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ABSTRACT 

Cortical oscillations phase-align to the quasi-rhythmic structure of the speech 

envelope. This speech-brain entrainment has been reported in two frequency bands, 

i.e., both in the theta band (4 – 8 Hz) and in the delta band (< 4 Hz). However, it is 

not clear if these two phenomena reflect passive synchronization of the auditory 

cortex to the acoustics of the speech input, or if they reflect higher processes involved 

in actively parsing speech information. Here we report two magnetoencephalography 

experiments in which we contrasted cortical entrainment to natural speech compared 

to qualitative different control conditions (Experiment 1: amplitude modulated white-

noise; Experiment 2: spectrally rotated speech). We computed the coherence between 

the oscillatory brain activity and the envelope of the auditory stimuli. At the sensor 

level, we observed increased coherence for the delta and the theta band for all 

conditions in bilateral brain regions. However, only in the delta band (but not theta) 

speech entrainment was stronger than either of the control auditory inputs. Source 

reconstruction in the delta band showed that speech, compared to the control 

conditions, elicited larger coherence in the right superior temporal and left inferior 

frontal regions. In the theta band, no differential effects were observed for the speech 

compared to the control conditions. These results suggest that whereas theta 

entrainment mainly reflects perceptual processing of the auditory signal, delta 

entrainment involves additional higher order computations in the service of language 

processing. 
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INTRODUCTION 

When people listen to speech, the phase of low-frequency (< 8 Hz) cortical 

oscillations entrain to slow temporal modulations in the acoustic envelope. This 

mechanism has been hypothesized to be crucial for speech recognition (Ghitza, 2011; 

Giraud & Poeppel, 2012). However, it is still under debate whether cortical 

entrainment to speech underlies pure auditory perceptual processing or if it 

additionally reflects higher-order processes involved in actively parsing speech 

information (for discussion Ding & Simon, 2014). The former view suggests that 

cortical oscillations in the auditory regions passively entrain to the temporal 

modulations of the external auditory signal. The information extracted from this 

“entrainment step” would then be available to higher-order cognitive processes that 

are not necessarily phase-synchronized with the external input. The latter view 

underscores that cortical speech entrainment can reflect the brain tendency to align a 

larger set of high-order cognitive processes to the speech rhythmicity (for a review: 

Meyer, in press). In this way, the neurocognitive network involved in speech 

processing would be selectively active in the time intervals in which relevant content 

information is conveyed by the speech input. In the present study, we provide 

evidence that these two hypotheses are differently reflected by the cortical 

entrainments observed at different frequency bands. 

Cortical entrainment to the speech envelope has been mainly seen in delta (< 3 

Hz) and theta (4 – 8 Hz) frequency bands. Theta entrainment correlates with the 

syllabic patterns of speech across languages (Ding et al., 2017) and would be involved 

in creating syllabic-level language representations. Given this empirical observation, 

it has been initially proposed that syllables constitute the basic unit for initial speech 

segmentation (Ghitza, 2013; Hickok, 2009). Syllabic units would then constrain the 
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access to segmental information (i.e., phonemes) through a cross-frequency coupling 

mechanism. The phase of theta has been shown to modulate the amplitude of gamma 

oscillations (> 30 Hz: cross-frequency coupling, Gross et al., 2013), and this 

mechanism would reflect the hierarchical clustering of individual phonemes (sampled 

at gamma) into syllables (Giraud & Poeppel, 2012). A large number of studies also 

reported strong speech-brain coupling in the delta band (e.g., Bourguignon et al., 

2013). Temporal modulations in the delta band of speech reflect the intonational stress 

patterns for word and phrases (see Keitel et al., 2017). Delta entrainment thus shows 

the brain sensitivity to these prosodic cues (Bourguignon et al., 2013).  

That said, it is still not clear whether delta and theta entrainment differ, if they 

reflect the same basic acoustics-related mechanism or if they involve higher-order 

mechanisms involved in speech processing. It has been observed that both frequency 

bands are related to speech intelligibility (for a discussion, Ding & Simon, 2014) 

across a variety of languages (English: Gross et al., 2013; French: Bourguignon et al., 

2013; Spanish: Molinaro et al., 2016). Importantly, delta phase modulates the 

amplitude of theta band oscillations (Gross et al., 2013) suggesting a hierarchy 

“delta > theta > gamma” in which the delta oscillations guide the rhythmic activity at 

higher frequencies. Following this view, delta oscillations potentially reflect a high-

order mechanism (sensitive to both attentional and linguistic influences) that top-

down modulates entrainment in higher frequencies.  

In this magnetoencephalography (MEG) study, we better characterize the 

entrainment of brain activity to speech in delta and theta frequency bands. 

Specifically, we used coherence to measure the cortical entrainment to speech and to 

different non-linguistic auditory signals across two experiments. Coherence analysis 

was performed at the MEG sensor-level and in the source space (source-level). In the 
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first experiment, we compared the cortical entrainment to Speech with the cortical 

entrainment to AM white-noise at a fixed rate in delta and theta bands. In the second 

experiment, we compared cortical entrainment to Speech with cortical entrainment to 

Rotated Speech in the two frequency bands of interest. In the first experiment the 

control conditions provided a stable AM rate, while in the second experiment the 

variability and the complexity of the speech temporal modulations was preserved in 

the control condition. If delta and/or theta speech-brain coupling involves higher-

order speech computations required for speech listening, the entrainment should 

extend beyond auditory regions in the temporal lobes, possibly involving more frontal 

lobe regions (Hickok & Poeppel, 2007; Park et al., 2015).  

EXPERIMENT 1 

METHODS 

Participants 

Thirty-five participants (17 females) took part in the first experiment (mean age=24 

yrs., age range=16 – 48 yrs.). All participants were right-handed Spanish native 

speakers with no hearing impairments. The BCBL ethics committee approved the 

experiment (following the principles of the Declaration of Helsinki) and all 

participants signed an informed consent. 

Stimuli and procedure 

Participants performed two experimental blocks. In the first block, participants 

listened to natural Speech while sitting in the MEG facility (Speech condition). The 

Speech consisted of thirty meaningful sentences ranging in duration from 7.42 to 

12.65 seconds (M=9.9; SD=1.13). Sentences were uttered by a Spanish native female 

speaker and digitized at 44.1 kHz using a digital recorder (Marantz PMD670). Each 
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trial began with a 1 sec long auditory tone (at 500 Hz tone) followed by a 2 secs-long 

silence before the sentence presentation. After the end of each sentence, a 

comprehension question about the content of the last stimulus was presented 

auditorily. Participants answered the question by pressing the corresponding button on 

the response pads (Yes/No, response side counterbalanced). 

In the second block, participants listened to stimuli obtained by rhythmically 

modulating the amplitude (AM) of white-noise sound either in the delta or the theta 

band. The stimuli were generated at a sampling frequency of 44.1 kHz and modulated 

using Matlab R2010 functions. AMs were applied to different stimuli at the following 

frequencies: 2 (2 Hz AM white-noise condition) and 7 Hz (7 Hz AM white-noise 

condition) rates with 100% depth. The selection of these two frequency bands was 

based on previous pilot data on speech-brain coherence in which we observed these 

two coherence peaks. All stimuli lasted 10 secs and appeared 30 times throughout the 

experimental block. Participants were not instructed to pay attention to the auditory 

stimuli and watched an unrelated silent movie on the screen.  

The presentation order of the blocks was balanced across participants. In both 

experimental blocks, the stimuli were delivered to both ears via plastic tubes. The 

sound level was fixed at 75 dB for all the participants. Participants were encouraged 

to take a break between blocks and were asked to avoid head movements and blinks 

during the auditory presentation. After these experimental blocks, resting state MEG 

was recorded for ~5 minutes with the participants' eyes being close.  

Data acquisition and pre-processing 

MEG data were acquired in a magnetically shielded room using the whole-scalp 

system (Elekta-Neuromag, Helsinki, Finland). Head position was continuously 

monitored using four Head Position Indicator (HPI) coils. The location of each coil 
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relative to the anatomical fiducials (nasion, left and right preauricular points) was 

defined with a 3D digitizer (Fastrak Polhemus, Colchester, VA, USA). Digitalization 

of the fiducials plus ~150 additional points evenly distributed over the scalp of the 

participant were used during subsequent data analysis to spatially align the MEG 

sensor coordinates with T1 magnetic resonance brain images acquired on a 3T MRI 

scan (Siemens Medical System, Erlangen, Germany). MEG recordings were acquired 

continuously with a bandpass filter at 0.01 – 330 Hz and a sampling rate of 1 kHz. 

Eye-movements were monitored with two pairs of electrodes in a bipolar montage 

placed on the external chanti of each eye (horizontal electrooculography EOG) and 

above and below right eye (vertical EOG). Similarly, cardiac rhythm was monitored 

using two electrodes, placed on the right side of the participants’ abdomen and below 

the left clavicle. 

MEG data were pre-processed off-line using the Signal-Space-Separation (SSS) 

method (Taulu & Kajola, 2005) implemented in Maxfilter 2.1 (Elekta-Neuromag) to 

remove external magnetic noise from the MEG recordings. MEG data were also 

corrected for head movements and referenced to the initial head position. Bad 

channels detected during the acquisition were substituted using MaxFilter 

interpolation algorithms.  

Subsequent analyses were performed using Matlab R2010 (Mathworks, Natick, 

MA, USA). Heart beat and EOG artifacts were detected using Independent 

Component Analysis (ICA) and linearly subtracted from the MEG data (Infomax 

algorithm implemented in Fieldtrip toolbox, Oostenveld et al., 2011). Finally, the 

continuous MEG data were segmented into epochs of 1 sec during the Speech 

perception. Epochs with large MEG peak-to-peak amplitude values (exceeding 4000 

ft in magnetometers or 4000 ft/cm in gradiometers) were considered as artifact-
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contaminated and excluded from the subsequent analyses. On average, the percentage 

of epochs retained in the final analyses were 87% (SD: 16%), 85% (12%) and 89% 

(11%) for the Speech, 2 Hz AM white-noise and the 7 Hz AM white-noise 

respectively. 

Coherence analysis 

Sensor level analysis 

The synchronization between neural oscillations and the envelope (𝐸𝑛𝑣) of auditory 

signals was calculated using coherence. Envelopes of the stimuli were computed by 

applying the Hilbert transform to the auditory signals. For each experimental 

condition, coherence between the artifact free epochs and the 𝐸𝑛𝑣 of the audio signals 

was calculated in the 1 – 10 Hz frequency band with 1 Hz frequency resolution (as in 

Molinaro et al., 2016, see also Lizarazu et al., 2015). The data from pairs of 

gradiometers were linearly combined so as to maximize the coherence according to 

the following procedure. First, for each MEG sensor (𝑟 1: 102 ), signals from 

gradiometer pairs were linearly combined to estimate the signal of a virtual 

gradiometer in the orientation 𝜃	 0	; 	𝜋 : 

𝑔𝑟, 𝜃 𝑡 = 	𝑔𝑟, 2 𝑡 cosθ	 + 	𝑔𝑟, 2 𝑡 sinθ					, 

Following Halliday et al (1995), coherence based on the Fourier transform of artifact-

free epochs was then computed between 𝐸𝑛𝑣 and 𝑔8 

𝐶𝑜ℎ 𝑟, 𝑓, 𝜃 = 	
𝐸𝑛𝑣(𝑓)𝑔?,8∗ (𝑓) A

𝐸𝑛𝑣(𝑓) A	 𝑔?,8(𝑓)
A	 						, 

where * is the Hermitian conjugate and •  the mean across epochs. In practice, 

𝐶𝑜ℎ(𝑟, 𝑓, 𝜃) was estimated from the cross-spectral density (CSD) matrix formed 
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with	𝐸𝑛𝑣, 𝑔?,C and 𝑔?,A 𝐸𝑛𝑣 for 𝜃 spanning 0	; 	𝜋 	by steps of D
A
. The optimum 

coherence value was finally obtained as follows: 

𝐶𝑜ℎEF 𝑟 = max
8J K;D

𝐶𝑜ℎ(𝑟, 𝑓, 𝜃) LJM						, 

where F = [0.5 – 10 Hz] and •  is the arithmetic mean. Thus, a coherence value for 

each (i) participant, (ii) MEG sensor (combination of gradiometer pairs) and (iii) 

frequency bin below 10 Hz was obtained.  

We used nonparametric permutation test (maximum statistic permutations, 

Nichols & Holmes, 2002) to identified frequency bins that showed significant 

coherence values at the sensor level (p<0.05). To do so, coherence values for each 

frequency bin were contrasted with resting state coherence values at the same 

frequency (coherence between the 𝐸𝑛𝑣 of the corresponding auditory signal and the 

resting state data). The sampling distribution of the maximal difference of coherence 

values (maximum taken across all sensors) was evaluated using the exhaustive 

permutation test. Frequencies for which the non-permuted maximal difference 

exceeded the 95th percentile of this permutation distribution were defined as 

frequencies of interest, and the corresponding supra-threshold sensors were identified 

for this frequency band. Significant frequencies were grouped in frequency bands of 

interest for each condition. These frequency bands were selected to compute 

coherence analysis in the source space. 

We also used this nonparametric permutation test (Nichols & Holmes, 2002) to 

identified sensors that showed significant coherence differences between conditions 

(Speech vs. AM white-noise) at the frequency bands of interest. 

Source level analyses 
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Coherence values were estimated at the source level for each participant, condition 

and frequency band of interest using beamforming techniques (Van Veen et al., 

1997). MRI images were segmented into scalp, skull, and brain components using the 

segmentation algorithms implemented in Freesurfer (Martinos Center of Biomedical 

Imaging, MQ). The forward model was computed for three orthogonal tangential 

current dipoles, which were distributed on a 5-mm homogeneous grid source space 

covering the whole brain. For each source (three directions), the forward model was 

then reduced to its two principal components of highest power. The CSD matrix 

between the artifact free epochs and the envelope of the auditory signals was 

calculated at each frequency of interest. Based on the forward model and the CSD 

matrix, brain coherence maps were produced using DICS algorithm (Gross et al., 

2001). Following this procedure, we also calculated brain coherence maps for the 

resting state (coherence between the amplitude of the corresponding auditory signal 

and the resting state data). 

A non-linear transformation from individual MRIs to the standard Montreal 

Neurological Institute (MNI) brain was first computed using the spatial normalization 

algorithm implemented in SPM8 (Wellcome Department of Cognitive Neurology, 

London, UK). This was then applied to every individual brain coherence map. We 

used a nonparametric permutation test to identify brain sources that showed 

significant (p<0.05) coherence values (Nichols & Holmes, 2002) for each condition. 

Coherence values in the frequency band of interest were contrasted with resting state 

coherence values at the corresponding frequency band (Molinaro et al., 2016). This 

nonparametric permutation test was used to identify brain sources that showed 

significant coherence difference between conditions (Speech vs. AM white-noise) at 

the frequency band of interest.  
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RESULTS 

Behavioral data 

Participants answered correctly to the comprehension questions following the Speech 

stimuli with an overall accuracy of 96.43% (Standard Deviation: 2.68, min=89; 

max=100). 

Sensor-level 

First, we evaluated the frequency bins at which coherence was higher at the sensor-

level for each condition (Speech, 2 Hz AM white-noise and 7 Hz AM white-noise) 

(Fig. 1). In the Speech condition, two bands of interest were identified in which 

coherence values were significantly (p<0.05) higher compared to the resting state. 

The first frequency band fell in the delta (1 – 2 Hz) range and the second band in the 

theta (6 – 7 Hz) range. In the 2 Hz AM white-noise condition, coherence values were 

significantly higher (p<0.05) at 2 Hz compared to resting state. Finally, in the 7 Hz 

AM white-noise condition, coherence values were significantly higher at 7 Hz 

compared to resting state. Significant coherence values emerged bilaterally in the 

sensor space for all conditions and frequency bands of interest (Fig. 1). Importantly, 

when contrasting the coherence values across sensors for the delta band in the Speech 

condition with the 2 Hz AM white-noise condition, coherence values showed to be 

higher for Speech in the right temporal sensors and in the left hemisphere frontal-

temporal sensors (Fig. 3). The comparison between the Speech theta band coherence 

values and the 7 Hz AM white-noise condition on the opposite did not highlight any 

significant effect. Both the topographical distribution of the effect and its magnitude 

in coherence were highly similar across conditions for this latter contrast.  

-- please insert Figure 1 around here -- 



	

12	

Source-level 

The frequency bands of interest identified by the sensor-level analyses were further 

investigated with source reconstruction (Fig. 2). In the Speech condition, significant 

(p<0.05) delta (1 – 2 Hz) coherence emerged in bilateral superior temporal and left 

frontal regions, whereas significant (p<0.05) theta coherence was located in bilateral 

superior temporal regions. In the 2 Hz and 7 Hz AM white-noise conditions, 

coherence values were significantly (p<0.05) stronger at the corresponding frequency 

in bilateral superior temporal regions. 

-- please insert Figure 2 around here -- 

Importantly, the coherence values obtained for the delta band in Speech were 

significantly higher (p<0.05) than for the 2 Hz AM white-noise in right superior 

temporal and left inferior frontal regions (Fig. 3). No significant differences (all p-

values>0.05) emerged between the coherence maps obtained for the theta Speech 

rhythms and the 7 Hz AM white-noise.  

-- please insert Figure 3 around here -- 

EXERIMENT 2 
 
METHODS 

Participants 

Thirty-five participants (19 females) took part in the second experiment (mean 

age=27 yrs., age range=18 – 51 yrs.). Participants in Experiment 1 and 2 matched by 

age (t(68) = 1.01, p > .31). All participants were right-handed Spanish native speakers 

with no hearing impairments. The BCBL ethics committee approved the experiment 

(following the principles of the Declaration of Helsinki) and all participants signed an 

informed consent. 

Stimuli and procedure 
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Participants listened to natural Speech and Rotated Speech in the MEG. The Speech 

stimuli consisted of the same sentences used in the first block of the first experiment. 

The Rotated Speech involved spectral inversion of the original sentence. Spectrally-

Rotated Speech was produced by flipping the spectrum of the original sentences 

around a center frequency of 1.5 kHz by applying a custom digital implementation of 

the original algorithm (Blesser, 1972). The Rotated Speech has very similar temporal 

and spectral complexity to ordinary Speech, but it is not intelligible. Each trial began 

with a 1 sec long auditory tone (at 500 Hz tone) followed by a 2 sec-long silence 

before the sentence (Speech and Rotated Speech) presentation. After each sentence, 

participants listened to a word segment of the speech stimuli and they had to decide if 

the stimulus appeared in the previous speech or not. In 50% of the cases, the word 

segment was contained in the sentence. Participants were instructed to press the “yes” 

button on the response pads if the word was present in the previously presented 

sentence and “no” if it was not (response side counterbalanced). 

Stimulus presentation parameters were the same of Experiment 1. Order of the 

block was counterbalanced across participants. Participants were encouraged to take a 

break between blocks and were asked to avoid head movements and blinks during the 

auditory presentation. After these experimental blocks, resting state MEG was 

recorded for ~5 min with the participants' eyes being close.  

Data acquisition and analyses 

The analysis procedures employed for Experiment 2 were the same as the ones 

described for Experiment 1. On average, the percentage of epochs retained in the final 

analyses was 88% (SD: 12%) and 87% (11%) for the Speech and the Rotated Speech 

respectively. 
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RESULTS 

Behavioral data 

Participants recognized the word segments at the end of the Speech stimuli with an 

accuracy of 96.54% (SD=2.45, min=89; max=100). The accuracy for the segments in 

the Rotated Speech was lower 55.37% (SD=4.70, min=50; max=68) but significantly 

higher than chance level (p<0.05).  

Sensor-level 

Both in the Speech and the Rotated Speech conditions, the coherence values were 

significantly (p<0.05) higher compared to the resting state in delta (1 – 2 Hz) and 

theta (6 – 7 Hz) bands (Fig. 4). Significant coherence values emerged in bilateral 

sensors in all conditions and frequency bands of interest (i.e., in both the delta and the 

theta band). The statistical comparison between Speech and Rotated Speech in the 

delta band showed stronger entrainment for Speech both in the right temporal and left 

frontal-temporal sensors (Fig. 6). The statistical comparison between these two 

conditions in the theta band did not show any reliable statistical difference.  

-- please insert Figure 4 around here -- 

Source-level 

In the Speech condition, significant (p<0.05) delta (1 – 2 Hz) coherence emerged in 

bilateral superior temporal and left frontal regions, whereas significant (p<0.05) theta 

coherence (6 – 7 Hz) was evident in bilateral superior temporal regions (compared to 

resting state, Fig. 5). In the Rotated Speech condition, coherence values were 

significantly (p<0.05) stronger (compared to resting state) in bilateral superior 

temporal regions both in delta and theta frequency bands (Fig. 5). 

-- please insert Figure 5 around here -- 
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Importantly, the coherence values obtained for the delta band in the Speech 

were significantly higher (p<0.05) than for the delta band in the Rotated Speech in 

right superior temporal and left inferior frontal regions (Fig. 6). No significant 

differences (all p-values>0.05) were obtained between the Speech and the Rotated 

Speech in the theta band.  

-- please insert Figure 5 around here -- 

 

DISCUSSION 

The two experiments showed that cortical entrainment in the delta (but not in theta) 

band was stronger for the speech compared to the control conditions (AM white-noise 

and rotated speech). In both experiments, the effects emerged in the right temporal 

and the left inferior frontal cortex. In Experiment 1, the envelope of the 2 Hz white-

noise signal was periodic, while the envelope of the Speech signal was quasi-

rhythmic. Rhythmic variability made the Speech envelope more complex than the AM 

white-noise envelope signal, and this could have triggered the need for additional 

processing resources. However, this explanation cannot hold for Experiment 2, where 

the envelope of the Rotated Speech condition preserves the temporal modulation 

patterns (and thus the complexity) of the original Speech envelope. Another possible 

explanation of the delta coherence differences observed in Experiment 1 could be 

ascribed to differences in the task. Participants performed an active comprehension 

task during the Speech listening condition, but passively listened to the 2 Hz AM 

during the white-noise condition while watching a silent movie. In Experiment 2, 

however, we employed the same task for both the Speech and the Rotated Speech 

condition and reported the same effects observed in Experiment 1, thus ruling out the 

explanation that the differential delta effect across the two experiments was due to 
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differences between the tasks. Thus, to account for the effects observed in delta, we 

turn to a different explanation.  

 Before doing so, however, we note the lack of differential coherence in the 

theta band. In both Experiments, we did not observe cortical entrainment differences 

(either at the sensor or at the source level) for the speech compared to the control 

conditions in the theta band. Even if this is a null effect, it should be noted that the 

brain coherence maps for the Speech coherence in theta, the 7 Hz AM white-noise 

condition in Experiment 1 (Figure 2) and to the Rotated Speech in Experiment 2 

(Figure 5) are highly similar, showing a right lateralized effect mainly restricted to the 

auditory regions. Theta coherence was similar both in magnitude and in the brain 

distribution of the effect in both Experiments. The fact that there was no effect in 

Experiment 1 is even more striking given the largely different scenarios (active task 

for the Speech condition and passive listening for the 7 Hz AM white-noise) in which 

coherence was estimated within the same group of participants.  

 Based on the present findings, we can conclude that the cortical speech 

entrainment observed in the theta band likely reflects a passive synchronization of the 

auditory cortices with the acoustic regularities of speech. On the other hand, the 

systematic differences observed in the delta band for speech compared to different 

control conditions in different experimental scenarios suggest that a larger set of 

higher-order processes - beyond the basic acoustic analysis of the speech signal - 

contribute to the delta entrainment observed for the speech. Recent data from our lab 

suggest that this would be true also for the cortical entrainment observed in right 

temporal regions. In a recent study (Bourguignon et al., in press), we took advantage 

of a location comparison procedure and showed that whereas the right hemisphere 

peak of the theta coherence emerged close to the primary auditory cortex, the right-
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hemisphere delta peak was located ~15 mm more posteriorly along the superior 

temporal gyrus, in a higher-order auditory processing region. This MEG location 

evidence supports the idea that theta entrainment reflects activity related to the 

acoustic analysis of the auditory input, whereas delta entrainment reflects an 

additional set of higher order speech processing mechanisms. 

This observation is supported by a number of recent studies that highlight how 

cortical entrainment in delta contributes to additional processes that go beyond 

auditory parsing. Along these lines, the data provided by Ding et al. (2016) showed 

that low-frequency oscillatory activity can reflect tracking of syntactic structures in 

connected speech even in the absence of prosodic contours. In a similar vein, Meyer 

et al. (2017) observed that delta-band phase information reflects individual variability 

in syntactically grouping words into larger phrases, independent of the prosodic 

structure of the speech input. Delta-band oscillatory brain activity thus not only 

reflects the acoustic tracking of the speech envelope, but also entails higher order 

processes involved in the syntactic structuring of the input (Ding et al., 2016; Meyer 

et al., 2017).  

Delta-band entrainment modulations (Vander Ghinst et al., 2016) have been 

observed for speech processing in increasingly noisy conditions, with the left 

temporal regions recruited more for stimuli requiring increased attentional control. 

Interestingly, no effect was observed for theta cortical entrainment (see also Giordano 

et al., 2017, for audio-visual speech integration). A possible mechanism for such 

attentional modulation has been reported by Park et al. (2015). They showed that left 

frontal oscillatory activity in the delta channel causally modulates the speech-

entrained oscillations in the left auditory regions in temporal cortex. Importantly, the 

speech-brain coupling was enhanced by top-down control and the effect was related to 



	

18	

speech intelligibility. The frontal lobe regions discussed by these authors are very 

similar to the ones we report in this study, involving the pars opercularis of the 

inferior frontal cortex extending to more dorsal regions more involved in motor 

programming (see Figures 2 and 5). These controlled processes during speech 

perception have been suggested to support turn-taking in conversational settings 

(Friston & Frith, 2015; Levinson, 2016), where a listener has to plan what she/he is 

going to utter once the talker has concluded her/his message.  

Finally, delta-band cortical entrainment has been associated with normal 

compared to impaired reading. In a recent study (Molinaro et al., 2016), we reported 

differential delta entrainment between dyslexic and control readers in the right 

temporal cortex and in the left inferior frontal gyrus (pars opercularis). Effective 

connectivity analyses indicated that the strength of the coupling between these two 

regions is positively related to the development of normal phonological skills. Again, 

no specific role for the theta entrainment was observed for reading acquisition.  

The similar network recruited for the theta entrainment for both speech and 

control stimuli suggests that this latter phenomenon is more tightly linked to the 

acoustic analysis of the input independent from its linguistic nature. According to 

some authors the theta entrainment could be modelled as a train of evoked responses 

to the syllabic modulations of the speech (Ding & Simon, 2014, for a review). Given 

the observed delta (phase)-theta (amplitude) coupling during speech perception 

(Gross et al., 2013), it can be hypothesized that the “syllabic” theta rhythm is 

modulated by slower oscillatory brain activity taking advantage of the prosodic (more 

macroscopic) structure of the speech envelope. How this cross-frequency interaction 

develops and through which cortical networks must be better evaluated in the future.  
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We underscore that while theta cortical entrainment during auditory 

processing seems insensitive to the linguistic nature of the input, it plays a mediation 

role in audio-visual speech integration between the visual and the auditory modality 

(Park et al., 2016; Zion Golumbic et al., 2013). In fact, entrainment of the occipital 

cortex to lip movements is more prominent in the theta band (compared to speech-

only conditions) and is correlated with successful speech understanding. Occipital 

theta band lip-movement entrainment can thus facilitate speech perception. A recent 

study (Giordano et al., 2017), however, still highlights a relevant modulation of the 

delta band activity in response to differential signal-to-noise ratios during audio-visual 

speech integration. Interesting, higher noise levels recruited the inferior frontal 

regions to a larger extent.  

The present study thus points to a large cortical network that shows delta 

entrainment. The network includes both associative regions of the auditory cortex and 

more frontal regions classically related to higher order processes involved in language 

comprehension and production. Future studies should better determine if this network 

takes advantage of the slow prosodic cues in the speech to top-down constrain the 

decoding of speech at faster rates for both syllabic and phonemic levels of processing. 

On the other hand, the theta entrainment emerged as a lower-level process tightly 

related to the acoustic features of the auditory input. This distinction seems to be 

supported by a number of studies in the literature (Keitel et al., 2017; for speech in 

noise: Vander Ghinst et al., 2016; in dyslexic populations: Molinaro et al., 2016). 

Future research should better determine which components of the delta entrainment 

are related to language processing and which are more related to top-down influences 

on sensory processing.  
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Figure captions 

 

Figure 1. Spectra and topographic distribution of the coherence values for the Speech 

(Top), 2 Hz AM white-noise (Middle) and 7 Hz AM white-noise (Bottom) conditions 

in Experiment 1. For each condition, the coherence spectra (corrected by the 

coherence spectra in the resting state condition) was calculated in the 0 – 10 Hz 

frequency range. The coherence spectra in representative sensors of the left and right 

hemisphere is represented (MEG0212/3, MEG0242/3, MEG1322/3, MEG1332/3, 

MEG2612/3). After the permutation test, the frequencies showing significant (p<0.05) 

coherence values during Speech condition compared to resting state are highlighted. 

Sensors showing significant (p<0.05) coherence values during each condition 

compared to resting state are also highlighted. 

 

Figure 2. Source-level coherence analysis for the Speech (Top), 2 Hz AM white-

noise (Bottom-Left) and 7 Hz AM white-noise (Bottom-Right) conditions in 

Experiment 1. Statistical map (p-values) showing significantly increased coherence 

for the Speech, the 2 Hz AM white-noise and the 7 Hz AM white-noise conditions 

compared to the resting state in the left (LH) and the right (RH) hemisphere. 

 

Figure 3. Speech vs withe-noise AM at 2 Hz. Left: Topographic map of the 

coherence differences between Speech and 2 Hz AM white-noise. Sensors showing 

significant (p<0.05) higher coherence for the delta rhythms in Speech compared to the 

2 Hz AM in the left (LH) and the right (RH) hemisphere are highlighted. Right: Brain 

map (p-values) showing significant (p<0.05) higher coherence for the delta rhythms 

in Speech compared to the 2 Hz AM in the LH and the right RH. 
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Figure 4. Spectra and topographic distribution of the coherence values for the Speech 

(Top) and Rotated Speech (Bottom) in Experiment 2. For each condition, the 

coherence spectra (corrected by the coherence spectra in the resting state condition) 

was calculated in the 0 – 10 Hz frequency range. The coherence spectra in 

representative sensors of the left and right hemisphere are selected (MEG0212/3, 

MEG0242/3, MEG1322/3, MEG1332/3, MEG2612/3). After the permutation test, the 

frequencies showing significant (p<0.05) coherence values during Speech condition 

compared to resting state are highlighted. Sensors showing significant (p<0.05) 

coherence values during each condition compared to resting state are also highlighted. 

 

Figure 5. Source-level coherence analysis for the Speech (Top) and Rotated Speech 

(Bottom) in Experiment 2. Statistical map (p-values) showing significantly increased 

coherence for the Speech and Rotated Speech in delta and theta bands in the left (LH) 

and the right (RH) hemisphere. 

 

Figure 6. Speech vs Rotated Speech in the delta band. Left: Topographic map of the 

coherence differences between Speech and Rotated Speech. Sensors showing 

significant (p<0.05) higher coherence for the delta rhythms in Speech compared to the 

Rotated Speech in the left (LH) and the right (RH) hemisphere are highlighted. Right: 

Brain map (p-values) showing significant (p<0.05) higher coherence for the delta 

rhythms in Speech compared to the Rotated Speech in the LH and the right RH. 
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