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CHAPTER 1 
Introduction and objectives 

 

 
 

 

 

Forest health can be defined from two perspectives, the utilitarian, or 

anthropocentric, and the ecosystem, or ecocentric. From the first one, a healthy forest 

would be the state in which abiotic or/and abiotic factors do not threaten the 

management objectives either in the present or in the future. From the second one, the 

forest is defined as an ecosystem that includes the physical and biotic factors to support 

it. In the latter case, a healthy forest is resistance to dramatic changes, there is functional 

equilibrium between supply and demand of essential resources, and there is diversity in 

seral stages and stand structure (Kolb et al., 1994). Under this definition, a tree 

plantation may not be a healthy forest ecosystem due to the lack of species variety, but 

may meet the utilitarian objectives (Raffa et al., 2009).  

Some biotic factors, such as root pathogenic fungi, have a beneficial role in 

regulating the forest nutrient availability and increasing vegetation diversity (Ostry and 

Laflamme, 2009), but this beneficial role can be altered when the equilibrium between 

the fungi and their host, which presumably have coevolved, is disrupted. In some cases, 

this is the consequence of anthropogenic changes in the environment or in the soil 

(Otrosina, 2005), i.e. some forest management techniques (Edmonds et al., 2000; 

Garbelotto, 2004; Jactel et al., 2009). This results in economic losses and ecological 

alteration because of host´s high mortality levels.  

In the temperate forest, root and butt rot fungi are considered the greatest causes of 

economic losses. This group of fungi is mainly formed by three globally-distributed 
genera: Armillaria  (Fr.) Staude, Heterobasidion Bref. and Phellinus Quél., all of them within 

the class Agaricomycetes (Garbelotto, 2004). The research described herein is based on 

the identification, ecology, and control of two of these, Armillaria  and Heterobasidion. 
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1.1. Armillaria species complex 

1.1.1. Taxonomy  

Armillaria  genus is characterized by clitocyboid basidiocarps with white 

basidiospores, from decurrent to adnate gills, pileus usually with golden-brown colors, 

central stipe and diploid, often slow grower, and bioluminescent vegetative mycelium 
producer of black to dark-brown rhizomorphs in field and in vitro. Its compatibility 

system is bifactorial, and usually heterothallic, and it can act as saprophyte or wood 

parasite (Watling et al., 1991; Baumgartner et al., 2011).  

In the past the description of this genus was based on morphological characteristics. 

Every Agaricomycetes with white spores, a ring and gills was considered to belong to 

Armillaria  genus, which was thought to be composed only by one species with variable 

morphology and pathogenicity, Armillaria mellea  (Vahl) P. Kumm. This caused a high 

confusion level in the taxonomic history related to this genus. However, at the end of the 

1970s when the biological species concept (Volk and Burdsall, 1995; Baumgartner et al., 

2011), which refers to the reproductive isolation of a group, was applied to Armillaria  

this matter was practically resolved. Thereafter, phenotypic and ecological 

characteristics were secondary determinants, after intermating (Coetzee, 2003). More 

recently, due to the progress made in molecular phylogenetic analysis, the genus 
Armillaria  is included in the kingdom Fungi, division Basidiomycota, subdivision 

Agaricomycotina, class Agaricomycetes, subclass Agaricomycetidae, order Agaricales, 

family Physalacriaceae (Matheny et al., 2006; Hibbett et al., 2007). 

The name currently admitted for this genus is (Indexfungorum.org, 2017):  

 Armillaria  (Fr.) Staude, Schwämme Mitteldeutschl. 28: xxviii, 130 (1857). 

Although some synonyms have been used (Indexfungorum.org, 2017): 

 Agaricus trib. Armillaria  Fr., Syst. mycol. (Lundae) 1: 9, 26 (1821).  

 Aphotistus Humb., Fl. Friberg. Spec. (Berlin): 118 (1793). 

 Armillaria  sect. Armillariella P. Karst., Bidr. Känn. Finl. Nat. Folk 32: xii 

(1879).  

 Armillariella (P. Karst.) P. Karst., Acta Soc. Fauna Flora fenn. 2(no. 1): 4 (1881) 

[1881-1885]. 

 Polymyces Battarra ex Earle, Bull. New York Bot. Gard. 5: 447 (1909). 

 Rhizomorpha  Roth, Ann. Bot. (Usteri) 1: 7 (1791).  

Armillaria  is also commonly known as honey mushroom, oak fungus or honey 

agaric; and the disease it causes as shoestring root rot, mushroom root rot, toadstool 

disease, resin glut and resin flow (Williams et al., 1986). 
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1.1.2. Armillaria species and their distribution 

Currently, about 40 morphological species of Armillaria  are known worldwide 

(Wingfield et al., 2011). They show variable pathogenic capacity and thus develop 

epiphytic, mycorrhizal, saprophytic or pathogenic associations with their host (Ross-

Davis et al., 2013). This variability is also shown in host and habitat preferences 

(Guillaumin et al., 1993). Seven different species are present in Europe: Armillaria mellea  

(Vahl) P.Kumm., Armillaria gallica Marxm. & Romagn., Armillaria ostoyae (Romagn.) 

Herink, Armillaria tabescens (Scop.) Emel, Armillaria cepistipes Velen., Armillaria borealis 

Marxm. & Korhonen, Armillaria ectypa (Fr.) Lamoure (Guillaumin et al., 1993; Pérez-

Sierra and Henricot, 2002) (Table 1.1), (Figure 1.1).  

Table 1.1. European Armillaria species distribution and their morphological characteristics 

(Guillaumin et al., 1993; Coetzee, 2003; Ainsworth, 2003; Ohenoja, 2006). 

 

  

 

ARMILLARIA 

SPECIES
DISTRIBUTION RHIZOMORPH 

FORMATION

BASIDIOCARP 

CHARACTERISTICS

A. mellea

Thermophilic. Widespread in 

Atlantic climate. Dominant in 

Mediterranean climate 

particularly at moderate and low 

altitudes.

Short lived, limited 

spread ability.

Prominent annulus, 

honey colored caps 

and robust appearance 

of the basidiocarp.

A. ostoyae

Continental or Atlantic climate. 

Independent of latitude or 

altitude. Higher altitudes at 

Mediterranean climate.

Thin and brittle. 

Dichotomous 

branching.

A. borealis

Northern and continental 

distribution. Locations with cold 

air accumulation.

Dichotomous 

branching.

A. gallica

Not in areas of extremely cold 

climate. Usually at low altitudes 

which can increase at 

Mediterranean climate.

A. cepistipes
Latitude inversely proportional to 

altitude.

A. tabescens
More thermophilic than A. 

mellea.

A. ectypa

Boreal-montane and maybe also 

at continental climates. Usually in 

peat bogs.

Thick annulus and dark 

scales.

Long, thick and 

perennial. 

Monopodially 

branched.  

Thin and delicate 

annulus and bulbous 

or clavate stipe.

No. Without annulus.
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Figure 1.1. Northern (A) and southern (B) limits of Armillaria spp. distribution in Europe. 

(adapted from Guillaumin, 2005). 

 

 

 

A 
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In Spain, the presence of Armillaria  has been reported in the following provinces and 

regions: 

 Alicante: A. mellea in Eriobotrya japonica Lindl. (louquat) plantations 

(González- Domínguez et al., 2009). 

 Basque country: A. mellea, A. ostoyae, A. cepistipes, A. gallica and A. tabescens 

in different forest ecosystems, fruit trees and vineyards (Iturritxa et al., 

2008). 

 Catalonia: A. mellea in soil (Nogales et al., 2010).  

 Galicia: A. mellea, A. ostoyae, A. gallica and A. cepistipes in a high host range 

such as conifers, broadleaf trees and shrubs (Aguín et al., 2004a; Escofet et 

al., 2006).  
 Salamanca: A. mellea in Castanea sativa  Mill. (García-Benavides and Monte, 

2005). 

 Spanish Pyrenees: A. cepistipes, A. gallica, and A. ostoyae mainly in Abies 

alba Mill. (silver fir) (Oliva et al., 2009). 

 Valencia: A. mellea in Citrus × sinensis (L.) Osbeck (pro. sp.) and in Troyer 

citrange roots (Tuset et al., 1999). 

1.1.3. Host susceptibility 

A broad range of trees, shrubs and some herbaceous plants are susceptible to 
infection by Armillaria  species (Williams et al., 1986). In many cases this susceptibility is 

directly related to the health condition of the host, i.e. it has been observed that hosts 

with high stress are more predisposed to develop infection. Entry et al. (1991) explained 

this as a reduction in the concentration of defensive compounds in the root, such as total 

phenolic compounds including lignin and tannins, as a consequence of a reduction in 

photosynthetic capacity. Thus, stress factors such as defoliating and stem boring insects 

and other pathogenic fungi can increase the incidence of Armillaria  infection (Hudak and 

Singh, 1970; Hood and Samberg, 1993a). Waterlogged or dry soils, temperature 

extremes, soil compaction, and light and nutrient deficiency can also affect host 

susceptibility (Entry et al., 1991; Goheen and Otrosina, 1998; Popoola and Fox, 200 3).  

In general, conifers seem to be more susceptible than hardwoods (Wargo and 
Harrington, 1991), although the different Armillaria  species involved and the host 

species’ susceptibility is an important factor. For instance, in north-western America, 

Douglas fir is highly susceptible to Armillaria  but in Western Europe it is tolerant of the 

native Armillaria  strains (Guillaumin and Legrand, 2013). A. tabescens, usually a 

saprophyte or an opportunistic pathogen, acted as a primary pathogen in eucalyptus 

plantations in south-west France (Guillaumin et al., 1993). The composition of the stand 

can also influence the range of infection; lower density of susceptible species and higher 

species diversity in different forest strata reduce the possibility of disease transmission 

(Gerlach et al., 1997; Kromroy et al., 2005).  
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Management procedures such as selective logging, early thinning and/or the 

continued use of susceptible or moderately susceptible species that are not very well 

adapted to the location, increase the inoculum sources, and thereby, increase the 

probability of infection (Bloomberg and Morrison, 1989; Morrison et al., 1991; Hood and 

Sandberg, 1993a; Hood and Kimberly, 2009). Thus, in comparison with natural forests, 

the damage in exotic tree plantations is usually greater (Guillaumin and Legrand, 2013). 

1.1.4. Infection and life cycle 

In field conditions, Armillaria  mycelium is mainly diploid (Ullrich and Anderson, 

1978). In this state it can colonize different hosts by direct contact between an infected 

source and roots by way of hyphae, or by advancing through the ground from an 

infection point by way of rhizomorphs (Redfern and Filip, 1991) (Figure 1.2). In both 

cases, the production of plant cell wall degrading enzymes such as ligninolytic, 

pectinolytic, cellulolytic, hemicellulolytic and related enzymes make possible the 

colonization of roots, which is facilitated for woody roots by the pressure that 

rhizomorphs apply (Ross-Davis et al., 2013; Williams et al., 1986). The plant tissues that 

are affected are the cambium and the secondary xylem (Baumgartner, 2004). This is a 

mechanism for short distance spreading but it is considered the most important even 

though the formation of rhizomorphs in the field is not common for some Armillaria  

species (Wargo and Shaw, 1985; Pérez-Sierra and Henricot, 2002). 

After the mycelium is established, and when environmental conditions are suitable, 

seasonal basidiocarps are formed. The spores produced by the basidiocarps are 

dispersed by air currents (Worrall, 2004), and can appear at long distances although the 

colonization is greater near the basidiocarp (Power et al., 2008; Travadon et al., 2012).  

After settling in stumps or wood debris they form a haploid mycelium (Hood et al., 

2002) (Figure 1.2). This kind of mycelium is not common in field conditions possibly 

because a high rate of crossings between sexually compatible haploid mycelia generate 

new diploid populations of Armillaria (Ullrich and Anderson, 1978; Baumgartner et al., 

2011). Alternatively, interactions with the parental diploid mycelium can result in the 

extension of the latter, i.e., nuclei of the diploid parent, but not mitochondria, migrate 

into the haploid mycelium and displace the haploid nuclei (Anderson and Ullrich, 1982; 

Rizzo and Harrington, 1992). The capacity to create new infection points varies from one 

species to another (Kliejunas, 2011) but, in general, spores seem to be the least frequent 

mechanism of disease transmission (Baumgartner et al., 2011). 
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Figure 1.2. Armillaria spreading mechanisms (adapted from Schmidt, 2006; ilustrated by A. Mesanza). 
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1.1.5. Symptoms and signs of infection 

When Armillaria  acts as a pathogen it can cause some general symptoms of infection 

such as chlorotic leaves, progressive thinning of the crown, slower leader growth, excess 

cone production, and rapid tree death (Edmonds et al., 2000). Usually this means that 

the root collar and a high percent of main lateral roots are infected (Baumgartner et al., 

2011). Infection of the entire root system is not necessary to cause death (Livingston, 

1990).  

These symptoms on their own do not have any diagnostic value because they are 

similar to those caused by other structural root rot pathogens, bark beetles, rodents or 

extended drought (Williams et al. 1986). However, in combination with the appearance 

of subcortical white mycelial fans, clusters of golden-brownish mushrooms near the tree 

base, rhizomorphs, rotten stringy-yellow wood with black lines (pseudosclerotia), rapid 

tree death without the loss of foliage, and/or basal resin or gum exudates, the presence 
of Armillaria  can be confirmed (Cox et al., 2005; Edmonds et al., 2000) (Figure 1.3). It has 

been suggested that aboveground examinations underestimate the number of affected 

trees. For example, Robinson et al. (2003) realized that in Eucalyptus diversicolor F.Muell. 

stands, aboveground surveys detected only 50% of the total infected trees and for mixed 

conifer stands, only 58% were detected (Whitney et al., 1989). 

 

Figure 1.3. Dead trees without loss of foliage (A and B), Armillaria spp. basidiocarps (C, D and E), 

stringy- yellow rotten wood (F), and subcortical white mycelium (G).  
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1.1.6. Damage 

In a forest, the infection can appear mainly in three different patterns: i) forming 

limited disease centers which develop radially creating a gradient of decay, ii) 

extensively with randomly scattered dead trees, or iii) in young stands, as small patches 

of mortality which stop developing when the trees mature (Williams et al., 1986; Mallett, 

1992). Armillaria  usually causes the highest mortality in the early stages of the plantation 

development, e.g. between 20-50% in the first 6 years of Pinus radiata  D.Don. stands 

(Hood and Sandberg, 1993b), and a maximum of 2% per year for Douglas fir (Morrison 

and Pellow, 1994) and spruce (Livingston, 1990). Shearer (1995) noticed that the 
susceptibility of E. saligna Sm. decreased with the age and Lung- Escarmant and Guyon 

(2004) observed that P. pinaster Ait. mortality due to Armillaria  occurred principally in 

the first 5 years of the plantation. In this stand phase, the volume loss can sometimes be 

compensated by the growth of the survivors (Mackenzie, 1987).  

Once the plantation is in a medium-late stage of the growing cycle, volume losses 

are caused by tree mortality (lethal infection) and radial/length growth reduction 

(chronic infection). MacKenzie (1987) estimated volume losses of 5.5–11 m3/ha associated 

with chronic infection and losses of 26-61 m3/ha due to lethal infection, representing a 

total of 6-13% of the potential volume in a 28 years old P. radiata  plantation. Bloomberg 

and Morrison (1989) found a reduction in volume of up to 59% in  Douglas-fir stands and 

Cruickshank (2000) mentioned a 40% volume reduction over 4-8 years in 18 year old 

Douglas fir plantation. In lodgepole pine stands the mean reduction of the annual wood 

volume increment was 43% ten years after trees become infected (Mallet and Volney, 

1999). Kaliszewski et al. (2007) calculated the greatest losses of 8 m 3/ha/year for spruce. 
The quantity of damage caused by Armillaria  is highly variable because it depends on 

factors such as fungal species and virulence, host species and vigour, interaction with 

other diseases, soil properties, climate, management and previous land uses, among 

others (Kile, 1983; Mallett and Volney, 1990; Entry et al., 1991; Mallett and Maynard, 

1998; Poopola and Fox, 2003; Hood and Kimberley, 2009). Therefore, it cannot be 

generalized (Wargo and Shaw, 1985).
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1.2. Heterobasidion species complex 

1.2.1. Taxonomy  

The genus Heterobasidion is characterized by having perennial basidiocarps with 

cuticulate pilei, hymenial surface poroid, multinucleate hyphal cells, slightly dextrinoid 

and strongly cyanophilous skeletal hyphae, asperulate basidiospores, and a Spiniger 

anamorph; it can act as a saprophyte or a wood parasite (Stalpers, 1979; Niemelä and 

Korhonen, 1998; Korhonen, 1978). The genus is included in the kingdom Fungi, division 

Basidiomycota, subdivision Agaricomycotina, class Agaricomycetes, subclass 

Agaricomycetes incertae sedis, order Russulales, family Bondarzewiaceae 

(Indexfungorum.org, 2017). 

The name currently admitted for this genus is (Indexfungorum.org, 2017):  

Heterobasidion Bref., Unters. Gesammtgeb. Mykol. (Liepzig) 8: 154 (1888); Synonymy: 

Murrilloporus Ryvarden, Mycotaxon 23: 192 (1985). 

Anamorph: Spiniger meineckellus (A.J. Olson) Stalpers, Proc. K. Ned. Akad. Wet., Ser. C, 

Biol. Med. Sci. 77(4): 402 (1974). 

1.2.2. Heterobasidion species and their distribution  

Twelve species of Heterobasidion are known worldwide (Niemelä and Korhonen, 

1998; Otrosina and Garbelotto, 2010; Ota et al., 2006; Dai et al., 2007; Dai and Korhonen, 

2009; Tokuda et al., 2009; Buchanan, 1988; Chen et al., 2014):  

 H. araucariae P.K. Buchanan.  

 Within H. insulare (Murrill) Ryvarden species complex: H. australe Y.C. Dai & 

Korhonen, H. ecrustosum Tokuda, T. Hatt. & Y.C. Dai, H. linzhiense Y.C. Dai & 

Korhonen, H. orientale Tokuda, T. Hatt. & Y.C. Dai, H. amyloideum Y.C. Dai, 

Jia J. Chen & Korhonen, and H. tibeticum Y.C. Dai, Jia J. Chen & Korhonen.  

 Within H. annosum (Fr.) Bref. species complex (H. annosum s.l.) (Figure 1.4):  

 Eurasian species: H. annosum sensu stricto (s.s.), H. abietinum Niemelä 

& Korhonen, and H. parviporum Niemelä & Korhonen (Table 1.2). 

 North American species: H. irregulare (Underw.) Garbel. & Otrosina 

and H. occidentale Otrosina & Garbel.  
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Figure 1.4. H. annosum s.l. global distribution (adapted from Garbelotto and Gonthier, 2013).  

 

In Spain, the presence of H. annosum s.l. species has been reported in the following 

provinces: 

 Segovia: in a stump of P. sylvestris L. (Martínez, 1943). 

 Andalusia: H. abietinum in A. pinsapo Boiss (Navarro et al., 2003; Sánchez, 

2007).  
 Basque country: H. annosum s.s. in different conifer species (Mesanza and 

Iturritxa, 2012). 

 Aragon: H. annosum s.s. in P. nigra  Arn. (Oliva et al., 2008) and H. abietinum 

in sylver fir (A. alba  ) stands (Oliva and Colinas, 2009).  

 Palencia: H. annosum s.s. in P. pinaster (Prieto-Recio et al., 2012).  
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Table 1.2. Morphological chacacteristics of European H. annosum s.l. species (Tokuda et al., 2009). 

Species H. annosum s.s H. parviporum H. abietinum 

Known as European P (Pine) type European S (Spruce) type European F (Fir) type 

Basidiocarps 

Annual to perennial, 

pileate or sessile to 

effused-reflexed, 

imbricate with several 

pilei or solitary. 

Annual to perennial, 

effused-reflexed to 

resupinate or pineate, 

imbricate with several pilei 

or solitary. 

Perennial, pileate to 

effused- reflexed. 

Pilei Often semicircular. 
Applanate to slightly 

convex. 

Semicircular or 

elongated. 

Pileus surface 

Subtomentose to 

almost glabrous, 

brown to dark brown, 

partly almost black, 

margin light yellow. 

Tomentose, brown to dark 

brown, partly almost 

black near the base, 

margin light yellow to 

yellowish white. 

Subtomentose to 

almost glabrous, 

brown to dark brown, 

partly almost black, 

margin light yellowish 

orange to pale 

yellowish orange. 

Pore surface Light yellow. 
Pale yellowish orange to 

light yellowish orange. 

Light yellowish orange 

to pale yellowish 

orange. 

Pores 
2-3 mm,  round to 

angular. 

3-4(-5) mm, round to 

angular, rarely elongated. 

2-3 mm,  round to 

angular. 

Context  Up to 7 mm thick. Up to 3 mm thick. Up to 3 mm thick. 

Tubes 

Concolorous with 

context, up to 7 mm 

deep in each layer. 

Concolorous with context, 

up to 6 mm deep in each 

layer. 

Concolorous with 

context, up to 4 mm 

deep in each layer. 

  

1.2.3. Host susceptibility 

Conifers are the main host of H. annosum s.l. and most conifer species have been 

reported as susceptible to this species complex (Asiegbu et al., 2005). The different H. 

annosum s.l. species show different degrees of host specialization; H. abietinum is 

primarily reported on A. alba but it has been found on other Abies Mill. spp., and in 

species of Chamaecyparis Spach, Juniperus L., Larix Mill., Pinus Linn., Castanea Mill., Fagus 

L., and Pseudotsuga menziesii (Mirb.) Franco and Cryptomeria japonica  (Thunb. ex L.f.) 

D.Don (Korhonen et al., 1998). H. parviporum is considered highly specialized and a 

primary pathogen of Picea abies (L.) Karst. (Asiegbu et al., 2005) even if it can kill native 

or exotic Pinus spp. It was also found in other hosts such as stressed birch trees, Abies 

spp., Malus sylvestris (L.) Mill., Fraxinus Tourn. ex L, Vitis vinifera  L., and others 

(Korhonen et al., 1998; Sedlák and Tomšovský, 2014). H. annosum s.s. is considered a 

generalist primary pathogen, thus, it is the European H. annosum s.l. species with the 

greatest host range, including conifers and broadleaf trees. P. sylvestris and, in general, 

Pinus spp. are the most susceptible to this pathogen (Korhonen et al., 1998; Asiegbu et 

al., 2005).  
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1.2.4. Infection and life cycle 

H. annosum s.l. infection is established by two mechanisms, most frequently by 

colonization of basidiospores or by contact between infected and non-infected wood 

structures like roots (Figure 1.5). Basidiospores are actively released (Korhonen and 

Stenlid, 1998), and usually they settle down within a short distance from the original 

basidiocarp but they can cover distances of 50 to 500 km. They colonize bark -free wood, 

such as fresh cut surfaces and root lesions, and germinate as a homokaryotic mycelium 

which will become heterokaryotic due to compatibility reactions (Kallio, 1970; Stenlid, 

1994, Rayner et al., 1987). When infection levels are low, heterokaryotization is less 

probable so homokaryotic colonies will be in a higher proportion (Möykkynen and 

Kontiokari, 2001). Although in North America damage caused by homokaryonts has 

been reported (Garbelotto et al., 1997), it is not common in living trees in Finland 

(Korhonen and Piri, 1994). When the mycelium is developed it can extend to the root 

system and infect healthy roots of nearby trees and stumps. The role in infection of the 

conidiospores produced by the anamorph S. meineckellus is not clear and this asexual 

form is uncommon at the field level (Greig, 1998). Although in stumps artificial 

inoculation of conidiospores resulted in infection (Morrison and Redfern, 1994), so they 

might be important for short-distance dispersion (Asiegbu et al., 2005). 
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Figure 1.5. Generalized infection mechanism of Heterobasidion spp. (adapted from Barnard and Nixon, 1983; ilustrated by A. Mesanza).
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1.2.5. Symptoms and signs of infection 

The aerial symptoms of H. annosum infection, such as chlorotic leaves, wilt, groups 

of or isolated dead trees, and wind-downed trees with rotten roots, are generic and they 

do not provide any diagnostic value (Tainter and Baker, 1996). Thus, the presence of 

basidiocarps is the most reliable diagnostic criterion in the field. Basidiocarps can be 

found in rotten parts of death or living trees, between gaps in the root system or in 

animal galleries, in the base of trees and stumps, and inside empty trees and stumps 

(Figure 1.6). In areas with dry summers they are not common in exposed parts (Sinclair 

et al., 1987).  

In general, the affected trees have anchoring problems due to degradation of main 

roots which make them susceptible to falling from wind or snow weight; this is the main 

cause of death by H. annosum (Smith et al., 1992). Even if the root system is affected 

aerial symptoms may not be apparent, but growth suppression could be observed in a 
detailed survey. Because of this, it is assumed that when H. annosum is established in a 

stand the number of infected trees that can be detected by external observation is 

usually underestimated (Sinclair et al., 1987). 

 

Figure 1.6. Tree gaps in a plantation with presence of Heterobasidion (A, B and C). Heterobasidion 

basidiocarps (D and E), and conidia and conidiospores of the asexual S. meineckellus (F). 
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1.2.6. Damage 

The level of damage caused by H. annosum s.l. in natural forests is usually lower 

than the damage caused in conifer plantations. Although the losses caused by H. 

annosum s.l. vary greatly between regions, they are considered to be of high importance. 

In the European Union financial losses due to tree decay and reduction in growth were 

initially estimated at 790 million euros per year (Woodward et al., 1998). Pratt (1979) 
reported a loss in value of 43% in P. sitchensis (Bong.) Carr. plantations of the UK, the 

direct financial losses in Norway spruce and mixed stands were calculated as an 18%-

34% by Gonthier et al. (2012), and in Sweden and southern Finland 54 million euros per 
year and 35 million euros per year, respectively, were lost due to H. annosum s.l. damage 

(Bendz-Hellgren and Stenlid, 1995; Bendz-Hellgren et al., 1998). Timber volume losses 

caused by Heterobasidion infection are due to tree decay, diameter growth reduction, 

windthrow, and stand susceptibility to storm damages (Garbelotto and Gonthier, 2013). 

The infected trees are also more susceptible to other factors such as bark beetle 

infestations (Goheen and Otrosina, 1998). 

Higher infection and damage rates have been recorded in stands with previous use 

as agricultural or pasture land, and when nearby stands are highly infected. Soil 

conditions that can favor the disease are fertile soils, sandy soils low in organic matter, 

and soils with high lime content. High calcium content and high pH values as well as 

variable ground water levels and drought periods are also correlated with infection 

occurrence (Korhonen and Stenlid, 1998; Redfern et al., 2010; Gonthier and Thor, 2013). 

1.3. Area of study 

1.3.1. Localization and geomorphology of the Basque Country 

The Basque Country is located in the central section of the northern region of the 

Iberian Peninsula, bordered by the Cantabrian Sea on the north, France and 

Autonomous Community of Navarre in the east, La Rioja in the south, with Castile and 

León in the southwest, and Cantabria in the west. It covers an area of 7234 km2 divided 

in three regions: Alava (3037 km2), Biscay (2217 km2) and Guipuzcoa (1980 km2), and is 

situated between the latitude 43o 27´ 50´´ and 42o 28´ 45´´ north and longitude 3o 23´ and 

1o 43´ west (Loidi et al., 2009). 

It is composed of three major mountain ranges. The northern one is a limestone 

mountain range which forms the Cantabrian-Mediterranean watershed in a NW-SE 

orientation, characterized by high karstified massifs, some with altitudes about 1500 m. 

Between this and an Eocene marlaceous lime mountain range situated in the 

Mediterranean watershed in a W-E orientation, there is a central plateau. In this second 

formation the maximum altitudes are lower than in the others, close to 1200 m. The third 

and southern range is a Cretaceous limestone mountain range, parallel to the second 

one, where can be found altitudes around 1400 m (IKT, 1999) (Figure 1.7).  
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Figure 1.7. Map of the natural sectorization of the Basque Country (left) (Aseguinolaza et al., 

1988). Map of the Basque Country elevation (right) (IKT, 1999). 

The Cantabrian watershed is distinguished by siliceous substrata with a high 

percent of iron and organic matter and steep slopes from the Mediterranean watershed 

which is mainly formed by limestone soils and has a more gentle topography. The most 

usual lithology is that constituted by carbonates (limestone, loams, etc.) but, in general, 

soils suffer from an intense acidification due to the high precipitation level (IKT, 1999 ; 

Loidi, 1987) (Figure 1.8). 

 

Figure 1.8. Map of the Basque Country lithology (IKT, 1999).  
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1.3.2. General climate  

The Basque Country consists of a heterogeneous climate due to geographic and 

topographic characteristics. The latitude is probably the most important climatic factor 

affecting this region, followed by ocean proximity and surface features. The fact of being 

located near the 43oN parallel, and in the west European coastal temperate zone means 

that, especially in spring and autumn, Atlantic NW humid winds cause a succession of 

squalls resulting in copious rainfalls. In summer, the Azores anticyclone acts on the 

region but mainly in the southern part. It should be noted also that the climate is 

influenced by the Gulf Stream, which heats the coast resulting in higher temperatures 

than expected for this latitude. This, in addition to the W-E orientation of the northern 

mountain ranges, results in asymmetry in the Basque Country between central and 

northern strips, with temperate macrobioclimate, and the southern strip, with 

Mediterranean macrobioclimate (Loidi, 1987; Euskalmet, 2009; Aseginolaza et al., 1989). 

The temperate macrobioclimate is characterized by precipitation all year round and 

moderate temperatures. Within this macrobioclimate and covering most of the territory 

is the maritime temperate bioclimate which maintains the characteristics of the 

temperate macrobioclimate at the Atlantic valleys. The decrease in precipitation 

southward determines the occurrence of the maritime temperate sub-Mediterranean 

variant which can result in one month of summer aridity. At some points near the coast, 

the bioclimate changes to hyper-maritime temperate which can be found also in the sub-

Mediterranean variant. Within the Mediterranean macrobioclimate is the maritime 

bioclimate with seasonal precipitations and at least two months of summer drought 

(Campos, 2010) (Figure 1.9).  

 

Figure 1.9. The Basque Country bioclimates (Campos, 2010). 
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1.3.3. Native forest and tree plantations 

During the last 250 years, forests have been in a state of uninterrupted decline and 

degradation in the Basque Country. Before the beginning of the 20th century the native 

forest covering this region, which primarily comprised F. sylvatica  L., Quercus robur L., 

Q. pyrenaica  Willd., F. excelsior L. and Alnus glutinosa  (L.) Gaertn., had already been 

dramatically reduced. The increase in charcoal and wood demand for the production of 

iron in foundries and use in farming and shipbuilding sectors were the main causes of 

this deforestation (Martín de Agar et al., 1995; Martín- Martín, 2001). The 1940s saw a 

gradual abandonment of agricultural land because agriculture was no longer 

economically profitable, and younger generations were moving to cities that offered 

more opportunities (Basque government, 2002). This, added to the increasing demands 

from construction, industry (eg. paper mills, mining, railway), foreign dependence, and 

the low price of planting and the rapid growth of some coniferous species, resulted in a 

change of agricultural land use and a forest reforestation based on the introduction of 

exotic, fast growing species, in particular conifers (Uriarte, 2008; Michel-Rodriguez, 

2004). The oceanic region was the most affected by this while Alava-Navarre region was 

less affected due to the human settlement type, high proportion of public land and 

lower industry and comercial development (Loidi, 2001).  

Currently, that difference is still maintained. Thus, comparing the plantation areas 

against total forest surface, the value for Alava is 21.6%, whereas for Biscay and 

Guipuzcoa are 77.4% and 61.5% respectively. The proportion of the forest area against 

the total surface of the Basque country is 54.9% (HAZI, 2010), but, even if tree 

plantations have morphological and structrural similarities to native forest, they are not 

comparable ecologically nor biogeographically (Loidi, 2001). Characteristics of potential 

native forests of the Basque Country are resumed in Table 1.3 (Loidi et al., 2009).
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Table 1.3. Potential forest of the Basque Country and their characteristics (Loidi et al., 2009). 

 

NATURAL 

FOREST

VEGETATION 

SERIES
SIGMETUM SERIES CHARACTERISTICS

DOMINANT 

TREE 

SPECIE

FOREST STRUCTURE SOIL STRUCTURE
MAIN SPECIES IN TREE 

PLANTATIONS

CALCICOLOUS 

BEECH FOREST

Carici 

sylvaticae-

Fago 

sylvaticae 

Climatophilous, meso-

supratemperate, humid-hyperhumid, 

neutrophilous, mesophytic.

Fagus 

sylvatica  L.

High density canopy. Almost pure 

beech forest, undergrowth poor in 

vascular plants, rich in bryophytes. 

Base-rich substrates 

(limestones,dolomites or 

marls).

Quercus rubra  L., Larix 

kaempferi (Lamb.) Carr., 

Pseudotsuga menziesii (Mirb.) 

Franco , Chamaecyparis 

lawsoniana

(A. Murray) Parl.

XERIC BEECH 

FOREST

Epipactido 

helleborines-

Fago 

sylvaticae

Climatophilous, meso-

supratemperate, humid, 

neutrophilous, submesophytic.

F. sylvatica

High density canopy. Sometimes 

presence of  other deciduous 

species, richer shrub stratum with 

submediterranean influence, rich 

herbaceous stratum.

Strong slopes, shallow, 

composed  of limestones and 

dolomites.

 ―――――――――――

ACIDOPHILIC 

BEECH FOREST

Saxifrago 

hirsutae-Fago 

sylvaticae

Climatophilous, meso-

supratemperate, humid-hyperhumid, 

acidophilous and neutro-

acidophilous. 

F. sylvatica

High density canopy. Almost pure 

beech forest. Undergrowth poor in 

vascular plants, rich in bryophytes. 

Acid substrates or with an 

easy acidification  (sandstone, 

lutite, ophite, slate, greywacke, 

granite).

L. kaempferi, C.lawsoniana,                 

Q. rubra,  P. menziesii 

OAK WOODS OF   

ALAVA-NAVARRE

Crataego 

laevigatae-

Querco roboris 

Temporihygrophilous and 

climatophilous, 

mesotemperate,subhumid-humid, 

euoceanic, neutro-basophilous and 

neutrophilous, mesophytic.

Quercus 

robur L.

Shrub and herbaceous strata rich in 

species and dense. 
Base-rich substrates. ―――――――――――

CANTABRIAN OAK 

WOODS

Hyperico 

pulchri-Querco 

roboris 

Climatophilous, meso-

supratemperate, humid-hyperhumid, 

acidophilous.

Q. robur

Medium density canopy. Pluri-

stratified undergrowth with high 

biomass but poor in shrub stratum.

Non-carbonated acidic rocks 

(sandstone, granite, quartzite,   

flysch rich in sandstone and 

argillite).

Pinus radiata D. Don., 

Eucalyptus globulus Labill.

Polysticho 

setiferi-Fraxino 

excelsioris

Temporihygrophilous and 

climatophilous, termo-

mesotemperate, humid-

hyperhumid,hyperoceanic, neutro-

basophilous and neutro-

acidophilous, mesophytic.

Q. robur

Complex structure, different tree 

species mixture. Abundant in 

shrub, herbaceous, lianoid strata 

and in epiphytes.

Deep, nutrient-rich soils with 

high capacity to store water 

and appropriate texture.

P. radiata

OTHER OAK 

WOODS

Roso arvensis-

Querco 

pubescentis 

Climatophilous, meso-

supratemperate, subhumid-humid, 

submediterranean, neutrophilous, 

calcicolous and siliceous.

Q. humilis 

Mill.

Complex structure with high 

subarboreal estratum development.

Base-rich substrates 

(limestones or marls).
―――――――――――

Pulmonario 

longifoliae-

Querco 

Petraeae 

Climatophilous, meso-

supratemperate, humid-hyperhumid, 

acidophilous.

Q. petraea 

(Matt.) Liebl.

Dense, poor shrub stratum, high 

diversity of the herbaceous stratum.  

Substrates poor in bases, 

usually on sandstones but also 

on flysch poor in carbonated 

rocks.

C. lawsoniana, Picea abies (L.) 

Karst. , Q. rubra, L. kaempferi

OAK FORESTS

BEECH FORESTS
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Table 1.3 (continuation). Potencial forests of the Basque Country and their characteristics (Loidi et al., 2009). 

 

  

NATURAL 

FOREST

VEGETATION 

SERIES
SIGMETUM SERIES CHARACTERISTICS

DOMINANT 

TREE 

SPECIE

FOREST STRUCTURE SOIL STRUCTURE
MAIN SPECIES IN TREE 

PLANTATIONS

PYRENEAN OAK 

FORESTS

EUROSIBERIAN 

PYRENEAN OAK 

WOODS

Melampyro 

pratensis-

Querco 

pyrenaicae 

Climatophilous, meso-

supratemperate, humid, 

submediterranean,euoceanic, 

acidophilous.

Q. 

pyrenaica

Dense, medium height trees with 

thin multi-stem trunks, herbaceous 

stratum quiet rich, acidophilous 

vegetation. 

Sand-rich substrates, very 

permeables and more or less 

base poor.   

―――――――――――

EUROSIBERIAN 

GALL OAK 

WOODS

Pulmonario 

longifoliae-

Querco 

fagineae 

Climatophilous, mesotemperate, 

subhumid-humid, submediterranean, 

neutro-basophilous.

Q. faginea

Not very high canopy density, high 

vegetal diversity and multiple levels 

at subarboreal stratum.

Base-rich substrates 

(limestones or marls). In 

slopes, well structured  and 

aerated.

―――――――――――

MEDITERRANEAN 

GALL OAK 

WOODS

Spiraeo 

obovatae-

Querco 

fagineae 

Climatophilous, meso-

supramediterranean, subhumid-

humid, submediterranean,neutro-

basophilous.

Q. faginea

Irregular and medium size tree 

stratum, low canopy density, high 

undergowth development.

Soft, marly, base-rich soils. ―――――――――――

CANTABRIAN 

HOLM OAK 

WOODS

Lauro nobilis- 

Querco ilicis 

Edafoxerophilous, termo-

mesotemperate, humid, 

submediterranean, hyperoceanic 

and oceanic, relict, calcicolous and 

siliceous.

Q. ilex     

Not very high, dense and tangled, 

high density of trees, shrubs and 

lianes,poor herbaceous stratum. 

Mediterranean sclerophyllous 

vegetation.

Substrates with low capacity to 

retain and store water (lithosols 

on compact limestones usually 

in   steep slopes or karstic). 

―――――――――――

CASTILIAN-

CANTABRIAN 

HOLM OAK 

WOODS

Spiraeo 

obovatae-

Querco 

rotundifoliae 

Climatophilous and 

edafoxerophilous, 

supramediterranean, subhumid-

humid,  calcicolous. 

Q. ilex 

subsp. 

rotundifolia 

Short, dense and tangled. Poor in 

lianes and herbaceous stratum. 

Mediterranean vegetation.

Karstified or marly limestone. ―――――――――――

RIOJAN HOLM 

OAK WOODS 

Querco 

rotundifoliae 

Climatophilous, mesomediterranean, 

dry-subhumid, calcicolous and 

siliceous.

Q. ilex 

subsp. 

rotundifolia 

Medium-short. Poor in plants and 

species. 

From loamy to sandy soils and 

from deep soils to rocky soils.
―――――――――――

GALL OAK 

FORESTS

HOLM OAK 

FORESTS
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1.4. Objectives 

Butt and root rot caused by Armillaria  spp. and H. annosum complex cause large 

economic losses in the north hemisphere. Both fungi are known to be present in the 

Basque Country; however, to develop more effective management strategies a more 

intensive study is needed to: 

i. Determine Armillaria  and Heterobasidion distribution in the Basque Country; 

ii.  Determine Armillaria  and Heterobasidion species and population diversity in 

native forests and plantations of the Basque Country; 

iii.  Establish the host range and host susceptibility for these pathogens;  

iv.  Describe the ecosystems where Armillaria  and Heterobasidion are present;  

v. Provide information about the patterns of dispersal and mechanisms in 

specific areas.  

The application of existing management strategies against Armillaria  and 

Heterobasidion species is limited and often ineffective, due to factors such as level of 

infection, environmental conditions, and risks, cost, and legislation, among others. Thus, 

in order to complement the current integrated management strategies, and considering 

the importance of P. radiata in the lumber industry of the Basque Country, it is proposed 

to: 

vi.  Isolate and characterize the ability of some bacteria native to the P. radiata  

rhizosphere to reduce A. mellea and H. annosum pathogenic effects as a 

prophylactic nursery treatment.  
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CHAPTER 2 
Distribution and characterization of 

Heterobasidion and Armillaria complexes in the 

Basque Country 
 

 

 
 

 

2.1. Introduction 

Studies about the distribution and abundance of fungal pathogens, fungal species 

involved, and environment in which they are present are important to identify affected 

and susceptible areas. Models of potential distribution of pathogens and their habitats 

can be developed with fungal occurrence data which may be used to improve ecological 

understanding of actual and potential distributions, to establish management strategies, 
and to investigate the potential role of climate change in the behavior of pathogens 

(Franklin and Miller, 2009; Gherbawy and Voigt, 2010; Guisan and Zimmermann, 2000; 

Narayanasamy, 2011). 

Successful establishment of a pathogen in an environment is determined by the 

presence of hosts and host susceptibility, and environmental conditions. Environmental 

factors influence pathogen survival, formation of dispersion structures, germination of 

spores, and establishment of new mycelia. They can also alter canopy structure and 

density, host development and host defense mechanisms, thus, changing the 

susceptibility of the host to the pathogen (Eastburn et al., 2011; Elad and Pertot, 2014; 

Ghini et al., 2008).  
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Identification of different species within Armillaria  and Heterobasidion genera in a 

region is important because they interact differently with their host and have different 
habitat preferences. A. mellea  and A. ostoyae usually behave as primary pathogens of a 

broad range of deciduous and coniferous tree species, however, A. mellea  is considered 

less pathogenic for conifers than A. ostoyae. Both of them can also act as saprophytes 

(Guillaumin et al., 1993; Coetzee, 2003). A. gallica  host range is also wide and it can 

behave as an opportunistic and/or primary pathogen, especially when the host is 

stressed (Skovsgaard et al., 2010; Kim et al., 2017). A. tabescens has mainly a saprophytic 

role, but can act as a primary parasite in eucalyptus or as opportunistic in oak.  The 

pathogenicity of A. cepistipes and A. borealis is usually low (Guillaumin et al., 1993; 

Coetzee, 2003), and the role of A. ectypa is uncertain, although it has been considered a 

saprotroph of plant debris (Ohenoja, 2006; Ainsworth, 2003).  

The H. annosum s.l. species present in Europe behave as necrotrophs and show host 

specialization which defines their distribution. H. annosum s.s. shows a preference for 

Pinus spp. although it can be found in other conifers or some broadleaved trees.  The 

host preference of H. parviporum is P. abies, and H. abietinum is usually found in Abies 

spp. (Garbelotto and Gonthier, 2013). 

The main tree species in Basque Country plantations is P. radiata  (covering an area of 

132084 ha), followed by Eucalyptus L'Hér. (15197 ha), P. nigra  (13701 ha), Larix spp. (8011 

ha), P. pinaster (7238 ha), P. menziesii (6537 ha), Chamaecyparis lawsoniana  (A. Murray) 

Parl. (3414 ha), Q. rubra  L. (3328 ha) and P. abies (525 ha). The main native forest species 

are F. sylvatica  (53835 ha), Q. faginea  Lam. (26652 ha), Q. ilex L. (26152 ha), Q. robur and Q. 

petraea  (Matt.) Liebl. association (16469 ha), and Q. pyrenaica  (13039 ha) (HAZI, 2010) 

(Figure 2.1). All of these tree species have been reported to be susceptible to different 

Armillaria  spp. in the literature; Heterobasidion spp. have been also reported in many of 

the host species mentioned above, including some Quercus spp. (Korhonen et al., 1998; 

Asiegbu et al., 2005; Doğmuş-Lehtijärvi et al., 2015). However, Armillaria  spp. and 

Heterobasidion spp. distribution and species diversity are not known in the Basque 

Country, where the wood industry is valued at 1 billion euros per year (Basque 

Government, 2017). 
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Figure 2.1. Main tree species distribution in the Basque Country (IKT, 2005). 

2.1.1. Objectives 

The objectives of this study were:  

i. To determine Armillaria  and Heterobasidion distribution in the Basque 

Country. 

ii. To generate a dataset of location of both fungal genera. 

iii.  To define the species of Heterobasidion and Armillaria  present in native 

forests and plantations of the Basque country.  

iv. To determine environmental factors of Armillaria  spp. and Heterobasidion 

spp. habitats. 
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2.2. Material and methods 

2.2.1. Collection of fungal material 

Two sample sets, one corresponding to H. annosum isolates and the other one to 

Armillaria  spp. isolates, were collected from native forests and plantations of the Basque 

country, focusing on trees in pockets of mortality and decayed trees displaying 

symptoms resembling those of root rot diseases. The stands were surveyed by 

systematic random sampling, which consisted of randomly choosing a starting point 

and sampling systemically from that focal point (Mueller-Dombois and Ellenberg, 1974). 

A total of 709 foci of tree mortality were examined this way in order to determine 

Armillaria  spp. and H. annosum presence, and fungal samples and ecosystem 

characteristics related to infection were collected. Heterobasidion basidiocarps and 

Armillaria  basidiocarps, rhizomorphs and mycelium fans were sampled.  

All the surveyed points were georeferenced using an Oregon 300 Garmin GPS and 

samples were labelled and placed in separate polyethene bags, transported to the 

laboratory, and stored at 4ºC. Fungi were cultured on benomyl-dichloran-streptomycin 

agar (BDS) (Worrall, 1991) and growth at 20ºC in the dark. Pure cultures were obtained 

and routinely grown on malt extract agar (MEA) (Panreac). For preservation of the pure 

cultures, mycelial fragments were placed in 50% glycerol and, after incubating at 4ºC for 

24h, maintained at -20ºC (Pitt and Hocking, 2009).  

2.2.2. Identification of spatial distribution patterns 

Nearest neighbour index (NNI) (Hertz, 1909; Clark and Evans, 1954) was calculated 

to analyse the distribution patterns (regularly dispersed, randomly dispersed or 
clustered) of Heterobasidion and Armillaria populations. NNI is a measure of clustering 

that is expressed as the ratio of the observed mean distance between data points divided 

by the expected mean distance for a random distribution. The expected mean distance is 

based on a hypothetical random distribution with the same number of features covering 

the same total area. If the means are the same, the ratio is equal to 1 and the observed 

distribution can be considered random. If the expected mean is greater than the 

observed mean, the ratio is less than 1 and the observed distribution is clustered. When 

the expected mean is less than the observed mean, the difference is greater than 1 and 

the observed distribution is dispersed. The nearest neighbour index considers the 

relationship between features, unlike quadrat analysis, which simply considers whether 

or not a feature falls within a particular area. Thus, the NNI was used to better capture 

any pattern where interacting features are analysed, such as cases of diseases (Mitchell, 

2009).  
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To represent Heterobasidion spp. and Armillaria spp. distribution based on their 

abundance in the study area, Kernel density estimation was used. By means of this 

estimation a density representation is shaped using a group of localized data, thus 

obtaining a global pattern of the distribution, i.e. it provides information about the 

concentration of the points in an area and the gradual variation of infection levels 

(Moreno, 1991; Fortin and Dale, 2005). Kernel density estimation is a non-parametric 

density estimation, and is calculated as follows: 

 

where,  

x: point where the density is estimated. 

xi: value of the variable for each case, i = 1, 2, 3, 4, … 

K: Kernel function, it controls the weight given to the observations {xi} at each 

point x based on their proximity. 

h: bandwidth, which controls the size of the neighborhood around x, is a 

smoothing parameter; it was stablished at 4000 m. 

NNI and point density maps were conducted using ArcGis 9.2 Software (ESRI Inc., 

California, USA). 

2.2.3. Description of fungal ecosystems  

To determine environmental factors of Armillaria  spp. and Heterobasidion spp. 

habitats, a dataset of the environmental variables of the studied ecosystems was 

constructed based on information supplied by the Environment Department of the 

Basque Government (http://www.ingurumena.ejgv.euskadi.eus/r49-

579/es//publicaciones_c.htm). The variables compiled were stand slope, stand 

orientation, soil acidity, soil permeability, average rainfall, average temperature, tree 

types, and host optimal conditions. Variables were categorized as shown in Table 2.1. 

Armillaria  spp. presence was coded as a binomial variable being 0 for absence and 1 for 

presence; the same was applied to Heterobasidion spp. 
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Table 2.1. Categorical variables, category code and description of each of each category compiled 

in this study. *Information Source: http://www.ingurumena.ejgv.euskadi.eus/r49-

579/es//publicaciones_c.htm 

  

As a preliminary exploratory analysis, multiple correspondence analysis (MCA) was 

applied to represent the relationships among the categorical variables. MCA projects the 

variables in a reduced space, facilitating visual interpretation for large datasets. This 

analysis converts a matrix of data into a graphical display known as factor planes. The 

rows and columns of the matrix are plotted as points in the factor planes and allow a 

geometrical representation of the information (Greenacre and Hastie, 1987).  

This procedure was complemented with contingency tables testing separately each 
categorical variable including its categories against Armillaria or Heterobasidion presence 

or absence. Pearson´s chi square test was used to determine the independence between 

row and column variables, i.e. to determine if Armillaria or Heterobasidion were more 

frequently detected than expected by chance in certain categories. Pearson´s chi square 

test is calculated as follows:  

  
where, i represents the rows (categories of each environmental variable) in the 

contingency table and j represents the columns (Armillaria or Heterobasidion presence or 

absence). The observed data are the observed frequencies or number of events per 

category, and the model is defined as follows: 

 
where n is the total number of observations.  

<10 <10 Imper Impermeable

10-20 10 - <20 low Low

20-30 20- <30 medium Medium

30-40 20- < 40 high High

40-50 40 - < 50 1 <1000

50-60 50 - <60 2 1000-1400

N North 3 1400-1800

NE Northeast 4 >1800

E East 1 <10.5

SE Southeast 2 10.5-11.5

S South 3 11.5-12.5

SW Southwest 4 >12.5

W West +Op Favorable

NW Northwest Op Acceptable

acid acid -Op Unfavorable

-acid -acid - - Op Very Unfavorable

-basic -basic Deciduous Deciduous

basic basic Conifers Conifers

Slope (%)

Orientation

Soil (Acidity)

Permeability

Characteristics

Rain (average, 

mm)

Temperature 

(average, ºC)

HOC (Host 

Optimal 

Conditions)

Tree Type

Characteristics Category 

code

*DescriptionCategory 

code

*Description
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For calculating the strength of association between categorical variables Cramer´s V 

was used, where Cramer´s V ranges between 0 (no relationship) and 1 (perfect 

relationship). Adjusted standardized residuals were checked in order to determine the 

significant differences between categories; adjusted residuals are standardized values 

allowing comparisons among different cells, and follow a standard normal frequency 

(with mean zero and standard deviation one) so we can assume that if their value lies 

outside of ±1.96 then it is significant at p <0.05, if it lies outside ±2.58 then it is significant 

at p <0.01 and if it lies outside ±3.29 then it is significant at p <0.001 (Field, 2009).  

2.2.4. Fungal species identification 

2.2.4.1. Armillaria spp. 

Restriction Fragment Length Polymorphism-PCR (RFLP-PCR) was used to confirm 

the identity of the Armillaria  isolates at the species level. This technique is based on the 

variations among homologous DNA sequences which will vary binding sites for 

restriction enzymes resulting in differences in DNA fragment sizes among species. 

DNA from two week old pure cultures was extracted with DNeasy Plant Mini Kit 

(Qiagen) in accordance to the manufacturer’s instructions and a section of the intergenic 

spacer region (IGS) of the rDNA was amplified using the primer pair LR12R (5'-

CTGAACGCCTCTAAGTCAGAA-3') and O-1 (5'-AGTCCTATGGCCGTGGAT-3') 

(Harrington and Wingfield, 1995) (Figure 2.2). The PCR mixture contained 1.5 mM 

MgCl2, 200 µM each dNTP, 0.5 µM each primer, 2 U Taq polymerase (Netzyme, 

Molecular Netline Bioproducts, Valencia) and 1 µl template DNA in a final volume of 50 

µl. The cycling conditions consisted of 90 sec at 95 ºC, 35 cycles of 30 sec at 95 ºC, 40 sec 

of annealing at 60 ºC, and 2 min at 72 ºC, and a final 10 min at 72 ºC. The obtained DNA 

fragment was directly digested with the restriction enzyme Alu I (Invitrogen), Nde I 

(Takara) or Bsm I (Roche) (Harrington and Wingfield, 1995). The restriction fragments 

were separated in 3% agarose gels (agarose D-1 Low EEO, Conda). Species were 

identified based on the restriction patterns determined by Harrington and Wingfield 

(1995) and Pérez-Sierra et al. (1999) (Table 2.2).  
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Table 2.2. Restriction fragment sizes of the amplified DNA region  of different Armillaria sp. 

(Harrington and Wingfield, 1995; *Pérez-Sierra et al., 1999).  

Armillaria 
spp. 

Pattern AluI NdeI BsmI 

A. borealis 
1 

310,200,135 

305,200,135* 

550, 370 

550, 370* 
  

2 
310,200,104           

400, 200, 190* 
    

A. cepistipes 
1 

399, 200, 183        

400, 200, 190* 
    

2 
310, 200, 135        

305, 200, 135* 
    

A. ostoyae 1 
310, 200, 135       

310, 200, 135* 

550, 370 

565, 380* 

620, 300 

600, 300 

A. mellea 
1 

490, 180           

320, 280, 155* 
    

2 
350, 155             

320, 155* 
    

A. gallica 

1 
582, 240              

400, 240, 190* 
    

2 
399, 240, 183      

390, 230, 190* 
    

3 400, 250, 240, 190*     

A. tabescens 
1 

430, 240              

430, 240* 
    

2 320, 240, 100     

2.2.4.2. H. annosum s.l. 

DNA from the pure cultures was extracted with the Qiagen DNA extraction Kit 

(Qiagen Inc.), in accordance with the manufacturer’s instructions. The internal 

transcribed spacer region (ITS) of the rDNA was amplified using primers ITS1-F 

(CTTGGTCATTTAGAGGAAGTAA) (Gardes and Bruns, 1993) and ITS4 

(TCCTCCGCTTATTGATATGC) (White et al., 1990) (Figure 2.2). The PCR reaction 

contained 2.5 µl of 10X Buffer, 0.5 mM MgCl2, 200 µM each dNTP, 0.2 µM each primer, 2 

U Taq polymerase (Netzyme) and 2 µl template DNA in a final volume of 25 µl. The 

cycling conditions consisted of 95 seconds at 95ºC, 35 cycles of 35 sec at 95ºC, 55 sec of 

annealing at 55ºC, and 1 min at 72 ºC, and a final 10 min at 72 ºC. The PCR products 

were purified using QIAquick PCR Purification Kit (Qiagen Inc.) and sequenced 

(BASECLEAR, Netherlands). 

Sequences were aligned with those of other Heterobasidion spp. using the ClustalW 

algorithm and then manually aligned with Mega software version 4.0 (Tamura et al., 

2007). Related European and American Heterobasidion spp. sequences were obtained 

from the NCBI database by performing a nucleotide BLAST search (Altschul et al., 1997).
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H. insulare and H. araucariae ITS sequences from GenBank were used as an outgroup 

(Asiegbu et al., 2004).  

The phylogenetic tree was built using the Neighbor-Joining method (Saitou and Nei, 

1987) and the evolutionary distances were computed using the Maximum Composite 

Likelihood method (Tamura et al., 2004). The branch was assessed by the probabilities 

obtained from the 50% majority-rule-consensus tree calculated by bootstrapping (2000 

replicates) with Mega4 (Felsenstein, 1985; Tamura et al., 2007).  

 

Figure 2.2. Annealing sites on the rDNA of the primers (thin blue arrows) used in this study 

(adapted from Vilgalys, 2017). 

2.3. Results 

2.3.1. Distribution of fungal species 

In general, Armillaria  spp. were broadly distributed in the Basque Country, and their 

host range included coniferous and deciduous trees. Heterobasidion spp. presence was 

less abundant, and it was only found in coniferous trees. 

The presence of Armillaria  spp. was detected in 248 (34.97%) of the 709 foci surveyed 

(Figure 2.3). Basidiocarps were mainly found in the root collars of dead and living trees, 

and stumps; some were found growing from superficial roots. Rhizomorphs were found 

in the aforementioned tree structures and also in the soil. The tree species present in the 

foci containing Armillaria  spp. were P. radiata , P. nigra , P. pinaster, Q. robur, Q. pyrenaica , 

F. excelsior, A. glutinosa , F. sylvatica , E. globulus Labill., P. abies, Larix kaempferi (Lamb.) 

Carr., P. sylvestris, Populus alba L., P. menziesii, Q. faginea , Q. ilex, Robinia  pseudoacacia L., 

and C. lawsoniana .  
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H. annosum was detected in 16.5% (117) of the sampled foci, all of them with disease 

symptoms (Figure 2.4). Basidiocarps were occasionally found on wind-thrown trees and 

in the internal and external part of decayed trees, broken roots, root collars and stumps. 

No evidence of the disease was found in the rest of the surveyed stands. The disease 

was not found in Sequoia sempervirens (D.Don) Endl., Sequoiadendron giganteum (Lindl.) J. 

Buchholz, L. kaempferi, and L. decidua  Mill. stands that were sampled in the study 

although these species are considered potential hosts (Chase, 1985; Korhonen et al., 1998; 

Otrosina and Garbelotto, 2010). Damage caused by H. annosum was found on hosts 

within forest plantations with the following distribution: C. lawsoniana  (11.1% of 

Heterobasidion infected stands), P. nigra  (2.3%), P. pinaster (2.2%), P. radiata  (42.2%), P. 

menziesii (17.7%) and P. abies (6.7%). In addition, H. annosum was evident in native 

forests of P. sylvestris (17.8%).  

 

 

Figure 2.3. Distribution of Armillaria spp. in the Basque Country. 
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Figure 2.4. Distribution of H. annosum s.l. in the Basque Country.   

 

2.3.2. Spatial distribution patterns 

The spatial distribution of H. annosum s.l. and Armillaria  spp. in the Basque Country 

survey was not random. NNI for H. annosum s.l. was 0.17 with a Z score of -23.96 (p< 

0.01), suggesting a high degree of clustering in the populations (Figure 2.5). NNI for 
Armillaria  spp. was 0.23 with a Z score of -35.14 (p< 0.01), suggesting also a high degree 

of clustering in the populations. Point density maps for both genera are shown in Figure 

2.5.  



2.3. Results 

34 

 

 

 

Figure 2.5. Point density maps of Armillaria spp. and H. annosum showing the clustered 

distribution of the populations in the Basque Country.  Green points represent the absence of 

each genus in the sampled area. Red triangles represent the presence of each genus in the 

sampled area.  
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2.3.3. Ecosystem characteristics in which fungal species were 

detected 

Environmental characteristics associated with each of the surveyed points and their 
relationships with the presence of Armillaria  spp. and Heterobasion spp. was assessed 

(Table 2.3).  

Table 2.3. Summary of the dataset obtained showing the number of foci per subcategory where 

Armillaria spp. were present or absent.  

 

 

Negative (Arm-) Positive (Arm+)

<10 <10 170 29 199

10-20 10 - <20 133 57 190

20-30 20- <30 89 111 200

30-40 20- < 40 48 34 82

40-50 40 - < 50 18 13 31

50-60 50 - <60 3 4 7

Deciduous Deciduous 28 36 64

Conifers Conifers 433 212 645

N North 45 24 69

NE Northeast 46 26 72

E East 53 32 85

SE Southeast 39 26 65

S South 75 28 103

SW Southwest 133 26 159

W West 45 73 118

NW Northwest 25 13 38

acid acid 260 184 444

-acid -acid 118 31 149

-basic -basic 46 17 63

basic basic 37 16 53

Imper Impermeable 31 2 33

low Low 4 5 9

medium Medium 364 175 539

high High 62 66 128

1 <1000 34 7 41

2 1000-1400 86 44 130

3 1400-1800 295 141 436

4 >1800 46 56 102

1 <10.5 20 5 25

2 10,5-11.5 130 74 204

3 11.5-12.5 162 94 256

4 >12.5 149 75 224

+Op Favorable 241 125 366

Op Acceptable 171 103 274

-Op Unfavorable 23 13 36

- - Op Vey Unfavorable 26 7 33

Rain (average, mm)

HOC (Host Optimal Conditions)

Detection of Armillaria disease Number of 

foci
Category codeCharacteristics *Description

Slope (%)

Tree Type

Orientation

Soil (Acidity)

Permeability

Temperature (average, ºC)
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Table 2.4. Summary of the dataset obtained showing the number of foci per subcategory where 

Heterobasidion spp. were present or absent.  

 

The spread of the category variables for all characteristics was represented in a 

MCA that reflected the relationships among the variables in each dimension. MCA 

revealed that the first horizontal dimension explained 23.7% of the total inertia 

(variance), as the first factor plane represents the largest inertia, while the second 

vertical dimension explained 22.7%.  

A measure of the importance of each variable (squared component loading) was 

computed for each dimension. This measure is also the variance of the quantified 

variable in that dimension. Variables, such tree type, that are located very close to the 

origin do not highlight correspondence in any dimension. The variables with higher 

variance in the first dimension were average temperature (Temperature), Heterobasidion 

Negative (Het-) Positive (Het+)

<10 <10 162 37 199

10-20 10 - <20 168 22 190

20-30 20- <30 169 31 200

30-40 20- < 40 57 25 82

40-50 40 - < 50 30 1 31

50-60 50 - <60 6 1 7

N North 51 18 69

NE Northeast 55 17 72

E East 71 14 85

SE Southeast 40 25 65

S South 85 18 103

SW Southwest 149 10 159

W West 110 8 118

NW Northwest 31 7 38

acid acid 378 66 444

-acid -acid 141 8 149

-basic -basic 36 27 63

basic basic 37 16 53

Imper Impermeable 19 14 33

low Low 9 0 9

medium Medium 452 87 539

high High 112 16 128

1 <1000 26 15 41

2 1000-1400 105 25 130

3 1400-1800 369 67 436

4 >1800 92 10 102

1 <10.5 9 16 25

2 10,5-11.5 141 63 204

3 11.5-12.5 221 35 256

4 >12.5 221 3 224

+Op Favorable 286 80 366

Op Acceptable 242 32 274

-Op Unfavorable 34 2 36

- - Op Very Unfavorable 30 3 33

Deciduous Deciduous 64 0 64

Conifers Conifers 528 117 645
Tree Type

Rain (average, 

mm)

Temperature 

(average, ºC)

HOC (Host 

Optimal 

Conditions)

Category code *Description Detection of Heterobasidion disease Number of 

foci

Characteristics

Slope (%)

Orientation

Soil (Acidity)

Permeability
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spp., average rainfall (Rain), soil permeability, and optimal conditions for host growth 

(Hoc). The variables with higher variance in the second dimension were stand 
orientation, average temperature (Temperature), slope, average rainfall (Rain), Armillaria  

spp.,and soil acidity (Soil) (Figure 2.6).  

Armillaria  spp. detection was mainly related to categories such as west and 

northwest orientation, slopes between 20% and 50%, basic soils, high average rainfalls 
(>1800 mm), and soils with high permeability. Armillaria  spp. absence was mainly 

related to categories such as slopes less than 20%, south or southeast stand orientation, 

favorable conditions for host growth, and medium soil permeability (Figure 2.7). H. 

annosum presence was related to categories such as moderately basic pH values of the 

soil, north stand orientation, low average temperature (< 11.5 ºC), low average rain (< 

1000 mm), and impermeable soils. H. annosum absence was related to categories such as 

temperature averages above 11.5 ºC and rain average of 1400- 1800 mm (Figure 2.7).  

 

 

Figure 2.6. Measure of the variance of each variable for each dimension. The variables with 

higher variance in the first dimension were mainly average rainfall (Rain), optimal conditions for 

host growth (Hoc), slope, Armillaria spp., soil acidity (Soil), and stand orientation (Figure 3). The 

variables with higher variance in the second dimension were orientation, average temperature 

(Temperature), average rainfall (Rain), slope, and soil acidity (Soil) . 



2.3. Results 

38 

 

 

Figure 2.7. Location in a Euclidean space of the presence or absence of Armillaria  spp. and 

Heterobasidion spp., and environmental categories. The first two dimensions of the Euclidean 

space of the MCA are plotted to examine the associations among categories. The values on 

the axes indicate the coordinates within the Euclidean space in which categories are located. 

Variable description can be found in Table 2.1.  

The significance of the associations among fungal presence and the environmental 

variables was determined using Pearson´s chi square test. A significant association was 

observed between Armillaria  spp. and slope (χ2 (5) = 79.2, p < 0.001; Cramer´s V of 0.334 

indicated a medium-large effect size), orientation (χ2 (7) = 65.5, p < 0.001; Cramer´s V of 

0.304 indicated a medium-large effect size), tree type (χ2 (1) = 14.0, p < 0.001; Cramer´s V 

of 0.140 indicated a small-medium effect size), soil acidity (χ2 (3) = 23.6, p < 0.001; 

Cramer´s V of 0.183 indicated a small-medium effect size), soil permeability (χ2 (3) = 30.8, 
p < 0.001; Cramer´s V of 0.208 indicated a small-medium effect size), and rainfall average 

(χ2 (3) = 25.0, p < 0.001; Cramer´s V of 0.188 indicated a small-medium effect size).  
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In the case of Heterobasidion, a significant association was observed among 

Heterobasidion spp. and slope (χ2 (5) = 19.7, p < 0.01; Cramer´s V of 0.167 indicated a 

small- medium effect size), orientation (χ2 (7) = 50.3, p < 0.001; Cramer´s V of 0.266 

indicated a medium effect size), tree type (χ2 (1) = 13.9, p < 0.001; Cramer´s V of 0.140 

indicated a small effect size), soil acidity (χ2 (3) = 53.2, p < 0.001;Cramer´s V of 0.274 

indicated a medium- large effect size), soil permeability (χ2 (3) = 19.4, p < 0.01; Cramer´s 

V of 0.165 indicated a small-medium effect size), HOC (χ2 (3) = 16.7, p < 0.05; Cramer´s V 

of 0.153 indicated a small-medium effect size), rainfall average (χ2 (3) = 16.4, p < 0.01; 

Cramer´s V of 0.152 indicated a small-medium effect size), and temperature average (χ2 

(3) = 110.4, p < 0.001; Cramer´s V of 0.395 indicated a medium- large effect size). 

In order to determine the significant differences between categories the adjusted 

standardized residuals were examined, negative z score values indicated that Armillaria  

spp. or Heterobasidion spp. were observed less frequently than expected in plots with 

those categories and positive z score values indicate that Armillaria  spp. or Heterobasidion 

spp. were observed more frequently than expected in plots with those categories.  Values 

of ±1.96 were considered significant at p <0.05, values of ±2.58 were considered 

significant at p <0.01, and values of ±3.29 were considered significant at p <0.001 (Field, 

2009).  

When the adjusted standardized residuals were examined, Armillaria  spp. were 

significantly present in stands with slopes of 20-30% (z = 7.2; p < 0.001); stands with 

western orientation (z = 6.7; p < 0.001); deciduous hosts (z = 3.7; p < 0.001); acid soils (z = 

4.7; p < 0.001); high permeability soils (z = 4.3; p < 0.001), and rainfall average (mm) >1800 

(z = 4.6; p < 0.001) (Figure 5). Armillaria  spp. were significantly absent in stands with 

slopes <10% (z = -7.1; p < 0.001); stands with southwestern orientation (z = -5.6; p < 0.001); 

coniferous hosts (z = -3.7; p < 0.001); moderately acid soils (z = -4.1; p < 0.001); medium 

permeability soils (z = -2.5; p < 0.01), impermeable soils (z = -3.6; p < 0.01), and rainfall 

average (mm) <1000 (z = -2.5; p < 0.05) (Figure 2.8).  

Heterobasidion spp. were significantly present in stands with slopes of 30- 40% (z = 

3.6; p < 0.001); stands with southeast orientation (z = 5.0; p < 0.001) and north orientation 

(z = 2.3; p < 0.001); coniferous hosts (z = 3.7; p < 0.001); basic soils (z = 2.8; p < 0.01) and 

moderately basic soils (z = 5.9; p < 0.001); impermeable soils (z = 4.1; p < 0.001); favorable 

conditions for host growth (z = 4.0; p < 0.001); rainfall average (mm) <1000 (z = 3.6; p < 

0.001); and temperature average (ºC) <10.5 (z = 6.5; p < 0.001) and 10.5-11.5 (z = 6.6; p < 

0.001) (Figure 2.8). Heterobasidion spp. were significantly absent in stands with slopes of 

10- 20% (z = -2.1; p < 0.05) and 40- 50% (z = -2.0; p < 0.05); stands with southwest 

orientation (z = -3.9; p < 0.001) and west orientation (z = -3.1; p < 0.01); deciduous hosts (z 

= -3.7; p < 0.001); moderately acid soils (z = -4.1; p < 0.001); acceptable conditions for host 

growth (z = -2.7; p < 0.01); rainfall average (mm) of >1800 (z = -2; p < 0.05); and 

temperature average (ºC) >12.5 (z = -7.4; p < 0.001) (Figure 2.8). 
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Figure 2.8. Values of the adjusted residuals (blue bars) for each category within a categorical 

variable for the presence of Armillaria spp and Heterobasidion spp. Red lines represent the value 

the adjust residuals must have to consider a category significant; if y = ±1.96 then it is significant 

at p <0.05, if y = ±2.58 then it is significant at p <0 .01, and if y = ±3.29 then it is significant at p <0 

.001 (Field, 2009).  

2.3.4. Fungal species identification 

Of the total of isolates obtained from the surveyed plots (Set 1), 60% were identified 

by RFLP- PCR patterns as A. ostoyae, 24% as A. mellea , 14% as A. gallica , 1% as A. 

tabescens and 1% as A. cepistipes. A. ostoyae was detected mainly in Pinus spp. (P. radiata , 

P. nigra  and P. pinaster). The host range for A. mellea  was more varied. A. mellea  pattern 1 

(PCR fragment sizes: 320 and 155 bp) was found on P. radiata , Quercus spp., F. excelsior, 
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and C. lawsoniana , and corresponded to 53% of the A. mellea  isolates, while the remaining 

47% were identified as pattern 2 (fragment sizes: 320, 180, and 155 bp) and appeared on 
Q. pyrenaica  and P. radiata . A. gallica was found on A. glutinosa , P. radiata  and Q. robur, A. 

cepistipes was detected on P. radiata , and A. tabescens on Q. robur. 

All H. annosum isolates were identified as European H. annosum s.s. (European P-

type) based on ITS sequencing, and the ITS sequences of all isolates were identical to H. 

annosum B298 (Picea , Finland), GU296436.1 (P. sylvestris, Latvia) and FJ872064.1 (P. mugo 

Turra, Lithuania) except isolates H63 (A  G transition at nucleotide 412), H67 (A  T 

transversion at nucleotide 188), H94 (G insertion at nucleotide 102), and H77, H50,  H90, 

H97 (C  T transition at nucleotide 9). The bootstrap value for the branch connecting H. 

annosum isolates was 92%. Representative ITS sequences of this species for each host 

were deposited in GenBank (accession numbers JN408462 to JN408468) (Figure 2 .9). 

 

Figure 2.9. The bootstrap consensus tree inferred from 2,000 replicates of internal transcribed 

spacer ribosomal DNA sequences of Heterobasidion spp. Branches corresponding to partitions 

reproduced in more than 50% bootstrap replicates are shown. There were a total of 570 positions 

in the final dataset. The sequences obtained from the NCBI database are followed by an asterisk.  

H. insulare and H. araucariae ITS sequences from GenBank were used as outgroups (Asiegbu et 

al., 2004). (a) The sequence corresponding to the H25 isolate was used as representative out of 

the 38 isolates, that were identical to the H. annosum B298 strain (H64, H33, H34, H89, H103, H56, 

H47, H82, H87, H80, H85, H26, H70, H65, H86, H60, H59, H61, H99, H31, H30, H75, H84, H104, 

H68, H100, H57, H54, H88, H95, H49, H81, H32, H101, H91, H55). (b) The sequence 

corresponding to the H77 isolate was used as representative out of four isolates (H50, H77, H90, 

and H97).
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 H. annosum B298, Picea, Finland * 

 H. annosum X70026.1, Pinus, UK *  

 H. annosum X70027, Picea, France *   

 H. parviporum B146, Abies, California *   

 H. parviporum B1092, Abies, Japan *  

 H. parviporum B1317, Abies, Russia *  

 H. abietinum X70025, Abies, Italy * 

 H. abietinum B1162, Abies, Greece * 

 H. annosum X74927.1, Pinus, North America * 

 H. annosum B1448, Pinus, Arizona * 

 H. araucariae B1083, Agathis, New Zealand * 

 H. araucariae X70028.1, Araucaria, Australia * 

 H. insulare AF289933.1, China * 

 H. insulare B1144, Abies, Japan *     100 
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2.4. Discussion  

In the present study the distribution of Armillaria  and Heterobasidion in native forests 

and plantations of the Basque Country is reported, a dataset to generate mathematical 

models to estimate the predisposition factors affecting the presence of Armillaria  and 

Heterobasidion was also generated, and environmental factors of Armillaria  spp. and 

Heterobasidion spp. habitats are described. Different species within Armillaria  and 

Heterobasidion genera were determined to obtain a better understanding of the 

pathogenicity of the fungal populations.  

In general, Armillaria  spp. were broadly distributed in the Basque Country and their 

host range included both coniferous and deciduous trees. In contrast, H. annosum s.s was 

less abundant, and it was only found in conifers. Both genera were found in plantations 

and native forests. H annosum s.s can infect a broad range of host species, including F. 

sylvatica and Quercus spp., but it shows a preference for Pinus spp. (Korhonen et al., 

1998; Asiegbu et al., 2005; Doğmuş-Lehtijärvi et al., 2015). In this study, H. annosum s.s 

was found in a broad range of coniferous hosts, but almost half of the disease foci 
caused by H. annosum s.s. were found in P. radiata  plantations, which due to 

reforestation programs established in the 1940s in the Basque Country (Basque 

Government, 2002), have become the most abundant tree plantations. In this process, 
many of the native deciduous species, such as F. sylvatica , Q. robur, Q. pyrenaica , F. 

excelsior, A. glutinosa , as well as some native P. sylvestris forests and former pastureland 

were replaced with coniferous plantations (Ruiz-Urrestarazu, 1992). This could have 
changed the behavior and colonization frequency of H annosum s.s. No evidence of 

disease caused by H. annosum was found in S. sempervirens, S. giganteum, L. kaempferi, 

and L. decidua , which are considered to be hosts. The lack of disease in these coniferous 

species could be related to the fact that they only represent the 5% of coniferous surface 

in the area (IKT, 2005). 

The distribution patterns obtained by NNI show a high degree of clustering of the 

fungal populations, which might be a result of fungal colonization mechanisms and 

environmental factors. García-Serna (2011) explained the random distribution of Diplodia 

pinea  (Desm.) Kickx in the Basque Country as a result of a generalized distribution and 

shown of seeds contaminated with this fungus. In the case of Armillaria  spp. and H. 

annosum s.s. colonization is based on the spread of vegetative mycelia and basidiospores. 

Although basidiospores can cover long distances usually they settle down close to the 

original basidiocarp, this might explain the clustered distribution of both pathogens. 

Their clustering could also be shaped by climatic factors, host presence, soil and other 

stand characteristics.  
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Although Armillaria  spp. were present in forests in the study area with a wide range 

of environmental conditions, they were more frequently detected in stands with 20-30% 

slopes, with a westerly orientation, deciduous forests, acid soils with high permeability, 

and rainfall average values above 1800 mm. Armillaria  spp. were less abundant in stands 

with slopes less than 10%, southwest orientation, rainfall average values below 1000 

mm, and coniferous forest with moderately acid soils and medium permeability or 

impermeable. In general, species of the Armillaria complex have been isolated from a 

wide range of soil and environmental conditions but disease foci are also influenced by 
host adaptability and stress (Wargo and Harrington, 1991). Heterobasidion spp. were 

more frequently detected in stands with temperature averages below 11.5 ºC, rainfall 

average values below1000 mm, 30-40% slopes, north or southeast orientations, 

coniferous forest with moderately basic or basic and impermeable soils, and where trees 
had optimum growth conditions. Heterobasidion spp. were less abundant in stands with 

temperatures higher than 12.5 ºC and rainfall average values above 1800 mm, southwest 

or westerly orientation,10-20% and 40-50% slopes, and moderately acid soils. 
Heterobasidion spp. damage depends largely on site factors and has been reported at a 

wide range of altitudes and types of soil with several orientations and slopes (Korhonen 

and Stenlid, 1998).  

All isolates corresponding to Heterobasidion genus were identified as European H. 

annosum s.s. (European P-type) based on ITS sequencing, and the majority of the ITS 

sequences of the isolates (84.4%) were identical to H. annosum B298 (Picea , Finland), 

GU296436.1 (P. sylvestris, Latvia) and FJ872064.1 (P. mugo, Lithuania). Despite forest 

reproduction material was imported from different European countries, the isolates 

collected in the Basque Country were obtained from native forests as well as plantations, 

and the information obtained from ITS sequencing only was not enough to stablish a 

connexion among isolates from this study and the foreign strains.  

In the case of Armillaria  genus, A. ostoyae was the predominant species in the studied 

area, Although A. ostoyae has been reported to prefer coniferous hosts (Williams et al., 

1986), differentiate between host specialization and forest history of the area is difficult 

(Gregory et al., 1991). In this study A. ostoyae was mainly detected in conifers, but also in 

native forests of F. sylvatica  and Q. robur. This fungal specie could have been stablished 

in the native deciduous forest before its replacement with coniferous tree species. A. 

gallica was found in both conifers and deciduous trees. A. mellea  had the greatest host 

diversity, which was also observed by Pintos et al. (2014) in different soils from 

Pontevedra, Galicia, Spain and in general for European populations (Guillaumin et al., 

1993).  
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2.4.1. Conclusions 

Armillaria  spp. were broadly distributed in the Basque Country and their host range 

comprehend coniferous and deciduous trees. All the main species present in the Basque 

Country within Armillaria genus can behave as primary pathogens which added to their 

broad range of distribution and host, result on a high risk of damage for tree plantations 

and native forests. H. annosum s.s was the only species present within Heterobasidion 

genus. Its presence was limited to conifers and was less abundant than Armillaria  spp.; 

however, H. annosum s.s could suppose a high risk for tree plantations due to the broad 

range of coniferous species in which was present. In this study, a dataset of Armillaria  

spp. and H. annosum s.s was created and using the dataset of environmental variables 

that was available descriptive environmental factors were associated to both genera. 
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CHAPTER 3 
Population diversity of Heterobasidion 

annosum s.s.and Armillaria complex in selected 

stands of the Basque Country 
 

 

 
 

 

3.1. Introduction 

The genetic structure of populations of plant pathogens is shaped by mutation, gene 

flow, recombination, random genetic drift and natural selection (Zhan and McDonald, 

2004). High genetic variation of a population increases its ability to adapt to changes in 

the environment, for example, through acquisition of virulence and/or resistance genes.  

In general, the Armillaria  spp. mating system is heterothallic bifactorial (tetrapolar), 

meaning that the genes that define mating-type are located in two different unlinked 

sites in the genome and both loci are multiallelic. For a compatible mating, both of these 

regions must be different between the haploid colonies (Ullrich and Anderson, 1978; 

Fraser and Heitman, 2003). Once the haploid hyphal cells fuse, after a short dicariotic 

stage, they will become diploid, with one diploid nucleus and mitochondria with the 

genome of one of the haploid strains (Anderson and Ullrich, 1982). The diploid 

mycelium is fertile and can form basidia containing four haploid uninucleate 

basidiospores formed by meiosis (Hintikka, 1973). Anastomosis (fusion of hyphae) can 

occur between two diploid isolates when the same alleles within the somatic 

incompatibility (SI) system are shared (Baumgartner et al., 2011).  

The H. annosun mating system is a unifactorial, multiallelic mating system. In this 

case, there is only a single mating type or MAT locus and for mating between haploid 

isolates cells must have different MAT alleles (Hansen et al., 1993; Fraser and Heitman, 

2003). The resultant secondary mycelia will be a mosaic of heterokaryotic and 
homokaryotic mycelia (Garbelotto and Gonthier, 2013). The SI system in H. annosum is 

formed by a series of 3–4 multiallelic and discrete loci (Hansen et al., 1993), and it has 
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been reported that even between incompatible isolates an exchange of nuclei or 

cytoplasmic elements can occur (Johannesson and Stenlid, 2004).  

By means of SI tests, population structures can be determined at intraspecies level; 

the presence of many different small SI groups in a stand implies that dispersion is 

predominantly by basidiospores, and a single extensive SI group (SIG) implies 

dispersion by vegetative mycelium. Even though SI tests are usually reliable, sometimes 

they do not differentiate among closely related individuals (Kile, 1983). The molecular 

techniques used in Chapter 2, ITS sequencing for H. annosum s.s. and restriction of the 

IGS1 region of the rDNA for Armillaria  spp., are useful for interspecies differentiation 

within these genera, but they do not differentiate isolates at intraspecies level. 

Universally Primed-PCR (UP-PCR) (Bulat and Mironenko, 1990) could provide more 

information in these cases. UP-PCR is related to random amplified polymorphic DNA 

(RAPD) method, and has been used for the characterization of fungal populations at 

interspecies and/or intraspecies level (Nielsen et al., 2001; Meyling and Elinberg, 2006; 

Pottinger et al., 2002). In this technique, the entire genome of an organism is targeted 

with a single primer or a combination of primers that will anneal to multiple regions 

resulting in a multiband profile which differs among different genotypes. Universal 

primers consist of a minisatellite-like region (5′ end, 6–10 nt) with high GC content 

which can be found in any genome, and a variable region (3′ end, 8–10 nt) that is 

generated randomly. This random region is added to avoid the amplification of 

phylogenetically conserved regions of the genome. In addition to the high GC content 

universal primers are longer (15–21 nt) than RAPD primers (typically 10 nt), so the used 

annealing temperatures are higher (52–60 ºC) ensuring greater reproducibility of 

banding profiles. Usually, highly variable intergenic regions are targeted which enables 

differentiation between closely related isolates (Bulat et al., 1998).  

The genetic structure of Armillaria  spp. and H. annosum s.s. populations in stands 

could provide information about dispersion mechanisms of both fungi. This may have 

important implications regarding the epidemiology and management of these 

pathogens (Zhan, 2009) in the Basque Country where they are broadly distributed and 

their pathogenic effects have been detected (Chapter 2).  

3.1.1. Objectives 

The objectives of this study were: 

i. To define Armillaria  spp. and H. annosum s.s. population diversity in selected 

stands of the Basque Country. 

ii.  To determine dispersion patterns of both fungal genera in these areas.  

iii.  To determine host susceptibility to fungal pathogens in a set of native and 

exotic forest species selected based on the frequency of their presence in the 

Atlantic area of Spain.
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3.2. Materials and Methods  

3.2.1. Sample collection  

Samples of Armillaria  spp. and H. annosum were collected to determine the genetic 

diversity and population structure of the fungi. Three stands located in Otxandiano 

(Biscay), Amunategi (Biscay), and Altube (Alava) were selected for sampling Armillaria  

spp., and four stands located in Azaceta (Alava), Legorreta (Guipuzcoa), Caranca 

(Alava) and Saldropo (Biscay) were selected for sampling H. annosum (Figure 3.1). Inside 

the plots, a detailed survey for fungal structures was conducted, and samples were 
collected when they were detected. Heterobasidion basidiocarps and Armillaria  

basidiocarps, rhizomorphs and/or mycelium fans were sampled from the root collars of 

dead and living trees, stumps, fallen trees, internal part of decayed trees and roots. 

All the points in which samples were collected were georeferenced using an Oregon 

300 Garmin GPS and samples were processed as described in chapter 2. They were 

labelled and placed in separate polyethene bags, transported to the laboratory, and 

stored at 4ºC. Fungi were isolated on benomyl-dichloran-streptomycin agar (BDS) 

(Worrall, 1991) and grown at 20ºC in the dark. Once pure cultures were obtained, they 

were routinely grown on malt extract agar (MEA) (Panreac). For preservation of the 

pure cultures, mycelial fragments were placed in 50% glycerol and, after being at 4ºC for 

24h, maintained at -20ºC (Pitt and Hocking, 2009).  

 

Figure 3.1. Location of the sampled stands. Armillaria spp. stands (Amunategi, Altube, and 

Otxandiano) are marked in blue. H. annosum stands (Azaceta, Legorreta, Caranca and Saldropo) 

are marked in yellow. 
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3.2.2. Identification and fungal diversity analysis  

Genetic diversity and population structure of the fungal isolates were determined 
by RFLP-PCR (Armillaria spp.), sequencing the ITS region of the rDNA (Heterobasion 

spp.) (as described in Chapter 2.2.4), S I tests and UP-PCR. RFLP-PCR and ITS region 

sequencing were used to determine the species of the fungal isolates and SI tests and 

UP-PCR to determine the diversity of isolates within the same species and area. Fungal 
SIGs were determined as follows: diploid (Armillaria spp.) or heterokaryotic 

(Heterobasion spp.) isolates from the same sampling area were paired in all possible 

combinations. Approximately 4 mm2 of mycelia were placed 0.5 cm apart on MEA 

plates, and incubated at 20ºC for six weeks. When mycelia of opposite isolates fused and 

grew with a uniform morphology, the pairings were considered somatic compatible (SC) 

and the isolates were considered to belong to the same species and genet, i.e. belong to 

the same SC group (SCG). In contrast, when a line of demarcation appeared isolates 

were considered somatic incompatible (Anderson et al., 1979) (Figure 3.2). 

 

Figure 3.2. Somatic compatible pairings of Armillaria (top left) and Heterobasidion (top right). 

Somatic incompatible pairings of Armillaria (bottom left) and Heterobasidion (bottom right). 
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UP-PCR reactions were carried out in 25 µl volume containing 2 mM MgCl2, 0.2 mM 

each dNTP, 0.8 µM primer, 50 ng genomic DNA (extracted as for RFLP analysis), and 

1.25 U Taq DNA Polymerase (Invitrogen). The cycling conditions were 5 min at 94 ºC, 5 

cycles of 50 sec at 94 ºC, 2 min at primer specific annealing temperature (Table 3.1), and 

1 min at 72 ºC, followed by30 cycles of 50 sec at 94 ºC, 90 seconds at primer specific 

annealing temperature, and 1 min at 72 ºC, and a final extension at 72 ºC for 7 min 

(Tyson et al., 2002). UP-PCR primers were tested on a representative group of isolates 

consisting of different species and genets of Armillaria, or on a representative group of 

different genets of Heterobasidion (as determined by RFLP-PCR and SI tests), and the 

primers with the best capacity to distinguish between different SCGs and species were 

chosen for the analysis of all the isolates. Following gel electrophoresis of the UP-PCR 

amplicons, the band pattern for each isolate was assessed for the presence (1) or absence 

(0) of each band and represented in a binomial matrix. Similarities between strains were 

calculated using a simple matching coefficient (Lamboy, 1994) and represented on 

dendrograms constructed based on average linkage between groups in SPSS version 

15.0 (SPSS Inc., Chicago, USA). To determine the consistency between the similarity 

matrix and dendrograms the cophenetic correlation coefficient was calculated (Dunn 

and Everitt, 1982).  

Table 3.1. Oligonucleotide sequence of the UP-PCR primers used in this study and their 

respective annealing temperatures (Tyson et al., 2002).  

 

 

 

 

Primer Primer sequence 
Annealing 

temp. (°C) 
References 

0.3-1 5'-CGAGAACGACGGTTCT-3' 50 Bulat et al., 1994 

3.2 5'-TAAGGGCGGTGCCAGT-3' 52 Bulat et al., 1994 

L45 5'-GTAAAACGACGGCCAGT-3' 51 Bulat et al., 1998 

AS15inv 5'-CATTGCTGGCGAATCGG-3' 52 Bulat et al., 2000 

AA2M2 5'-CTGCGACCCAGAGCGG-3' 50 Lübeck et al., 1998 
AS4 5'-TGTGGGCGCTCGACAC-3' 55 Lübeck et al., 1998 

Fok1 5'-GGATGACCCACCTCCTAC-3' 52 Lübeck et al., 1998 

L15/AS19 5'-GAGGGTGGCGGCTAG-3' 52 Lübeck et al., 1999 

L21 5'-GGATCCGAGGGTGGCGGTTCT-3' 58 Bulat et al., 1995 

M13 5'-GAGGGTGGCGGTTCT-3' 52 Stenlid et al., 1994 
AS15 5'-GGCTAAGCGGTCGTTAC-3' 52 Bulat et al., 1994 
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3.2.3. Host susceptibility  

Because A. mellea  was the species with the broadest host range among the Armillaria  

spp. (Chapter 2), the susceptibility of different tree species present in the Basque 

Country to A. mellea was assessed. Two year old trees of different species, including P. 

radiata , P. nigra  subsp. salzmannii var. corsicana, P. sylvestris, F. sylvatica , Prunus avium L., 

Q. petraea , Q. ilex, C. japonica , Q. robur, S. giganteum and E. nitens H.Deane & Maiden 

(Explotaciones Forestales Jiménez Araba s. l. Nursery, Vitoria, Spain), were infected 

with the fungus. For the preparation of A. mellea  inoculum, pieces of fungal mycelia 

were placed on BDS agar with autoclaved Quercus spp. acorns and incubated for 

approximately one month at room temperature in the dark (Beckman and Pusey, 2001). 

Fifty trees of each species were grown in 53x53x180 mm pots (300 cc volume) using a 

mix of peat moss (2/3 peat, 1/3 perlite and fertilizer NPK; N = 200-450 mg/l, P2O5 = 200-

500 mg/l, K2O = 300-550 mg/l) and, after an adaptation period of two weeks, half acorns 

infected with A. mellea  mycelium were placed in contact with tree roots. The trees were 

maintained for 4 months in a biosafety level 2 greenhouse at a mean temperature of 18 ± 

5 ºC, with a relative humidity of 55-60% and without supplemental light. After this 

period, roots were cleaned with tap water and lengths of stems, main roots, and 

secondary roots were measured. A. mellea  mycelial colonization was determined after 

removing the bark from the stem and roots. Plants were scored as healthy (without 

symptoms of infection) or with lesions (when A. mellea mycelium was present under the 

bark); the length of the lesions was determined by removing the bark of stem and roots 

and measuring the extent of Armillaria  damage with an electronic caliper. 

The differences in Armillaria  disease severity among different tree species was 

determined by Pearson´s chi-square test. The strength of association between categorical 

variables (healthy or lesion containing plants and different tree species) was measured 

with Cramer´s V; adjusted standardized residuals were used to determine the significant 

differences between categories. Differences in the size of the fungal lesions among tree 

species was analyzed by Brown-Forsythe and Welch statistics (used when population 

variances are unequal), and Games-Howell test (used when population variances are 

unequal) (Field, 2009) was chosen for the post hoc analysis. The data was not normally 

distributed and therefore a base10- log transformation was applied.  
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3.3. Results 

3.3.1. Analysis of Armillaria population diversity 

In the stand located in Amunategi, four of the 19 isolates collected were classified as 

A. mellea RFLP pattern 2 that belonged to two SCGs, both present in R. pseudoacacia, and 

15 isolates as A. gallica  in a more complex population structure located in R. pseudoacacia, 

Salix alba  L. and stumps of deciduous trees (Figure 3.2A). In the stand located in Altube, 

nine of the 17 samples were identified as A. ostoyae, separated in 3 SCGs, in F. sylvatica  

and Q. robur, seven as A. mellea pattern 2, separated in 3 SCGs, in F. sylvatica  and 

Crataegus monogyna  Jacq., and one as A. mellea pattern 1 in F. sylvatica  (Figure 3.2B). The 

larger size of A. ostoyae SCGs indicates dispersal predominantly by vegetative mycelium. 

In contrast, the smaller SCGs obtained for A. mellea  and A. gallica indicate dispersal by 

basidiospores and vegetative mycelium. The 21 Armillaria  samples collected in the stand 

located in Otxandiano belonged to the same SCG and were identified as A. ostoyae 

(Figure 3.3). They were found in Q. robur stumps and trees, C. lawsoniana , C. monogyna , 

and grassland. The location in the stands of the collected samples, the groups obtained 

by SI tests and their extension are depicted in Figure 3.3.  

UP-PCR primer AS4 showed good ability to distinguish the fungal strains at the 

interspecies and intraspecies levels. Although primer L15/AS19 showed good 

discrimination in an initial screen, it did not yield specific banding profiles when all the 

samples where tested (data not shown). The best differentiation patterns were obtained 

for A. ostoyae strains and in general the clusters were comparable to those generated 

from SI tests (Figure 3.4). The cophenetic correlation coefficient between the similarity 

matrix and the dendrogram was 0.886, meaning that the clustering had a good fit.  

 

Figure 3.2. Armillaria spp. population analysis by mycelial pairings. Grey squares indicate strains 

belonging to the same SCG; white squares correspond to non -compatible strains. A) Paired sets 

shown correspond to samples collected in Amunategi; B) paired sets correspond to samples 

collected in Altube. 
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Figure 3.3. Spatial distribution of the Armillaria spp. genotypes. Numbers correspond to 

Armillaria spp. isolates. Same genotype is marked with the same color. From top to bottom, 

stands located in Otxandiano, Amunategi, and Altube. 

 

Figure 3.4. Genetic relationships among Armillaria strains. The dendrogram was generated by the 

average-linkage method of clustering using the distances calculated by simple matching 

coefficient among the binomial matrix obtained from UP-PCR banding patterms using AS4 

universal primers. 

Location Armillaria  sp. Sample ID

Otxandiano  37 

Otxandiano  43                

Altube  34                       

Altube  35                  

Altube  31                        

Altube  20               

Altube  24                        

Amunategi   9                                         

Amunategi  11                          

Amunategi  10                                   

Amunategi   1                               

Amunategi   5                             

Amunategi   4                                

Amunategi   7                          

Amunategi   8                       

Amunategi  15                        

Amunategi  17 

    +---------+---------+---------+---------+---------+
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3.3.2. Analysis of Heterobasidion population diversity 

In the sampled stands only one species of Heterobasidion annosum was found, H. 

annosum s.s. In the stand located in Saldropo, three SCGs were detected, consisting of 

groups of four, three or two samples; all the isolates were collected from C. lawsoniana 

(Figures 3.5A and 3.6A). All the isolates collected in Legorreta were incompatible and 

were present in P. radiata  and S. sempervirens (Figures 3.5B and 3.6B). In Caranca, two 

SCGs were found, both consisting in two samples; in this case all the samples were 

present in P. sylvestris (Figures 3.5C and 3.6C). In Azaceta, one SCG consisting of two 

isolates was detected, while the rest of the samples were incompatible; the samples were 

collected from P. sylvestris and C. lawsoniana (Figures 3.5D and 3.6D). 

UP-PCR primer AS4 and L21 showed good ability to distinguish among the fungal 

strains at the intraspecies level in an initial screen, but when all of the samples were 

tested they did not provide good differentiation patterns (data not shown).  

 

 

Figure 3.5. H. annosum s.s population analysis by mycelial pairings in Saldropo (A), Legorreta 

(B), Caranca (C) and Azaceta (D). Grey squares correspond to strains belonging to the same SCG; 

white squares correspond to non-compatible strains.  
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A) Saldropo 

B) Legorreta 
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Figure 3.6. Spatial distribution of the H. annosum s.s. genotypes. Numbers correspond to H. 

annosum s.s. isolates. Same genotype is marked with the same color. Stands located in Saldropo 

(A), Legorreta (B), Caranca (C) and Azaceta (D).  

D) Azaceta 

C) Caranca 
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3.3.3. Host suceptibility 

When the susceptibility of different tree species present in the Basque Country to A. 

mellea infection was analyzed, a significant difference in disease severity was observed 

among tree species (χ2 (10) = 83.154, p<0.001), and a Cramer´s V of 0.454 indicated a 

medium-large effect size between health state and tree species. P. radiata , P. sylvestris 

and P. nigra  were the most susceptible to A. mellea  with 59.6%, 57.9% and 48% of plants 

containing lesions, respectively (Figure 3.7). C. japonica , Q. robur and S. giganteum were 

the least susceptible species with 0%, 5% and 5.6% of plants infected, respectively. When 

the adjusted standardized residuals were examined, P. radiata , P. sylvestris and P. nigra  

had significant positive values in the lesion category, meaning that more plants than 

expected by chance had a lesion, and significant negative values in the healthy category, 

meaning that fewer plants than expected were healthy (z = ±5.4, p < 0.001, z = ±3.0, p < 
0.01 and z = ±3.4; p < 0.001, respectively). C. japonica , Q. robur and S. giganteum had 

significant positive values in the healthy category, and significant negative values in the 

lesion category (z = ±4.2, p < 0.001; z = ±3.4, p < 0.001; z = ±3.1, p < 0.01, respectively). F. 

sylvatica , P. avium, Q. petraea , Q. ilex, and E. nitens plants did not show any significant 

difference between the expected and the observed value (Figure 3.7).  

Tree species with more than three lesions per tree, and therefore suitable for the 

Brown-Forsythe and Welch tests, were P. radiata , P. nigra , P. sylvestris, Q. ilex and F. 

sylvatica . Significant differences in lesion size were found among the tree species 

(Brown-Forsythe F (4, 39.364) = 9.235, p < 0.001 and Welch F (4, 35.030) = 7.255, p < 0.001). 

The mean lesion length was highest for P. nigra  (16.18 ± 5.03 cm), followed by P. radiata  

(12.70 ± 6.95 cm), P. sylvestris (12.66 ± 5.67 cm), Q. ilex (9.23 ± 9.25 cm), and F. sylvatica  

(6.75 ± 4.32 cm) (Figure 3.8). 
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Figure 3.7. Susceptibility of several tree species found in the Basque Country to A. mellea 

infection. The relative frequency of healthy young trees and those with fungal lesions was 

determined four months after infection with A. mellea and growth under greenhouse conditions. 

Counts are represented as percentage of the total number of plants for each tree species. Black 

asterisks indicate positive significant z scores (p < 0.05) for the indicated health state. Red 

asterisks indicate negative significant z scores (p < 0.05) for the indicated health state.  

 

 

Figure 3.8. Length of lesions (cm) caused by A. mellea in different tree species. Error bars show 

the standard deviation of the means. Statistically significant differences (p < 0.05) between tree 

species are indicated by different lowercase letters.
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3.4. Discussion 

In the present study, the diversity of Armillaria  spp. and H. annosum s.s. populations 

in different stands of the Basque country was described, and host susceptibility to A. 

mellea  was determined in a set of native and exotic forest species selected based on the 

frequency of their presence in the Atlantic area of Spain.  

All of the isolates from stands surveyed for H. annosum, were identified as one 

species, H. annosum s.s., and all were found on coniferous hosts. In Caranca, Azaceta and 

Legorreta, the strains were mainly present on stumps, and showed high diversity, i.e. 

high somatic incompatibility. This suggests that infection of the stumps, and trees with 
lesions in the bark, was most likely by basidiospores. In contrast, in Saldropo, H. 

annosum was found on stumps, dead trees, and living trees and exhibited higher somatic 

compatibility. In this stand, in addition to infection by basidiospores, the fungus also 

may have spread by vegetative mycelium as is suggested by SCGs. The largest genet 

was formed by four isolates which were located in stumps or living trees, with the 

maximum distance between them of 6 meters. H. annosum complex genets diameters are 

usually smaller than 30 m and never infect a high number of trees (Garbelotto and 

Gonthier, 2013). In general, the most important infection mechanism for H. annosum is 

colonization of stumps by basidiospores (Korhonen and Stenlid, 1998), thus resulting in 
a high number of different genotypes. However, heterokaryotic H. annosum also 

contains homokaryotic mycelium, so when two compatible heterokaryons interact a new 

heterokaryon can be formed by the mating between homokaryons, resulting in the 

increase of different SCGs without basidiospores being involved (Swedjemark and 

Stenlid, 2001). When H. annosum s.s genets identified by SI tests were compared with 

those obtained by UP-PCR no similarities were observed, i.e. some isolates had the same 

band pattern even if they were isolated from different stands and belonged to different 

genets. In this case the chosen universal primers for UP-PCR were not considered 

suitable for distinguishing among H. annosum s.s. genets.  

In the stands infected with Armillaria  spp., A. ostoyae was distributed in larger clonal 

clusters than A. mellea and A. gallica, which were found in medium size and small clonal 

clusters, respectively. Differences in genet size have been reported for different species 

of Armillaria . Genet size is also influenced by basidiocarp formation, basidiospore 

abundance and survival, and formation of diploids, which are influenced by moisture 

and temperature. Thus, the presence of large genets is more common in dry and/or cold 

forests than in moist-warm forests (Ferguson et al., 2003; Worrall et al., 2004; Bendel et 

al., 2006). In the present study, the stands with the largest genets, Otxandiano and 
Altube, were those with colder temperatures. However, A. mellea  genets were of similar 

sizes in stands with cold and warmer climates, so so differences in behavior among 

species may also be a factor.  
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Most of the genets determined for Armillaria  spp. by UP-PCR using AS4 primer and 

SI tests were consistent. In the case of the genet from Otxandiano, no difference in UP-
PCR band patterns were apparent between A. ostoyae samples, but when A. ostoyae 

samples located in Altube were assessed, different band patterns were detected among 

isolates of the same SCG. Different band patterns were also detected among A. gallica  

isolates of the same SCG. This could imply that some genets were composed of sib-

related genets, inbred sibling genets which are very closely related, meaning that 

basidiospores could be more important in the dispersion process than observed on SC 

tests. (Kile, 1983; Bendel et al., 2006). UP-PCR may provide more information about the 

genets obtained by SI tests in Armillaria  spp., Dodd et al. (2006) also used UP-PCR for 

determining polymorphism within and between different species of Armillaria  (A. 

limonea  (G. Stev.) Boesew. and A. novae-zelandiae (G. Stev.) Boesew.), and in their study 

primer AS4 also provided consistent results.  

In the stands, A. mellea  exhibited the greatest host diversity among the Armillaria  

spp. and therefore was chosen to further investigate susceptibility of trees that are 

commonly found in the Basque Country. All the tested tree species were susceptible to 
A. mellea except C. japonica . It has been observed that resistance between populations of 

C. japonica  can vary due to the different concentrations and ratios of some compounds in 

the sapwood and heartwood such as norlignans and ferruginol (Azevedo, 1976; 
Yamada, 1992; Melo et al., 2004). Pinus species were the most affected by A. mellea  

infection; Aguín et al. (2004b) reported that Pinus spp. infected with A. mellea  were the 

first to show signs of the disease in aerial tissues compared to trees infected with other 
species of Armillaria , such as A. ostoyae and A. gallica . Here, P. radiata  was the species 

with the greatest number of infected plants and P. nigra  had the highest average lesion 

size. P. radiata  is also considered very susceptible to other Armillaria  spp. such as A. 

novae-zelandiae (Hood et al., 2009) and to H. annosum s.s. (Doğmuş-Lehtijärvi, 2015)  

3.4.1. Conclusions 

In the studied stands H. annosum s.s. dispersion was mainly by basidiospores, but it 

should be also considered that homokaryotic mycelium from heterokaryons can interact 

with stablished heterokaryons and thus, dispersion by vegetative mycelium could be 
more important than assumed only by considering genets sizes. Armillaria  spp. 

dispersion patterns were variable between stands and species, and they could be 

affected by moist and temperature. Evidences of P. radiata  susceptibility to both 

pathogens in greenhouse conditions and in field are apparent. Monocultures of highly 

susceptible tree species should be avoided in order to prevent an increment in damage 

risk.  
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CHAPTER 4 
Native rhizobacteria as biocontrol agents of 

Heterobasidion annosum s.s. and Armillaria 

mellea infection of Pinus radiata 
 

 

 
 

 

4.1. Introduction 

Three percent of the total tree plantations worldwide consist of P. radiata (Monterey 

pine), covering over four million hectares, mainly in New Zealand, Chile, Australia, 

Spain and South Africa, where they are an important part of the economy. In the Basque 

Country it constitutes 46% (28.6 million m 3) of the total wood stock (HAZI, 2010). P. 

radiata  is the most extensively planted exotic conifer, most productive (Mead, 2013), and 

susceptible to infection by both Heterobasidion and Armillaria . Studies conducted in New 

Zealand showed that species of Armillaria caused mortality rates between 20-50% in the 

first six years of P. radiata  stands (Hood and Sandberg, 1993b), and 6-13% losses of the 

potential volume in a 28 year old P. radiata  plantation (MacKenzie, 1987). Mesanza et al. 

(2017) detected the presence of Armillaria  spp. on a high percent of disease foci in P. 

radiata  plantations of the Basque Country. H. annossum s.s. caused high levels of disease 

in three year old P. radiata trees (Doğmuş-Lehtijärvi et al, 2016), and gaps in plantations 

in northern Spain (Mesanza and Iturritxa, 2012).  

Currently, Heterobasidion infections are managed using silvicultural, chemical and 

biological methods. Silvicultural practices include planting less susceptible tree species, 

stump removal, using proper planting and mixture schemes, and thinning when the 

spores are not dispersing. Chemical treatments are based on urea and borate (Pratt and 

Lloyd, 1996; Johansson et al., 2002), and biological control requires inoculating stumps 

with the fungus Phlebiopsis gigantea  (Fr.) Jülich (Asiegbu et al., 2005). Armillaria  treatment 

includes silvicultural methods (e.g., root collar excavation, stump and residual root 

removal, and planting less susceptible tree species), soil fumigants such as methyl 
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bromide and carbon disulphide, and the application of the soil-borne fungus Trichoderma  

Pers. after fumigation (Baumgartner et al., 2011).  

The application of these treatments is limited and often ineffective due to factors 

such as level of infection, environmental conditions and risks, cost, and legislation, 

among others. For example, the use of urea and borate causes temporal modifications in 

soil chemistry and damages the ground vegetation and the structure of the fungal 

community (Asiegbu et al., 2005). In addition, these chemicals are not registered as 

pesticides in many countries so their use is prohibited (Gonthier and Thor, 2013). The 

efficacy of methyl bromide and carbon disulphide is influenced by soil characteristics 

and the size of the inoculum source, and methyl bromide prohibition is pending in the 

USA (Baumgartner et al., 2011). Although fungal biocontrol agents may be applied, 

effective soil levels of Trichoderma  are difficult to attain (Shaw and Roth, 1978). In 

contrast, P. gigantea  effectively inhibits the spread of Heterobasidion following 

colonization of stumps by basidiospores, however, it reduces fungal diversity and its 

use is only approved in some countries of the EU (Gonthier and Thor, 2013). Finally, 

even when silvicultural techniques are useful, they can be expensive and/or difficult to 

accomplish, and ineffective when the infection is well established. The best defence 

against these fungal infections is prevention. 

Biological control with bacteria has proven effective against several fungal 

pathogens of agronomic crops (Mark et al., 2006) and in fewer cases against forest fungal 

pathogens (Singh et al., 2008). Antagonism by bacteria is achieved by different 

mechanisms including antibiosis, competition for nutrients, parasitism, and induced 

resistance in the host (Whipps, 2001). Other factors that influence the efficacy of 

biocontrol bacteria are their capacity to colonize the rhizosphere or the host seeds, and 

to adapt to soil conditions (Mark et al., 2006). The probability of isolating 
microorganisms from the environment that demonstrate an antagonistic effect in vitro is 

relatively high, but many of these are not effective when applied in planta  where plant 

host responses to and impact on microbial activity are also important (Gardener and 

Fravel, 2002). Crop studies have shown that strains isolated from native soils have the 

best chance of protecting plants as they are adapted to the soil conditions and therefore 

can compete effectively with other indigenous microbes.  

4.1.1. Objectives 

The objectives of this study were: 

i. To isolate and characterize some bacteria native to the P. radiata  rhizosphere 

with the ability of inhibit the growth of A. mellea and H. annosum in vitro. 

ii.  To determine their prophylactic effects, if any, in P. radiata  seedlings.  
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4.2. Materials and methods 

4.2.1. Microorganisms 

The H. annosum s.s. and A. mellea strains used in this study were isolated from 

basidiocarps present in a Pinus sylvestris plantation in Alava, Spain and on an Acer spp. 

located in Biscay, Spain, respectively. Both fungal strains proved to have virulence 
against P. radiata. Identification, characterization and efficacy of both pathogens were 

described previously (Chapter 3). The fungi were routinely grown at 20ºC in the dark on 

malt extract agar (MEA). 

Bacterial strains were isolated from the rhizosphere of a healthy tree located in a P. 

radiata  plantation (Latitude: 43º06´46´´N; Longitude: 2º38´35´´W, Abadiano, Biscay, 

Basque Country, Spain) with high presence of fungal pathogens. Samples containing 

tree roots and surrounding soil were collected and stored at 4ºC. To extract 

ectorhizosphere bacteria, 5 g of root samples were suspended in 45 ml sterile 0.85% 

NaCl, shaken for 3 minutes, and the supernatant was decanted into sterile tubes. To 

obtain endorhizosphere bacteria, 5 g of roots were washed with sterile 0.85% NaCl and 

then homogenized with an adapted drill (Optimun Maschinen, Germany) in 50 ml of the 

same solution and the supernatant was collected. Serial dilutions of the supernatants 

were plated on Luria Bertani (LB) agar (Miller, Fisher Scientific) and grown overnight at 

room temperature (Figure 4.1).  

 

 

Figure 4.1. Ectorhizosphere bacteria isolated from P. radiata roots. Root surface bacteria were 

extracted into sterile 0.85% NaCl and serial dilutions were plated on LB agar.  
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4.2.2. In vitro fungal antagonism assay  

Two hundred isolated rhizobacteria were initially screened, in triplicate, for 
antagonistic effects against H. annosum and A. mellea . Approximately 2 mm2 of fungal 

mycelium was transferred into wells of a six-well plate (Nunc) containing ISP2 agar (4 

g/L yeast extract, 10 g/L malt extract, 4 g/L glucose and 20 g/L agar, pH 7.3; Shirling and 

Gottlieb, 1966), determined to be suitable for both fungal and bacterial growth, and was 

grown for two days before applying the bacterial suspension. Bacterial cultures,  

prepared in triplicate from independent colonies grown for two days into LB broth, 

were applied in a thin line using a sterile inoculation loop 0.5 cm from the fungi. 
Escherichia coli TOP10 (Invitrogen) served as a negative control. After 60 days of growth 

at room temperature (20-25ºC), inhibition of fungal growth by the bacteria was visually 

assessed (Figure 4.2). 

The effect of antagonistic bacterial strains was confirmed in a second in vitro 

antagonism assay. The bacterial cultures were washed twice with 0.03 M MgSO4 and the 

final concentration adjusted to an OD600nm of 0.5 before applying to wells containing 

fungi as described above. Bacterial antagonism was defined as Area Inhibition 

Percentage (AIP): AIP (%) = (A-B)/A*100, where A and B are the surface area covered by 

the fungus in control (no bacteria) and treated (with bacteria) plates, respectively.  

 

 

Figure 4.2. Example of different levels of antagonistic effects on H. annosum s.s. of some of the 

bacterial strains isolated in the first screening. Top and bottom wells of each column correspond 

to bacterial replicates. E. coli was inoculated on the first top and bottom well on the left. 
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4.2.3. Bacterial identification and pathogenicity determination 

Single colonies of effective fungal antagonistic bacteria were grown overnight in 3 

ml LB broth at 30 ºC for DNA extraction with Wizard Genomic DNA Purification Kit 

(Promega, USA). The 16S rRNA gene was amplified using Phusion® High-Fidelity DNA 

Polymerase (New England Biolabs, Pickering, ON) and the primer pairs 46f and 536r 

(Mummey and Stahl, 2004), E334f and E939r (Baker et al., 2003), and E786f (Baker et al., 

2003) and E1491r (Smit et al., 1997) (Table 4.1). The PCR conditions were as follows: 5 

min at 95ºC, 30 cycles of 30 sec at 95ºC, 30 sec at the appropriate annealing temperature, 

and 1 min at 72ºC, and a final 1 min at 72ºC. The purified PCR products were sequenced 

by Robarts Research Institute (London, ON). The sequences were manually assembled 

using Mega 4.0 software, and then analyzed using the Ribosomal Database Project (Cole 

et al., 2014), Greengenes (DeSantis et al., 2006) and GenBank (Benson et al., 2007) 

databases.  

The possible phytopathogenicity of the bacterial strains was assessed by watering 

two-month-old P. radiata seedlings with 5 ml of bacterial suspension. P. radiata  seedlings 

were grown from seeds (Sheffield´s Seed Co. Inc., NY) that were surface sterilized by 

placing them in 2.1% sodium hypochlorite solution for 10 minutes with shaking, and 

then rinsing them thoroughly with water (Wenny and Dumroese, 1987). Seeds were 

soaked in water for 24 h and then stratified for 15 days at 4ºC before planting them. 

Bacterial cultures were grown for two days at room temperature in LB broth, washed 

twice with 0.03 M MgSO4, and the final concentration adjusted to an OD600nm of 0.5. 

Seedlings were also treated with a control solution of 0.03 M MgSO4. A total of 40 plants 

per treatment were grown in sand Turface (69 % silica sand, 29% Turface, 2% MgCO 3) in 

12 cm x 3 cm pots under constant temperature (16 h photoperiod, day/night temperature 

of 23-17ºC) (Chanway et al., 1991). After one month the seedlings were examined for 

disease symptoms. 

4.2.4. In vivo biocontrol assay 

The A. mellea  inoculum was prepared following the procedure of Beckman and 

Pusey (2001). Briefly, pieces of fungal mycelium were placed on a preparation of 
benomyl-dichloran-streptomycin agar (Worrall, 1991) with autoclaved Quercus spp. 

acorns and incubated for approximately one month at room temperature in the dark. H. 

annosum was grown in MEA for one month. Bacterial suspensions (OD600nm of 1) were 

prepared in 0.03 M MgSO4 as described above. An E. coli suspension and 0.03 M MgSO4 

were included as negative controls. 
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A total of 100 one-year old P. radiata  seedlings (Explotaciones Forestales Jiménez 

Araba s. l. Nursery, Vitoria, Spain) were inoculated with each bacterial strain by 

immersing root balls in the bacterial suspension for one hour. The inoculation was 

repeated after one week. After seven days, 65 of the seedlings treated with each bacterial 

strain were inoculated with A. mellea  by placing acorns colonized by the fungus in 

contact with tree roots, one acorn per seedling. The remaining seedlings were inoculated 

with 1 cm2 of H. annosum mycelial fragments. Experiments were laid out in a completely 

randomized design with two factors (pathogens and bacterial treatments). P. radiata  

seedlings were grown in 11x11x22 cm pots (1600 cc volume), using a mix of peat moss 

(2/3 peat, 1/3 perlite and fertilizer NPK; N = 200-450 mg/l, P2O5 = 200-500 mg/l, K2O = 

300-550 mg/l). They were maintained for 110 days in a biosafety level 2 greenhouse at a 

mean temperature of 18 ± 5 ºC, with a relative humidity of 55-60% and without 

supplemental light. Upon completion of the experiment, roots were carefully cleaned by 

rinsing with water, and stem length, collar diameter and, in the case of the plants 

inoculated with A. mellea, dry root weight were measured. To obtain the dry weight, 

roots were dried in an oven (Selecta) at 60 °C for 72 h and then weighed on an analytical 

balance (OHaus). Stem length and collar diameter measurements were analyzed 

together as slenderness index (SI) using the formula: SI = stem diameter (mm)/((stem 
length (cm)/10)+2) (Schmidt-Vogt, 1980). The size of the lesions caused by A. mellea  was 

determined by measuring the length of mycelial colonization under the seedlings’ bark.  

4.2.5. Heterobasidion detection by nested PCR 

Nested PCR was used to detect the presence of H. annosum in P. radiata  seedlings. 

This variant of the standard PCR consists of two PCRs; in the first reaction primers that 

flank the DNA region where the amplicon of interest is located are used. In the second 

reaction specific primers for the DNA target are used and the DNA template is the 

product obtained in the first reaction. Nested PCR is useful in complex samples, when 

the amount of target DNA is small, and to reduce nonspecific amplification (Haff, 1994).  

Ten plants per treatment were randomly chosen and the roots were cleaned by 

rinsing with water. Three centimeters of pine roots were cut (one cm above and two cm 

below the first secondary root) and the DNA extracted using DNeasy Plant Maxi Kit 

according to the manufacturers protocol (QIAGEN). Because PCR inhibitors were 

present in root extracts, 360 µl of each sample were repurified by ethanol precipitation 

and the DNA resuspended in 36 µl of 0.1X TE buffer. 

In the first PCR, primers HaPF and HaPR that flank the internal transcribed spacer 

(ITS) were used to amplify a fragment of the rRNA gene (Table 4.1). The reaction 

mixture was composed of 2.5 µl of 10X Buffer (NEB), 50 nM of each primer, 200 µM 

dNTPs (NEB), 1.25 U of Taq DNA polymerase (NEB) and 1.3 µl of sample DNA (1:10, 

1:25 and 1:50 dilutions) in a final volume of 25 µl. The cycling conditions were as 

follows: 10 min at 95ºC, 15 cycles of 30 sec at 95ºC, 45 sec of annealing at 59.5ºC, and 2 
min at 72ºC, and a final 1 min at 72ºC. PCR controls included a water blank, H. annosum 

DNA only, and P. radiata  DNA only. 
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The second PCR was performed using 300 nM of each specific primer for H. 

annosum s.s. ITS region MJF and MJR (Table 4.1), 2 µl of 10X Buffer (NEB), 200 nM 

dNTPs (NEB), 1 U of Taq DNA polymerase (NEB) and 5 µl of the products of the first 

PCR, in a final volume of 20 µl. Cycling conditions were: 3 min at 95ºC, 40 cycles of 30 

sec at 95ºC, 30 sec of annealing at 58ºC and 15 sec at 72ºC, and a final 1 min at 72ºC. PCR 
controls included all the controls from the first PCR reaction, a water blank, H. annosum 

DNA only, and P. radiata  DNA only. All the PCR products were visualized in 1.5% (w/v) 

agarose gels. 

The P. radiata  actin gene was used as a reference gene to ensure that PCR inhibitors 

did not contribute to false negative results from H. annosum ITS amplification. PCR 

reactions contained 2.5 µl of 10X Buffer (NEB), 300 nM of each primer AprF and AprR 

(Table 4.1), 200 nM dNTPs (NEB), 1.25 U of Taq DNA polymerase (NEB) and 1.3 µl of 

the DNA sample (1:10, 1:25 and 1:50 dilutions). PCR conditions were as follows: 3 min at 

95ºC, 40 cycles of 30 sec at 95ºC, 30 sec of annealing at 58ºC and 15 sec at 72ºC, and a 

final 1 min at 72ºC. All the amplification reactions for all the samples were replicated 

once.  

Table 4.1. Primers used in this study. 

Organism, gene Name Primer sequences (5´→3´) Reference 

P. radiata, actin gene AprF AGCAACTGGGATGACATGGA   This study 

AprR TGCCTTGGGATTCAGAGGAG   This study 

H. annosum s.s., rRNA gene 

(primary primers)  

HaPF TCCTTGACCCTTAGGCATTG   This study 

HaPR TCCATGCGAAGAACTTCAGG   This study 

H. annosum s.s., ITS region 

(nested primers)  

MJF GGTCCTGTCTGGCTTTGC   Hantula and Vainio, 2003 

MJR CTGAAGCACACCTTGCCA   Hantula and Vainio, 2003 

Bacteria, 16S rRNA gene 46f GCCTAACACATGCAAGTCGA   Mummey and Stahl, 2004 

536r GTATTACCGCGGCTGCTGG   Mummey and Stahl, 2004 

E334f CCAGACTCCTACGGGAGGCAGC   Baker et al., 2003 

E939r TTGTGCGGGCCCCCGTCAATTC   Baker et al., 2003 

E786f GATTAGATACCCTGGTAG   Baker et al., 2003 

E1491r GGTTACCTTGTTACGACTT   Smit et al., 1997 

 

4.2.6. Statistical analysis  

Differences in the ability of the bacterial strains to inhibit fungal growth in vitro 

were analyzed by one way ANOVA with Waller-Duncan post-hoc test using SPSS 

software (SPSS Inc.). Waller-Duncan post–hoc test requires a large absolute difference in 

sample means in order to declare significance when F- value is small, and the opposite 

when F-value is large; it is used when samples are in equal number (Milliken and 

Johnson, 1992). Values of p < 0.05 were considered significant. The differences in 

Armillaria  disease severity among bacterial treatments in vivo were determined by 

Pearson´s chi-square test. Plants were scored as healthy (without symptoms of 

infection), dead or with lesions. The strength of association between categorical 

variables (health status and bacterial treatments) was measured with Cramer´s V; 
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adjusted standardized residuals were checked in order to determine the significant 

differences between categories. The rest of the measurements such as lesion size, stem 

diameter, height, SI, and dry root weight were analyzed by one way ANOVA, using 

Hochberg`s GT2 (for different sample sizes and equal population variances) and Games-

Howell (for different populations variances and different sample sizes) (Meyers et al. , 
2006) post-hoc comparisons for the data from the plants inoculated with A. mellea  and H. 

annosum, respectively. Data for dead plants were removed from the ANOVA analysis 

for diameter, height, SI and dry root weight and values of p < 0.05 were considered 

significant.  

4.3. Results 

4.3.1. Bacterial inhibition of fungal growth in vitro 

From 200 bacterial strains isolated from the rhizosphere of a healthy P. radiata  tree, 

seven were selected as potential biocontrol agents based on their ability to inhibit H. 

annosum and A. mellea  growth in vitro. Four strains were isolated from the 

endorhizosphere and three from the ectorhizosphere. The bacterial treatments had a 
significant inhibitory effect on H. annosum (F(8, 18) = 73.9, p < 0.05) and A. mellea  (F(8, 18) 

= 111.4, p < 0.05). All seven isolates reduced the area covered by A. mellea  mycelium by 

58.6-94.2% and rhizomorph formation (Figure 4.3, Figure 4.4). In contrast, E. coli 

increased mycelial growth of A. mellea by an average of 21% (Figure 4.4). All isolates 

except S22L11 reduced H. annosum mycelial growth (Figure 4.3, Figure 4.4). The 

remainder of the isolates reduced the area covered by H. annosum mycelium by 56.7-

99.3%. The most effective bacterial treatments against both fungi were S32R2 and S31R1 
with inhibition values of 99% for H. annosum, and 94.2% and 83.4% respectively for A. 

mellea  (Figure 4.4).  
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Figure 4.3. In vitro fungal antagonism assay. Plates were inoculated with E. coli (A), no bacteria 

(B), S31R1 (C), S32R2 (D), S11R41 (E), S23L3 (F), S11R21 (G), S22L11 (H), or S31L1 (I). The three 

upper wells of each plate were inoculated with H. annosum s.s., and the bottom wells with A. 

mellea. 



4.3. Results 

70 

 

 

Figure 4.4. Area inhibition percent (AIP) of the tested bacterial strains against  H. annosum s.s 

(dark grey) and A. mellea (light grey). Error bars show the standard deviation of the 3 

independent replicates. Statistically significant differences of p < 0.05 between treatments for A. 

mellea and H. annosum are presented with different lowercase or capital letters, respectively.  

 

4.3.2. Identification and pathogenicity determination of 

bacterial strains 

Based on their 16S rRNA gene sequence identity to known bacteria, the antagonistic 

bacterial strains were identified as follows: strain S32R2 as Pseudomonas fluorescens; 

S22L11 as Bacillus weihenstephanensis or B. mycoides; S11R41 as Bacillus simplex or 

Brevibacterium frigoritolerans; S31L1 as Rahnella spp., possibly Rahnella aquatilis; S11R21 as 

possibly Pseudomonas poae, P. costantinii or P. trivialis; and S23L3 and S31R1 as Erwinia 

billingiae (Table 4.2). Three were not tested further, S22L11 and S11R21 due to the 

possibility of being human or animal pathogens (Stenfors et al., 2002; Goodwin et al., 

1994; Chang et al., 1999), and S31L1 because P. costantinii is considered a pathogen for 

cultivated mushrooms (Munsch et al., 2002). Two-month-old pine seedlings inoculated 

with the remaining four bacterial strains did not exhibit any symptoms of disease, such 

as necrosis of any part of the plants, spots on the needles, needle distortion, cankers, or 

general decline. 
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Table 4.2. Bacterial strains and their closest homology.  

Bacterial strain Closest homology 
S-ab score

a
, Identity

b
 or 

Similarity
c
  

Accession 

number 

S32R2 P. fluorescens str. B67 99.79%
a
 EU169164.1 

S22L11 B. weihenstephanensis str. WSBC 10204 100%
a
 AM747230.1 

B. mycoides CIP 103472  1.0
b
 AM747229 

 

S11R41 

B. simplex str. LMG 21002   1.0
b
 AJ628745.1 

Brevibacterium frigoritolerans; type strain 

DSM 8801 

1.0
b
 AM747813 

S31L1  Rahnella spp. str. CDC 21234 99.79%
a
 U88435.1 

R. aquatilis str. 334 99.04%
a
 X79940.1 

 

S11R21 

P. fluorescens; 2312 0.993
b
 EU360313 

P. costantinii 99%
c
 AF374472 

P. poae; zol-15; JQ782898 0.993
b
 JQ782898 

S23L3   E. billingiae str. Eb661 99.93%
a
 FP236843 

S31R1 E. billingiae str. Eb661 100%
a
 FP236843 

a, Ribosomal Database Project; b, GenBank; c, Greengenes. 

4.3.3. In vivo biocontrol assay 

A significant difference was observed among the bacterial treatments in the health 

status of the plants inoculated with A. mellea  (χ2 (10) = 44.2, p < 0.001), and a Cramer´s V 

of 0.323 indicated a medium-large effect size. Of the plants that were not treated with 

bacteria, 54% were not healthy (dead or had a lesion), and contributed 40.4% of the total 

number of dead plants in all treatments (Figure 4.5). In contrast, treatment with the 

biocontrol bacteria resulted in fewer dead plants. The proportion of dead plants within a 

bacterial treatment ranged from 3.6-13.1%. E. billingiae S23L3 and B. simplex S11R41 

contributed the least (3.5% and 8.8%, respectively) to the total number of dead plants in 

all treatments. When the adjusted standardized residuals were examined, the group of 

plants that were not treated with bacteria had significant positive values in the dead 
category (z = 5.2; p < 0.001), meaning that more plants than expected by chance were 

dead and, significant negative values in the healthy category (z = -5.2; p < 0.001), 

meaning that fewer plants than expected were healthy. The plants treated with B. 

simplex S11R41 had significant positive values in the healthy category (z = 2.6; p < 0.01) 

and, significant negative values in the dead category (z = 2.0; p < 0.05). Plants treated 

with E. billingiae S23L3 had significant negative values in the dead category (z = -2.6; p < 

0.01) but, significant positive values in the lesion category (z = 2.1; p < 0.05) (Figure 4.5). 

When present, lesion sizes were not significantly different among the treatments (data 

not shown).  

Among the live plants infected with A. mellea  significant differences in height (F (5, 

308) = 5.64, p < 0.05) (Figure 4.6A), diameter (F (5, 312) = 2.58, p < 0.05) (Figure 4.6B) and 

SI (F (5, 308) = 3.19, p < 0.05) (Figure 4.6C) were found among the treatments. No 

significant differences were found among treatments for dry root weight (F (5, 286) = 

0.53) (data not shown). Plants with no bacterial treatment had the lowest average height 

(47.9 cm ± 10.4) and treatment with any of the bacterial strains increased height by 19% 

on average (Figure 4.6A). Plants treated with E. coli had the smallest diameter average 
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(5.2 mm ± 1.2), and plants treated with P. fluorescens S32R2 had the highest (5.9 mm ± 1) 

(Figure 4.6B). The lowest SI average, thus the least robust plants, was for plants treated 
with E. coli (0.69 ± 0.12) and E. billingiae S23L3 (0.69 ± 0.19) (Figure 4.6C), and the highest 

for untreated plants (0.78 ± 0.17). 

The plants infected with H. annosum presented significant differences in SI values (F 

(5, 200) = 2.28, p < 0.05) among the treatments (Figure 4.6C). Plants treated with P. 

fluorescens S32R2 had the lowest SI average (0.93 ± 0.15). Bacterial treatments did not 

result in significant differences in height (F (5, 200) = 1.99) (Figure 4.6A) or in diameter (F 

(5, 200) = 0.99) (Figure 4.6B).  

 

Figure 4.5. Dead, healthy or fungal lesion-containing pine seedlings inoculated with A. mellea. 

Counts are represented as percentage of the total number of plants within each bacterial 

treatment. The percentages shown in the boxes in each segment represent the contribution to the 

total number of plants in each state among all of the bacterial treatments. Darker segments 

indicate significant z scores (p < 0.05). 
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Figure 4.6. Height (A), diameter (B) and slenderness index (C) for seedlings inoculated with H. 

annosum (dark grey) or A. mellea (light grey) and treated with bacteria. Error bars show the 

standard deviation of the means. Statistically significant differences of p < 0.05 between 

treatments for A. mellea and H. annosum are presented with different lowercase or capital letters, 

respectively. 

4.3.4. Detection of H. annosum s.s. infection  

Symptoms of H. annosum infection were not apparent in any of the inoculated 

seedlings. To determine if the fungus was present in the seedlings, and if any of the 

bacterial treatments influenced this, DNA was extracted from root fragments and used 

as a template to amplify the H. annosum ITS region and the P. radiata  actin gene. 

Products from PCR amplification of the P radiata  actin gene were obtained in 57 of the 60 

samples tested using different concentrations of DNA (Figure 4.7). This indicates that 

PCR was not inhibited by substances in the DNA extracted from plant roots. The 

samples and DNA concentrations with a positive result for the actin gene were tested for 

the presence of H. annosum. In this case, 43 samples yielded a specific amplification 

product (Figure 4.7). The percentage of positives in the groups treated with P. fluorescens 

S32R2, B. simplex S11R41, E. billingiae S23L3, and E. billingiae S31R1 were 40%, 55.5%, 

70% and 90%, respectively. All of the actin-positive samples with E. coli or without 

bacterial treatment were positive for a H. annosum-specific ITS sequence. The same result 

was obtained in both experimental replications. 
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Figure 4.7. Detection of H. annosum in DNA extracted from infected P. radiata roots treated with 

biocontrol bacteria. A positive result for the P. radiata actin gene or the H. annosum ITS region is 

indicated as a shaded box (DNA dilution shown). 

4.4. Discussion  

In the present study, we report the isolation of native bacteria from a healthy tree in 
a P. radiata  stand with high levels of fungal infection and the ability of some of these 

bacterial strains to inhibit the growth in vitro and the pathogenic effects in planta  of two 

forest fungal pathogens, H. annosum s.s. and A. mellea . A few studies have described the 

antagonistic effects of biocontrol bacteria against forest fungal pathogens in vitro, 

although their ability to reduce fungal growth in trees was not always demonstrated. 

Dumas (1992) isolated bacteria from soils of the boreal mixed wood forest of Ontario 
that inhibited A. mellea in vitro, however, inhibition of infection in trees was not 

reported. Singh et al. (2008) reported the antagonistic effect of B. subtilis against 

Macrophomina phaseolina  in a Pinus specie (P. roxburghii Sarg.), and Phytophthora 

cinnamomi infection was reduced in F. sylvatica  and Quercus spp. treated with Bacillus 

amyloliquefaciens (Lefort et al., 2013). Murray and Woodward (2003) concluded that 

weight losses caused by Heterobasidion in spruce wood cubes were lower when they 

were simultaneously inoculated with H. annosum and biocontrol bacteria.  

In our case, native biocontrol bacteria were isolated in anticipation of their greater 

potential for adaptation to the host and conditions under which they will be applied. 

The selected bacteria were not pathogenic for seedlings of P. radiata  nor are P. fluorescens, 

E. billingiae, and B. simplex (B. frigoritolerans) known to be human or animal pathogens. 

Some strains of P. fluorescens are commercially available and exhibit effective 

rhizosphere colonization, plant growth promoting activity (Mark et al., 2006), and 

antifungal activities against crop pathogens due to the production of secondary 

metabolites such as 2,4-diacetylphloroglucinol, phenazine and pyoverdin (Boruah and 

Kumar, 2002). E. billingiae is epiphytic and has shown biocontrol activity against fire 

blight caused by E. amylovora  (Jakovljevic et al., 2008). B. simplex, an endospore forming 

 Samples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Actin (1/10)

Actin (1/25)

Actin (1/50)

H. annosum (1/10)

H. annosum (1/25)

H. annosum (1/50)

 Samples 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Actin (1/10)

Actin (1/25)

Actin (1/50)

H. annosum (1/10)

H. annosum (1/25)

H. annosum (1/50)

S32R2 S11R41 S23L3

S31R1 E. coli No treatment
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bacteria (Heyrman et al., 2005), promoted the growth of tomato and wheat (Hassen and 

Labuschagne, 2010) and showed antifungal effects against Fusarium oxysporum in vitro 

(Schwartz et al., 2013).  

P. fluorescens S32R2 and B. simplex S11R41 were strong antagonists of H. annosum 

and A. mellea  in vitro, and performed best against both fungal strains in vivo. P. 

fluorescens S32R2 reduced H. annosum growth by 99% in vitro and fungal presence by 

60% in P. radiata  seedlings. B. simplex reduced H. annosum growth to a lesser extent (68%) 

in vitro, but reduced the presence of the fungus in pine seedlings by 50%. On the other 

hand, E. billingiae strains S31R1 and S23L3 performed strongly against H. annosum in 

vitro (99% and 81% AIP, respectively), but reduced the presence of the fungus by only 

10% and 30%, respectively, in vivo.  

In the in vitro antagonism assay against A. mellea, P. fluorescens S32R2 had the 

highest antifungal activity (94.2% AIP). As a plant treatment, this bacterial strain 

showed a similar antagonistic effect as B. simplex S11R41, (80.3% and 84.3% of the plants, 

respectively, were healthy following fungal infection compared with 46% of untreated 
plants), although B. simplex S11R41 was less inhibitory in vitro (83.2% AIP). When 

compared with plants that were not treated with bacteria, antagonistic effects were 

detected for E. coli in the pines inoculated with A. mellea ; 73% of the plants were healthy 

following fungal infection. This was surprising because E. coli did not inhibit A. mellea  in 

vitro (-21% AIP). The consistent (Singh et al., 2008) or inconsistent (Coombs et al., 2004; 

Inderiati and Franco, 2008) relationship between the antagonistic effect of biocontrol 
bacteria in vivo and in vitro has been previously reported and, in general, is related to 

plant characteristics and environment (Tolba and Soliman, 2013). 

The number of plants with A. mellea  lesions was smaller in the seedlings treated 

with B. simplex S11R41 (8.6%) and P. fluorescens S32R2 (6.6%) compared with 17.5% of 

plants with lesions for the untreated controls. Although the size of fungal lesions, when 

present, was not different among the treatments, fewer plants treated with bacteria died. 

Bacterial treatment may have a systemic protective effect, but not a strong antagonistic 

effect once the fungal infection is established.  

When plant growth in the presence of A. mellea  was analyzed, a significant 

difference was detected in the height, diameter and SI among the treatments. Plants 
treated with P. fluorescens S32R2 had the highest values in height and diameter. On the 

other hand, untreated plants and plants treated with E. coli had the lowest values in 

height and diameter, respectively, and SI values were higher for the untreated plants 
(0.78) and smaller for the plants treated with E. coli (0.69). A significant effect on height 

or diameter was not detected among bacterial treatments for plants treated with H. 

annosum, but P. fluorescens treatment had the highest value for plant height and the 

smallest for diameter, resulting in a significant decrease of SI. The mean values of SI 

were consistently different between the seedlings inoculated with H. annosum (1.04  

0.25) and those inoculated with A. mellea (0.73  0.15). SI values of 1 are considered 

normal for P. ponderosa  seedlings (Olivo and Buduba, 2006), which is similar to the SI 
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values of P. radiata  seedlings treated with H. annosum in this study. This suggests that 

the severity of infection was greater for A. mellea , and although H. annosum was present, 

the infection was not sufficient to cause disease symptoms in any of the treatments at the 

time of the assessment. 

4.4.1. Conclusions 

The isolated bacterial strains selected on the basis of an antibiosis effect on the 

fungal pathogens H. annosum s.s. and A. mellea  in vitro reduced the pathogenic effects of 

A. mellea  and the presence of H. annosum in young P. radiata  trees. Future studies are 

needed to understand the mechanisms of antibiosis and bacterial-fungal interactions in 

other tree species. In addition, the effects of the bacteria on other beneficial rhizobacteria 

and mycorrhizal fungi in the rhizosphere community, and the ability of the biocontrol 

bacteria to compete effectively with indigenous microorganisms must be assessed, 

although they are native to P. radiata  roots and therefore expected to be well-adapted to 

the conditions under which they will be applied. Nonetheless, the biocontrol bacteria 

characterized here show promise as a treatment to mitigate the damage by devastating 

pine pathogens against which there are few options available. 
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CHAPTER 5 
General discussion and conclusions 

 

 

 

 

 

5.1. Discussion: from a management perspective  

In the present study, the distribution of Armillaria  and Heterobasidion in the Basque 

Country, and the environmental factors associated with both fungal complexes, were 

described. The species and population diversity of both genera in selected plantations 

and native forests were determined, and host range in the field and host susceptibility to 

A. mellea  under greenhouse conditions were established. The results contribute to a 

better understanding of the epidemiology of these forest pathogens. In addition, bacteria 

native to the P. radiata  rhizosphere that are able to reduce pathogenic effects of A. mellea 

and H. annosum s.s in young P. radiata  trees were isolated and characterized. The 

compiled information will facilitate the development of management strategies, 

especially in areas of the Basque Country where the problem of replanting forests 

infested by diverse native and exotic pathogens is endemic. 

Armillaria  spp. are broadly distributed in the Basque Country and their host range 

includes coniferous and deciduous trees. All the main species present within the genus 

Armillaria can behave as primary pathogens which, added to their broad distribution 

and host range, result in a high risk of damage for tree plantations and native forests in 
this region. Although Armillaria  was frequently detected in the studied native and 

plantation forests, control measures have been restricted to urban trees and recreational 

parks, and implemented to prevent civilian and structural damage that may be caused 

by instability of affected trees.  

The control of Armillaria  complex in forests is more difficult as it is distributed over 

a wider area, often in areas that are difficult to access. The best way to reduce the vigor 

of the fungus, which is strongly dependent on the availability of food sources, is by 

pulling out infected stumps and roots. However, this measure can also stimulate 

rhizomorphs formation (Fox, 2000), and disrupt beneficial microbial populations (Butin, 

1995), which may act as a natural control of pathogens (Mesanza et al., 2016). Fungicidal 
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treatments can kill the fungus in the soil; however, the economic and environmental 

costs are high. 

In typical modern plantations, control measures are probably economically justified 
if mortality from Armillaria  spp. is severe early in the previous rotation. It is therefore 

important to keep good stand records that will point out the impact of different factors 

when a decision may be necessary prior to planting a new species. In comparison with 

natural forests, the damage in exotic tree plantations is usually greater (Guillaumin and 

Legrand, 2013). The composition of the stand can also change the range of infection; 

lower density of susceptible species, e.g. P. radiata, and higher species diversity in 

different forest strata reduce the possibility of disease transmission (Gerlach et al., 1997; 

Kromroy et al., 2005).  

H. annosum s.s was the only species within the genus Heterobasidion present in the 

sampled forests. Its presence was limited only to conifers and it was less abundant than 
Armillaria  spp.; however, H. annosum s.s could pose a high risk for tree plantations and 

native forests due to its presence in a broad range of coniferous species, inherent ability 

to cause damage to deciduous trees, and generation of new genets which could increase 

its pathogenicity.  

H. annosum s.s. presence in the Basque Country has additional implications for 

management of the Atlantic coniferous ecosystem of Spain. In areas where Fusarium 

circinatum Niremberg & O'Donnell has previously been detected (Collar Urquijo, 1995; 

Landeras et al., 2005; Iturritxa et al., 2011) stands of Pinus spp. are currently being 

replaced by other conifers such as Picea  spp. (spruces), C. lawsoniana  (Lawson cypress) 

and P. menziesii (Douglas fir) (EFSA, 2010; Aegerter and Gordon, 2006; Gordon et al., 

2006; Gordon et al., 2001) which are hosts for H. annosum s.s. (Mesanza and Iturritxa, 

2012). Established management recommendations must be revised for areas where both 

F. circinatum and H. annosum could be present.  

Evidences of the importance of basidiospores in the dispersion of H. annosum s.s in 

the studied areas were found in this study. In general, infection by basidiospores of 

recently generated stumps and injuries in living trees is an important dispersion 

mechanism to new areas (Kallio, 1970). The risk of infection is higher when basidiospore 

production is at its maximum. In the southwest of France, Lung-Escartman et al. (2008) 

observed that the maximum production of H. annosum s.s. basidiospores was in spring 

and Gonthier et al. (2005) observed a maximum production in autumn in the western 

Alps; thus, they recommend thinning and logging operations in winter (Isomäki and 

Kallio, 1974). In the infected forests designated for regeneration, the use of tolerant tree 
species is recommended. Korhonen et al. (1992) recommended the use of Betula pendula 

Roth in the stands infected with H. annosum s.s.  

In general, early detection of disease and treatment with effective biological 

antagonists, and planting tolerant tree species are recommended for plantations 

(Schwarze, 2008). Even if action is not taken, forest owners should be aware of the 

presence of the fungi, especially if there is a chance that a change of management 
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practice could inadvertently lead to an increase in disease impact. Management 

procedures such as selective logging, early thinning and/or the continued use of 

susceptible or moderately susceptible species that are not very well adapted to the 

location, increase the inoculum sources, and thereby, increase the probability of 

infection (Bloomberg and Morrison, 1989; Morrison et al., 1991; Hood and Sandberg, 

1993a; Hood and Kimberly, 2009). Monitoring forests for early detection would be 

facilitated by an understanding of the stand environmental characteristics that increase 

the risk of Armillaria spp. and H. annosum s.s. infection. In this study, Armillaria  spp. were 

more frequently detected in stands with 20-30% slopes, with a westerly orientation, 

deciduous forests, acid soils with high permeability, and rainfall average values above 

1800 mm. H. annosum s.s. was more frequently detected in stands with temperature 

averages below 11.5 ºC, rainfall average values below 1000 mm, 30-40% slopes, north or 

southeast orientations, coniferous forest with moderately basic or basic and 

impermeable soils, and where trees had optimum growth conditions.  

Finally, there is a need for safe and effective preventions and treatments for these 

fungal diseases. The isolated biocontrol bacteria, which are native to the region, reduced 

the incidence of H. annosum and A. mellea  infection on P. radiata . Iturritxa et al. (2017) 

also reported the ability of these bacteria to reduce the length of lesions caused by F. 

circinatum in young P. radiata trees. However, as commented in Chapter 4, before these 

biocontrol agents can be applied, future studies are needed to understand the 

mechanisms of antibiosis and bacterial-fungal interactions in other tree species, and the 

effects of the bacteria on other beneficial rhizobacteria and mycorrhizal fungi in the 

rhizosphere community. The ability of the biocontrol bacteria to reduce the incidence of 

other Armillaria  spp. or to compete with indigenous microorganisms must also be 

assessed. As part of an integrated management strategy, an early application of 

antagonistic bacteria in the nursery is proposed. Early application is advantageous for 

several reasons, the volume of bacteria needed is lower and can be applied under 

controlled conditions, the bacteria have time to colonize and adapt to the rhizosphere 

conditions, and consequently, the seedlings are protected before they are in contact with 

the fungi. 
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5.2. Conclusions 

1. Armillaria  spp. were broadly distributed in the Basque Country and their host 

range includes coniferous and deciduous trees. 

2. All the main Armillaria  species present in the Basque Country can behave as 

primary pathogens which, added to their broad distribution and host range, 

results in a high risk of damage for tree plantations and native forests. 

3. H. annosum s.s was the only species detected within Heterobasidion genus. Its 

presence was limited only to conifers and it was less abundant than Armillaria  spp.  

4. H. annosum s.s could pose a high risk for tree plantations and native forests due to 

the broad range of coniferous species in which it was present and its inherent 

ability to cause damage to deciduous trees and to generate new genets.  

5. The presence and absence of both genera in the surveyed areas were significantly 

associated to different environmental factors such as stand slope and orientation, 

rain and temperature averages, soil permeability and acidity, and host type. 

6. In the studied stands H. annosum s.s. dispersion was mainly by basidiospores.  

7. Armillaria  spp. dispersion patterns were variable between stands and species, and 

could be affected by moist and temperature.  

8. P. radiata  was the most susceptible species to A. mellea  in greenhouse conditions 

with a greater number of infected plants and P. nigra  had the highest average 

lesion size. 

9. Monocultures of highly susceptible tree species should be avoided in order to 

prevent an increment in damage risk.  

10. The isolated bacterial strains, selected on the basis of an antibiosis effect on the 

fungal pathogens H. annosum s.s. and A. mellea  in vitro, reduced the pathogenic 

effects of A. mellea  and the presence of H. annosum in P. radiata  seedlings.  

11. The biocontrol bacteria characterized here show promise as a treatment to mitigate 

the damage by devastating pine pathogens against which there are few options 

available. 
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Resumen 

En los bosques de las regiones templadas, los hongos de pudrición de cuello y de 

raíz están considerados entre las causas más importantes de pérdidas económicas. Este 

grupo de hongos está mayoritariamente formado por tres géneros con distribución 

mundial: Armillaria (Fr.) Staude, Heterobasidion Bref. y Phellinus Quél., todos ellos dentro 

de la clase Agaricomycetes (Garbelotto, 2004). Esta tesis se ha centrado en dos de ellos, 

Armillaria y Heterobasidion. 

En Europa, se tiene constancia de siete especies de Armillaria : A. mellea  (Vahl) 

P.Kumm., A. gallica  Marxm. & Romagn., A. ostoyae (Romagn.) Herink, A. tabescens 

(Scop.) Emel, A. cepistipes Velen., A. borealis Marxm. & Korhonen, and A. ectypa  (Fr.) 

Lamoure (Guillaumin et al., 1993; Pérez-Sierra and Henricot, 2002). Muchas de ellas son 

agentes patógenos de un amplio rango de árboles, matorrales y algunas plantas 
herbáceas (Williams et al., 1989). A. mellea  y A. ostoyae generalmente se comportan como 

patógenos primarios, aunque también pueden ser saprófitos, siendo su rango de 

hospedadores muy amplio, incluyendo coníferas y arboles caducifolios, aunque A. 

mellea se considera menos patogénica para coníferas que A. ostoyae. El rango de 

hospedadores para A. gallica  es también elevado y se puede comportar como oportunista 

y/o patógeno primario. A. tabescens se comporta mayormente como saprófito aunque se 

ha detectado puntualmente como parasito primario u oportunista. La patogenicidad de 

A. cepistipes y A. borealis se considera baja y el papel de A. ectypa es incierto (Guillaumin 

et al., 1993; Coetzee, 2003; Ainsworth, 2003; Ohenoja, 2006; Kim et al., 2017) . Los 
síntomas de pudrición causados por especies de Armillaria  son generales, como hojas 

cloróticas, aclaramiento progresivo de la copa, crecimiento principal más lento y 

producción excesiva de piñas, éstos pueden estar acompañados por micelio subcortical 

en forma de abanico, rizomorfos, grupos de basidiocarpos con coloración dorada –

amarronada cerca de la base del árbol, madera con pudrición fibrosa- amarillenta y 

pseudoesclerotia, muerte rápida del hospedador sin pérdida de follaje, y/o exudados en 

la parte basal del hospedador (Cox et al., 2005; Edmonds et al., 2000).  

En general, las coníferas se consideran más susceptibles a la enfermedad que los 

árboles caducifolios, y el daño causado en plantaciones forestales de hospedadores 

exóticos suele ser mayor que en bosques nativos. Pero, dado que la susceptibilidad y la 

extensión del daño causado están determinados por numerosos factores como la especie 

de Armillaria  implicada, el vigor del hospedador, interacción con otros patógenos, clima 

y manejo de la plantación, entre otros (Kile, 1983; Mallett and Volney 1990; Entry et al., 

1991; Mallett and Maynard, 1998; Popoola and Fox, 2003; Hood and Kimberley, 2009) la 

susceptibilidad de especies arbóreas y el daño causado no se pueden generalizar (Wargo 

and Shaw III, 1985) En condiciones de campo, Armillaria  puede colonizar diferentes 

hospedadores por medio del contacto directo entre una fuente infectada y raíces por 

medio de micelio, o por medio de rizomorfos que se pueden desplazar por el suelo 

(Redfern and Filip, 1991). La capacidad de crear nuevos focos de infección por 

basidioesporas varía entre especies (Kliejunas, 2011), aunque en general parece ser 
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menos frecuente que las vías de infección mencionadas anteriormente (Baumgartner and 

Coetzee, 2011).  

En Europa se tiene constancia de cuatro especies dentro del complejo de especies H. 

annosum (Fr.) Bref. (H. annosum s.l.): H. irregulare (Underw.) Garbel. & Otrosina de origen 

norteamericano, y H. annosum sensu stricto (s.s.), H. abietinum Niemela & Korhonen, y H. 

parviporum Niemela & Korhonen, de origen euroasiático (Niemela and Korhonen, 1998; 

Otrosina and Garbelotto, 2010). Las coníferas son el principal hospedador de H. annosum 

s.l. y la mayoría de coníferas se han citado como susceptibles a este complejo de especies 

(Asiegbu et al., 2005). Las diferentes especies de H. annosum s.l demuestran diferentes 

grados de especialización respecto a su hospedador lo que define su distribución. H. 

abietinum se ha encontrado principalmente en Abies alba Mill., aunque también en otras 

especies dentro del género Abies Mill., y en especies de Chamaecyparis Spach, Juniperus L., 

Larix Mill., Pinus Linn., Castanea Mill., Fagus L., y en Pseudotsuga menziesii (Mirb.) Franco 

y Cryptomeria japonica  (Thunb. ex L.f.) D.Don. (Korhonen et al., 1998). H. parviporum es 

considerado altamente especializado y patogeno primario de Picea abies (L.) Karst. 

(Asiegbu et al., 2005) aunque también puede causar la muerte de especies nativas o 

exóticas dentro del género Pinus Linn., entre otros (Korhonen et al., 1998; Sedlák and 

Tomšovský, 2014). H. annosum s.s. es considerado un patógeno generalista primario, y es 

la especie europea con una mayor rango de especies de hospedador, incluyendo 

coníferas y arboles deciduos, aunque P. sylvestris L. y en general especies dentro del 

género Pinus son las más susceptibles a este patógeno (Korhonen et al., 1998; Asiegbu et 

al., 2005).  

La infección de H. annosum s.l. se establece por dos mecanismos, colonización por 

micelio formado de basidioesporas o por contacto entre estructuras infectadas y no 

infectadas como raíces, siendo la primera la más frecuente. El micelio procedente de 

basidioesporas puede colonizar madera libre de corteza, como superficies recientemente 

cortadas y lesiones de raíz (Kallio, 1970; Stenlid, 1994, Rayner et al., 1987). Cuando la 

infección está establecida, los síntomas aéreos de los hospedadores infectados son hojas 

cloróticas, marchitez, muerte de árboles en grupos o aislados y árboles derribados por el 

viento con raíces podridas; éstos son genéricos y no tienen valor diagnostico (Tainter 

and Baker, 1996). Así, la presencia de basidiocarpos es el criterio de detección más 

fidedigno en campo (Sinclair et al., 1987).  

En el País Vasco la especie forestal más común en plantaciones es Pinus radiata 

D.Don., seguida por diferentes especies de Eucalyptus L'Hér., P. nigra Arn., especies de 

Larix Mill., P. pinaster Ait., P. menziesii, Chamaecyparis lawsoniana  (A. Murray) Parl., 

Quercus rubra  L. y Picea abies (L.) Karst. El bosque nativo está compuesto 

mayoritariamente por Fagus sylvatica  L., Q. faginea  Lam., Q. ilex L., Q. robur L., Q. petraea 

(Matt.) Liebl., y Q. pirenaica Willd. Todas estas especias forestales están documentadas 

como susceptibles a diferentes especies de Armillaria; y diferentes especies de 

Heterobasidion se han encontrado en muchas de ellas, incluyendo algunas especies de 

Quercus (Korhonen et al., 1998; Asiegbu et al., 2005; Doğmuş-Lehtijärvi, et al., 2015). Sin 

embargo, se necesitaba un estudio en detalle con el fin de ofrecer más información para 
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estrategias de manejo. Así los objetivos de este estudio fueron los siguientes: i) 

determinar la distribución de Armillaria  y Heterobasidion en el País Vasco; ii) determinar 

la diversidad de especies presentes y diversidad de poblaciones; iii) establecer el rango 

de hospedadores y la susceptibilidad de los mismos; iv) identificar factores ambientales 

que pueden afectar su distribución; y v) entender patrones y mecanismos de dispersión 

en áreas específicas.  

Las prácticas de manejo existentes para Armillaria  y Heterobasidion no son siempre 

efectivas, por lo tanto para complementarlas y considerando la importancia de P. radiata  

en la industria maderera del País Vasco, se propone aislar y caracterizar la habilidad de 

ciertas bacterias nativas de la rizosfera de P. radiata  para reducir los efectos patogénicos 

causados por A. mellea y H. annosum s.s., y así en un futuro poder usar dichas bacterias 

como un tratamiento profiláctico desde viveros.  

El género Armillaria  se encontró ampliamente distribuido en todo el País Vasco (en 

248 (34.97%) de los 709 focos de enfermedad muestreados) y su rango de hospedadores 
comprendía tanto coníferas como frondosas. Por el contrario, H. annosum no se encontró 

tan abundantemente (16.5% (117) de los focos de enfermedad muestreados) y su rango 

de hospedadores estaba limitado a coníferas. Ambos géneros se encontraron tanto en 
bosques nativos como en plantaciones. Aunque el género Armillaria  estaba presente en 

áreas con características medioambientales muy diversas, fue detectado más 

frecuentemente en zonas con pendientes del 20-30%, orientación oeste, bosque de 

frondosas, suelos ácidos con permeabilidad alta y valores de precipitación media por 

encima de 1800 mm; fue detectado menos frecuentemente en áreas con inclinación 

menor del 10%, orientación sudoeste, valores de precipitación media inferiores a 1000 

mm, bosques de coníferas, y suelos moderadamente ácidos de permeabilidad media o 

impermeables. Heterobasidion se detectó más frecuentemente en zonas de temperaturas 

medias inferiores a 11.5ºC, valores de precipitación media inferiores a 1000 mm, 

pendientes del 30-40%, orientación norte o sudeste, coníferas y suelos impermeables, 

moderadamente básicos o básicos donde los hospedadores tienen condiciones de 

crecimiento óptimo. Heterobasidion se detectó menos frecuentemente en zonas con 

temperaturas superiores a 12.5ºC y valores de precipitación media superiores a 1800 mm 

con orientación sudoeste u oeste, pendientes del 10-20% o del 40-50%, y suelos 

moderadamente ácidos. 

Todos los aislados correspondientes al género Heterobasidion fueron identificados 

como la especie europea H. annosum s.s. y se encontraron en especies de hospedadores 

como, C. lawsoniana  (11.1% de las parcelas con presencia de Heterobasidion), P. nigra  

(2.3%), P. pinaster (2.2%), P. radiata  (42.2%), P. menziesii (17.7%) y P. abies (6.7%). Ademas, 

H. annosum era evidente en bosque nativo de P. sylvestris (17.8%). H. annosum s.s. 

también se encontró en Sequoia sempervirens (D. Don) Endl. No se encontraron síntomas 

de enfermedad en plantaciones de Sequoiadendron giganteum (Lindl.) J. Buchholz, L. 

kaempferi (Lamb.) Carr. y L. decidua Mill. a pesar de que estas especies son consideradas 

hospedadores potenciales (Chase, 1985; Korhonen et al., 1998; Otrosina and Garbelotto, 

2010). En general, H. annosum s.s. se comporta como necrótrofo y aunque tiene 
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preferencia por especies de pino se puede encontrar en un amplio rango de 

hospedadores incluyendo frondosas (Garbelotto and Gonthier, 2013). 

El género Armillaria  se encontró en P. radiata , P. nigra , P. pinaster, Q. robur, Q. 

pirenaica , Fraxinus excelsior L., Alnus glutinosa (L.) Gaertn., F. sylvatica , E. globulus Labill., 

P. abies, L. kaempferi, P. sylvestris, Populus alba L., P. menziesii, Q. faginea , Q. ilex, Robinia  

pseudoacacia , y C. lawsoniana . Las especies de Armillaria  identificados en los focos de 

infección fueron, A. ostoyae (representando el 60% de todas las muestras identificadas), 

A. mellea  (24%), A. gallica (14%), A. tabescens (1%) y A. cepistipes (1%). A. ostoyae se detectó 

mayoritariamente en Pinus spp. (P. radiata , P. nigra  y P. pinaster). El rango de 

hospedadores de A. mellea  era más variado. El patrón 1 de A. mellea  (tamaño de los 

fragmentos de PCR: 320 y 155 pb) se encontró en P. radiata , Quercus sp., F. excelsior, y C. 

lawsoniana , y correspondió al 53% de los aislados de A. mellea , el resto (47%) se identificó 

como A. mellea  patrón 2 (tamaño de los fragmentos de PCR: 320, 180, y 155 bp) y se 

encontraron en Q. pyrenaica  y P. radiata . A. gallica  se encontró en A. glutinosa , P. radiata  y 

Q. robur, A. cepistipes en P. radiata , y A. tabescens en Q. robur. 

En general, A. mellea  y A. ostoyae se pueden comportar como patógenos primarios de 

un amplio rango de hospedadores incluyendo coníferas y frondosas (Guillaumin et al., 
1993; Coetzee, 2003). El rango de hospedadores para A. gallica  es también amplio y 

puede comportarse como oportunista y/o patógeno primario especialmente cuando el 

hospedador está estresado (Skovsgaard et al., 2010; Kim et al., 2017). 

La diversidad de poblaciones de ambos géneros a nivel intraespecie se determinó en 

una selección de parcelas del País Vasco que presentaban niveles altos de infección. En 

todas las parcelas seleccionadas para H.annosum s.s se observó un número elevado de 

diferentes grupos de compatibilidad somática de extensión reducida, lo que se relaciona 

con una dispersión del hongo predominantemente por esporas (Swedjemark and 

Stenlid, 2001). En las áreas seleccionadas para el muestreo de Armillaria  se encontraron 

grupos de compatibilidad somática de extensión más amplia, lo que se relaciona con una 

dispersión del hongo por medio de rizomorfos y por contacto directo entre una fuente 

infectada y raíces por medio de micelio, pero también se detectaron grupos de 

compatibilidad somática de extensión reducida, lo que se relaciona con una dispersión 

del hongo por esporas (Kile, 1983).  

Debido a que A. mellea  fue la especie con diversidad de hospedadores más amplia se 

seleccionó para determinar la susceptibilidad de diferentes especies de árboles presentes 

en el Pais Vasco. Todas las especies testadas (P. radiata , P. nigra  subsp. salzmannii var. 

corsicana, P. sylvestris, F. sylvatica , Prunus avium L., Q. petraea , Q. ilex, C. japonica , Q. 

robur, S. giganteum y Eucalyptus nitens H.Deane & Maiden) fueron susceptibles a A. mellea  

menos C. japonica . La especie más susceptible a A. mellea  fue P. radiata . Debido a que este 

ensayo se realizó en plántula joven y en condiciones de invernadero los resultados 

deberían interpretarse con cautela. 
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Debido a la importancia de P. radiata  en la industria maderera del País Vasco y su 

susceptibilidad a ambos patógenos fúngicos se aislaron bacterias nativas de la rizosfera 
de un árbol sano (P. radiata) localizado en una parcela con altos niveles de daño 

causados por Armillaria  y Heterobasidion. El propósito era aislar bacterias con capacidad 

antagónica hacia ambos géneros de hongos. Habitualmente las bacterias nativas 

demuestran un alto potencial de adaptabilidad hacia el hospedador y las condiciones en 

las cuales se aplicarán. Las bacterias seleccionadas demostraron alta capacidad 

inhibitoria in vitro. P. fluorescens S32R2 inhibió el crecimiento de A. mellea  en un 94.2% 

con respecto al control y en un 99% el crecimiento de H. annosum s.s. La inhibición por B. 

simplex S11R41 fue de 83.2% y 68% para A. mellea  y H. annosum s.s., respectivamente. El 

porcentaje de inhibición por las cepas de Erwinia billingiae S31R1 and S23L3 fue muy alto 

para H. annosum s.s. (99% y 81%, respectivamente). Una vez comprobado que las 

bacterias no eran patógenas para otros organismos como plantas y animales, se 

aplicaron en raíces de plántulas de P. radiata , que posteriormente se inocularon con A. 

mellea  y H. annosum s.s. Una vez transcurridos 110 días se midió el efecto en la salud de 

las plantas inoculadas con las bacterias seleccionadas con respecto a plantas inoculadas 

con bacterias control (sin efecto antagónico in vitro sobre los hongos patógenos). Así, P. 

fluorescens S32R2 y B. simplex S11R41 tuvieron el mayor efecto antagónico para A. mellea  

(80.3% y 84.3% de las plantas, respectivamente, estaban sanas en comparación con el 

46% de las plantas no tratadas). Iturritxa et al. (2017) también informaron sobre el efecto 

antagónico de estas bacterias sobre Fusarium circinatum Nirenberg & O'Donnell en 

plantas de P. radiata . 

En conclusión, el género Armillaria  estaba ampliamente distribuido en el País Vasco 

con un rango de hospedadores muy amplio incluyendo coníferas y frondosas. Las 

especies principales encontradas, A. mellea , A. ostoyae y A. gallica , pueden comportarse 

como patógenos primarios, por lo que podrían suponer un riesgo alto para plantaciones 

y bosques nativos. H. annosum s.s fue la única especie dentro del género Heterobasidion 

encontrada en el País Vasco. Su presencia estaba limitada a coníferas y era menos 

abundante que el género Armillaria . Se concluyó que en las parcelas estudiadas la 

dispersión de H. annosum s.s podría darse mayoritariamente por basidioesporas. Debido 

a la capacidad de H. annosum s.s de colonizar un amplio rango de hospedadores y de 

formar nuevos individuos, esta especie podría suponer un riesgo para las plantaciones 
de coníferas del País Vasco. En el caso de Armillaria  se observó dispersión por 

basidioesporas y por formas vegetativas.  

En cuanto a las bacterias nativas aisladas se necesitan más estudios para entender 

los mecanismos de antibiosis e interacciones hongo-bacteria en otras especies de árboles, 

así como su efecto sobre rizobacterias y micorrizas beneficiosas de la rizosfera, y su 

habilidad por competir con microorganismos indígenas, aunque siendo nativas de la 

rizosfera de P. radiata  se espera que estén adaptadas a las condiciones en las que se 

pretenden aplicar. En cualquier caso, las bacterias de control biológico caracterizadas en 

este estudio, muestran resultados prometedores y podrían usarse en un futuro como 

una medida profiláctica aplicada en plántula desde los viveros. 
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Appendix 

Pearson´s chi square test results for the association among Heterobasidion spp. and environmental variables.  

Negative (Het-) Positive (Het+) Negative (Het-) Positive (Het+) Negative (Het-) Positive (Het+)

Count 162 37 Count 64 0 Count 26 15

Expected frequency 166,1607898 32,83921016 Expected frequency 53,43864598 10,56135402 Expected frequency 34,23413258 6,765867419

Adjusted residuals -0,936870843 0,936870843 Adjusted residuals 3,728767673 -3,728767673 Adjusted residuals -3,569055196 3,569055196

Count 168 22 Count 528 117 Count 105 25

Expected frequency 158,6459803 31,35401975 Expected frequency 538,561354 106,438646 Expected frequency 108,5472496 21,45275035

Adjusted residuals 2,136748322 -2,136748322 Adjusted residuals -3,728767673 3,728767673 Adjusted residuals -0,927462513 0,927462513

Count 169 31 Count 378 66 Count 369 67

Expected frequency 166,9957687 33,00423131 Expected frequency 370,7306065 73,26939351 Expected frequency 364,0507757 71,94922426

Adjusted residuals 0,450598272 -0,450598272 Adjusted residuals 1,52019509 -1,52019509 Adjusted residuals 1,02903023 -1,02903023

Count 57 25 Count 141 8 Count 92 10

Expected frequency 68,46826516 13,53173484 Expected frequency 124,4118477 24,58815233 Expected frequency 85,16784203 16,83215797

Adjusted residuals -3,628044438 3,628044438 Adjusted residuals 4,119328586 -4,119328586 Adjusted residuals 1,969604539 -1,969604539

Count 30 1 Count 36 27 Count 9 16

Expected frequency 25,88434415 5,115655853 Expected frequency 52,60366714 10,39633286 Expected frequency 20,87447109 4,125528914

Adjusted residuals 2,036380488 -2,036380488 Adjusted residuals -5,903819254 5,903819254 Adjusted residuals -6,513760522 6,513760522

Count 6 1 Count 37 16 Count 141 63

Expected frequency 5,844851904 1,155148096 Expected frequency 44,2538787 8,746121298 Expected frequency 170,3356841 33,66431594

Adjusted residuals 0,158761225 -0,158761225 Adjusted residuals -2,790589804 2,790589804 Adjusted residuals -6,556182217 6,556182217

Count 51 18 Count 19 14 Count 221 35

Expected frequency 57,6135402 11,3864598 Expected frequency 27,55430183 5,445698166 Expected frequency 213,7545839 42,24541608

Adjusted residuals -2,257537815 2,257537815 Adjusted residuals -4,108372567 4,108372567 Adjusted residuals 1,526194259 -1,526194259

Count 55 17 Count 9 0 Count 221 3

Expected frequency 60,11847673 11,88152327 Expected frequency 7,514809591 1,485190409 Expected frequency 187,0352609 36,96473907

Adjusted residuals -1,714432288 1,714432288 Adjusted residuals 1,342231509 -1,342231509 Adjusted residuals 7,391778979 -7,391778979

Count 71 14 Count 452 87

Expected frequency 70,97320169 14,02679831 Expected frequency 450,0535966 88,94640339

Adjusted residuals 0,008346822 -0,008346822 Adjusted residuals 0,461242775 -0,461242775

Count 40 25 Count 112 16

Expected frequency 54,27362482 10,72637518 Expected frequency 106,877292 21,12270804

Adjusted residuals -5,004379471 5,004379471 Adjusted residuals 1,347479362 -1,347479362

Count 85 18 Count 30 3

Expected frequency 86,00282087 16,99717913 Expected frequency 27,55430183 5,445698166

Adjusted residuals -0,287928072 0,287928072 Adjusted residuals 1,174594894 -1,174594894

Count 149 10 Count 34 2

Expected frequency 132,7616361 26,23836389 Expected frequency 30,05923836 5,940761636

Adjusted residuals 3,938926991 -3,938926991 Adjusted residuals 1,816088267 -1,816088267

Count 110 8 Count 242 32

Expected frequency 98,52750353 19,47249647 Expected frequency 228,7842031 45,2157969

Adjusted residuals 3,116296395 -3,116296395 Adjusted residuals 2,74592717 -2,74592717

Count 31 7 Count 286 80

Expected frequency 31,72919605 6,270803949 Expected frequency 305,6022567 60,3977433

Adjusted residuals -0,327572035 0,327572035 Adjusted residuals -3,968569935 3,968569935
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Pearson´s chi square test results for the association among Armillaria  spp. and environmental variables.  

 

Negative (Arm-)Positive (Arm+) Negative (Arm-) Positive (Arm+) Negative (Arm-)Positive (Arm+)

Count 170 29 Count 28 36 Count 34 7

Expected frequency 129,3921016 69,60789845 Expected frequency 41,6135402 22,3864598 Expected frequency 26,65867419 14,34132581

Adjusted residuals 7,116917603 -7,116917603 Adjusted residuals -3,741056639 3,741056639 Adjusted residuals 2,476779753 -2,476779753

Count 133 57 Count 433 212 Count 86 44

Expected frequency 123,5401975 66,45980254 Expected frequency 419,3864598 225,6135402 Expected frequency 84,52750353 45,47249647

Adjusted residuals 1,681956042 -1,681956042 Adjusted residuals 3,741056639 -3,741056639 Adjusted residuals 0,29966523 -0,29966523

Count 89 111 Count 260 184 Count 295 141

Expected frequency 130,0423131 69,95768688 Expected frequency 288,6939351 155,3060649 Expected frequency 283,4922426 152,5077574

Adjusted residuals -7,18209243 7,18209243 Adjusted residuals -4,670557678 4,670557678 Adjusted residuals 1,862340893 -1,862340893

Count 48 34 Count 118 31 Count 46 56

Expected frequency 53,31734838 28,68265162 Expected frequency 96,88152327 52,11847673 Expected frequency 66,32157969 35,67842031

Adjusted residuals -1,309325023 1,309325023 Adjusted residuals 4,081957619 -4,081957619 Adjusted residuals -4,559908025 4,559908025

Count 18 13 Count 46 17 Count 20 5

Expected frequency 20,15655853 10,84344147 Expected frequency 40,96332863 22,03667137 Expected frequency 16,25528914 8,74471086

Adjusted residuals -0,830536276 0,830536276 Adjusted residuals 1,39395942 -1,39395942 Adjusted residuals 1,598870482 -1,598870482

Count 3 4 Count 37 16 Count 130 74

Expected frequency 4,551480959 2,448519041 Expected frequency 34,46121298 18,53878702 Expected frequency 132,6431594 71,35684062

Adjusted residuals -1,235725258 1,235725258 Adjusted residuals 0,7602028 -0,7602028 Adjusted residuals -0,459785878 0,459785878

Count 45 24 Count 31 2 Count 162 94

Expected frequency 44,86459803 24,13540197 Expected frequency 21,45698166 11,54301834 Expected frequency 165,9859353 90,0140647

Adjusted residuals 0,035975225 -0,035975225 Adjusted residuals 3,567372746 -3,567372746 Adjusted residuals -0,730280756 0,730280756

Count 46 26 Count 4 5 Count 149 75

Expected frequency 46,81523272 25,18476728 Expected frequency 5,85190409 3,14809591 Expected frequency 145,6473907 78,35260931

Adjusted residuals -0,212539027 0,212539027 Adjusted residuals -1,302690559 1,302690559 Adjusted residuals 0,567912095 -0,567912095

Count 53 32 Count 364 175

Expected frequency 55,26798307 29,73201693 Expected frequency 350,4640339 188,5359661

Adjusted residuals -0,549833379 0,549833379 Adjusted residuals 2,496683356 -2,496683356

Count 39 26 Count 62 66

Expected frequency 42,26375176 22,73624824 Expected frequency 83,22708039 44,77291961

Adjusted residuals -0,890657147 0,890657147 Adjusted residuals -4,346005418 4,346005418

Count 75 28 Count 26 7

Expected frequency 66,97179126 36,02820874 Expected frequency 21,45698166 11,54301834

Adjusted residuals 1,79414187 -1,79414187 Adjusted residuals 1,698271891 -1,698271891

Count 133 26 Count 23 13

Expected frequency 103,3836389 55,61636107 Expected frequency 23,40761636 12,59238364

Adjusted residuals 5,591712565 -5,591712565 Adjusted residuals -0,146212962 0,146212962

Count 45 73 Count 171 103

Expected frequency 76,72496474 41,27503526 Expected frequency 178,157969 95,84203103

Adjusted residuals -6,707481039 6,707481039 Adjusted residuals -1,157611816 1,157611816

Count 25 13 Count 241 125

Expected frequency 24,70803949 13,29196051 Expected frequency 237,977433 128,022567

Adjusted residuals 0,10208551 -0,10208551 Adjusted residuals 0,476300879 -0,476300879
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