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Abstract

Dyslexia and attention deficit hyperactivity disorder (ADHD) are two complex neuro-behavior-

ally disorders that co-occur more often than expected, so that reading disability has been linked

to inattention symptoms. We examined 4 SNPs located on genes previously associated to dys-

lexia (KIAA0319, DCDC2, DYX1C1 and FOXP2) and 3 SNPs within genes related to ADHD

(COMT, MAOA and DBH) in a cohort of Spanish children (N = 2078) that met the criteria of

having one, both or none of these disorders (dyslexia and ADHD). We used a case-control

approach comparing different groups of samples based on each individual diagnosis. In addi-

tion, we also performed a quantitative trait analysis with psychometric measures on the general

population (N = 3357). The results indicated that the significance values for some markers

change depending on the phenotypic groups compared and/or when considering pair-wise

marker interactions. Furthermore, our quantitative trait study showed significant genetic associ-

ations with specific cognitive processes. These outcomes advocate the importance of estab-

lishing rigorous and homogeneous criteria for the diagnosis of cognitive disorders, as well as

the relevance of considering cognitive endophenotypes.

Introduction

Dyslexia [MIM: 127700] and Attention Deficit Hyperactivity Disorder (ADHD

[MIM:143465]) are two neurobehavioral disorders with high prevalence [1]. Both are consid-

ered complex disorders influenced by multiple genetic and environmental risk factors [1,2]

and it is thought that many genes are implicated in their development, each one contributing

with a small effect on the total phenotypic variance. Dyslexia is characterized by difficulties in

learning to read despite normal intelligence, educational opportunities or physical abilities
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(correct vision and audition). On the other hand, ADHD is described with symptoms such as

excessive motor activity, impulsiveness and inattention [3]. ADHD is frequently divided into

three subtypes depending on the predominant symptoms: the inattentive type, the hyperac-

tive-impulsive type or the combined type [3]. In this study, we have only focused on children

with inattentive symptoms (i.e. attention deficits).

Nine loci (DYX1-DYX9) [4] have been identified as candidates for susceptibility to dyslexia,

which contain a number of genes potentially related to this disorder: KIAA0319 (6p22.3)

[MIM: 609269] [5,6], DCDC2 (6p22.1) [MIM: 605755] [6–8], DYX1C1 (15q21.3) [MIM:

608706] [9,10], ROBO1(3p12)[MIM: 602430] [11], FOXP2 (7q31) [MIM: 605317] [12]. For

ADHD, molecular studies have concentrated on genes encoding proteins involved in the

dopaminergic pathway, with special interest in the dopamine receptor DRD4 (11p15.5) [MIM:

126452] [13] and dopamine transporter DAT1 (or SLC6A3, 5p15.3) [MIM: 126455] [14].

Other genes such as DBH (9q34) [MIM: 609312] [15], COMT (22q11.21) [MIM: 116790] [16]

andMAOA (Xp11.3) [MIM: 309850] [17] have also been examined because of their roles in

the dopaminergic system, but have not been studied extensively. Importantly, despite de fact

that there have been many genetic studies of dyslexia and ADHD, conclusive results linking

the two conditions/disorders is lacking.

As reported, dyslexia and ADHD appear together more often than expected [18] and some

studies have shown a stronger relationship between dyslexia and symptoms of inattention

[19–22] rather than hyperactivity/impulsivity symptoms. Twin and family studies suggest that

this overlap is, partly, due to shared genetic background [21,23,24]. Indeed, several studies

have demonstrated intersecting genetic regions for these syndromes [25,26]. The search for

dyslexia or ADHD-specific susceptibility genes is difficult not only because of the complexity

and heterogeneity of these conditions, but also due to their co-occurrence (also known as

comorbidity) with other cognitive disorders, which makes it even more difficult to obtain con-

clusive results, particularly if the other disorders are not diagnosed. When comorbidity is

ignored, it can be erroneously concluded that a particular variable is associated with a given

disorder, when in fact it is interacting with the comorbid condition [27]. Importantly, the

results of genetic analyses can only be as good as the symptomatology criteria of the studied

phenotype. Therefore, it is of vital importance to correctly establish the diagnostic criteria

applied to the cohorts in order to find meaningful associations [28]. In the study of dyslexia

candidate genes in cases of ADHD (or the other way around, ADHD candidate genes in cases

of dyslexia), these are fundamental considerations.

The aim of this study was to evaluate the reproducibility of association between reported

SNPs in dyslexia and ADHD in our Spanish cohort, examining the relationship when comor-

bid individuals are included or excluded in the case population. In addition to each single

marker approach, we have investigated the effect of composite genotypes using pairs of SNPs,

to assess the epistatic relation of those markers with these cognition disorders.

Nonetheless, the diagnostic of all-or-none, when assessing whether the disorder is present

or not, may not be optimal for many genetic studies, as this type of characterization does not

capture the complete essence of the phenotype [1]. Both dyslexia and ADHD might arise from

many different cognitive processes and, consequently, it has been suggested that identifying

susceptibility genes for endophenotypes may prove a very fruitful strategy [2,29]. Many of

these cognitive functions seem to be continuously distributed in the general population.

Therefore, in addition to searching for genetic differences between cases and controls, we also

investigated the correlation of the output genotypes and phenotypes of all participants (includ-

ing the extreme ones), since direct analysis of continuous indices of severity or cognitive traits

may allow discovery of genes related to the specific cognitive processes underlying each disor-

der [30,31].

Candidate SNPs association with dyslexia and ADHD
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Materials and methods

1.-Sample collection and DNA extraction

A total of 4678 saliva samples were collected from children at schools all over Spain from dif-

ferent regions (Andalucı́a, Basque Country, Castilla-León, Murcia, and Canary Islands), after

informed consent was obtained from their tutors or parents. La-Laguna University Ethical

Committee approved consent by tutors or parents. Parents were informed and provided the

opportunity to opt-out in cases in which consent was obtained from tutors. A saliva sample

was collected from each participant with Oragene saliva kits (OG-500, DNA Genotek Inc.,

Canada) and corresponding DNA was extracted following manufacturer’s instructions, quan-

tified and qualified on 0.8%Agarose-1xTAE-gels. Only participants with Spanish origins were

used for subsequent analyses. The Spanish origin was assessed by principal component analy-

sis (PCA) using samples from another research study diagnosed with the same criteria (a total

of 1500 samples that overlapped with this study samples). A genome-wide genotyping was per-

formed (638592 SNPs along the genome) and population stratification was analyzed by PCA.

The results showed no population stratification. See S1 Fig. for further details.

2.-Diagnostic criteria

Dyslexics and controls were selected by using a discriminant function created with an a priori
group diagnosed with dyslexia (n = 43) and another a priori group of controls taking into

account their performance (one standard deviation above the mean) in a text-comprehension

test (n = 470). We used a text-comprehension test to define the control group because it

involves decoding and reading to avoid circularity when applying the discriminant function to

word and pseudoword reading. The discriminant function successful separated the dyslexics

and the controls: Wilks’ (lambda) = 0.60, F (1,497) = 329.9, p<0.0001. The variables of the dis-

criminant function that classified dyslexics and controls with a sensibility of 91% and specific-

ity of 94% were: age, efficiency in reading words and pseudowods, rapid naming of pictures

and colors (RAN), reaction time in phoneme picture matching for phonological awareness

(PA), accuracy in letter position identification, reaction time in syllable identification (see S1

File for a description of the tasks and S8 Table for mean and SD values). Table 1 shows the

standardized and the structure coefficients corresponding to these variables. We selected as

dyslexics the participants with an IQ (intelligence quotient) above 80 that fell in the deciles 1

or 2 of the discriminant function, and as controls the participants that fell in the decile 5 or

higher.

Participants were classified as ADHD taking into account their error rates and reaction

times in three tasks (Verbal-Stroop, Numerical-Stroop and Attentional Network Task (ANT))

(see S1 File for a description of the tasks and S9 Table for mean and SD values). Specifically,

they were classified as ADHD if they had an IQ above 80 and fell in the quartile 4 on reaction

times (slow responses) or in the quartile 1 in error rates (high error rates) in the three tasks.

Table 1. Standardized and structure coefficients for the variables that entered the discriminant function.

Standardized Structure

Age -0.885 -0.025

Word and pseudoword efficiency 0.969 0.715

Rapid naming (pictures and colors) -0.532 -0.545

Phoneme picture matching -0.169 -0.333

Letter position identification 0.100 -0.011

Syllable identification 0.155 -0.081

https://doi.org/10.1371/journal.pone.0206431.t001
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They were classified as controls when they fell in quartiles 1, 2 or 3 on reaction times. Finally,

the comorbids were defined as those individuals with developmental dyslexia and ADHD (i.e.

also tested and falling into both of the criteria-based categories as described above) (see S10

Table for mean and SD values).

3.-SNP genotyping

The DNA extracted from the collected saliva samples was characterized for seven SNP markers

by Taqman SNP Genotyping assays resolved in a ViiA7 Real-Time-PCR System (Thermo-

Fisher-Scientific Inc., Massachusetts, USA). The studied SNP-IDs are: rs57809907-DYX1C1
(custom design), rs6323-MAOA (custom design), rs1611115-DBH (C_2535786_10),

rs2274305-DCDC2 (C_9344981_1_), rs4504469-KIAA0319 (C_390135_10), rs12533005-

FOXP2 (C_220195_10) and rs4680-COMT1 (C_25746809_50). Reactions were performed

according to manufacturer’s instructions.

4.-Statistical analyses

Resulting genotypes were tested for Hardy-Weinberg equilibrium with a χ2 goodness-of-fit

test. Single-nucleotide-polymorphisms association analyses for genotypic, allelic, dominant

and recessive models and pair-wise SNPs epistasis scrutiny in case-control strategy were car-

ried out with PLINK (http://zzz.bwh.harvard.edu/plink/) [32] against the null hypothesis of

“no association”. The samples were classified in 6 groups (Fig 1) based on their phenotype,

and 7 different contrasts were performed. All the analyses were implemented in the whole

cohort as well as separated by gender.

For the quantitative trait loci (QTL) approach, the genotypes of the candidate markers were

analyzed for reading and attention measures by evaluating the variance with age as covariate

(ANCOVA) and Hochberg false discovery rate correction [33]. Children with IQ lower than

80 were excluded from the analyses. Related to reading and attention, the variables examined

were word reading (high and low frequency words), pseudoword reading, PA, RAN, syllable

discrimination, Verbal-Stroop, Numerical-Stroop, and ANT (S1 File).

Results

Parameters of the population studied

A total of 4678 saliva samples were collected from children at schools all over Spain. Out of

these, 3357 samples (1664 females, 1693 males) with ages between 6–16 years fulfilled the

established criteria and, therefore, were used in the present study. Fig 1 shows the distribution

of individuals diagnosed with dyslexia (Dys), ADHD or characterized as controls (Ctr_Dys,

Dyslexia Controls; Ctr_ADHD, ADHD controls). Note that each sample could meet the criteria

for more than one phenotype. Particularly, we considered as comorbids (Com) 45 participants

who were classified both as dyslexic and ADHD, and we identified 106 comorbid-controls

(Ctr_Com) who shared the criteria for controls of both disorders.

Different marker associations found depending on the inclusion/exclusion

of the comorbid samples within the groups compared

SNP genotyping raw data for each comparison can be downloaded from the S1 Dataset as �.

ped and �.map files. The frequencies of the analyzed SNPs in our population and in the general

European population can be found in S4, S5, S6 and S7 Tables and single marker allelic associ-

ations are summarized in Table 2. Note that most of the described associations do not pass the

multiple testing correction. It is worth mentioning that the statistical significance varied

Candidate SNPs association with dyslexia and ADHD
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notably when comorbids were included or not in the case group. Interestingly, markers within

KIAA0319 and FOXP2 were significantly related to dyslexia when comorbid samples were

Fig 1. Total number of samples diagnosed for each cognitive disorder studied. a) Dys, dyslexia; ADHD, Attention Deficit Hyperactivity

Disorder; Ctr_Dys, dyslexia controls; Ctr_ADHD, ADHD controls; Com, Comorbids; Ctr_Com, comorbid controls. The number of females (F) and

males (M) are detailed in parentheses (FFF/MMM) for each category.b) Total number of individuals in our population and number of

individuals used for the study. �Note that for the Dyslexia Controls and ADHD controls we have only used samples without any disorder

diagnosed. The 40 samples with ADHD have been excluded from the Ctr_Dys group and the 78 dyslexic samples have been excluded from the

Ctr_adhd group for the analyses.

https://doi.org/10.1371/journal.pone.0206431.g001
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included (Dys+Com-vs-Ctr_Dys), as well as when comorbids were analyzed as an independent

group (Com-vs-Ctr_Dys/Com-vs-Ctr_ADHD/Com-vs-Ctr_Com).

Further associations were identified when considering paired-SNPs as an epistatic variant

(Table 3). The composite genotype of DCDC2-DYX1C1 SNPs presented significant association

with ADHD (ADHD-vs-Ctr_ADHD), with lower p-values when comorbid samples were con-

sidered jointly (ADHD+Com-vs-Ctr_ADHD), and also in the Com-vs-Ctr_ADHD test. In con-

trast, the combination DCDC2-KIAA0319 correlated with dyslexia independently of the

inclusion/exclusion of comorbid samples. Additionally, rs4680-COMT showed significant

association in the genotypic comparatives Dys+Com-vs-Ctr_Dys and Com-vs-Ctr_Dys (p-val-

ues = 0.019/0.018, respectively, S1 Table). However, when filtering these data by gender (S2

and S3 Tables), rs4680 does not appear significantly linked, although for males (S3 Table),

some trend of association (p<0.1) was observed at allelic, dominant and recessive models.

For the analysis of rs6323 located inMAOA at chromosome X, only female samples were

considered. The results showed that rs6323 was significantly associated at the recessive com-

parative ADHD+Com-vs-Ctr_ADHD (p-value = 0.022, S1 Table). The recessive tests within the

comorbid comparatives were not performed for rs6323 because the sample size of the com-

pared groups was too small.

Comorbids exhibited extreme discriminant values compared to dyslexic

and ADHD samples

In order to understand the effect of comorbids in the analyses performed, we plotted the dis-

criminant function values to the studied samples, which resulted in the distribution of pheno-

types shown in Fig 2. According to this scattering, the comorbid group showed extreme

discriminant values. The samples situated at the opposite side of the graph correspond to the

controls, while the dyslexics and ADHD fall in between.

Dyslexia and ADHD candidate SNPs are associated with cognitive traits in

the general Spanish population

For QTL analyses, the genotypes and values of variables from the total population (N = 3357)

were analyzed (see Table 4). Remarkably, some SNPs showed associations with tasks related

Table 2. Genetic association results (p values) for single-markers (allelic model).

Dys ADHD Com Com Com Dys+Com ADHD+Com

Chr SNP Gen A1 A2 Ctr_Dys Ctr_ADHD Ctr_Dys Ctr_ADHD Ctr_Com Ctr_Dys Ctr_ADHD

6 rs4504469 KIAA0319 T C 0.0913 0.5377 0.0025 0.0031 0.0101b 0.0084b 0.0952

7 rs12533005 FOXP2 C G 0.1277 0.6375 0.0079b 0.0015 0.0096b 0.0191b 0.1058

6 rs2274305 DCDC2 T C 0.9424 0.5819 0.2011 0.3516 0.3228 0.5935 0.8998

15 rs57809907 DYX1C1 A C 0.9353a 0.9315 0.3662a 0.1902 0.1516 0.6887a 0.6654

9 rs1611115 DBH T C 0.5746 0.1664 0.8282 0.9194 0.1763 0.5555 0.2140

22 rs4680 COMT A G 0.4648 0.5494 0.0732 0.0887 0.1361 0.9883 0.2416

X rs6323 MAOA G T 0.6392 0.1607 0.3279 0.5030 0.5486 0.4623 0.1362

241 187 45 45 45 286 232 N˚ Cas

1197 514 1197 514 106 1197 514 N˚ Ctr

Abbreviations: Chr = chromosome, A1 = allele 1, A2 = allele 2. The grey square shows the case groups in the superior line and the control groups in the inferior one.

Dys = dyslexia samples, ADHD = Attention Deficit Hyperactivity Disorder samples, Com = Comorbid samples, Ctr_Dys = dyslexia controls, Ctr_ADHD = ADHD

controls, Ctr_Com = Comorbid controls, N˚ Cas = number of case samples, N˚ Ctr = number of control samples. Significance values <0.05 are represented underlined.

a = not in Hardy-Weinberg equilibrium. b = not significant after Bonferroni correction (adjusted significance value: p<0.007).

https://doi.org/10.1371/journal.pone.0206431.t002
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either to dyslexia or to ADHD, while others showed associations with tasks related to both dis-

orders. The four SNPs previously related to dyslexia showed very different associations.

rs2274305-DCDC2 was coherently associated with PA and RAN. Similarly, DYX1C1 was also

accordingly associated with word-reading and RAN, but also with the performance in the Ver-

bal and Numerical-Stroop tasks that involve attentional processes. Interestingly, rs12533005-

FOXP2, described in dyslexia studies, was related to the performance in the Verbal and

Numerical-Stroop tasks. Finally, rs4504469-KIAA0319 was related to word reading, RAN, syl-

lable discrimination and Numerical Stroop.

The analyses of the three SNPs previously related to ADHD also showed very different out-

comes. While rs4680-COMT1 was associated with the ANT tasks, the rs6323-MAOA, a marker

for ADHD, showed association not only with Numerical-Stroop but also with word and pseu-

doword reading time, PA, RAN and syllable discrimination. Finally, rs1611115-DBH, another

marker for ADHD, was related to PA and syllable discrimination.

Discussion

The present reading/attentional candidate gene association study based on case-control status

and QTL approach shows that variants of selected genes are related to the phenotype and high-

lights the importance of accurate characterization of phenotypes. In addition, the study shows

genetic associations to cognition by analyzing the relationship of specific SNPs with cognitive

quantitative measures such as endophenotypes in a large sample of individuals.

Table 3. Genetic association results (p values) for pair-wise SNPs interactions (allelic model).

Dys ADHD Com Com Com Dys+Com ADHD+Com

Chr1 SNP2 Gene_1 Chr2 SNP2 Gene_2 Ctr_Dys Ctr_ADHD Ctr_Dys Ctr_ADHD Ctr_Com Ctr_Dys Ctr_ADHD

6 rs2274305 DCDC2 6 rs4504469 KIAA0319 0.0026 0.1472 0.4991 0.5163 0.4128 0.0014 0.0858

6 rs2274305 DCDC2 7 rs12533005 FOXP2 0.2922 0.9086 0.9435 0.9228 0.9427 0.2685 0.7790

6 rs2274305 DCDC2 9 rs1611115 DBH 0.0812 0.8711 0.1487 0.0537 0.0702 0.2807 0.3854

6 rs2274305 DCDC2 15 rs57809907 DYX1C1 0.6073 0.0215b 0.0151a 0.0237b 0.0368b 0.6186 0.0056b

6 rs2274305 DCDC2 22 rs4680 COMT 0.6632 0.3100 0.5400 0.9705 0.9121 0.4677 0.3962

6 rs4504469 KIAA0319 7 rs12533005 FOXP2 0.2089 0.5621 0.9529 0.8237 0.3016 0.1639 0.8171

6 rs4504469 KIAA0319 9 rs1611115 DBH 0.8744 0.6283 0.7593 0.8639 0.8407 0.9596 0.7139

6 rs4504469 KIAA0319 15 rs57809907 DYX1C1 0.1337 0.6962 0.7166 0.8852 0.7612 0.1216 0.9075

6 rs4504469 KIAA0319 22 rs4680 COMT 0.4945 0.6205 0.4747 0.6701 0.3619 0.5495 0.6147

7 rs12533005 FOXP2 9 rs1611115 DBH 0.4117 0.6482 0.8208 0.4449 0.9416 0.5087 0.5522

7 rs12533005 FOXP2 15 rs57809907 DYX1C1 0.3367 0.7178 0.9568 0.9686 0.3636 0.3526 0.6895

7 rs12533005 FOXP2 22 rs4680 COMT 0.8976 0.5683 0.8492 0.6639 0.3706 0.9023 0.8783

9 rs1611115 DBH 15 rs57809907 DYX1C1 0.5203 0.5009 0.1110 0.1546 0.9451 0.2098 0.2192

9 rs1611115 DBH 22 rs4680 COMT 0.2135 0.1642 0.5489 0.8396 0.9118 0.3566 0.1835

15 rs57809907 DYX1C1 22 rs4680 COMT 0.1337 0.9971 0.1902 0.1768 0.4815 0.0782� 0.6366

241 187 45 45 45 286 232 N˚ Cas

1197 514 1197 514 106 1197 514 N˚ Ctr

Abbreviations: Chr1 = Chromosome in which is localized SNP1, Gene_1 = gene in which is localized the SNP1, Chr2 = Chromosome in which is localized SNP2,

Gene_2 = gene in which is localized the SNP2. The grey square shows the compared cases group in the superior line and the control group in the inferior one.

Dys = dyslexia samples, ADHD = Attention Deficit Hyperactivity Disorder samples, Com = Comorbid samples, Ctr_Dys = dyslexia controls, Ctr_ADHD = ADHD

controls, Ctr_Com = Comorbid controls. N˚ Cas = number of case samples, N˚ Ctr = number of control samples. Significance values <0.05 are represented underlined.

a = not in Hardy-Weinberg equilibrium. b = not significant after Bonferroni correction (adjusted significance value: p<0,003).

https://doi.org/10.1371/journal.pone.0206431.t003
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In particular, we replicated previous associations for KIAA0319 and FOXP2 variants in

dyslexic samples, with the relevant finding that higher significance values were obtained for

those SNPs when comorbid samples were included. This observation is concordant with the

fact that individuals who suffer from both disorders present a more severe manifestation of the

symptoms as shown in previous studies [20,34] and in Fig 2. According to Wilcutt et al.[20]

the dyslexia-ADHD comorbid condition shows a more extensive and severe profile of neuro-

psychological weakness. Furthermore, the heritability of reading disabilities was significantly

higher in dyslexics if the individuals also met criteria for ADHD according to Willcutt et al.
[20], which could support our data of a more significant p value when comorbids are consid-

ered. Importantly, Scerri et al. [7] signaled the importance of not excluding comorbid samples

in association analyses, based on the statistical significance that was observed for DCDC2
markers in dyslexic individuals, but only when comorbid samples were considered.

Interestingly, DYX1C1and DCDC2 SNPs, both candidates for the susceptibility of develop-

ing dyslexia, did not show any individual association with this disorder. The lack of relation-

ship with DYX1C1 is not unexpected, since the significant results found in a Finnish

population study of Taipale et al. [9] in have not been replicated in subsequent reports [10,35].

Either different causal variants or singular linkage disequilibrium patterns may exist within

this gene in each population [36], or its effect may only be present under environmental disad-

vantage [37]. In addition, the genetic relation of the DCDC2 variants within the dyslexia phe-

notype has been found to differ across the subgroup classification of the disorder [38].

Notably, we found significant effects when considering the composite genotype of SNPs within

Fig 2. Distribution of the values of the discriminant function for each phenotypic group. Each histogram was

assessed through a kernel density estimation. The comorbid samples were considered as a single group, and therefore,

excluded from the dyslexia and ADHD cohorts. The vertical color bars of the upper and lower borders represent the

samples of each group (blue = comorbids, green = ADHD samples, red = dyslexics and black = controls). Dashed

vertical lines represent the average values of each distribution (blue = comorbids, green = ADHD samples,

red = dyslexics and black = controls).

https://doi.org/10.1371/journal.pone.0206431.g002

Candidate SNPs association with dyslexia and ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0206431 October 31, 2018 8 / 17

https://doi.org/10.1371/journal.pone.0206431.g002
https://doi.org/10.1371/journal.pone.0206431


KIAA0319 and DCDC2 (Table 3), which have been previously reported [6,39–42]. Although

these two genes are localized in the same chromosome, the lack of linkage disequilibrium

Table 4. Genetic association of the analyzed SNPs to the variables measuring cognitive processes related to reading and attention.

Gene Reading PA RAN Syllable

discrimination

STROOP ANT

Word-Reading Pseudoword

High Low Verbal Numerical

KIAA0319
(rs4504469)

Omnibus F(1,745) =

115.89 ���
F(1,753) =

16.58 ���
F(1,785) =

35.19���
F(1,792) =

8.34���

CT vs CC t(753) =

2.36 �
t(785) = 2.24� t(792) =

-2.94 ��

TT vs CC t(745) =

-2.06 �

FOXP2
(rs12533005)

Omnibus F(1,698) =

178.36 ���

CC vs

GG

t(698) =

-20.903 �
t(791) =

-24.706 �

CG vs

GG

t(698) =

-23.170 �

DCDC2
(rs2274305)

Omnibus F(1,771) =

464.31 ���
F(1,756) =

16.61 ���

CT.vs.CC t(771) =

22.42 �

TT.vs.CC t(756) =

-21.24 �

DYX1C1
(rs57809907)

Omnibus F(1,742) =

119.985 ���
F(1,750) =

16.4545 ���
F(1,697) =

48.989 ���
F(1,789) =

7.534 ��

AA vs

CC

t(750) =

-20.274 �
t(697) =

21.343 �
t(789) =

-32.645 ��

AC vs

CC

t(742) =

-20,331 �
t(750) =

-21.956 �

DBH
(rs1611115)

Omnibus F(1,763) =

457.366 ���
F(1,779) = 33.803
���

TT vs CC

CT vs CC t(763) =

20.274 �
t(779) = -19.907 �

COMT1
(rs4680)

Omnibus F(1,641) =

54.268 ���

AG vs

GG

t(641) =

-20.913 �

AA vs

GG

MAOA (rs6323) Omnibus F(1,731) =

403.101 ���
F(1,729) =

402.98 ���
F(1,739) =

435.37 ���
F(1,592) =

141.128 ���
F(1,757) =

16.68 ���
F(1,771) = 273.8
���

F(1,795) =

8.034 ��

GT vs

GG

t(731) =

-2.2675 �
t(729) =

-2.3324 �
t(739) =

-2.2024 �
t(592) =

-2.13 �
t(771) = -2.796 ��

TT vs

GG

t(757) =

2.77 ��
t(795) =

-2.7882 ��

High/Low = high or low frequency words, PA = phonological awareness, RAN = Rapid automatic naming, ANT = Attentional Network Test. Significant values (after

Hochberg false discovery rate correction) of cognitive task to some genetic variable are displayed. Omnibus values refer to F(df1,df2) = F-value, and genotypes contrasts

are shown as t(df) = t-value. Associations are specified as:

��� p<0.001

�� p<0.01

� p<0.05, being p the Pvalue obtained after Hochberg correction [33].

https://doi.org/10.1371/journal.pone.0206431.t004
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between them in the studied cohort points to an independent but cooperative genetic associa-

tion of these genes with dyslexia. Furthermore, the combined effect of these two genes had

been described previously by Powers et al.’s [43], who showed that a DCDC2 risk haplotype

interacts synergistically with a KIAA0319 haplotype, giving more extreme results when both

risk haplotypes where presented together rather than separately. Also, DCDC2 seems to inter-

act with DYX1C1 in our ADHD samples when both genes are analyzed epistatically. Markers

previously associated to dyslexia have been found to be also linked to hyperactivity and/or

inattention, as shown in Couto el al. [25] and Mascheretti et al. [41]. DYX1C1 was also evalu-

ated in ADHD samples [44,45] and a haplotype of 6 SNPs was connected to the attentional

symptoms of this disorder.

Concerning the previously reported allelic association of ADHD candidate SNPs in DBH,

COMT andMAOA, none of these was replicated in our ADHD samples, although we found

some significant effects following other approaches (S1 Table). COMT appears to be associated

in the genotypic analysis to our dyslexia samples and has been connected recently to reading

skill tasks (PA and spelling) [46], as well as to reading comprehension [47], adding importance

to the possible role of this gene in reading-related cognitive process. As shown by Grigorenko

et al. [47], there was significant divergence in the frequencies of 4 COMT haplotypes between

individuals with and without comprehension difficulties.

Dyslexia and ADHD prevalence dissimilarities between males and females is well reported

in numerous studies [27], and it is known that dopaminergic neurotransmission, implicated in

many cognitive functions, could be modulated by gender [48]. Accordingly, the COMT gene

has been identified in several ADHD studies as having sex specific effects [49,50] and its sus-

ceptibility alleles may differ [51]. Given this fact, COMT emerges as a good candidate to scruti-

nize for possible divergences in cognitive processes between boys and girls. Our results do not

show significant differences for this locus, but a trend (p<0.1) is observed in our dyslexic

group (S2 and S3 Tables).

An essential point that should be taken into consideration when trying to replicate results

of genetic association studies is the diagnostic criteria of the samples studied, which is particu-

larly hard to establish for certain syndromes. In many studies, dyslexia and ADHD are classi-

fied as separate clinical groups, and usually considered independently, although usually there

is a substantial percentage of cases that share both conditions [19,52,53]. Despite the difficulty

in defining the boundaries of certain neurological disorders and the complications of search-

ing for genetic markers for complex traits, several loci have been proposed as potential bio-

markers for dyslexia [4] and ADHD [54]. However, the results obtained in different studies

are often contradictory and their reproducibility is limited. The heterogeneity of the criteria or

the psychometric tests used to describe the categorical groups makes the comparison between

studies difficult, and this might be one reason for the inconsistencies found among different

studies and populations. Moreover, the ethnicity of the cohorts may also influence this low

reproducibility, as the frequencies of the polymorphisms analyzed are heterogeneous around

the world. Furthermore, different genetic variants for the same genes are considered in each

study, and causative gene variants have been shown to be different depending on the popula-

tion [55].

Given that some of the previous studies relating dyslexia or ADHD candidate genes with

these disorders have shown quite inconsistent results, then perhaps establishing genetic rela-

tionships by focusing on cognitive skills, rather than centering on contrasting strictly-diag-

nosed dyslexia or ADHD, may produce successful results. Following this approach, our study

shows some systematic relationships between cognitive quantitative traits and genes:

Candidate SNPs association with dyslexia and ADHD
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1. Different research groups [5,31,56–58] have found correlations of DCDC2, KIAA0319 and

DYX1C1 with irregular, regular or pseudoword reading, while others did not [8,25]. The

association of KIAA0319 and DYX1C1 with word reading was replicated in our population.

In addition, we also found a relationship between reading andMAOA, although results

obtained for this gene should be considered with caution as it is located in chromosome X

and we analyzed boys and girls together.

2. Another cognitive trait directly connected to the reading process is fluency. The association

of DCDC2 with this trait has been reported previously [7,59]. A marker of DYX1C1, as well

as several SNPs in KIAA0319 have also been associated to the digit-RAN task [57,60,61]; the

results of the current study add to this list rs4504469-KIAA0319 and rs6323-MAOA, as

related to the RAN.

3. Phonological decoding, which plays a central role in both normal and abnormal reading

development, has been consistently reported as related to reading ability [62–64]. In fact,

deficits in phonological awareness are considered the main proximal cause of cases of read-

ing disability [65]. Dyslexia candidate genes have been correlated with tasks measuring

phonological abilities, such as DYX1C1 and FOXP2 with short-term memory [56,58] or

phonological memory [12,60], or DCDC2 [66] and KIAA0319 [5,7,61,66] with phoneme

awareness itself. In our study, in addition to replicating the association of DCDC2 with a

phonological awareness task (reaction-time in the phoneme-picture matching task), we

have also detected a possible implication of both DBH andMAOA in phonological

awareness.

4. Speech perception deficits in dyslexic samples have long been proposed [67], particularly

deficits in the pre-attentive and automatic information processing measured by the Mis-

match Negativity (MMN) component. In fact, the MMN, established as an objective mea-

sure of speech discrimination, has been suggested as a neurophysiological endophenotype

for dyslexia [68]. Furthermore, some research groups have linked MMN with genetic vari-

ants, such as SLC2A3 [69] or rare variants in a region between the genes KIAA0319 and

DCDC2 [70]. In the present study, we found a relationship between KIAA0319, DBH and

MAOA with the task measuring syllable discrimination. Although they measure different

processes (e.g., automatic versus attentive processing of speech), both reveal gene-cognition

association in speech processing.

5. Weaknesses in executive domains such as verbal working memory, planning, and response

inhibition are consistent cognitive traits in ADHD symptoms [71–73]. We failed to repli-

cate the association found by Fosella et al. [74] between MAOA and executive attention and

alerting, but the link between rs4680-COMT and the conflict index, based on ANT evalua-

tion, shows that COMT is related to executive control. Several studies have recently associ-

ated variants of COMT with cognitive domains such as working memory [75] or cognitive

flexibility [76]. In addition, this gene has previously been found to be associated with Stroop

attentional tasks [77]. These attentional tasks are not usually analyzed with dyslexia candi-

date genes, therefore, one intriguing result obtained from our cohort is the relationship of

this type of task with KIAA0319, FOXP2 and DYX1C1 SNPs.

Interestingly, FOXP2 and COMT have been found to be associated with dyslexia and with

attentional tasks in our case-control study, although these genes are not related to reading vari-

ables in the general population. KIAA0319, also associated with dyslexia, is associated with syl-

lable discrimination, RAN and high frequency word reading but also with Numerical-Stroop.

In addition, DBH andMAOA did not show any relationship with the defined phenotypes, but
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appear to have some correlation with both attention and reading-skills in the general popula-

tion. This fact reinforces the importance of studying the quantitative measures used to define

each phenotype considered, in order to discover evidence of cause-consequence pairs between

genes and cognitive processes respectively, instead on focusing just on the categorical groups

extrapolated from these quantitative measures.

We are aware of the limitations of this study and, therefore would like to specify them

before concluding: (i) the hyperactivity or other possible disorder comorbidities were not diag-

nosed, (ii) the potential effects of the environment were not taken into account; (iii) the

comorbid group is small, and (iv) the sample size in some of the comparisons performed is

different.

In summary, significant association of some candidate SNPs with dyslexia and ADHD has

been replicated in our Spanish population, but the significance depends on the particular phe-

notypic groups compared. These outcomes support the importance of a clear definition of the

phenotype, especially when comorbid samples are present. Dyslexia and ADHD are complex

disorders and so the search for interacting patterns of genes as well as environmental influ-

ences will give rise to more successful and reproducible results. Moreover, identification of the

relationships between some DNA variants and cognitive tasks, especially when the polymor-

phisms themselves are not associated with any disorder, adds value to the research on endo-

phenotypes, instead of the traditional dichotomist classification. These improvements will help

us find precise and more specific genetic causes of these cognitive dysfunctions.
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