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Abstract

In this work a mechatronic model was developed for a parallel Multi-Axial Simulation Table (MAST)
mechanism. The dynamics of the mechanism was obtained using the principle of energy equivalence and
Boltzmann-Hamel equations. In this way, the procedure to obtain the explicit dynamic equations is simplified
and has the advantage of being systematic. Also, the actuators and the control were modeled and integrated
to simulate and study the system’s positioning and torque.

A remarkable contribution of this work is that the mechatronic model developed considers the mechanism
as a disturbance to the actuators in a decoupled manner, allowing to easily evaluate alternative designs of
whether the actuators, the mechanism or both. Additionally, the procedure taken has been validated with
experimental data from an actual MAST prototype.
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1. Introduction

In the last twenty years, parallel kinematics machines have been increasingly used in several fields due
to their high performance. For instance, hexapods and tripods are being used for scientific instrumentation
due to their high precision positioning in several degrees of freedom[1]. Some solutions present a high
stiffness-mass ratio and acceleration which makes them suitable for light machining tasks [2] in an industrial
environment. Also, their capability of generating high accelerations makes them interesting for pick &
place[3] or for generating harmonically complex motions with great bandwidth, as is the case of excitation
tables[4].

Nevertheless, despite their increasing use, they are still complex machines to design, due to their kinemat-
ics, dynamics and control. That is why a mechatronic approach with model based design becomes essential
for the conception of these machines. For that purpose, complex and detailed simulation tools capable of
modeling the manipulator, drives and control dynamics in a cost efficient manner are required.

In that sense, a lot of effort has been putted into modeling the kinematics and dynamics for serial and
parallel manipulators. Žlajpah[5] presents an overview of several computational tools (e.g. Matlab/Simulink,
Dymola/Modelica) commonly used for simulations purposes focused on robotic systems. As for the dynamics,
Lagrange and recursive Newton-Euler methods and the principle of virtual work are commonly employed
to obtain the dynamic expressions for serial robotic mechanisms[6]. However, their applicability on parallel
manipulators becomes a difficult task because of the kinematic constraints of the closed loops.

Previous works make use of multi-body models of the mechanism [7] or the forward dynamic problem
in order to build a mechatronic model. In the first case, it can be justified when high loads are applied to
the manipulator, because multibody models are capable of considering the flexible behavior of the machine

∗Corresponding author
Email addresses: constantino.roldan@ehu.eus (Constantino Roldán-Paraponiaris), fran.campa@ehu.eus (Francisco J.

Campa), oscar.altuzarra@ehu.eus (Oscar Altuzarra)

Preprint submitted to Mechatronics October 5, 2016

Javier
Sello

Javier
Sello



components. Nevertheless, in that case, expensive software packages may be a limiting factor. On the other
hand, with both approaches the contribution of the actuators to the global dynamics is often overlooked,
modeling them as a simple inertia and thus assuming a rigid body behavior.

What is more, those formulations can’t be used to introduce them in the control algorithm to perform
a Compute torque control or a Feed-forward torque control. For that task, the inverse dynamic problem
(IDP) has been traditionally used, as it provides the needed torques or forces in the actuators to perform
the commanded motion. There are several works where the authors have used this approach to implement
control schemes such as model-based control [8, 9]. Codourey [10], developed a model-based control using
the IDP to implement a feedforward control for a Delta robot. Similarly, Yang et al. [11] developed a
computed force and velocity control for a 6-DOF parallel mechanism also using the inverse dynamics.

Regarding the method to solve the IDP of parallel mechanisms, several formulations have been pro-
posed in the past, as the Newton-Euler[12, 13], the principle of virtual work[14] or Lagrangian methods[15].
Likewise, Lagrangian analysis is frequently employed for open-chains mechanisms. It’s use in parallel mech-
anism yields in very large and often complex set of equations because of the kinematic constraints due
to the closed loops of such systems. Also, an interesting approach with Newton-Euler has been taken in
[13], where intermediate variables from the joint-space and matrix algebraic manipulation tools are used to
obtain explicit dynamic models for a Gough-Stewart platform . In general, their applicability on parallel
mechanisms is difficult due to the kinematic constraints caused by the closed loops [16]. As an alternative,
with other methods of analytical mechanics (i.e. Boltzmann-Hamel equations, quasi-velocities and principle
of energy equivalence[17]), the difficulty in finding a dynamic model suitable for computer simulations is
greatly reduced.

Moreover, the common approach is to focus on the manipulator and then include the actuators. However,
in several applications, especially when the payload and the manipulator are relatively light, the control cycle
time or even the actuators dynamics can be more restrictive due to their finite stiffness, which limits the
bandwidth and thus the dynamic performance of the machine in terms of speed, acceleration and trajectory
tracking [18, 19, 20].

In the present work, a procedure for the mechatronic modeling of parallel kinematics machines is pro-
posed, taking into account the rigid body dynamics of the manipulator, the compliant dynamics of the
actuators and the cycle time of the control loops. The method is based on decoupling the dynamics of the
actuators from the manipulator, in such a way that forces needed to move the manipulator are considered
as a disturbance from the point of view of the actuators. This scope allows modeling the manipulator
dynamics using the inverse dynamic problem, relating the motion of the actuators with the forces that
generate the motion of the manipulator. To do so, although any method can be used, here it is proposed
to use the Principle of energy equivalence and the Boltzmann-Hamel equations to compute the IDP. The
actuators modeling and their transmission chain can be performed with great detail using a model of several
degrees of freedom affected by the disturbance forces from the mechanism and the friction. Finally, the cycle
time of the position, velocity and current control loops is taken into account. The whole model has been
programmed in Matlab Simulink.

There are several advantages for this procedure. First, it is easy to evaluate alternative designs. Given the
fact that models of control, actuators and manipulator are decoupled and represented by blocks, it is possible
to replace them with new blocks representing alternative configurations. This reduces the time and effort
required in the design and simulation stage for a given application yet being reliable. Second, it is possible
to better evaluate the interaction between control, actuators and mechanism. For example, the bandwidth
of the actuators alone vs. the bandwidth of the whole manipulator can be analyzed. Also, it is possible to
isolate and evaluate the influence of the dynamic parameters of the manipulator or the actuator transmission
chain on the tracking error. Simulation of the cycle time and its effect on the trajectory tracking and the
driving forces allows also a better definition of the control specifications of the final prototype. Third, the
use of the inverse dynamic problem results in an explicit set of equations that allows a fast computation
comparing with multibody techniques and can be used also to improve the control algorithm if needed.
Fourth, the use of the Principle of energy equivalence and the Boltzmann-Hamel equations allows for a more
systematic and error free computation of the IDP for parallel mechanisms.

This article is organized as follows. First, in section 2, the proposed procedure for mechatronic modeling
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of parallel kinematic machines will be detailed. Second, in section 3, a case study based on a 3PRS mechanism
will be given where the aforementioned procedures are employed. Third, the results of an experimental
validation will be commented in section 4. Finally, the main conclusions are presented.

2. Mechatronic modeling for parallel kinematic mechanisms

The method here proposed for the mechatronic modeling of parallel manipulators considers the actuators
and the manipulator as two independent subsystems whose interaction is due to the Newton’s third law.
That is, from the actuators viewpoint, the mechanism generates some forces that work as a disturbance
against their motion but, at the same time, those forces are the input that provides the manipulator’s
motion. That interaction is represented by Fi forces in Fig. 1 in a generic parallel manipulator. The result
is that the actuators, which often times limit the overall system’s performance, can be modeled in a more
detailed fashion. On the other hand, to include the influence of the mechanism in the mechatronic model,
the inverse dynamic problem (IDP) is solved, with the advantage that those equations can also be used in
the control algorithm. Also, the control algorithm as in Fig. 2 and the cycle time of the closed loops has
been considered due to their impact on the trajectory tracking, bandwidth and disturbance rejection. To
the best of the authors knowledge, this approach that considers the mechanism as a disturbance for the
actuators allows a deeper analysis of the interaction between control, actuators and mechanism and has not
been addressed before.

Figure 1: Mechatronic model of a parallel kinematics machine with joint sace position control: manipulator position in
workspace (x), manipulator position in joint space (ρ), actuators position at the motor encoders (θi), reactions between the
manipulator and actuators (τ), motor torques (τmi).

2.1. Mechatronic model of the manipulator

In Fig. 1 a mechatronic model of a manipulator is shown. It is assumed a joint space position control,
where the control reacts to the position error measured in the actuated joints ρ. This decision was taken
since it is widely found in general industrial applications. However, more complex control algorithm can
also be employed as will be shown in section 2.3. In this way, the end platform position commands x0

are converted to the joint space through the inverse kinematic problem. Those qρ0 commands are then
introduced into the mechatronic model of the actuators. As a result, the actuators reach a position qρ and
the end platform location x is calculated with the direct kinematic problem. A rigid body behavior is here
considered for the mechanism. To model the influence of the mechanism dynamics on the global behavior,
the forces tp generated to perform the motion are calculated with the IDP once actuators and platform
motion are known. Those forces are then introduced as a disturbance into the actuators mechatronic model,
in which a cascaded control in position, velocity and current is assumed. There, the mechanism forces are
converted into a torque disturbance on the motor, thus acting as an opposition to the actuator.
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2.2. Mechatronic model of the actuators

Regarding the actuator control model, a proportional position control with gain kv is considered. If two
encoders are used, a rotary one for the motor and a linear one for the actuator table, it is possible to control
directly the linear position ρ. The velocity and current control loops in Fig. 2 are based on a PI control,
where kp, ki, kpc and kic are the proportional and integral gains, respectively for each loop. Furthermore,
their cycle times can be taken into account, sampling the signals and using the z-domain for the transfer
functions of the system. Also, the response of the electrical part is modeled by taking into account the
resistance R and inductance L of the circuit in TFelectric, as well as the torque constant kT and the counter
electromotive constant kE .

Figure 2: ith actuator mechatronic model.

With respect to the mechanical behavior of the actuators, the two degrees of freedom model as shown
in Fig. 2 has been used, where the motor torque τm and the disturbance force F are the inputs. The latter
is converted to a torque disturbance applied to the motor by means of equation 1, where p is the pitch of
the linear guide and ir is the gear ratio of the gearbox. Likewise, the outputs are the linear position of
the guide ρ, whose angular equivalent is θρ, and the motor’s angular velocity θ̇. Furthermore, the actual
angular position of the guide is obtained from the ideal position θρm and the position variation due to the

disturbance θρd . Similarly, the actual velocity is obtained from the motor’s ideal velocity θ̇m and the velocity

variation θ̇d also caused by the disturbance.
The aforementioned magnitudes are related by four transfer functions (TF ). The first, TF1 in Eq. 2,

relates the angular position of the motor without disturbance θm and the input torque τm. The actuator’s
flexible dynamics are represented by the damping Ct and stiffness Kt. Moreover, the inertia of the driving
part is represented by J1 whereas J2 represents the inertia of the transmission. The second transfer function,
TF2 also in Eq. 2, relates the equivalent ideal angular position of the linear guide θρm with the motor’s
position θm. The remaining transfer functions are employed to model the disturbances. On one hand, TF1d

in Eq. 3 relates the disturbance torque τd with the angular equivalent of the position disturbance in the
linear guide θρd . On the other hand, TF2d (see Eq. 3) relates θρd with the position variation at the motor’s
shaft due to the disturbance θd. It should be noted that these transfer functions must be derived to match
the magnitudes when appropriate. Finally, depending on the transmission complexity and stiffness, they can
be obtained from a one, two, or N degrees of freedom model. The one DoF model is suitable for actuators
that could be considered as stiff or that operate in a relatively low frequency range. Otherwise, a N DoF
model is required if the damping and flexibility of its components is not negligible.

iR =
p

2πir
(1)
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TF1 =
θm
τm

=
J2s

2 + cts+ kt
s2 (J1J2s2 + (J1 + J2) cts+ (J1 + J2) kt)

TF2 =
θρm
θm

=
cts+ kt

(J2s2 + cts+ kt)
(2)

TF1d =
θρd
τd

=
J1s

2 + cts+ kt
s2 (J1J2s2 + (J1 + J2) cts+ (J1 + J2) kt)

TF2d =
θd
θρd

=
cts+ kt

(J1s2 + cts+ kt)
(3)

2.3. Control alternatives

Although in Fig. 1 the approach here proposed is applied to a joint space control, it is possible to
consider other control strategies. The main problem of the joint space control is that it reacts against the
position error measured in the actuated joints of the manipulator, so every error in the kinematic chain of
the mechanism is not considered. Nevertheless, it is a convenient alternative due to the generally difficult
access to a direct measurement of the end platform in parallel kinematic machines.

As opposed to joint-space control schemes, workspace control reacts to the position error ex measured
directly in the end platform. This alternative can be modeled as it is shown in Fig. 3a and compared to
the joint space alternative. In this case, the position control is performed in the manipulator level and not
in the actuator model. As such and upon receiving a workspace position X0, the error is calculated with
the actual position X which is then passed through the gain kv. A velocity command Ẋ0 results and is
converted to the actuated joints coordinates q̇ρ0 by using the inverse kinematic problem (IKP). At the same
time, the disturbance tρ is calculated and fed into the actuators models along with the joint coordinates.
Finally the actual joints positions are obtained and passed through the direct kinematic problem (DKP)
to obtain the actual workspace positions X. Other control algorithms, such as Computed Torque Control

Figure 3: Mechatronic model for: a) Workspace Position Control.b) Computed Torque Control.

and estimators-based controllers estimators-based controllers or computed torque control(CTC) can also be
employed [21] and [22]. As an example, a simple scheme for the CTC case is shown in figure 3b. First,
the command X0 is converted to position (qρ0), velocity (q̇ρ0) and acceleration (q̈ρ0) at the joints with
the IKP. Then, the position and velocity errors (eqρ , eq̇ρ) are computed and passed through the position
and velocity gains (kp, kv) respectively and added to q̈ρ0 . Afterwards, the acceleration signal is used in
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the inverse dynamic model (IDP) of the mechanism to obtain the required torques τm for the actuators.
Also, the disturbance tρ are calculated and introduced to the actuators’s models where the actual positions,
velocities and accelerations in qρ are obtained. Finally, these are then used in the DKP to calculate the
workspace position of the mechanism.

2.4. Inverse dynamic problem modeling

For simulation and control purposes, differential equations in terms of the actuation geometrical kine-
matic variables, mass properties and applied forces by the actuators are required. This form of dynamic
problem results in inertial IG, gravitational ḡG and Coriolis cG terms obtained separately.

With the input variables of the mechanism defined as qρ, each link can be expressed with the Lagrange
function Lmech (Eq. 4) in terms of these input variables to apply the Euler operator Eqρ [17].

Eqρ (Lmech) =
d

dt

∂Lmech
∂q̇ρ

− ∂Lmech
∂qρ

= fρ = tρ + Qρ (4)

In this equation, fρ is the generalized forces vector which include input torques tρ in terms of the input
variables qρ, and Qρ represents the generalized output forces. This equation will be used to simulate the
torque depending on the kinematic variables of the actuators. In the case of parallel mechanism, obtaining
such equation is a difficult task due to the constraints of closed-chains kinematics[15]. By using dependent
coordinates this problem can be simplified. Basically, the mechanism can be separated and each of its
subsystem can be analyzed independently, as long as the motion conditions are the same as the assembled
system. This approach has been followed before in [23] and [24] using Lagrange multipliers λ′s which have
also to be calculated. An alternative is to employ the principle of energy equivalence [15].

Essentially, it states that the sum of each subsystem’s energy is the same as the assembled system
energy. This avoids the additional calculus of the Lagrange multipliers. However, in spatial rotation such
as in the case of the end effector, the kinetic energy results in multiplication of angular derivatives terms
by trigonometric functions, which yields in a complex expression of Lmech. To avoid this, quasi-velocities
can be used as generalized coordinates requiring to employ Boltzmann-Hamel equations instead of the Euler
operator.

2.4.1. Principle of energy equivalence applied to planar motion

The mechanism is separated into N free-body subsystems each one represented by its generalized coor-
dinates qbi and grouped into the set qb qb. To maintain the energy equivalence with the original system, all
subsystems have to move as if they were assembled. This condition implies that qb qbis a function of the
generalized coordinates of the assembled mechanism qρ. Thus, the virtual displacements are related as in
Eq. 5. Thus, the virtual displacements δqb for all subsystems are related with the Jacobians to the virtual
displacement δqρ of the generalized coordinates as shown in Eq. 5.

δqb =
∂qb
∂qρ

δqρ = J δqρ; δqbi = Jbi δqρ i = 1 . . . N (5)

In this equation, J and Jbi are the Jacobians for the assembled and for each subsystem respectively, which
were obtained from the kinematic problem. They relate the generalized coordinates of each subsystem qbi
with the ones of the assembled mechanism qρ. Also, the energy equivalence implies that, the virtual work

of the assembly δWρ is equal to the sum of the virtual work of all subsystems
∑N
i=1 δWbi . This relation is

represented by the virtual work of Eq. 6. This relation is presented in detail in Eq. 6.

δWρ = δqTρ fρ = δWb =

N∑
i=1

δWbi =

N∑
i=1

δqTbifbi (6)

Furthermore, by substituting Eq. 6 into Eq. 5, the forces due to the manipulator’s bars fρare obtained.

fρ = JT fb =

N∑
i=1

JTbifbi (7)
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Finally, when each subsystem is disassembled, thejoint forces between solidsarise which also produce virtual
work. However, when the contributions JTbifbiof all eachsubsystem sare summed up like in Eq. 7, that virtual
work gets canceled by the corresponding reaction of the adjacent subsystem, thus it is unnecessary to take
them into account.

2.4.2. Boltzmann-Hamel equations applied for spatial rotation

The end-effector of the 3PRS mechanism herein considered is capable of constrained translation and
rotation motions. Decoupling both motions, the dynamics can be studied more effectively. Regarding the
contribution of the platform translation to the global dynamics, by considering the coordinates of the center
of mass as generalized coordinates qG = [xG, yG, zG]

T
, an applied external force at that point fG, and the

kinematic relationship with the input variables through the corresponding Jacobian JG, equations 8 and 9
are obtained, where MG is the mass matrix and IG, ḡG and cG are recalled to be the inertial, gravitational
and Coriolis terms matrices.

JTGfG = JTGMGJGq̈ρ + JTGMGJ̇Gq̇ρ + JTGgG (8)

JTGfG = IGq̈ρ + cG + ḡG (9)

However, when trying to obtain an expression of the rotation kinetic energy, complex terms of trigono-
metric functions multiplying angular derivatives arises as a result of the spatial rotation of the element.
This yield in a effort when trying to obtain the expressions of the dynamics. By using quasi-velocities as the
generalized coordinates, as opposed to position coordinates, the problem can be simplified. Nevertheless,
this would imply that Boltzmann-Hamel equations have to be used instead of Euler’s operator.

In this work, Boltzmann-Hamel equations are applied to obtain the pure rotation dynamics of the final
platform. For this, the angular velocities w with respect to a reference system attached to the mobile
platform, and the Euler’s angle q qe, are expressed as in equations 10 and 11.

w = [ωx, ωy, ωz]
T

(10)

q =qe = [θe, ψe, φe]
T

(11)

Furthermore, the relationship between w and q̇ecan be written as follows in Eq. 12, where Dφ
T is the

projection matrix between both vectors. It is important to stress that matrix Dφ
T may be rank deficient

depending on the orientation of the rigid body relative to the defined coordinate system. Such a problem is
commonly found with every parametrization of the orientation and is specially present in the case of large
rotation angles (> 180). Nevertheless, rank deficiency can be avoided by properly choosing an orientation of
the coordinate system that ensures that the singularities are beyond the actual orientation workspace. This
guarantees a full rank matrix and hence good numerical results. Another approach is to employ quaternions
to express the rotation of the platform. Yet, this would result in unnecessary more complex dynamic
equations for the mechanism herein studied since the maximum permitted angle of motion is defined to be
20◦.

w (q̇e,qe) = Dφ
T q̇e =

 cosφe sin θe sinφe 0
− sinφe sin θe cosφe 0

0 cos θe 1


θ̇e
ψ̇e
φ̇e

 (12)

As a result of applying the Boltzmann-Hamel equations as described in [15] [16], the moment due to
the rotation of the platform mmpis obtained as in Eq. 13. In this equation, Imp is the inertia matrix with
respect of a coordinate system fixed to the platform.

mmp = Impẇ + w × (Impw) (13)

Furthermore, on account of considering the mechanism as a disturbance to the actuators, this moment
has to be expressed with respect to the input variables. Hence, the Jacobian matrix JR, which relates
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the inputs in qρ and the velocities w, is used to project the rotation dynamics onto the actuation system.
Therefore, Eq. 13 is operated and rewritten as follows.

JTRmmp = JR
T
[
DφImpẇ + 2ḊφImpw −AT Impw

]
(14)

Where

A =

(
∂ẇ

∂q̇e

)
(15)

The time derivatives of w and q̇e are defined as

ẇ = ḊT
φ q̇e + DT

φ q̈e (16)

q̈e = Jq̈ρ + J̇q̇ρ (17)

Finally, by substituting when appropriate into Eq. 14, the expression representing the rotation dynamics
is found separated by the inertial term Īmp and the quadratic velocity term cmp .

JTRmmp = JTRImpJRq̈ρ + cmp = Īmpq̈ρ + cmp (18)

Where,

cmp =

[
JT
[
DφImpDφ

T
]
J̇ + JT

[
DφImpḊ

T
φ + 2ḊφImpDφ

T −AT ImpDφ
T
]
J

]
q̇ρ (19)

It is important to note that equations 18 and 19 do not lack of generality and thus can be used for
any manipulator, provided that Imp and JR are appropriately modified. As a contribution, the proposed
procedure has the advantage of being systematic, which is less error prone than when trying to obtain
particular dynamic equations for a given mechanism.

3. Case study

The case study is based on an actual 3PRS Multi-Axial Simulation Table (MAST) parallel mechanism.
A picture of the prototype used is shown in Fig. 4. Moreover, the important geometric variables are also
shown in Fig. 4. The dimensions of the actual mechanism are r = 0.35[m], L = 0.26[m] and H = 0.4[m].
The mass of the legs is 0.07[kg] and the mass of the platform is 2.06[kg].

3.1. Actuators modeling

The prismatic joints used to drive the mechanism are formed by a linear belt guide Igus R© ZLW-1040-02-
S-100-L/R-300 with a 300 mm stroke[25], actuated by a Maxon R© RE-40 DC motor with a GP42C gearbox
with a 15:1 gear ratio[26]. The linear guide is connected to the gearbox with a flexible coupling. A picture
of the actuation system is shown in Fig. 5.

As mentioned previously, the dynamics of the actuators is represented by a two degrees of freedom model
as in Fig. 2. In equation 20, J1 is the sum of the inertias of all the components up to the input shaft of the
linear driveguide. As for the inertia J2, it is calculated from the mass of the load Mload which is formed by
the mass of the drive carriage and the inertia of the linear drive guide Jguide obtained from the manufacturer.
Furthermore the mass Mload is translated into a rotational inertia as in equation 21. Finally, Jt is the sum
of inertia J1 and J2.

J1 = Jmotor + Jgearbox + Jcoupling (20)

J2 = Jguide

(
1

ir

)2

+Mload

(
p

2 · π · ir

)2

(21)
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Figure 4: 3PRS PROTOTYPE.

Figure 5: Picture of the actuator.

Where,
Mload = Mdrive = 2.27[kg] (22)

Also, the linear guides have Coulomb friction τf which plays an important role specially at low velocities.
This parameter is calculated with equation Eq.23, obtained from the manufacturer’s catalogue[25].

τf = 0.2 +
(
4.07× 10−2

)
Mload (23)

It is worth mentioning that Kt and Ct in Eqs. 2 and 3 are unknown parameters. Hence, they must be
experimentally identified or estimated. To that end, a modal analysis was carried out to obtain the unknown
parameters value from the frequency response functions. An accelerometer was placed at the drive carriage
and an impact test was performed with a PCB-086-C03 modal hammer. The input signals from the hammer
and the vibrations registered by the accelerometer were passed through the OROS-OR35 signal analyzer
to obtain the parameters values. Additionally, Jmotor, Jgearbox, Jguide and Jcoupling were taken from the
manufacturers datasheet[26].
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Table 1: Parameter values of the actuator model.

Parameter Value Units

fn
* 986.5 [Hz]

Kt
* 67.702

[
Nm
rad

]
Ct

* 3.00× 10−08
[
Nms
rad

]
M* 0.076 [kg]

Jmotor
** 1.42× 10−5

[
kgm2

]
Jgearbox

** 1.4× 10−6
[
kgm2

]
Jcoupling

** 4.68× 10−6
[
kgm2

]
Jguide

** 4.524× 10−4
[
kgm2

]
Jbrake

** 1.00× 10−6
[
kgm2

]
*Experimentally identified
**From manufacturer

3.2. Control and modeling

The control employed in this study is based in a monoarticular local control, where each actuator’s
position is independently controlled. In this way, the control is performed in the joint space. Moreover,
the demanded pose of the mechanism is first passed through the inverse kinematic problem where the joint
position are obtained. These are then fed into the joint controller, each one consisting of a cascaded position,
velocity and current control. In Fig. 6 a scheme with the actual control implementation is shown.

Figure 6: Actual controller.

3.3. Mechanism Dynamics

In this section the dynamics of the MAST prototype are obtained. As for the mechanism bars and the
translation dynamics of the platform, the principle of energy equivalence depicted in section 2.4.1 will be
followed. On the other hand, the rotation dynamics of the platform will be analyzed using the Boltzmann-
Hamel equations as explained in section 2.4.2.

3.3.1. Bars modeling

To model the dynamics of the bars of the mechanism mechanism’s bars, the Lagrangian equation offor
each one is obtained and then the Euler’s operator is applied as in equation 4. In this way, equation 24
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results, where mbi and Ibi are the mass and inertia of the ith bar respectively, and g is the gravitational
acceleration.

fbi =

 0
Fbi
0

 = Eqbi (Lbi) =

mbi 0 0
0 mbi 0
0 0 Ibi

 q̈bi +

 0
mbig

0

 = Mbi q̈bi + gbi (24)

Moreover, by using the kinematic relationship q̇bi = Jbi q̇ρ equation 25 is obtained. Jbi is the Jacobian
of each bar which relates the velocity of the center of gravity with the input variables.

fbi = MbiJbi q̈ρ + Mbi J̇bi q̇ρ + gbi (25)

The expression of the Jbi is shown in the appendix. What is more, the contribution of each leg i to the
overall mechanism’s dynamics fρbi is found by employing equation 7, thus obtaining: the expression in Eq.
26.

fρbi = JTbifbi =
[
JTbiMbiJbi

]
q̈ρ +

[
JTbiMbi J̇bi q̇ρ

]
+
[
JTbigbi

]
(26)

Equation 26 Furthermore, Eq. 26 can be simplified by operating the matrices and renaming them
afterwards. In this way, equation 27 results.

fρbi = Ibi q̈ρ + cbi + ḡbi (27)

Where Ibi and ḡbi are the inertia matrix and gravitational vector respectively. These are only functions
of the position of the mechanism. On the other hand, cbi is the matrix containing velocity quadratic terms.

3.3.2. Modeling of the end-effector

As mentioned before, the MAST mechanism is capable of constrained translation and rotation motions.
The translation dynamics has been analyzed as described in section 2.4.2 and following equations 8 and 9.
On the other hand, the rotation dynamics is analyzed by considering a virtual inertial body and applying
Boltzmann-Hamel equations. A moving coordinate system is placed at the point P as shown in Fig. 4.
Furthermore, the angular velocity w in the moving frame is used as quasi-velocities for the application of
the Boltzmann-Hamel equations. Since only the rotation motion of the platform is being analyzed, the
translation and potential energies are neglected. Hence, the Lagrangian function of the moving platform
results in:

Lmp = T =
1

2
wT Impw (28)

Where w is the angular velocity,
w = [ωx, ωy, ωx]

T
(29)

and Imp is the inertia tensor of the platform in the local reference system. Also, the assembled condition
of the platform with the rest of the mechanism is provided by the loop-closure and constrained equations.
These relate the angular velocity w with the input variables velocities in q̇ρ as follows.

w = JRq̇ρ (30)

Where the expression of JR is shown in the appendix. Moreover, by substituting Eq. 12 into Eq. 30,
the relationship between the Euler angles and the inputs can be found.

q̇e =
(
Dφ

T
)−1

JRq̇ρ = Jq̇ρ (31)

By following the procedure depicted in section 2.4.2, and recalling equations 18 and 19, the expression
of the rotation dynamics is obtained.

JTRmmp = JTRImpJRq̈ρ + cmp = Īmpq̈ρ + cmp

11



Where,

cmp =

[
JT
[
DφImpDφ

T
]
J̇ + JT

[
DφImpḊ

T
φ + 2ḊφImpDφ

T −AT ImpDφ
T
]
J

]
q̇ρ

3.3.3. Global dynamics

Finally, the explicit dynamic equations of the 3PRS is obtained by adding the dynamic contribution of
the legs (Eq. 27), and the translational and rotational dynamic contributions of the platform (equations 9
and 18 respectively).In this way, Eq. 32 is obtained where ILs, cLs and gLs are the inertial, Coriolis and
gravitational terms of the bars. Similarly, it is recalled that IG and cG represent the inertial and Coriolis
terms for the translational dynamics whereas Īmp and cmp represent the dynamics due to the rotation.

tρ + JTGfG + JTRmmp =
[
ILs + IG + Īmp

]
q̈ρ + [cLs + cG + cmp] + [ḡLs + ḡG] (32)

It can be seen that with the approach followed, the Jacobians Jbi, JG and JR are obtained from the
kinematic analysis in a straightforward way after applying the loop-closure and constrained equations.
Furthermore, matrices Dφ

T and A can be defined for an Euler convention, hence, not depending on any
specific mechanism.

4. Experimental validation

To validate the model of the system, the frequency response was analyzed and the bandwidth of the
simulation model was compared with the experimental results obtained from the prototype.Finally Also,
the modeled and measured torque outputs were compared. As a result, the interaction of the mechanism’s
and actuators’s models can be easily studied and compared with experimental data.

4.1. Frequency domain testing

In Fig. 7 a bode diagram is shown with the magnitude and phase response of the transfer functions in
equations 2 and 3 using the values of Table 1. It can be seen that the resonant frequency of the TF2 is
located at 900 [Hz] approximately, which is significantly higher that the intended operating frequency range
of the system.

Also, for a MAST mechanism it is important to study the bandwidth of the system to know up to which
frequency could be simulated. For this reason, pure sinusoidal motions in z, ψ and θ were simulated in the
0.5-20[Hz] frequency range using the mechatronic model. For the experimental tests, the same motions have
been commanded with frequencies set to 0.4, 1, 5 10 and 20 [Hz]. A comparison between the simulation
and the experimental tests is shown in Figs.8 and 9. Moreover, the same frequencies were executed without
the mechanism in order to study the influence of the MAST on the actuation system’s bandwidth (Fig.10)
Moreover, to study the interaction between the actuation system and the mechanism, the bandwidth with
and without the mechanism is compared in Fig. 10

From figures 8 and 9 it can be seen that the simulations are in close correspondence with the experimental
results obtained for each motion. Furthermore, when the two motions are compared, no significant differences
are present in the system’s performance despite the fact that both motions are different. This leads to the
idea that the mechanism does not exerts a significant influence on the system’s performance. This can be
further analyzed with the z motion in Fig. 10.

It is appreciated how the simulation is similar to the behavior observed with the experimental tests. On
the other hand, the simulation shows that the actuators without the mechanism attached have a bandwidth
about 4[Hz]. However when the mechanism is present, the system’s bandwidth is reduced to 3.5 [Hz] for all
the motions tested.

As mentioned before, in Fig. 10 the response magnitude and phase for the z motion is shown. What
is more, the same motion is compared with the MAST attached and with only the actuators. In this way,

12
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Figure 7: Bode plot of the two transfer functions of the actuators.

10
0

10
1

−9

−6

−3

0

M
a
g
n
it
u
d
e
 (

d
B

)

Ψ/Ψ
0

 

 

10
0

10
1

−150

−100

−50

0

Frequency (Hz)

P
h
a
s
e
 (

d
e
g
)

 

 

Simulation

Experimental

Figure 8: Manipulator closed position loop transfer function for the ψ motion.

it can be easily analyzed the effect of the mechanism in the system’s response. It is appreciated that up
to 2[Hz] both systems behave similarly. However at 2 [Hz] the magnitude of their response start diverging.
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What is more, it has been found that the actuators without the MAST have a bandwidth about 4[Hz],
whereas with the mechanism the bandwidth is reduced to 3.5[Hz]. Thus, it can be noted that the actuators
are the most limiting components and that the mechanism itself has only a 0.5[Hz] effect on the system’s
performance.
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4.2. Time domain tests

Finally, in Figs.11-13 the position and the torques are shown for the three pure motions executed at
frequencies 0.4, 5 and 10 [Hz]. Two set of model parameters were used to simulated the model and compare
the results with the measurements. The simulation with the parameter set Sim. Manufac. was constructed
with the data as obtained from the manufacturers, whereas the simulation Sim. Ident. was constructed by
modifying the inertia J1 to J1/1.56 and the Coulomb friction modified to 7.18 × 10−2[Nm] as it will be
explained in the next paragraph.
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Figure 11: Position and torque signals comparison for the z motion.

From the figures, the simulated positions present and maximum deviation of approximately 11% in
magnitude and 13% in phase respect to the experimental signals for the frequencies shown and motions
executed. Also, it can be observed that as the frequencies of the motions are increased, the magnitude of
the response is reduced in accordance with the Bodes shown previously. Indeed, at 0.4[Hz] the magnitude of
the response was found to be approximately 99.4%, whereas at 5 [Hz] and 10 [Hz] the obtained magnitudes
were 65.4% and 43.2% respectively. Likewise, the phase lag between the commands and the actual signals
are appropriately estimated by the model when compared with the experimental data. It can be seen that
at 0.4 [Hz], 5 [Hz] and 10 [Hz], the phase lags were found to be −6.3◦, −62.5◦ and −103.7◦ respectively.

Nevertheless and to validate the model, the position response must not be used alone as the controller’s
action may be masquerading dynamic deviations with the appearance of good positioning results. This
effect can be clearly seen by comparing the position and the torque of the Sim. Manufac. model at 0.4
[Hz]. It is observed that, despite an apparent good positioning with respect to the experimental data, the
simulated torque differs from the experimental torque obtained by approximately 70%. This indicates that
the dynamics are not correctly represented by this model.

Moreover . On the other hand,the torques obtained from the simulation with the two parameters set are
different. When the data as given by the manufacturer was introduced, a difference in the torque of approx-
imately 0.10[Nm] at 0.4[Hz] can be appreciated as it was pointed out before. This implies that the Coulomb
friction force in the actual system is higher. Also, at a frequency of 10[Hz], the model estimated 0.1[Nm]
higher torque than the experimental signals. Since the acceleration forces increase with the frequencies, it
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Figure 12: Position and torque signals comparison for the ψ motion.
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Figure 13: Position and torque signals comparison for the θ motion.

follows that the actual inertia should be less than the initially estimated with the manufacturer data. For
this reason, the Coulomb friction and the inertia J1 were adjusted as mentionedcommented before. In this
way, the simulation provided better results than when the parameters set with the original manufacturer
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data was used.
On top of that, it is worth observing that even when the inputs are pure sinusoids, the resulted torques

are not sinusoids as well. This effect is caused by the non-linearities of the dynamics and the friction present
in the actuation system. The latter can be easily identified at lower frequencies, specially at 0.4 [Hz] where
an almost square signal is appreciated. Finally, it can also be seen that at 10 [Hz] the experimental torque
are trimmed by the action of a low-pass filter attributed to the low level controller.

5. Conclusions

In the present work a mechatronic model has been developed for a 3PRS parallel manipulator. A
key contribution of this work is that the mechanism dynamics is integrated as a disturbance applied to
the actuators. This results in a simple yet reliable model that integrates the actuators dynamics with
the manipulator model in a decoupled manner. In this way, different configurations or design of individual
components can be easily modified and then integrated to evaluate the overall system’s performance without
compromising reliability of the results.

Furthermore, the manipulator’s dynamics was described using Boltzmann-Hamel equations and the prin-
ciple of energy equivalence as shown is section 3.3. It was found that, since the translation and rotation
motions are decoupled, the main advantage of Boltzmann-Hamel equations becomes apparent when applied
to analyze the rotation dynamics. Furthermore, the approach taken simplifies obtaining explicit dynamic
equations, where complex and nonlinear expressions are avoided by making use of the kinematic Jacobians.
As a contribution, the proposed procedure has the advantage of being systematic, which is less error prone
than when trying to obtain particular dynamic equations for a given mechanism.

Also, the actuators and the control scheme have been modeled. They were further integrated into the
mechatronic model and its performance was compared with an actual prototype of a MAST. It was observed
that the mechatronic model resulted in an useful simulation tool to assess the performance of the system in
terms of bandwidth.

Moreover, when the simulations and experimental signals where compared, it was observed a reasonably
agreement. The motor positions of both signals present the same amplitude and the phase lag shows a slight
difference attributed to the friction and other phenomena yet to be explored. Also, it was observed that with
the parameters values obtained from the manufacturer, the model provided fairly good results. However,
with the Coulomb friction and inertia adjusted, the model provided more accurate results. This shows that
an identification step should be taken in order to take into account differences between the theoretic and
actual values for the parameters.
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[20] H. Groß, J. Hamann, G. Wiegärtner, Electrical Feed Drives in Automation: Basics, Computation, Dimensioning, Publicis
MCD Corporate Publishing, Erlangen and Munich, 2001.

[21] F. Paccot, N. Andreff, P. Martinet, A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and
Experiments, The International Journal of Robotics Research 28 (3) (2009) 395–416, URL http://ijr.sagepub.com/

content/28/3/395.abstract.
[22] S. Flottmeier, A. Trchtler, 2-DOF state control scheme for the motion control of a parallel kinematic machine, in: 2013

Conference on Control and Fault-Tolerant Systems (SysTol), ISSN 2162-1195, 744–749, 2013.
[23] H. Pang, M. Shahinpoor, Inverse dynamics of a parallel manipulator, Journal of Robotic Systems 11 (8) (1994) 693–702,

ISSN 1097-4563, URL http://dx.doi.org/10.1002/rob.4620110803.
[24] M.-S. Tsai, W.-H. Yuan, Inverse dynamics analysis for a 3-PRS parallel mechanism based on a special decomposition

of the reaction forces, Mechanism and Machine Theory 45 (11) (2010) 1491 – 1508, ISSN 0094-114X, URL http://www.

sciencedirect.com/science/article/pii/S0094114X10001229.
[25] Igus-GmbH, Drylin ZLW -1040 Toothed belt axis online catalog, URL http://www.igus.eu/wpck/4773/zlw_1040, 2016.
[26] Maxon, Maxon motor online catalog, URL http://www.maxonmotor.com/maxon/view/catalog/, 2016.
[27] J. Carretero, R. Podhorodeski, M. Nahon, C. Gosselin, Kinematic Analysis and Optimization of a New Three Degree-of-

Freedom Spatial Parallel Manipulator., ASME. J. Mech. Des. 122 (1) (1999) 17–24.

Acknowledgment

The authors of this paper wish to acknowledge the funding received from the Spanish Government via the
Ministerio de Economı́a y Competitividad (BES-2012-053723 under Project DPI2011-22955 and DPI2015-
64450-R), the ERDF of the European Union, the Government of the Basque Country (SAIOTEK 2013
SAI13/245), and the financial support from the University of the Basque Country(UPV/EHU) under the
program UFI 11/29.

18

http://www.sciencedirect.com/science/article/pii/S0957415806000754
http://www.sciencedirect.com/science/article/pii/S0957415806000754
http://www.sciencedirect.com/science/article/pii/S0094114X08000311
http://www.sciencedirect.com/science/article/pii/S0094114X08000311
http://www.sciencedirect.com/science/article/pii/B9780122374616500126
http://ijr.sagepub.com/content/28/3/395.abstract
http://ijr.sagepub.com/content/28/3/395.abstract
http://dx.doi.org/10.1002/rob.4620110803
http://www.sciencedirect.com/science/article/pii/S0094114X10001229
http://www.sciencedirect.com/science/article/pii/S0094114X10001229
http://www.igus.eu/wpck/4773/zlw_1040
http://www.maxonmotor.com/maxon/view/catalog/


Appendix A. Jacobian matrices

From the kinematic analysis of the manipulator[27] the following linear system results. Jx


żp
ψ̇

θ̇

 =

 Jq

ρ̇1ρ̇2
ρ̇3

 (A.1)

Where,

Jx11 = Lsin(γ1) (A.2)

Jx12 = Lrsin(θ)cos(ψ)cos(γ1) (A.3)

Jx13 = Lrcos(θ)sin(ψ)cos(γ1) + Lrsin(θ − γ1) (A.4)

Jx21 = Lsin(γ2) (A.5)

Jx22 = Lr(sin(ψ)cos(γ2) + cos(θ)cos(ψ)sin(γ2)) (A.6)

Jx23 = Lrsin(θ)sin(ψ)sin(γ1) (A.7)

Jx31 = Lsin(γ3) (A.8)

Jx32 = −Lrsin(θ)cos(ψ)cos(γ3) (A.9)

Jx32 = −Lrcos(θ)sin(ψ)cos(γ3) + Lrsin(θ + γ3) (A.10)

And,

Jq =

Lsin(γ1) 0 0
0 Lsin(γ2) 0
0 0 Lsin(γ3)

 (A.11)

Also, the TCP (point p) of the manipulator can only move in the x and z directions. Hence, the following
relations can be found.

From bar 1:

ẋp = Lγ̇1sin(γ1) + rθ̇sin(θ) (A.12)

żp = ρ̇1 + Lγ̇1cos(γ1) + rθ̇cos(θ) (A.13)

From bar 2:

− rψ̇sin(ψ) = Lγ̇2sin(γ2) (A.14)

żp = ρ̇2 + Lγ̇2cos(γ2) + rθ̇sin(θ)sin(ψ)− rθ̇cos(θ)cos(ψ) (A.15)

From bar 3:

ẋp = −Lγ̇3sin(γ3)− rθ̇sin(θ) (A.16)

żp = ρ̇3 + Lγ̇3cos(γ3)− rθ̇cos(θ) (A.17)

Moreover, the velocities of the center of mass for each bar can be calculated from the velocities of point
p. In the following, the expressions for the bar 1 will be obtained.

ẋ1 =
1

2

(
ẋp − rθ̇sin(θ)

)
(A.18)

ż1 =
1

2
ρ̇1 +

1

2

(
żp − rθ̇cos(θ)

)
(A.19)

γ̇1 =
1

Lsin(γ1)

(
ẋp − rθ̇sin(θ)

)
(A.20)

(A.21)
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Substituting the ẋp and żp by expressions A.12 and A.13 respectively, the following expression results.ẋ1ż1
γ̇1

 =

0 − 1
2rsin(θ)cos(ψ) − 1

2 (rsin(θ) + rcos(θ)sin(ψ))
1
2 0 − 1

2rcos(θ)

0 − rsin(θ)cos(ψ)Lsin(γ1)
− rsin(θ)+rcos(θ)sin(ψ)Lsin(γ1)


żp
ψ̇

θ̇

+


0
ρ̇1
2
0

 (A.22)

The above expression can be rewritten as a function of the inputs as follows.ẋ1ż1
γ̇1

 =

0 − 1
2rsin(θ)cos(ψ) − 1

2 (rsin(θ) + rcos(θ)sin(ψ))
1
2 0 − 1

2rcos(θ)

0 − rsin(θ)cos(ψ)Lsin(γ1)
− rsin(θ)+rcos(θ)sin(ψ)Lsin(γ1)

 J−1x Jq

ρ̇1ρ̇2
ρ̇3

+


0
ρ̇1
2
0

 (A.23)

Finally, the Jacobian matrix for the bar 1 results in:

Jb1 =

0 − 1
2rsin(θ)cos(ψ) − 1

2 (rsin(θ) + rcos(θ)sin(ψ))
1
2 0 − 1

2rcos(θ)

0 − rsin(θ)cos(ψ)Lsin(γ1)
− rsin(θ)+rcos(θ)sin(ψ)Lsin(γ1)

 J−1x Jq

+

0 0 0
1
2 0 0
0 0 0

 (A.24)

With the linear system being ẋ1ż1
γ̇1

 =

 Jb1

ρ̇1ρ̇2
ρ̇3

 (A.25)

By following a similar procedure for bars 1 and 2, the linear systems and their respective Jacobians are
obtained. ẏ2ż2

γ̇2

 =

 Jb2

ρ̇1ρ̇2
ρ̇3

 (A.26)

ẋ3ż3
γ̇3

 =

 Jb3

ρ̇1ρ̇2
ρ̇3

 (A.27)

With,

Jb2 =

0 − 1
2rsin(ψ) 0

0 − cos(γ2)
2sin(γ2)

rsin(ψ) 0

0 − rsin(ψ)
Lsin(γ2)

0


 J−1x Jq

+

0 0 0
0 1 0
0 0 0

 (A.28)

Jb3 =

0 − 1
2rsin(θ)cos(ψ) − 1

2 (rsin(θ)− rcos(θ)sin(ψ))
1
2 0 1

2rcos(θ)

0 rsin(θ)cos(ψ)
Lsin(γ3)

− rsin(θ)+rcos(θ)sin(ψ)Lsin(γ3)

 J−1x Jq

+

0 0 0
0 0 1

2
0 0 0

 (A.29)

As for the rotation Jacobian of the end effector, the following linear system relates the angular velocities
of point p with the angular velocities ψ̇ and θ̇.wxwy

wz

 =

1 0
0 cos(ψ)
0 −sin(ψ)

{ψ̇
θ̇

}
(A.30)

Moreover, the equation can be expressed as a function of the inputs as follows.wxwy
wz

 =

1 0
0 cos(ψ)
0 −sin(ψ)

 J−1x Jq|R

ρ̇1ρ̇2
ρ̇3

 (A.31)
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Where J−1x Jq|R is the submatrix of J−1x Jq from row 2 and 3, which is the matrix that relates the rotation
motion of point p with the inputs. Hence, the Jacobian matrix of the end effector results in.

JR =

1 0
0 cos(ψ)
0 −sin(ψ)

 J−1x Jq|R

 (A.32)
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