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Abstract

This thesis presents a set of contributions to the field of 2D Dirac materials, which

have emerged as promising candidates for future nanoelectronics. The electronic

and transport properties of various graphene-based nanostructures and surfaces

of topological insulators reported in this work, provide further insight into the

functionalities of this class of materials. For the characterization of the materials

reported in this thesis, we applied density functional theory and a non-equilibrium

Green’s function approach.

Most graphene-based electronic devices, require the formation of contacts be-

tween the 2D material and metal electrodes. Within this context, it is crucial

to design graphene-metal interfaces with low contact resistances. In this work,

we analyzed the structural evolution and transport properties of various metal-

graphene contacts with and without functionalization or contamination of the

graphene edge, with special focus on their influence on the contact resistance. For

metal-graphene edge contacts, we found a strong metal dependence of the stabil-

ity on graphene edge contaminants. In general, we found the contact resistance to

increase upon graphene edge contamination, although the strength of the relative

increment dependent significantly on the metal and edge contamination. Never-

theless, our study provides valuable insight into the mechanisms responsible for

device-to-device variations of metal-graphene contacts in experiments.

Further, we studied the electronic and transport properties of a novel type of

grahene nanoribbon (GNR) and the nanoporous graphene (NPG) derived from it.

Our characterization of the electronic properties of the NPG revealed that, like the

ribbon, it is a semiconductor. Furthermore, it inherits uniquely localized states

from ribbon, which form a 1D band dispersing in the direction perpendicular to

the ribbon’s backbone. Moreover, we found states localized in the vacuum region
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of the ribbon. Within the NPG, these states interact with each other, forming

bonding and anti-bonding pore states. scanning tunneling microsopy (STM) ex-

periments have confirmed the existence of these pore states and demonstrated the

uniform growth of the NPG over a larger area. Due to its semiconducting behavior,

this NPG offers high potential for many electronic applications (e.g., field-effect

transistors (FETs)), as well as for molecular sensing and sieving applications.

Due to their extraordinary properties, topological insulator (TI) have been pro-

posed for a wide range of applications, especially for spintronics. With the aim

of spintronic applications, the challenge in this field is to find a TI with a surface

state protected against magnetic perturbations. Within this context, we investi-

gate the influence of chemical disorder on the structural and magnetic properties

of a Co adsorbed on the surface of a given ternary TI surface. In combination

with experiments, we could demonstrate that Co tends to adsorbed away from the

high-symmetry position whenever it is surrounded by different species of the TI’s

surface atoms. This adsorption behavior leads to a reduced hybridization between

Co and the TI’s surface state and, consequently, the surface state is still protected

by time-reversal symmetry. Similar results can be expected for other ternary TI’s

with chemical disorder in the surface layer.
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Chapter 1

Introduction

The invention of the silicon based integrated circuit in the late 1950s started a

revolution in electronics. Since then, thanks to ever more advanced production

methods, integrated circuits have been miniaturized to a size where single transis-

tors only measure a few nanometers. This miniaturization of devices allowed an

increase in packing density, and, consequently, the performance of electronic de-

vices grew exponentially, as predicted by Moore’s law. However, physical effects at

the nano-scale, like quantum tunneling, lead to increased leakage and off currents,

thus restricting the potential for further miniaturization.

The limit of miniaturization of silicon based devices will most likely be reached

within the next decade and, therefore, the search for alternative materials for

high-performance electronics has gained a lot of momentum in recent years. A

lot of research in this direction has been inspired by the discovery and develop-

ment of novel materials belonging to the, equally novel, class of two-dimensional

Dirac materials. These materials, with their most prominent representatives being

graphene and topological insulators, posses some very unique and extraordinary

properties making them ideal candidates for future application in electronics and

related fields[1, 2].

The main characteristic of Dirac materials is the linear dispersion relation of

the band structure around Fermi-level. As a result, the electrons in these bands

behave like massless fermions which can be described by the Weyl equation, i.e., a

version of the Dirac equation for massless spin-1/2 particles[2], or by a simplified

9



10 CHAPTER 1. INTRODUCTION

Dirac Hamiltonian[1],

HD = vF σ·p +mv2
Fσz, (1.1)

where σ = (σx, σy) and σz are the Pauli matrices, and vF , p and m are the Dirac

fermion’s Fermi velocity, momentum and mass, respectively. The mass term in

this Hamiltonian is responsible for a gap in the spectrum of HD[1]. If this term

vanishes, i.e., m → 0, then the quasi-particle dispersion is linear[1], as is the case

for Dirac materials. For two-dimensional (2D) Dirac materials, these linear bands

are a function of only two (out of three) components of the momentum, as can be

seen from Equation 1.1. Thus, 2D Dirac materials are either truly 2D in real space,

like graphene, or posses a 2D surface state exhibiting a linear dispersion relation,

e.g., three-dimensional (3D) topological insulators. Another very important

property of Dirac materials is the coupling of the momentum to a (pseudo-)spin.

This coupling prevents back scattering in these materials and gives rise to spin-

dependent transport properties[1, 3, 4].

As mentioned, the prevention of back scattering in the linearly dispersing bands

leads to high electron transmission. Together with high mobilities of charge carri-

ers, this protection against back scattering makes these materials very promising

candidates for high performance electronics applications. For example, incorpora-

tion of these materials in field-effect transistor (FET) devices has been proposed

and demonstrated[5–8]. Moreover, the spin-momentum coupling and other spin-

related properties, like the spin polarization of graphene zig-zag (ZZ) edges, could

be used for spin filtering and spintronics applications. Besides, some materials

of this class exhibit remarkable optical properties, like high photon transmittance

in the visible and infrared range[9–11]. In combination with a high mechani-

cal flexibility, these materials have also been identified as promising candidates

for transparent electrodes in flexible solar cells or other electronic devices[9–11].

Further potential applications of Dirac materials include, but are not limited to,

energy storage[12–15], quantum computing[13] and sensing[16, 17].

Graphene and topological insulators: The carbon allotrope graphene had

been object of theoretical studies[18–21] already long before it was experimentally

isolated for the first time in 2004[22]. It has a honeycomb structure which arises

from the sp2-hybridization of the carbons s, px, and py orbitals. In graphene,
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the hybridized orbitals of a given carbon atom form σ-bonds to its neighboring

atoms. These bonds give graphene its extraordinary mechanical properties, while

the pz-orbitals, which are perpendicular to the graphene plane, form the π-bonds

responsible for its outstanding electronic properties.

On the other hand, the existence of certain 3D materials exhibiting a topo-

logical phase was first predicted in the early 21st century[23, 24], based on ear-

lier theoretical studies about topological order and the quantum spin Hall ef-

fect (QSHE)[25, 26]. Only a short time after these predictions, the first exper-

imental realization of a 3D topological insulator (TI) was reported[27]. 3D TIs

posses a linear dispersing 2D surface state protected by time-reversal symmetry

and a 3D gapped bulk band structure[4, 28–30].

Materials characterization: Designing electronic devices based on novel

materials requires a thorough understanding of their structural, chemical and elec-

tronic properties. Motivated by this demand, the theoretical and computational

investigation of materials at the nanoscale has experienced tremendous activity

in recent years[31]. To a great extent, this has been possible thanks to the ad-

vancement of methods based on first principles (ab initio). In particular, density

functional theory (DFT)[32, 33] is currently the tool of choice[34, 35] for the simu-

lation of ground-state structural and electronic properties of complex nanometer-

scale systems of high technological interest, as graphene and topological insulators.

Moreover, in the context of nanoelectronics, the simulation of electronic trans-

port properties across 2D materials connected to macroscopic conductors or elec-

trodes is of particular relevance. As opposed to the standard DFT calculations,

transport simulations involve open systems that are infinite, nonperiodic and out

of equilibrium. Still, DFT based transport methods have been proven to be valid

and helpful to describe a vast number of transport experiments. The most com-

monly employed method combines non-equilibrium Green’s functions (NEGFs)

with DFT electronic structure calculations[36–38].

Along with the above-mentioned computational methods, extraordinary ex-

perimental tools to measure and manipulate matter at the nanoscale are currently

available. In particular, scanning tunneling microscopy (STM) has become a key

technique to study and control matter at the atomic level[39, 40]. Interestingly,
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many of the structures investigated experimentally can be modeled using first prin-

ciples methods. In fact, because of the difficulty of experimentally investigating

the influence of the detailed atomic structure on the electron transport properties,

theoretical modeling is crucial for the interpretation of experimental observations.

Beyond that, DFT based calculations can also guide experimental researchers in

the selection of the most appropriate parameters to design their experiments.

This thesis focuses on the DFT study of electronic and transport properties

of graphene based systems, and of the surface of a given family of topological

insulators. Most of our work is reinforced with scanning tunneling microsopy

(STM) experiments, which allow us to gain further insight into the physical and

chemical characteristic of these nanostructures.
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Outline

In chapter 2 of this thesis, we introduce DFT for modeling materials. Starting

from the many-body Hamiltonian and the Hohenberg-Kohn theorems, we will

present the most important concepts and technical details in DFT.

Next, in chapter 3 we will introduce an extension to DFT for transport calcu-

lations based on NEGF. Here, the fundamental concepts of NEGF methods and

an efficient way to calculate Green’s functions will be presented. Furthermore, our

implementation of a tool for the calculation of multi-terminal eigenchannels will

be discussed.

After the introduction of the methods applied in this thesis, we discuss the

results we obtained for different Dirac-materials. We open this discussion of results

with our work on metal-graphene contacts in chapter 4. By means of DFT

based simulations, we study the structural and transport properties of two types

of metal-graphene interfaces, namely side- and edge contacts. We consider different

metal electrodes and investigate how the properties of these interfaces change upon

passivation or contamination of the graphene edges.

In chapter 5, we present an extensive characterization of a new family of

graphene nanoribbons (GNRs), the so-called 7-13 armchair GNR, and of the

nanoporous graphene (NPG) which is obtained by fusing of these nanoribbons. By

characterizing these materials computationally (DFT) and experimentally (STM),

we demonstrate the existence of novel electronic states and how to influence these

by morphological modifications or external perturbations.

Chapter 6 focuses on the influence of chemical disorder on the surface of a

given family of topological insulators (TIs), with the aim of understanding the

robustness of its topologically protected surface state against magnetic perturba-

tions.

Chapter 7 summarizes the main results and conclusions presented in this

thesis.
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Chapter 2

Electronic structure methods

In computational physics and chemistry, different approaches can be followed to

obtain the ground state properties of many-body systems. On one hand, Hartree-

Fock or coupled cluster methods (and others) are based on the determination of the

wave-function. These methods are usually computationally very expensive and,

thus, can only be applied for smaller system (e.g., molecules). Alternatively, in

density functional theory (DFT), the charge density is used to obtain the ground

state properties of correlated quantum many-body systems[32, 33, 41]. This ap-

proach allows the treatment of realistic systems with hundreds and even thousands

of atoms, and has proven to give reasonable results in a wide range of systems.

For these reasons, over the last decades DFT has evolved to be the tool of choice

for electronic structure calculations[34, 35].

2.1 The many-body problem

Calculating the properties of materials requires solving the Schrödinger equation

for a system of interacting electrons and nuclei, i.e., diagonalizing the many-body

Hamiltonian[42],

Ĥ = − ~
2

2me

∑

i

▽
2
i −

∑

i,I

ZIe
2

|ri − Ri|
+

1

2

∑

i6=j

e2

|ri − rj|
−
∑

I

~
2

2MI

▽
2
I +

1

2

∑

I 6=J

ZIZJe
2

|RI − RJ |
(2.1)
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with lower (upper) case subscripts denoting electrons (nuclei). In Equation 2.1,

the first and fourth term are the kinetic energies of electrons and nuclei, respec-

tively. The second and third term represent electron-nuclei and electron-electron

interactions. Interactions between the nuclei are described by the last term.

In practice, solving the Schrödinger equation using the full many-body Hamil-

tonian, as shown in Equation 2.1, is not an easy task, and approximations are

usually made. Commonly, the so-called Born-Oppenheimer or adiabatic approxi-

mation, as described in the following, is used. By fixing the positions of the nuclei

the ionic kinetic energy term vanishes. Further, the ion-ion interaction term can

be replaced by a constant energy term and electron-ion interactions by an external

potential. This reduced Hamiltonian has then the following form,

Ĥ = − ~
2

2me

∑

i

▽
2
i +

1

2

∑

i6=j

e2

|ri − rj|
+ Vext + EII , (2.2)

with Vext and EII being the external potential and the ion-ion interaction energy,

respectively. These simplifications are possible due the large ratio between the

masses of nuclei and electrons. Hence, the motion of nuclei is very slow, and their

positions quasi fixed, while electrons react almost instantaneously to changes in

the external potential. Within this scenario, it is valid to neglect the kinetic energy

terms for the nuclei[43].

2.2 Density Functional Theory

Hohenberg and Kohn used the simplified Hamiltonian from Equation 2.2 as the

starting point for the development of DFT[32]. This theory is based on the ob-

servation that properties of a system of interacting particles can be described as

a functional of the ground state density[42, 44]. In 1927, Thomas and Fermi pro-

posed a density functional theory of quantum systems which neglected exchange

and correlation between electrons[45, 46]. Later, Dirac extended Thomas-Fermi

theory to include a local approximation for electronic exchange[44]. While the

theory of Thomas and Fermi is just an approximation, Hohenberg and Kohn for-

mulated DFT as an exact many-body theory[32, 41, 42]. Their formulation is
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applicable to any system of interacting particles moving in an external potential.

Hohenberg-Kohn Theorems

Hohenberg and Kohn based their theory on two theorems[32, 41], which we will

discuss shortly here. The first theorem states that the ground state density n0(r)

of any system of interacting particles is sufficient to uniquely, except for a constant,

determine the external potential Vext(r) acting on the particles. From this theorem

follows that, since the Hamiltonian is fully determined up to a constant shift in

energy, the electronic states of a system can be determined from the ground state

density n0(r)[42].

The second theorem describes the possibility to define a universal functional

E[n], valid for any external potential Vext(r), for determining the energy in terms of

the density n(r). Then, the exact ground state density n0(r) is the one which min-

imizes this energy functional. Therefore, knowing the functional E[n] is sufficient

to determine the ground state energy and density.

Within the Hohenberg-Kohn formulation of DFT, a functional for the energy

can be written as follows[32, 42],

EHK [n] = T [n] + Eint[n] +
∫

d3rVext(r)n(r) + EII , (2.3)

T [n] being a functional of the kinetic energies of the interacting particles, Eint[n]

describing the interaction energy of the electrons and EII the interaction energy

of the nuclei. Using a functional of the form of Equation 2.3 to obtain the ground

state density leaves one with the following problem: in principle, the ground state

density is sufficient to determine properties of a material. But, no one has found

a way to extract these properties, e.g., the density of states (DOS), directly from

the density yet[42].

Kohn-Sham Equations

To circumvent the challenge of extracting material properties directly from the

ground state density, in 1965 Kohn and Sham proposed a new approach. In their

ansatz, they assumed that the ground state properties of a system of interacting



18 CHAPTER 2. ELECTRONIC STRUCTURE METHODS

particles can be described by the ground state of some non-interacting system[33].

Based on this assumption, they introduced an auxiliary system of independent

electrons with its density given by[33]

n(r) =
N
∑

i=1

|φKS
i (r)|2. (2.4)

In Equation 2.4, φKS
i (r) denote the single particle wave-functions of the non-

interacting auxiliary system, the so-called Kohn-Sham orbitals. Whether a precise

physical meaning can be assigned to these Kohn-Sham orbitals is a widely debated

issue[33, 42, 47, 48]. The only exception is the highest occupied orbital, which has

been shown to correspond to the exact ionization energy of a system in exact

Kohn-Sham DFT[49].

Within the Kohn-Sham formalism, the kinetic energy is not given in the form

of a functional of the density of the interacting system but rather as a sum of

independent particle energies in terms of the Kohn-Sham orbitals[42]:

Ts =
1

2

N
∑

i=1

∫

d3r|▽φKS
i (r)|2. (2.5)

Additionally, the part of the Coulomb interaction energy which represents the

energy of the electron density interacting with itself, i.e., the Hartree energy [32,

42],

EHartree[n] =
1

2

∫ ∫

d3rd3r′n(r)n(r′)

|r − r′| (2.6)

is separated from other classic Coulombic contributions. Now, the functional for

the total energy can be written as[42]

EKS = Ts[n] +
∫

d3rVext(r)n(r) + EHartree[n] + EII + Exc[n]. (2.7)

Since the ground state densities of the interacting and non-interacting systems are

required to be equal, by comparison of the Hohenberg-Kohn (Equation 2.3) and

the Kohn-Sham (Equation 2.7) total energy functionals, a formal expression for

the exchange-correlation energy can be derived[42]:
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Exc[n] = T [n] − Ts[n] + Eint[n] − EHartree[n]. (2.8)

Equation 2.8 reveals that the exchange-correlation energy is just the difference of

the kinetic and interaction energies between the interacting and the non-interacting

systems. If the exact form of the functional defined in Equation 2.8 were known,

the exact ground state energy and density of a system of interacting electrons could

be found by solving the equations for the non-interacting system. While the form

of the exact exchange-correlation functional is unknown, a wide variety of different

approximations for Exc[n] have been developed in the last decades[50–57]. A few

types of exchange-correlation approximations will be discussed briefly in the next

subsection.

Exchange-Correlation Functionals

Local density approximation (LDA): The LDA is the simplest approximation

for the exchange-correlation energy and was already proposed by Kohn und Sham

in their original paper[33]. As the name suggests, in the LDA the exchange-

correlation energy only depends on the local structure of the electron density[33,

42],

ELDA
xc [n(r)] =

∫

d3rn(r)ǫhom
xc [n(r)], (2.9)

where ǫhom
xc [n(r)] denotes the exchange-correlation energy of the homogeneous elec-

tron gas with density n(r). While the form of the exchange part of ǫhom
xc is known

exactly[42],

ǫhom
x = −3

4

(

3n(r)

π

)1/3

, (2.10)

the correlation part ǫhom
c needs to be calculated numerically, e.g., using Monte

Carlo methods[57]. The results of such numeric calculations are often parametrized

to obtain more general expressions for the correlation energy of the homogeneous

electron gas in the form of a density functional[55, 56]. The LDA is a very useful

approximation for solids with slowly varying electron density and calculations of
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bulk and surface properties have been carried out, proving its accuracy for such

systems[58].

Generalized gradient approximation (GGA): Inspired by the success of

LDA, the so-called GGA functionals were developed, which not only depend on

the density but also on its gradient. The general form of a GGA functional can

be written as follows[42, 59],

EGGA
xc [n(r)] =

∫

d3rn(r)ǫxc[n(r), |▽n(r)|]. (2.11)

The term for the exchange-correlation energy ǫxc in Equation 2.11 can also be writ-

ten as a product of the exchange energy of the homogeneous electron gas (ǫhom
x )

and a dimensionless functional describing correlation and additional exchange ef-

fects[42, 59].

One of the most commonly used GGA flavors[35] was proposed by Perdew,

Burke, and Ernzerhof in the year 1996[53, 54], and is now known as PBE exchange-

correlation functional. The popularity of the PBE functional can be attributed

to its wide range applicability, i.e., the fact that it performs well for a variety of

properties of different systems, from molecules[53, 60–62] to bulk solids[63, 64].

Functionals including van der Waals (vdW) interactions: Within LDA

and GGA functionals, the exchange-correlation energy only depends on the elec-

tron density and its gradient. Hence, the character of these exchange-correlation

functionals is either local or semi-local. For an accurate description of the long

range vdW interactions, non-local correlation terms have to be included in the

functional. These terms represent the interactions between induced dipoles, which

arise due to spontaneous fluctuations of the polarization of the charge density.

Many vdW functionals are based on GGA and LDA, extending these approxima-

tions by including a non-local correlation energy functional.

Two approaches to include vdW interactions in a functional are very common.

The first one is a semi-empirical approach and was developed by Grimme[65].

Here, the vdW parameters have to be specified by the user and can be obtained

from high-quality ab-initio calculations separately for each element of the peri-
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odic table[65]. In the second approach, the vdW parameters are calculated self-

consistently within the formalism of the functional. Such a functional is, for ex-

ample, the optB88 functional developed by Klimeš et al[50].

2.3 DFT implementation details

So far, the main concepts of DFT have been discussed on a general level. From here

on, we will introduce more technical concepts that depend on the implementation

of DFT and the type of system under investigation.

Periodic boundary conditions

Simulating infinite, periodic systems (e.g., crystal structures) is done by choosing a

unit of repetition, called unit cell, and applying periodic boundary conditions. The

choice of the unit cell is not unique and it is described by the so-called lattice vectors

ai. One constraint in the choice of the unit cell is given by the periodic boundary

conditions. These require physical quantities, like the electrostatic potential or the

electron wave-functions, to be continuous at the cell boarders.

According to Bloch’s theorem[66], each eigenfunction of any Hamiltonian de-

scribing electrons moving in a periodic electrostatic potential can be written as

the product of a plane wave and a periodic function u(r),

ψ(r) = eikru(r). (2.12)

Hence, the wave-function of a system only has to be calculated within the unit cell

and can then be extended to the wave-function of the infinite system by multipli-

cation with plane waves.

Pseudopotentials

Chemical bonding is dominated by the valence electrons, i.e., electrons in the

outer shell of an atom. On the other hand, the electrons of the inner closed shells,

called core electrons, do not usually play a big role in chemical processes. Besides,

the orthogonality of core and valence electrons leads to rapidly varying electron
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wave-functions close to the atom’s core, i.e., to wave-functions possessing nodes.

Since the computational treatment of fast oscillations in the wave-functions is very

expensive, approximations are required to simplify their description.

Within this context, the idea of pseudopotentials is to replace the original

electrostatic potential of a nucleus by a potential leading to smoothly varying

nodeless wave-functions in the core region. Additionally, a static description of the

core electrons and their effects, like screening of the ionic potential, are included in

a pseudopotential. As a result, the number of electrons that need to be fully treated

in a self-consistent fashion is reduced, effectively alleviating the computational cost

of ab-initio calculations.

Pseudopotentials have to obey a few constraints as given by Hamann, Schlüter

and Chiang[67]. In an nutshell, beyond a given radius the wave-functions gen-

erated by a pseudopotential have to be the same as all-electron wave-functions,

and, within this radius, the integrated charges of pseudo and all-electron wave-

functions have to be equal. Different types of pseudopotentials fulfilling above

constraints have been developed, like norm-conserving[67, 68] or ultrasoft pseu-

dopotentials[69].

Basis Sets: Localized Orbitals or Plane Waves

The many-body Schrödinger equation represents a set of partial differential equa-

tions, which can be converted into a set of algebraic equations by a suitable choice

of functions to describe the electronic wave-functions[70]. Subsequently, the al-

gebraic equations can be solved efficiently using numerical methods. The choice

of functions for the representation of the wave-function is called basis set. Ac-

cordingly, the accuracy of DFT calculations depends both on the selection of the

exchange-correlation functional as well as on the basis set[71–75].

The two main types of basis sets are i) plane waves, as used in the Vienna

Ab-inition Simulation Package (VASP)[76–79] and Quantum Espresso[80] codes,

and ii) linear combination of atomic orbitals (LCAO), as applied in methods

like the Spanish Initiative for Electronic Simulations with Thousands of Atoms

(SIESTA)[81] and its extension TranSIESTA[36, 37]. While plane wave basis sets

lead to very accurate results and are easy to expand, using LCAO as basis allows
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to perform faster calculations of larger systems. Since we used both types of basis

sets in our work, we will shortly review them here.

Plane wave basis sets: The eigenfunctions of a Hamiltonian for indepen-

dent particles within the Kohn-Sham formalism satisfy the following eigenvalue

equation[42],

Ĥeff (r)ψKS
i (r) =

[

− 1

2
▽

2 + Veff (r)

]

ψKS
i (r) = ǫiψ

KS
i (r), (2.13)

where, excluding the kinetic energy, Veff represents the terms on the right hand

side of Equation 2.7. Taking advantage of the fact that any periodic function can

be expanded in a complete set of Fourier components[42], the eigenfunctions can

be written based on plane waves,

ψKS
i (r) =

1√
Ω

∑

q

ci,q × eiqr ≡
∑

q

ci,q × |q〉. (2.14)

In this equation, Ω represents the volume of the cell for which the Hamiltonian in

Equation 2.13 is defined, ci,q are the wave-function coefficients, and q corresponds

to points on a grid in reciprocal space. The plane waves have to be orthonormal,

i.e., they have to satisfy the following condition[42],

〈q′|q〉 = δq′q. (2.15)

Now, one can plug Equation 2.14 into the eigenvalue equation (Equation 2.13) and

multiply from the left by 〈g′|. This way, one obtains the Schrödinger equation in

Fourier space (i.e., the eigenvalue equation in a plane wave basis)[42],

∑

q

〈q′|Ĥeff |q〉ci,q = ǫici,q′ . (2.16)

The left side of this equation is only non-zero when q equals q′ or if they differ by

some reciprocal lattice vector. From the last equation one can see that, plane wave

basis sets are variational and can be easily extended by increasing the number of

plane waves.
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LCAO basis set: In this approach, as the name suggests, the basis set is

built up by a linear combination of orbitals centered on the positions of the ions.

Due to the lowering of the total energy upon binding in molecules or solids, the

amplitude of the electron wave-function is higher at the nucleus and its range is

reduced as compared to the free atom electron wave-function[42, 70]. Therefore,

free atom orbitals modified in this way are a good starting point for an orbital

based basis set. By strictly confining the orbitals within a given cut-off radius,

one can ensure sparsity of the Hamiltonian matrix[81]. Within this cut-off radius,

the basis set orbitals of atom I, located at RI , can be written as the product of a

radial function and a spherical harmonic[42, 81],

φInlm(r) = φInl(rI) ∗ Ylm(rI), (2.17)

where rI = r−RI . The labels n, l and m represent the principal, angular momen-

tum and magnetic quantum numbers, respectively. Often, more than one orbital

per atom with the same n and l, but varying radial dependence, is used. These

basis sets are then called ”multiple-ζ” (e.g., double-ζ or DZ for two orbitals) basis

sets[42, 81]. Additionally, to improve the description of the non-spherical environ-

ments of atoms in molecules and solids, so-called polarization orbitals are often

included. These orbitals possess angular momentum quantum numbers larger

than the maximum l of the valence orbitals[42, 70, 81]. For calculations using the

SIESTA method, double-ζ-polarized (DZP) basis sets have proven to be, in most

cases, a good compromise between high accuracy and low computational cost[81].

Spin Orbit Coupling

In the formalism considered above, the spin degree of freedom has been neglected.

To include it in DFT, two possible scenarios have to be taken into account, namely

collinear and non-collinear spin configurations. For the more common case of

collinear spins, the total charge density n(r) can be expressed in terms of spin up

n↑(r) and spin down n↓(r) densities. However, a more general description of mag-

netism requires a variable spin axis, also known as non-collinear spin polarization.

This generalized description of the spin degree of freedom relies on the solution of
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the Schrödinger equation in its covariant relativistic form as proposed by Dirac in

1928[82, 83],

i~
∂

∂t
ψ = (c

3
∑

i=1

αipi + βmc2)ψ, (2.18)

and allows for an accurate treatment of relativistic effects in DFT. In Equa-

tion 2.18, ψ is a four-component single-particle wave-function describing spin-1
2

particles, pi = −i~▽i are the components of the standard momentum operator,

and αi and β are 4×4 matrices of the following form[42, 82, 83],

αi =





0 σi

σi 0



 , β =





1 0

0 −1



 . (2.19)

The unit entries 1 of β are 2×2 unit matrices and the σi represent the 2×2 Pauli

spin matrices,

σx =





0 1

1 0



 , σy =





0 −i
i 0



 , σz =





1 0

0 −1



 . (2.20)

One of the relativistic effects which requires a non-collinear treatment of spin is

the so-called spin-orbit coupling (SOC). The origin of this effect is the interaction

between an electron’s intrinsic magnetic moment, which is directly proportional

to its spin angular momentum S, and the apparent magnetic field of the nucleus

that the electron experiences from its perspective.

From the Dirac equation (2.18) a spin-orbit term can be derived. This term

has to be added to the Hamiltonian and has the following form[42],

ĤSO ∝ 1

r

dV

dr
L · S. (2.21)

Here, V is the nuclear electrostatic potential, r corresponds to the distance of the

electron from the atom, L = r×p denotes the electron’s angular momentum and S

its spin angular momentum. Often, the expression in Equation 2.21 can be treated

as a small perturbation and, since it is large only close to the atom’s nucleus, it is

valid not only for free atoms but also for atoms in molecules and solids[42].

In the non-collinear formulation of DFT, a local spin density matrix is de-
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fined[42, 84],

nαβ(r) =
∑

i

ψα∗
i (r)ψβ

i (r), (2.22)

where α and β represent the spin degrees of freedom and the sum runs over all

the occupied states of the system. In this formalism, the local spin density matrix

nαβ(r), and, therefore, also the Kohn-Sham Hamiltonian, is a 2×2 matrix[42].

DFT+U methods

An accurate determination of the electronic properties of systems with strongly

correlated electrons, e.g. transition metals with highly localized 3d-orbitals, ap-

plying standard DFT has been proven to be difficult[42, 85, 86]. Therefore, based

on the Hubbard model[87–89], extensions to DFT taking strong electron-electron

correlations into account have been developed[85, 86, 90–94]. In these approaches,

referred to as DFT+U, an on-site energy term is added to the Hamiltonian for

highly localized orbitals.

The DFT+U method we applied in this work was developed by Dudarev et

al.[90]. In their ansatz, the energy correction term EU , which is added to the

energy obtained by DFT, has the following form[90],

EU =
U − J

2

∑

σ





(

∑

m1

nσ
i,i

)

−




∑

i,j

nσ
i,jn

σ
j,i







 . (2.23)

In this equation, ni,j represents the density matrix of the localized orbitals for

which the correction is applied, σ denotes the spin, and U and J are the averaged

Coulomb and exchange parameters.



Chapter 3

Quantum transport simulations

In the previous chapter, we introduced the basics of DFT, a method for electronic

structure calculations of periodic systems. To perform transport simulations, on

the other hand, electronic structure methods have to be extended to include the

effects of semi-infinite electron reservoirs (denoted as electrodes or terminals) and,

consequently, open boundary conditions. Modern transport extensions to elec-

tronic structure methods rely on one of two very different approaches. The first

one is based on scattering states, which are defined as wave-functions satisfying

the Schrödinger equation and specific open boundary conditions[95]. More recent

implementations of this approach allow solving the scattering states using existing

DFT codes[95–97].

The more commonly used approach combines electronic structure from DFT

with NEGFs[36–38, 98–100]. This formalism allows the treatment of open bound-

ary conditions and ballistic transport. Recent developments of this NEGF ap-

proach allow for flexible transport geometries and the use of more than two elec-

trodes[37, 38]. In this chapter, we will discuss the basic principles of the NEGF

method and how to efficiently calculate the Green’s function. Also, we introduce

a new tool developed to visualize electron transmission channels for nanosystems

coupled to more than two electrodes.

27
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3.1 NEGF based transport

Here, we will introduce important concepts of the NEGF formalism, starting with

the eigenvalue equation in a non-orthonormal basis,

Hψ = ǫSψ, (3.1)

with the Hamiltonian matrix H and the overlap matrix S. The equilibrium Green’s

function is then defined by the following expression[101],

(ǫS − H)G(ǫ) = I. (3.2)

The elements of the overlap matrix S can be defined in terms of the basis functions

φi as follows,

Sij =
∫

drφ∗
i (r)φj(r). (3.3)

To extend this formalism to non-equilibrium situations, it is necessary to intro-

duce the concept of self-energies. Here, we will do this by looking at a represen-

tative system comprised of two semi-infinite electrodes (e1 and e2) and a device

region (d), schematically depicted in Figure 3.1. In such a scenario, the total

Hamiltonian can be split into the Hamiltonians of the electrodes and the device

region[36],

H =











He1 + Σe1 Ve1 0

V†
e1 Hd Ve2

0 V†
e2 He2 + Σe2











. (3.4)

Here, Hi denote the Hamiltonian matrices of the electrodes (e1, e2) and the device

region (d), Σi denote the electrodes’ self-energies and Vi are the terms describing

e1 e2
e2d

Figure 3.1: Schematic illustration of a system with two semi-infinite electrodes (e1

and e2) attached to a scattering or device region (d).
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the coupling of the electrodes to the device region.

The Hamiltonians for the electrodes (He1 and He2) are obtained from electronic

structure calculations with periodic boundary conditions for each electrode sepa-

rately. Moreover, to model the effects of open boundary conditions, one needs to

include the electrodes’ self-energy terms (Σe1 and Σe2). For each electrode e, the

self-energy can be defined in terms of the electrode’s equilibrium Green’s function

Ge(ǫ) (calculated according to the definition in Equation 3.2) and the coupling

terms Ve connecting the electrodes and the device region (see Equation 3.4)[36,

101],

Σe(ǫ) = V†
eGe(ǫ)Ve. (3.5)

Now, using the Equations 3.2 and 3.5, we can calculate the non-equilibrium Green’s

function for our two electrode system as follows,

G(ǫ) =

(

ǫS − H − Σe1(ǫ) − Σe2(ǫ)

)−1

. (3.6)

Two useful quantities, that can be calculated from the Green’s function, are the

spectral function and the so-called broadening matrix. The density of states (DOS)

and all solutions to the Schrödinger equation can be obtained via the spectral

function of the Green’s function. A proof of this statement can be found in Ref.

[101] where the spectral function A is defined as,

A = i(G−G†). (3.7)

A more efficient way to compute the spectral function of each electrode is derived

by defining it in terms of the corresponding broadening matrix and the device

region’s Green’s function[37],

Ae(ǫ) = G(ǫ)Γe(ǫ)G
†(ǫ). (3.8)

In this equation, Γe is the broadening matrix and can be expressed in terms of the

electrodes’ self-energies[37],

Γe(ǫ) = i
[

Σe(ǫ) − Σ†
e(ǫ)

]

. (3.9)
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Calculating the transmission from the Green’s function

The electron transmission from electrode one (e1) to electrode two (e2) can be cal-

culated using the non-equilibrium Green’s function (Equation 3.6)and the broad-

ening matrices (Equation 3.9) of the electrodes[36, 37],

Te1,e2(ǫ) = Tr
[

G(ǫ)Γe1(ǫ)G†(ǫ)Γe2(ǫ)
]

. (3.10)

Alternatively, it can be expressed as the sum of the positive eigenvalues Ti,e1,e2 of

the column matrix G(ǫ)Γe1(ǫ)G†(ǫ)Γe2(ǫ)[37, 101],

Te1,e2(ǫ) =
∑

i

Ti,e1,e2(ǫ). (3.11)

From the transmission, the current flowing between the two electrodes can be

calculated as follows[36, 37],

Ie1,e2 =
G0

2|e|
∫

dǫTe1,e2(ǫ) [nF,e2(ǫ) − nF,e1(ǫ)] , (3.12)

where G0 is the conductance quantum and nF,ei is the Fermi-function of electrode

ei.

So far, we only considered a simplified system with two electrodes. However,

the formalism discussed above can be generalized for systems with an arbitrary

number n of electrodes by including the self-energies of all terminals in the Green’s

function[37],

G(ǫ) =

(

ǫS − H −
n
∑

e=1

Σe(ǫ)

)−1

. (3.13)

Efficient calculation of the Green’s function

The computationally most expensive part in transport calculations using NEGF

methods is the inversion of the Hamiltonian matrix to obtain the Green’s func-

tion. For a special type of matrices, namely the so-called block-tri-diagonal (BTD)

matrices, very effective inversion algorithms have been developed[102–104] and
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implemented in TranSIESTA[37]. BTD matrices have the following form,































A1 C2 0 · · · · · · 0

B1 A2 C3 0 · · · 0

0 B2 A3 C4 0 0
... 0

. . . . . . . . . 0
...

... 0 BN−2 AN−1 CN

0 0 0 0 BN−1 AN































. (3.14)

Here, only the matrices along the main diagonal (Ai) as well as the ones along the

first upper (Bi) and first lower (Ci) diagonals have non-zero elements. A BTD

matrix can be created from any sufficiently sparse matrix by swapping columns

and rows, a process known as pivoting. For example, for the two electrode Hamil-

tonian defined in Equation 3.4 of the previous sub-section, A1 corresponds to

the Hamiltonian plus self-energy for the first electrode (He1 + Σe1), B1 and C2

are equal to V†
e1 and Ve1, the terms coupling electrode one to the device region,

A2 represents the device region’s Hamiltonian Hd. Suitable pivoting may allow

further division of the device region’s Hamiltonian Hd into smaller blocks, then

represented by a series of An-blocks and connected by the corresponding Bn−1-

and Cn-blocks. Further, A3, B2, and C3 correspond to the Hamiltonian (includ-

ing the self-energy, He2 + Σe2) and the coupling terms V†
e2 and Ve2 of the second

electrode, respectively.

Once the inverse of the Green’s function matrix defined in Equation 3.6 has

been brought into the form of a BTD matrix (see Equation 3.14), the following

auxiliary matrices can be defined[37],

Ỹn = [An−1 − Yn−1]−1 Cn, Y1 = 0, Yn = Bn−1Ỹn,

X̃n = [An+1 − Xn+1]−1 Bn, Xp = 0, Xn = Cn+1X̃n.
(3.15)

For the calculation of X̃n and Ỹn it is not necessary to carry out the matrix

inversion. Instead, these matrices can be computed using a linear solution and

subsequent matrix multiplication of the respective equations[37]. The Xn and Yn

matrices can be interpreted as self-energies connecting consecutive blocks. This
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interpretation becomes more apparent when looking at the expressions for calcu-

lating the blocks of the Green’s function matrix[37],

Gn,n = [An − Xn − Yn]−1 ,

Gm−1,n = −ỸmGm,n for m ≤ n,

Gm+1,n = −X̃mGm,n for m ≥ n.

(3.16)

The last two lines define the backward and forward propagation of the Green’s

function along the columns of the matrix.

Implementation of multi-terminal eigenchannel tool

The formalism described above can be used to calculate the so-called transmission

eigenchannels, which are very useful for a detailed analysis of the transport prop-

erties of a system[105]. These eigenchannels are linear combinations of scattering

states, i.e., of wave-functions with a certain energy which satisfy the Schrödinger

equation and open boundary conditions[95]. The eigenchannels, which have a well

defined transmission, can be interpreted as wave-functions of electrons injected

into the system from one terminal with a certain energy and momentum, and

propagating to another electrode. From the spatial form of these wave-functions,

areas of scattering within the device region can be identified. Hence, the transmis-

sion eigenchannels are very helpful in determining bottlenecks for the transmission

of electrons in a given system.

Within this thesis, we implemented a tool for calculating multi-terminal eigen-

channels, based on the BTD method and on the propagation of the spectral func-

tion eigenvectors. The Python script we developed for this purpose relies on the

tight-binding library Sisl[106] developed by Nick Papior, which allows to read in

Hamiltonian matrices and to perform linear algebra operations. Besides, our im-

plementation uses methods from the Inelastica code[107] to set up the basis func-

tions and to calculate the eigenchannels on a real space grid, as well as different

capabilities of the Python libraries SciPy[108] and NumPy[109].

Our code first loads the Hamiltonian and overlap matrices for the electrodes

and the whole system for a given energy and k-point. These matrices might have
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been obtained with DFT or tight-binding and must be provided in a Sisl[106] com-

patible format. After calculating the self-energies for all the electrodes, the above

described BTD method is used to calculate the Green’s function block matrix cor-

responding to the electrode from which the eigenchannels should originate. Finally,

we calculate the eigenchannels as outlined below and use basis functions extracted

from SIESTA[81] calculations to compute the eigenchannel wave-functions.

In the following, this procedure for computing the eigenchannels will be de-

scribed in detail. Taking into account that Green’s functions are propagators,

the eigenchannels can be obtained by propagating the eigenvectors of the spectral

function of an electrode using the X̃ and Ỹ from Equation 3.15.

We begin by evaluating the spectral matrix of block n (containing the matrix

elements of electrode e) following Equation 3.8,

Ae
n,n = Gn,nΓeG

†
n,n. (3.17)

Diagonalizing this matrix gives the eigenvectors Un and eigenvalues λe of the

spectral function of block n. The eigenvalues λe represent the magnitude of the

DOS carried by the corresponding eigenvector. Now, similar to the propagation of

the Green’s function defined in the last two lines of Equation 3.16, the eigenvectors

of the spectral function can be propagated forward and backward along the column,

Un+1 = −X̃nUn (forward),

Un−1 = −ỸnUn (backward).
(3.18)

The propagated eigenvectors span the full vector space of the eigenchannels origi-

nating from electrode e,

U =

















U0

U1

...

UN

















. (3.19)

In principle, the eigenvectors could be propagate far into the electrode to see how

they decay in the bulk, provided that the Hamiltonian is extended correspondingly.
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This vector of block matrices is used to define the norm,

||U|| = diag

(

∑

i

U†
ijUij

)

= diag
(

u∗
j uj

)

, (3.20)

where uj is the the j-th column of U. Then, the renormalization of the propagated

eigenvectors and eigenvalues is done in the following way,

λe = λe||U||,

U =
U

√

||U||
.

(3.21)

Normalizing the eigenvalues might swap states, .i.e., the eigenvalues are not sorted

from highest to lowest anymore. Therefore, eigenvalues and eigenvectors have

to be resorted. Before calculating the eigenchannels originating in electrode e

and propagating into electrode e′, an orthogonal basis transformation has to be

performed on the broadening matrix Γe′ of the target electrode,

Ũ =
√

λe′U,

Γ̃e′ = Ũ†Γe′U.
(3.22)

Diagonalizing Γ̃e′ gives both the transmissions and the wave-function coefficients c̃

of the eigenchannels. The coefficients c̃ contain information about the contribution

of each eigenvector U to a given eigenchannel. Finally, transforming the wave-

function coefficients back to the non-orthogonal basis,

c =
Ũc̃√
2π
, (3.23)

one can use the basis functions to create real space representations of the eigen-

channels.

Example

To illustrate the capabilities of the multi-terminal eigenchannels tool, we consider

the model system depicted in Figure 3.2a, which consists of four carbon based
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terminals with an asymmetrically placed pore in the central region. For simplicity,

we used a tight-binding model including only nearest neighbor hopping to obtain

the Hamiltonians. The green shaded areas indicate the electrodes used in this cal-

culations. The hopping parameter in our tight-binding model was 2.7 eV. Figures

b to d show eigenchannels originating in electrode L flowing towards the three

other electrodes at an energy of −1.5 eV. At this energy, the system exhibits a

relatively high total transmission. For the eigenchannel from L to B (Figure 3.2b)

the main part is indeed transmitted to electrode B. Similarly, the main part of

the eigenchannel calculated from L to T is transmitted to the latter electrode

(Figure 3.2d). On the other hand, the transmission from L to R is rather low

(a) (b)

(c) (d)

Figure 3.2: (a) Geometry of the test system. Eigenchannels originating from
electrode L going to electrodes (b) B, (c) R, and (d) T at an energy of −1.5 eV.
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at the chosen energy and, thus, most of the eigenchannel gets scattered to other

electrodes. Note that, due to a slight asymmetry of the structure (see Figure 3.2a),

the eigenchannels are not exactly symmetric.

Our preliminary results demonstrate the value of our multi-terminal eigen-

channel tool, which allows to obtain useful and visually distinctive information

about the transport properties of a given system. Moreover, it is valid for DFT

and tight-binding based Hamiltonians, which opens the doors for investigations of

larger systems of realistic sizes.



Chapter 4

Graphene-Metal contacts

Graphene’s unique and excellent electronic properties, as well as its small volume,

make it an ideal candidate for its use in electronic applications[110, 111]. However,

building graphene-based devices often requires the formation of a contact between

the carbon allotrope and bulk materials, such as metals[7, 112–115], which will

necessarily alter graphene’s properties in the interface region[5, 116, 117]. Such

modifications might lead to high contact resistances, which are undesirable when

envisioning graphene as an interconnect in electronic components. Subsequently,

in recent years, huge efforts were put into minimizing the contact resistance of

metal-graphene junctions[118–123].

Graphene, or any 2D material for that matter, can be connected to a 3D bulk

material in two different ways. The conventional way is to put the 2D substance

on top of the bulk material, establishing an area of contact between the two com-

pounds. This interface conformation is called a 2D- or side-contact and is schemat-

ically illustrated in Figure 4.1a. On the electronic level, in this arrangement the

graphene’s π-orbitals overlap and hybridize with the metal’s surface orbitals and

states. Depending on the strength of the overlap and the hybridization, the mod-

ifications range from simple doping (i.e., a shift of the Dirac-point with respect

to the metal’s Fermi-level) to a complete reconstruction of the Dirac-cone and

graphene’s band structure around Fermi-level[124, 125]. Systems of this contact

type have been studied extensively, but achieving high quality contacts with low

resistivity has proven to be rather difficult[126–129].

37
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(a) (b)

Figure 4.1: Schematic illustration of side- (a) and edge-contacts (b) of graphene
connected to metal.

More recently, an alternative way of contacting graphene to metals has been

developed. In the so-called one-dimensional (1D)- or edge-contact geometry, the

graphene edge is connected directly to the metallic electrodes, that way forming a

1D metal-graphene junction[130]. In this case, the dangling bonds of the graphene

edge atoms can form a covalent bond with the metal atoms. Since the first realiza-

tion of this type of contact[130], it has been confirmed that this interface geometry

leads to substantially lower resistances as compared to the classical side-contact

conformation[131–136].

Currently, a major issue of both contacting schemes is the difficulty of obtain-

ing reproducible contact geometries, which leads to significant device-to-device

variations in the conductive properties[122, 130, 134, 137, 138]. For example, the

first experimental study of metal-graphene edge contacts found values for the con-

tact resistance varying from a few hundred Ωµm for Cr-based contacts to a few

MΩµm for Ni-graphene junctions[130]. However, later experiments produced a

contact resistance of Ni-Gr interfaces comparable to the resistance of Cr-Gr junc-

tions[134]. Similar variations in the resistance have been found for side contacted

graphene[126, 139, 140]. These variations are often ascribed to different fabri-

cation strategies, which often involve reactive ion or plasma etching. While this

treatment is very efficient in exposing graphene edges and removing residues[122,

130, 133, 138, 141], it is yet unclear whether or how the structural and chemical

properties of the interface are altered.

Here, we address this issue by a systematic study of 2D and 1D contacts, with

special focus on the influence of graphene edge functionalization or contamination.
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4.1 Side contacts

Computational details

The setup for the transport calculations, shown in Figure 4.2, is composed of

a device region enclosing the metal-graphene interface (red frame), attached to

metallic (blue) and graphene (gray) electrodes. The structural relaxations were

performed using the device region as indicated in Figure 4.2, with the leftmost

metal atoms of each layer, the metal’s bottom layer, and the two rightmost carbon

rows fixed. For the Ni-based contacts, the structures for the transport calculations

consisted of about 200 atoms and 2700 orbitals.

As metal electrodes, we selected Ni and Au. These are known to strongly (Ni)

and weakly (Au) interact with graphene, at least in the on-top adsorption confor-

mation[125, 142]. For both metals, we considered the (111) surface contacted to

ZZ edged graphene. Besides, it has been demonstrated that graphene ZZ edges can

spontaneously form a Stone-Wales reconstruction on Ni surfaces[143]. Thus, for

the Ni we also performed calculations with Stone-Wales reconstructed graphene.

We performed the calculations in this section using SIESTA[81] and Tran-

SIESTA[36, 37]. For the exchange-correlation functional we chose the vdW func-

tional by Klimes et al[50]. As basis set we selected a DZP with a PAO.EnergyShift

of 0.01 Ry. To efficiently sample the Brillouin zone, we applied a Monkhorst-

electrode device region bufferelectrode

Figure 4.2: Setup for the transport calculations. The black frame indicates the
unit cell.
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Pack[144] grid of 15x1x1 k-points. For the sampling of the transmission we used

3023x1x1 k-points. We set the convergence criterion for the forces to 0.01 eV/Å

for the structural optimizations. As convergence criterion for the self-consistent

electronic optimization we used the difference in the Kohn-Sham energy and con-

verged it run until the maximum difference between two consecutive steps was less

than 0.0001 eV. We performed all calculations for the 2D contacts spin polarized.

Unpassivated graphene edge

The relaxed structures of the clean Ni and Au based 2D graphene contacts are

shown in Figure 4.3. The situation here is different as compared to the above

mentioned metal-graphene on-top conformation, in which the metal surfaces only

interact with graphene via its π orbitals. In contrast, in the contacts studied

here, the dangling bonds of the unpassivated ZZ edge atoms can form a strong

covalent connections with both metals. In the case of the Au contact, this leads

(a) (b) (c)

Figure 4.3: Top and side views of the relaxed structures of the clean 2D metal
graphene contacts. (a) Ni(111) in contact with graphene ZZ edge, (b) Ni(111)
in contact with Stone-Wales reconstructed edge, and (c) Au(111) in contact with
graphene ZZ edge. The black horizontal lines in the top views indicate the unit
cell in periodic direction.
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to significant structural modifications of the metal slab close to the interface. For

the Ni 2D contacts, instead, the structural modifications of the metal slab are

significantly weaker.

For these relaxed contacts, we calculated the transmission function and summed

up the contributions of both spin channels, yielding the total transmission function

T (E). We then obtained the contact resistance RC from T (E) using the following

equation[134],

1

RC

=
G0

L

∫

T (E)
e(E−(EF +eVG))/kBT

(1 + e(E−(EF +eVG))/kBT )2

dE

kBT
, (4.1)

where G0 is the conductance quantum, L is the size of the unit cell in the periodic

direction parallel to the interface, EF is the Fermi-level, T is the temperature and

kB is the Boltzmann constant. The second term in the integral is the derivative

of the Fermi-function with respect to the energy and is responsible for thermally

broadening the transmission. To include the effect of a gate voltage, the term eVG

is added to the Fermi-level in the exponent of the Fermi-function, with e being

the elementary charge and VG the gate voltage. Thus, the effects of applying a

gate voltage are simulated by a rigid shift of the Fermi-level, which is valid only

for small values of VG.

For the non-passivated 2D contacts, the resistance as a function of gate volt-

age is shown in Figure 4.4a. Albeit the Au 2D contact has the highest contact

resistance, all three contacts display values of the same order of magnitude for the

whole range of gate voltages. This demonstrates that the unpassivated graphene

edge can establish good contacts to both metals. Interestingly, the Stone-Wales

reconstructed edge leads to significantly lower contact resistances for negative gate

voltages as compared to the unreconstructed ZZ edge. In fact, in this range of gate

voltages the unreconstructed egde produces a contact resistance as high as the one

for the Au contact. To gain further insight into this matter, we plotted the spin-

resolved transmission as a function of energy and k-point in the periodic direction

(kx) for the Ni contacts with ZZ and Stone-Wales reconstructed edges, as shown

in Figure 4.4b (similar plots for all the other contacts considered in this section

can be found in Appendix A). For both edge types, the transmissions are slightly

spin polarized. The 2D contact to the ZZ edge has a higher spin up transmission
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Figure 4.4: (a) Contact resistance as a function of the gate voltage for the clean
contacts. (b) Spin-resolved transmission as function of energy and kx for the Ni
contacts with unreconstructed graphene edge (left, black frame) and Stone-Wales
reconstructed edge (right, blue frame).

for positive energies and lower spin up transmission for negative energies, while

for the contact to the Stone-Wales reconstructed graphene the opposite is true.

Still, the degree of spin-polarization is smaller in the case of the reconstructed

edge. Furthermore, for the ZZ terminated graphene contact the transmission of

the spin up channel is very low for negative energies, almost vanishing for some
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values of kx. Thus, in this type of contact the spin up channel is effectively blocked

for energies below the Fermi-level. This explains the higher contact resistance for

negative gate voltages as compared to the contact with the reconstructed edge.

Influence of edge passivation on side contacts

Next, we studied how the passivation of the ZZ graphene edge influences the

structural and transport properties of the Ni and Au 2D contacts. We chose

three different edge terminations, namely H, NH2, and OH. The first one is the

most common termination of graphene edges, and is used as reference in many

theoretical studies of graphene nanostructures (e.g., in Refs. [145–147]), while the

latter two have been shown to significantly modify their electronic properties[148].

The relaxed structures of the Ni and Au contacts with the passivated graphene

edges are given in Figure 4.5. From the top views in this figure one can see that for

the H and OH passivations both graphene edge atoms in the unit cell are function-

alized, while the size of NH2 only allows to passivate one edge atom per unit cell.

For the Ni 2D contacts (Figure 4.5a-c), no significant metal surface reconstructions

occur and the graphene is only slightly bent. The strongest bending of graphene

emerges in the OH terminated contact, where we observe that the OH groups are

pushed away from the Ni substrate. The metal graphene separations for all three

Ni contacts are very similar (∼1.8 Å), as can be seen from Table 4.1.

The situation is quite different for the passivated Au based 2D contacts (see

Figure 4.5d-f). For the functionalized Au contacts, the structural differences with

respect to the unpassivated interface (see Figure 4.3c) are quite significant. While

Table 4.1: Metal graphene distances (dM−Gr) for the passivated contacts. This
distance was calculated by subtracting the average z-coordinates of the first 6 C
rows and of the topmost metal layer. The positions of the passivation atoms are
not considered in the distance calculation.

M
Passivation

H NH2 OH
dM−Gr (Å) dM−Gr (Å) dM−Gr (Å)

Ni 1.77 1.80 1.82
Au 2.59 2.73 2.77
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Top and side views of the relaxed geometries of edge functionalized 2D
metal-graphene contacts. (a)-(c) H, NH2, and OH passivated Ni contacts. (d)-(f)
H, NH2, and OH passivated Au contacts.
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Figure 4.6: (a) Contact resistance as a function of gate voltage for the passivated
Ni-graphene 2D contacts. (b) Contact resistances at zero gate voltage for the Ni
and Au contacts.

the unpassivated graphene edge can establish a covalent bond to the Au, edge

termination prevents this kind of bonding. Thus, the functionalized graphene only

forms vdW bonds to the Au slab. Here, the metal underneath the graphene gets

slightly deformed and, besides, the metal graphene distance is lower (∼0.2 Å) for

the H terminated contact as compared to the other two (see Table 4.1). Interest-

ingly, even though one of the edge atoms of the NH2 terminated contacts is un-

passivated and could establish a covalent bond to the surface, the metal graphene

distance is so large (∼2.73 Å) that no direct C-Au contact is formed. Note that, the

average distance between graphene and metal is much larger for the Au contacts

than for the Ni graphene interfaces. This indicates that the graphene edge passi-

vated interfaces resemble the on-top conformation scenario, in which Ni interacts

stronger with graphene as compared to Au.

Based on these relaxed interfaces, we investigated the influence of the passi-

vation on their transport properties. Figure 4.6a shows the contact resistance as

a function of gate voltage for the graphene edge functionalized Ni contacts. The

contact resistance is of the same order of magnitude over the whole gate voltage

range for all Ni contacts. Interestingly, for negative gate voltages the resistance

is slightly smaller for the functionalized contacts than for the unpassivated one,
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Table 4.2: spin-filtering efficiency (SFE) as defined in Equation 4.2 for the 2D Ni
and Au contacts with edge passivated graphene. The values were obtained for zero
gate-voltage.

Metal
Passivation

None H NH2 OH Stone-Wales
SFE (%) SFE (%) SFE (%) SFE (%) SFE (%)

Ni 18.4 −44.5 28.9 13.5 −9.0
Au 0.1 0.3 −0.6 −17.1 -

which, at least partially, might be ascribed to spin effects (see Appendix A).

The resistance values at zero gate voltage for the Ni and Au contacts are shown

in Figure 4.6b. For the Au contacts, passivation of the graphene edge increases the

resistance in all cases. This increase is strongest for the OH passivated contact,

and also for the contact with the NH2 functionalized graphene edge it is quite

significant. Passivating the graphene edge with H, on the other hand, does only

lead to a slight increase in resistance. The clean and H passivated Au contacts

assume values for the resistances which are very close to the values of their Ni

counterparts.

In order to quantify the spin-filtering character of the different contacts, we

estimated the spin-filtering efficiency (SFE) according to the following equation,

SFE =
(G ↑ −G ↓)

(G ↑ +G ↓)
, (4.2)

where G ↑ and G ↓ represent the conductances for the spin-up and spin-down

channels at a temperature of 300 K, respectively. With this definition the SFE

assumes positive (negative) values if the spin-up channel conductance is higher

(lower) than the conductance through the spin-down channel.

Table 4.2 lists the values for the SFE of the different Ni and Au 2D contacts

to graphene. The Ni contacts offer a wide spread of SFE values, with the Stone-

Wales reconstructed edge offering the lowest and the H functionalized graphene

the highest SFE magnitude. In the case of the Au contacts, only functionalization

of the graphene edge with OH leads to a non-negligible SFE. All in all, we can

conclude that spin-filtering is rather low in these metal-graphene side contacts.
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In summary, our preliminary results show how the contact resistances of 2D

metal-graphene contacts depends on the metal and the graphene edge functional-

ization. These results indicate that the differences between the metals are rather

small when the graphene edge is unpassivated, but that edge termination can have

a significant influence on the conduction properties of such interfaces.

4.2 Edge contacts

Calculation details

The setup for our transport calculations of the metal graphene edge contacts is

illustrated in Figure 4.7. The device region consists of 5 metal layers and 40 C

rows of graphene. Except for the two bottom layers of the metals, all of the atoms

in the device region were relaxed.

Since the metal electrodes used in the fabrication of metal-graphene edge con-

tacts are not perfectly crystalline and, hence, are hard to simulate, we have chosen

to consider only a single crystalline orientation per metal. This approach allows

us to focus on trends and permits the comparison between different systems. We

chose the surface planes for the metals to be 111 for Ni and Au, 110 for Cr, and

0001 for Ti, some of which were already used in previous theoretical studies (e.g.,

in Refs. [130, 134, 149, 150]).

Our strategy to find contact geometries involved calculating the interaction

energy curves, and then relaxing the atoms of the device region (except the two

Metal
electrode

Graphene
electrode

Buffer
Metal
electrode

Device region

Figure 4.7: Setup for transport calculations of metal-graphene edge contacts with
metal electrode (blueish) and graphene electrode (yellow) attached to the device
region. The black frame indicates the unit cell used in the calculations.
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Figure 4.8: Electrostatic potential of clean NiGr contact. The shaded gray area
indicates the position of the graphene electrode.

bottom metal layers), as it will be described in more detail below. More realistic

structures might be obtained by applying modern stochastic approaches[151, 152].

However, these methods are rather new and only have been applied to interfaces

between systems having the same dimensionality (e.g., 2D interfaces between two

3D materials). Using stochastic approaches to obtain contact conformations of

metal-graphene edge contacts would first require to verify that they also work for

interfaces between metals with mixed dimensionality and, additionally, implement-

ing and testing such an algorithm is a huge task and lies outside of the scope of

this work.

For the transport calculations we added a 6 metal layer electrode on the one

side and a 8 C row long graphene electrode on the other side, as can be seen from

Figure 4.7. Additionally, we used 16 C rows of graphene as buffer atoms. We

chose this asymmetric setup in order to avoid spurious effects emerging from the

decay of the electrostatic potential of the electrode, as studied in Ref. [117]. To

check that our setup is indeed free of such effects, in Figure 4.8 we have plotted the

average electrostatic potential in the transport direction (z) for one representative

case, namely the clean Ni-Gr contact. Here, the gray shaded area corresponds to

the potential at the position of the graphene electrode. Clearly, the potential is

sufficiently flat, and, hence, well converged in the region of the graphene electrode.
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Figure 4.9: Contact resistance as a function of gate voltage for clean Ni-Gr contacts
with ZZ or AC graphene edge.

We performed all the calculations described in this section using the PBE[53]

flavor of the GGA for the approximation of the exchange-correlation functional.

For the SIESTA[81] and TranSIESTA[36, 37] calculations we used a DZP basis

set and a mesh cut-off of 400 Ry. To efficiently sample the Brillouin zone, we

applied a Monkhorst-Pack[144] grid of 23x3x1 k-points. For the sampling of the

transmission we used 765x5x1 k-points. For the structural optimizations, we set

the convergence criterion for the forces to 0.01 eV/Å. As convergence criterion for

the self-consistent electronic optimization we used the difference in the elements of

the Hamiltonian matrix and converged it until the maximum difference between

two consecutive steps was less than 0.0001 Ry. We carried out all the calculations

for the 1D contacts spin polarized.

With the aim of elucidating the influence of the graphene edge morphology

on the transport properties, we compare the ZZ and AC edge conformations for

the clean Ni-Gr contact. For the AC terminated graphene, we applied the same

procedure as for the ZZ edge conformation to obtain the corresponding relaxed

structure. This procedure includes relaxation of the metal and graphene at a large

separation, calculating interaction energy curve, and, finally, relaxing the system

to its equilibrium configuration. The corresponding resistance of these two edge

contacts as a function of gate voltage (calculated according to Equation 4.1) is
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given in Figure 4.9. The contact resistance is slightly larger for the AC than for

the ZZ edge, but it is of the same order of magnitude over the whole range of gate

voltages. Although the situation might be different in the case of contaminated

graphene edges, considering only ZZ graphene for uncontaminated and chemically

modified contacts allows us to directly compare different contacts to the same

metal. For this reason, we have chosen to consider only zig-zag edge graphene

both for uncontaminated and chemically modified cases.

Edge contamination of zig-zag graphene nanoribbons

Before performing transport calculations for metal-graphene edge contacts, we

carried out a detailed energetics analysis of the possible graphene edge contam-

inations. With this aim, we calculated the stability of different graphene edge

contaminations using a 10-atom wide ZZ nanoribbon, functionalized with F, F2,

O, and O2. These contaminants were chosen because fluorine and oxygen are often

contained in the reactive compounds used to etch the graphene prior to contact

formation (for a detailed description of the production of graphene-metal edge

contacts see Ref. [130]).

We performed the calculations of the binding energies of different contaminants

at the graphene ZZ edge with VASP[76–79]. Here, we used a plane wave cut-off

energy of 300 eV and an energy convergence criterion of 1 × 10−6 eV. We performed

the stabillity calculations using a plane wave based method to avoid basis set

superposition errors known to occur in electronic structure methods based on the

use of localized basis sets (e.g., in SIESTA[81]).

The formation energy EF for the different edge terminations was obtained using

the following formula,

EF = EX−Gr−X − (EGr + nX

EF 2/O2

2
) with X ∈ {F, F2, O,O2}. (4.3)

In this equation, EX−Gr−X is the energy of the passivated ribbon, EGr denotes the

energy of the unpassivated ribbon, and EF 2/O2 represents the energy of F2 and O2,

respectively. nX is the number of contaminant atoms per edge, i.e., 1 for F and O,

and 2 for F2 or O2 passivated systems. The corresponding results are summarized
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Table 4.3: Formation energies for different graphene edge contaminations.

Contaminant EF (eV)
F −8.7
F2 −12.3
O −7.2
O2 −4.1

in Table 4.3. Clearly, passivation with F2 (EF =−12.3 eV) is more stable than

passivation with a single fluorine atom (EF =−8.7 eV), in good agreement with

previously reported values (see Ref. [153]). In the case of oxygen, on the other

hand, we find that single atom passivation (EF =−7.2 eV) is more stable than

attaching two O atoms to the edge (EF =−4.1 eV). Based on these results, we

decided to consider the most stable contamination, F2, as well as F and O, which

also exhibit rather large formation energies.

Structural optimizations

Energetics of metal-graphene contacts

In order to get insight into the energetics and stability of the metal-graphene

edge contacts, we calculated the interaction energy as a function of the separation

distance between the metal slab and the graphene sheet. First, we relaxed the

graphene and the metal slab at a large distance where the interaction energy is

close to zero. Then, we calculated the change in the total energy of the systems

as a function of the metal-graphene separation, keeping the geometries of both

subsystems (metal and graphene) frozen. From the resulting interaction energy

curves, we determined the distance of minimum energy (dEmin), which corresponds

to the minimum of the interaction energy curve, and the distance of maximum force

(dF max), i.e., the distance at which the second derivative of the interaction energy

curve vanishes.

As an example, Figure 4.10 shows the interaction energy curve for the Cr-Gr

contacts. In this plot, the green and red lines indicate the distances of minimum

energy (dEmin) and maximum attraction (dF max), respectively, between the metal

and graphene. From this figure, we conclude that the distances of minimum energy
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Figure 4.10: Energy versus distance curves for the clean (top-left), O (top-right),
F (bottom-left), and F2 (bottom-right) contaminated Cr-Gr contacts. The green
and red lines indicate the distances of minimum energy and maximum force, re-
spectively.

and maximum force for the clean and O passivated contacts are almost the same.

Similarly, the contamination with F or F2 leads to comparable distances.

Likewise, we have calculated dEmin and dF max for the other three metals (Ni,

Ti, Au) considered in this work. The results are given in Table 4.4, where we

clearly observe that, for the transition metals (Cr, Ni, Ti), oxygen contamination

yields dEmin and dF max values close to the corresponding distance of the clean

contacts. Both fluorine based contaminations result in a significantly increased

separation of the metal and graphene compared to the clean and O passivated

contacts. This can be attributed to the fact that, the edge atoms of the clean and

O contaminated edges can form strong covalent bonds to the metal, while F is
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Table 4.4: Distances between metal (M) and graphene (clean contacts), or between
metal and contaminant atom(s) as estimated from the interaction energy curves
shown in Figure 4.10 for Cr-based contacts. For clarity, the schemes indicate how
the distances are measured for the clean (left) and contaminated (right) contacts.

dM dM
R

R

R

R = F, F2, O

M
Contamination

Clean F F2 O
dEmin

(Å)
dF max

(Å)
dEmin

(Å)
dF max

(Å)
dEmin

(Å)
dF max

(Å)
dEmin

(Å)
dF max

(Å)
Cr 1.02 1.84 2.09 2.54 1.97 2.53 0.99 1.66
Ni 1.48 2.08 2.41 3.33 2.21 2.72 1.53 2.02
Ti 1.79 2.44 2.25 3.74 2.17 2.84 1.67 2.40
Au 1.98 2.90 2.47 2.93 2.43 2.84

only able to form one bond (in this case to graphene) and, thus, the connection of

F contaminated edges to the metal is rather weak. Besides, in the case of Au, the

distances of minimum energy increase significantly upon fluorination, while the

distance of maximum attraction remains almost unchanged.

Forces on interface atoms

With the aim of addressing the atomic scale reactivity of the metal-graphene 1D

contacts, we examined the forces induced by the metal at the graphene edge at the

distance of maximum attraction. First, we focus on Cr, which is the experimentally

most frequently employed metallic electrode. For this metal, we investigated the

changes in the interface forces depending on the termination of the graphene sheet.

We focused on the force component perpendicular to the surface (z-component).

The forces in z-direction (Fz) induced by the Cr(111) surface onto the interface

carbon and contaminant atoms are shown in Figure 4.11. For comparison purposes,

the forces (and the arrows indicating the force on the first graphene or contaminant

atom) are normalized with respect to the values of the clean contact (Figure 4.11a).

Blue and red shades indicate forces pointing towards (negative forces) and away
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(a) (b)

(c) (d)

Figure 4.11: Forces on the interface atoms for (a) clean, (b) O, (c) F, and (d) F2

contaminated Cr-Gr contatcs in the maximum force conformation.

(positive forces) from the surface, respectively. We find that the net forces on

the edge atoms of the clean and O contaminated contacts are high and pointing

towards the surface. The forces on the F atoms of both fluorinated contacts,

despite also pointing towards the metal, are much smaller as for the clean contact.

This is a consequence of the larger metal-graphene separation for the fluorinated

contacts, which in turn is a result of their bonding chemistry. That is, since F

can only establish one bond, it is well bonded to the graphene edge, but lacks the

possibility of connecting to the metal.

Next, in order to inspect the impact of using different metals, we have looked

at the forces on the interface atoms for three Ni based contacts, namely the clean,

O and F contaminated contacts (shown in Figure 4.12). For comparison, also the

forces on the fluorine passivated Cr-based contact is depicted. As for the Cr-Gr
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(a) (b)

(c) (d)

Figure 4.12: Forces on the interface atoms for (a) clean, (b) O, and (c) F con-
taminated Ni-Gr contatcs as well as the F passivated Cr-Gr contact (d) in the
maximum force conformation.

interfaces, the forces on the clean and O passivated edges are quite high. For

both metals, one can see that the forces for the O contaminated contact decay

slower than for the other contacts, i.e., even carbon atoms further away from the

interface contribute to the net force. On the contrary, for the mono-fluorinated

Ni-Gr junction, the forces on the edge atoms are almost vanishing. Thus, for this

type of contamination, the Cr exerts a much higher attractive force on the interface

compared to Ni.

Therefore, our calculations reveal a complex scenario that might be at the

origin of the experimental differences. For example, the significantly different

forces on the edge atoms between Cr and Ni based mono-fluorinated contacts, in

combination with different graphene-metal separations (see previous subsection),
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indicate that the metal might be the main factor for the dynamics of these partic-

ular contacts. On the other hand, the influence of the metal on the forces in the O

contaminated interfaces extends further towards the graphene layer, as compared

to all other passivations, which suggests that oxygen might increase the reactivity

at graphene metal interfaces. From these results, we can conclude that the reac-

tivity at the interfaces depends, in an intricate way, both on the metal and the

graphene edge contamination.

Evolution of contacts upon formation

In the following, the structural evolution of the interfaces upon contact formation

is investigated. For this purpose, we relaxed the systems starting from the Emin

and Fmax conformations, as previously obtained (above). The final graphene-metal

separations obtained from these relaxations are given in Table 4.5. For almost all

contacts, the final metal-graphene distances are virtually the same, independent

of whether the relaxation was started at distance of minimum energy (dEmin) or

at distance of maximum force (dF max). The exceptions are the fluorinated Ni-Gr

and Ti-Gr contacts. As shown above, the force on the graphene edge of the mono-

fluorinated Ni-Gr contact at dF max is very small and the metal-graphene separation

rather large. As a consequence, the Ni is not able to pull the graphene sheet much

Table 4.5: Distances between metal (M) and graphene (clean contacts), or between
metal and adsorption atom(s) (contaminated contacts) after performing structural
optimizations starting at the distances of minimum energy (dEmin) and maximum
force (dF max) For clarity, for systems with significantly different dEmin and dF max

the distances are written in bold characters.

M
Contamination

Clean F F2 O
dEmin

(Å)
dF max

(Å)
dEmin

(Å)
dF max

(Å)
dEmin

(Å)
dF max

(Å)
dEmin

(Å)
dF max

(Å)
Ni 1.47 1.48 2.39 2.92 2.22 2.31 1.47 1.47
Cr 0.87 0.86 2.15 2.14 2.01 2.02 0.90 0.90
Ti 1.29 1.25 2.36 3.76 3.60 2.16 1.25 1.25
Au 1.87 1.89 2.52 2.51 2.33 2.40
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closer to it when relaxing the structure starting from the distance of maximum

force. Hence, relaxing this contact from dF max leads to a metal-graphene distance

significantly larger than when the structural optimization starts from dEmin. The

same is true for the mono-fluorinated Ti-Gr contact.

In the case of the initially di-fluorinated Ni-Gr contact, the contacts relaxed at

dEmin and dF max end up basically in the same conformation: one of the F atoms

gets stripped away from the graphene edge and bonds to the metal. Thus, the

initially di-fluorinated graphene edge ends up being mono-fluorinated after the

relaxation. In fact, the same is true for the initially di-fluorinated Cr-Gr contact.

Here, as well, the metal is able to strip away one of the F atoms of the graphene-

edge. In section 4.2, we have shown in accordance with literature[153], that for a

free-standing graphene ZZ edge the di-fluorinated passivation is more stable than

the mono-fluorinated one. Clearly, the presence of the metals drastically decreases

the stability of di-fluorinated edge contamination and, consequently, leads solely

to relaxed geometries with mono-fluorinated graphene edge contaminations.

Remarkably, the situation is quite different for the initially di-fluorinated Ti-Gr

contact, as can be seen in Figure 4.13. When this system is relaxed starting from

dEmin, the metal is able to strip away both fluorine atoms. The two F atoms then

(a) (b)

Figure 4.13: Initial and final structures of the Ti-F2-Gr contact at (a) dEmin and
(b) dF max.
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Figure 4.14: Scheme of final contaminations after structural optimizations.

bond to the metal and form a layer on the surface, thus, effectively increasing the

distance between graphene and metal, and preventing the formation of covalent

bonding between the graphene edge and Ti. On the other hand, when starting the

relaxation of this contact is started at dF max, Ti can only strip away one of the

F atoms. These results for the Ti-F2-Gr contacts point towards a very complex

energy landscape with multiple conformational states.

All in all, regardless of the metallic electrode, the final graphene edge confor-

mation always falls into one of three categories, namely clean, mono-fluorinated,

or mono-oxidized, as schematically illustrated in Figure 4.14.

Resistance of clean and contaminated contacts

After having determined the structure and chemical conformation of the 1D con-

tacts, we now turn our attention to their conductance properties. For this purpose,

the resistances of the different graphene based 1D contacts have been calculated

(Equation 4.1) and analyzed .

The contact resistance as a function of gate voltage for the clean contacts is

shown in Figure 4.15a. Over the whole gate voltage range, the contact resistances

are of the same order of magnitude for all clean contacts. The Ni-Gr interface

exhibits a slightly lower contact resistance than the other contacts. In fact, com-

parison to the intrinsic resistance of graphene shows that the contact resistance of

the Ni-Gr junction is close to the theoretical lower limit. Interestingly, the Ti-Gr

junction exhibits the largest contact resistance, its performance being even worse

than for the more inert Au electrode. The poor electronic transmission across the

Ti-Gr interface might be ascribed to a mismatch between the Fermi-level states of

the metal and those of the graphene, as it has been reported to occur for epitaxial

graphene on Ti[154].
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Figure 4.15: (a) Contact resistance as a function of gate voltage for the clean
Ni-Gr, Cr-Gr, Ti-Gr, and Au-Gr junctions. As reference the intrinsic graphene
resistance is plotted as well (black line). (b) Contact resistances at VG=0 V for
clean (grey), O (red) and F (blue) contaminated Ni-Gr, Cr-Gr, Ti-Gr, and Au-Gr
contacts.

Therefore, our calculations for clean metal-graphene edge-contacts cannot ex-

plain the device-to-device variations observed in experiments. Motivated by this,

we also calculated the contact resistance at zero gate voltage for the relaxed clean,

F, and O contaminated contacts. The results of these calculations are shown in the

form of histograms in Figure 4.15b. Clearly, the increase of the contact resistance

is rather small for the O contaminated junctions, independently of the metal. Pas-

sivating the graphene edge with F, on the other hand, significantly increases the

contact resistance for all metals. It is worth emphasizing that the relative increase

is substantially smaller for the Cr-based contact.

From these results we can infer that contamination of the graphene edge can

have a significant influence on the quality of metal-graphene edge contacts. Still,

quantitative comparison with experiments is difficult, because the exact conforma-

tion of the fabricated contacts is unknown. While the contacts in our calculations

are highly idealized (e.g., crystalline metal, straight graphene edges), experimen-

tal contacts will deviate from these ideal interfaces in various ways, for example,

contamination will most likely not be uniform and structural defects are expected.
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Figure 4.16: Schematic illustration of
a possible, non-ideal, contact confor-
mation.

A schematic illustration of a non-

ideal contact conformation is shown in

Figure 4.16. In this model, we define three

different distances. Namely, equilibrium

distance (d1), distance at maximum force

(d2), and distance of maximum force plus

1 Å (d3). Using this model as a reference,

and taking Cr and Ni as representative

metals, we carried out transport calcula-

tions at each distance and for the different

graphene contaminations (clean, oxidized,

mono or di-fluorinated). The realistic contact conformation can be viewed as a

combination of the different simulated scenarios. Thus, from the calculations re-

ported in the following, we can extract a range of values for the resistance of the

model contact.

The contact resistances at different distances for the Ni-based interfaces are

shown in Figure 4.17a. Comparing the contact resistance at the distance of max-

imum force d2 to the values obtained at d1, we observe only a small increase for

the clean and O passivated Ni-Gr contacts, with RC values within the same or-

(a) (b)

Figure 4.17: Contact resistances at VG=0 V for clean (grey), O (red) and F (blue)
contaminated Ni-Gr (a), and Cr-Gr (b) contacts at equilibrium distance (d1), at
distance of maximum force (d2), and at distance of maximum force+1 Å (d3).
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der of magnitude. At distance d3, instead, the contact resistance of the clean

and oxygen contaminated Ni-Gr junctions increases by an order of magnitude.

For the mono-fluorinated case, the contact resistances are elevated by an order of

magnitude already when going from d1 to d2, and by another order of magnitude

when extending the distance from d2 to d3. Interestingly, while showing the same

trend as the mono-fluorinated contacts, the contact resistance of the di-fluorinated

junctions is always smaller than for the mono-fluorinated contacts in the case of

Ni-based interfaces at all distances.

For the Cr-based contacts the situation is rather different (see Figure 4.17b): for

the clean Cr-Gr interface, the resistance is very similar regardless of the separation

distance. We ascribe this behavior to the relatively short bond distance between

Cr and graphene at all distances. For the O contaminated Cr-Gr junction, the

resistance increases upon moving the graphene further away; yet, the relative

increment is smaller than in the corresponding Ni-based interface. On the other

hand, for the Cr-F-Gr contacts, the change in resistance is only of one order of

magnitude when going from d1 to d3, with only a small upshift at d2 as compared

to d1. The contact resistance of the Cr-F2-Gr contacts is at all distances only

slightly larger compared to the Cr-F-Gr interface.

Summarizing, the relative increase in the contact resistance upon contamina-

tion is lower for Cr than for Ni based 1D interfaces. This means that the quality

of the Cr based contacts is less dampened by contamination. As a result, Cr

is a better candidate to obtain 1D contacts with lower resistance, which agrees

with experimental observations[130]. In any case, as already mentioned above, a

quantitative comparison to experiments is difficult due to a lack of atomic-scale in-

formation about the fabricated contacts (e.g., edge reconstructions, distribution of

contaminants, etc.). Nevertheless, our qualitative study of the influence of contam-

ination on the contact resistance of metal graphene edge contacts provides valuable

insight into the mechanisms responsible for device-to-device variations. Moreover,

it can guide the future design of metal-graphene contacts of better quality.
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Spin filtering properties

Finally, we turn our attention to possible spin effects in the 1D contacts. As it is

known, graphene ZZ edges posses a spin-polarized edge state[155–158]. Therefore,

to shed light on the possible spin-filtering effects, we investigate how the proximity

of the metal electrode affects the spin-polarization of the graphene edges in our

contacts.

For this purpose, we first take a look at the spin-resolved projected density

of states (PDOS) of the graphene edge atoms of the mono-fluorinated Cr an Ni

contacts. Figure 4.18a depicts the DOS at distances d1, d2, and d3 projected onto

the first C row (grey) and on the F adatom (blue) for the Cr-F-Gr contact. Corre-

sponding plots for the Ni-F-Gr contact are shown in Figure 4.18b. For comparison,

the DOS projected onto the edge C atoms of a free-standing ZZ graphene edge

(black) is shown in the lower panels. For the Cr-based junction at the equilibrium

distance (d1), the spin up and spin down PDOS corresponding to the C edge atoms

are essentially equal (in energy position and intensity). The situation is qualita-

tively the same for the DOS projected onto the F atom. This clearly indicates

quenching of the spin-polarization at the ZZ edge. Apart from slight shifts of the

peaks compared to the free-standing ZZ edge, moving the graphene sheet further

away from the metal (d2 and d3) gradually restores the spin-polarization. In con-

trast, despite small energy shifts, the ZZ edge in the Ni-F-Gr junction remains

spin-polarized even at d1. In fact, already at distance of maximum force (d2) the

spin-polarization is almost completely restored.

In the attempt to quantify these spin effects, we calculated the spin-filtering

efficiency (SFE) as defined in Equation 4.2. The values for the SFE of different

edge contacts are listed in Table 4.6 on page 64. In the case of Cr, at equilibrium

distance (d1) both, clean and contaminated, contacts display a very low spin-

filtering capacity. Moving the graphene further away from the metal increases the

corresponding SFE, although the magnitude of the increase depends very delicately

on the contamination of the graphene edge. The rather small increment of the SFE

for the clean interface can be attributed to the low distance, and thus, good contact,

between the Cr and graphene even at d2 and d3 (see Table 4.4). In case of the

mono-fluorinated and O passivated Cr-Gr contacts, instead, the SFE significantly
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Figure 4.18: PDOS of the interface atoms of a Cr-F-Gr (a) and a Ni-F-Gr (b)
contact calculated for spin-up (↑) and spin-down (↓) channels, at distance d1 (top
panel), d2 (middle panel), and d3 (bottom panel). For comparison, in the bottom
panel the corresponding PDOS of a graphene ZZ edge is shown. The PDOS of F
has been multiplied by 4.
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Table 4.6: Spin-filtering efficiency (as defined in Equation 4.2), at zero gate-voltage
and different separation distances.

Spin-filtering efficiency (%)

d1 d2 d3

Ni-Gr -10.1 -51.4 -36.9
Cr-Gr -0.5 -11.5 -11.6

Ni-O-Gr -60.6 -66.0 -62.2
Cr-O-Gr -1.5 -12.3 -45.8

Ni-F-Gr -74.4 -89.0 -92.8
Cr-F-Gr -0.4 -32.5 -86.1

increases with larger separation between Cr and graphene.

For the clean Ni-graphene interface, the SFE is small at equilibrium distance,

while contamination of the graphene edge leads to much higher values. Upon

extending the separation between Ni and graphene, the SFE generally increases.

However, only in the case of F contamination full spin polarization is recovered,

at least at the distances considered in this investigation.

In the light of these results, we can conclude that Ni-Gr contacts with passi-

vated graphene edges could be a well suited candidate for spintronic applications.

Especially, the passivation with oxygen leads to high spin-filtering efficiency at

equilibrium distance while still providing a rather good contact quality, i.e., low

contact resistance.

4.3 Comparison between 1D and 2D contacts

In the following, we compare our results for the edge and side contacts. In the intro-

duction to this chapter, we mentioned that conventional metal-graphene side con-

tacts were found to offer larger contact resistance as compared to metal-graphene

edge contacts[130–136]. However, the results we obtained for Ni and Au for both

contacting schemes seem to somewhat contradict these observations. Particularly,

the unpassivated and H passivated Au-based side contacts have contact resistances

of the same order of magnitude as the clean Au-based edge contact. The reason
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Figure 4.19: Averaged electrostatic potentials for (a) Ni-Gr and (b) Au-Gr 2D
contacts.

for this apparently contradictory result is that the side contacts we studied all

have a small contact area between the graphene and the metals. Hence, the side

contacts we consider here closely resemble the properties of edge contacts. More-

over, it has been previously shown that, while the influence of the contact area

on the resistance of Ni-graphene side contacts is small[127], the resistance of Au-

based side contacts strongly depends on the structural overlap between metal and

graphene[129].

Furthermore, slight differences in the setups for the transport calculations

might also play a role. For example, in the calculations for the edge contacts,

we used 40 C rows of graphene in the device region, while for the side contacts

we only used 22 C rows. Computational studies of side contacts with varying

graphene channel length and symmetric transport setup, i.e., with electrodes at-

tached at both sides of graphene, demonstrated that the length of the graphene

channel can influence the contact resistance[137]. This is due to the decay of

the electrostatic potential, which might not be well converged with respect to the

channel length[117, 137]. Figure 4.19 shows the averaged electrostatic potentials

of our 2D Ni and Au contacts with unpassivated graphene. The potential is flat

in the graphene electrode region for both contacts. Interestingly, the potential is

not flat within the metal and outside the graphene electrode for the Ni contact,

while it is reasonably converged in the Au side contact. Still, further convergence
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tests with respect to the graphene channel length need to be done, and, for now,

our results obtained for the side contacts should be considered preliminary.



Chapter 5

Graphene nanoribbons and

nanoporous graphene

Graphene nanoribbons (GNRs) are one dimensional stripes of graphene, whose

electronic and magnetic properties depend on their width and edge structure[155–

160]. In particular, armchair graphene nanoribbons (AGNRs) have a width de-

pendent electronic gap[159], which makes them suitable for applications in carbon

based nanoelectronics[161–163].

Atomically precise GNRs can be grown by the on-surface reaction of suitable

designed molecular precursors[164]. During the last years, this route has been

successfully used to tailor the dimension and the edges of GNRs with atomic con-

trol[164–169]. On-surface synthesis involves several steps[164, 170], as schemat-

ically depicted in Figure 5.1. First, molecular precursors with halogenic linker

atoms are deposited on a metallic surface. Heating of the sample removes the

linker groups from the precursors. This process is called thermal activation and

leaves the precursors in a radical state. In this state, the precursor molecules can

covalently link to each other, thus forming polymer structures. Further thermal an-

nealing of the polymer structures initiates a procedure called cyclodehydrogenation.

That is, the removal of hydrogen atoms at certain bond sites which, depending on

the molecular precursor, leads to the formation of organic covalent frameworks[170]

or GNRs[164].

Inspired by the above mentioned successful synthesis and characterization of

67
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Figure 5.1: Scheme of on-surface synthesis concept for graphene nanoribbons.
From: http://www.sps.ch/en/articles/progresses/molecular-lego-bottom-up-
fabrication-of-atomically-precise-graphene-nanostructures-37/, accessed 21 May
2018.

covalently bonded carbon nanostructures, a strategy that leads to formation of

nanoporous graphene (NPG) has recently been reported[169]. This new 2D mate-

rial exhibits both semiconducting and nanosieving functionalities, which opens up

new possibilities for graphene-based applications.

The use of a specific precursor, shown in panel A of Figure 5.2, allowed us to

synthesize armchair graphene nanoribbons (AGNRs) with a periodic modulation

of the width (panel C). We denote these ribbons 7-13-AGNR, as they exhibit alter-

nating segments of 7 and 13 carbon atoms width. Even more interestingly, further

annealing removes hydrogen atoms from the edges of the 13-segment of these

7-13-AGNRs, inducing inter-ribbon connections and giving rise to nanoporous

graphene[169]. This way, the pores of the NPG can be manufactured with atomic

precision, their shape and size being uniform over a large area. The whole pathway

of our synthesis process from precursor to nanoporous graphene (NPG) is outlined

in Figure 5.2.

Along with the experimental advances, a rapid progress has been made towards

the theoretical understanding and prediction of the electronic and transport prop-

erties of carbon based nanostructures, including GNRs. In particular, in this



5.1. COMPUTATIONAL DETAILS 69

Figure 5.2: Schematic illustration of the synthesis pathway from the molecular
precursor (A) via a polymer (B) and a width-modulated ribbon (C) to nanoporous
graphene (D). From C. Moreno et al., Science, 360, 199-203 (2018). Reprinted with
permission from AAAS.

chapter we present an extensive theoretical characterization of the electronic and

transport properties of the above mentioned 7-13-AGNR and NPG. We will com-

pare our computational predictions with the STM experiments performed by our

collaborators. A short description of this experimental technique can be found in

Appendix B.

5.1 Computational details

The setups used for the DFT calculations of the 7-13-AGNR and the NPG are

shown in Figure 5.3. All atoms in these two structures were allowed to relax in

the geometry optimization. Additionally, for the nanoribbon, the unit cell vector
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Figure 5.3: DFT structures of (a) the 7-13-AGNR and (b) the NPG. The black
lines indicate the unit cell. For the ribbon (a) the vacuum region at the edges was
cut for the purpose of plotting.

in the periodic direction (z-direction) was also optimized.

All the calculations reported in this chapter were performed using SIESTA[81]

and TranSIESTA[36, 37]. For the exchange-correlation functional we used the

PBE[53] flavor of the GGA. We sampled the Brillouin zone applying a Monkhorst-

Pack[144] grid of 1x1x51 k-points for the ribbons and 15x1x51 for the NPG. Trans-

mission functions were sampled using 1x1x511 k-points for transport in z-direction

and 151x1x1 k-points for transport in x-direction. For the self-consistent electronic

optimization, we used the difference in the elements of the Hamiltonian matrix as

convergence criterion and converged it until the maximum difference between two

consecutive steps was less than 1 × 10−4 eV. We set the force convergence crite-

rion for the structural optimizations to 0.01 eV/Å. Unless states otherwise, we

used 25 Å of vacuum on either side of the ribbons and NPG in the non-periodic

directions (i.e., 50 Å in total) and a mesh cut-off value of 400 Ry.

Regarding the basis set, we employed DZP orbitals with a PAO.EnergyShift

of 0.01 Ry for the relaxations. Based on the relaxed geometries, the electronic

structure was calculated using an extended DZP basis set, which includes carbon

3s and 3p orbitals. The use of this basis set provides a more accurate description

of the unoccupied bands. Details on how to define the extended basis set in the

SIESTA[81] input files can be found in Appendix C. We verified the impact of the

new basis set with some test calculations. Figure 5.4 shows the DOS and band

structure calculated for pristine graphene using the default (black) and modified

DZP basis sets (yellow). Up to an energy of about 3.5 eV above Fermi-level, DOS

and band structure are exactly the same for both basis sets. For higher energies,

the additional orbitals in the extended basis set cause a down shift of the bands.
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Figure 5.4: Comparison of graphene (a) DOS and (b) band structure calculated
with the SIESTA default DZP basis set (black) and a DZP which includes 3s and
3p states for the C atoms (yellow).

Furthermore, Figure 5.5 depicts the band structures of the 7-13-AGNR (see

Figure 5.3a) calculated using SIESTA[81] with the extended basis set, and, using

VASP[76–79] with a plane wave basis set. The band structures agree fairly well

and the energies of the vacuum states (green lines) differ only by about 0.2 eV.

For the VASP[76–79] calculations we used an energy cut-off of 400 eV, Gaussian

smearing with a σ-value of 0.01 eV, an energy convergence criterion of 1 × 10−6 eV,

and 1x1x51 k-points.

With respect to the band gap, it is well known that DFT significantly under-

estimates its value[171]. Currently, the tool of choice for obtaining more accurate

band gaps is the GW[172–174] approximation. So, we performed GW[172–174]

calculations as implemented in VASP[76–79, 175–178] to verify the semiconduct-

ing behavior of the 7-13-AGNR, as predicted by our DFT simulations. For that

purpose, we relaxed the ribbon and obtained converged DFT wave-functions us-

ing VASP[76–79], applying the parameters mentioned above, except for a smaller

k-point sampling of 1x1x25. Based on these simulations, we computed the quasi-

particle corrections within the G0W0[172] approximation. In these calculations,

we adopted a cut off energy of 60 eV for the response function, and included 576

bands and 50 frequency points. To verify the validity of our GW calculations for

the novel 7-13-AGNR, we computed the band gaps for the more conventional 7-

and 13-AGNRs. For these ribbons we obtained band gaps of 3.20 eV (7-AGNR)
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Figure 5.5: Band structures of the 7-13-AGNR calculated with the modified
SIESTA basis set and in plane wave basis with VASP. The green lines indicate
the vacuum state.

and 1.58 eV (13-AGNR), respectively. Here, our values are in fairly good agree-

ment with those reported in literature, and, moreover, yield similar ratios between

the DFT and GW band gaps[179, 180]. Small differences in the absolute band

gap values between our calculations and literature might be attributed to possi-

ble deviations in the computational details (e.g., choice of exchange-correlation

functional, k-sampling or pseudopotential). We did not perform GW calculations

for the NPG, since this would require an extension of the k-point grid to two

dimensions and, hence, would increase computational cost to an excessively high

level. Nevertheless, we expect GW band gaps to follow similar trends as DFT

gaps, which are slightly lower for the NPG compared to the ribbon.



5.2. 7-13 ARMCHAIR GRAPHENE NANORIBBON (7-13-AGNR) 73

5.2 7-13 armchair graphene nanoribbon (7-13-

AGNR)

In this section, we focus on the 7-13-AGNR and compare its properties to the

more common straight edge ribbons. Figure 5.6a shows a constant height STM

image of the 7-13-AGNR, from which the successful fabrication of a GNR with

periodically varying width is evident. The dI/dV spectra for the 7-13-AGNR is

shown in Figure 5.6b, where the onsets for the valence band (VB) and conduction

band (CB) are identified. From there, the experimental band gap is found to

be ∼1.0 eV. The spectra in Figure 5.6b also reveals that the VB onset is close

to −0.1 V. As we will show later, the same behavior can be observed for the

NPG. This indicates pinning of the nanoribbon’s VB to the Fermi-level of the Au

substrate[181, 182]. Based on these observations, all gas phase calculations will be

aligned with respect to this value.

(a) (b)

Figure 5.6: (a) High-resolution constant height STM image of the structure of the
7-13-AGNR. (b) dI/dV spectra of the 7-13-AGNR. VB, CB, and CB+1 denote the
onsets of valence band, conduction band, and conduction band+1, respectively.
Grey color indicates the reference spectra of Au(111). The insets show a constant
height image (left) and dI/dV maps for the VB, CB and CB+1. Details about
the experimental setup are reported in [169]. From C. Moreno et al., Science, 360,
199-203 (2018). Reprinted with permission from AAAS.
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Figure 5.7: Geometries (upper panels) and band structures (lower panels) for
(a) 7-13-AGNR, (b) 7-AGNR, and (c) 13-AGNR. The black dashed lines in the
structure plots indicate the unit cell size in the periodic direction. L and T indicate
longitudinal and transversal bands in the 7-13-AGNR. P (or green stripes) mark
the vacuum states. The gray shaded area indicated the band gap opening at
Γ-point.

In order to characterize the electronic properties of the 7-13-AGNR, we com-

pare the width-modulated ribbon with related straight edge ribbons, namely the 7

and 13 C atoms wide ribbons (referred to as 7-AGNR and 13-AGNR, respectively).

The geometries and band structures of the three ribbons are shown in Figure 5.7,

where the shaded areas in the lower panels represent the corresponding band gaps.

We obtain band gaps of 0.74 eV, 0.82 eV, and 1.49 eV, for the 7-13-AGNR, the

13-AGNR, and the 7-AGNR, respectively. The values for the two straight edge

ribbons are in good agreement with literature[159]. Regarding the band gap of
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the 7-13-AGNR, it is smaller than the band gap of the 13-AGNR, highlighting the

role of edge topology in determining band gaps. As mentioned above, the exper-

imental band gap of the ribbon was estimated to be ∼1.0 eV. This discrepancy

between experiment and DFT is not surprising, because of the above mentioned

underestimation of DFT gaps[171]. Performing GW calculations, we obtain a band

gap of 1.36 eV for the 7-13-AGNR. Note that the experimental value (∼1.0 eV) is

slightly lower than the GW band gap, as expected from the screening effect in the

underlying substrate.

To gain further understanding on the character of the frontier orbitals that

define the band gap, we analyze the wave-functions of the VBs and CBs at Γ-

point for the three ribbons, shown in Figure 5.8. Clearly, the character of the

VB is the same for the three ribbons, and the same holds for the CBs. It is not

surprising to find these similarities for the 7-AGNR and the 13-AGNR, since they

belong to the same family of AGNRs. Interestingly, in the case of the 7-13-AGNR

these bands are confined on the 7 carbon atoms wide backbone of the ribbon.

VB

CB

7-13-AGNR

(a)

7-AGNR

(b)

13-AGNR

(c)

Figure 5.8: Iso-surface plots of wave-functions at Γ-point for the valence bands
(upper panels) and conduction bands (lower panels) of the 7-13-AGNR (a), the
7-AGNR (b), and the 13-AGNR (c). The iso-value in these plots is 0.09 Å−3 .
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7-13-AGNR

(a) E-EV B = 2.62 eV

7-AGNR

(b) E-EV B = 3.65 eV

13-AGNR

(c) E-EV B = 3.25 eV

Figure 5.9: Iso-surface plot of the wave-function of (a) a transversally dispersing
band in the 7-13-AGNR and (b,c) bands of same character in the 7-AGNR and
13 AGNR, respectively. The iso-value in these plots is 0.09 Å−3. Energies of the
bands are given in the captions of the subfigures.

Since these bands disperse along the backbones of the ribbons, in ΓZ-direction,

we denote this family of bands as longitudinal (L) bands. Bands belonging to this

family can also be found at energies higher than the CB energy.

More interestingly, in the band structure of the 7-13-AGNR we also identify

significantly flat bands (as the one indicated by violet color in Figure 5.7a on

page 74), whose wave-function is shown in Figure 5.9a. For this family of bands,

termed transversal (T) bands, the wave-functions are localized on the periodically

repeated 13 C wide segment. The origin of the localization of these bands is the su-

perlattice periodicity introduced by the width modulation of the 7-13-AGNR[169].

Indeed, bands of the same character as the transversal band in the 7-13-AGNR

also exist in the 7- and 13-AGNRs (see Figure 5.9b,c) but, due to the absence of

periodic variations in the lattice potential along the ribbon, they are not localized

in the straight edge ribbons. The origin of the L and T bands described here are

the s and p orbitals of the carbon atoms.

A third family of bands can be found in these ribbons, whose origin is not

directly related to the valence orbitals of the carbon atoms (2s and 2p). For bands

of this family, indicated by green color in the band structure plots of the three

ribbons (Figure 5.7, page 74), the wave-functions reach far into the vacuum. We

demonstrate this by analyzing the local density of states (LDOS) as a function of

energy and position in the direction transversal to the ribbon (x-direction). For



5.2. 7-13 ARMCHAIR GRAPHENE NANORIBBON (7-13-AGNR) 77

Vacuum states

Figure 5.10: Averaged LDOS map for the 7-AGNR. The structure above indicates
the position of the ribbon’s atoms in x-direction. The white ellipses pinpoint
the vacuum states. The energies are aligned to the energy of the valence band
maximum.

this purpose, we calculated the LDOS in energy intervals of 0.1 eV, averaged it for

each interval in the y- and z-directions, and plotted it as contour map. Since the

7- and 13-AGNRs belong to the same family of GNRs, we will only consider the

first one in the following analysis. The LDOS map for the 7-AGNR is shown in

Figure 5.10. The bright spots at energies around 4 eV to 4.5 eV above the valence

band maximum (VBM) indicate vacuum states localized at the edges outside the

ribbon.

For the 7-13-AGNR, the width modulation makes the identification of states

localized in the vacuum region from the LDOS a bit more intricate. Therefore, we

plotted the LDOS maps for the 7- and 13-parts of the ribbon separately. The areas

used for computing the LDOS of these two parts are shown in green (7-segment)

and brown (13-segment) in the 7-13-AGNR atomic structure above the LDOS
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maps in Figure 5.11. The background colors of the LDOS maps in Figure 5.11 are

chosen accordingly. In the LDOS map of the 7-segment (green) we can identify

sates located outside the ribbon’s backbone at energies between 3.5 eV and 4.0 eV,

which is about 0.5 eV lower than for the corresponding states in the 7-AGNR.

Since their main contributions are located within the cove of the 7-13-AGNR, we

call them cove states (for reasons that become clear later on they are also denoted

as P states in the band structure plots). Within the energy range for which a

cove state can be seen in the LDOS of the 7-segment, the map of the 13-segment

(brown) shows only a low contribution in the vacuum region outside the ribbon.

The rightmost inset of Figure 5.6 (page 73) shows the dI/dV map of the CB+1

of the 7-13-AGNR, which shows a state localized in the vacuum region between the

13-segments of the 7-13-AGNR occurring at a voltage of 1.6 V. This state is the

experimental equivalent to the cove states we have found in our DFT calculations.

These states do not originate from atomic orbitals or their hybridizations, instead,

they arise from free electron-like image potential states (IPS) which are confined

in the vacuum region at the edges of GNRs. The origin of IPS is related to the

so-called image charge effect, which is the induction of a charge underneath a

surface by a charge of opposite sign in the vacuum region above the interface. A

consequence of this effect is the trapping of electrons above a surface at energies

higher than the vacuum level[183–188].

Particularly, for graphene this means that while solutions of the Schrödinger

equation with the lowest principle quantum numbers (n<3) originate from the car-

bon atoms, states with n≥3 originate from IPS and, thus, do not follow the lattice

modulation[189, 190]. As a consequence, electrons in these states behave as nearly-

free electrons (NFE). Upon rolling up graphene into nanotubes or fullerenes, the

IPS interacts with itself, leading to the emergence of 1D NFE bands or superatom

molecular orbitals (SAMOs)[191–194]. In the case of GNRs, the potential at the

edges and in the plane of the ribbons differ, which is predicted to give rise to a

1D NFE along the edges[195]. Hence, we can infer that the vacuum state we have

observed in the LDOS of the 7-AGNR corresponds to such a NFE state. For the

7-13-AGNR, NFE states are localized within the cove region of the ribbon and

resemble the SAMOs described above.

At this point we should clarify the qualitative character of our analysis of
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Cove states

Figure 5.11: Averaged LDOS maps of 7-, and 13-segments of the 7-13-AGNR. The
structure above indicates the position of the ribbon’s atoms in x-direction with
the green and brown areas indicating the parts of the ribbon for which the LDOS
was averaged. The white ellipses pinpoint the vacuum states. The energies are
aligned to the energy of the valence band maximum.
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Figure 5.12: Projected DOS for the (a) 7-AGNR and (b) 7-13-AGNR, respectively.
The green shaded areas in the PDOS denote the lowest lying vacuum and cove
states

vacuum states. In the vacuum region above a surface, the image potential decays

with 1/(4z), z being the distance from the surface. Contrarily, in the Perdew-

Burke-Ernzerhof (PBE) approximation to the exchange-correlation potential we

applied in our DFT calculations, the potential decays exponentially. Thus, our

calculations do not represent IPS directly, but rather give a qualitative description

of the lowest lying vacuum states.

The results above clearly indicate the usefulness of LDOS maps for finding the

energy range in which vacuum states could appear. Nevertheless, further insight

into the origin of these states can be obtained by looking at the PDOS of the

7- and 7-13-AGNRs. Figure 5.12 shows DOS projected onto the carbon orbitals

with n=2, and n=3, as well as onto the hydrogen orbitals for the 7-AGNR and

7-13-AGNR. The green shaded area in the PDOS plots indicates the position of

the lowest lying vacuum state. Clearly, for both ribbons, the PDOS is dominated
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(a) E-EV B=4.24 eV (b) E-EV B=3.58 eV

Figure 5.13: Wave-functions of the lowest lying vacuum states for the (a) 7-AGNR
and (b) 7-13-AGNR, respectively. Wave-function plots correspond to cuts through
a plane of the real space grid.

by carbon states at this energy, with the main contribution coming from the n=3

orbitals as is expected for these NFE-like states. Besides, also hydrogen states

have a significant intensity in this energy range.

While the LDOS and PDOS indicate the energy range and origin of vacuum

states, a better picture of their character can be obtained from the wave-functions.

Figure 5.13a depicts the wave-functions for the 7-AGNR, from which it is clearly

visible that a great part of it is localized in the vacuum region along the edge and

at the carbon edge atoms. The side view of the wave-function reveals that it is

not only localized in the plane of the ribbon, but also has relevant contributions

out-of-plane. The situation is qualitatively similar for the width-modulated 7-

13-AGNR (see Figure 5.13b). From the band structures shown in Figure 5.7 on

page 74, we can estimate the energy of the vacuum states of the 7-AGNR and 7-

13-AGNR. Interestingly, the width modulation of the ribbon causes a localization

of the vacuum state in the cove region of the 7-13-AGNR. For both ribbons, the

wave-function also has a significant intensity at the edge atoms, explaining the

contributions of carbon n=2 orbitals in the PDOS (see Figure 5.12).

The evolution of cove state localization and energy as a function of the cove

size is shown in Figure 5.14. Starting from the delocalized vacuum state of the
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Figure 5.14: Evolution of the cove state energy and localization with respect to
the cove size.

7-AGNR (panel A), introducing a 13-segment leads to a localization of the vacuum

state in the cove (panels B to D). This localization gets stronger with decreasing

cove size. Moreover, the energy of the vacuum states with respect to the VBM

decreases with smaller cove sizes, similarly to the way the energy of the SAMO

of a C60 molecule decreases in comparison to the 2D image potential state it is

derived from[192].
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5.3 Nanoporous graphene (NPG)

As previously described, the lateral interconnection of 7-13-AGNRs leads to the

formation of NPG comprising an ordered array of pores separated by the backbones

of the ribbons. In this section, we report the characterization of the electronic and

transport properties of the resulting 2D material.

First, we investigated whether the 7-13-AGNRs are indeed covalently linked

to each other. Figure 5.15 shows a STM topography and high-resolution STM

image of two connected 7-13-AGNRs. By fitting a structural model to the high-

resolution STM image, the distance between the two ribbons was estimated to be

similar to C-C bonds, which points towards covalent bonding between the ribbons.

To confirm the forming of a covalent bond between the ribbons, we calculated the

bond distances for hydrogen bond and covalently linked ribbons. By just placing

two ribbons side-by-side, with a slight offset in the periodic direction, they get

connected via a hydrogen bond. The structure for this hydrogen bonded double

ribbon is shown in Figure 5.16a, with the hydrogen atoms colored red indicating

those that participate in the H-H bond. Due to the relative weakness of H-H bonds

in general, the two ribbons are not very strongly connected and, accordingly, the

calculated distance between the H atoms involved in the linking is 2.40 Å. An

alternative scenario is to remove the hydrogen atoms depicted in red in Figure 5.16a

and create a covalent bond between the corresponding C atoms. This results in

(a) (b)

Figure 5.15: (a) STM topography and (b) high-resolution STM image of two
connected 7-13-AGNRs. From C. Moreno et al., Science, 360, 199-203 (2018).
Reprinted with permission from AAAS.
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(a) (b)

Figure 5.16: Two 7-13-AGNRs connected by (a) a hydrogen bond between the
atoms colored red and (b) a covalent C-C bond formed between the C atoms colored
yellow. The black dashed lines indicate the unit cell in the periodic direction.

a slightly more compact structure, illustrated in Figure 5.16b, with the C atoms

forming the covalent bond depicted in yellow. The distance between the C atoms

participating in this bond is about 1.50 Å, which is a bit larger than the C-C bonds

within the backbone of the ribbons (∼1.45 Å). In both bonding configurations, the

structures stay entirely planar upon relaxation. From these calculations and the

approximate distances inferred from the experiment, we can conclude that the

ribbons indeed form covalent bonds to each other during the on-surface synthesis

process.

The NPG can be grown almost free of defects over a large area, as can be

seen from the STM topography in Figure 5.17a. The black square in this image

indicated the region for which a close-up (Figure 5.17b) of the STM topography

(a) (b)

Figure 5.17: (a) STM topography of a surface covered with up to 50 nm by 70 nm
large NPG domains. (b) Close-up STM topography of NPG. From C. Moreno et
al., Science, 360, 199-203 (2018). Reprinted with permission from AAAS.
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Figure 5.18: Band structure and iso-surface wave-function plots at Γ-point of
selected bands for the NPG. The iso-value for wave-function plots is 0.065 Å−3.

was recorded. From this close-up STM image, the pore orientation can be seen.

Neighboring rows of pores in the NPG can have parallel or anti-parallel orientation.

As can be seen from the STM topology in Figure 5.17b, the orientation of the pores

is rather random in the experiments.

We started our DFT characterization of the electronic properties of the NPG

with the anti-parallel pore orientation, because it allows usage of an orthogonal

unit cell. As can be seen from the band structure of the NPG in Figure 5.18,

its band gap has a value of 0.62 eV, which is 0.12 eV smaller than for the 7-13-

AGNR. Remarkably, we found the same types of bands in the band structure of

the NPG as in the 7-13-AGNR. Like for the ribbon, the VB and CB of the NPG

disperse in longitudinal direction (ΓZ), as can be seen from the wave-function

of the CB in Figure 5.18. These bands are protected within the backbone and

remain unperturbed upon formation of the NPG, that is, they do not exhibit any

dispersion in the transversal direction (ΓX). In contrast, the transversal bands,

which are localized in the 13-segment of the 7-13-AGNR, allow for a substantial

interribbon coupling. Hence, in the case of the NPG, these bands form a 1D

dispersing state. The resulting wave-function, shown in the middle-right panel of

Figure 5.18, displays wave-like stripes running along the NPG in ΓX-direction,

which do not interact with each other.
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Figure 5.19: Energies of cove state of the ribbon (left) and of the bonding and
antibonding pore states of the NPG.

As for the states localized in the cove regions, when NPG is formed, the inter-

action of the two merging cove states gives rise to two localized states in the newly

formed pore region (P states). One of these two states, denoted as bonding state,

has a lower energy than the original cove states, and its wave-function is shown

in the top-right panel of Figure 5.18. The other pore state has a higher energy

and is termed anti-bonding state. Figure 5.19 shows the energies of the bonding

and antibonding pore states of the NPG in comparison with the cove states of

the 7-13-AGNR. Here, ∆bond indicates the difference in energy between the 7-13-

AGNR cove state and the bonding pore state of the NPG, and assumes a value

of 0.28 eV. From these results, it is clear that the NPG inherits its outstanding

electronic properties from the properties of its building blocks, the 7-13-AGNR.

To verify the impact of the pore orientation on the electronic properties of the

NPG, we calculated the band structure and wave-functions also for the NPG with

parallel pores, as shown in Figure 5.20. Basically, everything we mentioned above

for the anti-parallel pore orientation also holds for the NPG with parallel pores.
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Figure 5.20: Band structure and wave-functions for the NPG with parallel pore
orientation. The iso-value for wave-function plots is 0.1 Å−3

VB and CB are still localized on the 7-segment and disperse longitudinally. Also,

the transversally dispersing 1D state exists in this pore orientation as well. And,

the pore states can be found at nearly the same energies for both pore orientations,

with their difference being ∼0.05 eV. Therefore, we focused in our calculations on

the anti-parallel orientation, which allows us to use an orthogonal unit cell.

Figure 5.21a shows dI/dV spectra for the NPG. Here, the red and blue curves

were acquired at the peripheral cove and pore regions, respectively, and the gray

shaded curve indicates the dI/dV spectra of the Au(111) surface. The difference be-

tween the red and blue curves indicated by the dashed vertical lines corresponds to

the formation to the energy shift of the bonding pore state upon interaction of the

cove states of two ribbons. This shift was determined experimentally to be 0.3 eV

and, thus, agrees very well with the value we obtained with DFT. Figure 5.21b

shows a dI/dV map of the pore state, from which the nature of the pore state is

apparent. As predicted by our DFT calculations (see Figure 5.18), the pore state’s

double-lobed structure is clearly visible.

To demonstrate that the anisotropic dispersion behavior of the bands of the

NPG is reflected in its conductance properties, we performed transport calculations

for the NPG with anti-parallel pore orientation. Connecting graphene electrodes

to NPG allows us to study the transport properties along the ribbon backbone

and in transversal direction. Figure 5.22 on page 89 shows the transport setup for
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(a) (b)

Figure 5.21: (a) dI/dV spectra of the NPG recorded at the peripheral cove (red)
and pore (blue) regions. Gray indicates the spectra of the Au(111) substrate.
Insets show a STM topography (left) and dI/dV map of the pore state (right). (b)
Larger image of the dI/dV map of the pore state. From C. Moreno et al., Science,
360, 199-203 (2018). Reprinted with permission from AAAS.

the transport simulations. Thermally broadened conductances for both transport

directions as well as for pure graphene are depicted in Figure 5.23a. We can iden-

tify three regimes of different transport properties in the NPG[169]. Around the

Fermi-level there is a region where conductance is suppressed (white background),

corresponding to the NPG band gap. Going further away from Fermi-level, trans-

port along the backbone of the ribbon sets in (yellowish area) while the conduc-

tance in transverse direction is still extremely low. At energies of ±1.2 eV with

respect to Fermi-level, states conducting in transversal direction start to appear,

leading to a regime with transport in longitudinal and transversal directions (vi-

olet). Independently of the transport direction, the conductance of the NPG is

always significantly lower than the intrinsic graphene conductance (black line in

Figure 5.23). These results clearly demonstrate the anisotropic transport proper-

ties of the NPG, a behavior that is rather unique and distinguishes this 2D material

from others. This anisotropic transport properties might be of great value for the

design of novel electronic or sensing applications.

To address the semiconducting behavior of the NPG experimentally, its trans-



5.3. NANOPOROUS GRAPHENE (NPG) 89

(a)

(b)

Figure 5.22: Setup for transport calculations (a) in transversal direction and (b) in
longitudinal direction along the ribbon backbone. Violet and brown shaded areas
indicate the graphene electrodes. Black lines indicate the supercell used in the
simulations. Both structures are repeated 3 times in the periodic direction.

(a) (b)

Figure 5.23: (a) Thermally broadened conductances in transversal (violet) and
longitudinal (brown) directions. The black line indicates intrinsic graphene con-
ductance for comparison, multiplied by a factor of 0.55. (b) Drain-source current
(Ids) as a function of applied gate voltage (Vg) for a NPG device with a channel
length of 30 nm.
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port response was probed using FET structures. For this purpose, the NPG was

transfered to a Si/SiO2 substrate and connected to Pd electrodes. Figure 5.23b

shows the drain-source current (Ids) as a function of applied gate voltage (Vg), with

a drain-source voltage (Vds) of −1 V, for a NPG device with a channel length of

30 nm. The current through this device decreases sharply upon increasing the gate

voltage, indicating that transport is dominated by holes. The on-off ratio of this

NPG based device is, with approximately 104, comparable to one of GNRs[196].

Furthermore, the bias response suggests limitation of transport in our devices due

to Schottky junction contacts.

In conclusion, in this section, we have demonstrated the outstanding electronic

properties of the NPG and that it inherits them from the 7-13-AGNR, which acts

as the basic building block for the NPG. We proved the semiconducting behavior

of this novel 2D material computationally and experimentally, thus, showing its

potential for electronic applications. Finally, through our transport calculations,

we showed the anisotropic conductance properties of the NPG, which could be

important, for example, for sensing applications.

5.4 Influence of structural modifications

The properties of the NPG can be tuned by modifying the size, density, morphol-

ogy, and chemical composition of the pores. Particularly, modifications leading

to lower pore state energies and, thus, making them accessible in transport ex-

periments are desirable. In this section, we will focus on the edge morphology of

the 7-13-AGNR. As an illustrative example, we will consider the attachment of

phenyl-rings to each side of the 13-segment of the 7-13-AGNR. Especially, when

connecting ribbons and building larger structures this will provide a way to engi-

neer pores for a specific purpose.

The structure of the phenylated 7-13-AGNR we studied in this work is shown in

Figure 5.24a. Here, the blue stripes indicate the additional phenyl-rings attached

to the 13-segment of the ribbon and the black dashed lines show the unit cell in

the periodic direction. As can be seen from the band structure in Figure 5.24b,

the band gap of the ph-7-13-AGNR amounts to 0.73 eV, essentially the same value

as for the 7-13-AGNR ribbon. From the band structure it is also clear, that
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Figure 5.24: (a) Structure of the ph-7-13-AGNR. The blue stripes indicate the
additional phenyl-rings compared to the default 7-13-AGNR. The dashed lines
indicate the unit cell in the periodic direction used in the calculations. (b) Band
structure of the ph-7-13-AGNR. Wave-function of (c) a longitudinally and (d) a
transversally dispersing band and (e) a the cove state.

the character of the bands for the ph-7-13-AGNR is very similar to the 7-13-

AGNR. In the ph-7-13-AGNR, VB and CB are dispersing in longitudinal direction

(Figure 5.24c), as in the 7-13-AGNR. The transversal band (Figure 5.24d) extends

onto the attached rings.

The cove state (Figure 5.24e) extends over the whole cove, which is twice the

size for the ph-7-13-AGNR as compared to the cove region of the 7-13-AGNR.

Interestingly, with a value of 3.34 eV with respect to the VBM, the energy of the

cove state has decreased as compared to the non-phenylated 7-13-AGNR. This is
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advantageous, because it might make these states accessible in transport experi-

ments.

Hence, as just demonstrated, by just attaching phenyl-rings to the 13-part of

the ribbon preserves the band gap in a range suitable for electronic applications,

while decreasing the cove state energies. This highlights the great tunability of

these nanoribbons. It is also conceivable to replace the phenyl-rings by pyrim-

idine, thus, introducing a dipole moment. This would give rise to electrostatic

shifts of orbital energies, as has been demonstrated effectively, for example, in

self-assembled monolayers[197] and graphene[198].

Of course, interconnecting these new ribbons will lead to NPG with a larger

pore size. However, there is not a unique way to link these ribbons. In this work,

we considered conformations with both phenyl-rings in meta or para configura-

tion, denoted as meta-meta (MM) and para-para (PP), respectively, as well as a

structure with one ring in meta and the other one in para configuration, from here

on called para-meta (PM). Here, we do not study the 2D structure, but rather

focus on how electronic properties change upon connecting two ph-7-13-AGNRs

in different bond conformations.

In a first step, we systematically varied the dihedral (or twist) angles of the

two rings connecting the ribbons with respect to the ribbon backbones. The atoms

involved in the calculation of dihedral angles are indicated by colored rings in

Figure 5.25. After calculating the energy as a function of the dihedral angles,

we selected different structures with low energies to perform full structural relax-

ations. Figure 5.25 shows the energetically most favorable optimized structure for

each phenyl-ring conformation. In all three cases, the rings connecting the rib-

bons are twisted significantly. Additionally, the outer rings of the MM and PM

conformation get twisted as well, while they stay planar for the PP conformation.

Generally, the twist of the rings leads to structural distortions in all three confor-

mations, and they are strongest in the PM configuration. On the other hand, in

the PP configuration the ribbons stay almost planar.

The band structures for the optimized geometries are shown in Figure 5.26

on page 94, along with the band structure of covalently linked 7-13-AGNRs. For

the latter one (panel a), CB and CB+1 can be clearly distinguished in the band

structure, and the same holds for VB and VB-1. These bands disperse in longitu-
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Figure 5.25: Side and top views of the relaxed structures of connected phenylated-
7-13-AGNRs with different pore shapes (highlighted with different colors) as a
consequence of different phenyl-configuration patterns: (a) meta-meta (MM), (b)
para-meta (PM), and (c) para-para (PP). The atoms with colored frame indicate
the atoms used to measure the twist angles of the phenyl-rings with respect to the
7-13-AGNR backbone and the numbers give the values of these angles.
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Figure 5.26: Band structures of (a) two covalently linked 7-13-AGNRs and of the
connected ph-7-13-AGNRs in (b) MM, (c) PM, and (d) PP configuration.

dinal direction on the backbones of both ribbons, and, as for a single 7-13-AGNR,

they are localized on the 7-segment. The corresponding bands in the PP confor-

mation show the same longitudinal dispersion behavior, but here CB and CB+1

are almost degenerate and only close to the Z-point they can be distinguished

(Figure 5.26d). As an example for systems where the CB is localized on the

backbones of both ribbons, the wave-function of the CB for the PP conformation

is shown in Figure 5.27a. In contrast, for the MM and PM conformations CB

and CB+1 are almost indistinguishable from the band structures (Figure 5.26b,c).

Furthermore, while still dispersing in longitudinal direction, in these two config-

urations the CB is localized on the 7-segment of only one of the two ribbons, as

can be seen from the wave-function of the MM’s CB depicted in Figure 5.27b.

Here, the CB is localized on the right ribbon, while the CB+1 is localized on the

left ribbon (not shown here). The highest two valence bands exhibit the same

localization pattern.

Figure 5.28 shows the lowest lying pore states for the phenylated double ribbon

systems. Here, the pore states are confined in a similar way as for the NPG
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(a) PP, CB (b) MM, CB

Figure 5.27: Iso-surface plots of wave-functions at Γ-point for the conduction
bands of (a) the PP and (b) the MM conformation. The iso-value for these plots
is 0.05 Å−3.

(a) MM, E-EV B=3.36 eV (b) PM, E-EV B=3.37 eV (c) PP, E-EV B=3.32 eV

Figure 5.28: Iso-surface plots of wave-functions at Γ-point of the bonding pore
states of (a) the hydrogen bond 7-13-AGNR double ribbon, and the phenylated
7-13-AGNR double ribbons in (b) MM, (c) PM and (d) PP bonding configuration.
The iso-value for these plots is 0.05.

discussed above, except for the PM bond configuration (see Figure 5.28b). Here,

it fills only half the pore. This could either be an artifact of the iso-surface plot or

be related to a small shift in the energy of the pore state in each of the subregions.

For the double ribbons based on the ph-7-13-AGNR the pore states have all more

or less the same energy, namely 3.36 eV (MM), 3.37 eV (PM), and 3.32 eV (PP),

all measured with respect to the VBM. Thus, energies of the pore states of these

ribbons do not change much compared to a single ph-7-13-AGNR.

Summarizing, while further studies of the ribbons shown in this section are

necessary, our preliminary results indicate how the ribbon’s edge morphology can

influence the electronic properties and the energies of cove and pore states. Our

results suggest that the energy of the cove state is lower for the ph-7-13-AGNR

than for the 7-13-AGNR, and that connecting two ph-7-13-AGNRs does not lead

to a further decrease of the cove state energy.
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Figure 5.29: Adsorption positions of the K atom in the (a) center and (b) cove
region of the pore. (c) and (d) show the energy as a function of the K height above
the NPG for the adsorption positions in (a) and (b), respectively. Insets show the
definition of the height hK−NP G. Red and blue areas in (c) indicate the heights
for which the system was analyzed in more detail.

5.5 Influence of potassium adatoms

An alternative route to make the cove or pore states accessible in transport mea-

surements is by the influence of external perturbations, like atoms or ions. Such

external species can strongly modify the electronic structure of carbon based ma-

terials via doping mechanisms[192, 199]. Here, we study the influence of potassium

atoms on the pore states of the NPG.

We have studied the adsorption of K atoms at the center of the pores and at a

lower symmetry position away from the pore center, as depicted in Figure 5.29a,b.

For these two positions, we calculated the total energy as a function of the height

of the K atom above the NPG (see Figure 5.29c,d). At both sites, the minimum
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Figure 5.30: Band structures for the NPG (a) without K atom, and with the K
atom at the center position at heights of (b) 2.5 Å and (c) 0.0 Å. Green lines
indicate the lowest lying pore states.

energy occurs at a height of the K atom of ∼2.5 Å above the NPG. Thus, we

decided to do a more detailed analysis for the systems with the K atom adsorbed

at 2.5 Å and 0.0 Å. The height of 2.5 Å also corresponds to a distance a bit further

away from the NPG than the pore state wave-function maximum. Qualitatively

the differences in the electronic properties between the two adsorption sites are

rather small, so we will only present the results for the center position here. By

comparing the clean NPG (0% K adsorption) with one where we put K atoms

in both pores of the unit cell (100% K adsorption), we can study the extreme

adsorption cases.

Figure 5.30 shows the band structures for the pristine NPG, and for NPG

with the K atom at the center position at heights of 2.5 Å and 0.0 Å. The green

lines indicate the bands corresponding to the pore states. Clearly, the pore state

gets significantly shifted down in energy when the distance between K and NPG is

reduced. Apart from shifting down the energy of the pore state with respect to the
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valence band maximum (VBM), K adsorption also slightly decreases the band gap

to values of 0.57 eV and 0.56 eV for K at heights of 2.5 Å and 0.0 Å, respectively.

Figure 5.31 shows the LDOS maps for the clean NPG (top panel) as well as NPG

with K at a height of 2.5 Å (middle panel) and 0.0 Å (bottom panel). Here, the

pore states can be clearly identified. As already seen in the band structures, it is

clear that the pore state energy gets smaller the closer the K atom is to the NPG.

At a height of 2.5 Å the 4s states of the K atoms can also be clearly identified, but

are not visible anymore for K at 0.0 Å.

From these result it is clear that the pore state can be shifted down in energy by

bringing K atoms close to the NPG. When the K atom is adsorbed in the plane of

the NPG (h=0.0 Å), the pore state energy is already quite close to the CB energy.

But, from the energy curves as a function of the K height (Figure 5.29c), we

deduce that this is not an energetically stable adsorption position and, therefore,

it is unlikely to occur in experiments. On the other hand, in the experiments the

K atoms will most likely lose their 4s electron and get ionized, which is expected

to induce significant variation in the chemical and electronic properties of the

system. This potentially changes the adsorption chemistry completely. Further

investigation is required to get a clearer picture on the influence of K atoms and

ion on the properties of the NPG, but our calculations indicate that the energy of

pore states can be tuned by the interaction with the external species.
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Figure 5.31: LDOS maps for NPG without and with K adsorbed at 2.5 Å and
0.0 Å. The structure above indicates the position of the C (gray) and K (cyan)
atoms.
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Chapter 6

Topological Insulator Bi2Se2Te:

influence of chemical disorder

The combination of a topologically non-trivial electronic bulk structure and a

strong spin-orbit coupling (SOC) gives rise to a 2D topological surface state (TSS)

in 3D topological insulators (TIs)[26, 200, 201]. This linearly dispersing surface

state is protected by time-reversal symmetry (TRS)[28–30], which also prevents

backscattering[4]. The strong SOC is also responsible for the spin-momentum

locking[202–204] which, together with a high electron mobility[205], makes TIs

promising candidates for spintronics applications.

Figure 6.1: Bulk unit cell structure
of the members of the Bi2(SeδTe1−δ)3

(0 ≤ δ ≤ 1) family.

Contacting TIs to magnetic materials or

deposition of magnetic adatoms on the sur-

face of a topological insulator could lead

to breaking of TRS and, thus, destroy the

TSS[206–208]. The challenge, aimed at the

implementation of spintronic applications,

is to find a topological insulator such that

its surface state that is robust against mag-

netic distortions. One family of TIs which

contains some candidates for such systems

is Bi2(SeδTe1−δ)3, with δ assuming values

between 0 and 1. The atomic structure of

101
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this family consists of quintuple layers (QLs) which are bound by vdW forces.

The structure and the unit cell of such a QL are shown in Figure 6.1. These QLs

consist of 5 atomic layers, where the outermost and middle layers are made up by

Te and Se atoms, in a ratio defined by δ, and the two layers in between them are

comprised of Bi.

The end-compounds of this family, namely Bi2Se3 (δ=1) and Bi2Te3 (δ=0) have

a bulk band gap of approximately 0.3 eV. Therefore, even at room temperature the

TSS of these materials can be accessed[209, 210]. For the intermediate compounds

(0 < δ < 1), mainly structural and electronic properties have been studied so

far[204, 211], but not the influence of magnetic adatoms on its TSS. In this work,

by means of DFT calculations in combination with STM experiments, we study

the structural and magnetic properties of clean and Co adsorbed Bi2Se2Te (δ=2/3)

and compare its properties to the end-compound Bi2Te3.

6.1 Computational details

All calculations presented in this chapter were done using the VASP[76–79] code.

We applied the projector augmented wave (PAW)[212, 213] method, and the

PBE[53] flavor of GGA for the approximation of the exchange-correlation poten-

tial. Spin-orbit coupling (SOC) was included using a second variation method[214]

as implemented in VASP[76–79]. To include vdW interactions, we applied the

DFT-D2 method of Grimme[65]. We sampled the Brillouin zone using a Γ-centered

9x9x1 Monkhorst-Pack[144] k-point grid. For the plane wave cut-off energy we

used 300 eV and we relaxed the forces down to 0.01 eV/Å.

Regarding structural parameters, we used a hexagonal 2x2 surface unit cell and

a stack of 3 quintuple layers, as illustrated, e.g., in Figure 6.2a,b for Bi2Te3. Due

to the high computational cost of these simulations, we checked structural and

magnetic properties using a larger 3x3 unit cell only for a few selected systems.

These two different cell sizes correspond to a Co coverage of 0.25 and 0.11 mono-

layers, respectively.

Besides, in order to account for the strong on-site Coulomb interactions of the

localized electrons in Co adatoms, we applied a simplified model[90] of on-site

Coulomb corrections for the d-orbitals of Co. Finding a reasonable value for U is
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Figure 6.2: (a) Side view of the optimized DFT geometry of Bi2Te3. (b) Top view
of the hexagonal 2x2 unit cell of Bi2Te3 with Co adsorbed at hcp site. The line with
the arrow-heads at its ends defines the measurement of the distance between Co
and Te (dCoT e). (c) Side view of the three topmost atomic layers for Bi2Te3 with
Co adsorbed. The lines define the height difference between Co and Te (hCoT e).

not a simple task. Several ways of calculating the U parameter from first principles

have been proposed[85, 215, 216]. We decided to estimate the value for U in a

more empirical way. For this purpose we used Bi2Te3 with Co adsorbed on the fcc

and hcp sites as a reference material. After relaxing these materials with different

U values, we evaluated the distances and heights of the Co atom with respect to

the topmost Te layer, as they are defined in Figure 6.2b,c.

For Co adsorbed on the hcp site and U values of 0 eV and 1 eV the calculations

yield non-magnetic solutions, i.e., the total magnetic moment of Co is virtually

zero. Such a strong quenching of the Co magnetic moment is unexpected in view

of previous experimental and theoretical reports in the literature[217, 218]. The

results of structural optimizations for U=2 eV are listed in Table 6.1. For this
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Table 6.1: Co heights (hCoT e), Co-Te distances (dCoT e), and Co total magnetic
moments (µtot) after structural relaxations with U=2 eV for different Co adsorption
sites. The arrow (↑) indicates that the magnetic moment is pointing primarily out-
of-plane.

U (eV) Co site hCoT e (Å) dCoT e (Å) µtot (µBorh)
2 fcc −0.83 2.63 1.39↑
2 hcp 0.10 2.57 1.88↑

U value, the magnetic moments of the Co adatom is not quenched and out-of-

plane. Furthermore, our relaxed geometries are very similar to structures with Fe

adsorbed on Bi2Te3 and obtained with a U value of 2.2 eV[219]. Thus, we applied

this U value in all of our following calculations.

6.2 Structural properties of clean Bi2Se2Te

First, we studied the structural properties of clean Bi2Se2Te. Figure 6.3a shows

a high-resolution scanning transmission electron microscopy (STEM) image of

Bi2Se2Te. Here, the atomic layers and the vdW gaps between the quintuple layers

are clearly visible. From the STEM measurements it is possible to extract the

Z-contrast profiles for different regions, where Z denotes the atomic number. The

contrast profiles for the areas indicated by dashed lines in Figure 6.3a are shown

from Figure 6.3b to 6.3f. From these profiles, the Se/Te ratio in the outermost

and middle atomic layer of each quintuple layer can be estimated. This analysis

reveals that the middle layer consists solely of Se atoms, while in the outer atomic

layers the ratio between Se and Te is 50% to 50% and no long range order is found.

Earlier measurements of this material arrived at the same conclusion regarding its

structural composition[211].

In the light of these experimental results, we decided to model this material

based on a Bi2Se3 crystal, which is one of the end-compounds of this TI family.

Besides, since the magnetic and structural properties of the Co adatom are mainly

influenced by its local chemical environment, we simulated the Bi2Se2Te surface

by substituting Se atoms surrounding the Co atom by Te. Simulations with 1, 2,

and 3 Te atoms in the surface layer were carried out. A schematic depiction of
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Figure 6.3: (a) STEM image of the Bi2Se2Te structure. (b) to (f) show contrast
profiles of different regions. Reprinted with permission from M. Carmen Mart́ınez-
Velarte et al., Nano Lett. 2017, 17, 4047-4054. Copyright 2017 American Chemical
Society.

our setup for these DFT calculations is shown in Figure 6.4. With this strategy

on how to simulate Bi2Se2Te surface, we investigated the structural and magnetic

properties of this material upon Co adsorption.
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Figure 6.4: Structural setup for the computational treatment of the Bi2Se2Te
surface.

6.3 Cobalt atoms adsorbed on Bi2Se2Te surface

Next, we studied the structural evolution of the Bi2Se2Te surface upon Co adsorp-

tion as well as the magnetic properties of the adatom. In our STM images we

can distinguish three apparent shapes for Co atoms adsorbed on Bi2Se2Te with

a coverage of 0.015 monolayers (see Figure 6.5a). A statistical analysis of such

STM topographies has been performed, including approximately 1000 Co atoms.

This analysis shows, that 99% of the Co atoms on Bi2Se2Te fall into one of two

categories (see Figure 6.5b). The atoms of the first category, termed Cob, show big

round protrusions in the STM image and have apparent heights between 40 pm and

90 pm. Co atoms of the second category appear smaller in the STM topography

and with apparent heights between 20 pm and 30 pm. These atoms are denoted as

Cos. Both types of atoms are found in non-equivalent distorted adsorption sites

and appear with almost the same frequency in the STM images. Coα atoms only

appear with a probability of 1%.

We employed the model structure of Bi2Se2Te, outlined in the previous section,

to obtain the structural properties of Co adsorbed on its surface. Initially, we

positioned the Co adatom at the high symmetry sites fcc and hcp of the surface.

The results of the relaxations are shown in Figure 6.6 (page 108) and Table 6.2

(page 108). When substituting one of the Se atoms surrounding the Co atom by

Te, there are three equivalent possibilities to do so. The same holds for replacing
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(a)

(b)

Figure 6.5: (a) STM image of Co in Bi2Se2Te at Vbias=−0.65 eV. (b) Appear-
ance probabilities, apparent heights, and schematic illustration of corresponding
adsorption sites for Co on Bi2Se2Te. In the last column, purple circles depict Se
and Te surface atoms, red circles indicate Co atoms, and black arrows means that
these Co atoms were moving away from the high-symmetry adsorption position.
Adapted with permission from M. Carmen Mart́ınez-Velarte et al., Nano Lett.
2017, 17, 4047-4054. Copyright 2017 American Chemical Society.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Relaxed geometries of the Bi2Se2Te surface with (a) 1 Te, (b) 2 Te,
and (c) 3 Te surrounding the Co atom adsorbed at the hcp site. (d), (e), and (f)
show the corresponding geometries for Co adsorbed at the fcc site.

Table 6.2: Co heights (hCoT e), Co-Te distances (dCoT e), and Co total magnetic
moments (µtot) after structural relaxations for different numbers of Te and different
Co adsorption sites. The arrows indicate that the magnetic moment is pointing
primarily out-of-plane (↑) or in-plane (→).

# of Te Co site hCoT e (Å) dCoT e (Å) dCoSe (Å) µtot (µBorh)
1 hcp 0.10 2.61 2.38 1.89↑
2 hcp 0.14 2.57 2.35 1.87↑
3 hcp 0.19 2.52 1.80↑
1 fcc −0.01 2.63 2.40 1.92↑
2 fcc −0.35 2.64 2.41 1.80→
3 fcc −0.71 2.57 1.42→

two of the Se atoms, while there is only one way to replace all three Se atoms

around a Co adsorption site. Thus, the results shown in Figure 6.6 and Table 6.2

correspond to 14 different adsorption scenarios (7 per adsorption site).

From Figure 6.6 it is clear, at least for the hcp adsorption site, that for 1 Te

and 2 Te the Co atom moves away from the high symmetry position, while it is

not displaced when surrounded by 3 Te atom. This is also the case for the fcc

adsorption site. While this is difficult to see from Figure 6.6, it becomes evident
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when comparing the Co-Te and Co-Se distances for these systems in Table 6.2.

Besides, from these results, it is clear that in all cases the Co-Te distance is sig-

nificantly larger than the Co-Se distance. This can be attributed to Te having a

larger ionic radius than Se, which generally results in larger bond lengths. Hence,

if a Co atom is surrounded by atoms of both species, one would certainly expect it

move away from the high-symmetry position. Our DFT calculations confirm the

STM measurements described above. Furthermore, our combined experimental

and theoretical results suggest that Cos is pushed away from one Te atom towards

two Se atoms and Cob is surrounded by two Te atoms and shifted closer to one Se

atom.

Table 6.2 also lists the values and directions (out-of-plane ↑ or in-plane →) of

the magnetic moments of the Co atoms upon adsorption. In none of the cases the

magnetic moment is significantly quenched, and only in four out of 14 adsorption

scenarios its main contribution is in-plane. Additionally, we performed preliminary

calculations of the magnetic anisotropy for these systems and found its value to

be of the order of 1 meV/atom. Nevertheless, in the experiments a 3 T magnetic

field perpendicular to the TI surface is applied, which ensures that in all cases the

adatom will have a magnetic moment perpendicular to the surface. The direction

of the magnetic moment is insofar of importance as an in-plane magnetic moment

might mask backscattering due to breaking of TRS[206].

We cross-checked the structural and magnetic properties for the systems with

1 Te for a larger 3x3 unit cell, which corresponds to a coverage of 0.11 monolayers

Co (while the coverage in the 2x2 unit cell is 0.25 monolayers). Apart from a

small reinforcement of the out-of-plane component of the magnetic moments, the

results for the larger unit cell are essentially the same as for the smaller one. This

means that, further extending the calculation unit cell will not lead to qualitatively

different magnetic anisotropy and, that no reorientation of the magnetic moment

is to be expected for low coverages as in the experiments (about 0.015 monolayers).

An interesting experimental way to get information about backscattering is

to extract so-called quasi-particle interference (QPI) patterns from STM mea-

surements[220]. This works as follows[220]: when the surface state of a TI gets

scattered at a defect, for example a impurity or adatom, it interferes with itself,

producing a standing wave pattern in the LDOS at the surface. These oscillations
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in the LDOS can be measured and analyzed via STM. From the STM images the

wave length of the standing waves can be calculated and transformed from real

space to momentum space via a fast Fourier transform. The resulting patterns

directly represent the scattering intensity as a function of momentum.

Figure 6.7: Surface band struc-
ture of Bi2Te3 calculated in a 2x2
unit cell.

In the case of TI surfaces, due to TRS,

the most important direction for backscatter-

ing is the ΓK-direction[202, 221]. Scattering in

ΓM-direction on the other hand is mainly as-

cribed to scattering processes originating from

the warping of the Dirac cone[202, 222]. This

warping of the Dirac cone can be seen from the

band structure of Bi2Te3 in Figure 6.7. From

this figure it is evident, that the warping of

the Dirac cone occurs at lower energies in the

ΓM-direction (∼0.2 eV) compared to the ΓK-

direction (∼0.6 eV).

The QPI patterns for the clean and Co ad-

sorbed Bi2Te3 and Bi2Se2Te surfaces are de-

picted in Figure 6.8 (Co coverages were 0.012

monolayers for Bi2Te3 and 0.015 monolayers for

Bi2Se2Te). While all QPI patterns show the sixfold symmetry, only in the image

for the clean Bi2Te3 no warping of the Dirac cone is observed. That is, only for

the clean Bi2Te3 surface the QPI pattern has a circular shape. For the pristine

surfaces of both materials we observe that the scattering intensity in ΓK-direction

is very low, indicating the absence of backscattering in this surface. The obser-

vation of warping of the Dirac cone in QPI patterns, of course, strongly depends

on the position of the Dirac point and the bias applied in the experiments. When

Co adatoms are adsorbed on Bi2Te3, a high scattering intensity emerges in ΓK-

direction, demonstrating the opening of channels for backscattering. Remarkably,

for the Bi2Se2Te surface, even upon adsorption of Co backscattering cannot be

observed, as is evident from the QPI pattern in the right lower panel of Figure 6.8.

The lack of backscattering can be ascribed to a weakened hybridization between

the Co adatom and the TSS, caused by the Co’s movement away from the high
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Figure 6.8: QPI patterns for clean (left panels) and Co adsorbed (right panels)
Bi2Te3 (upper panels) and Bi2Se2Te (lower panels) surface. The Dirac point en-
ergies for the clean surfaces were: -131±14 meV in Bi2Te3 and -154±11 meV in
Bi2Se2Te. Co adsorption shifted the Dirac cones down by about 100 meV for both
surfaces. Adapted with permission from M. Carmen Mart́ınez-Velarte et al., Nano
Lett. 2017, 17, 4047-4054. Copyright 2017 American Chemical Society.

symmetry adsorption position in most surface configurations.

In conclusion, the results of the combined computational and experimental

investigation demonstrate the stability of the Bi2Se2Te surface state against mag-

netic impurities. We have shown, that the TSS of Bi2Se2Te is robust against

the same perturbations that lead to TRS breaking and backscattering in Bi2Te3.

The disordered adsorption geometry of the Bi2Se2Te surface prevents the magnetic

states of Co from hybridizing with the TSS, and, this way, preserving TRS. This

is expected to hold as well for other ternary TIs with chemical disorder on the

surface.
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Chapter 7

Conclusions

This thesis presents a set of contributions to the field of 2D Dirac materials, which

have emerged as promising candidates for future nanoelectronics. The electronic

and transport properties of various graphene-based nanostructures and surfaces

of topological insulators reported in this work, provide further insight into the

functionalities of this class of materials.

The first two chapters are focused on the description of the theoretical method-

ology. For the electronic structure simulation, DFT is the method of choice. To cal-

culate the transport properties, we employ an extension to DFT based on NEGF.

Within this approach, we report on a tool for the calculation of multi-terminal

eigenchannels, which has been implemented within the frame of this thesis.

Chapter 4 was dedicated to computational studies of graphene metal contacts.

In the first part of this chapter, we studied the influence of graphene edge pas-

sivation on the transport properties of metal-graphene side contacts, considering

Ni and Au as metal electrodes. We found that the resistance of the unpassivated

contacts is of the same order of magnitude regardless of the metal type. On the

contrary, the passivation of the graphene edge affects the electrical characteristics

of the contacts differently depending on the metal. As such, while for Ni-based

interfaces the contamination of the graphene edge has rather little influence on the

contact resistance, it drastically increases the contact resistance for these interfaces

The second part of chapter 4 was dedicated to an extensive study of metal

graphene edge contacts. For this purpose, we used Ni, Cr, Ti, and Au as metal
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electrodes, and F, F2 and O as possible contaminants. To gain understanding on

the evolution of these interfaces, a detailed analysis of the the forces induced by

the metal on the atoms of the graphene was carried out, which allowed us to con-

clude that the contact reactivity depends in an intricate way on both metal and

graphene edge contamination. We further showed that, as for the lateral contacts,

all clean metal-graphene side contacts exhibit resistance values of the same order

of magnitude. On the other hand, contamination of the graphene edges leads to

a significant, strongly metal dependent increase of the contact resistance. Inter-

estingly, the Cr-based contacts are found to display the best contact properties,

as found experimentally. Altogether, our results provide useful insight into the

mechanisms leading to device-to-device variations and might be of relevance for

the design of improved contacts.

In chapter 5, we characterized 7-13-AGNRs and the nanoporous graphene

(NPG) derived from them, experimentally and computationally. Regarding 7-

13-AGNRs, our DFT calculations showed that they possess three types of bands.

On one hand, we found longitudinal bands dispersing along the periodical direc-

tion of the ribbon, and transversal bands localized within the 13-carbon atom-wide

stripes. Besides, we report on the emergence of some novel states localized in the

vacuum region within the cove. These states have been also observed experimen-

tally by STM, and are related with the image potential at the graphene edge.

Moreover, our calculations in combination with high-resolution STM images

confirmed that the ribbons can be linked covalently to each other, forming NPG.

This new graphene based material has a semiconducting gap of about 1eV, and

its electronic characteristics are closely related to the parent 7-13-AGNRs. In

particular, the longitudinal bands remain unperturbed in the NPG, while the

transversal bands disperse across neighboring ribbons and give rise to a 1D band.

This in-plane anisotropy of the bands has a clear impact on the conductance

properties of the material, as shown by our conductance calculations, and might be

exploited in different applications, e.g. in FETs. Moreover, when the nanoribbons

are connected, the cove states of the 7-13-AGNR interact giving rise to pore states

in the NPG. The presence of these confined states makes NPG very attractive for

its use in molecular sensors.

Finally, chapter 6 summarizes a combined DFT and STM study about the in-



115

fluence of chemical disorder on the properties of the topological insulator Bi2Se2Te,

aimed at determining the robustness of its TSS against magnetic perturbations.

Studying the structural evolution of these surfaces upon Co adsorption allowed us

to confirm the analysis of STM topographies, which indicated that the majority

of Co adatoms are displaced from the high-symmetry positions. Besides, our cal-

culations show that the magnetic moments of the Co atoms on Bi2Se2Te are not

quenched and point out-of-plane for most of the adsorption conformations. These

results suggest a weak hybridization between the Co adatoms and the surface state

of this material and, as a result, the survival of its TSS.
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Appendix A

Metal-graphene 2D contacts:

k-resolved transmissions

Here, the spin- and k-resolved transmissions for the functionalized Ni (Figure A.1)

and all the Au (Figure A.2) contacts are shown.

Ni, ZZ, H Ni, ZZ, NH2 Ni, ZZ, OH

Figure A.1: Spin-resolved transmission as function of energy and kx for the Ni con-
tacts with unreconstructed graphene edge and H (red frame), NH2 (green frame),
and OH (blue frame) passivation.
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Au, ZZ

Au, ZZ, NH2

Au, ZZ, OH

Au, ZZ, H

Figure A.2: Spin-resolved transmission as function of energy and kx for the Au con-
tacts with unreconstructed graphene edge and H (red frame), NH2 (green frame),
and OH (blue frame) passivation.



Appendix B

Scanning tunneling microscopy

(STM)

In the early 80s, Binning and Rohrer presented a new type of microscope relying

on the strong distance dependence of a tunnel current of electrons, which they

named scanning tunneling microsopy (STM)[39]. The tunnel current between a

tip and a surface (both metallic) can be approximated by[39],

I(z) ∝ V

z
e−A

√
φz, (B.1)

where A is a constant (≈1.025 eV−1/2Å−1 for vacuum[39]), φ and V are the average

of the work functions of the surface and the tip and the voltage applied between

the two, respectively, and z is the distance of the tip to the surface.

The STM can be operated either in constant current or constant height mode,

schematically illustrated in Figure B.1. In both modes, the tip is moved over

the surface, making one measurement at every point in space, i.e., the surface is

scanned. In constant current mode, the current is kept constant by varying the

distance between the tip and the surface while scanning the surface. The change

in the distance is recorded for each point in space and gives a topography map of

the surface. On the other hand, in constant height mode, the tip is kept fixed at

a certain height and the current is measured. Then, by applying Equation B.1 or

more advanced models, like the Tersoff-Hamann approach[223, 224], the topology

map can be constructed.
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x

z

z(x)

surface

tip

(a)

x

z

I(x)

surface

tip

(b)

Figure B.1: Schematic illustration of (a) constant current and (b) constant height
operation modes of the STM.

It has been demonstrated experimentally, that functionalization of the STM

tip with molecules can significantly enhance the resolution of the topography

maps[225–229]. It has been suggested that the enhancement of the resolution has

to do with the states involved in the tunneling process[229]. The Tersoff-Hamann

approach works reasonably well for metallic tips, where the tip wave-function is

dominated by s-states[223, 224]. For such tips, an STM image resembles the

local density of states[229, 230]. On the other hand, in tips functionalized with

molecules, the p-states are dominant. Here, STM images are expected to represent

the spatial derivatives of the sample wave-functions[229–231].

An STM can also be used for probing the local density of states (LDOS) at

a given point of a sample. This is done in constant height mode by varying the

tip-sample voltage and recording the current. In this type of measurement the tip

is not moved at all, and it is called scanning tunneling spectroscopy (STS).



Appendix C

7-13-AGNR: Extended SIESTA

basis set

Listing C.1 shows how to define the extended basis set in SIESTA[81] (a more

detailed description can be found in the SIESTA[81] manual). As cut-off radii for

the additional basis functions we used 10 Bohr.

Listing C.1: Definition of extended basis set in SIESTA

%block PAO. b a s i s

C 4

n=2 0 2

0 .000 0 .000

n=2 1 2 P

0.000 0 .000

n=3 0 1

10 .000

n=3 1 1

10 .000

%block PAO. b a s i s
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Resumen

El gran avance en los métodos de producción acaecido en las últimas décadas,

ha permitido la minituarización de los dispositivos electrónicos hasta alcanzar ta-

maños de transistores de silicio de unos poco nanometros. Sin embargo, algunos

procesos f́ısicos que emergen a la nanoescala, e.g. el efecto cuántico de túnel, dan

lugar al incremento de las corrientes de fuga y corrientes en modo “off” y, por

tanto, hacen que sea muy dif́ıcil reducir aún más su tamaño. De hecho, es muy

probable que pronto se alcance el ĺımite de miniaturización de los dispositivos ba-

sados en silicio. Por este motivo, la busqueda de materiales alternativos con alto

rendimiento electrónico se ha intensificado de forma espectacular durante los últi-

mos años. En particular, el descubrimiento y desarrollo de nuevos materiales de

Dirac bideminsionales (2D) ha inspirado una gran actividad investigadora en este

campo. Estos materiales, siendo los más representativos el grafeno y los aislantes

topológicos, poseen propiedades únicas y extraordinarias que los hacen candidatos

idóneos para su aplicación en nanoelectrónica y ámbitos afines[1, 2].

La principal caracteŕıstica de los materiales de Dirac deriva de su peculiar

estructura de bandas electrónica cerca del nivel de Fermi, que presenta una dis-

persión lineal. Es por ello que los electrones de estas bandas se comportan como

fermiones sin masa. Además, el acoplamiento del momento y el (pseudo)-esṕın de

los electrones suprime la retrodispersión (en inglés, “backscattering”) y da lugar a

propiedades de transporte dependientes del esṕın[1, 3, 4]. Las posibles aplicaciones

de estos materiales incluyen, por ejemplo, transistores de efecto de campo (FET,

del inglés field effect transistor), dispositivos espintrónicos, fotovoltaica, almace-

namiento de enerǵıa o computación cuántica (ver e.g. [5, 9, 11-13]).

En particular, el grafeno exhibe propiedades excepcionales que derivan de la

hibridización sp2 de los orbitales s, px, and py orbitals. De hecho, esta hibridización

123



124 RESUMEN

es también responsable de la estructura de panal caracteŕıstica de este material:

los orbitales hibridizados de cada átomo de carbono forman enlaces tipo σ con sus

átomos vecinos, con una distancia de enlace de 1.42 Å y ángulos de 120 grados

entre los enlaces. Estos enlaces tipo σ confieren al grafeno sus extraordinarias

propiedades mecánicas, mientras que los orbitales pz, que son perpendiculares al

grafeno, forman enlaces tipo π y son responsables de sus formidables caracteŕısticas

electrónicas.

Los aislantes topológicos (TI, del inglés topological insulator) tridimensionales,

por otro lado, poseen un “gap” de enerǵıa en volumen y un estado de superficie

2D que está protegido por simetŕıa de inversión temporal (TRS, del inglés time

reversal symmetry). Los aislantes topológicos investigados en esta tesis pertencen

a la familia Bi2(SeδTe1−δ)3, donde δ vaŕıa de 0 a 1. La estructura atómica de esta

familia de materiales presenta capas quintuples formadas por cinco capas atómicas

unidas mediante enlaces covalentes, y enlazadas entre ellas por fuerzas débiles de

tipo van der Waals.

Para el diseño de nuevos dispositivos electrónicos basados en materiales de

Dirac 2D, es crucial entender y ser capaces de controlar sus propiedades estructu-

rales, qúımicas y electrónicas. Esto ha motivado que, durante las últimas décadas,

la actividad investigadora en el campo del estudio teórico y computacional de di-

chos materiales a la nanoescala haya crecido notoriamente[31]. En gran medida,

esto ha sido posible al desarrollo de métodos de basados en primeros principios

(ab initio). En particular, la teoŕıa del funcional de la densidada (DFT, del inglés

density functional theory) es actualmente la herramienta más ampliamente em-

pleada para la simulación de propiedades estructurales y electrónicas de sistemas

nanométricos complejos de gran interés tecnológico, tales como el grafeno y los ais-

lantes topológicos. Además, en el contexto de la nanoelectrónica, es de particular

interés la simulación de propiedades de transporte electrónico a través de materia-

les 2D conectados a conductores macroscópicos o electrodos. Al contrario que las

simulaciones DFT estándar, los cálculos de transporte implican sistemas abiertos

que son infinitos, no periódicos y fuera del equilibrio. Aún aśı, se ha demostrado la

validez de los métodos de transporte basados en DFT para describir un gran núme-

ro de experimentos de conductancia en sistemas nanométricos. En particular, el

método más comunmente empleado combina la estructura electrónica DFT con las
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funciones de Green fuera de equilibrio (NEGF, del inglés non-equilibrium Green’s

function). Precisamente, la tesis doctoral aqúı resumida se centra en la aplicación

de estas herramientas de cálculo para el estudio de las propiedades estructurales,

electrónicas y de transporte de sistemas de grafeno y aislantes topológicos.

En el caṕıtulo 2, describimos los métodos basados en DFT que se emplean

a lo largo de la tesis. Fundamentalmente, la teoŕıa del funcional de la densidad,

que se basa en los trabajos seminales de Hohenberg, Kohn, y Sham[32, 33], es

un procedimiento variacional alternativo para resolver la ecuación de Schrödinger

de un sistema de muchos cuerpos, donde el funcional de la enerǵıa electrónica

es minimizado con respecto a la densidad electrónica. Además de exponer los

fundamentos más generales de este método, daremos detalles más técnicos sobre

su aplicación práctica.

A continuación, en el caṕıtulo 3, presentamos la extensión de los métodos DFT

para el cálculo de transporte electrónico. En particular, nos centramos en la me-

todoloǵıa basada en las funciones de Green fuera de equilibrio (NEGF) ya men-

cionadas. Trás presentar los conceptos fundamentales del método DFT-NEGF, se

detalla una manera eficiente de calcular las funciones de Green, lo que tendrá im-

portantes implicaciones en el estudio de sistemas realistas con un gran número de

átomos. Además, describiremos una nueva herramienta desarrollada en el marco

de esta tesis que permite visualizar los autocanales de transporte en sistemas de

varios terminales.

El caṕıtulo 4 está dedicado al estudio de diferentes configuraciones de contacto

entre el grafeno y electrodos metálicos. La mayoŕıa de dispositivos electrónicos

basados en grafeno requieren la formación de este tipo de contactos. Sin embargo,

esto puede alterar significativamente las excelentes caracteŕısticas eléctricas del

grafeno y, lo que es más importante, dar lugar a altas resistencias de contacto. Es

por ello que en los últimos años se ha intensificado la investigación destinada a en-

contrar intercaras metal-grafeno con baja resistancia, con el fin de poder diseñar y

fabricar contactos de mejor calidad[122, 126, 128, 130, 134, 137, 138]. En esta tesis

se consideran dos tipos de contacto. Por un lado, el grafeno puede situarse sobre

el metal, estableciendo un area de contacto bidimensional entre los dos compo-

nentes (contacto lateral). Alternativamente, el borde del grafeno se puede enlazar

directamente con los electrodos metálicos, formando de esta manera un contacto
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unidimensional entre el grafeno y el metal (contacto de borde). Aśı pues, en este

caṕıtulo se estudian tanto contactos laterales como de borde entre el grafeno y

diferentes electrodos metálicos.

Cabe destacar que, debido a los métodos de fabricación actualmente empleados,

los contactos metal-grafeno pueden sufrir modificaciones estructurales y qúımicas

no deseadas. Esto hace que sea muy dif́ıcil controlar la resistencia y, en definiti-

va, el rendimiento de los dispositivos. De hecho, las caracteŕısticas eléctricas de

los dispositivos presentan a menudo diferencias significativas dependiendo de los

detalles de fabricación de sus contactos. Motivados por la necesidad de entender

mejor el origen de estas diferencias, en este caṕıtulo se analiza en detalle y de

manera sistemática la influencia que la contaminación de los bordes del grafeno

tiene en la resistencia de los contactos, tanto laterales como de borde.

En la primera parte del caṕıtulo, nos centramos en estudiar el efecto de la

contaminación del borde de grafeno sobre las propiedades estructurales y de trans-

porte de contactos laterales. Consideramos electrodos metálicos compuestos de

oro (Au) o niquel (Ni), cuya interacción 2D con una capa de grafeno es muy débil

y muy fuerte, respectivamente. Además, nos enfocamos en las terminaciones zz y

Stone-Wales del grafeno. Los resultados indican que, cuando los bordes del grafeno

no están pasivados, la estructura del metal en la zona de contacto sufre cambios

significativos, sobre todo en el caso del Au. Aun aśı, en dichas intercaras (tanto

Ni-grafeno como Au-grafeno) se forman enlaces fuertes con el metal y, por tanto, se

obtienen buenas propiedades de transporte. Además, la resistencia de contacto en

función del voltaje de compuerta (gate voltage) es del mismo orden de magnitud

en ambos casos.

A continuación, investigamos los cambios que la pasivación de los bordes del

grafeno induce en las propiedades de dichos contactos. En concreto, considera-

mos que el grafeno se pasiva con H, OH NH2. La reconstrucción de las superficies

metálicas es significativamente menor en el caso de los contactos pasivados, espe-

cialmente en el caso de las uniones Au-grafeno. En el caso de Ni, la contaminación

del grafeno tiene una influencia débil sobre las propiedades de transporte de la

intercara, y todos los contactos basados en dicho metal presentan resistencias del

mismo orden de magnitud. Este comportamiento se puede atribuir a la fuerte a

la fuerte hibridación entre los orbitales π del grafeno y los orbitales del Ni, siendo
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este efecto dominante frente a la presencia de los contaminantes. Por el contrario,

la interacción es mucho más débil entre el grafeno y Au, y los contaminantes ad-

quieren un mayor protagonismo en la formación y las caracteŕısticas del contacto.

En consecuencia, la pasivación de los bordes del grafeno en el caso del Au da lugar

a un aumento importante de la resistencia. También se han estudiado los efectos

de filtro de esṕın en los contactos de borde. En el caso de los contactos basados en

Ni, la eficiencia de filtro de esṕın (SFE, del inglés spin filter efficiency) presenta

una gran variación de valores dependiendo de la terminación del grafeno. Por otro

lado, en el caso del Au sólo la pasivación con OH produce una SFE significativa.

La segunda parte del caṕıtulo 4 está dedicada al estudio exhaustivo de los

contactos de borde metal-grafeno. En particular, consideramos grafeno con termi-

nación zigzag (ZZ) y electros metálicos compuestos de niquel (Ni), cromio (Cr),

titanio (Ti) u oro (Au). Además, dado que durante la fabricación de estos contac-

tos se emplean comunmente compuestos reactivos que contienen flúor y/o oxigeno,

estudiaremos la contaminación de los bordes del grafeno con F, F2 y O. En primer

lugar, y con el fin de entender la reactividad de estas intercaras, se han anali-

zado las fuerzas que el metal induce en el grafeno, aśı como su dependencia con

la contaminación. Nuestros resultados demuestran que las fuerzas en la intercara

dependen en una manera compleja tanto del tipo del metal como de la contami-

nación del grafeno. A continuación, hemos estudiado la evolución estructural y

qúımica durante la formación del contacto. Los cálculos muestran que el tipo de

metal empleado puede tener un papel crucial en la estabilidad del borde de grafeno

contaminado. Por ejemplo, mientras que en el caso un borde de grafeno aislado la

contaminación con un grupo F2 es más estable que con un sólo átomo de flúor, la

proximidad de un metal de transición hace que uno de los átomos del grupo F2

sea “arrancado” del grafeno y se adsorba sobre la superficie metálica.

Respecto a las propiedades de transporte, encontramos que todos los contactos

de borde no contaminados presentan resistencias del mismo orden de magnitud.

Cuando el borde del grafeno está contaminado, la resistencia aumenta en todos los

casos. Sin embargo, dicho aumento depende fuertemente del metal y, además, es

menor cuando los contactos están pasivados con oxigeno en lugar de flúor. Debe-

mos mencionar que estos resultados corresponden a contactos ideales, con bordes

uniformes y superficies cristalinas perfectas. Por ello, con el objetivo de entender
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mejor los mecanismos responsables de las varaciones entre diferentes dispositivos,

también hemos llevado a cabo cálculos para un modelo de contacto más realis-

ta. En dicho modelo, se consideran diferentes contaminantes y varias distancias

metal-grafeno, considerando geometŕıas congeladas. Estos cálculos muestran que

el aumento relativo de las resistencias de contacto al alejar el grafeno del electrodo

metálico es mucho menor en el caso de los contactos basados en Cr. Esto demuestra

que este metal da lugar a contactos de borde de buena calidad, de acuerdo con lo

observado experimentalmente. Al igual que en el caso de los contactos laterales, se

ha analizado también la SFE de los contactos de borde. En general, al aumentar la

separación entre el grafeno y el metal, la SFE aumenta. Aunque sólo en el caso de

los contactos contaminados con flúor se recupera casi totalmente la polarización

de esṕın de los bordes zz aislados.

En el caṕıtulo 5, nos enfocamos en diversas nanoestructuras de grafeno. El

confinamiento del grafeno en nanoestructuras puede da lugar a efectos como la

apertura de un gap de enerǵıa [159, 160], y su potencial ha sido demostrado en

diversas aplicaciones [196, 232, 233]. Sin embargo, sus propiedades dependen fuer-

temente de los detalles nanométricos, y es por ello crucial poder diseñar nanoes-

tructuras de grafeno con precisión atómica. Esto es posible hoy en d́ıa gracias a los

procesos de śıntesis en superficie, que permiten crecer nanotiras (en inglés, “nano-

ribbons”) u otras nanoestructuras de grafeno a partir de precursores moleculares.

[164-169]. En este caṕıtulo, estudiaremos un nuevo tipo de nanoribbons fabricados

mediante este procedimiento. Estos nanoribbons, que denominamos 7-13-AGNR,

tienen bordes tipo armchair y contiene segmentos con anchuras de 7 y 13 filas de

carbono. Además, la unión de estos nanoribbons da lugar a un nuevo material 2D

formado por grafeno nanoporoso, y que denotaremos NPG (del inglés, nanopo-

rous graphene). Tantos los ribbons 7-13-AGNR como el NPG se han caracterizado

teóricamente mediante simulaciones DFT y experimentalmente mediante medidas

de microscopia de efecto túnel (del inglés, scanning tunneling microscoy, STM).

En particular, las medidas de espectroscoṕıa indican que tanto los nanoribbons

como el NPG presentan gaps de enerǵıa del orden de 1eV. Esto ha sido confirmado

por nuestros cálculos, y abre la puerta al uso de este material en aplicaciones que

no son posibles mediante el grafeno estándar debido a su carácter semimetálico.

Además, nuestros cálculos DFT de estructura electrónica predicen que los rib-



RESUMEN 129

bons 7-13-AGNR presentan diferentes tipos de bandas con propiedades interesan-

tes. Por un lado, encontramos bandas electrónicas que sólo dispersan en la dirección

periódica del ribbon (bandas longitudinales); por otro lado, las que denominamos

bandas transversales están localizadas en los segmentos de 13 filas de átomos de

C. Además, existen estados localizados en las zonas “vaćıas”, que tienen su origen

el potencial imagen del grafeno y que aparecen en las regiones confinadas entre los

segmentos de 7 y 13 filas de carbono. Al formarse el NPG, su estructura electrónica

hereda el carácter de las bandas del 7-13-AGNR, dando lugar a: i) bandas longi-

tudinales que se extienden a lo largo del segmento de 7 filas de C en la dirección

periódica, ii) bandas transversales que se extienden en la dirección perpéndicular

a lo largo de la unión entre los segmentos de 13 filas de C, y iii) los estados de

vació que forman lo que denominamos estados del poro. Destacar que los estados

confinados en las regiones de vaćıo se observan experimentalmente en las imágenes

STM, tanto en el nanoribbon como en el NPG. Mediante cálculos de transporte

electrónico, hemos demostrado también que la existencia de bandas longitudinales

y transversales dota a este material de propiedades de transporte anisotrópicas.

Por tanto, queda demostrado que este material presenta propiedades realmente

especiales e interesantes para su uso en diferentes aplicaciones de carácter tec-

nológico, por ejemplo, en transistores de efecto de campo (FET) o en sensores

moleculares. Este trabajo abre la puerta a explorar diversas configuraciones es-

tructurales (tamaño, forma) o qúımicas de los poros, con el fin de optimizar sus

propiedades.

Por último, en el caṕıtulo 6 estudiamos las propiedades del aislante topológico

ternario Bi2Se2Te. La deposición de adátomos magnéticos en la superficie de un ais-

lante topólogico puede romper la TRS y, por tanto, destruir el estado de superficie

protegido topológicamente (TSS) [206-208]. Por lo tanto, supone un gran desafio

para las aplicaciones basadas en la espintrónica el encontrar un material TI cuyo

estado de superficie sea robusto ante distorsiones magnéticas. Motivados por esto,

en este caṕıtulo se estudia la robustez del estado de superficie de Bi2Se2Te frente a

la adsorción de átomos de cobalto (Co). Experimentalmente se demuestra que este

material presenta un alto desorden qúımico en su superficie, que esta compuesta

de Se y Te con un ratio 1:1, y no muestra orden de largo alcance. Para estudiar las

propiedades de este material, hemos considerado la estructura Bi2Se3 en volumen,
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y hemos reemplazado 1, 2 o 3 átomos de Se de la superficie por átomos de Te.

Mediante el estudio de la evolución de estas superficies al adsorber átomos de Co,

se han podido confirmar las observaciones de STM: los átomos de Co no se adsor-

ben en posiciones de alta simetŕıa. Además, su momento magnético no desaparece

por su interacción con el TI y, en la mayoria de los casos, apunta fuera del plano

(out-of-plane). Todo esto parece indicar una interacción débil con los electrones

de la superficie, y sugiere que este material ternario podŕıa no perder su estado de

superficie por efecto de los adsorbatos magnéticos. La confirmación experimental

se ha logrado mediante la medida de patrones de interferencia de quasi-part́ıculas

(del inglés, quasi-particle interference (QPI) patterns) que se observan con STM.

Los patrones QPI han permitido demostrar la ausencia de retro-dispersión cuan-

do se adsorben átomos de Co sobre Bi2Se2Te, lo que significa que el TSS no se

destruye.

En resumen, el trabajo de investigación recogido en esta tesis doctoral se ha

centrado en la caracterización, mediante herramientas de simulación ab initio, de

las propiedades electrónicas y de transporte de diversos nanosistemas basados en

materiales de Dirac bidimensionales. Nuestros resultados han permitido interpretar

medidas experimentales de STM y, aun más, han servido para predecir interesantes

caracteŕısticas noveles en nanoestructuras de grafeno y superficies de aislantes

topológicos. Estos materiales presentan un extraordinario interés tecnológico y,

por tanto, las conclusiones extráıdas en esta tesis pueden ser de gran utilidad para

el diseño futuro de aplicaciones basados en dichos materiales de Dirac 2D.
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Sawatzky. “Density-functional theory and NiO photoemission spectra”. In:

Phys. Rev. B 48 (Dec. 1993), 16929–16934 (Cited on page 26).

[95] A. Garcia-Lekue, M. Vergniory, X. Jiang, and L. Wang. “Ab initio quantum

transport calculations using plane waves”. In: Progress in Surface Science

90 (Aug. 1, 2015), 292–318 (Cited on pages 27, 32).



BIBLIOGRAPHY 141

[96] L.-W. Wang. “Elastic quantum transport calculations using auxiliary peri-

odic boundary conditions”. In: Phys. Rev. B 72 (July 2005), 045417 (Cited

on page 27).

[97] A. Garcia-Lekue and L.-W. Wang. “Elastic quantum transport calculations

for molecular nanodevices using plane waves”. In: Phys. Rev. B 74 (Dec.

2006), 245404 (Cited on page 27).

[98] J. Taylor, H. Guo, and J. Wang. “Ab initio modeling of quantum transport

properties of molecular electronic devices”. In: Phys. Rev. B 63 (June 2001),

245407 (Cited on page 27).

[99] Y. Xue, S. Datta, and M. A. Ratner. “First-principles based matrix Green’s

function approach to molecular electronic devices: general formalism”. In:

Chemical Physics 281 (Aug. 1, 2002), 151–170 (Cited on page 27).

[100] J. Zhang, S. Hou, R. Li, Z. Qian, R. Han, Z. Shen, X. Zhao, and Z. Xue.

“An accurate and efficient self-consistent approach for calculating electron

transport through molecular electronic devices: including the corrections of

electrodes”. In: Nanotechnology 16 (2005), 3057 (Cited on page 27).

[101] M. Paulsson. “Non Equilibrium Green’s Functions for Dummies: Introduc-

tion to the One Particle NEGF equations”. In: eprint arXiv:cond-mat/0210519

(Oct. 2002) (Cited on pages 28–30).

[102] E. M. Godfrin. “A method to compute the inverse of an n-block tridiago-

nal quasi-Hermitian matrix”. In: Journal of Physics: Condensed Matter 3

(1991), 7843 (Cited on page 30).

[103] O. Hod, J. E. Peralta, and G. E. Scuseria. “First-principles electronic trans-

port calculations in finite elongated systems: A divide and conquer ap-

proach”. In: The Journal of Chemical Physics 125 (Sept. 19, 2006), 114704

(Cited on page 30).

[104] M. G. Reuter and J. C. Hill. “An efficient, block-by-block algorithm for

inverting a block tridiagonal, nearly block Toeplitz matrix”. In: Computa-

tional Science & Discovery 5 (2012), 014009 (Cited on page 30).



142 BIBLIOGRAPHY

[105] M. Paulsson and M. Brandbyge. “Transmission eigenchannels from nonequi-

librium Green’s functions”. In: Phys. Rev. B 76 (Sept. 2007), 115117 (Cited

on page 32).

[106] N. R. Papior. sisl: v0.9.2. Version 0.9.2 (Cited on pages 32, 33).

[107] T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho. “Inelas-

tic transport theory from first principles: Methodology and application to

nanoscale devices”. In: Phys. Rev. B 75 (May 2007), 205413 (Cited on

page 32).

[108] E. Jones, T. Oliphant, and P. Peterson. SciPy open source scientific tools

for Python. 2014. url: https://www.scipy.org/ (visited on 03/02/2018)

(Cited on page 32).

[109] S. v. d. Walt, S. C. Colbert, and G. Varoquaux. “The NumPy Array: A

Structure for Efficient Numerical Computation”. In: Computing in Science

Engineering 13 (Mar. 2011), 22–30 (Cited on page 32).

[110] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.

Geim. “The electronic properties of graphene”. In: Rev. Mod. Phys. 81 (Jan.

2009), 109–162 (Cited on page 37).

[111] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao,

and C. N. Lau. “Superior Thermal Conductivity of Single-Layer Graphene”.

In: Nano Letters 8 (2008), 902–907 (Cited on page 37).

[112] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu,

A. Grill, and P. Avouris. “100-GHz Transistors from Wafer-Scale Epitaxial

Graphene”. In: Science 327 (Feb. 4, 2010), 662 (Cited on page 37).

[113] Y. Wu, K. A. Jenkins, A. Valdes-Garcia, D. B. Farmer, Y. Zhu, A. A. Bol,

C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, and Y.-M. Lin. “State-of-

the-Art Graphene High-Frequency Electronics”. In: Nano Letters 12 (2012),

3062–3067 (Cited on page 37).

[114] “Ten years in two dimensions”. In: Nat Nano 9 (Oct. 2014), 725–725 (Cited

on page 37).

https://www.scipy.org/


BIBLIOGRAPHY 143

[115] L. Huang, H. Xu, Z. Zhang, C. Chen, J. Jiang, X. Ma, B. Chen, Z. Li,

H. Zhong, and L.-M. Peng. “Graphene/Si CMOS Hybrid Hall Integrated

Circuits”. In: 4 (July 7, 2014), 5548 (Cited on page 37).

[116] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den

Brink, and P. J. Kelly. “Doping Graphene with Metal Contacts”. In: Phys.

Rev. Lett. 101 (July 2008), 026803 (Cited on page 37).

[117] S. Barraza-Lopez, M. Vanević, M. Kindermann, and M. Y. Chou. “Effects

of Metallic Contacts on Electron Transport through Graphene”. In: Phys.

Rev. Lett. 104 (Feb. 2010), 076807 (Cited on pages 37, 48, 65).

[118] A. D. Franklin, S. J. Han, A. A. Bol, and W. Haensch. “Effects of Nanoscale

Contacts to Graphene”. In: IEEE Electron Device Letters 32 (Aug. 2011),

1035–1037 (Cited on page 37).

[119] A. D. Franklin, S. J. Han, A. A. Bol, and V. Perebeinos. “Double Contacts

for Improved Performance of Graphene Transistors”. In: IEEE Electron

Device Letters 33 (Jan. 2012), 17–19 (Cited on page 37).

[120] J. S. Moon, M. Antcliffe, H. C. Seo, D. Curtis, S. Lin, A. Schmitz, I.

Milosavljevic, A. A. Kiselev, R. S. Ross, D. K. Gaskill, P. M. Campbell,

R. C. Fitch, K.-M. Lee, and P. Asbeck. “Ultra-low resistance ohmic con-

tacts in graphene field effect transistors”. In: Applied Physics Letters 100

(2012), 203512 (Cited on page 37).

[121] S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho. “Determination of Work

Function of Graphene under a Metal Electrode and Its Role in Contact Re-

sistance”. In: Nano Letters 12 (Aug. 8, 2012), 3887–3892 (Cited on page 37).

[122] S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho. “Improve-

ment of graphene–metal contact resistance by introducing edge contacts

at graphene under metal”. In: Applied Physics Letters 104 (2014), 183506

(Cited on pages 37, 38, 125).

[123] H. Zhong, Z. Zhang, B. Chen, H. Xu, D. Yu, L. Huang, and L. Peng.

“Realization of low contact resistance close to theoretical limit in graphene

transistors”. In: Nano Research 8 (2015), 1669–1679 (Cited on page 37).



144 BIBLIOGRAPHY

[124] E. Voloshina and Y. Dedkov. “Graphene on metallic surfaces: problems and

perspectives”. In: Physical Chemistry Chemical Physics 14 (2012), 13502–

13514 (Cited on page 37).

[125] E. N. Voloshina and Y. S. Dedkov. “General approach to understanding the

electronic structure of graphene on metals”. In: Materials Research Express

1 (2014), 035603 (Cited on pages 37, 39).

[126] F. Xia, V. Perebeinos, Y.-m. Lin, Y. Wu, and P. Avouris. “The origins and

limits of metal-graphene junction resistance”. In: Nat Nano 6 (Mar. 2011),

179–184 (Cited on pages 37, 38, 125).

[127] K. Stokbro, M. Engelund, and A. Blom. “Atomic-scale model for the contact

resistance of the nickel-graphene interface”. In: Phys. Rev. B 85 (Apr. 2012),

165442 (Cited on pages 37, 65).

[128] S. M. Song and B. J. Cho. “Contact resistance in graphene channel tran-

sistors”. In: Carbon letters 3 (July 2013) (Cited on pages 37, 125).

[129] B. Ma, C. Gong, Y. Wen, R. Chen, K. Cho, and B. Shan. “Modulation of

contact resistance between metal and graphene by controlling the graphene

edge, contact area, and point defects: An ab initio study”. In: Journal of

Applied Physics 115 (2014), 183708 (Cited on pages 37, 65).

[130] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi,

K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L.

Shepard, and C. R. Dean. “One-Dimensional Electrical Contact to a Two-

Dimensional Material”. In: Science 342 (Nov. 1, 2013), 614–617 (Cited on

pages 38, 47, 50, 61, 64, 125).

[131] J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos.

“Reducing Contact Resistance in Graphene Devices through Contact Area

Patterning”. In: ACS Nano 7 (Apr. 23, 2013), 3661–3667 (Cited on pages 38,

64).

[132] T. Chu and Z. Chen. “Understanding the Electrical Impact of Edge Con-

tacts in Few-Layer Graphene”. In: ACS Nano 8 (Apr. 22, 2014), 3584–3589

(Cited on pages 38, 64).



BIBLIOGRAPHY 145

[133] D. W. Yue, C. H. Ra, X. C. Liu, D. Y. Lee, and W. J. Yoo. “Edge contacts

of graphene formed by using a controlled plasma treatment”. In: Nanoscale

7 (2015), 825–831 (Cited on pages 38, 64).

[134] K. H. Khoo, W. S. Leong, J. T. L. Thong, and S. Y. Quek. “Origin of

Contact Resistance at Ferromagnetic Metal–Graphene Interfaces”. In: ACS

Nano 10 (Nov. 13, 2016), 11219–11227 (Cited on pages 38, 41, 47, 64, 125).

[135] H.-Y. Park, W.-S. Jung, D.-H. Kang, J. Jeon, G. Yoo, Y. Park, J. Lee,

Y. H. Jang, J. Lee, S. Park, H.-Y. Yu, B. Shin, S. Lee, and J.-H. Park. “Ex-

tremely Low Contact Resistance on Graphene through n-Type Doping and

Edge Contact Design”. In: Advanced Materials 28 (2016), 864–870 (Cited

on pages 38, 64).

[136] C. Gong, C. Zhang, Y. J. Oh, W. Wang, G. Lee, B. Shan, R. M. Wallace,

and K. Cho. “Electronic transport across metal-graphene edge contact”. In:

2D Materials 4 (2017), 025033 (Cited on pages 38, 64).

[137] T. Cusati, G. Fiori, A. Gahoi, V. Passi, M. C. Lemme, A. Fortunelli, and

G. Iannaccone. “Electrical properties of graphene-metal contacts”. In: Sci-

entific Reports 7 (July 11, 2017), 5109 (Cited on pages 38, 65, 125).

[138] J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes,

K. Trumbull, R. Cavalero, and D. Snyder. “Contacting graphene”. In: Ap-

plied Physics Letters 98 (Jan. 31, 2011), 053103 (Cited on pages 38, 125).

[139] K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi. “Metal/graphene

contact as a performance Killer of ultra-high mobility graphene analysis

of intrinsic mobility and contact resistance”. In: Electron Devices Meeting

(IEDM), 2009 IEEE International (Dec. 7, 2009), 1–4 (Cited on page 38).

[140] A. Venugopal, L. Colombo, and E. M. Vogel. “Contact resistance in few and

multilayer graphene devices”. In: Applied Physics Letters 96 (2010), 013512

(Cited on page 38).

[141] M. S. Choi, S. H. Lee, and W. J. Yoo. “Plasma treatments to improve metal

contacts in graphene field effect transistor”. In: Journal of Applied Physics

110 (2011), 073305 (Cited on page 38).



146 BIBLIOGRAPHY
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