for anti tank guided missile (ATGM),” in International Confer-
ence on Science in Information Technology (ICSITech), 2016, pp. 137 –
141.

BIBLIOGRAPHY 211

[20] A. Schmidt and T. Flatley, “Radiation hardening by software techniques
on FPGAs: Flight experiment evaluation and results,” in IEEE Aerospace
Conference, 2017.

[21] V. Dumitriu, L. Kirischian, and V. Kirischian, “Run-time recovery mech-
anism for transient and permanent hardware faults based on distributed,
self-organized dynamic partially reconfigurable systems,” IEEE Transac-
tions on Computers, pp. 2835 – 2847, 2016.

[22] C. Stoif, M. Schoeberl, B. Liccardi, and J. Haase, “Hardware synchroniza-
tion for embedded multi-core processors,” in IEEE International Sympo-
sium on Circuits and Systems (ISCAS), 2011, pp. 2557 – 2560.

[23] B. H. Fletcher, “FPGA embedded processors: Revealing true system per-
formance,” in Embedded Systems Conference, 2005.

[24] A. Ben Salem, S. Ben Othman, and S. Ben Saoud, “Hard and soft-core
implementation of embedded control application using RTOS,” in IEEE
International Symposium on Industrial Electronics (ISIE), 2008, pp. 1896
– 1901.

[25] J. Tong, I. Anderson, and M. Khalid, “Soft-core processors for embedded
systems,” in International Conference on Microelectronics (ICM), 2006, pp.
170 – 173.

[26] F. Merchant, S. Pujari, and M. Manish Patil, “Platform independent 8-
bit soft-core for SoPC,” in International MultiConference of Engineers and
Computer Scientists, 2009, pp. 1541 – 1544.

[27] E. Stott, P. Sedcole, and P. Cheung, “Fault tolerant methods for reliability
in FPGAs,” in International Conference on Field Programmable Logic and
Applications (FPL), 2008, pp. 415 – 420.

[28] Y. Z. Xu, H. Puchner, A. Chatila, O. Pohland, B. Bruggeman, B. Jin,
D. Radaelli, and S. Daniel, “Process impact on SRAM alpha-particle SEU
performance,” in IEEE International Reliability Physics Symposium, 2004,
pp. 294 – 299.

[29] Xilinx Corp., “Device reliability report, fourth quarter 2010,” Xilinx Doc-
umentation, UG116, http://www.xilinx.com, feb. 2011.

[30] Xilinx Corp., “Xilinx-5 FPGA Configuration User Guide,” Xilinx Docu-
mentation, UG191, http://www.xilinx.com, aug. 2010.

[31] Xilinx Corp., “Virtex-5 Family Overview,” Xilinx Documentation, DS100,
http://www.xilinx.com, feb. 2009.

212 BIBLIOGRAPHY

[32] M. Schutti, M. Pfaff, and R. Hagelauer, “VHDL design of embedded pro-
cessor cores: The industry-standard microcontroller 8051 and 68HC11,” in
Annual IEEE International ASIC Conference 1998, 1998, pp. 265 – 269.

[33] E. Ayeh, K. Agbedanu, Y. Morita, O. Adamo, and P. Guturu, “FPGA
implementation of an 8-bit simple processor,” in IEEE Region 5 Conference,
2008, pp. 1 – 5.

[34] S. de Pablo, J. Cebrian, L. C. Herrero, and A. B. Rey, “A soft fixed-
point digital signal processor applied in power electronics,” in FPGAworld
Conference, Stockholm. Electrum-Kista, 2005.

[35] A. Le Masle, W. Luk, and C. Moritz, “Parametrized hardware architec-
tures for the lucas primality test,” in International Conference on Embedded
Computer Systems (SAMOS), 2011, pp. 124 – 131.

[36] A. Gour, A. Raj, R. Behera, N. Murali, and S. Murty, “Design and de-
velopment of soft-core processor based remote terminal units for nuclear
reactors,” in International Conference on Field-Programmable Technology
(FPT), 2011, pp. 1 – 4.

[37] L. Anghel, R. Velazco, S. Saleh, S. Deswaertes, and A. El Moucary, “Pre-
liminary validation of an approach dealing with processor obsolescence,”
in IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, 2003, pp. 493 – 500.

[38] K. Chapman, “Creating embedded microcontrollers (programmable state
machines),” in The Authoritative Journal For Programmable Logic Users,
2004.

[39] Z. Hajduk, “An FPGA embedded microcontroller,” Microprocessors and
Microsystems, vol. 38, no. 1, pp. 1 – 8, 2014.

[40] OpenCores, “Official website,” http://www.OpenCores.org, 2012.

[41] Wikipedia, “GNU lesser general public license,”
http://en.wikipedia.org/wiki/LGPL, 2012.

[42] Wikipedia, “BSD licenses,” http://en.wikipedia.org/wiki/BSD licenses,
2012.

[43] M. Palmer, “A comparison of 8-bit microcontrollers,” in Microchip Tech-
nology Inc., 2002.

[44] D. Mattsson and M. Christensson, “Evaluation of synthesizable CPU
cores,” Master’s thesis, Chalmers University Of Technology, 2004.

BIBLIOGRAPHY 213

[45] D. Gomez-Prado and M. Ciesielski, “Embedded microcontrollers and
FPGAs soft-cores,” Electronica UNMSM, 2006.

[46] P. Borisonv and V. Stoianova, “Implementation of soft-core processors in
FPGAs,” in Unitech International Scientific Conference, 2007.

[47] D. Gallegos, B. Welch, J. Jarosz, V. Houten, and M. Learn, “Soft-core pro-
cessor study for node-based architectures,” Sandia National Laboratories,
Tech. Rep., 2008.

[48] J. Nade and R. Sarwadnya, “The soft core processors: A review,” Inter-
national Journal of Innovative Research in Electrical, Electronics, Instru-
mentation and Control Engineering, pp. 197 – 203, 2015.

[49] F. Schmidt, “Fault tolerant design implementation on radiation hardened
by design SRAM-based FPGAs,” Ph.D. dissertation, Massachusetts Insti-
tute of Technology, 2013.

[50] S. Tanoue, T. Ishida, Y. Ichinomiya, M. Amagasaki, M. Kuga, and
T. Sueyoshi, “A novel states recovery technique for the TMR softcore pro-
cessor,” in International Conference on Field Programmable Logic and Ap-
plications (FPL), 2009, pp. 543 – 546.

[51] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, and D. Tullsen, “Application-
specific customization of parameterized FPGA soft-core processors,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2006, pp. 261 – 268.

[52] A. Sari, M. Psarakis, and D. Gizopoulos, “Combining checkpointing and
scrubbing in FPGA-based real-time systems,” in IEEE VLSI Test Sympo-
sium (VTS), 2013, pp. 1 – 6.

[53] S. Rezgui, G. Swift, K. Somervill, J. George, C. Carmichael, and G. Allen,
“Complex upset mitigation applied to a re-configurable embedded proces-
sor,” IEEE Transactions on Nuclear Science, pp. 2468 – 2474, 2005.

[54] C. Hong, K. Benkrid, X. Iturbe, and A. Ebrahim, “Design and implemen-
tation of fault-tolerant soft processors on FPGAs,” in International Con-
ference on Field Programmable Logic and Applications (FPL), 2012, pp.
683 – 686.

[55] M. Learn, “Evaluation of soft-core processors on a Xilinx Virtex-5 field
programmable gate array,” Sandia National Laboratories, Tech. Rep., 2011.

[56] M. Hubner, D. Gohringer, J. Noguera, and J. Becker, “Fast dynamic and
partial reconfiguration data path with low hardware overhead on Xilinx

214 BIBLIOGRAPHY

FPGAs,” in IEEE International Symposium on Parallel Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), 2010, pp. 1 – 8.

[57] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfigu-
ration via configuration scrubbing,” in International Conference on Field
Programmable Logic and Applications (FPL), 2009, pp. 99 – 104.

[58] S. M. Borawake and P. G. Chilveri, “Implementation of wireless sensor
network using microblaze and picoblaze processors,” in International Con-
ference on Communication Systems and Network Technologies, 2014, pp.
1059 – 1064.

[59] Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. Iida, M. Kuga, and
T. Sueyoshi, “Improving the robustness of a softcore processor against SEUs
by using TMR and partial reconfiguration,” in IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
2010, pp. 47 – 54.

[60] H. Pham, S. Pillement, and S. Piestrak, “Low overhead fault-tolerance
technique for dynamically reconfigurable softcore processor,” IEEE Trans-
actions on Computers, pp. 1179 – 1192, 2013.

[61] A. Morales-Villanueva and A. Gordon-Ross, “On-chip context save and
restore of hardware tasks on partially reconfigurable FPGAs,” in Inter-
national Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2013, pp. 61 – 64.

[62] F. Veljkovic, J. Mora, T. Riesgo, L. Berrojo, R. Regada, A. Sanchez,
and E. De la Torre, “Prospection of reconfiguration capabilities using
space qualified SRAM-based FPGAs for a satellite communications ap-
plication,” in AIAA International Communications Satellite Systems Con-
ference, 2013.

[63] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, “A novel high-
performance fault-tolerant ICAP controller,” in NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), 2012, pp. 259 – 263.

[64] D. Antonio-Torres, D. Villanueva-Perez, E. Sanchez-Canepa, N. Segura-
Meraz, D. Garcia-Garcia, D. Conchouso-Gonzalez, J. Miranda-Vergara,
J. Gonzalez-Herrera, A.-M. de Ita, B. Hernandez-Rodriguez, R.-E. de los
Monteros, F. Garcia-Chavez, V. Tellez-Rojas, and A. Bautista-Hernandez,
“A picoblaze-based embedded system for monitoring applications,” in In-
ternational Conference on Electrical, Communications, and Computers
(CONIELECOMP), 2009, pp. 173 – 177.

BIBLIOGRAPHY 215

[65] F. Restrepo-Calle, A. Martinez-alvarez, H. Guzman-Miranday, F. Palomoy,
and S. Cuenca-Asensi, “Application-driven co-design of fault-tolerant in-
dustrial systems,” in IEEE International Symposium on Industrial Elec-
tronics (ISIE), 2010, pp. 2005 – 2010.

[66] I. Safarulla and K. Manilal, “Design of soft error tolerance technique for
FPGA based soft core processors,” in International Conference on Ad-
vanced Communication Control and Computing Technologies (ICACCCT),
2014, pp. 1036 – 1040.

[67] C. Lung, S. Sabou, and A. Buchman, “Emergency radio communication
network controller implemented in FPGA,” in IEEE International Sympo-
sium for Design and Technology in Electronic Packaging (SIITME), 2014,
pp. 193 – 196.

[68] J. Mathew and R. Dhayabarani, “Fault tolerance technique for dynamically
reconfigurable processor,” International Journal of Advanced Research in
Electrical, Electronics and Instrumentation Engineering, pp. 6656 – 6663.

[69] C. Lung, S. Sabou, and A. Buchman, “Modelling and implementation of
intelligent sensor networks with applications in emergency situations man-
agement,” in IEEE International Symposium for Design and Technology in
Electronic Packaging (SIITME), 2015, pp. 315 – 318.

[70] J. Tarrillo, J. Tonfat, L. Tambara, F. L. Kastensmidt, and R. Reis, “Multi-
ple fault injection platform for SRAM-based FPGA based on ground-level
radiation experiments,” in Latin-American Test Symposium (LATS), 2015,
pp. 1 – 6.

[71] J. Adair, “Pushing picoblaze - part1,” Xilinx.com - PicoBlaze User Re-
sources, 2005.

[72] M. Niknahad, O. Sander, and J. Becker, “QFDR-an integration of quadded
logic for modern FPGAs to tolerate high radiation effect rates,” in Euro-
pean Conference on Radiation and Its Effects on Components and Systems
(RADECS), 2011, pp. 119 – 122.

[73] U. Legat, A. Biasizzo, and F. Novak, “SEU recovery mechanism for SRAM-
based FPGAs,” IEEE Transactions on Nuclear Science, vol. 59, no. 5, pp.
2562 – 2571, 2012.

[74] K. Chapman, “SEU strategies for Virtex-5,” in Application Note: Virtex-5
Family, 2009.

[75] B. F. Dutton and C. E. Stroud, “Single event upset detection and correction

216 BIBLIOGRAPHY

in Virtex-4 and virtex-5 FPGAs,” in ISCA International Conference on
Computers and Their Applications, 2009, pp. 57 – 62.

[76] L. Claudiu, S. Sebastian, and B. Cristian, “Smart sensor implemented with
picoblaze multi-processors technology,” in IEEE International Symposium
for Design and Technology in Electronic Packaging (SIITME), 2012, pp.
241 – 245.

[77] F. Plavec, B. Fort, Z. Vranesic, and S. Brown, “Experiences with soft-
core processor design,” in International Parallel and Distributed Processing
Symposium, 2005, pp. 4 – pp.

[78] J. Gaisler, “A portable and fault-tolerant microprocessor based on the
SPARC v8 architecture,” in International Conference on Dependable Sys-
tems and Networks (DSN), 2002, pp. 409 – 415.

[79] A. Jordan, C. Hafer, J. Mabra, S. Griffith, J. Nagy, M. Lahey, and D. Har-
ris, “SEU data and fault tolerance analysis of a Leon 3FT processor,” in
European Conference on Radiation and Its Effects on Components and Sys-
tems (RADECS), 2009, pp. 617 – 619.

[80] M. Reorda, M. Violante, C. Meinhardt, and R. Reis, “A low-cost SEE mit-
igation solution for soft-processors embedded in systems on pogrammable
chips,” in Design, Automation Test in Europe Conference Exhibition, 2009,
pp. 352 – 357.

[81] M. Amin, A. Ramazani, F. Monteiro, C. Diou, and A. Dandache, “A self-
checking hardware journal for a fault-tolerant processor architecture,” Int.
J. Reconfig. Comput., pp. 11 – 11, 2011.

[82] J. Becker, A. Thomas, M. Vorbach, and V. Baumgarten, “An indus-
trial/academic configurable system-on-chip project (CSoC): Coarse-grain
XXP-/Leon-based architecture integration.” IEEE Computer Society,
2003, pp. 1120 – 1121.

[83] M. Reorda, M. Violante, C. Meinhardt, and R. Reis, “An on-board data-
handling computer for deep-space exploration built using commercial-off-
the-shelf SRAM-based FPGAs,” in IEEE International Symposium on De-
fect and Fault Tolerance in VLSI Systems, 2009, pp. 254 – 262.

[84] M. Learn, “Evaluation of the Leon3 soft-core processor within a Xilinx
radiation-hardened field-programmable gate array,” Sandia National Lab-
oratories, Tech. Rep., 2012.

[85] R. Velazco, W. Mansour, F. Pancher, G. Marques-Costa, D. Sohier, and
A. Bui, “Improving SEU fault tolerance capabilities of a self-converging

BIBLIOGRAPHY 217

algorithm,” in European Conference on Radiation and its Effects on Com-
ponents and Systems (RADECS), 2011, pp. 138 – 143.

[86] A. Morillo, A. Astarloa, J. Lazaro, U. Bidarte, and J. Jimenez, “Known-
blocking. Synchronization method for reliable processor using TMR & DPR
in SRAM FPGAs,” in Southern Conference on Programmable Logic (SPL),
2011, pp. 57 – 62.

[87] M. Ebrahimi, S. Miremadi, H. Asadi, and M. Fazeli, “Low-cost scan-chain-
based technique to recover multiple errors in TMR systems,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 8, pp.
1454 – 1468, 2013.

[88] L. Sterpone and A. Ullah, “On the optimal reconfiguration times for TMR
circuits on SRAM based FPGAs,” in NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), 2013, pp. 9 – 14.

[89] N. H. Rollins and M. J. Wirthlin, “Reliability of a softcore processor in a
commercial SRAM-based FPGA,” in ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays. ACM, 2012, pp. 171 – 174.

[90] A. Ioannis and M. Dimitrios, “Replacing the SPARC-based core of the
Leon3 HDL microprocessor model with a MIPS-based core,” in SECE Con-
ference, 2010.

[91] R. Velazco, G. Foucard, F. Pancher, W. Mansour, G. Marques-Costa, D. So-
hier, and A. Bui, “Robustness with respect to SEUs of a self-converging
algorithm,” in Latin American Test Workshop (LATW), 2011, pp. 1 – 5.

[92] J. Becker and A. Thomas, “Scalable processor instruction set extension,”
IEEE Design Test of Computers, 2005.

[93] A. Mohammadi, M. Ebrahimi, A. Ejlali, and S. Miremadi, “SCFIT: A
FPGA-Basedased Fault Injection Technique for SEU Fault Model,” in De-
sign Automation Test in Europe Conference Exhibition (DATE), 2012, pp.
586 – 589.

[94] N. H. Rollins and M. J. Wirthlin, “Software fault-tolerant techniques for
softcore processors in commercial SRAM-based FPGAs,” ARCS Work-
shops, 2011.

[95] A. Sari and M. Psarakis, “Scrubbing-based SEU mitigation approach for
systems-on-programmable-chips,” in International Conference on Field-
Programmable Technology (FPT), 2011, pp. 1 – 8.

218 BIBLIOGRAPHY

[96] W. Mansour and R. Velazco, “Seu fault-injection in VHDL-based proces-
sors: A case study,” Journal of Electronic Testing, pp. 87 – 94, 2013.

[97] P. Huerta Pellitero, “Sistemas de multiprocesamiento simetrico sobre
FPGA,” Ph.D. dissertation, Universidad Rey Juan Carlos, 2009.

[98] S. Morioka, “VHDL implementation of the PIC16F84 in FPGA,” in Tran-
sistor Gijutsu Magazine, 1999.

[99] S. Yuan, C. P., and S. Liao, “The power stability of FPGA-based micro-
controller design and measurement,” in Asia-Pacific Symposium on Elec-
tromagnetic Compatibility (APEMC), 2010, pp. 1096 – 1099.

[100] T. Lobo, S. Pinto, V. Silva, S. Lopes, J. Cabral, A. Tavares, S. Yoowattana,
W. Sritriratanarak, and M. Ekpanyapong, “LP805X: A customizable and
low power 8051 soft core for FPGA applications,” in IEEE International
Symposium on Industrial Electronics (ISIE), 2013, pp. 1 – 7.

[101] G. Fernandez, Conceptos Basicos de Arquitectura y Sistemas Operativos.
Ed. Syserso., 1998.

[102] P. Leong, P. Tsang, and T. Lee, “A FPGA based forth microprocessor,” in
IEEE Symposium on FPGAs for Custom Computing Machines, 1998, pp.
254 – 255.

[103] H. Y. Cheah, S. Fahmy, and D. Maskell, “iDEA: A DSP block based FPGA
soft processor,” in International Conference on Field-Programmable Tech-
nology (FPT), 2012, pp. 151 – 158.

[104] P. Gaillardon, M. Ben-Jamaa, G. Beneventi, F. Clermidy, and L. Perniola,
“Emerging memory technologies for reconfigurable routing in FPGA archi-
tecture,” in IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), 2010, pp. 62 – 65.

[105] K. Huang, Y. Ha, R. Zhao, A. Kumar, and Y. Lian, “A low active leakage
and high reliability phase change memory (PCM) based non-volatile FPGA
storage element,” IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 2605 – 2613, 2014.

[106] M. Klein and S. Kol, “Leveraging power leadership at 28 nm with Xilinx 7
series FPGAs,” 2013.

[107] J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, and
J. Jimenez, “Fast context reloading lockstep approach for SEUs mitiga-
tion in a FPGA soft core processor,” in Conference of the IEEE Industrial
Electronics Society, IECON, 2013, pp. 2261 – 2266.

BIBLIOGRAPHY 219

[108] Xilinx Corp., “Vivado design suite user guide. partial reconfiguration
UG909 (v2015.1),” Xilinx Documentation, http://www.xilinx.com, 2015.

[109] J. Correa and K. Ackermann, “Leveraging partial dynamic reconfiguration
on Zynq SoC FPGAs,” in International Symposium on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 2014, pp. 1 – 6.

[110] S. Liu, N. Pittman, and A. Forin, “Energy reduction with run-time partial
reconfiguration,” Microsoft, Tech. Rep., 2009.

[111] S. Liu, R. Pittman, A. Form, and J. Gaudiot, “On energy efficiency of
reconfigurable systems with run-time oartial reconfiguration,” in IEEE In-
ternational Conference on Application-specific Systems, Architectures and
Processors, 2010, pp. 265 – 272.

[112] I. Yoon, H. Joung, and J. Lee, “Zynq-based reconfigurable system for real-
time edge detection of noisy video sequences,” Journal of Sensors, vol. 2016,
2016.

[113] M. Al Kadi, P. Rudolph, D. Gohringer, and M. Hubner, “Dynamic and
partial reconfiguration of Zynq 7000 under Linux,” in International Con-
ference on Reconfigurable Computing and FPGAs (ReConFig), 2013, pp. 1
– 5.

[114] K. Vipin and S. Fahmy, “ZyCAP: Efficient partial reconfiguration manage-
ment on the Xilinx Zynq,” Embedded Systems Letters, IEEE, vol. 6, no. 3,
pp. 41 – 44, 2014.

[115] A. Megacz, “A library and platform for FPGA bitstream manipulation,”
in IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2007, pp. 45 – 54.

[116] F. Benz, A. Seffrin, and S. Huss, “Bil: A tool-chain for bitstream reverse-
engineering,” in International Conference on Field Programmable Logic and
Applications (FPL), 2012, pp. 735 – 738.

[117] R. Chakraborty, I. Saha, A. Palchaudhuri, and G. Naik, “Hardware trojan
insertion by direct modification of FPGA configuration bitstream,” IEEE
Design Test, vol. 30, no. 2, pp. 45 – 54, 2013.

[118] R. Soni, N. Steiner, and M. French, “Open-source bitstream generation,”
in EEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2013, pp. 105 – 112.

[119] C. Morford, “BitMaT - bitstream manipulation tool for Xilinx FPGAs,”

220 BIBLIOGRAPHY

Master’s thesis, Faculty of the Virginia Polytechnic Institute and State
University, 2005.

[120] Xilinx Corp., “Partial reconfiguration user guide UG702 (v14.1),” Xilinx
Documentation, http://www.xilinx.com, 2012.

[121] Xilinx Corp., “Data2MEM. user guide UG658 (v2012.4),” Xilinx Documen-
tation, http://www.xilinx.com, 2012.

[122] D. L. S. Guccione and P. Sundararajan, “JBit: Java based interface for
reconfigurable computing,” in Annual Military and Aerospace Applications
of Programmable Devices and Technologies Conference (MAPLD), 1999,
pp. 28 – 30.

[123] M. Koester, H. Kalte, and M. Porrmann, “Relocation and defragmentation
for heterogeneous reconfigurable systems,” in ERSA, 2006, pp. 70 – 76.

[124] A. Morales-Villanueva, R. Kumar, and A. Gordon-Ross, “Configuration
prefetching and reuse for preemptive hardware multitasking on partially
reconfigurable FPGAs,” in Design, Automation & Test in Europe (DATE).
IEEE, 2016, pp. 1505 – 1508.

[125] J. Srour and J. McGarrity, “Radiation effects on microelectronics in space,”
Proceedings of the IEEE, pp. 1443 – 1469, 1988.

[126] R. Ladbury, “Radiation hardening at the system level,” in IEEE NSREC
Short Course, 2007, pp. 1 – 94.

[127] J. Wang, “Radiation effects in FPGAs,” in Workshop on Electronics for
LHC Experiments, 2003.

[128] C. Färber, U. Uwer, D. Wiedner, B. Leverington, and R. Ekelhof, “Radia-
tion tolerance tests of SRAM-based FPGAs for the potential usage in the
readout electronics for the lhcb experiment,” Journal of Instrumentation,
p. C02028, 2014.

[129] S. Clark, K. Avery, and R. Parker, “TID and SEE testing results of altera
cyclone field programmable gate array,” in IEEE Radiation Effects Data
Workshop, 2004, pp. 88 – 90.

[130] N. Rezzak, J. J. Wang, D. Dsilva, and N. Jat, “TID and SEE characteri-
zation of microsemi’s 4th generation radiation tolerant RTG4 flash-based
FPGA,” in IEEE Radiation Effects Data Workshop (REDW), 2015, pp. 1
– 6.

[131] G. Allen, G. Madias, E. Miller, and G. Swift, “Recent single event effects re-

BIBLIOGRAPHY 221

sults in advanced reconfigurable field programmable gate arrays,” in IEEE
Radiation Effects Data Workshop (REDW), 2011, pp. 1 – 6.

[132] G. R. Allen and G. M. Swift, “Single event effects test results for advanced
field programmable gate arrays,” in IEEE Radiation Effects Data Work-
shop, 2006, pp. 115 – 120.

[133] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-event
upset in digital microelectronics,” IEEE Transactions on Nuclear Science,
pp. 583 – 602, 2003.

[134] H. Wei, W. Yueke, X. Kefei, and D. Wei, “SEE vulnerability bit analysis
method for switch matrix of SRAM-based FPGA circuits,” in IEEE In-
ternational Conference on Mechatronics and Automation, 2016, pp. 2355 –
2359.

[135] J. Nunes, J. Cunha, and M. Zenha-Rela, “On the effects of cumulative SEUs
in FPGA-based systems,” in European Dependable Computing Conference
(EDCC), 2016, pp. 89 – 96.

[136] C. Du, X.and He, S. Liu, Y. Zhang, Y. Li, and W. Yang, “Measurement
of single event effects induced by alpha particles in the Xilinx Zynq-7010
System-on-Chip,” Journal of Nuclear Science and Technology, pp. 1 – 6,
2016.

[137] J. Fu and C. Zhang, “The fault-tolerant design in space information pro-
cessing system based on COTS,” in International Workshop on Computer
Science and Engineering (WCSE), 2009, pp. 568 – 571.

[138] D. Binder, E. C. Smith, and A. B. Holman, “Satellite anomalies from galac-
tic cosmic rays,” IEEE Transactions on Nuclear Science, pp. 2675 – 2680,
1975.

[139] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of radiation
effects in SRAM-based FPGAs for space applications,” ACM Computing
Surveys (CSUR), 2015.

[140] M. Violante, C. Meinhardt, R. Reis, and M. Reorda, “A low-cost solution
for deploying processor cores in harsh environments,” IEEE Transactions
on Industrial Electronics, pp. 2617 – 2626, 2011.

[141] X. Iturbe, D. Keymeulen, P. Yiu, D. Berisford, R. Carlson, K. Hand, and
E. Ozer, “On the use of system-on-chip technology in next-generation in-
struments avionics for space exploration,” in IEEE International Confer-
ence on Very Large Scale Integration, VLSI-SoC. Springer International
Publishing, 2016, pp. 1 – 22.

222 BIBLIOGRAPHY

[142] P. Adell, G. Allen, G. Swift, and S. McClure, “Assessing and mitigating
radiation effects in Xilinx SRAM FPGAs,” in European Conference on Ra-
diation and Its Effects on Components and Systems (RADECS), 2008, pp.
418 – 24, radiation effect mitigation;Xilinx SRAM;FPGA;.

[143] E. Normand, “Single event upset at ground level,” IEEE Transactions on
Nuclear Science, pp. 2742 – 2750, 1996.

[144] J. T. Wallmark and S. M. Marcus, “Minimum size and maximum packing
density of nonredundant semiconductor devices,” Proceedings of the IRE,
vol. 50, no. 3, pp. 286 – 298, 1962.

[145] T. May and M. Woods, “Alpha-particle-induced soft errors in dynamic
memories,” IEEE Transactions on Electron Devices, pp. 2 – 9, 1979.

[146] Xilinx Corp., “Ultrascale architecture and product overview,” Xilinx Doc-
umentation, http://www.xilinx.com, 2016.

[147] I. Corp., “Stratix 10 device datasheet,” Altera Documentation,
http://www.altera.com, 2016.

[148] M. McCormack, “Trade study and application of symbiotic software
and hardware fault-tolerance on a microcontroller-based avionics system,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2011.

[149] T. Phillips, “Cosmic rays hit space age high,” NASA, Tech. Rep., 2009.

[150] D. Matthiä, M. Meier, and G. Reitz, “Numerical calculation of the ra-
diation exposure from galactic cosmic rays at aviation altitudes with the
PANDOCA core model,” Space Weather, vol. 12, no. 3, pp. 161 – 171, 2014.

[151] D. White, “Considerations surrounding single event effects in FPGAs,
ASICs, and processors,” Xilinx Corp., Tech. Rep., 2012.

[152] “Introduction to single-event upsets,” Altera Documentation,
http://www.altera.com, Altera, Tech. Rep., 2013.

[153] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
induced multi-bit upsets in SRAM-based FPGAs,” IEEE Transactions on
Nuclear Science, vol. 52, no. 6, pp. 2455 – 2461, 2005.

[154] “Understanding single event functional interrupts in FPGA designs,” Al-
tera Documentation, http://www.altera.com, Altera, Tech. Rep., 2013.

[155] L. Entrena, A. Lindoso, M. Valderas, M. Portela, and C. Ongil, “Analy-
sis of SET effects in a PIC microprocessor for selective hardening,” IEEE
Transactions on Nuclear Science, vol. 58, no. 3, pp. 1078 – 1085, 2011.

BIBLIOGRAPHY 223

[156] A. Aloisio, V. Bocci, R. Giordano, V. Izzo, L. Sterpone, and M. Violante,
“Power consumption versus configuration SEUs in Xilinx Virtex-5 FPGAs,”
2013, pp. 1 – 1.

[157] R. Le, “Soft error mitigation using prioritized essential bits,” Xilinx Docu-
mentation, http://www.xilinx.com, 2012.

[158] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi, M. Re-
baudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori, “Iden-
tification and classification of single-event upsets in the configuration mem-
ory of SRAM-based FPGAs,” IEEE Transactions on Nuclear Science,
vol. 50, no. 6, pp. 2088 – 2094, 2003.

[159] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Ceschia,
A. Paccagnella, M. Rebaudengo, M. Reorda, M. Violante, and P. Zam-
bolin, “Evaluating the effects of SEUs affecting the configuration memory
of an SRAM-based FPGA,” in Proceedings Design, Automation and Test
in Europe Conference and Exhibition, 2004, pp. 584 – 589.

[160] W. Vigrass, “Calculation of semiconductor failure rates,” Harris Semicon-
ductor, 2010.

[161] B. Rahbaran and A. Steininger, “Is asynchronous logic more robust than
synchronous logic?” IEEE Transactions on Dependable and Secure Com-
puting, pp. 282 – 294, 2009.

[162] H. Jahanirad, K. Mohammadi, and P. Attarsharghi, “Single fault reliability
analysis in FPGA implemented circuits,” in International Symposium on
Quality Electronic Design (ISQED), 2012, pp. 49 – 56.

[163] G. Asadi and M. Tahoori, “Soft error rate estimation and mitigation
for SRAM-based FPGAs,” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2005, pp. 149 – 160.

[164] A. Souari, C. Thibeault, Y. Blaquiere, and R. Velazco, “Optimization of
SEU emulation on SRAM FPGAs based on sensitiveness analysis,” in IEEE
International On-Line Testing Symposium (IOLTS), 2015, pp. 36 – 39.

[165] I. Villata, U. Bidarte, U. Kretzschmar, A. Astarloa, and J. Lazaro, “Fast
and accurate SEU-tolerance characterization method for Zynq SoCs,” in
24th International Conference on Field Programmable Logic and Applica-
tions (FPL), 2014, pp. 1 – 4.

[166] A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke, “The Rosetta
experiment: Atmospheric soft error rate testing in differing technology

224 BIBLIOGRAPHY

FPGAs,” IEEE Transactions on Device and Materials Reliability, vol. 5,
no. 3, pp. 317 – 328, 2005.

[167] A. Lesea, “Continuing experiments of atmospheric neutron effects
on deep submicron integrated circuits,” Xilinx Documentation,
http://www.xilinx.com, 2013.

[168] “Continuing experiments of atmospheric neutron effects on deep sub-
micron integrated circuits. WP286 (v2.0),” Xilinx Documentation,
http://www.xilinx.com, Xilinx Corp., Tech. Rep., 2016.

[169] Xilinx Corp., “Radiation-hardened, space-grade virtex-5qv family overview
ds192(v1.4),” Xilinx Documentation, http://www.xilinx.com, 2014.

[170] Microsemi Corp., “RTG4 FPGA, DS0131 datasheet,” Microsemi Documen-
tation, http://www.microsemi.com, 2016.

[171] Microsemi Corp., “RTAX-S/SL and RTAX-DSP Radiation-
Tolerant FPGAs, Datasheet,” Microsemi Documentation,
http://www.microsemi.com, 2015.

[172] Actel Corp., “HiRel SX-A Family FPGAs, Datasheet,” Actel Documenta-
tion, http://www.actel.com, 2006.

[173] Actel Corp., “Radiation-Tolerant ProASIC3 FPGAs Radiation Effects,”
Actel Documentation, http://www.actel.com, 2010.

[174] J. Hussein and G. Swift, “Mitigating single-event upsets,” Xilinx Documen-
tation, http://www.xilinx.com, 2015.

[175] S. Habinc, “Lessons learned from FPGA developments,” Gaiser Research,
Tech. Rep., 2002.

[176] S. Habinc, “Suitability of reprogrammable FPGAs in space applications,”
Gaisler Research,” Feasibility Report, 2002.

[177] W. J. Huang and E. J. McCluskey, “A memory coherence technique for
online transient error recovery of fpga configurations,” in ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. ACM,
2001, pp. 183 – 192.

[178] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel,
M. Friendlich, H. Kim, and A. Phan, “Effectiveness of internal versus ex-
ternal seu scrubbing mitigation strategies in a Xilinx FPGA: Design, test,
and analysis,” IEEE Transactions on Nuclear Science, pp. 2259 – 2266,
2008.

BIBLIOGRAPHY 225

[179] N. Imran, R. A. Ashraf, and R. DeMara, “On-demand fault scrubbing using
adaptive modular redundancy,” in International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), 2013, p. 1.

[180] M. Garvie and A. Thompson, “Scrubbing away transients and jiggling
around the permanent: Long survival of FPGA systems through evolu-
tionary self-repair,” in IEEE International On-Line Testing Symposium,
2004, pp. 155 – 160.

[181] C. Carmichael and C. Wei Tseng, “Correcting single-event upsets
in Virtex-4 FPGA configuration memory,” Xilinx Documentation,
http://www.xilinx.com, Xilinx Corp., Tech. Rep., 2009, xAPP1088 (v1.0).

[182] J. Heiner, N. Collins, and M. Wirthlin, “Fault tolerant ICAP controller for
high-reliable internal scrubbing,” in IEEE Aerospace Conference, 2008, pp.
1 – 10.

[183] M. Kumar, D. Digdarsini, N. Misra, and T. Ram, “SEU mitigation of rad-
tolerant Xilinx FPGA using external scrubbing for geostationary mission,”
in India Conference (INDICON), 2016 IEEE Annual. IEEE, 2016, pp. 1
– 6.

[184] N. Rollins, M. Fuller, and M. Wirthlin, “A comparison of fault-tolerant
memories in SRAM-based FPGAs,” in IEEE Aerospace Conference, 2010,
pp. 1 – 12.

[185] N. H. Rollins, “Hardware and software fault-tolerance of softcore processors
implemented in SRAM-based FPGAs,” Ph.D. dissertation, Brigham Young
University, 2012.

[186] Xilinx Corp., “Soft error mitigation controller. PG036 (v4.1),” Xilinx Doc-
umentation, http://www.xilinx.com, 2014.

[187] G. Vera, S. Ardalan, X. Yao, and K. Avery, “Fast local scrubbing for field-
programmable gate array’s configuration memory,” Journal of Aerospace
Information Systems, pp. 144 – 153, 2013.

[188] G. Asadi and M. Tahoori, “Soft error mitigation for SRAM-based FPGAs,”
in IEEE VLSI Test Symposium, 2005, pp. 207 – 212.

[189] A. Vavousis, A. Apostolakis, and M. Psarakis, “A fault tolerant approach
for FPGA embedded processors based on runtime partial reconfiguration,”
Journal of Electronic Testing: Theory and Applications (JETTA), pp. 1 –
19, 2013.

[190] E. Kamanu, P. Reddy, K. Hsu, and M. Lukowaik, “A new architecture

226 BIBLIOGRAPHY

for single-event detection and reconfiguration of SRAM-based FPGAs,” in
IEEE High Assurance Systems Engineering Symposium (HASE), 2007, pp.
291 – 298.

[191] X. Iturbe, M. Azkarate, I. Martinez, J. Perez, and A. Astarloa, “A novel
SEU, MBU and SHE handling strategy for Xilinx Virtex-4 FPGAs,” in
International Conference on Field Programmable Logic and Applications
(FPL), 2009, pp. 569 – 573.

[192] M. Palmer, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello, “An ef-
ficient and low-cost design methodology to improve SRAM-based FPGA
robustness in space and avionics applications,” in International Workshop
on Reconfigurable Computing: Architectures, Tools and Applications, 2009,
pp. 74 – 84.

[193] N. Avirneni and A. Somani, “Low overhead soft error mitigation techniques
for high-performance and aggressive designs,” IEEE Transactions on Com-
puters, pp. 488 – 501, 2012.

[194] Z. Qian, Y. Ichinomiya, M. Amagasaki, M. Iida, and T. Sueyoshi, “A novel
soft error detection and correction circuit for embedded reconfigurable sys-
tems,” IEEE Embedded Systems Letters, pp. 89 – 92, 2011.

[195] Y. Ichinomiya, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi, “Im-
proving the soft-error tolerability of a soft-core processor on an FPGA
using triple modular redundancy and partial reconfiguration,” Journal of
Next Generation Information Technology, pp. 35 – 48, 2011.

[196] A. Fort, M. Mugnaini, V. Vignoli, V. Gaggii, and M. Pieralli, “Fault toler-
ant design of a field data modular readout architecture for railway applica-
tions,” Reliability Engineering & System Safety, pp. 456 – 462, 2015.

[197] K. Morgan, D. McMurtrey, B. Pratt, and M. Wirthlin, “A comparison of
TMR with alternative fault-tolerant design techniques for FPGAs,” IEEE
Transactions on Nuclear Science, pp. 2065 – 2072, 2007.

[198] U. Kretzschmar, A. Astarloa, J. Lazaro, and G. M., “Robustness of different
TMR granularities in shared wishbone architectures on SRAM FPGA,”
in International Conference on ReConFigurable Computing and FPGAs
(ReConFig), 2012.

[199] M. Niknahad, O. Sander, and J. Becker, “Fine grain fault tolerance- a key
to high reliability for FPGAs in space,” in IEEE Aerospace Conference,
2012, pp. 1 – 10.

BIBLIOGRAPHY 227

[200] F. Lahrach, A. Abdaoui, A. Doumar, and E. Chatelet, “A novel SRAM-
based FPGA architecture for defect and fault tolerance of configurable logic
blocks,” in IEEE International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), 2010, pp. 305 – 308.

[201] M. Niknahad, O. Sander, and J. Becker, “FGTMR - fine grain redundancy
method for reconfigurable architectures under high failure rates,” in North-
East Asia Symposium on Nano, Information Technology and Reliability
(NASNIT), 2011, pp. 186 – 191.

[202] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving
FPGA design robustness with partial TMR,” in Annual IEEE International
Reliability Physics Symposium Proceedings, 2006, pp. 226 – 232.

[203] X. Wang, “Partitioning triple modular redundancy for single event upset
mitigation in FPGA,” in International Conference on E-Product E-Service
and E-Entertainment (ICEEE), 2010, pp. 1 – 4.

[204] J. Johnson and M. Wirthlin, “Voter insertion techniques for fault tolerant
FPGA design,” NSF Center for High Performance Reconfigurable Comput-
ing (CHREC), 2009.

[205] F. Kastensmidt, L. Sterpone, L. Carro, and M. Reorda, “On the optimal
design of triple modular redundancy logic for SRAM-based FPGAs,” in
Design, Automation and Test in Europe, 2005, pp. 1290 – 1295.

[206] C. Bolchini, D. Quarta, and M. Santambrogio, “SEU mitigation for SRAM-
based FPGAs through dynamic partial reconfiguration,” in ACM Great
Lakes symposium on VLSI, 2007, pp. 55 – 60.

[207] V. Tiwari and P. S. Patwal, “Design and analysis of software fault-tolerant
techniques for soft-core processors in reliable sram-based FPGA,” Int. J.
Compo Tech. Appl., pp. 1812 – 1819, 2006.

[208] K. M. Chandy and C. V. Ramamoorthy, “Rollback and recovery strategies
for computer programs,” IEEE Transactions on Computers, pp. 546 – 556,
1972.

[209] A. L. Sartor, A. Lorenzon, L. Carro, F. Kastensmidt, S. Wong, and A. Beck,
“Exploiting idle hardware to provide low overhead fault tolerance for VLIW
processors,” ACM Journal on Emerging Technologies in Computing Sys-
tems (JETC), 2017.

[210] D. K. Pradhan and N. H. Vaidya, “Roll-forward and rollback recovery:
Performance-reliability trade-off,” in IEEE International Symposium on
Fault- Tolerant Computing, 1994, pp. 186 – 195.

228 BIBLIOGRAPHY

[211] F. Abate, L. Sterpone, and M. Violante, “A new mitigation approach for
soft errors in embedded processors,” IEEE Transactions on Nuclear Sci-
ence, pp. 2063 – 2069, 2008.

[212] F. Abate, L. Sterpone, C. Lisboa, L. Carro, and M. Violante, “New tech-
niques for improving the performance of the lockstep architecture for SEEs
mitigation in FPGA embedded processors,” IEEE Transactions on Nuclear
Science, pp. 1992 – 2000, 2009.

[213] J. Arm, Z. Bradac, and R. Stohl, “Increasing safety and reliability of roll-
back and roll-forward lockstep technique for use in real-time systems,”
IFAC Conference on Programmable Devices and Embedded Systems, pp.
413 – 418, 2016, iFACPDES.

[214] M. Zheng, Z. Wang, and L. Li, “Fault injection method and voter design for
dual modual redundancy FPGA hardening,” in International Conference
on Electronics Information and Emergency Communication (ICEIEC),
2016, pp. 109 – 112.

[215] P. Reviriego, M. Demirci, J. Tabero, A. Regad́ıo, and J. Maestro, “Dmr+:
An efficient alternative to TMR to protect registers in xilinx FPGAs,”
Microelectronics Reliability, pp. 314 – 318, 2016.

[216] S. Fouad, F. Ghaffari, M. Benkhelifa, and B. Granado, “Context-aware re-
sources placement for SRAM-based FPGA to minimize checkpoint recovery
overhead,” in International Conference on ReConFigurable Computing and
FPGAs (ReConFig), 2014, pp. 1 – 6.

[217] J. van Neumann, “Probabilistic logics and synthesis of reliable organisms
from unreliable components, automata studies,” Annals of Mathematical
Studies, pp. 43 – 98, 1956.

[218] S. Venkataraman, R. Santos, and A. Kumar, “A flexible inexact TMR
technique for SRAM-based FPGAs,” in Conference on Design, Automation
& Test in Europe, 2016, pp. 810 – 813.

[219] C. Bolchini, A. Miele, and M. Santambrogio, “TMR and partial dynamic
reconfiguration to mitigate SEU faults in FPGAs,” in IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT), 2007,
pp. 87 – 95.

[220] K. Siozios and D. Soudris, “A low-cost fault tolerant solution targeting
commercial FPGA devices,” Journal of Systems Architecture, pp. 1255 –
1265, 2013.

[221] D. Agiakatsikas, N. T. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and

BIBLIOGRAPHY 229

L. Gong, “Reconfiguration control networks for TMR systems with module-
based recovery,” in International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). IEEE, 2016, pp. 88 – 91.

[222] M. Psarakis, “Reliability-aware overlay architectures for FPGAs: Features
and design challenges,” arXiv preprint arXiv:1606.06452, 2016.

[223] F. Brosser and E. Milh, “SEU mitigation techniques for advanced repro-
grammable FPGA in space,” Chalmers University of Technology, 2014.

[224] M. Sullivan, H. Loomis, and A. Ross, “Employment of reduced precision
redundancy for fault tolerant FPGA applications,” in IEEE Symposium on
Field Programmable Custom Computing Machines (FCCM), 2009, pp. 283
– 286.

[225] J. Johnson, “Synchronization voter insertion algorithms for FPGA designs
using triple modular redundancy,” Ph.D. dissertation, 2010.

[226] F. Veljkovic, T. Riesgo, and E. de la Torre, “Adaptive reconfigurable voting
for enhanced reliability in medium-grained fault tolerant architectures,” in
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2015,
pp. 1 – 8.

[227] M. Krstic, M. Stojcev, G. Djordjevic, and I. Andrejic, “A mid-value select
voter,” Microelectronics Reliability, pp. 733 – 738, 2005.

[228] H. Kim, H. Lee, and K. Lee, “The design and analysis of avtmr (all voting
triple modular redundancy) and dual–duplex system,” Reliability Engineer-
ing & System Safety, pp. 291 – 300, 2005.

[229] M. Amiri and V. Přenosil, “Design of a simple reliable voter for modular
redundancy implementations,” Distance Learning, Simulation and Com-
munication, p. 8, 2013.

[230] S. D’Angelo, C. Metra, S. Pastore, A. Pogutz, and G. Sechi, “Fault-tolerant
voting mechanism and recovery scheme for TMR FPGA-based systems,”
in IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, 1998, pp. 233 – 240.

[231] R. Kshirsagar and R. Patrikar, “Design of a novel fault-tolerant voter cir-
cuit for TMR implementation to improve reliability in digital circuits,”
Microelectronics Reliability, pp. 1573 – 1577, 2009.

[232] T. Ban and L. de Barros Naviner, “A simple fault-tolerant digital voter
circuit in TMR nanoarchitectures,” in IEEE International NEWCAS Con-
ference, 2010, pp. 269 – 272.

230 BIBLIOGRAPHY

[233] P. Balasubramanian, K. Prasad, and N. Mastorakis, “A fault tolerance
improved majority voter for TMR system architectures,” arXiv preprint
arXiv:1605.03771, 2016.

[234] M. Gericota, L. Lemos, G. Alves, and J. Ferreira, “A framework for
self-healing radiation-tolerant implementations on reconfigurable FPGAs,”
in IEEE Design and Diagnostics of Electronic Circuits and Systems
(DDECS), 2007, pp. 1 – 6.

[235] U. Legat, A. Biasizzo, and F. Novak, “Self-reparable system on FPGA for
single event upset recovery,” in International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2011, pp. 1 – 6.

[236] A. Upegui, J. Izui, and G. Curchod, “Fault mitigation by means of dynamic
partial reconfiguration of Virtex-5 FPGAs,” in International Conference on
Reconfigurable Computing and FPGAs (ReConFig), 2012, pp. 1 – 6.

[237] Xilinx Corp., “Xilinx tmrtool user guide.UG156 (v9.0),” Xilinx Documen-
tation, http://www.xilinx.com, 2009.

[238] “No room for error: Creating highly reliable, high-availability fpga designs,”
Synopsys Documentation, http://www.Synopsys.com, Synopsys Inc., Tech.
Rep., 2012.

[239] A. Jacobs, G. Cieslewski, and A. George, “Overhead and reliability analy-
sis of algorithm-based fault tolerance in FPGA systems,” in International
Conference on Field Programmable Logic and Applications (FPL), 2012,
pp. 300 – 306.

[240] S. Sharma and P. Vijayakumar, “An HVD based error detection and correc-
tion of soft errors in semiconductor memories used for space applications,”
in International Conference on Devices, Circuits and Systems (ICDCS),
2012, pp. 563 – 567.

[241] R. Hentschke, F. Marques, F. Lima, L. Carro, A. Susin, and R. Reis, “Ana-
lyzing area and performance penalty of protecting different digital modules
with Hamming code and triple modular redundancy,” in Symposium on
Integrated Circuits and Systems Design. IEEE, 2002, pp. 95 – 100.

[242] S. Liu, G. Sorrenti, P. Reviriego, F. Casini, J. Maestro, M. Alderighi, and
H. Mecha, “Comparison of the susceptibility to soft-errors of SRAM-based
FPGA error correction codes implementations,” IEEE Transactions on Nu-
clear Science, pp. 619 – 24, 2012.

[243] G. Prakash and M. Muthamizhan, “FPGA implementation of Bose Chaud-
huri Hocquenghem Code (BCH) encoder and decoder for multiple error

BIBLIOGRAPHY 231

correction control,” in International Journal of Innovative Research in Sci-
ence, Engineering and Technology (IJIRSET), 2016.

[244] S. Park, D. Lee, and K. Roy, “Soft-error-resilient FPGAs using built-in 2-D
Hamming product code,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 20, no. 2, pp. 248 – 56, 2012.

[245] S. Esmaeeli, M. Hosseini, B. Vosoughi Vahdat, and B. Rashidian, “A multi-
bit error tolerant register file for a high reliable embedded processor,”
in IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2011, pp. 532 – 537.

[246] Xilinx Corp., “Virtex-5 user guide UG190 (v5.4),” Xilinx Documentation,
http://www.xilinx.com, 2012.

[247] S. Sarode and A. Patil, “Implementation of fault tolerant soft processor on
FPGA,” IJAR, pp. 781 – 784, 2016.

[248] Xilinx Corp., “Virtex-6 fpga configuration UG360 (v3.9),” Xilinx Docu-
mentation, http://www.xilinx.com, 2015.

[249] W. Yang, L. Wang, and X. Zhou, “CRC circuit design for SRAM-based
FPGA configuration bit correction,” in IEEE International Conference on
Solid-State and Integrated Circuit Technology (ICSICT), 2010, pp. 1660 –
1664.

[250] V. Savani and N. Gajjar, “Development of SEU monitor system for SEU
detection and correction in Virtex-5 FPGA,” in Nirma University Interna-
tional Conference on Engineering (NUiCONE), 2011, pp. 1 – 6.

[251] S. Aishwarya and G. Mahendran, “Multiple bit upset correction in SRAM
based FPGA using Mutation and Erasure codes,” in International Con-
ference on Advanced Communication Control and Computing Technologies
(ICACCCT), 2016, pp. 202 – 206.

[252] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. R. Sonza, and
M. Violante, “Experimentally evaluating an automatic approach for gener-
ating safety-critical software with respect to transient errors,” IEEE Trans-
actions on Nuclear Science, pp. 2231 – 2236, 2000.

[253] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” IEEE Transactions on Reliability,
pp. 63 – 75, 2002.

[254] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on Software Engineering, pp. 1491 – 1501, 1985.

232 BIBLIOGRAPHY

[255] M. Rebaudengo, M. Reorda, and M. Violante, “A new software-based tech-
nique for low-cost fault-tolerant application,” in Reliability and Maintain-
ability Symposium, 2003, pp. 25 – 28.

[256] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. August, and
S. Mukherjee, “Software-controlled fault tolerance,” ACM Transactions on
Architecture and Code Optimization (TACO), pp. 366 – 396, 2005.

[257] S. Rehman, “Reliable software for unreliable hardware-a cross-layer ap-
proach,” Ph.D. dissertation, Karlsruhe, Karlsruher Institut für Technologie
(KIT), 2015.

[258] P. Popov and L. Strigini, “Assessing asymmetric fault-tolerant software,”
in International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2010, pp. 41 – 50.

[259] B. Johnson, J. Aylor, and H. Hana, “Efficient use of time and hardware
redundancy for concurrent error detection in a 32-bit VLSI adder,” IEEE
Journal of Solid-State Circuits, pp. 208 – 215, 1988.

[260] K. Shin and H. Kim, “A time redundancy approach to TMR failures using
fault-state likelihoods,” IEEE Transactions on Computers, pp. 1151 – 1162,
1994.

[261] M. Nicolaidis, “Time redundancy based soft-error tolerance to res-
cue nanometer technologies,” in IEEE VLSI Test Symposium (Cat.
No.PR00146), 1999, pp. 86 – 94.

[262] L. Anghel, D. Alexandrescu, and M. Nicolaidis, “Evaluation of a soft error
tolerance technique based on time and/or space redundancy,” in Symposium
on Integrated Circuits and Systems Design (Cat. No.PR00843), 2000, pp.
237 – 242.

[263] J. Yoon and H. Kim, “Time-redundant recovery policy of TMR failures
using rollback and roll-forward methods,” IEEE Proceedings - Computers
and Digital Techniques, pp. 124 – 132, 2000.

[264] D. Pradhan, Fault Tolerant Computer System Design. Prentice-Hall, 1996.

[265] R. Gosheblagh and K. Mohammadi, “Hybrid time and hardware redun-
dancy to mitigate SEU effects on SRAM-FPGAs: Case study over the
MicroLAN protocol,” Microelectronics Journal, pp. 870 – 879, 2014.

[266] D. Burlyaev, P. Fradet, and A. Girault, “Time-redundancy transformations
for adaptive fault-tolerant circuits,” in NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), 2015, pp. 1 – 8.

BIBLIOGRAPHY 233

[267] A. Balachandran, N. Veeranna, and B. Schafer, “On time redundancy of
fault tolerant C-based MPSoCs,” in IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), 2016, pp. 631 – 636.

[268] S. Pontarelli, M. Ottavi, V. Vankamamidi, G. Cardarilli, F. Lombardi,
and A. Salsano, “Analysis and evaluations of reliability of reconfigurable
FPGAs,” Journal of Electronic Testing, pp. 105 – 116, 2008.

[269] A. Astarloa, J. Lazaro, U. Bidarte, J. Jimenez, and A. Zuloaga, “A FPGA
based platform for autonomous fault tolerant systems,” in Trends in Ap-
plied Intelligent Systems. DCIS Proceedings, 2010, pp. 234 – 239.

[270] S. D’Angelo, C. Metra, and G. Sechi, “Transient and permanent fault di-
agnosis for FPGA-based TMR systems,” in International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), 1999, pp. 330 – 338.

[271] C. Bolchini, C. Sandionigi, L. Fossati, and D. Codinachs, “A reliable fault
classifier for dependable systems on SRAM-based FPGAs,” in IEEE Inter-
national On-Line Testing Symposium (IOLTS), 2011, pp. 92 – 97.

[272] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Efficiently supporting
fault-tolerance in FPGAs,” in ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 1998, pp. 105 – 115.

[273] Xilinx Corp., “Vivado design suite. using constraints. tutorial.UG945
(v2013.3),” Xilinx Documentation, http://www.xilinx.com, 2013.

[274] W. Huang and E. McCluskey, “Column-based precompiled configuration
techniques for FPGA,” in IEEE Symposium on Field-Programmable Cus-
tom Computing Machines. IEEE, 2001, pp. 137 – 146.

[275] S. Mitra, W. Huang, N. Saxena, S. Yu, and E. McCluskey, “Reconfigurable
architecture for autonomous self-repair,” IEEE Design Test of Computers,
pp. 228 – 240, 2004.

[276] R. Salvador, A. Otero, J. Mora, E. de la Torre, L. Sekanina, and T. Riesgo,
“Fault tolerance analysis and self-healing strategy of autonomous, evolvable
hardware systems,” in International Conference on Reconfigurable Comput-
ing and FPGAs (ReConFig), 2011, pp. 164 –169.

[277] M. Jing and L. Woolliscroft, “A fault-tolerant multiple processor system
for space instrumentation,” in International Conference on Control. IET,
1991, pp. 411 – 416.

[278] S. Yu and E. McCluskey, “Permanent fault repair for FPGAs with limited

234 BIBLIOGRAPHY

redundant area,” in IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2001, pp. 125 – 133.

[279] S. Yu and E. McCluskey, “On-line testing and recovery in TMR systems
for real-time applications,” in Proceedings International Test Conference,
2001, pp. 240 – 249.

[280] M. Ebrahimi, S. Miremadi, and H. Asadi, “ScTMR: A scan chain-based
error recovery technique for TMR systems in safety-critical applications,”
in Design, Automation Test in Europe, 2011, pp. 1 – 4.

[281] J. Azambuja, F. Sousa, L. Rosa, and F. Kastensmidt, “Evaluating large
grain TMR and selective partial reconfiguration for soft error mitigation in
SRAM-based FPGAs,” in IEEE International On-Line Testing Symposium
(IOLTS), 2009, pp. 101 – 106.

[282] C. Pilotto, J. R. Azambuja, and F. L. Kastensmidt, “Synchronizing triple
modular redundant designs in dynamic partial reconfiguration applica-
tions,” in Symposium on Integrated Circuits and Systems Design (SBCCI),
2008, pp. 199 – 204.

[283] E. Cetin and O. Diessel, “Guaranteed fault recovery time for FPGA-based
TMR circuits employing partial reconfiguration,” in International Work-
shop on Computing in Heterogeneous. Autonomous ‘N’Goal-oriented Envi-
ronments, 2012.

[284] N. Goel and K. Paul, “Hardware controlled and software independent fault
tolerant FPGA architecture,” in International Conference on Advanced
Computing and Communications (ADCOM), 2007, pp. 497 – 502.

[285] Z. Feng, N. Jing, and L. He, “IPF: In-place X-Filling Algorithm for the
reliability of modern FPGAs,” 2013, pp. 1 – 1.

[286] Y. Liu and W. Li, “Study on hardware implementation of artificial im-
mune system,” in International Conference on Information Engineering
and Computer Science (ICIECS), 2010, pp. 1 – 4.

[287] Z. Wang, L. L. Ding, Z. B. Yao, H. X. Guo, H. Zhou, and M. Lv, “The
reliability and availability analysis of SEU mitigation techniques in SRAM-
based FPGAs,” in European Conference on Radiation and Its Effects on
Components and Systems (RADECS), 2009, pp. 497 – 503.

[288] A. Ramos, A. Ullah, P. Reviriego, and J. Maestro, “Efficient protection
of the register file in soft-processors implemented on xilinx fpgas,” IEEE
Transactions on Computers, no. 99, pp. 1 – 1, 2017.

BIBLIOGRAPHY 235

[289] Altera, “Robust SEU mitigation with stratix III FPGAs,” Altera Docu-
mentation, http://www.altera.com, 2007.

[290] C. Rousselle, M. Pflanz, A. Behling, T. Mohaupt, and H. Vierhaus, “A
register-transfer-level fault simulator for permanent and transient faults in
embedded processors,” in Conference and Exhibition Design, Automation
and Test in Europe., 2001, p. 811.

[291] P. Folkesson, S. Svensson, and J. Karlsson, “A comparison of simulation
based and scan chain implemented fault injection,” in International Sym-
posium on Fault-Tolerant Computing, 1998, pp. 284 – 293.

[292] V. Sieh, O. Tschache, and F. Balbach, “VERIFY: Evaluation of reliability
using VHDL-models with embedded fault descriptions,” in International
Symposium on Fault Tolerant Computing, 1997, pp. 32 – 36.

[293] C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Garcia, and L. Entrena,
“Autonomous fault emulation: A new FPGA-based acceleration system for
hardness evaluation,” IEEE Transactions on Nuclear Science, pp. 252 –
261, 2007.

[294] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso,
M. Portela, and C. Lopez-Ongil, “Soft error sensitivity evaluation of mi-
croprocessors by multilevel emulation-based fault injection,” IEEE Trans-
actions on Computers, pp. 313 – 322, 2012.

[295] J. Walters, K. Zick, and M. French, “A practical characterization of a
NASA SpaceCube application through fault emulation and laser testing,” in
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2013, pp. 1 – 8.

[296] M. Bellato, M. Ceschia, M. Menichelli, A. Papi, J. Wyss, and
A. Paccagnella, “Ion beam testing of SRAM-based FPGA’s,” in European
Conference on Radiation and Its Effects on Components and Systems, 2001,
pp. 474 – 480.

[297] T. Vanat, J. Pospiil, F. Kriek, J. Ferencei, and H. Kubatova, “A system
for radiation testing and physical fault injection into the fpgas and other
electronics,” in Euromicro Conference on Digital System Design, 2015, pp.
205 – 210.

[298] M. Violante, L. Sterpone, A. Manuzzato, S. Gerardin, P. Rech, M. Bagatin,
A. Paccagnella, C. Andreani, G. Gorini, A. Pietropaolo, G. Cardarilli,
S. Pontarelli, and C. Frost, “A new hardware/software platform and a

236 BIBLIOGRAPHY

new 1/e neutron source for soft error studies: Testing FPGAs at the ISIS
facility,” IEEE Transactions on Nuclear Science, pp. 1184 – 1189, 2007.

[299] E. Fuller, M. Caffrey, A. Salazar, C. Carmichael, and J. Fabula, “Radia-
tion testing update, SEU mitigation, and availability analysis of the Virtex
FPGA for space re-configurable computing,” in International Conference
on Military and Aerospace Programmable Logic Devices, 2000.

[300] M. French, P. Graham, M. Wirthlin, and L. Wang, “Cross functional design
tools for radiation mitigation and power optimization of FPGA circuits,”
in NASA Earth Science Technology Conference. Citeseer, 2006.

[301] P. Maillard, M. Hart, J. Barton, P. Jain, and J. Karp, “Neutron, 64 mev
proton, thermal neutron and alpha single-event upset characterization of
Xilinx 20nm UltraScale Kintex FPGA,” in IEEE Radiation Effects Data
Workshop (REDW), 2015, pp. 1 – 5.

[302] M. Berg, “Field Programmable Gate Array (FPGA) Single Event Effect
(SEE) radiation testing,” NASA Electronic Parts and Packaging (NEPP),
2012.

[303] W. Moreno, J. Samson, and F. Falquez, “Laser injection of soft faults for
the validation of dependability design,” Journal of Universal Computer
Science (J-UCS), pp. 712 – 729, 1999.

[304] V. Pouget, A. Douin, G. Foucard, P. Peronnard, D. Lewis, P. Fouillat, and
R. Velazco, “Dynamic testing of an SRAM-based FPGA by time-resolved
laser fault injection,” in IEEE International On-Line Testing Symposium.
IEEE, 2008, pp. 295 – 301.

[305] G. Saggese, N. Wang, Z. Kalbarczyk, S. Patel, and R. Iyer, “An experi-
mental study of soft errors in microprocessors,” IEEE Micro, vol. 25, no. 6,
pp. 30 – 39, 2005.

[306] J. Azambuja, G. Nazar, P. Rech, L. Carro, F. Lima Kastensmidt, T. Fair-
banks, and H. Quinn, “Evaluating neutron induced SEE in SRAM-based
FPGA protected by hardware- and software-based fault tolerant tech-
niques,” IEEE Transactions on Nuclear Science, pp. 4243 – 4250, 2013.

[307] U. Kretzschmar, A. Astarloa, J. Lazaro, J. Jimenez, and A. Zuloaga, “An
automatic experimental set-up for robustness analysis of designs imple-
mented on SRAM FPGAS,” in International Symposium on System on
Chip (SoC), 2011, pp. 96 – 101.

[308] Z. Jing, L. Zengrong, C. Lei, W. Shuo, W. Zhiping, C. Xun, and Q. Chang,

BIBLIOGRAPHY 237

“An accurate fault location method based on configuration bitstream anal-
ysis,” in NORCHIP, 2012, pp. 1 – 5.

[309] I. Villalta, U. Bidarte, J. Gomez-Cornejo, J. Jimenez, and C. Cuadrado,
“Effect of different design stages on the SEU failure rate of FPGA systems,”
in Conference on Design of Circuits and Integrated Systems (DCIS), 2016,
pp. 1 – 6.

[310] U. Kretzschmar, “Estimating the resilience against single event upsets in
applications implemented on SRAM based FPGAs,” Ph.D. dissertation,
Basque Country University UPV/EHU, 2014.

[311] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, A. Marmo, S. Pastore,
and G. Sechi, “A tool for injecting SEU-like faults into the configuration
control mechanism of Xilinx Virtex FPGAs,” in IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI Systems, 2003, pp. 71 –
78.

[312] N. Harward, M. Gardiner, L. Hsiao, and M. Wirthlin, “A fault injection
system for measuring soft processor design sensitivity on virtex-5 FPGAs,”
in FPGAs and Parallel Architectures for Aerospace Applications. Springer,
2016, pp. 61 – 74.

[313] M. Shokrolah-Shirazi and S. Miremadi, “FPGA-based fault injection into
synthesizable Verilog HDL models,” in International Conference on Secure
System Integration and Reliability Improvement, 2008, pp. 143 – 149.

[314] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, D. Codinachs, S. Pastore,
C. Poivey, G. Sechi, G. Sorrenti, and R. Weigand, “Experimental validation
of fault injection analyses by the FLIPPER tool,” IEEE Transactions on
Nuclear Science, pp. 2129 – 2134, 2010.

[315] M. Jeitler, M. Delvai, and S. Reichor, “FuSE - a hardware accelerated
HDL fault injection tool,” in Southern Conference on Programmable Logic
(SPL), 2009, pp. 89 – 94.

[316] B. Rahbaran, A. Steininger, and T. Handl, “Built-in fault injection in hard-
ware - the FIDYCO example,” in IEEE International Workshop on Elec-
tronic Design, Test and Applications (DELTA), 2004, pp. 327 – 332.

[317] W. Mansour and R. Velazco, “An automated SEU fault-injection method
and tool for HDL-based designs,” IEEE Transactions on Nuclear Science,
pp. 2728 – 2733, 2013.

[318] L. Naviner, J. Naviner, G. dos Santos, E. Marques, and N. Paiva, “FIFA: A

238 BIBLIOGRAPHY

Fault-Injection–Fault-Analysis-based tool for reliability assessment at RTL
level,” Microelectronics Reliability, pp. 1459 – 1463, 2011.

[319] J. Mogollon, H. Guzman-Miranda, J. Napoles, J. Barrientos, and
M. Aguirre, “FTUNSHADES2: A novel platform for early evaluation of
robustness against SEE,” in European Conference on Radiation and Its
Effects on Components and Systems (RADECS), 2011, pp. 169 – 174.

[320] N. Harward, “Measuring soft error sensitivity of fpga soft processor designs
using fault injection,” 2016.

[321] U. Kretzschmar, J. Gomez-Cornejo, A. Astarloa, U. Bidarte, and J. D.
Ser, “Synchronization of faulty processors in coarse-grained TMR protected
partially reconfigurable FPGA designs,” Reliability Engineering & System
Safety, pp. 1 – 9, 2016.

[322] OpenCores - Meziti ElIbrahimi, Abdallah and Zied, ABBASSI, “Copy-
Blaze,” http://opencores.org, 2011.

[323] OpenCores - Bleyer, P., “PacoBlaze,” http://bleyer.org/pacoblaze/, 2007.

[324] W. M. El-Medany, A. Alomary, R. Al-Hakim, S. Al-Irhayim, and M. Nousif,
“Implementation of GPRS-based positioning system using PIC microcon-
troller,” in International Conference on Computational Intelligence, Com-
munication Systems and Networks (CICSyN), 2010, pp. 365 – 368.

[325] P. N. Rivera-Arzola, J. C. Ramos-Fernandez, J. M. O. Franco,
M. Villanueva-Ibanez, and M. A. Flores-Gonzalez, “A PIC microcontroller
embedded system for medical rehabilitation using ultrasonic stimulation
through controlling planar X-Y scanning trajectories,” in IEEE Electron-
ics, Robotics and Automotive Mechanics Conference (CERMA), 2011, pp.
307 – 310.

[326] S. Genovesi, A. Monorchio, M. B. Borgese, S. Pisu, and F. M. Valeri,
“Frequency-reconfigurable microstrip antenna with biasing network driven
by a PIC microcontroller,” IEEE Antennas and Wireless Propagation Let-
ters, vol. 11, pp. 156 – 1 59, 2012.

[327] M. Bales, “Xilinx implementation tutorial,” in IEEE/ACM International
Conference on Computer Aided Design (ICCAD), 2007.

[328] T. Santini, L. Carro, F. R. Wagner, and P. Rech, “Reliability analysis of
operating systems for embedded SoC,” in European Conference on Radia-
tion and Its Effects on Components and Systems (RADECS), 2015, pp. 1
– 5.

BIBLIOGRAPHY 239

[329] Xilinx Corp., “Zynq-7000 all programmable SoC technical reference man-
ual UG585 (v1.9.1),” AVNET Documentation, http://www.zedboard.org,
2014.

[330] T. Simon, PuTTY, http://www.putty.org, 2000.

[331] OpenCores - Wallner, Daniel, “PPX16 MUC project,”
http://opencores.org, 2002.

[332] U. Kretzschmar, A. Astarloa, J. Lazaro, J. Jimenez, and A. Zuloaga, “An
Automatic Experimental Set-up for Robustness Analysis of Designs Im-
plemented on SRAM FPGAs,” in International Symposium on System on
Chip (SoC), nov. 2011, pp. 96 –101.

[333] Lattice Semiconductor Corporation, “LatticeMico32 processor
user’s guide,” Lattice Semiconductor Corporation Documentation,
http://www.latticesemi.com/, 2011.

[334] Gaisler, “Leon3 product sheet,” Gaisler Documentation,
http://www.gaisler.com/, 2010.

[335] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution for
multiprocessors with private cache memories,” SIGARCH Comput. Archit.
News, pp. 348 – 354, 1984.

[336] J. Archibald and J. Baer, “Cache coherence protocols: Evaluation using a
multiprocessor simulation model,” ACM Trans. Comput. Syst., pp. 273 –
298, 1986.

