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Abstract: Diverse plants of ethnobotanic interest in Amazonia are commonly used in 

traditional medicine. We determined the antioxidant potential against lipid peroxidation, 

the antimicrobial activity, and the polyphenol composition of several Amazonian plants 

(Brownea rosademonte, Piper glandulosissimum, Piper krukoffii, Piper putumayoense, 

Solanum grandiflorum, and Vismia baccifera). Extracts from the plant leaf, bark, and stem 

were prepared as aqueous infusions, as used in folk medicine, and added to rat liver 

microsomes exposed to iron. The polyphenolic composition was detected by reverse-phase 

HPLC coupled to diode-array detector and MS/MS analysis. The antimicrobial activity was 

tested by the spot-on-a-lawn method against several indicator microorganisms. All the 

extracts inhibited lipid oxidation, except the P. glandulosissimum stem. The plant extracts 

exhibiting high antioxidant potential (V. baccifera and B. rosademonte) contained high 

levels of flavanols (particularly, catechin and epicatechin). By contrast, S. grandiflorum 

leaf, which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids. 

None of the extracts showed antimicrobial activity. This study demonstrates for the first 
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time the presence of bioactive polyphenolic compounds in several Amazonian plants, and 

highlights the importance of flavanols as major phenolic contributors to  

antioxidant activity. 

Keywords: polyphenols; lipid peroxidation; liver microsomes; HPLC-DAD-MS/MS; 

Amazonian plants 

 

1. Introduction 

Medicinal plants are sources of therapeutic compounds. Thus, most of the actual drugs derive from 

plants, which are natural resources in indigenous communities. For instance, the alkaloids, atropine 

and scopolamine were isolated from plants of the Solanum genus, and are commonly used in medical 

applications as antispasmodic, sedative, and anticholinergic agents [1,2]. Among the natural effects of 

plant extracts, many actions, such as vasodilator, antimicrobial, sedative, anti-depressive, anti-pyretic, 

and anti-inflammatory are highlighted. There is an increasing interest in finding natural bioactive 

molecules from plants, in order to avoid side effects associated with synthetic drugs. The rainforest in 

Northwest Amazonia (Colombia, Ecuador, and Peru) represents a large area of ethnobotanical interest [3]. 

Historically, indigenous communities in these regions have used botanical resources with therapeutic 

activities [4,5]. In most of the cases, their use is limited to their intake as food after being cooked or as 

infusions, but other forms, such as maceration and its application to the skin, or vapour inhalation from 

infusions are also used. The Brownea rosademonte bark is used against snake venom, acting as an 

anticoagulant, also as a haemostatic against internal bleeding and haemorrhages, as well as against 

prolonged menstruation [6,7]. The plant species Solanum grandiflorum is widely used for its sedative, 

relaxant, and anti-spasmodic properties, and also in the treatment of skin infections [8,9]. Several 

Vismia species have been used against skin diseases, such as dermatitis, herpes, eczemas and  

wounds [10–12]. Cytotoxic and antiplasmodial [13,14], antiprotozoal [15], anticancer activity [16], 

HIV-inhibitory [17] and antimicrobial activities [18] were attributed to substances isolated from the 

Vismia species. 

Many of the therapeutic actions of phytochemicals are ascribed to their biologically active 

polyphenol components, such as flavonoids and phenolic acids, which possess powerful antioxidant 

activities [19,20]. It is important for pharmacological purposes to screen, analyse, and identify  

these constituents. 

The antioxidant activities, evaluated by the Trolox equivalent antioxidant activity (TEAC) and 

oxygen radical absorbance capacity (ORAC) assays, of different Amazonian plants prepared as 

aqueous infusions have been previously described, all the extracts showing different degrees of 

antioxidant activities. However, most of phytochemicals are multifunctional, and total antioxidant 

activity based solely on one property, such as their scavenging activity towards artificial radicals, 

provides no information on what lipid or other substrate is protected. 

In the present work, we have assessed the lipid peroxidation inhibitory effects of aqueous extracts 

of six Amazonian plants, using rat liver microsomes as the lipid source. This lipid model system 

mimics the physiological target system to be protected. In addition, the phenolic composition of the 
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extracts was characterised by reverse phase HPLC coupled to a diode array detector (DAD) and 

MS/MS analysis. 

2. Results and Discussion 

2.1. Inhibition of Lipid Peroxidation 

In this work six Amazonian species that had been shown to exert high in vitro antioxidant activities 

against hydrophilic radicals [21] were selected in order to analyse their protective effect against lipid 

peroxidation. The bark of B. rosademonte and leaves and stems of P. glandulosissimum, P. krukoffii, P. 

putumayoense, S. grandiflorum and V. baccifera were prepared as aqueous infusions, as are commonly 

used in folk medicine. Rat liver microsomes exposed to iron/ascorbate were chosen as an oxidative 

system because it is close to the in vivo situation where both an aqueous phase and a lipid phase are 

present. Figure 1 shows the time-course of thiobarbituric acid reactive substances (TBARS) production 

in liver microsomes without antioxidants.  

Figure 1. Time-course of iron-induced lipid peroxidation of rat liver microsomes. 

Microsomes (0.5 mg protein/mL) were incubated with 25 µM FeSO4 and 500 µM ascorbic 

acid in 10 mM KH2PO4, pH 7.4. Each value is the mean of 5 independent assays. 

 

With short incubation periods TBARS levels increased linearly with time, reaching maximum 

values at near 25 min. A 10 min incubation period was chosen to study the effects of the extracts. 

Different volumes of the water infusions were added to the microsome solutions, so that a final  

20–80% inhibition could be detected. Figure 2 shows typical concentration-dependent inhibition 

curves exhibited by some of the assayed extracts. 
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Figure 2. Inhibition of iron-induced microsomal lipid peroxidation by plant extracts. 

Microsomes (0.8 mg protein/mL) were incubated for 10 min with FeSO4/ascorbate (25 

µM/500 µM) in the presence of increasing quantities of the indicated plant extracts in a 1 

mL final volume. Each value is the mean of at least 3 independent assays. 

 

The quantity of extract which inhibited control malondialdehyde (MDA) production by 50% (IC50) 

was determined from the curves. Results are summarised in Table 1. For comparative purposes, the 

IC50 for caffeic acid, catechin, and gallic acid was also measured. 

Table 1. Lipid peroxidation half-inhibition values (IC50) of plant extracts and reference 

antioxidants.  

  IC50 

Species 
Plant 

Part 

Concentration 

(µg/mL) 

Total Phenols  

(µg GAE 
a
/mL) 

Total Flavonoids 

(µg CE 
b
/mL) 

B. rosademonte bark 12.4 4.9 1.6 

P. glandulosissimum leaf 30.0 3.7 1.4 

P. glandulosissimum stem ND ND ND 

P. krukoffii leaf 75.0 46.3 23.9 

P. krukoffii stem 68.0 34.0 17.2 

P. putumayoense leaf 17.9 8.7 4.5 

P. putumayoense stem 18.4 6.7 3.0 

S. grandiflorum leaf 97.7 22.4 5.5 

S. grandiflorum stem 24.1 4.5 2.0 

V. baccifera leaf 5.5 2.2 1.2 

V. baccifera stem 7.9 2.6 1.0 

Caffeic acid  38.0   

Catechin  3.0   

Gallic acid  8.8   

ND: not detected at the highest concentration used (240 µg extract/mL); 
a
 GAE, gallic acid 

equivalents; 
b
 CE, catechin equivalents. 
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The order of protection efficacies against lipid peroxidation of the reference antioxidants was 

catechin > gallic acid > caffeic acid. All the extracts exerted antioxidant effects against lipid 

peroxidation, except P. glandulosissimum stem, which showed no effect at the highest concentration 

used (240 µg/mL). V. baccifera extracts were the most potent antioxidants against lipid peroxidation, 

the IC50 values of the leaf (5.5 µg/mL) and stem (7.9 µg/mL) being even lower than that of gallic acid 

(8.8 µg/mL). B. rosademonte bark also showed a high inhibitory potential in a similar concentration 

range. P. krukoffii leaf and stem presented intermediate protective actions (IC50 near 70 µg/mL), while 

S. grandiflorum leaf was the least potent (near 100 µg/mL). Thus, using this lipid system, important 

differences in the behaviour exhibited by the extracts compared with that observed using aqueous free 

radicals can be highlighted. Lipid peroxidation is a free radical-mediated process, in which oxidative 

damage is propagated to polyunsaturated fatty acids. It involves lipid-derived radicals, such as alkoxyl 

and peroxyl radicals. The polarity features of the extract components is a key factor that confers their 

solubility and ability to access to the lipid phase where the lipoperoxidation process is taking place, 

thus influencing their capacity to break chain reactions. Antioxidant compounds with high partition 

coefficients are preferentially distributed to hydrophobic compartments, thus protecting lipids from 

free radical attack. 

2.2. Antimicrobial Activity 

The antimicrobial activity against several indicator strains (L. monocytogenes, B. cereus, S. aureus, 

E. coli, and S. enterica) was also tested. No antimicrobial activity was exhibited by any of the aqueous 

plant extracts (data not shown). Antimicrobial activity against Gram-negative and Gram-positive 

bacteria of extracts of the Vismia sepcies (V. laurentii) has been reported in the literature [18]. 

However, in contrast to our conditions, the authors used methanolic extracts to test their effectiveness 

on the pathogenic agents. In many cases, the water-soluble (aqueous) parts of an extract exhibit no 

activity or less than the water-insoluble ones [22,23]. To our knowledge this is the first report 

providing information regarding antimicrobial activity of aqueous extracts of the plants used in this 

study. The generalized lack of antimicrobial activity in these extracts supports their oral intake since it 

prevents them from jeopardizing the beneficial autochthonous intestinal microbiota. 

2.3. Polyphenolic Composition by HPLC-DAD and MS/MS Analysis 

The specific polyphenolic composition of the extracts was analysed by HPLC-DAD and MS/MS. 

To our knowledge, this is the first report showing the presence of an array of polyphenolic compounds 

in aqueous extracts of these Amazonian species used here. The presence of several families 

(flavanones, flavonols, hydroxycinnamic acids, hydroxybenzoic acids, flavones, coumarins and 

flavanols until a polymerization grade of three units) was searched by HPLC-DAD and MS/MS 

analysis. However, only three of these families (flavanols, flavonols and hydroxycinnamic acids) were 

found. Figure 3 shows typical chromatograms monitored at 280, 320 and 370 nm obtained for leaf 

extracts, where individual components of the three major polyphenol families (flavanols, 

hydroxycinnamic acids and flavonols) can be identified. 
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Figure 3. (a) Piper glandulosissimum leaf extract chromatogram at 320 nm;  

(b) Piper glandulosissimum leaf extract chromatogram at 370 nm; (c) Vismia baccifera leaf 

extract chromatogram at 280 nm. CQA, caffeoylquinic acids; deoxyhex, deoxyhexose; 

epicat, epicatechin; (epi)cat, epicatechin or catechin; hex, hexose; iso, isorhamnetin; kam, 

kaempferol; p-CoQA, p-coumaroylquinic acids; pent, pentose; que, quercetin. 

 

 

 

 

The HPLC retention times, the relative quantities of the individual peaks, and the identified 

compounds are shown in Table 2. 
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Table 2. Relative quantities (area units/mg of plant extract) of major polyphenols and sums of all polyphenols found for each phenolic family 

and plant species. 

Major Polyphenols and Sums of the 

Different Families Found 
Rt (min) 

B. rosademonte 

Bark 

P. glandulosissimum 

Leaf 

P. glandulosissimum 

Stem 

S. grandiflorum 

Leaf 

S. grandiflorum 

Stem 

V. baccifera 

Leaf 

V. baccifera 

Stem 

∑FA  171730 32296 7637 n.d. n.d. 1971026 257339 

(epi)cat-(epi)cat-(epi)cat 9.10 n.d. 9344 1369 n.d. n.d. n.d. n.d. 

(epi)cat-(epi)cat 14.85 15104 3094 n.d. n.d. n.d. n.d. n.d. 

(epi)cat-(epi)cat 15.87 6731 4786 2630 n.d. n.d. n.d. n.d. 

(epi)cat-(epi)cat-(epi)cat 16.45 n.d. n.d. 1685 n.d. n.d. n.d. n.d. 

(epi)cat-(epi)cat 17.58 12219 n.d. n.d. n.d. n.d. n.d. n.d. 

Cat 19.37 28346 9966 3225 n.d. n.d. - - 

(epi)cat-(epi)cat-(epi)cat 19.73 n.d. n.d. n.d. n.d. n.d. 50524 8592 

(epi)cat-(epi)cat-(epi)cat 20.98 n.d. n.d. n.d. n.d. n.d. 82616 14036 

(epi)cat-(epi)cat 22.30 45400 n.d. n.d. n.d. n.d. 422618 64600 

Epicat 28.93 48261 1285 413 n.d. n.d. 463423 112225 

(epi)cat-(epi)cat-(epi)cat 29.37 n.d. n.d. n.d. n.d. n.d. 523159 n.d. 

(epi)cat-(epi)cat-(epi)cat 31.22 n.d. n.d. n.d. n.d. n.d. 129118 23137 

(epi)cat-(epi)cat-(epi)cat 34.17 n.d. n.d. n.d. n.d. n.d. 41978 4828 

(epi)cat-(epi)cat-(epi)cat 37.22 n.d. n.d. n.d. n.d. n.d. 83613 n.d. 

(epi)cat-(epi)cat-(epi)cat 85.17 n.d. n.d. n.d. n.d. n.d. n.d. 1627 

∑FVL  n.d. 11232 967 12401 n.d. 106166 2696 

Que-pent-deoxyhex-hex 75.53 n.d. 1045 165 n.d. n.d. n.d. n.d. 

Kam-deoxyhex-hex 76.18 n.d. n.d. n.d. 5605 n.d. n.d n.d. 

Que-hex 82.28 n.d. n.d. n.d. n.d. n.d. 23930 n.d. 

Que-deoxyhex-hex 83.73 n.d. 1521 344 n.d. n.d. 6678 1788 

Kam-pent-deoxyhex-hex 84.37 n.d. 2016 n.d. n.d. n.d. n.d. n.d. 

Kam-pent-deoxyhex-hex 87.00 n.d. 1771 56 n.d. n.d. n.d. n.d. 

Coelution of iso-pent-deoxyhex-hex and 

kam-deoxyhex-hex 
92.42 n.d. 1207 123a n.d. n.d. n.d. n.d. 
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Table 2. Cont. 

Major Polyphenols and Sums of the 

Different Families Found 
Rt (min) 

B. rosademonte 

Bark 

P. glandulosissimum 

Leaf 

P. glandulosissimum 

Stem 

S. grandiflorum 

Leaf 

S. grandiflorum 

Stem 

V. baccifera 

Leaf 

V. baccifera 

Stem 

Que-deoxyhex 96.18 n.d. n.d. n.d. n.d. n.d. 31258 908 

Kam-hex 97.28 n.d. n.d. n.d. n.d. n.d. 22859 n.d. 

Kam-deoxyhex-hex 99.78 n.d. 1877 n.d. n.d. n.d. n.d. n.d. 

∑HCA  n.d. 111242 4323 1140885 565630 117394 n.d. 

CQA 16.35 n.d. 18512 n.d. 110605 40783 n.d n.d. 

p-CoQA 21.03 n.d. 8420 n.d. n.d. n.d. n.d. n.d. 

p-CoQA 21.32 n.d. 29335 1318 11566 n.d. n.d n.d. 

CQA 24.13 n.d. 4568 n.d. 350237 239158 91738 n.d. 

CQA 26.77 n.d. 12856 n.d. 112527 61954 n.d n.d. 

p-CoQA 30.53 n.d. 8222 389 n.d. n.d. n.d. n.d. 

p-CoQA 38.12 n.d. 17518 727 n.d. n.d. n.d n.d. 

diCQA 82.88 n.d. n.d. n.d. 221270 94436 n.d n.d. 

diCQA 84.60 n.d. n.d. n.d. 180674 49423 n.d n.d. 

diCQA 98.50 n.d. n.d. n.d. 110713 79875 n.d n.d. 

- not determined; n.d. not detected. In P. glandulosisimum stem only iso-pent-desoxihex-hex was found. CQA, caffeoylquinic acids; cat, catechin; deoxyhex, deoxyhexose; diCQA, 

dicaffeoylquinic acids; epicat, epicatechin; (epi)cat, epicatechin or catechin; FA, flavanols; FVL, flavonols; HCA, hydroxycinnamic acids; hex, hexose; iso, isorhamnetin; kam, kaempferol; 

p-CoQA, p-coumaroylquinic acids; pent, pentose; que, quercetin. 
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Interestingly, in B. rosademonte bark the only polyphenolic family detected was flavanol, including 

monomers and dimers. This phenolic species, also including trimers, was also the major component of 

V. baccifera stem, where only two quercetin derived flavonols were found. In contrast, quite a lot of 

hydroxycinnamic acids were detected in S. grandiflorum, these being the only polyphenolic family in 

the stem, whereas a few quercetin- and kaempferol-derived flavonols were also found in the leaf 

extract. Flavanols, flavonols and hydroxycinnamic acids were detected in V. baccifera leaf and  

P. glandulosissimum leaf and stem, although in V. baccifera leaf only a few hydroxycinnamic 

(caffeoylquinic) acids were observed. 

Different plant organs normally have a different content of polyphenols, being higher in the leaf 

than in the stem. This is the case with P. glandulosissimum, where flavanols, flavonols and 

hydroxycinnamic acids were found in both parts, leaf and stem, but more compounds were detected in 

the leaf due to the higher polyphenolic concentration. 

In P. krukoffii and P. putumayoense extracts no polyphenols of the type studied were found. 

The plant extracts exhibiting high antioxidant potential against lipid peroxidation (V. baccifera and 

B. rosademonte) contained high levels of flavanols, according to their phenolic characterisation by 

HPLC; in particular, catechin and epicatechin were the most abundant flavanols (Tables 1 and 2).  

In the lipid model, the reference antioxidant catechin was found to be highly potent in preventing lipid 

oxidation, and about 12-fold more efficient than the hydroxycinnamic acid caffeic acid. This behaviour 

could explain the high antioxidant activity of the above extracts. By contrast, S. grandiflorum leaf, 

which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids, in particular, ester 

forms of caffeic acid (caffeoylquinic and dicaffeoylquinic acids). It is interesting to note that the  

S. grandiflorum stem, in which HPLC analysis demonstrated lower quantities of polyphenols than the 

leaf, but a similar composition, was able to inhibit lipid peroxidation quite efficiently  

(IC50 = 24 µg/mL). These results indicate that additional phenolic species contained in the stem other 

than those analysed in this study (such as tannins) and/or other non-phenolic components (such as 

carotenoids and alkaloids) would contribute to the lipid peroxidation inhibitory activity of the stem. 

3. Experimental Section 

3.1. Chemicals and Standards 

The phenolic standards, catechin and gallic acid were purchased from Sigma-Aldrich®, USA; 

gentisic acid, procyanidin B1, procyanidin B2, ferulic acid, sinapic acid, quercetin-3-O-galactoside, 

quercetin-3-O-glucofuranoside, querectin-3-O-glucopyranoside, quercetin-3-O-rhamnoside, 

kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside, kaempferol-7-O-neohesperidoside, 

kaempferol-3-O-robinoside-7-O-rhamnoside, isorhamnetin-3-O-glucoside and  

isorhamnetin-3-O-rutinoside from Extrasynthèse (Genay, France); while siringic acid,  

(−)-epigallocatechin, (+)-catechin, (−)-epicatechin, 5′-caffeoylquinic acid, caffeic acid, p-coumaric 

acid and quercetin-3-O-rutinoside were provided by Sigma–Aldrich Chemie (Steinheim, Germany); 

caffeoyltartaric acid, apigenin-8-C-glucoside-4′-O-rhamnoside, quercetagetin and  

kaempferol-3-O-(p-coumaroyl)glucoside, by Chromadex (Santa Ana, CA, USA); and, quercetin 

dihydrated by Fluka Chemie (Steinheim, Germany). 
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Standard stock solutions were prepared in methanol. Dilutions from stock solutions were made in 

the initial mobile phase. 

Methanol (Romil, Chemical Ltd., Heidelberg, Germany) was of HPLC grade. Water was purified 

on a Milli-Q system from Millipore (Bedford, MA, USA). Glacial acetic acid provided by Merck 

(Darmstadt, Germany), was of analytical quality. All solvents used were previously filtered through 

0.45µm nylon membranes (Lida, Kenosha, WI, USA). 

All other reagents used were from the highest purity available. 

3.2. Plant Samples 

Diverse plants of native Amazonian species with known therapeutic actions were collected from the 

Macagual Research Centre forest in Florencia, Caquetá (Colombia). The plants were selected on the 

basis of data from their traditional use in Colombian folk medicine. The plants were taxonomically 

identified by botanical experts and deposited in the Herbarium of the Botanical Garden of Amazonia 

University-HUAZ (Florencia, Colombia). 

The plant samples were processed in the laboratory within a maximum of 24 h after harvesting. 

Otherwise, the material was stored under refrigeration at 4 °C. 

3.3. Preparation of Plant Extracts 

Plant extracts were obtained from infusions prepared as generally used in traditional medicine, as 

described before [21]. 

3.4. Inhibition of Lipid Peroxidation 

Male Sprague Dawley rats (180–200 g) were used to isolate liver microsomes. The experimental 

use of animals and the particular procedure were approved by the Ethical Committee of Animal 

Welfare (CEBA) of the Institution. Rats were anesthetised and the liver was perfused with 0.9% NaCl 

to completely eliminate blood. Microsomes were obtained by differential centrifugation [24]. The 

microsomal pellet was resuspended in 150 mM Tris-HCl buffer, pH 7.4, and frozen in liquid N2 and 

stored at −80 °C. The protein content was determined as by Bradford [25], using bovine serum 

albumin as standard. 

Incubations were performed in 150 mM Tris/HCl, pH 7.4, and liver microsomes (0.8 mg protein) in 

a final volume of 1 mL. Microsomes were preincubated with the different extracts for 10 min at 37 °C. 

Lipid oxidation was initiated by the addition of 200 µL FeSO4 (0.125 mM) and ascorbic acid (0.5 mM) 

in 10 mM KH2PO4. Incubations were stopped at selected times by the addition of 50 µL 100% 

trichloroacetic acid. Samples were maintained 10 min in ice and then centrifuged 10 min at 3200 × g. 

Supernatants were collected. Lipid oxidation was determined by the thiobarbituric acid (TBA) test [26]. 

Lipid peroxidation was expressed as nmol of malondialdehyde (MDA) per mg of protein, taking into 

account the molar extinction coefficient of MDA (ε = 156 mM
−1

·cm
−1

). Different dilutions of the plant 

extracts, showing a final percentage inhibition of 20–80%, were used. All the determinations were 

carried out in duplicate and the experiments were repeated at least three times. Fifty per cent inhibition 

of lipid peroxidation (IC50) was derived from the dose-response curves. The curves were adjusted by 
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quadratic regression (R
2
 between 0.995 and 1). The lipid peroxidation half maximal inhibition values 

were expressed as µg of dry weight. 

3.5. Antimicrobial Activity 

The aqueous extracts were individually tested by the spot-on-a-lawn method against a panel of 

indicator microorganisms including Listeria monocytogenes (CECT 4032), Bacillus cereus (LWL1), 

Staphylococcus aureus (CECT 828), Escherichia coli (CECT 432), and Salmonella enterica (CECT 

916). Indicator bacteria were inoculated (1%) into soft (0.75%) Brain Heart Infusion agar (BHI). This 

was used to overlay Brain Heart Infusion agar (BHA) plates. Then, the aqueous extracts were spotted 

on the surface of BHA previously inoculated with the indicator strains and after 12–18 hours 

incubation at 37 °C, the plates were examined for zones of inhibited growth around the spots. 

3.6. HPLC-DAD and MS/MS Analysis 

Chromatographic analyses were performed on a Waters (Milford, USA) Alliance 2695 coupled to a 

Waters 2996 diode array detector (DAD). A reversed-phase Phenomenex (Torrance, USA) Luna C18 

column (150 mm × 4.6 mm i.d., particle size 3 µm) with a Waters Nova-Pack C18 guard column  

(10 mm × 3.9 mm i.d., 4 µm) was used. The flow rate and column temperature were set to 0.8 mL/min 

and 30 °C, respectively. A gradient program for general polyphenol analysis was employed: the 

eluents were acetic acid-water (0.5:99.5, v/v) (phase A) and methanol (phase B); initially 0% B for  

2 min, a linear gradient to 15% B at 6 min, held isocratic until 12 min, linear gradient to 20% B at  

17 min, 20% B constant until 35 min, linear up to 35% B at 90 min, 35% B constant until 136 min, and 

finally linear gradient to 0% B at 145 min. 

A 50 µL volume of the plant extracts was injected. The chromatograms were monitored at 254 nm 

(to study hydroxybenzoic acids), 280 nm (for flavan-3-ols, condensed tannins, and flavanones),  

320 nm (for hydroxycinnamic acids), 370 nm (for flavones, flavonols and coumarins); and complete 

spectral data were recorded in the range 200–600 nm each second. 

Mass spectra were obtained on a Micromass (Milford, MA, USA) Quattro Micro triple quadrupole 

mass spectrometer equipped with a Z-spray ESI source coupled to the exit of DAD. A flow of   

70 µL/min from the DAD eluent was directed to the ESI interface using a flow splitter. Nitrogen was 

used as desolvation gas, at 300 °C and a flow rate of 450 L/h, and no cone gas was used. A potential of 

3.2 kV was used on the capillary for positive ion mode and 2.6 kV for negative ion mode. The source 

block temperature was held at 120 °C. 

MS spectra, within the 50–1000 u m/z range, were performed at different cone voltages (CV): in the 

positive mode 15, 30 and 45 V; and in the negative mode 10, 20, 30 and 40 V. MS/MS product ions 

spectra were recorded using argon as collision gas at 1.5 × 10
−3

 mbar and different collision energies 

(CE) were assayed in the range 10–35 eV. 

Individual polyphenols were classified within a polyphenolic family according to their UV-Vis 

spectra, whereas their identification was performed with the comparison of the MS/MS results with 

previous studies of standards fragmentation [27]. Peak area obtained from the DAD was used as 

relative quantitative data. 



Int. J. Mol. Sci. 2012, 13 5465 

 

3.7. Statistical Analysis 

Results were expressed as the mean ± standard deviation (SD). SPSS (version 16.0; SPSS Inc. 

Chicago, IL, 2007) statistical program was used for data analysis (Pearson’s correlation coefficient). 

4. Conclusions 

Our study has demonstrated, for the first time, the presence of bioactive polyphenolic compounds, 

such as catechin, epicatechin, kaempferol and quercetin, in six Amazonian plants. Most of the aqueous 

extracts of the plants also exhibited protection against lipid peroxidation. Flavanols, such as catechin 

and epicatechin, are suggested to largely contribute to the antioxidant activity of the plants, while ester 

forms of cinnamic acids would have minor contributions. Other components that have not yet been 

identified also seem to be involved in the lipid peroxidation inhibitory potential of the extracts. These 

plants may have important roles due to their antioxidant behaviour, and their oral consumption as 

aqueous infusions is supported for possible prevention of diseases associated with oxidative stress. 
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