
sensors

Article

Enhanced Flexibility and Reusability through State
Machine-Based Architectures for Multisensor
Intelligent Robotics

Héctor Herrero 1,*, Jose Luis Outón 1, Mildred Puerto 1, Damien Sallé 1 and
Karmele López de Ipiña 2

1 Tecnalia Research and Innovation, Industry and Transport Division, San Sebastián 20009, Spain;
joseluis.outon@tecnalia.com (J.L.O.); mildred.puerto@tecnalia.com (M.P.); damien.salle@tecnalia.com (D.S.)

2 Department of Systems Engineering and Automation, Universidad del País Vasco/Euskal Herriko
Unibertsitatea, EleKin Research Group, San Sebastián 20009, Spain; karmele.ipina@ehu.eus

* Correspondence: hector.herrero@tecnalia.com

Academic Editor: Gonzalo Pajares Martinsanz
Received: 1 March 2017; Accepted: 23 May 2017; Published: 31 May 2017

Abstract: This paper presents a state machine-based architecture, which enhances the flexibility
and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed
architecture, in addition to allowing absolute control of the execution, eases the programming of new
applications by increasing the reusability of the developed modules. Through an easy-to-use graphical
user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing
the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to
demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is
presented for evaluating the presented approach versus traditional robot programming techniques.

Keywords: intelligent robotics; flexibility; reusability; multisensor; state machine; software
architecture; computer vision

1. Introduction

An analysis [1] of the current situation in manufacturing plants highlights three major trends:

• An ever-increasing customization of products and short lifecycle, which require an increase in the
flexibility of the production means (one unique system must handle all of the product diversity
and operations) [2,3]. Robots fit perfect into this topic due to their versatility; robot programs can
adapt to the customizations of the products.

• A large variation in production volumes, which requires an increase in the reconfigurability
of production (one system for one product/task within recombinable production lines) [2,4].
Robotic mobile platforms play an important role in this trend; easy to move robots are necessary
in some production chains where production volumes change frequently.

• Limited access to skilled operators due to an aging workforce, changes in education and an
ever-faster technology development. This requires new solutions to assist operators and provide
collaborative work environments [5]. Collaborative robotics are being developed for this topic.

The research addressed in this paper focuses on the first trend: the need for highly flexible and
intelligent robotic systems. Despite the large effort in the research community, large companies, as well
as small and medium enterprises (SME) still do not have appropriate software tools and solutions to
react rapidly with economic viability for an interesting return of investment for the automation of their
processes. The direct consequence is that production operations are mostly performed manually, with

Sensors 2017, 17, 1249; doi:10.3390/s17061249 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1249 2 of 21

high operation costs that endanger those companies with respect to lower wage countries. This research
is thus oriented toward developing and providing a software ecosystem that allows for a rapid and
efficient programming of production processes, providing the required flexibility and permitting
an effective integration of auxiliary sensors and artificial vision systems. Even if this approach is
generic and applicable to industrial manipulators, this paper will be focused on dual-arm multisensor
robotic operations.

The dual-arm robots provide more dexterity, in addition to the advantage that they can be used in
the existing workstations. Due to these arguments, the dual-arm robot deployment is growing year
by year, not only in large multinationals, but also in SMEs. Sector experts [2,6] affirm investments for
robot deployment are amortized in 1–2 years; however, this information cannot be extrapolated to all
cases. However, applications with short production batches, environments prone to many changes
and processes that need human-robot collaboration or special environment supervision do not comply
with this trend. Dual-arm robots are being introduced in such contexts. The growth of dual-arm
systems [7] is resulting in many efforts made by robotic researchers to manage them. Programming,
coordinating and supervising bi-manual robots is a need that is increasingly being demanded by the
community; even more with the rise of collaborative robots, which have to integrate different sensors
for cell supervising and monitoring [8,9]. In this scenario, the need for actuation when external signals
are received becomes essential, e.g., a person enters the workspace of the robot, and the robot must
stop its movement and adapt its behavior.

In this paper, we present an approach to alleviate the challenges that can be identified for dual-arm
robotic programming. The presented framework eases the deployment of industrial applications
and allows managing the execution control, increasing the reliability and traceability of the system
(Section 2). To ease the deployment of this kind of application, we present how the framework can
integrate skill-based programming. For understanding the advantages, the assembly operation of
an aeronautical part is detailed. Moreover, an evaluation of the architecture is presented (Section 3).
Finally, we present the discussion, conclusions and future work (Sections 4 and 5).

2. Materials and Methods

2.1. State Machine-Based Execution Coordination for Dual-Arm Robots

Traditional robot programming is still not very flexible; thus, the dual-arm programming suffers
the same problems. In the industry, smaller and smaller batches are ordered, and as a consequence, the
costs of reprogramming the robots grow. Even though there are usually different parts, the process is
very similar, e.g., assembling parts with different types of screws. In this case, the assembly operation
is the same; only the screw size, type or position is changing. Those tasks can be modeled; the key is to
be able to subdivide a task (screw operation) into smaller operations (robot movement, end-effector
actuation, etc.). Then, re-using these tasks can be made parametrizing correctly the corresponding
suboperations without needing to reprogram the whole task. Grouping the robot basic movements
(primitives) according to tasks or skills is an alternative that many authors have followed [10–14].

One of the most relevant issues in dual-arm robotic programming, especially for industrial
applications, is the lack of powerful and easy to use graphical user interfaces [15]. An easy to configure
graphical user interface (GUI), which allows the previously-mentioned skill-based programming,
will enable operators to program and maintain the industrial processes. This, in addition to the
workers feeling a part of the automation process, will also contribute to reduce the costs of the robotic
systems’ deployment.

Regarding the execution control, state machines can address dual-arm challenges. These tools are
commonly used for general-purpose processes, and in particular, they have been extensively adopted
by the robotics community. In this aspect, the work made by different authors combining finite
state machines with knowledge and skills is very relevant [16–18]. State machines are an easy way
for describing behaviors and for modeling how components react to different external and internal



Sensors 2017, 17, 1249 3 of 21

stimuli [19,20]. In this area, there are different implementation alternatives, e.g., there are many
projects using Orocos rFSM [21]. rFSM is a small and powerful state-chart implementation designed
for coordinating complex systems, such as robots. SMACH [22] is another implementation of state
machines. It can be defined as a task-level architecture for rapidly creating complex robot behavior.
In this work, SMACH has been selected for implementing the state machine. One of the reasons is
because SMACH can be used under the ROS (Robot Operating System) [23,24], which is a flexible
framework for writing robot software. ROS is a collection of tools, libraries and conventions [25] that
aims to simplify the task of creating complex and robust robot behavior across a wide variety of robotic
platforms [26]. As a complementary element to the execution control, multi-agent systems can be
useful for decision making in coordination and synchronization tasks [27,28].

2.1.1. Proposed Architecture

As illustrated in Figure 1, the proposed state machine interconnects the application development
framework (graphical user interface) and the robotic lower level control system. The presented state
machine is composed of different states where each state corresponds to one of the basic operations that
the robot can execute. Basic operations are considered the functions or commands that by themselves
are able to achieve a goal, e.g., Cartesian point to point interpolation. It can be understood as a robot
API (application programming interface). Following the program provided by the user, the active state
triggers its corresponding state to execute the necessary functions.

Figure 1. Proposed overall architecture. The figure shows how it is divided into three levels.

In this research, all of the prototypes are being tested and validated in a dual-arm robot, specifically
in a Kawada Nextage Open Robot (Figure 2). This robot has humanoid aspects, with two arms of
6 degrees of freedom (DOF) attached to a rotatory torso; it is equipped with a 2-DOF head, which
incorporates the stereo vision system. In conclusion, it is a 15-DOF robot managed by a single controller.
In order to obtain more precision, other stereo vision systems have been added to each wrist.

As is detailed in Section 3.1, the applications are composed of tasks, and these in turn are
composed of primitives (or previously-mentioned basic operations), which are translated to states.
On the one hand, the execution engine triggers state changes at the low level. On the other hand, in the
case of the Kawada Nextage Open robot, the states are connected to the robotic system through an
OpenRTM bridge [29]. Even so, it should not be forgotten that ROS allows hardware independence,
and changing the bridge properly, another robotic system can be used (for example, Orocos or the Fast
Research Interface [30] to interface a Kuka LWR with the proposed architecture).

This combination of the application development framework and a low level state machine
allows us to considerably improve the flexibility and hardiness, make the programming easier, achieve
hardware independence and environment control, resulting in a more industry-oriented solution.



Sensors 2017, 17, 1249 4 of 21

Figure 2. Nextage Open Robot where all developments are being tested.

2.1.2. Core Description

One of the first requirements that was identified was introspection, which is a tool able to
provide the current execution state continuously, allowing us to manage possible errors and improving
the recovery from them. In Figures 3 and 4, the proposed architecture is outlined. The proposed
architecture consists of two state machines, one per arm, with some common states. These common
states are used when a synchronization between the arms is required, i.e., when both arms of the robot
have to move at the same time. This combination of two state machines related by some common
states combines the advantages of having individual machines for processes that do not need dual-arm
cooperation, with the robustness that allows centralized states for dual-arm requiring processes.
The use of the SMACH/ROS combination provides some tools that are very useful for introspection.
SMACH uses ROS messages for publishing, besides other information, the current state; thus, any
module of the software can be checked easily.

Figure 3. Proposed state machine-based architecture. The figure represents an overview of
the architecture.

When the application is launched, the system starts from a ready state and keeps changing to
different states that can be seen as available abilities or capacities of the robot. Note that some states
have not been included in order to simplify the diagram. These states are pause/stop, error handling
and finish. The proposed work in this paper allows either human or sensor-based supervision of
the environment and permits canceling or adapting plans according to sensor values and perception
system information. When an error occurs, e.g., in a trajectory execution, the system is able to cancel



Sensors 2017, 17, 1249 5 of 21

the current operation in order to handle the error and return to a safe position (if possible) or enter an
alarm state that requires operator intervention.

Figure 4. Proposed state machine-based architecture in detail. The figure shows existing states
and transitions.

2.1.3. Description of the Developed States

Each state has been implemented as a module that generally is independent from the core. Only a
few modules have been defined as fundamentals. These special modules are articular/Cartesian,
full body coordinated motion and trajectory execution. All available modules for this version are
shown in Figure 3. It should be emphasized that according to the requirements of the different
applications, the available states can be updated by incorporating new capabilities or removing others
that will not be used.

Table 1. Summary of the main elements of the state machine.

State Description

Ready
The state machine is ready for receiving new instructions. This state is waiting
until the execution engine sends a new request.

Cartesian
articular motion

Manages the robot movements both in the Cartesian space and the articular
space. If the movement cannot be executed correctly, there is an error handling
state to manage it.

Full body
coordinated

motion

Allows controlling both arms in coordination. Two arms must be in this state
to start coordinated motion. Sending the values of the 15 joints of the robot
is necessary.

Record
trajectory

Allows recording trajectories with a trajectory planner or teaching by
demonstration. These trajectories are stored in a database for future use.

Trajectory
execution

Executes trajectories, provided by a trajectory planner or previously stored in
a database.

End-effector
operation

Manages end-effector operations; depending on the end effector, different
operations can be made, e.g., gripper open/close, deburring tool
activate/deactivate, screwing operation, etc.

Vision
operation

Manages different computer vision operations. This includes picture
acquisition, processing and reference frame transformation, among others. As
the robotic system has multiple vision systems, this state is responsible for
managing them depending on the operation that will be executed.

Master/slave
mode

Puts robot in bi-manual coordinated manipulation mode; one arm actuates
as the master and the other one as the slave. Consists of planning a trajectory
for the master arm and then computing this trajectory with an offset for the
slave arm.



Sensors 2017, 17, 1249 6 of 21

In order to understand the proposed architecture, Table 1 summarizes the different states and
their utility. Besides, in Table 2, a summary of the signal and transitions is presented. Each state may
contain a more or less complex structure according to its purpose. On the one hand, for example,
the vision operation state only contains the calls to different vision functions. On the other hand, the
articular/Cartesian motion state is highly general, i.e., this state contains all of the required code to
manage motions both in Cartesian and articular spaces. For a state transitioning, different events are
handle; these events can be thrown out by the safety supervision system or by any module.

Table 2. Summary of the signals and transitions of the state machine.

State Signal Transition to

Ready motion_request Cartesian/articular motion
vision_request Vision operation
end_effector_request End effector operation
... ...
end Finish

Cartesian ok Ready
Articular pause Pause
motion stop Stop

error Error handling

Pause resume Cartesian/articular motion
stop Stop
error Error handling

Stop error Error handling

Error ok Ready
handling end Finish

2.2. Flexible Application Development

The proposed architecture in this paper not only refers to the state machine-based execution
manager, but contains everything necessary for deploying different robotic applications. One of the
key advantages of the proposed work is that different applications reuse the common structure of
the framework.

2.2.1. Software Structure of the Framework

In order to ease the maintainability and assure software quality, the developed framework is
organized into different packages. In this way, following the ROS philosophy, each package must fulfil
minimum quality criteria.

The simplest application is composed by at least the following three packages: execution engine,
core functions and application functions. Figure 5 illustrates these packages (three columns) and the
relation between them. As can be seen, the execution engine creates (instantiates) the state machines.
Each state machine has an instance of an application function (RivetInstallation, AntenaAssembly, etc.).
Application functions inherit from core functions all of the attributes and methods, which allows using
the robot basic operations (Section 2.1.3), enhancing and particularizing them for applying into specific
industrial applications. In this way, all applications are composed by core functions (basic operations)
and application functions, which are a combination of the previous ones. These function libraries
basically configure the requests for the state machine filling required parameters. This organization
also allows having specific graphical user interfaces for each project (rivet_installation_gui) and a
common one for basic robot guiding or teaching (dashboard).



Sensors 2017, 17, 1249 7 of 21

Figure 5. Software structure of the framework.

2.2.2. Execution Engine

The execution engine creates two threads, one per arm; these threads will contain instances of the
proposed state machine. The execution engine will continue its execution managing the request of
operations, i.e., the execution engine is responsible for orchestrating the application flow.

At this point, it is important to think about the change of paradigm for executing robotic
applications. As has been explained here, there are three “independent” threads. As the proposed
architecture is running under ROS, the state machine threads are actually ROS nodes and basically
act like threads with their own parametrization and independent behavior. The execution engine
communicates with these nodes via ROS messages, which contain robot commands with the necessary
parametrization; in this way, each node receives commands to execute and starts triggering the state
machine to the convenient state. When the operation is finished, the state machine returns to the
ready state. The heart of the matter remains in how these messages are generated and managed
(Section 2.2.3).

The consistency of the execution is guaranteed by the deterministic operation of the state machine.
Each node will not receive the next operation until necessary synchronization requirements are met,
i.e., until the execution engine can assure that state machines are in the ready state. In Section 3.1,
a real use case is presented explaining how the operations are executed maintaining the coordination
of both arms.

2.2.3. Application to Executable XML

As mentioned above, applications are stored in XML files, with the particularity that each group
of the robot (left arm, right arm and torso/head) has its own instructions. This is because each state
machine needs to execute operations both synchronously and asynchronously: in some cases, a process
requires both arms of the robot at the same time, e.g., a big part that needs two arms for a correct
handling; in other cases, some process can require the use of both arms, but not at the same time. XML
files contain, in addition to the operations, the necessary flags and synchronization tools to assure this
coordination. In this paper, for the presented use case, the simplest instruction for coordination is used:
a wait instruction. This allows one arm to wait until the other arm finishes its ongoing operation.



Sensors 2017, 17, 1249 8 of 21

Generating a simple application (as can be seen in Figure 6) can be performed writing each XML
file by hand; however, when the application and complexity grow, it is difficult to maintain the correct
perspective and timeline, leading to errors. To address this, a simple graphical interface can be used.
The presented GUI in Figure 7 obtains a list of available functions from core functions and application
function packages (introduced in Section 2.2.1). For creating new applications, the user has to add
functions and parametrize them. With the help of the graphical interface many programming errors
are avoided, especially for the synchronization of both arms, allowing a global vision of the execution
flow. In Figure 7, at the right frame, the application program is represented; the displayed example is
for rivet installation process. When the application is ready, an XML file is created, containing the list
of commands that each arm has to execute. The wait function represents the simplest synchronization
mechanism, because in those time lapses, the left arm has to wait until the right arm finishes; therefore,
in the generated XML file, this will be translated as the wait synchronization operation.

Figure 6. Application program fragment.

Figure 7. Simple GUI for new application development.



Sensors 2017, 17, 1249 9 of 21

3. Results

3.1. Validation in a Real Use Case

As Tecnalia [31] is in direct contact with companies in different industrial sectors,
these developments have been tested in several scenarios with different requirements. One of the
most relevant use cases is for the aeronautics sector; Tecnalia and Airbus Operations (Puerto Real
facilities, Spain) have been working together for several years developing pilot cells for a dual-arm
robot (see LIAA [32] (the EU’s FP7 program) for flexible assembling operations). The first steps
toward the technology transfer for industry validation of this architecture are currently in process in
the Rapid Reconfiguration of Flexible Production Systems (ReCaM) (this research has received funding
from the European Union’s Horizon 2020 research and innovation program under Grant Agreement
No. 680759) [33] project (the EU’s Horizon 2020 program). The relation between a technological center
(Tecnalia), a robotic system integrator (DGH [34]) and the end user (CESA [35]) is a key issue in
ReCaM, where the aim to demonstrate a set of integrated tools for the rapid reconfiguration of flexible
production systems, particularly the assembly of aeronautical actuators, is addressed.

As had been mentioned in previous work [36], one of the most relevant tasks in the aerostructure
assembly is the rivet installation operation. In this paper, the progress made on the automation
of the riveting installation is presented; in the current prototype a deburring operation has been
added, because this prepares the surface of the drilling perimeter for the correct rivet installation.
This operation is performed with an integrated deburring tool in one of the grippers of the robot.
The other gripper is prepared for taking and introducing rivets into drilled holes. This demonstration
takes advantage of the dual-arm capabilities. Furthermore, for robot perception, a stereo vision system
has been incorporated for the precise hole detection; using incorporated stereo cameras on the arms,
production tolerances (0.2 mm) can be achieved [37]. In the same way that the vision system is used,
different kinds of sensors can be integrated adding the corresponding state to the state machine.

Summarizing, the current demonstrator is composed of the following steps:

a. Detect and debur the drilled hole with the left arm (Figure 8).
b. Pick and extract the rivet from a tray with the right arm (Figure 9a).
c. Insert the rivet into the detected hole with the right arm (Figure 9b).

Figure 8. A drilled hole is deburred after detecting its position by vision.



Sensors 2017, 17, 1249 10 of 21

Figure 9. (a) The right arm of the robot is taking a rivet from a tray; (b) after taking the rivet, it is
introduced in the previously-detected drilled hole.

Note that Steps a and b can be performed at the same time, because the rivet extraction operation
take more time than the deburring operation.

If these operations are viewed as skills, the deburring skill, pick rivet skill and rivet inserting
skill are obtained. Figure 10 shows how skills are decomposed into primitives. The organization
into skills eases the composition of new programs, because the parametrization is perceptibly easier.
This parametrization contains the key features that vary between different skill executions. The way
to determine the parameters is as follows: the system programmer starts by selecting the references
or elements that change for different scenarios. For example, in the case of deburring and insertion,
the references of the holes and rivets to be inserted must be parametrized. If that would not be
enough, the parameters that allow one to configure the differences between scenarios would be added.
Once these skills have been validated, abstracting from primitives is possible. In the case of the
deburring operation, only the theoretical position must be provided, taking into account that this
information can be extracted from the CAD model of the piece.

Calibration or the referencing process of the cell is beyond the scope of this work (even if it will
be addressed in future work); nevertheless, it can be easily summarized in three steps: at first, the
positions of the drilled holes are obtained, referenced to the origin of the CAD model. After that, using
an accurate tool center point (TCP), three known points of the real piece are touched; the easiest way is
usually touching one corner and their adjacent edges with the TCP. With these points, the position and
orientation of the piece can be estimated. Finally, using the obtained theoretical position of the piece in
the robot frame and the position of the hole in the piece frame, a frame transformation can be done to
obtain the approximate position of the piece drillings. Of course, this approximate position must be
corrected using artificial vision to achieve the required 0.2 mm of precision.

Returning to the proposed architecture, once the skills are decomposed, the resulting primitives
are the ones that are executed by the state machine. Each state is processing the primitive callbacks and
handling errors if they take place. Thus, the error handling is simpler, and it is managed specifically
in each state or module. Taking one of the operations that are being analyzed, the sequence of the
machine state is shown in Figure 11.

The execution engine sends to the state machines the request for the next operation, based on the
information that is stored in the application XML (see Figure 6). The state machine changes from one
state to another, completing the requested operations. As can be seen in Figure 12, some operations
of the task of installing one rivet can be performed using both arms of the robot at the same time,



Sensors 2017, 17, 1249 11 of 21

improving the cycle time. After these coordinated operations, an exclusive movement of the right arm
is performed; at this moment, the left arm is waiting until the right arm finishes the installation of the
rivet. The whole process of rivet installation is composed by the repetition of this block of skills. In
order to demonstrate the adaptability of the presented framework, the CESA [35] use case is presented.

Figure 10. Install rivet process organized into skills. Skills are composed by primitives.

Figure 11. Debur drilling skill mapping into the state machine.



Sensors 2017, 17, 1249 12 of 21

Figure 12. Coordination between both arms’ timeline.

As has been mentioned above, Tecnalia is working on different projects with assembling
operations in the aeronautical sector. This use case is being developed under the ReCaM
project [33], one of the principal topics of which is the development of assembly capabilities for
robots. In the ReCaM project, the starting point will be the product requirement description, which is
first matched against the resource capabilities existing on the current system layout. If no matches
are found, the system needs to be reconfigured. New resources can be searched from the resource
catalogs. This matchmaking and search is allowed by the OWL-based capability model [38], which
is used to describe the resource capabilities in a formal, computer- and human-interpretable manner.
The capability matchmaking approach is presented in [39]. Once the system has been re-configured
(or found suitable as such), the actual operations need to be programmed and executed. For this
programming, the skill-based approach by Tecnalia is utilized. Basically, the required steps are the
following: pick and assembly various elements (valves, springs, caps, etc.) into a manifold. All of the
elements are stored in a kit, which can be referenced and located by artificial vision.

In this demonstrator, the information extracted from CAD models (an offline process that is not
in the scope of this work) plays an important role. This information is modeled into different XML
files: fixture information and element information. The fixture information XML file contains the
position and orientation of the relevant points of the fixture; these points are marked as targets for pick
and place operations. The element information XML file contains the grasp position, the necessary
gripper for grasping and the assembly point in the model, i.e., the point that is necessary to align
with the fixture relevant point. This skill is able to perform the steps listed above to complete the
assembly of different elements into the manifold, only taking into account the information provided in
the XML files. Figure 13 shows a detailed example of how the assembly skill is parametrized using the
provided information.



Sensors 2017, 17, 1249 13 of 21

Figure 13. Assembly skill configuration for one cap of the manifold.

As can be seen, different applications can be modeled following the same schema; the parameters
that appear in the skill configuration are codified in an XML file (as has been presented for the
previous use case in Figure 6). This XML is completely compatible with the state machine and
execution engine (Sections 2.1.1 and 2.2.2, respectively). The system capacity to adapt to changes in the
environment provides advantages. For instance, if there is variation in the position of parts (elements)
or in the number of parts to process, the high-level program can be adjusted through minor changes
(e.g., reprocess the CAD model for updating positions and adding more blocks of a particular skill).
No changes in the low-level program are needed. As a consequence, an increase of system flexibility
has been achieved.

3.2. Evaluation

In the last few years, several methods for evaluating software architectures have been defined:
scenario-based (SAAM, architecture tradeoff analysis method (ATAM), ALMA, etc.) [40–45],
mathematical model-based (reliability analysis, performance analysis) [46] and metrics-based software
architecture evaluation methods (QuADAI ) [47]. In order to evaluate the advantages of the proposed
architecture, based on the previously-mentioned methods, a simplified approach of the architecture
tradeoff analysis method (ATAM) has been selected to perform a comparative analysis [40,48,49].
This method is widely used by the research community for architecture evaluation [50–52]. When
the architecture is evaluated, depending on the requirements, different qualities must be analyzed.
ATAM concentrates on evaluating suitability; therefore, the selection of the appropriate qualities has a
remarkable relevance.

As has been mentioned above, ATAM is a scenario-based method; that is why different scenarios
have been selected in order to compare different desirable qualities. On the one hand, the creation
of a new application from the beginning scenario has been chosen. New application deployment
implies working environment definition, relevant position acquisition, fixture calibration, robot process
programming, simulating, testing and adjusting. On the other hand, another common scenario is
proposed, adapting an existing application to new product references (the required process would be
the same, but could change the number of operations or the dimensions of the elements).

The proposed architecture has been compared with different ways of addressing the automation of
an industrial process [53,54]. The traditional and most commonly-used method is online programming,
i.e., teach by demonstration (moving the robot with the teach pendant), replicating the process and
acquiring required way points. In other cases, the use of offline programming software can be found.
This approach is composed by the following steps: the generation of the 3D scene, tag creation,
trajectory planning, process planning, post-processing simulation and calibration [54]. As can be seen,
the proposed framework in this article is very similar to an offline programming process, though with
some improvements.

In order to evaluate different approaches, a set of desirable qualities have been analyzed:



Sensors 2017, 17, 1249 14 of 21

Ease of use: To deal with the first scenario, differences between online programming and other
alternatives are evident. A new application deployment requires stopping the production for fixture
calibrations, way point acquisition, process replication, simulations and adjustments. These tasks
require a high expertise in robotics and programming. With offline alternatives, the process can
be offline almost entirely; only calibration and final adjustments require stopping the production.
Generally, offline programming software is very complex and also requires highly trained staff. The cost
of these technicians (plus license costs) could not be affordable for SMEs. The proposed framework
provides a set of ease-to-configure primitives and skills, which reduces the training costs.

Adaptability: This quality impacts the second scenario. Modifying an existing process using
online programming is very time consuming; new position acquisition moving the robot implies
stopping the production. For offline programming, changes can be made without stopping the
production, although depending on the nature of the changes, this could imply repeating many tasks
in order to adapt the application. In the case of the proposed approach, the process is similar to offline
programming, though with the particularity that the developed skills are programmed keeping in
mind possible changes. For example, in the case of deburring and riveting holes (Section 3.1), possible
changes in the hole positions and rivet size are anticipated, so the skill takes the information of the hole
position and size from a processed CAD file. Then, the skill adapts its behavior, configuring the target
position and gripper aperture with respect to the obtained information. The same idea is applied in the
assembly operation; the developed skills can adapt to usual changes in this kind of process: changes in
assembly points’ positions, changes in parts’ size, etc.

Reliability: The presented approach provides an implicit supervision tool: the state machine
allows knowing the current status of the execution. Besides, the modular error handling permits an
individualized response for the different types of errors. Traditional robot programming techniques
require ad hoc error handling in each critical part of the program.

Subsetability: This is the ability to support the production of a subset of the system [54].
This concept could be important in different ways. For the commercial side, the possibility of having
different optional modules (states or even skills) is an advantage. In the case of requiring incremental
developments, the possibility to deliver simple prototypes that are enhanced with new modules and
abilities is interesting. For the end user, having only the functionalities that are required could reduce
the training time and increase the ease of use. Subsetability quality does not exist for traditional online
programming, and for offline programming, software usually is used only for the commercial aspect.

Performance: Both online programming and offline programming have the best performance,
because these methods do not add any layer of software in the execution time, i.e., when the
configuration or set-up phase concluded, only a robot specific code is executed in the controller.
In the proposed framework, the XML program is parsed for executing existing skills, which are
composed by primitives that execute directly in the robot controller. This, combined with the overhead
from the state machine, results in greater demands on processing resources. Even so, the executed
process and robot movements are the same for all alternatives, so these differences in performance do
not affect the overall operation.

Table 3 summarizes the strengths and weakness of different robot programming approaches.
Online programming is the simplest approach, which only has the performance as the clear advantage.
The proposed approach can be seen as an enhanced offline programming method; both have in
common many insights, in spite of the fact that through the skill programming and state machine-based
architecture, the ease of use, adaptability and subsetability have been improved. Thanks to the
developed skills, many of assembly applications that are composed by pick and place operations can
be easily modeled and resolved by the presented framework. This proposal is a step forward in the
generalization of this kind of problem. These improvements have a performance drawback, but taking
into account the advantages, the trade-off is acceptable.



Sensors 2017, 17, 1249 15 of 21

Table 3. Strengths and weakness of different robot programming approaches.

Quality
Online

Programming
Offline

Programming
State Machine and Skill Based

Programming Framework

Ease of use − + ++
Adaptability − + ++

Reliability − +− +
Subsetability − + ++
Performance ++ ++ −

Based on the obtained conclusions in Table 3, the representation of the claimed improvements
has been done. The more important qualities that have been improved are the ease of use and the
adaptability. These improvements are translated directly into the reduction of the development time.
Despite that the required time for the programming of different automation processes can vary widely,
one of the most usual operations has been selected: pick and place. If the CESA use case has been taken
as the reference (Section 3), in the following lines, an analysis of the required time for programming
the assembling operations can be found.

Figure 14 shows how the online programming development time grows linearly according to
the number of operations that must be programmed. Each operation requires moving the robot
manually and storing waypoints. Regarding offline programming, an initial overrun can be perceived,
mainly due to the required time for cell referencing, i.e., the transition between simulation and reality.
After that, successive operations require less time than manual teaching. Concerning skill-based
programming, higher initial overrun is necessary, due to the required cell referencing and the additional
information, which complements the skills (grasp positions, assembly positions, gripper information,
etc). When this information is modeled, the successive instantiation of assembly skills is faster; only
drag and drop and simple parametrization are required. In conclusion, it can be perceived how when
more than five operations are required, the skill-based programming offers better performance.

Figure 15 presents the required development time for adjusting an existing process, i.e.,
when something has moved or another reference of the product requires position adjustments.
As before, online programming will require repeating all of the process, teaching new waypoints and
assuring no collisions. Regarding offline programming and skill-based programming, in this case, they
behave in a similar way: one the one hand, an initial cell referencing is necessary, and on the other
hand, as the program is already created, only parameter modifications are required. Of course, the
necessary changes are different in both methodologies, but the same required time has been estimated.

Finally, Figure 16 shows the required time if the robot of the process is changed to a different
one. Taking a process composed by 10 operations, for an online programming approach, this is a
completely new process. Using an offline solution, in the best case, the program sequence can be
reused. However, it must be noted that a revision of all of the waypoints must be done. In the case of
skill-based programming, the developed skill does not require a revision in terms of programming or
parametrization because the problem to resolve is the same. For the proposed framework, this scenario
is taken as another process adjustment, requiring the same time as in the previous case.



Sensors 2017, 17, 1249 16 of 21

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11

Complexity (number of operations)

D
ev

el
op

m
en

tt
im

e
(d

ay
s)

Online programming
Offline programming

Skill-based programming

Figure 14. Comparison of the process development time according to its complexity.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11

Required changes

D
ev

el
op

m
en

tt
im

e
(d

ay
s)

Online programming
Offline programming

Skill-based programming

Figure 15. Comparison of the process development time according to the number of adjustments in
element positions.

0
1
2
3
4
5
6
7
8
9

10
11

Used robot programming approach

D
ev

el
op

m
en

tt
im

e
(d

ay
s)

Online programming
Offline programming

Skill-based programming

Figure 16. Comparison of the process development time when the robot provider is changed.



Sensors 2017, 17, 1249 17 of 21

4. Discussion

As has been analyzed in the previous section, the presented approach in this article offers greater
flexibility and reusability (adaptability) than traditional frameworks. On the one hand, the flexibility
of this approach is demonstrated by the fact that the same skills can be used to perform different
processes although they suffer from certain variations, e.g., variations in the rivet models, variations in
the drilled holes’ number or positions, etc. This assertion is supported by the work that the authors
have made in different applications [55–58]: another deburring process was performed using very
similar skills; the antenna assembling skill was presented; workspace monitoring and vision operations
for hole detection and 3D CAD matching were integrated as skills; and finally, the interaction between
the skills and the state machine was presented. On the other hand, new applications can be generated
graphically (Section 2.2.3), reducing the required expertise and increasing the ease of use. When the
user adds a skill to the execution flow, all required parameters must be filled. In this way, a succession
of blocks, which composes the application, is generated. The developed GUI allows exporting sections
or entire applications into XML files in order to increase the re-usability.

One of the foreseen advantages of the present approach is that the state machine architecture can
be enhanced with different modules (states) that could be useful in completely different processes.
In the proposed scenario, the states are related to the robot primitives, i.e., robot movements controlled
in velocity in the Cartesian space. Nevertheless, the proposed primitives can be combined with
nonlinear controllers, such as predictive control [59], neural networks or fuzzy approaches [60,61],
needed in other industrial processes with high uncertainty in the model like chemical processes
(i.e., petrochemical plants). The skills approach could provide additional information and actuation;
basic functionality could operate the aperture or closure of valves, and a complex implementation
could cover other acting elements. This is an idea explored in the TOP-REF project [62].

Regarding reliability and robustness that the state machine provides, it permits users to abstract
from the specifics of dual-arm robotic programming. The proposed framework eases the coordination
of both arms with the help of a simple GUI (Figure 7). Besides, a complete traceability of the program
status combined with modular error handling increases the overall reliability compared with traditional
online and offline software.

One of the drawbacks of the presented approach is the performance. The entire ROS ecosystem
added to the state machine requires a powerful computer, but taking into account the cost of a computer
in relation to automation project costs, this is not a relevant issue. Another relevant topic is that the
proposed architecture is hardware agnostic; the developed skills are not using robot-specific functions;
however, when primitives are executed, ROS interfaces are used. ROS is compatible with a large
number of robots [26], though for an industrial environment, ROS-Industrial [63] is more adequate.
ROS-Industrial appears with the support of a large research community and robot manufacturers.
Their goal is to provide reliable and robust ROS packages. The list of supported industrial robots [64]
is growing day by day. This can be a disadvantage compared with available offline programming
software, e.g., Delmia, which offers a huge database of robots.

In the industrial world, presenting a framework mostly composed of open source modules always
causes a discussion. Even so, as has been mentioned in Section 1, nowadays, more flexibility and novel
solutions are demanded, and open source initiatives like ROS are responding to these requirements of
the industry.

5. Conclusions and Future Work

To improve the control and coordination of anthropomorphic multisensor robots, state
machine-based architectures have been introduced. This approach allows us to increase the robustness
and reliability of the whole system. The proposed architecture is designed to act as a basis for easier
programming methodologies. Thanks to the presented graphical user interface, new applications can
be generated without the need to be an expert in robotics. With the proper training, the operator will
be able to create, adapt and maintain industrial processes.



Sensors 2017, 17, 1249 18 of 21

Besides these advantages, the reusability has been noticeably increased. By employing the
software architecture that has been presented, completely different applications can leverage
well-tested modules and functions used in previous developments. At present, the same architecture
is being used in different pilot stations with different types of robots and requirements; in these pilot
stations, this technology is under intense tests for validating the usability, robustness and feasibility.

The proposed architecture has been compared with traditional approaches in order to analyze
and highlight the strengths and weakness. ATAM has been selected in order to evaluate the qualities
that have notable relevancy: ease of use, adaptability, reliability, subsetability and performance. The
required development time for accomplishing assembly operations has been compared. The results of
the evaluation reveal that the framework improves almost all of the mentioned qualities; the exception
is the performance in terms of computational cost, which is inevitably increased by the additional
software layers introduced. The next step to follow in the future will be performing a wider test
bench for evaluating and comparing the performance of the robot operation with other alternatives,
i.e., online and offline programming and other programming frameworks. In this evaluation, users
with different levels of training could be requested. Additionally, some stress tests will be applied for
assuring the stability of the system.

In future work, we will further investigate how to integrate different skill formalisms into
the proposed architecture, especially for the ease of the automatic creation of new skills. The
database of skills proposed in the LIAA project is another topic that will be reviewed in order to
integrate more skills in the architecture. Additionally, this architecture will be integrated with the
reconfigurable and flexible production system under development at ReCaM project. The tools
provided by this framework will enable auto-programming and self-adjusting to the required task by
utilizing parametric capabilities in the CESA use case.

Regarding the state machine-based architecture, if the proposed approach is used, the industrial
processes that can benefit from dual-arm robots are more controlled, and this allows an easier and faster
deployment of new applications. In the future, the focus will be set on the coordinated manipulation
of the arms with the intention of easing this kind of task. Besides, the integration of a multi-agent
system for decision making in coordination and synchronization tasks is being considered.

Acknowledgments: This research has received funding from the European Union’s Horizon 2020 research
and innovation program under Grant Agreement No. 680759 (ReCaM: Rapid Reconfiguration of Flexible
Production Systems.

Author Contributions: All the authors have collaborated in the research: H.H. carried out the development and
wrote the paper; H.H., M.P. and D.S. conceived and designed the experiments; J.L.O. and H.H. performed the
experiments; D.S., K.L.I. and M.P. supervised the work and improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA,
USA, 21–23 September 2005; Volume 1, pp. 886–893.

2. Duguay, C.R.; Landry, S.; Pasin, F. From mass production to flexible/agile production. Int. J. Oper.
Prod. Manag. 1997, 17, 1183–1195.

3. Hu, S.J. Evolving paradigms of manufacturing: From mass production to mass customization and
personalization. Procedia CIRP 2013, 7, 3–8.

4. Wang, W.; Koren, Y. Scalability planning for reconfigurable manufacturing systems. J. Manuf. Syst. 2012,
31, 83–91.

5. Tao, F.; Cheng, Y.; Zhang, L.; Nee, A. Advanced manufacturing systems: Socialization characteristics and
trends. J. Intell. Manuf. 2015, 28, 1–16.

6. Haslarn, C. The end of mass production? Econ. Soc. 1987, 16, 405–439.
7. Smith, C.; Karayiannidis, Y.; Nalpantidis, L.; Gratal, X.; Qi, P.; Dimarogonas, D.V.; Kragic, D. Dual arm

manipulation—A survey. Robot. Auton. Syst. 2012, 60, 1340–1353.



Sensors 2017, 17, 1249 19 of 21

8. Xia, L.; Chen, C.C.; Aggarwal, J.K. Human detection using depth information by kinect. In Proceedings
of the 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Colorado Springs, CO, USA, 20–25 June 2011; pp. 15–22.

9. Blumrosen, G.; Miron, Y.; Intrator, N.; Plotnik, M. A Real-time kinect signature-based patient home
monitoring system. Sensors 2016, 16, 1965.

10. Sen, S.; Sherrick, G.; Ruiken, D.; Grupen, R.A. Hierarchical Skills and Skill-based Representation.
In Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (AAAI-11), San Francisco, CA,
USA, 7–8 August 2011.

11. Thomas, U.; Hirzinger, G.; Rumpe, B.; Schulze, C.; Wortmann, A. A new skill based robot programming
language using UML/P Statecharts. In Proceedings of the 2013 IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013.

12. Zhou, J.; Ding, X.; Qing, Y.Y. Automatic planning and coordinated control for redundant dual-arm space
robot system. Ind. Robot Int. J. 2011, 38, 27–37.

13. Andersen, R.H.; Solund, T.; Hallam, J. Definition and Initial Case-Based Evaluation of
Hardware-Independent Robot Skills for Industrial Robotic Co-Workers. In Proceedings of the 41st
International Symposium on Robotics (ISR/Robotik 2014), Munich, Germany, 2–3 June 2014.

14. Vanthienen, D.; De Laet, T.; Decré, W.; Smits, R.; Klotzbücher, M.; Buys, K.; Bellens, S.; Gherardi, L.;
Bruyninckx, H.; De Schutter, J. iTaSC as a unified framework for task specification, control, and coordination,
demonstrated on the PR2. In Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Francisco, CA, USA, 25–30 September 2011.

15. Poppa, F.; Zimmer, U. RobotUI-A software architecture for modular robotics user interface frameworks.
In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura-Algarve, Portugal, 7–11 October 2012.

16. Björkelund, A.; Bruyninckx, H.; Malec, J.; Nilsson, K.; Nugues, P. Knowledge for intelligent industrial
robots. In Proceedings of the AAAI Spring Symposium: Designing Intelligent Robots, Stanford, CA, USA,
26–28 March 2012.

17. Huckaby, J.; Vassos, S.; Christensen, H.I. Planning with a task modeling framework in manufacturing
robotics. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Tokyo, Japan, 3–7 November 2013.

18. Stenmark, M.; Malec, J. A helping hand: Industrial robotics, knowledge and user-oriented services.
In Proceedings of the 2013 IEEE/RSJ International Conferenceon Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013.

19. Alonso, D.; Vicente-Chicote, C.; Pastor, J.A.; Alvarez, B. Stateml : From graphical state machine models to
thread-safe ada code. In Reliable Software Technologies—Ada-Europe 2008; Springer: Berlin, Germany, 2008;
pp. 158–170.

20. Armentia, A.; Gangoiti, U.; Priego, R.; Estévez, E.; Marcos, M. Flexibility support for homecare applications
based on models and multi-agent technology. Sensors 2015, 15, 31939–31964.

21. Klotzbuecher, M. rFSM. Available online: https://github.com/orocos/rFSM/tree/master/doc (accessed on
1 June 2016).

22. Bohren, J. Package Summary. Available online: http://wiki.ros.org/smach. (accessed on 1 June 2016).
23. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS:

An open-source Robot Operating System. Available online: http://www.willowgarage.com/sites/default/
files/icraoss09-ROS.pdf (accessed on 24 May 2017).

24. ROS. Available online: http://www.ros.org/ (accessed on 1 June 2016).
25. ROS. Core Components. Available online: http://www.ros.org/core-components/ (accessed on 1 June 2016).
26. ROS. Robots. Available online: http://wiki.ros.org/Robots (accessed on 1 January 2017).
27. Badawy, R.; Yassine, A.; Heßler, A.; Hirsch, B.; Albayrak, S. A novel multi-agent system utilizing

quantum-inspired evolution for demand side management in the future smart grid. Integr. Comput.-Aided Eng.
2013, 20, 127–141.

28. Pinto, T.; Praca, I.; Vale, Z.; Morais, H.; Sousa, T.M. Strategic bidding in electricity markets: An agent-based
simulator with game theory for scenario analysis. Integr. Comput.-Aided Eng. 2013, 20, 335–346.

29. OpenRTM. Available online: http://openrtm.org/ (accessed on 1 June 2016).

https://github.com/orocos/rFSM/tree/master/doc
http://wiki.ros.org/smach
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.ros.org/
http://www.ros.org/core-components/
http://wiki.ros.org/Robots
http://openrtm.org/


Sensors 2017, 17, 1249 20 of 21

30. Fast Research Interface Library. Available online: http://cs.stanford.edu/people/tkr/fri/html/ (accessed
on 1 June 2016).

31. Tecnalia. Available online: http://www.tecnalia.com/en/ (accessed on 1 February 2017).
32. LIAA. Available online: http://www.project-leanautomation.eu/ (accessed on 1 June 2016).
33. ReCaM. Available online: http://recam-project.eu/ (accessed on 1 February 2017).
34. DGH. Available online: http://www.grupodgh.es/en/ (accessed on 1 February 2017).
35. DGH. Available online: http://www.cesa.aero/en/ (accessed on 1 February 2017).
36. Herrero, H.; Outón, J.L.; Esnaola, U.; Sallé, D.; de Ipiña, K.L. State machine based architecture to increase

flexibility of dual-arm robot programming. In Bioinspired Computation in Artificial Systems; Springer: Berlin,
Germany, 2015; pp. 98–106.

37. Herrero, H.; Esnaola, U.; Sallé, D. TECNALIA HIRO Performing Aeronautics Assembly–Deburring and
riveting–Showcased at BIEMH2014. Available online: https://www.youtube.com/watch?v=pvxlqyJtPNo
(accessed on 1 April 2017).

38. Järvenpää, E.; Siltala, N.; Lanz, M. Formal resource and capability descriptions supporting rapid
reconfiguration of assembly systems. In Proceedings of the 12th Conference on Automation Science
and Engineering, and International Symposium on Assembly and Manufacturing, Fort Worth, TX, USA,
21–22 August 2016.

39. Järvenpää, E.; Siltala, N.; Hylli, O.; Lanz, M. Capability matchmaking procedure to support rapid
configuration and re-configuration of production systems. 2017. Unpublished.

40. Babar, M.A.; Zhu, L.; Jeffery, R. A framework for classifying and comparing software architecture evaluation
methods. In Proceedings of the Software Engineering Conference, Melbourne, Australia, 13–16 June 2004.

41. Dobrica, L.; Niemela, E. A survey on software architecture analysis methods. IEEE Trans. Softw. Eng. 2002,
28, 638–653.

42. Ionita, M.T.; Hammer, D.K.; Obbink, H. Scenario-based software architecture evaluation methods:
An overview. In Proceedings of the International Conference on Software Engineering (ICSE/SARA)
Orlando, FL, USA, 19–25 May 2002.

43. Kazman, R.; Klein, M.; Clements, P. ATAM: Method for Architecture Evaluation; Technical Report, DTIC
Document; Software Engineering Institute: Pittsburgh, PA, USA, 2000.

44. Gonzalez-Huerta, J.; Insfran, E.; Abrahão, S. Models in software architecture derivation and evaluation:
Challenges and opportunities. In Proceedings of the International Conference on Model-Driven Engineering
and Software Development, Lisbon, Portugal, 7–9 January 2014.

45. Babar, M.A.; Gorton, I. Comparison of scenario-based software architecture evaluation methods.
In Proceedings of the 11th Asia-Pacific Software Engineering Conference, Busan, South Korea,
30 November–3 December 2004.

46. Cheung, L.; Roshandel, R.; Medvidovic, N.; Golubchik, L. Early prediction of software component
reliability. In Proceedings of the 30th International Conference on Software Engineering, Leipzig, Germany,
10–18 May 2008.

47. Gonzalez-Huerta, J.; Insfran, E.; Abrahão, S.; Scanniello, G. Validating a model-driven software architecture
evaluation and improvement method: A family of experiments. Inf. Softw. Technol. 2015, 57, 405–429.

48. Kazman, R.; Klein, M.; Clements, P. Evaluating Software Architectures-Methods and Case Studies;
Addison-Wesley Professional: Boston, MA, USA, 2001.

49. Ringert, J.O.; Rumpe, B.; Wortmann, A. A Case Study on Model-Based Development of Robotic Systems
using MontiArc with Embedded Automata. arXiv 2014, arXiv:1408.5692.

50. Giorgini, P.; Kolp, M.; Mylopoulos, J. Multi-agent and software architectures: A comparative case study.
In Proceedings of the International Workshop on Agent-Oriented Software Engineering, Bologna, Italy,
15 July 2002.

51. Bravo, J.; Villarreal, V.; Hervás, R.; Urzaiz, G. Using a communication model to collect measurement data
through mobile devices. Sensors 2012, 12, 9253–9272.

52. Aman, W.; Snekkenes, E. EDAS: An evaluation prototype for autonomic event-driven adaptive security in
the internet of things. Future Internet 2015, 7, 225–256.

53. Biggs, G.; MacDonald, B. A survey of robot programming systems. In Proceedings of the Australasian
Conference on Robotics And Automation, Brisbane, Australia, 1–3 December 2003.

http://cs.stanford.edu/people/tkr/fri/html/
http://www.tecnalia.com/en/
http://www.project-leanautomation.eu/
http://recam-project.eu/
http://www.grupodgh.es/en/
http://www.cesa.aero/en/
https://www.youtube.com/watch?v=pvxlqyJtPNo


Sensors 2017, 17, 1249 21 of 21

54. Pan, Z.; Polden, J.; Larkin, N.; Van Duin, S.; Norrish, J. Recent progress on programming methods for
industrial robots. Robot. Comput.-Integr. Manuf. 2012, 28, 87–94.

55. Herrero, H.; Outon, J.L.; Esnaola, U.; Salle, D.; Lopez de Ipina, K. Development and evaluation of a Skill
Based Architecture for applied industrial robotics. In Proceedings of the 2015 4th International Work
Conference on Bioinspired Intelligence (IWOBI), San Sebastian, Spain, 10–12 June 2015.

56. Herrero, H.; García, F.; Esnaola, U.; Sallé, D. 2015 TECNALIA NextageOpen—Dual-Arm Robot for
Aeronautics Pilot Station. Available online: https://www.youtube.com/watch?v=x-eJ66jM1Rk (accessed
on 1 April 2017).

57. Herrero, H.; Moughlbay, A.A.; Outón, J.L.; Sallé, D.; de Ipiña, K.L. Skill based robot programming: Assembly,
vision and Workspace Monitoring skill interaction. Neurocomputing 2017, doi:10.1016/j.neucom.2016.09.133.

58. Herrero, H.; Pacheco, R.; Alberdi, N.; Rumayor, M.; Salle, D.; Lopez de Ipiña, K. Skills for vision-based
applications in robotics application to aeronautics assembly pilot station. In Proceedings of the
2015-International Conference on Computer as a Tool (EUROCON), Salamanca, Spain, 8–11 September 2015.

59. Wang, T.; Gao, H.; Qiu, J. A Combined Fault-Tolerant and Predictive Control for Network-Based Industrial
Processes. IEEE Trans. Ind. Electron. 2016, 63, 2529–2536.

60. Wang, T.; Zhang, Y.; Qiu, J.; Gao, H. Adaptive fuzzy backstepping control for a class of nonlinear systems
with sampled and delayed measurements. IEEE Trans. Fuzzy Syst. 2015, 23, 302–312.

61. Wang, T.; Qiu, J.; Gao, H.; Wang, C. Network-Based Fuzzy Control for Nonlinear Industrial
Processes With Predictive Compensation Strategy. IEEE Trans. Syst. Man Cybern. Syst. 2016,
doi:10.1109/TSMC.2016.2616904.

62. TOPREF. Available online: http://toprefproject.eu/ (accessed on 1 April 2017).
63. ROS. Available online: http://rosindustrial.org/about/description/ (accessed on 1 January 2017).
64. ROS. Supported Hardware. Available online: http://wiki.ros.org/Industrial/supported_hardware

(accessed on 1 January 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.youtube.com/watch?v=x-eJ66jM1Rk
http://toprefproject.eu/
http://rosindustrial.org/about/description/
http://wiki.ros.org/Industrial/supported_hardware
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	State Machine-Based Execution Coordination for Dual-Arm Robots
	Proposed Architecture
	Core Description
	Description of the Developed States

	Flexible Application Development
	Software Structure of the Framework
	Execution Engine
	Application to Executable XML


	Results
	Validation in a Real Use Case
	Evaluation

	Discussion
	Conclusions and Future Work

