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Abstract: The design and operation of manufacturing systems is evolving to adapt to different
challenges. One of the most important is the reconfiguration of the manufacturing process in
response to context changes (e.g., faulty equipment or urgent orders, among others). In this
sense, the Autonomous Transport Vehicle (ATV) plays a key role in building more flexible and
decentralized manufacturing systems. Nowadays, robotic frameworks (RFs) are used for developing
robotic systems such as ATVs, but they focus on the control of the robotic system itself. However,
social abilities are required for performing intelligent interaction (peer-to-peer negotiation and
decision-making) among the different and heterogeneous Cyber Physical Production Systems
(such as machines, transport systems and other equipment present in the factory) to achieve
manufacturing reconfiguration. This work contributes a generic multi-layer architecture that
integrates a RF with a Multi-Agent System (MAS) to provide social abilities to ATVs. This architecture
has been implemented on ROS and JADE, the most widespread RF and MAS framework, respectively.
We believe this to be the first work that addresses the intelligent interaction of transportation systems
for flexible manufacturing environments in a holistic form.

Keywords: flexible manufacturing; transportation systems; ATV; AGV; robotic framework;
multi-agent systems; ROS; JADE

1. Introduction

Different international roadmaps [1–3] for the digitalization of manufacturing systems deal with
the need of new networked technologies that help factories adapt to current market demands, namely:
on-demand production, shorter lifecycles, mass-customization schemes, high quality standards, rising
speed of delivery and yet lower fixed costs. To meet those demands, flexibility, adaptability and
reactivity have become the main characteristics of modern manufacturing systems: flexibility to
achieve product customization without redundant production lines; adaptability for an easy and
economic reconfiguration of the production processes; and reactivity against disturbances, such as
failures and last-minute changes. These characteristics, in turn, lead to two design principles of the
factory of the future: (a) connectivity, consisting on the ability of different manufacturing entities
(machines, robots, warehouses, operators, etc.) to communicate with each other; and (b) decentralized
decisions, consisting on the self-organization of manufacturing entities that negotiate among them to
perform tasks and resolve conflicts. Therefore, each manufacturing entity in the factory of the future

Sensors 2019, 19, 69; doi:10.3390/s19010069 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4727-5007
https://orcid.org/0000-0003-4191-5648
https://orcid.org/0000-0001-5570-1072
http://www.mdpi.com/1424-8220/19/1/69?type=check_update&version=1
http://dx.doi.org/10.3390/s19010069
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 69 2 of 16

can be represented as an individual Cyber Physical Production System (CPPS) in the need of social
abilities to achieve its function, either autonomously or cooperatively [1].

The Autonomous Transport Vehicle (ATV) is a robotic CPPS that plays a key role in building such
intelligent manufacturing. Replacing the traditional fixed conveyor belts with flexible transportation
robots and modular intelligent machines that manage their own material handling enables a quick and
cost adequate reconfiguration of the production system (flexibility and adaptability) [4,5]. Furthermore,
production orders do not need to follow a determined assembly sequence since the ATVs can perform
unplanned, on demand deliveries (reactivity), e.g., to bring an unfinished product from a broken
machine to another one that has some free operation time on its schedule. Research on autonomous
transportation has been mainly focused on the design of robust software algorithms, libraries and
tools, and on the integration of heterogeneous hardware components [6]. These works should be
complemented in order to add social abilities to achieve efficient transportation tasks in changing
environments. This can be summarized in two main requirements (MR):

• MR1: An ATV needs to interact with other ATVs to perform complex transportation tasks or
resolve conflicts.

• MR2: An ATV needs to interact with other heterogeneous, non-robotic CPPSs in the factory
environment to offer or require services, e.g., to offer transportation services to machines or to
require a free charging station when its battery status reaches a critical level.

As commented above, the development of ATVs, being robotic devices, can be achieved using
a Robotic Framework (RF), as it provides hardware abstraction and software components for the
creation of complex and robust robot behaviors in diverse applications and across a wide variety of
robotic platforms. Nevertheless, RFs—such as the popular Robot Operation System (ROS)—have
been focused on developing single robot functionalities and have not included social abilities within
their inherent characteristics. There are, however, specific RF packages—such as multimaster_fkie of
ROS—that allow the development of distributed robotic systems at the expense of introducing latencies
that can be intolerable [7]. RFs must now evolve aiming at improving social abilities among robots
(MR1) and allowing the interaction of robots with non-robotic entities (MR2).

To overcome the lack of social abilities inherent to RFs, [8] proposed the combination of RF
with already proven and reliable Multi-Agent Systems (MAS) to create the so-called Multi-Agent
Robotic Systems (MARS). MAS are designed to manage distributed and changing environments where
intelligent and loosely-coupled software components (agents) that made up the system do have to
interact with each other to perform tasks [9–12]. MAS technology has been proved as a natural way
to meet the socialization requirements among different manufacturing entities in many industrial
domains [13]. In fact, the concept of Industrial Agent is related to the implementation of CPPSs as
agents [14,15]. Thus, the application of the MAS paradigm to RFs contributes to the agentification of
an ATV, a process by which an ATV would become an agent that can socialize with other agents in
the factory.

In this context, this work contributes to the definition of a generic multi-layer architecture for
enabling the MARS social abilities in ATVs and, thus, fulfilling MR1 and MR2. It integrates ROS
and JADE, both open-source and widely spread RF and MAS framework, respectively. It consists of
a customizable service-based architecture that uses distributed decision-making. A set of architecture
components have been defined that, being generic, can be customized and replicated to meet the
application requirements. The higher layer main goal is to offer the services of the ROS entity to other
agents in the environment. The intermediate layers are designed for efficient execution, while the
lowest layer constitutes the inner control of the robotic device. The architecture has been validated
in the field of flexible manufacturing [16]. A MAS-based middleware has been developed aiming
at supporting production reconfiguration. There, the ROS-JADE integration architecture is used to
implement the ATV agent that offers transportation and other ATV rescue services, and demands
charging services from charging stations.
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The rest of the paper is organized as follows: Section 2 summarizes the related work; Section 3
describes the ROS-JADE integration architecture; in Section 4, three uses cases are presented to
demonstrate how the architecture can accomplish significant goals in some meaningful scenarios;
finally, Section 5 collects the conclusions of the work.

2. Related Work

This section comprises some research work dealing with the key aspects of this paper, i.e., (a) the
importance of an ATV for achieving flexibility in manufacturing, (b) the efforts to create multi-robot
architectures using MAS, and (c) the use of MAS in manufacturing for integrating the ATV with other
CPPSs in heterogeneous and distributed environments.

One possible solution for achieving high-grade of production flexibility and adaptability at plant
level is to distribute the factory into modular manufacturing entities capable of talking to each other
and to other CPPSs, and deciding production reconfiguration in case of context changes. In this case,
production orders do not need to follow a determined assembly sequence, since the sequence could
be defined by the manufacturer itself or by the current machine-resources availability [17]. There are
many works that endorse the idea of using Autonomous Transport/Ground Vehicles for managing the
transportation logistics. For instance, [5] presents the Kiva system, a real application for autonomous
warehouse item storage-and-delivery where thousands of robots work in human-free environmental
areas performing transportation orders as a part of the Amazon Robotics logistics fleet. However,
the task allocation is done in a centralized way [18]. Other works in the context of autonomous
material handling systems for modular manufacturing processes are [4,19]. Reference [19] presents
a plug-and-play mobile conveyor module called KARIS that is distinguished by building adaptable
robot cooperative teams and addressing the decentralization problem for intra-logistics task in [20].
On the other hand, the Multishuttle Move [4] presents a fusion of conventional shuttle and automated
guided vehicle. Reference [21] deals with the decentralization issue for path planning and navigation
by means algorithms for coordinating ATVs.

As commented above, ROS multimaster was a work towards allowing ROS based multi-robot
systems to communicate in a distributed ay, but it introduces unaffordable communication latencies.
Currently, to overcome this and other limitations (e.g., improving network communications) ROS2 [22]
is being developed. However, the communication is yet limited to ROS-based systems and an additional
communication channel is needed to communicate with other heterogeneous CPPSs.

On the other hand, many research works take advantage of the MAS paradigm to build intelligent
multi-robot systems. For example, [23] presents a group of cooperating robots, where an intelligent
software agent “moves” from one physical platform to another (e.g., due to a low battery event in the
current platform) by using the agent mobility capabilities. Other works like [24] make use of a service
oriented multi-agent platform [25] for the analysis, design and implementation of complex systems
where the data sources and data processing are distributed. Unfortunately, most of these systems
present ad-hoc solutions for specific applications and cannot be easily customized because of the use
of non-standard frameworks. References [26,27] use the framework JADE to build direct collaboration
between industrial robots and humans.

There is an increasing interest on building generic multi-layer architectures for multi-robot
collaboration based on the integration of RF and MAS. These works focus on developing intelligent
multi-agent networks composed by robots and smart sensors in service applications. AutoRobot [28,29]
combines ROS and JADE to enable support to autonomous and rational service robots. It offers a series
of reusable packages, templates and tools to help with the integration of new agents (robot or sensor)
within their framework. However, it mainly focuses on single robot requirements, relegating the
socialization issues for future work. Reference [30] proposes an architecture to control and coordinate
team working robots. However, the coordination among agents occurs over a central supervisor
component which detects and avoids collision conflicts. Reference [31] is another three-layered
architecture for enabling service robotics in intelligent environments. Specifically, they present the
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interaction of a mobile robot with smart light and door agents. Here, a centralized component acts both
as a global knowledge container and as a central coordinator of other system components. In summary,
despite the noticeable efforts on the research of RF-MAS integration architectures, the decentralization
issue remains unsolved, limiting one of the main benefits of using MAS.

Finally, MAS technology has also been proposed to achieve flexible manufacturing. ADACOR [32]
and PROSA [33], represent two of the most referenced projects in the industry domain that integrate
MAS frameworks into holonic manufacturing systems. Both works provide a catalog of agentified CPPSs
that simplifies the developments of agent-based control systems. Nevertheless, these works have not
deal with the problematic of multi-robot systems and it is therefore necessary to develop a generic
RF-MAS architecture to easily integrate heterogeneous groups of ATVs in such a multi-agent system.

3. Generic ROS-JADE Integration Architecture

This section presents the generic multi-layered architecture. Initially, the specific requirements to
be met by the architecture are identified. Then, every layer of the architecture, its main goal and the key
generic components are described in detail, highlighting how they can be customized and replicated.

3.1. Architecture Requirements

While general requirements related to multi-robot systems have already been referred in the
existing literature [8,34,35], the specific requirements related to the socialization of ATVs with their
environment in a flexible manufacturing process are yet to be defined. From MR1 and MR2, we identify
a list of more specific requirements (SR) related to the ATV and its socialization abilities (Table 1).

Table 1. Specific requirements (SR) of an ATV in a flexible manufacturing process.

Identifier Brief Description

SR1 Offer transportation services in competition or collaboration with other ATVs.
SR2 Give efficient responses to service requests.
SR3 Notify significant transportation events at a social level.
SR4 Allow reactivity through online service tuning.
SR5 Communicate with any type of CPPS.

With regard to SR1, the ATV services must be published and made available to other agents.
Negotiating capabilities are required to reach agreements with other ATVs during task allocation
process. SR2 comes from the need of being ready to socialize, while abstracting this duty from low-level,
robot-dependent functional tasks. As for SR3, event management mechanisms are needed to notify
ATV state changes that may affect other CPPSs in the manufacturing environment, e.g., if its battery
level is low, the ATV must stop offering services until recharged. Regarding SR4, the ATV functionality
must be adaptable to context changes, e.g., it must reduce the maximum navigation speed in presence
of human operators or while navigating in restricted areas. Finally, SR5 indicates the ATV must be
capable of interacting not only with other ATVs, but also with other heterogeneous, non-robotic CPPSs
in the factory, e.g., machines demanding transportation services. The following sub-sections detail the
architecture and how the specific requirements are met.

3.2. Multi-Layer Architecture

The 4-layer ROS-JADE integration architecture is illustrated in Figure 1. Each layer contributes to
meet at least one of the requirements in Table 1. The upper layer (social) is responsible for the interaction
with other CPPSs, contributing to fulfill SR1 and SR5. The lower layer (functional) deals with the
basic ATV control (sensors, actuators, robotic algorithms...) and is implemented by means of a RF.
The intermediate layers are responsible for abstracting the social behavior from the ATV functionality
and, at the same time, they are in charge of pre-processing and storing the information needed at
the social layer for achieving fast negotiation response. Besides, these layers are also in charge of
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transmitting information and events between the functional and social layers. Namely, the cognitive
layer performs the actual integration of RF and MAS frameworks, performing the bi-directional
communication between the social layer and the operative layer. To fulfill SR2, the operative
layer pre-processes and the cognitive layer stores the information that the social layer might need.
The operative layer also allows responding to events coming from the social layers through online
tuning of ATV parameters (SR4) as well as transmitting events coming from the functional layer to
the social one (SR3). The following subsections describe each layer in greater detail, emphasizing
the different type of generic components at every layer, which can be replicated to meet application
requirements, and their main characteristics.
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3.2.1. Social Layer

The social layer consists of one MAS Agent (in the prototype, a JADE Agent; hereafter, the Agent)
that offers at least transportation services (SR1) and communicates with the rest of the CPPSs in
the manufacturing system, negotiating and cooperating with them (SR5). However, since a robotic
system is made up of multiple components, it is possible to offer additional services, such as the use of
integrated cameras for monitoring purposes or localization services, giving the possibility of global
localization to other CPPSs having limited resources.

The Agent represents the global intelligence of the ATV in the system. Its main functions
are offering ATV capabilities as services, dealing with the requests of other agents in the system,
and negotiating with other ATVs to decide which ATV will actually perform the service. Whenever
the Agent gains a negotiation or receives an event from other CPPS, the social layer transmits the
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order downwards through utilities of the cognitive layer, making it independent from RF and ATV
functionalities. The Agent may also request services itself, e.g., when due to a failure the ATV needs to
be rescued.

During the initialization phase, the Agent registers its transportation services (and others
if necessary) in the Directory File (DF) of the MAS platform. The DF is also known as the Yellow Pages
service and acts as a directory of the existing resources. Other system agents in the manufacturing
environment can consult this directory and look for available ATVs that offer certain services. Similarly,
if agents corresponding to charging stations have also registered their services, ATVs with low battery
ask the DF for available charging services. The negotiation and service allocation through distributed
decision making will be described in the use cases (Section 4).

3.2.2. Cognitive Layer

This layer performs the actual integration of the RF and MAS frameworks. It consists of a unique
component (the ROS-JADE node) whose main function is communicating the agent at the social layer
with the operative layer. This includes sending information in both directions, transmitting events
coming from the lower layer and transmitting orders from the social layer. Besides, and very important
to fulfill the fast reaction specific requirement (SR2), it stores different types of pre-processed and
updated information that the agent at the social layer might need for negotiation. Figure 2 illustrates
the generic data structure that is implemented at this layer.
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• Updated storage. It stores all the information that is completely necessary for negotiation or for the
social relationship between agents. In this way, the last information received from each type of
data is stored, keeping the database updated and waiting for the Agent requests.

• Event storage. All events that need immediate management by the Agent are stored in this separate
data table. This allows the cognitive layer awakening the Agent upon event reception.

• Backup storage. It keeps a record of all the information that has been stored for a certain period
of time. These data can be used for recovery purposes in case of a failure, or for learning or
forecasting purposes for later analysis.

• Low-level messages filter. Before the information is stored in the report or event storages, the received
perception messages are verified to be relevant for the managing high-level service. If not,
they are ignored.
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3.2.3. Operative Layer

This layer has three main functions. First, it interprets high-level orders coming from the upper
layers, generating the sequence of orders to be executed by the ROS nodes at the functional layer.
This is the function of Mission Controller nodes. Second, it contributes to achieve an efficient response
to service requests (SR2) by means of Monitor nodes which pre-process information that the social
layer might need. Monitors also transmit internal events from the functional to the upper layers (SR3).
Finally, Dynamic Request Controller nodes allow adaptation of ATV configuration parameters due to
context changes, thus, contributing to meet SR4. It is important to remark that despite being strongly
linked to the services offered by the ATV at the social layer, these nodes are kept simple to promote
their reuse in different applications. In the following subsections, the three main components are
described in detail.

(A) Mission Controller

Mission Controllers are responsible for managing the execution of services, transforming orders
into understandable subtasks for the ROS nodes at the functional layer, and managing them until
their completion. Mission Controllers execute the state machine of Figure 3 and transmit to the upper
layer the execution state or unexpected events preventing the service to be completed. In addition,
these nodes offer services to modify their operating criteria or get information on demand.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 15 

 

3.2.3. Operative Layer 

This layer has three main functions. First, it interprets high-level orders coming from the upper 
layers, generating the sequence of orders to be executed by the ROS nodes at the functional layer. 
This is the function of Mission Controller nodes. Second, it contributes to achieve an efficient response 
to service requests (SR2) by means of Monitor nodes which pre-process information that the social 
layer might need. Monitors also transmit internal events from the functional to the upper layers (SR3). 
Finally, Dynamic Request Controller nodes allow adaptation of ATV configuration parameters due 
to context changes, thus, contributing to meet SR4. It is important to remark that despite being 
strongly linked to the services offered by the ATV at the social layer, these nodes are kept simple to 
promote their reuse in different applications. In the following subsections, the three main 
components are described in detail. 

(A) Mission Controller 

Mission Controllers are responsible for managing the execution of services, transforming orders 
into understandable subtasks for the ROS nodes at the functional layer, and managing them until 
their completion. Mission Controllers execute the state machine of Figure 3 and transmit to the upper 
layer the execution state or unexpected events preventing the service to be completed. In addition, 
these nodes offer services to modify their operating criteria or get information on demand. 

 
Figure 3. Mission Controller component (operative layer). 

(B) Monitors 

Monitors (Figure 4) are in charge of performing perceptions by means of pre-processing data 
read from the functional layer. Only relevant information changes (robot pose, battery status...) are 
transmitted to the upper layers, avoiding the saturation of communications due to high processing 
rates. The thresholds and criteria for pre-processing and publishing the information can be modified 
through the services that implement these nodes. It also allows reading on demand the information 
they process. 

Figure 3. Mission Controller component (operative layer).

(B) Monitors

Monitors (Figure 4) are in charge of performing perceptions by means of pre-processing data
read from the functional layer. Only relevant information changes (robot pose, battery status...) are
transmitted to the upper layers, avoiding the saturation of communications due to high processing
rates. The thresholds and criteria for pre-processing and publishing the information can be modified
through the services that implement these nodes. It also allows reading on demand the information
they process.
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(C) Dynamic Request Controller

The objective of this type of node (Figure 5) is twofold. On the one hand, it is responsible for
attending special requests of the social layer that affect Mission Controllers and Monitors. Two types
of special requests can be distinguished: (a) return information, for which it uses the get info operation;
or (b) modify parameters, for which it uses modify criteria operation. These requests can be used,
e.g., to change the pose refreshing rate or to slow down the ATV when cooperating with other robots,
respectively. On the other hand, Dynamic Request Controllers handle special situations where they
make punctual requests to functional nodes (low level orders) and receive an instant response in return
(feedback state); e.g., they can request, if necessary, to compute the path between two points.
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In a normal processing situation, the ATV does not use the Dynamic Request Controller for any
management. However, they permit dealing with particular requests from social agents that no other



Sensors 2019, 19, 69 9 of 16

component of this layer is capable of addressing, reducing other nodes complexity and simplifying
the architecture.

3.2.4. Functional Layer

This layer is made up by the RF components (ROS nodes) involved in the basic control
functionalities of an ATV. Thus, these nodes manage the sensor and actuator components, and contain
the basic algorithms to control the robot. A benefit of using ROS on this level is the availability of a huge
variety of robotic component drivers (robot platforms, cameras, lasers, manipulators) and algorithms
(for navigation, localization, perception, manipulation) tasks that can be customized as needed.

As seen in Figure 6, an ATV will at least be composed of a mobile platform with differential
or omni-directional wheels for the navigation; a localization system usually composed of the
wheels-odometry combined with an IMU and a laser/camera/funk based localization system;
perception components to detect obstacles or other desired features in the environment; a manipulation
system such as an arm or a lift platform to manipulate/carry the load; and a computer that manages
the control and organization of the different modules.
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4. Use Cases

In the future, robots could autonomously manage the factory transportation from the moment raw
material arrives until the final product is delivered. For that purpose, the ATV offers transportation
services that could be used by machines to (a) get new raw material replenishment, (b) transport
their operated sub-products to the next machine, or once finished, (c) deliver the finished product to
the warehouse.

Apart from machines, an ATV should interact (a) with other CPPSs in the factory, such as other
ATVs or charging stations along the shop-floor. These entities are represented as agents that socialize
among each other to cooperate or compete, and thus, to reach their global goals. Moreover, the ATV
could also receive notifications from smart sensors that inform about traffic events (traffic lights like)
or the entering into a human-working area.

This section presents several use cases showing the socialization of ATVs among themselves and
with other non-robotic CPPSs to demonstrate the benefits of combining RF and MAS. We will first show
an ATV—Transportation Agent (TA)—noticing internal low battery levels and its interaction with



Sensors 2019, 19, 69 10 of 16

available charging stations—Charging Station Agents (CSA). Secondly, a material replenishment order
triggered by a machine—Machine Agent (MA)—and the resulting task allocation between available
ATVs are shown. In the third case, a smart sensor informs the robot of entering a human-working area,
triggering a robot reconfiguration. These agents register their services on the DF of the MAS platform.

The uses cases were validated from a functional point of view in a prototype of a MAS middleware
for achieving production flexibility at plant level. Figure 7 shows the agent architecture of the
middleware as well as how the ROS-JADE integration architecture is implemented in the TA. Figure 8
illustrates the factory layout of the validation made up of ATVs, charging stations and machines.
ATVs are Kobuki robots running the TA, whereas machines and charging station agents are simulated
in computers running their corresponding agent behaviors (MA and CSA, respectively).
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4.1. Management of ATV Battery Health/Moving to a Waiting Place after Finishing a Task

When the ATV notices critical battery levels, it requires a free position in a charging station.
The process is illustrated in Figure 9b and carried out in four steps: (1) The ATV agent (the TA)
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receives a low battery event issued from the functional layer (Figure 9a); (2) TA requests available
power stations to the DF, triggering a negotiation among them; (3) CSAs negotiate under the specified
criterion, for instance, nearest to the ATV, calculating their cost and sending it to other participants.
The winner of the negotiation informs TA about the pose; (4) the ATV navigates to that pose.
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When an ATV finishes a transportation task, a similar sequence as the represented in Figure 9b is
initiated, as the ATV must leave the surroundings of the machine and move to a charging station.

4.2. Machine Material Replenishment

The intelligent ATV provides high flexibility to manufacturing processes managing a dynamic
plan to serve on-demand requests. This allows solving expected or unexpected events in the plant
in an agile way. For instance, when a machine needs material to perform its operations, its agent
(the MA) makes use of transport services to perform a material replenishment. Figure 10b presents
the four steps to carry out a replenishment transportation service request: (1) The MA detects lack
of material; (2) MA requests available transportation services and initiates a negotiation among TAs
under a specified criterion; (3) The winner ATV notifies the MA; (4) The ATV starts the transportation
task informing the MA about the beginning and the end of the task. Figure 10a shows the fourth step
performed by the TA winner which requests the transportation task to the mission controller.
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4.3. ATV Speed Adaptation on Demand

There are manufacturing entities that are not intelligent enough to be represented as agents,
but that could still transmit important information to ATVs, triggering, if necessary, ATV reconfiguration.
This is the case of restricted area sensors. They can be easily settled in strategic locations (by Beacons,
WiFi or other desired technology) to alert about the entering into a special area. In order to receive this
information, the robot must include the hardware component that receives the sensor signal in the
functional layer and implement a new monitor in the operational layer to pre-process this information
and create the events that wake up the social agent (similarly as in Figure 9a). These events will trigger
then the ATV reconfiguration.

For example, a robot without load could navigate at maximum speed within an automated
warehouse where human operators are not allowed to enter. Thus, the transportation performance is
improved, while the risk of hurting humans is avoided. As reconfiguration actions are not directly
related to the transportation task, functional nodes do not manage them, this is a typical function of
Dynamic Request Controllers, which in turn set new navigation criteria (in this case, new speed) for
the mission controller (see Figure 11).
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5. Conclusions and Future Work

The ATV has been pointed as one of the key enablers of modern manufacturing, providing the
necessary flexibility, adaptability and reactivity to the transportations systems of the factory of the
future. However, to perform their transportation tasks, ATVs will not only have to interact among
them, but also with other CPPSs and with their environment in an intelligent way.

As far as authors know, this is first work that addresses intelligent interaction of transportation
systems in flexible manufacturing environments using a holistic approach, adding social abilities to
an ATV and transforming it into an Intelligent Transportation Vehicle (ITV). The core set of specific
requirements related to the socialization of ATVs have been identified. This work contributes a generic
multi-layered architecture proposal that integrates a RF, responsible for the control of the main robotic
functionalities of the ATV, with a MAS framework that provides the required social abilities. The
layered architecture meets the requirements while abstracting the social abilities from the control
functionalities, decoupling attention to service requests from the high frequency information refreshing
at functional level, promoting control code re-use and separation of concerns, as higher-level services
can be adapted without modifying the functionality and vice versa. The division on layers is done
with efficiency and modularity in mind, avoiding functionality overlapping between layers. This
architecture has been implemented on ROS and JADE, the most widespread RF and MAS framework,
respectively, which offer the necessary base to develop a MARS. In addition, the uses cases presented
in this work contribute to illustrate how ATVs based on this architecture are able to collaborate
with machines, charging stations or environmental sensors in the factory, efficiently responding to
transportation service requests and adapting to context changes.
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Further work within this line of research should include the validation of the ROS-JADE
integration using real settings and assessing the efficiency of the architecture in real environments
having a big number of agents. Besides, despite this work has been focused on the transportation
systems, the architecture can be easily implemented in any other application field that needs from
endowing intelligence and sociability to robotic systems. In fact, the architecture permits to have
more than a single agent, depending on the complexity of the application, the robotic component
involved, and the processing unit that manages the robotic services. Thus, given that the modularity
and generalization of the different layers and their components make them independent from the
chosen RF and MAS framework, the architecture should be validated in other frameworks different
from ROS and JADE.
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