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1 Introduction

Einstein’s theory of General Relativity (GR) is up to the present day the best theory we

have to describe the gravitational interaction. In recent detections of gravitational waves

from colliding black hole binaries by the LIGO collaboration [1–5] no deviations from

GR have been found. Next to the direct observation of gravitational waves (one of the

predictions of the theory), these observations have also conclusively shown that black holes

do, indeed, exist in the universe. Accepting this, however, leads to a problem: black hole

solutions of standard GR are plagued with physical, i.e. space-time singularities at their

gravitational center. These are, in general, not observable for an outside observer due to

the existence of an event horizon, but it shows that this classical theory of gravity possesses

limits. In particular, up to today it seems impossible to reconcile Quantum physics, which

is the fundamental basis of the Standard Model of Particle physics, with GR. One of the

best candidates is String Theory, which contains the assumed mediator of the gravitational

interaction, the graviton, naturally. Since the energy scale at which Quantum Gravity

(QG) theories should become relevant are out of reach for present day accelerators, there

are different ways to test whether extensions of GR are necessary.

One such possibility is to observe strong gravity events such as the collision of two

black holes or the recently observed collision of two neutron stars using both gravitational

waves as well as Gamma-rays [6–8]. This allows to test gravity theories to a very high

precision with the help of multi-messenger gravitational wave (GW) observations.

Another way to test gravity theories is to study theoretical predictions that are also

detectable at low(er) energies. One such prediction of String Theory is the Anti-de Sit-

ter/Conformal Field Theory (AdS/CFT) correspondence [9–12] that states that a gravity

theory in a d-dimensional AdS space-time possesses exactly the same number of degrees of

freedom as the (d−1)-dimensional CFT on the conformal boundary of AdS. This duality is
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a weak-strong coupling correspondence and has mainly been used in the context of classical

d-dimensional GR in AdS describing a strongly coupled CFT on the (d − 1)-dimensional

boundary with the extra dimension giving the renormalization group (RG) flow. One such

application is the description of high-temperature superconductors in terms of holographic

duals [13–18], another one the application to heavy ion collisions and the quark-gluon

plasma (see [19] and references therein).

In recent years, Horndeski gravity models [20] have gained a lot of attention. These

models include, in general, higher curvature invariants and non-linear couplings between

scalar, vector and tensor fields. One such example are scalar-tensor gravity models in

which a scalar field, the so-called galileon, is non-minimally coupled to the tensor part [21–

28]. These models contain a shift symmetry of the scalar field that leads to the existence

of a conserved Noether current. Consequently, black hole solutions have been studied

in these models [29, 30], which, however, have a diverging norm of the Noether current

on the horizon. In [31] solutions with vanishing Noether current have been constructed.

Interestingly, in these same models it has been conjectured that globally regular, star-like

solutions in asymptotically flat space-time should not be able to carry Galilean “hair”,

while it has been suggested that the no-go theorem for astrophysically relevant solutions

could be avoided in asymptotically de Sitter (dS) space-time [32].

In this paper, we discuss solutions of a Galileon scalar-tensor gravity model with a

linear coupling between the scalar field and the Gauss-Bonnet term including a cosmologi-

cal constant. Recent multi-messenger GW astronomy that puts strong bounds on the GW

speed, disfavoures these models [33] in their original version without cosmological constant.

In fact, originally these models had been studied in order to solve the dark energy problem

through the inclusion of a dynamical scalar field which renders the cosmological solutions

self-accelerating. In this paper, we will show that the explicit presence of a positive cosmo-

logical constant does neither allow black hole nor star-like, solitonic solutions for relevant,

small values of the scalar-tensor coupling. On the other hand, we will demonstrate that

the presence of a negative cosmological constant in the model allows for solitonic solutions

as well as new branches of black hole solutions as compared to the case with vanishing

cosmological constant. Hence, while the motivation to study these solutions is no longer

given in an astrophysical and/or cosmological context, we suggest that the dual descrip-

tion of strongly coupled phenomena within the AdS/CFT correspondence could lead to

interesting new models in the future.

Our paper is organized as follows: in section 2, we give the model and equations,

while in section 3 and 4 we discuss soliton and black hole solutions, respectively. Section

5 contains our summary and conclusions.

2 The model

The model we are studying in this paper is a Horndeski scalar-tensor model which possesses

a shift symmetry in the scalar field φ→ φ+aµx
µ + c, where aµ is a constant co-vector and

c is a constant. Its action reads:

S =

∫
d4x
√
−g
[
R− 2Λ +

γ

2
φG − ∂µφ∂µφ

]
, (2.1)

– 2 –



J
H
E
P
0
6
(
2
0
1
8
)
0
7
4

where the Gauss-Bonnet term G is given by

G = RµνρσRµνρσ − 4RµνRµν +R2 . (2.2)

γ is the scalar-tensor coupling and Λ 6= 0 is the cosmological constant.1 Units are chosen

such that 16πG ≡ 1 and the scalar-tensor coupling γ is related to the α used in [30] by

γ = 4α. For Λ = 0, this model and its black hole solutions have been studied in [29–31],

while it was recently pointed out that solitonic, i.e. star-like solutions that are globally

regular, do not exist in this model [32]. In the following, we will demonstrate that this

does not hold true for the model with Λ < 0.

Varying the action (2.1) with respect to the metric and the scalar field gives the

following gravity equations:

Gµν + Λgµν − ∂µφ∂νφ+
1

2
gµν∂αφ∂

αφ+
γ

2
Kµν = 0 , (2.3)

where

Kµν = (gρµgσν + gρνgσµ)∇λ(∂γφε
γσαβεδηRδηαβ) , (2.4)

as well as the scalar field equation

�φ = −γ
2
G . (2.5)

We are interested in spherically symmetric and static solutions and hence choose for

the Ansatz:

ds2 = −N(r)σ(r)2dt2 +
1

N(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, φ = φ(r) . (2.6)

Inserting this Ansatz into the equations of motion (2.3) and (2.5) results in a coupled

system of non-linear ordinary differential equations that has to be solved subject to the

appropriate boundary conditions. The explicit form of the gravity equations (2.3) reads:

4γ(1−N)φ′′ − 2γ(3N − 1)φ′
N ′

N
+ r2φ′2 + 2r

N ′

N
− 2

N
+ 2 + 2Λ

r2

N
= 0 , (2.7)

1

N2
+ 3γφ′

(
2
σ′

σ
+
N ′

N

)
−
[
1 + (r + γφ′)

(
2
σ′

σ
+
N ′

N

)
− 1

2
r2φ′2

]
1

N
− Λ

r2

N
= 0 , (2.8)

F ′
(

2γφ′ − r

N

)
+ F

[
2γφ′′ + 2γφ′

(
2
N ′

N
+
σ′

σ

)
− r

N

(
N ′

N
+
σ′

σ

)
− 1

N

]
− r

N
φ′2 − N ′

N2
− 2r

Λ

N2
= 0 , (2.9)

where F = N ′

N + 2σ
′

σ and the prime now and in the following denotes the derivative with

respect to r. Finally, the scalar field equation (2.5) is:

γ

[
(N − 1)

(
4
σ′′

σ
+ 2

N ′′

N
+ 6

σ′N ′

σN
+
N ′

N

)
+ 4

σ′N

σN
+ 2

N ′2

N

]
+2r2

[
φ′′ +

(
σ′

σ
+
N ′

N
+

2

r

)
φ′
]

= 0 . (2.10)

Note that the system of equations does not depend on φ(r) explicitly, but only on φ′(r).

1Note that the action can be supplemented by suitable boundary and counter terms in order to render

the action finite. For the discussion in the following these are, however, not necessary.
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The model contains a shift symmetry φ→ φ+aµx
µ+c, which leads to the existence of

a locally conserved Noether current Jr with norm (JrJ
r)1/2 that results from the invariance

of the kinetic term under this transformation and the fact that the Gauss-Bonnet term is

a total divergence in 4-dimensional space-time, respectively. In our choice of coordinates

the norm reads [31]:

(JrJ
r)1/2 =

γ(N − 1)

2r2

(
N ′

N
+

2σ′

σ

)
− φ′ . (2.11)

For γ = 0 the system of equations corresponds to Einstein gravity including a cosmological

constant. For γ > 0, the asymptotically non-vanishing curvature of the space-time sources

the scalar field — even at r → ∞. It is, thus, not surprising that the solution to the

equations of motion does not behave like a “pure” (Anti-) de Sitter ((A)dS) space-time

asymptotically. For r → ∞, we find the following behaviour for the metric functions and

the scalar field derivative:

N(r) = C1−
λ

3
r2−M

r
+O(r−2) , σ(r) = 1+O(r−2) , φ(r) = C0−C2 ln(r)+O(r−2) (2.12)

where C0 is a constant. λ, C1 and C2 fulfil

λ

(
3 +

10

9
γ2λ2

)
= 3Λ , C1 =

16γ4
(
λ
3

)4
+ 12γ2

(
λ
3

)2
+ 1

40γ4
(
λ
3

)4
+ 14γ2

(
λ
3

)2
+ 1

, C2 = −2

3
γλ (2.13)

and the parameter M determines the gravitational mass of the solution (see [34] for a

summary and references therein):

Mgrav =
8π

16πG
M = 8πM , (2.14)

where in the last equality we have used our convention 16πG = 1. While the field φ(r)

diverges for r → ∞, note that only φ′(r) appears in the equations of motion and falls of

like φ′(r) = −C2/r + O(r−2).

The relation between λ and Λ implies that the signature of these constants is equal,

i.e. negative (positive) Λ implies negative (positive) λ, and that |λ| < |Λ| for γ 6= 0 with

|λ| a decreasing function with Λ fixed and γ increasing. To state it differently, for a fixed

value of Λ, the asymptotic space-time deviates increasingly from (A)dS for increasing γ.

However, for relevant, small values of γ our solutions are — but only to linear order

in γ — global (A)dS with a scalar field ψ(r) := φ′(r) that falls of linearly. However, our

system is very different to the Gauss-Bonnet-scalar field system used in the description of

holographic superconductors (see e.g [35–39]). While the condensation of the scalar field

sets in at sufficiently low temperature of the black hole in the latter model, the scalar field is

directly sourced by the Gauss-Bonnet term and is hence non-trivial whenever γ 6= 0 in our

case. This leads to the observation that while for holographic superconductors, the scalar

field fall-off on the conformal boundary is determined by the dimension of the space-time

and the mass of the scalar field, the scalar field φ(r) in our model has to be constant on

the AdS boundary or diverge logarithmically. Now, since the scalar field possesses a shift
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symmetry, we can always scale the constant to zero, such that only one possible behaviour

remains. This is reflected in the fact, that only the derivative φ′(r) appears in the system

of equations.

The detailed study of the applications in the context of the AdS/CFT correspondence is

left as a future work, in particular since the coupling to a U(1) gauge field seems important

in order to be able to construct phase diagrams. However, in order to get an idea if and

how the application e.g. in the context of holographic superconductors would work, we

can evaluate the action given in (2.1) on the solutions to the equations of motion and

check whether the scalar field has a normalizable or non-normalizable fall-off on the AdS

boundary. For that first note that we can integrate the term ∂µφ∂
µφ in (2.1) by parts

which gives

S =

∫
d4x
√
−g
[
R− 2Λ +

γ

2
φG + φ�φ

]
+

∫
d3x
√
−g∞φ∂rφ|r→∞ , (2.15)

where the last term is to be evaluated on the boundary r →∞. The last two terms in the

4-dimensional integral vanish when evaluated on the solutions to the equation of motions.

The remaining terms in the 4-dimensional integral read (after suitable substraction of

boundary terms): √
−g [R− 2Λ] = 2σ

(
−rN ′ −N + 1− r2Λ

)
(2.16)

and using the expansion of the fields for r →∞ (see (2.12)) we find:

√
−g [R− 2Λ] |r→∞ = (λ− Λ)r2 + 1− C1 . (2.17)

This demonstrates that we have to think about suitable counterterms different to the ones

used in standard holographic applications to remove the UV divergence. This is currently

under investigation. Note, however, that taking only terms linear in γ into account leads

to λ = Λ, C1 = 1 and the 4-dimensional part of (2.15) is regulated. The boundary term is

formally equal to the one that appears in standard holographic superconductors, where the

value of the scalar field on the AdS boundary is interpreted as the source of the dual CFT if

the divergence in the boundary action can be regulated by suitable counterterms. However,

in the case of minimal coupling, the scalar field normally has power-law behaviour, while

here it has logarithmic form. Hence, the boundary term in (2.15) has to be regulated by

non-standard terms. This is currently under investigation and will be reported elsewhere.

Again, let us state that we believe that the coupling to the electromagnetic field will be

crucial in this respect.

Let us finally remark that the solution with Λ > 0 possesses a horizon at rc =
√

3/λ

which — to linear order in γ — is equal to the cosmological horizon of dS space-time. How-

ever, as we will show below, neither soliton nor black hole solutions with (approximately)

dS asymptotics exist, though the expansion (2.12) is valid for both signs of Λ.

3 Solitonic solutions

As pointed out in [32], star-like, globally regular and asymptotically flat solutions with non-

trivial scalar field do not exist in the model we are studying here. However, when Λ < 0,
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these solutions exist, as we will show in the following. Let us start with the behaviour of

the functions close to r = 0. We find:

N(r) = 1 +
n2

2
r2 + O(r3) , σ(r) = σ0

(
1 +

σ2

2
r2 + O(r3)

)
, φ(r) =

φ2

2
r2 + O(r3) , (3.1)

where n2, σ2 and φ2 fulfil the following relations:

n2 =
2Λ

6γφ2 − 3
, σ2 =

γΛφ2

3(1− 2γφ2)2
(3.2)

and

8γ3φ4
2 − 12γ2φ4

2 + 6γφ2
2 +

(
2

3
γ2Λ2 − 1

)
φ2 −

2

9
γΛ2 = 0 . (3.3)

σ0 ≡ σ(0) is a constant to be determined numerically (see below for numerical results).

This expansion already implies that both γ 6= 0 and Λ 6= 0 are necessary to obtain solitonic

solutions. In order to make this more evident, let us look at the expansion in γ — we

would expect γ in any realistic model to be small and hence the expansion in γ can give

hints on how the existence of the soliton manifests itself. We find:

N(r) = 1− Λ

3
r2 +γ2N2(r)+O(γ4) , σ(r) = 1+γ2Σ2(r)+O(γ4) , φ′(r) = γϕ1(r)+O(γ3) ,

(3.4)

where the function N2(r), Σ2(r) and ϕ1(r) are given by:

N2(r) = −2

9
Λ2 +

10

81
Λ3r2 +

2

r

(
−Λ3

27

)1/2

arctan

(
r

(
−Λ

3

)1/2
)

, (3.5)

and

Σ2(r) =
Λ2

27(Λr2 − 3)
, ϕ1(r) =

2rΛ2

3(Λr2 − 3)
. (3.6)

We conclude that only for γ 6= 0 and Λ < 0 we can have globally regular solutions. For

Λ > 0, the function ϕ1 tends to infinity at the cosmological horizon rc =
√

3/Λ. Hence,

globally regular dS solutions do not exist in our model, at least not for physically relevant,

small values of γ.

It is also important to note that the norm of the Noether current (2.11) fulfils√
JrJr(r = 0) = 0 and that it is finite in the full interval of the radial coordinate r

for Λ < 0 (see numerical results). Moreover, we can only define the gravitational mass of

the soliton at quadratic order in γ. The mass parameter M (see (2.12)) can be found by

considering the γ expansion for r →∞ and is given by

M = −πγ2

(
−Λ3

27

)1/2

+ O(γ4) . (3.7)

For γ = 0, Λ < 0 the solution corresponds to global AdS and consequently has mass equal

to zero, while the solitonic solutions for γ > 0 possesses negative mass for Λ < 0.

– 6 –
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Figure 1. We show the dependence of −φ′, the Ricci scalar R, the Kretschmann scalar K =

RνµρσR
νµρσ and the norm of the Noether current (JrJ

r)1/2 on the radial coordinate r for soliton

solutions with Λ = −3 and γ = 0.1 (dashed) and γ = 1.0 (solid), respectively.

3.1 Numerical construction

In the following, we will choose Λ negative since our analysis above has shown that globally

regular dS solutions do not exist. In order to solve the equations (2.7) – (2.10) numerically,

suitable combinations can be made and the system reduces to two equations of first order

(the equations for N and σ) as well as one equation of second order (the equation for

φ). We will hence fix 4 boundary conditions in the following.2 Using the results of the

expansion close to r = 0, we choose the following conditions for globally regular solutions:

N(0) = 1 , φ(0) = 0 , φ′(0) = 0 , a(r →∞)→ 1 . (3.8)

In figure 1 we show φ′(r) for Λ = −3 and two values of γ together with the Kretschmann

scalar K = RνµρσR
νµρσ, the Ricci scalar R and the norm of the Noether current. As can

be seen, the space-time is perfectly regular everywhere, contains no physical singularities

and possesses a finite norm of the Noether current. Moreover, φ′ tends asymptotically to

zero and increases in value over the whole range of r when increasing γ. The norm of the

Noether current is zero at r = 0, increases to a maximal value close to the center of the

soliton and then falls off to zero asymptotically. With the increase of γ, the norm increases,

but stays qualitatively the same. The Kretschmann scalar K and the Ricci scalar R deviate

increasingly from their “pure” AdS values KAdS = −8Λ = 24 and RAdS = 4Λ = −12 for

increasing γ. This is nothing else but the statement made above that the space-time is

2Since the equations of motion depend only on φ′, the system is effectively a system of three 1st order

equations and φ(0) is a free parameter, which can be chosen to be equal to zero due to the shift symmetry

in the model.

– 7 –
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Figure 2. We show the dependence of the coefficients appearing in the asymptotic expansion

(see (2.12)) as well as σ0 (see (3.1)) on γ for soliton solutions with Λ = −3. Note that the negative

value of the mass parameter −M , which for our choice of Λ = −3 reads −M = πγ2 + O(γ4), fits

the curve πγ2 very well for small values of γ.

asymptotically AdS only to linear order in γ. This becomes also clear by virtue of figure 2,

in which we give the dependence of the coefficients appearing in the asymptotic expansion

(see (2.12)) as well as the value of σ0 (see (3.1)) on γ for Λ = −3. Again, for the allowed

range of the parameter γ, the value of σ0 stays perfectly finite. The mass parameter M is

zero for γ = 0, which corresponds to global AdS, and becomes increasingly negative when

increasing γ for Λ fixed. We have hence found a continuous branch of solitonic solutions

that is directly connected to global AdS.

4 Black hole solutions

For γ = 0, our model has a black hole solution, namely the Schwarzschild-AdS solution

(SAdS) (see e.g. [34] and references therein) with

N(r) = 1− Λ

3
r2 − M

r
, σ(r) ≡ 1 , φ(r) ≡ 0 , (4.1)

and the mass parameter M is related to the horizon rh by M = rh − Λ
3 r

3
h.

In order to understand the deformation of this black hole solution in the presence of

the scalar field, we have first studied the expansion of the solution in powers of γ. We find:

N(r) = 1− Λ

3
r2 − M

r
+ γ2Ñ2(r) + O(γ4) , σ(r) = 1 + γ2Σ̃2(r) + O(γ4) ,

φ′(r) = γΦ1(r) + O(γ3) , (4.2)

– 8 –
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Figure 3. We show the domain of existence of black hole solutions with scalar hair and Λ = −3 in

the φ′h–γ– plane. The curves denote the critical value of γ (see (4.9)) for the four different branches

(see also (4.7)) for rh = 1.2 (dashed), rh = 1.0 (solid) and rh = 0.6 (dotted-dashed). Note that the

+ and − indicate the two different branches as given by (4.7). Moreover, the vertical dotted-dashed

line is the value of γ at which the denominator of (4.7) becomes zero for rh = 0.6.

and function Φ1(r) reads:

Φ1(r) =

(
r2 + rrh + r2

h

) (
2
9r

3rhΛ2 + 1
9r

4
hΛ2 − 2

3r
2
hΛ + 1

)
r4rh

(
Λ
3 r

2 + Λ
3 rrh + Λ

3 r
2
h − 1

) . (4.3)

In particular, we find from this expression the dominant asymptotic term Φ1(r → ∞) ∼
2
3

Λ
r , which is in excellent agreement with our numerical construction (see below). The

expressions for Ñ2(r) and Σ̃2(r) are very lengthy, that is why we do not present them here.

Let us just note that, asymptotically, the expansion in γ is equivalent to the γ expansion

of the soliton solution, see (3.4).

The temperature of a static black hole is given in terms of its surface gravity κ evaluated

at the horizon r = rh:

TH =
κ

2π
|r=rh , κ2 = −1

4
gttgij∂igtt∂jgtt|r=rh , i, j = 1, 2, 3 . (4.4)

For our Ansatz (2.6) and using (2.7) we find:

4πTH =
(
N ′σ

)
r=rh

=
1− Λr2

h

rh + γφ′|r=rh
σ(rh) , (4.5)

where φ′|r=rh can be expressed in terms of Λ, rh and γ (see (4.7) below).

4.1 Numerical construction

In order to construct black hole solutions numerically, we choose — like in the soliton

case — a(r → ∞) → 1, while we now have to impose boundary conditions on the regular

– 9 –
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Figure 4. We show the temperature TH, the constant C2 (see (2.12)), −φ′h (see (4.7)) as well as the

mass parameter M in dependence of γ for Λ = −3 and rh = 1. Note that in this case γcr ≈ 0.1745.

(non-extremal) horizon r = rh. These conditions read:

N(rh) = 0 , φ(rh) = 0 (4.6)

as well as the following condition for the scalar field derivative φ′(r):

φ′|r=rh =
±
√

∆|Λr2
h − 1|+ 2Λγ2r3

h − 6Λγ2rh + Λr5
h − r3

h

2γ(2Λγ2 − Λr4
h + r2

h)
(4.7)

with

∆ = 4γ4Λ2r2
h − 24γ4Λ + 8γ2Λr4

h − 12γ2r2
h + r6

h . (4.8)

The requirement ∆ ≥ 0 gives the intervals in γ for which black holes with regular horizon

and non-trivial scalar hair exist. We find: (assuming that γ ≥ 0):

γcr(Λ)(±) =

±√3r2
h

√
Λ2r4

h − 2Λr2
h + 3− 2Λr4

h + 3r2
h

2Λ(Λr2
h − 6)

1/2

. (4.9)

Solutions with regular horizon then exist in the intervals γ ∈ [0 : γ
(−)
cr ] and for γ ≥ γ

(+)
cr .

Moreover, the denominator in (4.7) can become zero leading to the divergence of φ′h. Hence

depending on the choices of Λ and rh there might be one value of γ, where solutions with

regular horizon do not exist.

Equations (4.7) and (4.9) indicate that we should expect to have four branches for

Λ 6= 0. This is shown in figure 3 for Λ = −3 and different values of rh: the curves in

this plot show the value of φ′|r=rh ≡ φ′h in dependence of γcr. The plus and minus signs

– 10 –
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indicate the different branches as given by (4.7), while the different intervals in γ are

obvious from this plot. Note that for Λ = 0 only the branches close to γ = 0 exist. Hence,

the non-vanishing cosmological constant leads to the existence of new branches that are

disconnected from the γ = 0, Λ = 0 limit. For decreasing rh the value of γcr decreases

such that for rh → 0, the branches disappear. On the other hand, the extend in γ of the

two disconnected branches increases with decreasing rh. One could then speculate that

the limit rh → 0 exists, corresponding to a soliton solution. Although we have shown

above that soliton solutions actually exist in our model for Λ < 0, we find, however, that

the branches never reach the corresponding soliton solution which has φ′h = 0. To state

it differently: the soliton solutions presented above do not arise in a smooth limit taking

rh → 0 for the black hole solutions.

We have also constructed the solutions on the branches that exist for large enough

values of γ and find that these have — in general — φ′ →∞ for some intermediate r̃ with

r̃ ∈ [rh :∞[. This is why we do not discuss them further here.

In figure 4 we show the dependence of the black hole temperature, the constant C2

(see (2.12)), the value −φ′h (see (4.7)) as well as the mass parameter M in dependence

of γ for Λ = −3 and rh = 1. In this case, the interval in which solutions exist is γ ∈
[0 : γ

(−)
cr ] with γ

(−)
cr ≈ 0.174 and for γ & 0.550 with the denominator of (4.7) diverging

at γ = 2/3 ≈ 0.667. The temperature of the black hole TH decreases from its “pure”

AdS value TH,AdS = (−Λrh + r−1
h )/(4π) ≈ 0.3183 at γ = 0 when increasing γ, while the

coefficient C2 increases. If we interpret C2 as on order parameter, we find that C2 increases

with decreasing temperature TH, a phenomenon typically observed in superconductors. For

γ
(−)
cr ≈ 0.174 the derivative of the scalar function at the horizon diverges, which makes the

black hole temperature TH by virtue of (4.4) tend to zero as γ → γ
(−)
cr , while C2 stays finite.

For γ ∈ [0.174 : 0.550] no globally regular black hole solutions exist, while for γ ≥ 0.550

and γ 6= 0.667 black holes with non-trivial scalar field and regular horizon at r = rh exist,

but as mentioned above, these solutions become singular at a finite value of r > rh. Finally,

the mass parameter M does not depend strongly on γ and stays close to its SAdS value

M = rh − Λ
3 r

3
h ≡ 2 for our choice of parameters rh = 1, Λ = −3.

5 Conclusions

In this paper, we have presented evidence that the non-existence theorem for globally

regular solutions of shift-symmetric scalar-tensor gravity models does not extend to the

case with negative cosmological constant. We have constructed globally regular, solitonic

solutions that have AdS asymptotics to linear order in γ. The corresponding black hole

solutions possess a regular horizon at r = rh, but do not tend to the soliton solutions in

the limit rh → 0. We also observe that the presence of the negative cosmological constant

allows new branches of black hole solutions, which, however, possess a diverging scalar

field derivative at finite distance outside the horizon. As mentioned above, it will be in-

teresting to understand the application of our solutions in the context of the AdS/CFT

correspondence, e.g. in the holographic description of high-temperature superconductors.

The parameter γ triggers the existence of a non-trivial scalar field in the space-time and

– 11 –
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for black holes we find a typical superconductor behaviour, namely the order parameter

increases with decreasing temperature. In the standard approach to holographic supercon-

ductors [13–18], the scalar field is minimally coupled to an electromagnetic field (and a

tensor gravitational field if backreaction is taken into account) and this coupling triggers

the spontaneous formation of scalar hair below a critical temperature of the planar AdS

black hole. For our model it will be interesting to see how the existence of a non-trivial

scalar field on the conformal boundary can be interpreted, especially in the context of the

existence of “gaps” in γ, where regular black holes with scalar hair do not exist. This is

currently under investigation.

Our results also indicate that neither solitonic nor black hole solutions in a space-time

with positive cosmological constant exist, and, we have, in fact, not been able to construct

the solutions with the appropriate boundary conditions. We believe that this is related

to the fact that the system of ordinary differential equations of the model is effectively a

system of three 1st order equations and, consequently, only 3 boundary conditions are not

trivial. Since, however, for the construction of black hole solutions, we would need to fix

the metric function N(r) to be equal to zero on both the regular horizon rh as well as

the cosmological horizon rc and require in addition the scalar field to be regular at these

two points, the number of boundary conditions needed appears too large for the system

of equations.
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