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Abstract

Background: The fatty acid (FA) composition of adipose tissue influences the nutritional quality of meat products.
The unsaturation level of FAs is determined by fatty acid desaturases such as stearoyl-CoA desaturases (SCDs),
which are under control of the transcription factor sterol regulatory element-binding protein (SREBP). Differences in
SCD genotype may thus confer variations in lipid metabolism and FA content among cattle breeds. This study
investigated correlations between FA composition and lipogenic gene expression levels in the subcutaneous
adipose tissue of beef cattle breeds of different gender from the Basque region of northern Spain. Pirenaica is the
most important beef cattle breed in northern Spain, while Salers cattle and Holstein-Friesian cull cows are also an
integral part of the regional beef supply.

Results: Pirenaica heifers showed higher monounsaturated FA (MUFA) and conjugated linoleic acid (CLA) contents
in subcutaneous adipose tissue than other breeds (P < 0.001). Alternatively, Salers bulls produced the highest oleic
acid content, followed by Pirenaica heifers (P < 0.001). There was substantial variability in SCD gene expression
among breeds, consistent with these differences in MUFA and CLA content. Correlations between SCD1 expression
and most FA desaturation indexes (DIs) were positive in Salers (P < 0.05) and Pirenaica bulls, while, in general, SCD5
expression showed few significant correlations with DIs. There was a significant linear correlation between SCD1
and SRBEP1 in all breeds, suggesting strong regulation of SCD1 expression by SRBEP1. Pirenaica heifers showed a
stronger correlation between SCD1 and SREBP1 than Pirenaica bulls. We also observed a opposite relationship
between SCD1 and SCD5 expression levels and opposite associations of isoform expression levels with the Δ9
desaturation indexes.

Conclusions: These results suggest that the relationships between FA composition and lipogenic gene expression
are influenced by breed and sex. The opposite relationship between SCD isoforms suggests a compensatory
regulation of total SCD activity, while opposite relationships between SCD isoforms and desaturation indexes,
specially 9c-14:1 DI, previously reported as an indicator of SCD activity, may reflect distinct activities of SCD1 and
SCD5 in regulation of FA content. These findings may be useful for beef/dairy breeding and feeding programs to
supply nutritionally favorable products.
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Background
In recent years, consumers have expressed growing con-
cern regarding the amount and types of dietary fat due
to reported deleterious health effects of saturated and
trans fatty acids (FAs) [1]. On the other hand, monoun-
saturated FAs (MUFAs) and polyunsaturated FAs
(PUFAs) are recognized as beneficial for human health
[2]. The FA composition of meat influences the lipid
melting point [3], and an increase in the ratio of MUFA
to saturated FA (SFA) increases fat softness, thereby
improving palatability. Thus, enhancing MUFA content
improves both the quality and nutritional value of
animal products [4].
Pirenaica is the most important beef cattle breed

raised in the Basque region of northern Spain and is
highly appreciated both for its value as a genetic
resource as well as for the production system that has
developed around it. In addition to Pirenaica, Salers, a
rustic cattle breed used for beef production, has grown
in importance due to its ready adaptability to local man-
agement and environmental conditions [5]. Finally,
Holstein-Friesian, primarily as cull dairy cows, are also
an integral part of the regional beef supply chain.
There have been a number of studies investigating as-

sociations between lipogenic enzyme genotype and FA
composition in cattle. In the subcutaneous and intra-
muscular fat depots of beef cattle, the majority of SFA
conversion to MUFA is catalyzed by stearoyl-CoA desa-
turase (SCD, EC 1.14.19.1 or Δ9-desaturase) [6]. In
addition, SCD enzyme can also catalyze the conversion
of substrates like vaccenic acid (11 t-18:1) to its corre-
sponding conjugated linoleic acid (CLA) isomer (9c,11 t-
18:2 or rumenic acid). The association of SCD1 genotype
with FA composition has been previously investigated in
Japanese Black [7], Canadian Holstein [8], Fleckvieh [9]
and crossbred cattle [10]. In addition to regulation of FA
profile by SCD1, the novel Δ9-desaturase isoform SCD5,
previously found in humans, has also been identified in
cattle which shares 65% identity at the amino acid level
[11]. Further, a relationship between genetic polymor-
phisms in SCD5 and the ratio of SFA to unsaturated FA
(UFA) has been reported in Holstein milk fat [12]. It
thus appears that both bovine isoforms SCD1 and SCD5
contribute to FA composition. Therefore, the mechan-
ism by which SCD isoforms are activated is a major de-
terminant of FA composition and of great interest to
breeders.
Da Costa et al. [13] reported a correlation between

SCD1 expression and FA composition of subcutaneous
fat in Portuguese cattle, whereas the expression of SCD5
and its relation to the subcutaneous FA profile was not
investigated. The SCD1 gene is controlled by the key
transcription factor SREBP1 [14]. In Japanese Black beef
cattle, SREBP1 polymorphisms have been associated

with FA composition [15]. Alternatively, transcriptional
regulation of bovine SCD5 remains unclear, although a
recent study using human choriocarcinoma tropho-
blastic cells (JEG3) reported that SREBP1 can bind to
the SCD5 promoter [16].
The complex associations between the biochemical

pathways regulating fat content and genetic variability of
lipogenic genes are not yet fully understood in European
cattle breeds, although recent studies have begun to
elucidate these relationships in a specific genetic back-
ground of Japanese Black cattle [17]. The objectives of
the present study were to investigate the expression
levels of three key genes controlling Δ9-desaturated
FA content, SCD1, SCD5, and SREBP1, and their as-
sociations with the FA composition of subcutaneous
adipose tissue from the major commercial cattle
breeds produced in northern Spain, Pirenaica, Salers,
and Holstein-Friesian. Based on the findings of this
study, we discuss how these associations may give
information on the mechanisms of the differences in
meat quality among these cattle commercial types.

Methods
Sample collection
In the present study, cattle commercial types typically
destined for meat production in northern Spain (Basque
region) were examined. Sample collection was designed
according to data from the Bovine Identification Docu-
ment and inferred relationships (parentage and sibships)
computed from 29 microsatellites (Software Colony 2.0.
6.2) [18]. Neither parentage nor maternal half-sibs were
observed, and paternal half-sibs were maintained at low
frequencies (Pirenaica, 0.009; Salers 0.013; Holstein-
Friesian, 0.019). A total of 100 subcutaneous adipose
tissue samples were collected from pure breed cattle (13
Salers bulls, 37 Pirenaica bulls, 29 Pirenaica heifers, and
21 Holstein-Friesian) slaughtered in a local commercial
abattoir (Urkaiko S. Coop., Zestoa, Gipuzkoa, Spain)
during 12 days over 5 weeks in June and July 2014.
Animals came from different farms [19].
Backfat samples were obtained from the left half

carcass between the 5-6th ribs and stored in plastic bags
with the air removed for FA analysis or preserved in
RNAlater™ (Ambion, Austin, TX) for RNA analysis. All
samples were transported to the laboratory in insulated
coolers and stored at − 80 °C until analysis.
Salers and Pirenaica were yearling calves with similar

age (average of 12.9 ± 1.4 months), while Holstein-Friesian
were cull cows (70.0 ± 19.43 months) at slaughter, which
are regular ages of commercial types used for beef
production in the region. Hot carcasses of Salers and
Pirenaica commercial bulls were of similar weight
(average of 325 ± 38.4 kg) while carcasses of Pirenaica
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heifers and Holstein-Friesian cows were markedly
lighter (291 ± 59.6 and 253 ± 33.1 kg, respectively).
In the abattoir, conformation and degree of fat cover of

each carcass were recorded. European regulations were
followed for carcass classification at 24 h post-mortem
[20] including the EUROP scale for conformation and a 1-
to-5 scale for fat cover scoring. Each level of both scales
was divided in 3 sub-levels and transformed to a numer-
ical scale ranging from 1 to 15, with 15 being the best
conformation and the thickest fat cover.

Fatty acid composition
A 50 mg sample of subcutaneous fat tissue was weighed,
freeze-dried, and directly methylated with sodium meth-
oxide (0.5 N methanolic base, Supelco Inc., Bellefonte,
PA, USA) [21]. For quantitation, 1 mL of internal stand-
ard (23:0 methyl ester) was added prior to methylation,
and FA methyl esters were analyzed by gas chromatog-
raphy with flame ionization detection (GC/FID) using
two complementary 100 m columns (SP-2560 [22] and
SLB-IL111 [23]) and following the conditions and details
reported in [24]. Main FA groups and potential Δ9 sub-
strates, products, and inhibitors (10 t,12c-18:2; [25]) have
been determined for the individual FAs measured in
this study. From the potential substrates (14:0, 15:0,
16:0, 17:0, 18:0, 19:0, 20:0, 6-8 t-18:1, 11 t-18:1, 12 t-
18:1, 13 t/14 t-18:1 and 15c-18:1) and products (9c-
14:1, 9c-15:1, 9c-16:1, 9c-17:1, 9c-18:1, 9c-19:1, 9c-20:
1, 7 t,9c-18:2, 9c,11 t-18:2, 9c,12 t-18:2, 9c,13 t-18:2,
9c,15c-18:2), individual desaturation indexes were
calculated by the following formula:

Desaturation index DIð Þ ¼ product½ �=ð substrate½ �

þ product½ �Þ:

Total DI (sum of all individual DIs) was also computed
for each commercial type, while minor products and
substrates (i.e., 11 t,15c-18:2 & 9c,11 t,15c-18:3 [26]) or
below quantification limits were not considered in the
present study.

RNA extraction and quantitative real-time PCR
A 100 mg sample of frozen subcutaneous fat tissue was
disrupted and simultaneously homogenized to fine pow-
der with a mortar and pestle under liquid N2. Total
RNA was extracted using the RNeasy Lipid Tissue kit
(Qiagen Inc., Valencia, CA, USA) following the manufac-
turer’s instructions. An additional DNase digestion step
was performed to remove any contaminating genomic
DNA. Concentration and quality of the extracted RNA
were assayed by measuring the 260 nm and 280 nm
absorbance using a NanoDrop ND-1000 Spectropho-
tometer (Peqlab, Erlangen, Germany). Absorbance ratios

(260/280) of all preparations were at least 1.8. Integrity
of RNA was checked by denaturing agarose gel electro-
phoresis. Aliquots of RNA were stored at − 80 °C and
dehydrated in RNAstable 96-Well Plates (Biomatrica,
San Diego, CA, USA) for long-term storage. Reverse
transcription was performed in a 30 μL final reaction
volume containing 250 ng total RNA, 3.3 μL RNase/
DNase-free water, 5 μL of 5 × RT buffer, 1.5 μL dNTPs,
0.8 μL RNAase inhibitor, 0.8 μL random primer, and 0.
8 μL high efficient ReverTra Ace reverse transcriptase
(TOYOBO, Osaka, Japan). Cycle parameters were 30 °C
for 10 min, 42 °C for 20 min, 99 °C for 5 min, and 4 °C
for 5 min. Custom TaqMan Assays (Applied Biosystems,
Foster City, CA, USA) were conducted to measure the
relative expression levels of bovine SCD1, SCD5 and
SREBP1 using the primers and FAM/TAMRA probes
reported in Table 1. Each candidate gene was ampli-
fied in multiplex with an internal control (18S rRNA
Endogenous Control VIC/TAMRA Probe, Primer
Limited) by the co-application reverse transcription
method (Co-RT) [27]. This multiplexing approach
guarantees the same conditions (thus equal amplifica-
tion efficiency) and same reverse transcriptase activity
for both genes, thereby yielding better normalization
and reproducibility. The reaction mixture included
primers (10 μM each), FAM-labeled probe (10 μM),
0.6 μL of 18S RNA Endogenous Standard containing
VIC-labeled probe and limited primers, and 2 × TaqMan
Gene Expression Master Mix (7.5 μL) (Applied Biosys-
tems). Real-time PCR was performed in triplicate using
the ABI Prism 7500 Sequence Detection System (Applied
Biosystems, Foster City, CA, USA) with a standard two-
step cycling program of 40 cycles at 95 °C for 15 s and
60 °C for 1 min. The average of the gene expression levels
was used for further analyses. PCR efficiency was moni-
tored by the increase in absolute fluorescence [28], mainly
because this allows PCR efficiency calculation for individ-
ual samples/reactions and prevents problems arising from
the use of standard curves. Raw data were obtained from
the ABI Prism 7500 SDS software v1.4, exported in Rn
format, and imported to LinRegPCR (Heart Failure
Research Center, Amsterdam, the Netherlands).
LinRegPCR determines baseline fluorescence, sets a
window of linearity for each amplicon, and calculates
the PCR efficiency (E) per sample and amplicons
using an iterative algorithm. In this study, efficiencies
were over 90% for all samples and correlation coeffi-
cients were higher than 0.99.
The comparative threshold cycle method (ΔCt) was

employed to calculate relative gene expression based on
the following formula:

ΔCt ¼ Cttarget gene‐Ct18S rRNA gene
� �

:
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Statistical analysis
Statistical analysis was conducted using IBM SPSS
Statistics 22 for Windows (SPSS Inc., IBM Corporation,
NY, USA). First of all, data was checked for normality
and homoscedasticity. Then, the following general linear
model Yijk = μ + CTi + Aj +HCWk + eijk was used for ana-
lysis of variance (ANOVA), including commercial type
(CT; Salers bulls, Pirenaica bulls, Pirenaica heifers,
Holstein-Friesian cows) as fixed effect and age at slaugh-
ter (A) and hot carcass weight (HCW) as covariates. The
effect of sire was also checked but not included in the
model as it was statistically not significant. LSD post hoc
test was applied for multiple comparison of means
among commercial breeds studied.
Simple linear regression analyses were also performed

to investigate the relationship between genes (gene-gene)
for each commercial type studied.
Finally, partial Pearson correlations coefficients adjusted

for A and HCW were computed to determine the associa-
tions among gene expression (ΔCt) and FA (Δ9 DIs) data.
Three significant figures were used to express the data,

and significance was declared at P < 0.05.

Results
Carcass traits and fatty acid composition
Pirenaica heifer carcasses showed the highest fat cover,
while those from Pirenaica bulls and Holstein-Friesian
cows were lower, and carcasses from Salers showed an
intermediate degree of fat cover (P < 0.001). In terms of
FA composition, several significant differences in specific
SFA species were found among commercial types (i.e.,
14:0, 16:0, 19:0, 20:0 SFAs), but there were no significant
differences in total SFA content. Pirenaica heifers exhib-
ited the highest content of cis- and trans-MUFAs, and
Salers bulls had higher cis-MUFA content than Pirenaica
bulls (P < 0.001; Table 2). Accordingly, Pirenaica heifers
showed the highest contents of 9c-14:1 and 9c-16:1,
while 9c-17:1 and 9c-18:1 were the highest in Pirenaica
heifers but also in Salers bulls. Additionally, Pirenaica

heifers exhibited the highest content of individual trans-
18:1 isomers, while vaccenic acid (11 t-18:1) and trans-
12-octadecenoic acid (12 t-18:1) contents did not differ
among commercial types. The total CLA content was
highest in Pirenaica heifers (P < 0.01). However, no
significant differences were observed in rumenic acid
(9c,11 t-18:2), the major CLA isomer. The second major
CLA isomer (7 t,9c-18:2), other non-conjugated dienes
(6-8 t-18:1and 13 t/14 t-18:1), and potential products of
Δ9-desaturation (9c,12 t-18:2, 9c,13 t-18:2 and 9c,15c-18:
2) were significantly higher in Pirenaica heifers than in
the other commercial types. In contrast, n-6 PUFA
content was similar in Pirenaica heifers and Pirenaica
bulls, and significantly lower in both compared to
Salers bulls. Finally, the content of 10 t,12c-CLA, re-
ported as an inhibitor of Δ9-desaturase, was higher in
fat tissues of Pirenaica heifers than in other commer-
cial types (P < 0.001; Table 2).

Gene expression
The relative mRNA expression levels of the lipogenic
genes SREBP1, SCD1, and SCD5 were similar in Pire-
naica bulls and heifers (Fig. 1). Overall, SCD1 expression
was higher than SREBP1 expression (P < 0.001) and
SCD5 expression (P < 0.001) in all commercial types,
with average–ΔCt values of − 7.91, − 13.4, and − 17.2,
respectively (Fig. 1). Differences among breeds were
observed for each gene. The mRNA expression of
SCD1 was significantly higher in Salers (− 7.36) and
Pirenaica cattle (average –ΔCt value of − 6.10) than
Holstein-Friesian cows (− 13.8) (P < 0.001). In contrast,
SCD5 mRNA expression was lowest in Pirenaica bulls
and heifers (average of − 17.8) among commercial
types, highest in Holstein-Friesians cows (− 15.3), and
at intermediate expression levels in Salers bulls (− 17.1;
P < 0.001). In addition, expression of SREBP1 mRNA was
higher in Pirenaica bulls and heifers (average of − 12.
73) than in the other commercial types (average − 14.8;
P < 0.001).

Table 1 Primer sequences, product sizes, and annealing temperatures of bovine genes analyzed by RT-PCR

Gene symbol
[GenBank accession]

Primer sequence (5′ - 3′) Product (bp) Annealing temperature

SCD1 P: CCTCTGGAACATCACCAGCTTCTCGGC 106 60

[NM_173959] F: GCTGTCAAAGAAAAGGGTTCCAC

R: AGCACAACAACAGGACACCAG

SCD5 P: CAGAACCCGCTCGTCACCCTGGG 82 60

[NM_001076945] F: CCCTATGACAAGCACATCAGCC

R: GATGGTAGTTATGGAAACCTTCACC

SREBP1 P: CAGCCCCAGTCCTGGATCAGCCGA 83 60

[NM_001113302] F: CTTGGAGCGAGCACTGAATTG

R: GGGCATCTGAGAACTCCTTGTC

P = probe, F forward, R reverse
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Table 2 Comparisons of fatty acid composition (mg/g of subcutaneous fat) and carcass parameters among commercial types

Commercial type

Salers Pirenaica Pirenaica Holstein-Friesian

bulls (n = 13) bulls (n = 37) heifers (n = 29) cows (n = 21) p-value

Conformation 8.45 ± 0.37b 10.9 ± 0.3a 11.0 ± 0.3a 2.02 ± 0.64c < 0.001

Fatness 5.79 ± 0.46b 4.52 ± 0.33c 7.47 ± 0.33a 1.96 ± 0.81d < 0.001

14:0 s1 31.6 ± 2.4ab 30.5 ± 1.7b 35.6 ± 1.8a 16.0 ± 4.2c < 0.001

15:0 s2 4.71 ± 0.33 4.07 ± 0.23 3.99 ± 0.24 3.13 ± 0.57 0.111

16:0 s3 230 ± 11ab 217 ± 8b 246 ± 8a 170 ± 20bc 0.002

17:0 s4 9.01 ± 0.71 7.48 ± 0.50 8.08 ± 0.51 5.54 ± 1.22 0.057

18:0 s5 131 ± 11 119 ± 8 98.0 ± 8.4 129 ± 20 0.059

19:0 s6 0.565 ± 0.074a 0.595 ± 0.052a 0.38 ± 0.05b 0.708 ± 0.129a 0.005

20:0 s7 0.907 ± 0.119ab 0.816 ± 0.084b 0.468 ± 0.085c 1.34 ± 0.21a < 0.001

9c-14:1 p1 8.05 ± 1.27b 7.80 ± 0.90b 12.4 ± 0.9a 1.46 ± 2.21c < 0.001

9c-15:1 p2 0.208 ± 0.028 0.183 ± 0.020 0.206 ± 0.020 0.15 ± 0.05 0.572

9c-16:1 p3 36.7 ± 3.7b 33.5 ± 2.6b 45.3 ± 2.7a 9.74 ± 6.51c < 0.001

9c-17:1 p4 6.73 ± 0.44a 5.24 ± 0.31b 6.96 ± 0.32a 2.15 ± 0.77c < 0.001

9c-18:1 p5 308 ± 14a 261 ± 10b 333 ± 10a 196 ± 24c < 0.001

9c-19:1 p6 0.987 ± 0.055a 0.789 ± 0.039b 0.801 ± 0.040b 0.795 ± 0.096ab 0.004

9c-20:1 p7 0.726 ± 0.075 0.614 ± 0.053 0.728 ± 0.054 0.777 ± 0.130 0.231

6-8 t-18:1 s8 3.14 ± 0.38bc 3.66 ± 0.27ab 4.12 ± 0.28a 1.83 ± 0.67c 0.010

11 t-18:1 s9 10.3 ± 2.0 12.1 ± 1.4 8.20 ± 1.47 6.15 ± 3.55 0.162

12 t-18:1 s10 2.26 ± 0.28 2.56 ± 0.20 2.71 ± 0.21 1.59 ± 0.50 0.174

13 t/14 t-18:1 s11 4.37 ± 0.51b 5.23 ± 0.36ab 5.80 ± 0.37a 3.67 ± 0.89ab 0.029

15c-18:1 s12 1.08 ± 0.16c 1.38 ± 0.11b 2.07 ± 0.11a 0.596 ± 0.271c < 0.001

7 t,9c-18:2 p8 0.813 ± 0.116bc 0.845 ± 0.082b 1.25 ± 0.08a 0.295 ± 0.201c < 0.001

9c,11 t-18:2 p9 3.11 ± 0.53 3.26 ± 0.376 3.53 ± 0.38 1.80 ± 0.92 0.453

9c,12 t-18:2 p10 0.520 ± 0.067b 0.608 ± 0.048b 0.854 ± 0.048a 0.312 ± 0.118b < 0.001

9c,13 t-18:2 p11 0.963 ± 0.131b 1.07 ± 0.09b 1.61 ± 0.09a 0.567 ± 0.229b < 0.001

9c,15c-18:2 p12 0.461 ± 0.044b 0.341 ± 0.031c 0.587 ± 0.032a 0.266 ± 0.077bc < 0.001

10 t,12c-18:2 i 0.221 ± 0.041b 0.195 ± 0.029b 0.324 ± 0.030a 0.099 ± 0.072b 0.001

SFA 410 ± 21 382 ± 15 395 ± 15 328 ± 37 0.285

MUFA 427 ± 18b 379 ± 13c 489 ± 13a 245 ± 32d < 0.001

cis-MUFA 385 ± 18b 331 ± 13c 430 ± 13a 221 ± 32d < 0.001

trans-MUFA 42.2 ± 5.2bc 48.3 ± 3.6b 58.9 ± 3.7a 23.5 ± 9.0c 0.001

CLA 4.92 ± 0.56bc 5.22 ± 0.40b 6.42 ± 0.40a 2.68 ± 0.98c 0.002

PUFA 29.9 ± 2.1a 24.3 ± 1.5bc 24.4 ± 1.5b 14.9 ± 3.7c 0.009

n-6 27.7 ± 2.0a 22.2 ± 1.4b 22.1 ± 1.4b 12.8 ± 3.4c 0.005

n-3 2.09 ± 0.19 2.05 ± 0.14 2.15 ± 0.14 2.04 ± 0.33 0.942

Least square means ± standard deviations
t trans, c cis, SFA saturated fatty acids, MUFA monounsaturated fatty acids, CLA conjugated linoleic acid, PUFA polyunsaturated fatty acids
s substrate; p product; 1-12Same superscript numbers indicate the substrate-product pairs
i inhibitor of SCD enzyme [25]
a,b,c,d Values within a row with different superscripts differ significantly at P < 0.05
SFA = 10:0 + 12:0 + 13:0 + 14:0 + 15:0 + 16:0 + 17:0 + 18:0 + 19:0 + 20:0 + 21:0 + 22:0 + 23:0 + 24:0
MUFA = 9c-14:1 + 9c-15:1 + 7c-16:1 + 9c-16:1 + 10c-16:1 + 11c-16:1 + 12c-16:1 + 13c-16:1 + 5c-17:1 + 7c-17:1 + 9c-17:1 + 9c-18:1 + 11c-18:1 + 12c-18:1 + 13c-18:1 + 14c-
18:1 + 15c-18:1 + 16c-18:1 + 9c-19:1 + 11c-19:1 + 13c-19:1 + 9c-20:1 + 11c-20:1 + 6 t/7 t-16:1 + 8 t-16:1 + 9 t-16:1 + 10 t-16:1 + 11 t/12 t-16:1 + 4 t-18:1 + 5 t-18:1 + 6-8
t-18:1 + 9 t-18:1 + 10 t-18:1 + 11 t-18:1 + 12 t-18:1 + 13 t/14 t-18:1 + 15 t-18:1 + 16 t-18:1
CLA = 9c,11 t-18:2 + 7 t,9c-18:2 + 8c,10 t-18:2 + 9 t,11c-18:2 + 11c,13 t-18:2 + 10 t,12c-18:2 + 11 t,13c-18:2 + other t,t-18:2
PUFA = 18:2n-6 + 18:3n-6 + 20:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6 + 18:3n-3 + 18:4n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3 + 20:3n-9
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Relationships among gene expression and fatty acid
composition data
Significant correlations were observed between studied
gene pairs in all commercial types, with particularly
strong correlation between SCD1 and SREBP1 (Fig. 2a).
Pirenaica heifers showed the highest regression coeffi-
cient between SCD1 and SREBP1 among the commer-
cial types (R2 = 0.491; P < 0.001). Salers bulls and
Holstein-Friesian cows also showed relatively high
regression coefficients between SCD1 and SREBP1
(R2 = 0.385; P = 0.024 and R2 = 0.395; P = 0.002,
respectively), while Pirenaica bulls showed the lowest
values (R2 = 0.239; P = 0.002). A positive correlation
between SCD5 and SREBP1 (Fig. 2b) was observed in
Pirenaica bulls (R2 = 0.114; P = 0.040) and Holstein-
Friesian cows (R2 = 0.213; P = 0.035), while in Salers
bulls and Pirenaica heifers was not (P > 0.05). No
significant correlations were observed between SCD5
and SCD1 gene expression except for Holstein-
Friesian cows (R2 = 0.266, P = 0.017; Fig. 2c).
In all commercial types, SREBP1 expression was posi-

tively correlated with the DI of most FA species, and
correlations were significant for 9c-15:1 and 7 t,9c-18:2
in Pirenaica bulls and 9c-15:1 and 9c,12 t-18:2 in Pire-
naica heifers (P < 0.05; Fig. 3a). In general, Salers bulls

showed the highest positive correlations (R > 0.65) be-
tween SCD1 expression and DIs for 9c-16:1, 9c-17:1, 9c-
18:1, 9c-20:1, 7 t,9c-18:2 and 9c,12 t-18:2 (Fig. 3b). Pire-
naica bulls also showed significant positive correlations
between SCD1 expression and DIs for 9c-17:1, 9c,13 t-
18:2, and 9c,15c-18:2 DIs (P < 0.05), while Pirenaica
heifers did not (P > 0.05). In contrast to SREBP1 and
SCD1, there were few significant correlations between
SCD5 and DIs among commercial types (Fig. 3c). A
negative correlation was observed between SCD5 and
9c,12 t-18:2 DI in Salers and 9c-14:1 DI in Pirenaica
heifers (P < 0.05). Total DI was positively correlated with
SCD1 in Salers (R > 0.65, P < 0.05) and Pirenaica bulls
(R > 0.35, P < 0.05), but negatively correlated with SCD5
in Salers bulls (R > 0.60, P < 0.05).

Discussion
Fat deposition and the FA composition of fat depots are
controlled by a complex regulatory system including
lipogenesis and lipolysis pathways. Adipose tissue is the
main site for the storage of excess energy in the form of
triacylglycerols, with the Δ9-desaturase product oleic
acid (9c-18:1) being the predominant FA [29]. Therefore,
Δ9-desaturase activity is critical for triglyceride storage
in adipose tissue. While several pathways are involved in
regulating FA composition, FAs produced from the
precursors acetate and NADH, from the hydrolysis of
triacylglycerols, and produced and deposited as rumen
biohydrogenation metabolites can act as substrates for
Δ9-desaturase. Adipose tissue develops in inter- and
intra-muscular depots and both have a major impact on
the quality and palatability of commercial beef. There is
evidence for differential gene expression profiles in these
two fat depots [30]. In this regard, the present study
aimed to evaluate the regulation of SCD and SREBP1,
genes strongly affecting the FA composition of subcuta-
neous adipose tissue, in three genetically diverse bovine
breeds commercialized in the Basque region of northern
Spain; Pirenaica, Salers and Holstein-Friesian [5, 31, 32].
Expression of SCD1 did not differ significantly between
Pirenaica bulls and heifers or among young cattle of
Salers and Pirenaica. This may be partially explained by a
similar feeding regimen, typically including concentrates,
when meat production is the final purpose (Fig. 1). How-
ever, the content of Δ9 products, such as cis-MUFA, was
higher in Salers bulls and Pirenaica heifers than corre-
sponding bulls (Table 2). The Salers bulls and Pirenaica
heifers, together with Holstein-Friesian cows, showed
stronger correlations between SCD1 and SREBP1 com-
pared to Pirenaica bulls (Fig. 2). This suggests that, in
Pirenaica breed, the FA composition is affected by the
lipogenic gene regulation in a sex-dependent manner.
Similarly, in a crossbred study, heifers exhibited higher
SCD1 mRNA levels and higher MUFA content than bulls

Fig. 1 Box-plot showing the relative expression levels of SCD1, SCD5
and SREBP1 in subcutaneous fat samples from the cattle commercial
types Salers, Pirenaica bulls, Pirenaica heifers and Holstein-Friesian
heifers. The middle line in the box represents the median, upper
and lower areas of the center box indicate the 75th and 25th
percentiles respectively, and vertical bars indicate standard errors.
Differences among commercial types are indicated by different
letters (P < 0.05)
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Fig. 2 Estimated linear regression equations between (a) SCD1 and SREBP1, (b) SCD5 and SREBP1, and (c) SCD5 and SCD1
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Fig. 3 Partial correlations controlling for age and HCW between gene expression of SREBP1 (a), SCD1 (b), SCD5 (c) and desaturation indexes calculated
from fatty acid composition data of cattle commercial types. *P < 0.05, **P < 0.01. Total is sum of all individual DIs. Desaturation indexes were calculated
as [SCD product]/([SCD substrate] + [SCD product])
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in subcutaneous adipose tissue [33], and a possible effect
of sex hormones on enzymatic systems affecting lipid
metabolism has been suggested [34]. Indeed, the growth
hormone, sexually differentiated in mammals, seems to in-
crease SREBP1 and SCD1 gene expression in females [35].
Alternatively, age and diet have been demonstrated to in-
fluence adipocyte development in Pirenaica bulls [36].
Hence, the activation of SCD1 due to a potentially higher
concentrate consumption [19, 37] agrees with the greater
total MUFA content of Salers and Pirenaica, while higher
MUFA content in Pirenaica heifers than bulls seems to be
more sex-dependent (Table 2). The greater variability in
SCD1 expression within Holstein-Friesian cows compared
to young Pirenaica and Salers (Fig. 1) could be related to
the less homogeneous diet and older age of these animals.
Nevertheless, the generally lower SCD1 expression ob-
served in Holstein-Friesian cows was also reported in
other mature culled cows [4], in which linoleic acid (18:
2n-6) was suggested as the primary agent depressing SCD
gene expression in adipose tissue [38].
We detected variability in SCD5 mRNA expression

levels among breeds (P < 0.01) and generally greater ex-
pression of SCD1 relative to SCD5 in all breeds. Lengi
and Corl (2007) [11] also reported over 40-fold greater
expression of SCD1 compared to SCD5 in adipose tissue
of bulls (albeit with unspecified feeding). Variation
among breeds was observed in the expression of both
SCD isoforms, especially between beef and dairy cattle
breeds (Salers and Pirenaica vs. Holstein-Friesian), sug-
gesting that even if FA differences are generally small,
there may still be differences in the underlying lipogenic
gene expression or enzyme profile [39].
These differences in SCD1 and SCD5 expression levels

(Fig. 1) also suggest that SCD5 expression is more breed
dependent than SCD1 expression. However, it is also
possible that SCD5 expression is more sensitive than
SCD1 expression to other environmental factors (i.e.,
feeding) that differ among commercial types. Our results
also revealed a potential opposite association between
SCD isoforms within each breed. In general, this oppos-
ite correlation of DIs with SCD5 and SCD1 expression
levels suggests that regulatory factors that upregulate
SCD1 also downregulate SCD5 (and vice versa). How-
ever, since both SCD isoforms are expressed in adipose
tissue, both may contribute to the maintenance of desat-
uration. In contrast to Pirenaica and Salers, this opposite
association between SCD1 and SCD5 was not observed
in Holstein-Friesian cows, a breed selected intensively
for dairy production and most often utilized for beef
production as cull cows at no specific age. This opposite
pattern was more evident when the Holstein-Friesian
sample was stratified by age (data not shown). Further-
more, Holstein-Friesian cows may exhibit side effects of
dairy selection that differentially affect the genetic

sequences containing SCD genes, thereby influencing
transcriptional regulation. Moreover, variability in the
regulatory DNA sequences of SCD genes may confer dif-
ferences in gene expression and physiological changes
that could also explain the different correlation patterns
with DIs observed among commercial types. 9c-14:1 DI
has been reported as the best indicator of overall SCD
enzyme activity by Corl et al. (2002) [40]. Feedstuffs are
normally devoid of 9c-14:1 and, therefore, this FA is
produced by de novo FA synthesis. In mammary gland,
significant correlation between 9c-14:1 DI and SCD1 ex-
pression was observed, whereas 9c-14:1 DI and SCD5
correlation was not [41]. We did not observe significant
correlation between 9c-14:1 DI and SCD1, similarly to a
previous study in intestinal adipose tissue, skeletal
muscle or mammary gland [42]. However, we observed
that 9c-14:1 DI and SCD5 were negatively correlated in
subcutaneous adipose tissue of Pirenaica heifers (P < 0.05).
Thus, these results suggest that SCD gene expression may
directly affect 9c-14:1 content, but 9c-14:1 DI correlation
with SCD5 and SCD1 might be breed and tissue specific
as well.
As previously reported by Horton et al. [14], SCD1 and

SREBP1 appear to be directly related as there was a signifi-
cant linear association between these two genes in all
commercial types studied (Fig. 2a). Differences in slope
and coefficient of determination (R2) values, however,
revealed variability in this relationship among commercial
types. A previous study suggested that the FA synthesis
pathway is regulated in a coordinated manner by the
SREBP family of membrane-bound transcription factors,
and regulation of SCD1 by SREBP1 via the SRE binding
site of SCD1 has been demonstrated [43].
Significant correlation between SCD5 and SREBP1

specifically observed in Pirenaica bulls and Holstein-
Friesian cows suggest that SCD5 expression may be
more variable among commercial types than SCD1 ex-
pression, possibly due to differences in regulation by
SREBP1. For example, according to Lengi and Corl
(2012) [16], the early growth response protein 2 (EGR2)
and SREBP1 may bind to the same DNA site of the bo-
vine SCD5 promoter. They observed that expression of
EGR2 or SREBP1 did not increase endogenous SCD5
mRNA expression but did activate a truncated bovine
SCD5 promoter luciferase reporter constructs in human
JEG3 cells. Therefore, they attributed the lack of increase
in SCD5 expression to the presence of additional
negative-regulation sites in this gene. In our case, the ab-
sence of significant differences in other commercial types
could be due to breed or other environmental factors that
could, in part, modulate these putative negative-regulation
sites.
Among these commercial types of the Basque region,

correlations between lipogenic genes (SCD1 and SREBP1)
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and calculated DIs were stronger in Salers bulls than Pire-
naica bulls and heifers (Fig. 3). In Holstein-Friesian cows,
correlations were not significant (Fig. 3). However,
SREBP1 and SCD1 correlations with DIs became signifi-
cant (P < 0.05) when computed without age and HCW as
covariates (data not shown). Moreover, correlations
between SCD1 expression and DIs were slightly higher in
younger Holstein-Friesians, while SCD5 correlations with
DIs were higher in older Holstein-Friesians. This suggests
an effect of age on gene expression−DI correlations in
Holstein-Friesian cows. In addition to 16:1 and 18:1 [42],
positive correlations between SCD1 and calculated DIs
were observed for other FA species, suggesting desaturase
activity also targets minor FAs of subcutaneous fat. In this
regard, DIs and MUFA content were more susceptible to
the expression of lipogenic genes in Pirenaica heifers than
bulls. Furthermore, the effect of lipogenic gene expression
on DIs was stronger in Salers than Pirenaica heifers. Our
findings are supported by a previous study [13] suggesting
that the FA composition of subcutaneous adipose tissue is
mainly dependent on genetic background, which may in
turn indicate inter-breed differences in lipid metabolism.
The effect of breed appears to be more strongly associated
with SREBP1 expression level than SCD1 or SCD5 expres-
sion level (Fig. 1), whereas the underlying regulation of
SCD1 and SCD5 could be responsible for inter-breed dif-
ferences in DIs and FA profiles.
We also report an opposite effect of SCD isoforms on

certain DI values, especially in Salers bulls. This stronger
pattern may stem for a more homogeneous production
system (Salers breeder, personal communication) that
may reduce the influences of extraneous factors. Positive
correlations between DIs and SCD1 (Fig. 2b) and
contrasting negative correlations between DIs and SCD5
(Fig. 2c) are likely due to genetic compensation. Lower
expression of one SCD isoform could well be compen-
sated for by upregulation of the other isoform (Fig. 1).
This compensation theory was previously suggested in
Caenorhabditis elegans [44]. The reciprocal expression
observed between different isoforms and the underlying
epigenetic processes require further investigation.
The CLA isomer 10 t,12c-18:2 was examined because

it was previously described as an important inhibitor of
SCD1 in dairy cattle [25]. In our study, although Pire-
naica heifers accumulated the highest amounts of
10 t,12c-18:2 in subcutaneous adipose tissue (Table 2),
no significant correlation was observed between
10 t,12c-18:2 and lipogenic gene expression (data not
shown). Nevertheless, both isoforms may be differently
regulated. In contrast to SCD1, which tends to be re-
duced by 10 t,12c-18:2 [45], SCD5 appears to be more
stable due to lack of an N-terminal PEST sequence for
degradation [11]. However, further research is needed to
establish relationships among DIs and SCD isoform

mRNA expression levels, and to clarify the effects of
10 t,12c-18:2 on bovine adipose and muscle tissues.
Analysis of lipogenic gene expression changes with diet-
ary treatment in ruminant species as well as promoter
sequencing would provide valuable insight into the regu-
lation of these genes and their impact on the synthesis
of MUFAs and PUFAs.

Conclusion
The present study suggests that the differences in sub-
cutaneous fat FA composition among bovine commercial
types of the Basque region are related to genetic variability
in lipogenic gene expression. The expression of lipogenic
genes in Salers bulls showed clear effects on desaturation
indexes and FA composition. All breeds show a strong
correlation between SREBP1 and SCD1 expression. In
addition, distinct correlations between SCD isoforms and
DIs suggest a novel genetic compensation mechanism be-
tween SCD1 and SCD5 that warrants further investigation.
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