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Abstract

Background: Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS).
Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage.

Methods/Principal Findings: To monitor the demyelination and axonal injury associated with microglia activation we
employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by
LPS released pro-inflammatory cytokines (IL-1b, IL-6 and TNFa), and increased the expression of inducible nitric oxide
synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and
axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments,
mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and
concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in
demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase
inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that
blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser
extent, demyelination. Blocking TNFa significantly decreased demyelination but did not prevented axonal damage.
Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound
that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the
release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage.

Conclusion: The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and
axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines. This model may both
facilitate understanding of the events involved in neuroinflammation and aid in the development of neuroprotective
therapies for the treatment of MS and other neurodegenerative diseases.
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Introduction

Axonal damage is a critical process in the pathogenesis of

several chronic brain diseases, including neurodegenerative

diseases, (Alzheimers disease, Parkinsons diseases, and amyotro-

phic lateral sclerosis) inflammatory diseases (multiple sclerosis), or

acute diseases such as stroke and brain trauma [1,2,3]. Axonal

damage is a complex process that involves alterations in multiple

pathways, mitochondrial dysfunction, oxidative stress, ischemia,

ATP depletion, ion channel redistribution, axonal transport

impairment and reduction in trophic support [4]. These processes

converge to induce Wallerian degeneration and dying-back, or

axonal degeneration. By identifying the pathways that contribute

to axonal damage, new avenues toward the development of

neuroprotective therapies to treat brain diseases could be opened

[2].

Oxidative stress is a deleterious condition that can cause cell

damage, and subsequent cell death, due to oxidation of cardinal

cellular components, such as lipids, proteins, and DNA [5].

Reactive oxygen species (ROS) are generated via several reactions,

including the incomplete reduction of bimolecular oxygen (O2),

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e54722



resulting in the generation of superoxide (O2N), hydroxyl radicals

(NOH) and hydroxyperoxide (H2O2). The most common cellular

free radicals are the hydroxyl radical (OH?), the superoxide radical

(O2–?), and nitric monoxide (NO?). Other molecules that are not

free radicals but that can lead to the generation of free radicals

through various chemical reactions include hydrogen peroxide

(H2O2) and peroxynitrite (ONOO–). These ROS can be

counterbalanced by natural enzymatic antioxidants (e.g., superox-

ide dismutase, catalase) and non-enzymatic antioxidants (e.g., uric

acid, ascorbic acid, glutathione), which are expressed under the

control of transcription factors, such as nuclear factor E2-related

factor 2 (Nrf2). The central nervous system (CNS) appears to be

especially vulnerable to oxidative stress due to its high rate of

oxygen consumption, the abundance of iron, the low levels of

molecular antioxidants, and the susceptibility of neurons or

oligodendrocytes due to their particular metabolic properties [6].

The study of the contribution of different pathways to CNS

damage and the effects of therapies in preventing such damage

requires the development of suitable models. Here we characterize

at the morphological level an in vitro model of brain inflammation

by challenging cerebellar cultures with endotoxin in order to

promote microglia activation. In this model, we assessed the role of

oxidative stress and pro-inflammatory cytokines in producing

axonal damage and demyelination as a response to microglial

activation. Studies were performed in mouse cerebellar organo-

typic cell cultures, which provide a well-preserved structure of

brain tissue including all implicated cell populations (microglia,

astrocytes, neurons, axons, myelin and oligodendrocytes). We

found that in response to inflammation due to microglia activation

in cerebellar organotypic cultures the axons and myelin were

damaged by the induction of oxidative stress and pro-inflamma-

tory cytokines.

Materials and Methods

Animals and cerebellar organotypic cultures
All animal experiments were performed using C57BL/6J mice

(Harlan Laboratories). Animals were handled in accordance with

the European Communities Council Directive (86/609/EEC

amended by Directive 2005/65/EC) and the Spanish regulations

for the procurement and care of experimental animals (1201 RD/

2005, October 10), and the study was approved by the Ethical

Committee on Animal Research of the University of Barcelona.

All possible efforts were made to minimize animal suffering and

limit the number of animals used. Cerebellar slice cultures were

based on previously published protocols [7,8] and were prepared

from 8-day-old C57BL/l6 mice. Cerebellum was cut using a

vibratome obtaining tissue slices (350 mm thick). Three slices were

plated on Millicell-CM culture inserts. Cultures were incubated at

37uC, 5% CO2 in 50% basal medium containing Earle’s salt, 25%

Hank’s buffered salt solution, 25% inactivated horse serum, 5 mg/

ml glucose, 0.25 mM L-glutamine and 25 mg/ml Penicillin/

Streptomycin. In all experiments, cerebellar slices were main-

tained in culture for 7 days for reducing microglia activation and

allowing cultures to myelinate before commencing the studies.

After 7 days in vitro (DIV), cultures were treated with different

concentrations of LPS (5, 10, 15 and 20 mg/ml) for 1, 3, 6, 12, 24,

48, 72 and 96 h, and then fixed in 4% paraformaldehyde (PFA) for

immunofluorescence analysis, or homogenized to obtain protein

extracts. Untreated control tissue (both for microscopy imaging

and for molecular analysis) was incubated for identical periods of

time as treated cultures.

BV-2 culture
BV-2 cells were generously provided by Prof Antonio Celada

(IRB, Barcelona, Spain) [9] and were maintained in DMEM

containing 5% heat inactivated FBS, 4mM L-Glutamine (SAFC

biosciences), 20 mM Hepes (Sigma) and appropriate antibiotics at

37uC in a humidified chamber with 5% C02. Before treatment

cells were washed twice with DMEM, then incubated 6, 12 or

24 h in 10 ml of serum-free medium containing 100 ng/ml LPS

(Sigma L4391) and different concentrations of Allopurinol (100

mM or 1 mM).

Immunofluorescence microscopy
Cerebellar slices were fixed with 4% paraformaldehyde (PFA)

for 40 min, washed with PBS for 10 min, and blocked at RT for

2 h in 10% normal goat serum (NGS: Vector Laboratories,

Burlingame, USA) and 0.5% Triton X-100 in PBS. The slices

were incubated overnight at 4uC with the distinct primary

antibodies (Table 1) in blocking solution (10% NGS and 0.3%

Table 1. List of primary antibodies used for immunofluorescence studies.

Antigen Description Dilution Company

MHCII Major Histocompatibility Complex class II: rat anti-mouse MHC class II (I-A)
monoclonal antibody

1:300 Chemicon

CD11b/OX42 mouse anti-rat CD11b 1:150 Serotec

NfL Neurofilament light C28E10, rabbit mAb 1:500 Cell Signaling

NfH Neurofilament heavy (phosphorylated and non-phosphorylated NfH):
rabbit polyclonal antiserum against the 200 kD Neurofilament Heavy. Ref. Ab81351

1:200 AbCam

SMI32 non-phosphorylated neurofilament heavy SMI32 1:200 Stenberg

MBP Myelin Basic Protein: rat anti-MBP (82-87) antibody 1:200 Serotec

NeuN Neuronal Nuclei: anti-NeuN mouse mAb 1:500 Chemicon

iNOS Inducible nitric oxide synthase: purified rabbit anti-iNOS/NOS type II 1:200 BD Bioscience

COXI Mitochondrial Complex IV subunit I monoclonal antibody COXI 1:200 MitoScience

Casp3 Caspase 3: anti-Casp3 rabbit 1:300 Cell Signaling

Iba1 Ionized calcium binding adaptor molecule 1: anti-Iba 1, rabbit 1:400 Wako

Nrf2 Nrf2 (C-20) 1:75 Santa Cruz

doi:10.1371/journal.pone.0054722.t001
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Triton X-100 in PBS). After further washing, the slices were

incubated in blocking solution containing the secondary antibody

mixture prior to three washes with PBS. The secondary antibodies

used were mouse IgG Cy2-linked, rabbit IgG Cy3-linked (from

goat, 1:200, GE Healthcare, Freiburg, Germany) and goat anti-rat

IgG Alexa Fluor 488 (1:200, Molecular Probes, Eugene, OR).

Propidium iodide (Fluka) was used at 5 mg/ml for 2 h at 37uC and

5% CO2. The slices were mounted in Gel/Mount anti-fading

mounting medium (Biomeda, Foster City, CA) and pictures were

made by confocal scanning microscopy from single images all

through the whole tissue (but avoiding the surface of the culture in

contact with air) (Zeiss LSM 510). Demyelination and axonal loss

were quantified as described elsewhere [10,11]. Briefly, demye-

lination was quantified as the percentage of axons stained with

NfL with MBP surrounding sheaths respect to the total number of

axons (without MBP sheaths). Axonal loss was quantified as the

percentage of axons stained with non-phosphorylated neurofila-

ments (SMI32) respect to the total number of axons (NfH:

phosphorylated and non-phosporylated neurofilaments).

Electron microscopy
The cerebellar slices were fixed for 24 h in 2% PFA and 2.5%

glutaraldehyde in PBS 0.1 M at 4uC. Then, they were washed in

PBS 0.1 M for 12 h before post-fixation treatment with 2%

osmium tetroxide in PBS 0.1 M for 1 h at 4uC, followed by

posterior dehydration and inclusion in Epoxy embedding medium

(EPON). Ultra-thin sections were stained with 1% uranylacetate

and lead citrate solution. Samples were observed with a Tecnai

SPIRIT Transmision Electron Microscope (FEI Company,

Eindhoven, The Netherlands) working at an acceleration voltage

of 120 KV. Images were acquired with a Megaview III camera

and digitized with the program iTEM (Soft Imaging System).

TUNEL assay
Tissues sections, fixed with 4% PFA, were permeabilized with

1.5% Triton X-100 (in PBS) overnight at 4uC. Then the solution

was removed to add sodium citrate solution (0.1% in H2O) 1 h at

RT. The detection of cells with DNA-strand breaks was performed

by the TUNEL labelling method using terminal transferase

recombinant and the Fluorescein 212-dUTP (ROCHE) for 2h

at 37uC. The reaction was stopped with 20 mM EGTA and the

sections were washed 2 times with PBS. The labeled slides were

analyzed by confocal microscopy (Olympus FV1000). In addition,

for cell death quantification, nuclei were stained with 0.5 mg/mL

of Hoechst 33342. Hoechst stained nuclei were scored as number

of total cells and TUNEL positives cells were scored as dead.

Active caspase-3 immunofluorescence
Cultures were rinsed with PBS at RT and fixed in 4% PFA for

30 min. They were then washed twice with PBS and permeabi-

lized and blocked with 3% FBS and 0.1% Triton X-100 in PBS for

60 min. Cultures were incubated overnight at 4uC with rabbit

polyclonal anti-cleaved caspase-3 (Cell Signaling) diluted 1:150,

rinsed three times with PBS, and incubated with Alexa Fluor 594-

conjugated anti-rabbit secondary antibodies (Molecular Probes,

Eugene, OR) diluted 1:250 for 1 h at RT and protected from light.

Finally, cells were stained with 0.05 mg/ml Hoechst 33258 for

30 min. For double staining Casp3/MBP the cultures were

permeabilized as describe above and incubated overnight at 4uC
with polyclonal anti-cleaved caspase-3 and rat anti-MBP (1:200).

Alexa Fluor 546-conjugated anti-rabbit and 488-conjugated anti-

rat secondary antibodies were used.

ELISA
Mouse cerebellar organotypic cultures were stimulated with

LPS for different periods of time (0, 3, 6, 12, 24, 48, 72 and

96 hrs), or with LPS plus IFN-b (1000U/ml: Calbiochem) or

Allopurinol (100 mM or 1 mM) and the culture supernatants were

collected to quantify the secreted IL-1b, TNF-a and IL-6. Mouse

ELISA Kits were used according to the manufacturer’s instruc-

tions (eBioscience, San Diego, CA, USA).

Western Blots
Three cerebellar slices per group were used for analysis.

Western-blots were performed as previously described [12].

Briefly, total protein (10 mg) from cerebellar slices was separated

by SDS-polyacrylamide gel electrophoresis, transferred onto a

nitrocellulose membrane and hybridized for 2 h or overnight with

primary antibodies diluted in the same blocking buffer: mouse

anti-CNPase (29,39-cyclic-nucleotide 39-phosphodiesterase) 1:500

(Abcam), rabbit anti-iNOS (inducible Nitric Oxide Synthase)

1:200 (BD Bioscience). Protein load was assessed and normalized

using Ponceau S staining. Antibody binding was detected with

HRP-conjugated anti-mouse or anti-rabbit secondary antibodies

(Cell Signaling) used at a concentration of 1:2,000.

ROS Assays
ROS were assayed with H2DCFDA (50 mM, Invitrogen) added

to the cerebellar organotypic cultures for 1 hour at 37uC.

Unincorporated H2DCFDA was removed by washing the slices

twice with PBS and the fluorescence was measured on a

spectrofluorometer after excitation at 485 nm and emission at

535 nm.

Blocking TNF-a using the recombinant Fc-TNFR1
construct

Fc-TNFR1 was produced as described previously [13]. After

7 days in culture the Fc-TNFR1 construct (Fc-TNFR1: 1/50

dilution) was added 2 h before challenging the cultures with

human TNF-a at 20 and 40 ng/ml. Samples were collected 24

and 48 h after LPS stimulation, fixed in 4% PFA for 45 minutes

and stored at 4uC in PBS-azide until immunostaining was

performed.

MTT assay
The MTT assay was performed 24 and 48 h after the TNFa

challenge to assess cell survival in the organotypic tissue after

exposure to Fc-TNFR1 and prior to the TNF-a challenge. The

results provided us with the optimal concentration of Fc-TNFR1

required to block endogenous TNF-a. MTT (50 ml, final

concentration 0.5 mg/ml) was added to each well and the tissue

was incubated for 3 h at 37uC. The tissue was recovered in 0.1 M

HCl 2-propanol, incubated again for 25 minutes at room

temperature and centrifuged at maximum speed for 3 min. The

supernantants were analyzed by spectrophotometer at 570 nm.

Quantitative PCR (qPCR)
Three cerebellar slices per group were used for analysis. RNA

was extracted following the manufacturer’s instructions (Ma-

cherey-Nagel) and quantified with Nanodrop. RNA (100 ng) was

reverse-transcribed to cDNA using random primers according to

the manufacturer’s instructions (Applied Biosystems). Subsequent-

ly, qPCR was performed with the Supermix for SsoFast EvaGreen

(Biorad) on a 7500 Fast Real-Time PCR System (Applied

Biosystems) and the qPCR QuantiTect Primer Assay were

performed for each of the target genes (Qiagen). The expression

Cerebellar Culture Model of Neuroinflammation
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of the transcripts of interest was normalized to that of endogenous

HPRT1, and the data expressed relative to the mean expression in

the untreated control group.

Statistical analysis
All experiments were performed at least three times, and control

cultures were time-matched with testing cultures. The values were

expressed as the means 6 SEM. The Student’s t-tests (in Fig. 1, 2,

3 and Supp. Fig. S1 and S3) or ANOVA (in Fig. 4, 5, 6 and 7)

were used to determine statistical significance and all analyses were

performed using SPSS 15.0 software (IBM).

Results

LPS induces microglia activation in mice cerebellar
organotypic cultures

In order to reproduce microglia activation as one of the

mechanisms present in neuroinflammation, cerebellar organotypic

cultures were challenged with LPS. First, we determined the

concentration and timing of LPS needed to induce microglia

activation by treating the cultures for 24 h with different

concentration of LPS (5, 10, 15 and 20 mg/ml), and analyzing

the kinetics of IL-1b, TNF-a and IL-6 release over 96 h by ELISA

(Supp. Fig. S1). When cultures were challenged with doses up to

15 mg/ml, LPS induced a dose-dependent production of pro-

inflammatory cytokines, such as IL-1b (Supp. Fig. S1A). Peak

levels of secreted TNF-a, IL-6 and IL-1b were observed 3, 12 and

24 h after LPS challenge, respectively. While the release of IL-1b
was transient, constant high levels of TNF-a and IL-6 were

secreted from 3 h up to the last measurement at 96 h (approx-

imately 500 pg/ml and 1800 pg/ml, respectively) (Supp.

Fig. S1B). To assess microglia activation, organotypic cultures

were stained with markers of activated microglia such as MHCII

and OX42 [14]. We observed the presence of amoeboid shaped

microglial cells, with enhanced MHC-II and OX42 expression

24 h after LPS challenge (Supp. Fig. S1C), both features indicative

of microglial activation. We did not observe MHC-II and OX42

Figure 1. Microglial activation induces demyelination in mouse cerebellar cultures. A) Cerebellar cultures were stimulated with LPS
(15 mg/ml) for different periods of time (0 to 96 h) and CNPase expression was assessed by Western-blot. Protein expression was quantified and
normalized to the total protein loaded, and the results are expressed as a percentage with respect to the controls (100%). Error bars indicate the
standard error. **P,0.01. B) Immunofluorescence for NfH (red) and MBP (green) in cerebellar cultures treated with LPS (15 mg/ml: panels d-f and k-m)
or control slices (Ctrl, panels a-c and g-i). Panels g-m show a higher magnification (660) of images in a-f (white boxes in panels a-f). Scale bars
= 100 mm (panels a-f) and 5 mm (panels g-m). The graph represent the percentage of myelinated axons (double staining for MBP and NfH) compared
to unmyelinated axons (NfH). C) Cultures were treated with LPS for 24h and then demyelination was analyzed by electron microscopy. D) Cerebellar
cultures were treated with LPS (15 mg/ml) for 24 h and then immunostained for MBP/Casp3 or NeuN/Casp3 colabeling. Scale bar = 10 mm. The
graphs represent the percentage of cell death by quantifying the co-localization of active Casp3 immunofluorescence in conjunction with MBP or
NeuN staining. Student’s t-test was used to determine statistical significance.
doi:10.1371/journal.pone.0054722.g001
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positive cells in the control cultures at the same time point (data

not shown).

Activation of microglia by LPS induces demyelination
and oligodendrocyte death

To determine whether neuroinflammation induces demyelin-

ation in the cerebellar organotypic model, we analyzed CNPase

protein expression in Western-blot. Cultures were grown for 7

DIV to allow significant myelination and then exposed to LPS

(15 mg/ml) for 1, 3, 6, 12, 24, 48, 72 and 96 h, which produced a

40% loss of CNPase protein after 96 h, which had fallen

significantly by 24 h (Fig. 1A). Slices were also counterstained

with NfL and MBP antibodies (Fig. 1B) for different times after

LPS treatment. We observed significant demyelination at 24 h,

revealed as a decrease in the intensity of myelin immunoreactivity

at different magnifications that was maintained until 96 h (Fig. 1B

and Supp. Fig. S2). The 24 h time point was therefore used as

reference in all subsequent demyelination experiments. Confocal

analysis revealed only a few myelinated axons (Fig. 1B, panel m) in

LPS-challenged cultures when compared to time-matched con-

trols. In cultures treated with LPS, the myelin staining appeared

punctuate and sharp, a hallmark of myelin damage. CNPase

staining revealed a similar profile of demyelination as MBP

staining (data not shown). In response to LPS treatment there was

an approximately 2-fold decrease in MBP staining compared to

time-matched control tissue (Fig. 1B, graph). Demyelination after

LPS challenge was confirmed by electron microscopy (Fig. 1C).

To determine whether LPS stimulation induced the cell death,

cultures were exposed to LPS (15 mg/ml) for 24 h, and stained for

activated (cleaved) caspase 3 (Fig. 1D and Supp. Fig. S3B). LPS

treatment enhanced glia cell death that was mainly involving

oligodendrocytes, revealed by an increased number of MBP/

Casp3-positive cells (Fig. 1D). Evidence of oligodendrocytes cell

death was also obtained when the cultures were labeled with

propidium iodide (PI) for the last 2 h, revealing an increased

number of MBP/PI-positive cells (Supp Fig. S3A), although some

other glial cell types cannot be excluded. In contrast, only a few

neurons died in the grey matter, as revealed by NeuN/Casp3,

NeuN/PI and Hoechst/Casp3 co-labeling (Fig. 1D and Supp.

Fig. S3A and B). These findings indicate that exposure to LPS

induced significant cell death in the white matter, and is consistent

with oligodendrocyte cell death seen in the LPS model of optic

nerve injury [15].

LPS induces oxidative stress and axonal damage in
mouse cerebellar cultures

To analyze whether LPS induce oxidative stress in mice

organotypic cultures, we quantified iNOS expression and ROS

production at different times after LPS challenge (0 to 96 h, Fig. 2).

Western blot analysis showed that LPS increased levels of iNOS

protein peaking at 12 to 24 h after challenge and decreased

subsequently up to the study end-point (96 h, Fig. 2A). Further-

more, using fluorescent assay with H2DCFDA we observed a

100% and 40% increase in ROS production 12 h and 24 h after

the LPS challenge, respectively (Fig. 2B). To verify whether the

actual producer cells of iNOS were microglia or astrocytes, the

cultures were immunostained for iNOS and the microglial marker

Iba1 after LPS stimulation. As expected, in the slices treated with

LPS, iNOS was mainly expressed by microglia cells (Fig. 2C).

Presence of axonal damage was assessed by double immuno-

staining for both total (phosphorylated and non-phosphorylated)

NfH and non-phosphorylated NfH (SMI32; Fig. 3A). In response

to LPS treatment, non-phosphorylated NfH was found to

Figure 2. Microglial activation by LPS induces oxidative stress
in cerebellar cultures. A) iNOS expression after LPS challenge:
Western-blot analysis of iNOS expression in cerebellar cultures after LPS
stimulation (15 mg/ml). Band intensity was calculated by densitometry
and expressed as a percentage in the graph. The change in iNOS
expression was calculated with respect to control (untreated cultures)
and normalized with respect to total protein. Error bars indicate the
standard error. ***P,0.001. B) ROS production after LPS challenge:
cerebellar cultures were treated with LPS for different periods of time
and ROS generation was measured by spectrofluorometry. Values in the
bar graph represent arbitrary units and the error bars indicate the
standard error. *P,0.05. Statistical analysis was performed using
Student’s t-test.C) Expression of iNOS by activated microglia: Cerebellar
cultures were treated with LPS for 24 h and immunostainined for Iba1
(red, panels a and d) and iNOS (green, panels b and e) in organotypic
cultures treated with LPS (15 mg/ml) for 24 h. Panels c and f shows the
merged signals. Inset shows an enlarged image from panel f. Scale bar
= 10 mm.
doi:10.1371/journal.pone.0054722.g002
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accumulate in the neurofilaments (arrows in Fig. 3A panel h) with

a 4-fold increase at 24 h compared to total NfH, suggesting

presence of axonal dysfunction (Fig. 3A, panel b). Furthermore,

axonal dysfunction was visible in slices challenged with LPS by

means of immunostaining for NfL and MBP, showing the

formation of swollen structures (beading or spheroids; arrows in

Fig. 3B, panel c and Supp. Fig. S2) indicating impaired axonal

transport, as well as with axonal transection (end-bulbs; arrow-

heads in Fig. 3A, panel c and Supp. Fig. S2) [1]. Based on our

results showing maximum axonal damage by 24 h after LPS

challenge, this time point was used for assessing axonal damage.

Finally, we analyzed the changes in the distribution of axonal

mitochondria by staining the respiratory chain complex IV

subunit-I (COX-I) after stimulation with LPS (15 mg/ml) for

24 h (Fig. 3 C). We observed an accumulation of COX-I labeled

mitochondria in the spherical axon bulbs, indicative of altered

mitochondrial transport (Fig. 3C, arrows in panel f). No such

accumulation of mitochondria was observed in the time-matched

control cultures (Fig. 3C, panel c).

Contribution of oxidative stress to axonal and myelin
damage

To assess the contribution of oxidative stress to axonal damage,

we compared the effect of LPS induced oxidative stress with that

induced by hydrogen peroxide (H2O2), a promoter of free radicals,

in the cerebellar culture model. ROS production induced by LPS

after 24 h was 3-fold higher than that in time-matched control

slices and 2-fold higher than that induced by a low dose of H2O2.

Indeed, LPS induced a 36% and 15% increase in iNOS protein

expression with respect to control slices and those treated with a

low dose of H2O2 (Fig. 4A). Furthermore, demyelination was

evident in both LPS and H2O2-treated samples, as detected in

CNPase Western-blots (Fig. 4A), and by immunofluorescence for

NfL and MBP (Fig. 4B). The extensive loss of myelin generated by

LPS treatment was associated with greater axonal swelling than in

control or H2O2–treated samples (Fig 4B panels f and i). Axonal

damage was greater 24 h after the LPS challenge when compared

with H2O2 treatment, as determined by specific staining for anti-

non-phosphorylated NfH (Fig. 4C).

The microglia activation inhibitors ethyl pyruvate and
allopurinol decreased demyelination and axonal damage

To study the effect of microglia activation on axonal damage

and demyelination in this model, we tested the effect of the iNOS

inhibitor ethyl pyruvate (EP) [16,17]. EP is a stable form of

pyruvate, a metabolite with strong anti-oxidant and scavenger

activity, which inhibits expression of iNOS. EP inhibits JAK2

phosphorylation, which in turn inhibits the phosphorylation of

STAT1 and STAT3 in LPS-stimulated microglia and as a

consequence, suppresses the expression of the STAT-responsive

genes iNOS and cyclooxygenase-2. In addition, EP reduces LPS-

induced ROS production by inhibiting gp91phox transcription

Figure 3. Microglial activation induces axonal damage in
mouse cerebellar cultures. A) Immunostaining (a) for total
neurofilament-heavy (NfH; red) and dephosphorylated NfH (SMI32;
green). Panels a-c show control slices (Ctrl) while LPS treated slices are
shown in panels d-i. Panels g-i show higher magnification images of d-f.
Scale bar = 20 mm (panels a-f) and 10 mm (panels g-i). Graph (b):

percentage of non-phosphorylated neurofilament with respect to total
neurofilaments in cerebellar cultures stimulated for 24 h with LPS. Error
bars indicate the standard error. **P,0.01. Student’s t-test was used to
determine statistical significance.B) Immunostaining for NfL (red) and
MBP (green) in the same conditions as in A. Arrows indicate axonal
beads and arrowheads indicate axonal transection (end-bulbs). Scale
bar = 5 mm. C) Immunostaining for NfL (red) and Complex IV subunit-I
(COX I, green): Neurofilament staining revealed the presence of axonal
beads. Arrows indicate mitochondrial accumulation in neurofilaments.
Scale bar = 5 mm.
doi:10.1371/journal.pone.0054722.g003
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and Rac1 activity, suppressing the Rac1-JAK-STAT signaling

cascade [16]. Figure 4A shows that in the presence of EP, ROS

production induced by LPS returned to levels similar to those of

untreated controls, which was associated with decreased iNOS

activation. Axonal damage, as determined by the increase in non-

phosphorylated NfH, was also reduced to control levels in the

presence of EP (Fig. 4C). Moreover, CNPase or MBP protein

levels were preserved by EP treatment (Fig. 4A and 4B). In

summary, EP decreased demyelination and axonal damage due to

the inhibition of microglia activation.

Second, we treated LPS challenged cultures with the xanthine

oxidase inhibitor and radical-free scavenger Allopurinol [18]. This

compound is a ROS scavenger that does not affect MAPK

activation in microglia [18]. We tested different concentration of

Allopurinol in the microglia cell line BV2 treated with LPS and

measured the release of pro-inflammatory cytokines and ROS

production. Allopurinol significantly decreased ROS levels with-

out significantly modifying IL-1b, IL-6 and TNF-a secretion (data

not shown). Cerebellar cultures were pretreated for 2 h with

allopurinol using two different concentrations (100 mM and

1 mM) and then stimulated with 15 mg/ml of LPS for 24 h. We

found a significant ROS decrease as quantified by H2DCFDA

assay in the cultures treated with allopurinol 1 mM after LPS

challenge compared with time-matched cultures stimulated with

LPS (Fig. 5A). Moreover, to verify that allopurinol does not

interfere with microglia activation we tested IL-1b, IL-6 and TNF-

a release by ELISA assay. Allopurinol was not able to block

cytokine release induced by LPS to a significant extent when we

Figure 4. Role of Ethyl pyruvate in preventing microglia activation in cerebellar cultures. A) Comparative effects of LPS, H2O2 and Ethyl
pyruvate (EP) in ROS production, iNOS expression and CNPs levels: Cerebellar cultures were left untreated (Ctrl) or treated with H2O2 (1 mM), LPS
(15 mg/ml), LPS plus EP (10 mM), or H2O2 plus EP. ROS were measured by spectrofluorometry using H2DCFDA and expressed as arbitrary units. Total
protein was extracted and analyzed in Western blots probed for iNOS and CNPase. The bands were quantified by densitometry, normalized to the
total protein and expressed as a percentage with respect to the control. Error bars indicate the standard error. *P,0.05, **P,0.01 and ***P. B)
Comparative effects of LPS, H2O2 and EP in demyelination and axonal damage in cerebellar cultures: Immunostaining for NfL (red, panels a, d, g, k and
n) and MBP (green, panels b, e, h, l and o) in untreated organotypic cultures (control; panels a-c) or those treated for 24 h with H2O2 (panels d-f), LPS
(panels g-i), LPS plus EP (panels k-m) or H2O2 plus EP (panels n-p). Co-localization is shown in the merged panels c, f, i, m and p. Insets show a higher
magnification of the areas in panels f and i. Scale bar = 10 mm. The graphic below was shows the percentage of myelinated neurofilament. Asterisks
indicate the standard error calculated respect to the control. **P,0.01 and ***P. C) Role of LPS, H2O2 and EP in presence of non-phosphorilated
neurofilaments (SMI32): SMI32 (green) staining in the same conditions as in B. Arrows indicates SMI32 accumulation in axons. Scale bar = 10 mm. The
graph below shows the percentage of non-phosphorylated neurofilament with respect to total neurofilaments in cerebellar cultures stimulated for
24 hrs with LPS. Asterisks indicate the standard error calculated respect to the control (statistical analysis was performed using ANOVA test) **P,0.01.
doi:10.1371/journal.pone.0054722.g004

Cerebellar Culture Model of Neuroinflammation

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e54722



treated the cultures with 100 mM of allopurinol. In contrast,

allopurinol blocks cytokine release at 1 mM (Fig. 5A). However,

when we compared IL-1b, IL-6 and TNF-a levels from cultures

treated with allopurinol (1 mM) after LPS challenge with time-

matched control cultures (without LPS) we found a significant

increase of cytokines release (Fig. 5A). These results suggest that

allopurinol was not able to block microglia activation completely,

even if it did block ROS production. Finally, we assessed the effect

of microglia activation modulated by allopurinol on demyelination

and axonal damage. After 24 h of treatment with LPS in presence

or absence of allopurinol, cultures were stained for neurofilament

light (NfL) and MBP (Fig. 5B, left panels). Allopurinol used at

1 mM significantly prevented axonal damage (Fig. 5B, right

panels) but did not decrease demyelination (Fig. 5B, see

quantification in graphs below).

Blocking TNF-a prevents partially demyelination but not
oxidative stress-mediated axonal damage

During brain inflammation, pro-inflammatory cytokines and

oxidative stress may differentially contribute to axon and myelin

damage. To investigate the contribution of pro-inflammatory

cytokines such as TNF-a to tissue damage, TNF-a activity was

inhibited using a blocking recombinant protein (Fc-TNFR1), and

the levels of oxidative stress and axonal and myelin damage in

cultures were measured. Demyelination was significantly attenu-

ated in cerebellar cultures pretreated with Fc-TNFR1 2 h before

the LPS challenge (Fig. 6A), visible as a significant increase in the

percentage of myelinated axons in the Fc-TNFR1 group

compared to the LPS group (Fig. 6B). We quantified oligoden-

drocyte cell death by double staining with MBP/PI. We observed

that Fc-TNFR1 treated cultures had a significantly decrease of

oligodendrocyte death compared to the cultures treated with LPS

(Fig. 6B). These effects were present without modification of iNOS

expression (Fig. 6C). In summary, in the cerebellar culture model

of neuroinflammation, myelin damage and oligodendrocyte loss

were promoted by TNF-a.

Role of interferon-beta therapy in preventing oxidative
stress-mediated axonal damage

Interferon-beta (IFN-b) is the most common treatment for MS,

with a pleiotropic mechanism of action, preventing CNS damage.

However, the precise role of IFN-b in controlling oxidative stress

in MS is uncertain, particularly given that type I IFN activates

iNOS in monocytes and promotes ROS generation [19,20], while

it can also downregulate iNOS expression in other settings [21].

First, we assessed the effects of IFN-b in the release of

proinflammatory cytokines by LPS. Cytokine release was signif-

icantly attenuated in presence of IFN-b (Fig. 7A). Specifically,

IFN-b has a more profound and early effect on IL-1b than on IL-6

and TNF-a release. Furthermore, cultures treated with IFN-b had

significantly less axonal damage, as revealed by a reduction in the

Figure 5. Effects of allopurinol in microglia mediated axonal
damage and demyelination. A) Comparative effect of LPS and
allopurinol (ALO) in cytokine expression, and ROS production by
cultures: cerebellar cultures were treated with LPS in presence or

absence of ALO (ALO1: 100 mM or ALO2: 1 mM). At 24 h ROS were
measured and expressed as arbitrary units and IL-1b, TNF-a and IL6
release were measured by ELISA. Asterisks indicate the standard error
calculated respect to the control. *P,0.05, and ***P. B) Comparative
effect of LPS and allopurinol in the induction of axonal damage (non-
phosphorilated neurofilaments: Immunostaining for NFL/MBP and non-
phosporilated neurofilaments (SMI32) in cultures using the same
condition as in D. Scale bar = 10 mm. The graph below shows the
quantification of demyelinated and non-phosporilated neurofilamentes.
Error bars indicate the standard error. *P,0.05, **P,0.01 (ANOVA test).
doi:10.1371/journal.pone.0054722.g005
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Figure 6. TNF-a blockade modulates microglia activation and demyelination. A) Role of TNFa blockade after LPS stimulation in
demyelination of cerebellar cultures: Immunofluorescence for NfL (red) and MBP (green) in cultures untreated (ctrl, panels a-c), cultures treated with
LPS (panels d-f), LPS plus control Fc (panels g-i) or LPS plus Fc-TNFR1 (15 mg/ml, panels k-m) for 24 h,. Scale bar = 5 mm B) The graph shows the
percentage of demyelinated neurofilaments (upper graph) and the number of death oligodendrocytes (PI/MBP-positive cells) (botton graph).
Asterisks indicate the standard error calculated respect to the control or LPS-treated cultures. *P,0.05, **P,0.01 and ***P,0.001 (ANOVA test). C)
Role of TNF-a blockade in microglia activation: Immunostaining for Iba1 (red) and iNOS (green) in the same condition as in A. Scale bar = 5 mm.
doi:10.1371/journal.pone.0054722.g006
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Figure 7. IFN-beta decreases microglia activation, cytokine release, oxidative stress and prevents axonal damage. A) IL-1b, TNF-a and
IL-6 release in cerebellar cultures. Slices were treated with IFN-b for 24 h and then stimulated with LPS (15 mg/ml) for different periods of time (0, 1, 3,
6, 12, 24 h). IL-1b, TNF-a and IL-6 were quantified by ELISA. Cytokine release into the medium is expressed as pg/ml and the error bars indicate the
standard error. **P,0.01 and ***P,0.001. B) Effects of IFN-b in LPS induced axonal damage: Immunostaining for NfH (red) and SMI32 (green) in
cultures without LPS treatment (ctrl panels a-c), treated with LPS (panels d-f), or LPS plus IFN-b for 24 h (panels g-i). Scale bar = 10 mm. The graph
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percentage of non-phosphorylated neurofilaments in cultures

treated with IFN-b after LPS challenge (Fig. 7B).

In order to assess the effect of IFN-b on oxidative stress, we

analyzed iNOS and Nrf2 expression. Pretreatment with IFN-b
prior to the LPS challenge reduced LPS-induced iNOS expression,

as determined both by RT-PCR (Fig. 7C) and by increasing the

protein levels in the tissue and translocation to nucleus (Fig. 7D).

Nrf2 is a transcription factor that regulates the expression of many

phase II detoxifying and antioxidant enzymes. The increase of

Nrf2 is a molecular sensor of oxidative stress and its decrease

would suggest reduced oxidative stress. Thus, we observed that

LPS-induced oxidative stress triggers translocation of Nrf2 in the

nucleus, and that IFN-b treatment induced 50% decrease in Nrf2

translocation (Fig. 7D). Taken together, these results indicate that

IFN-b displays an anti-oxidant and anti-inflammatory role in the

mice cerebellar model and also highlights the usefulness of this

model for monitoring the effects of MS therapies.

Discussion

The LPS model of neuroinflammation in cerebellar cultures

[22] recapitulates several events that occur during brain inflam-

mation, including microglia activation followed by cytokine release

and oxidative stress, demyelination and axonal damage. Using this

model we have evaluated the effect of microglia activation on

demyelination and axonal damage in cerebellum tissue. Moreover,

we have analyzed whether the murine organotypic culture model

represents an effective tool to study the effects of drugs used in

neuroinflammatory diseases by using IFN-b as an example. Our

results indicate that LPS induced microglia activation in

organotypic cultures, as observed by presence of microglial cells

with amoeboid shape that expressed MHC-II and OX42, the

release of pro-inflammatory cytokines, such as IL-1b, IL-6 and

TNF-a and the induction of oxidative stress. Microglia activation

was associated with oligodendrocyte death and myelin and axonal

damage. Demyelination occurs in cerebellar cultures challenged

with LPS, although to a lesser extent than in models of

demyelination induced by lysolecithin [23], passive transfer of

anti-MOG antibodies in cerebellar cultures [24], or LPS challenge

to optic nerve cultures [15]. We need to keep in mind that

cerebellar tissue appears to be more sensitive to oxidative damage

than other brain regions [25]. Cerebellar cultures preserve to a

large extent the structure of the brain tissue, and all the cell

populations of interest (microglia, astrocytes, neurons and axons,

myelin and oligodendrocytes) when compared with spinal cord,

retina or hippocampus cultures. The analysis of the effects of

neuroinflammation elicited by LPS facilitates dissection of the

pathogenic process present in brain inflammatory diseases. In vivo,

LPS injection in the spinal cord has been shown to induce

significant immune cell recruitment to the site of injection, with

prominent demyelination that develops over 2 weeks and to a

lesser extent axonal damage, followed by remyelination by

Schwann cells 4 weeks later [26]. Although the hematogenous

inflammation typical of MS and other inflammatory brain diseases

does not develop in this model, the effect of activating the innate

immune system within the brain is recapitulated by the presence of

microglia activation, which appears to be critical for the long-term

axonal damage in MS and degenerative diseases [27].

In the cerebellar cultures stimulated with LPS, we observed

ROS production and iNOS expression in activated microglia

indicating induction of oxidative stress. LPS activates microglia

and astrocytes by binding to TLR4, promoting the induction of

iNOS, which in turn produces ROS [28]. Activation of microglia

and astrocytes occurs at different stage in several neurodegener-

ative diseases. In experimental autoimmune encephalomyelitis

(EAE), microglia proliferate at the initial stage while astrocytes

start to respond more markedly at the late recovery stage [29]. In

general, activated astrocytes also express iNOS and the levels of

iNOS observed in the organotypic cultures challenged with LPS

probably also depend on astrocytes. Oligodendrocytes and myelin

are highly sensitive to NO, which provokes the deregulation of the

mitochondrial electron transport chain in association with the

translocation of the apoptosis inducing factor (AIF) [30] and the

production of peroxynitrite [31]. The reduction, but not complete

suppression, of demyelination by iNOS inhibitors suggests that

oligodendrocytes are damaged by other mechanisms triggered

through the activation of TLR4 by LPS. Indeed, TNF-a and IL-

1b appear to mediate oligodendrocyte damage in mixed cultures

[15,32]. The requirement of a mixed glia environment suggests

that cytokines impair the glutamate-buffering capacity of astro-

cytes [33].

To evaluate the contribution of microglia activation on

demyelination and axonal degeneration we also may use of

chemical inhibitors of microglia activation such as EP or

allopurinol. Axonal damage was elicited by LPS-mediated

microglia activation as well as by H2O2-promoted oxidative stress.

Inhibition of iNOS expression by EP prevented myelin and axonal

damage whereas allopurinol preferentially prevented axonal loss,

but demyelination persists. In particular, allopurinol reduced

significantly the production of ROS and slightly the amount of

cytokines. The amount of cytokines still present after allopurinol

pre-treatment (.500 pg/ml for TNF-a, 100 pg/ml for IL-6 and

50 pg/ml for IL-1b) is sufficient to induce demyelination in the

cultures. Moreover, in the present model we found that following

inhibition of TNF-a, myelin damage and oligodendrocyte loss

were promoted by pro-inflammatory cytokines. However, we did

not blocked other pro-inflammatory cytokines and for this reason

we cannot rule out the contribution of other pro-inflammatory

cytokines to tissue damage.

Oxidative stress may contribute to axonal damage via several

mechanisms, including the impairment of mitochondrial function

due to the accumulation of mutations in mtDNA. In turn, this

leads to energetic failure, protein and lipid oxidation, and

microtubule degradation, thus impairing functions such as axonal

transport and structural support [1,3,34]. The axonal swelling and

mitochondria accumulation were pertinently present in the model

and were consistent with a disruption of microtubules by oxidative

stress and the subsequent blockade of axonal transport [6].

Moreover, demyelination enhances this effect due to the lack of

metabolic support provided by myelin in long axons [35,36].

Finally we have investigated the effect of IFN-b, a firmly

established first-line therapeutic agent for MS that prevents CNS

below shows the percentage of non-phosphorylated neurofilament with respect to total neurofilaments in cultures stimulated with LPS and treated
with IFN-b. C) Effects of IFN-b in microglia activation and iNOS expression: Immunofluorescence staining for Iba1 (red) and iNOS (green) in the same
conditions as B). iNOS levels were quantified by qPCR from cultures treated with LPS or LPS plus IFN-b: the graphs shown the fold increase over the
basal values (2), normalized to the expression of the HPRT1 housekeeping gene. Error bars indicate the standard error. *P,0.05. D) Effects of IFN-b in
Nrf2 nuclear translocation: Immunostaining for Nrf2 (red) and DAPI (blue) in cultures without LPS treatment (ctrl, panels a-c), treated with LPS (panels
d-f), or LPS plus IFN-b for 24 h (panels g-i). Arrows indicate Nrf2 accumulation in the nucleus. Representative images of double staining are shown.
Error bars indicate the standard error. **P,0.01. Scale bar = 5 mm. ANOVA test was used to determine statistical significance.
doi:10.1371/journal.pone.0054722.g007
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damage. Our model indicates that IFN-b decrease both the

expression of pro-inflammatory cytokines and oxidative stress, as

such contributing to axonal preservation. The occurrence of

oxidative damage coincided with increased levels of antioxidant

enzymes in cerebellar cultures treated with IFN-b, suggesting that

the antioxidant capacity is overwhelmed during a neuroinflam-

matory attack [37]. Several studies have also shown that IFN-b
inhibits cytokine-induced NO- or iNOS-synthesis in astrocytes,

which may contribute to its clinical efficacy [21,38,39]. In

contrast, Lieb et al [40] have shown no inhibitory effects of

IFN-b on iNOS in rat microglial cells. Moreover, studies in

murine macrophages have shown that IFN-b increased the iNOS

activity, thereby enhancing intracellular NO activity [20]. In our

culture system, IFN-b reduced iNOS expression supporting the

protective effect of IFN-b from oxidative stress. Endogenous

antioxidant enzymes are regulated by the transcription factor Nrf2

and upon exposure to ROS, Nrf2 translocates to the nucleus

where it binds to antioxidant response elements in genes coding for

antioxidant enzymes [41]. In organotypic cultures challenged with

LPS, translocation of Nrf2 into the nucleus was decreased when

the cultures were treated with IFN-b. We hypothesize that the

decrease in nuclear translocation of Nrf2 observed is probably due

to the ability of IFN-b to prevent oxidative stress.

In summary, our data underscore that in cerebellar organotypic

cultures challenged with LPS, microglial activation is sufficient to

release pro-inflammatory cytokines and induce oxidative stress,

damaging myelin and axons, even in the absence of lymphocytes

and hematogenous macrophages. These events were recapitulated

and dissected in this model, providing a tool to study tissue

damage MS and other inflammatory brain diseases, that might

reflect the progression of the disease in the absence of overt

inflammatory infiltrates. Moreover, this model permits the

mechanistic study of new treatments for MS and other neuroin-

flammatory disorders.

Supporting Information

Figure S1 LPS induces microglia activation in mouse
cerebellar cultures. A) dose-response curve of IL-1b release

measured by ELISA. Cerebellar cultures were stimulated with four

different concentrations of LPS for 24 h (5, 10, 15 and 20 mg/ml).

B) IL-1b, TNF-a and IL-6 release in cerebellar cultures. Slices

were stimulated with LPS (15 mg/ml) for different periods of time

(0, 1, 3, 6, 12, 24, 48, 72 and 96 h) and then analyzed by ELISA.

Cytokine release into the medium is expressed as pg/ml. Error

bars indicate the standard error. *P,0.05, **P,0.01 and

***P,0.001 (Student’s t-test). C) Immunostaining for markers of

microglia activation MHCII (a) and OX42 (b). Cultures were

stimulated with LPS (15 mg/ml) for 24 h and then stained with

antibodies against MHCII and OX42. Scale bars = 50 mm (a) and

10 mm (b).

(TIF)

Figure S2 Demyelination and impaired axonal trans-
port were maintained after 24 h of LPS treatment.
Cerebellar cultures were stimulated with LPS (15 mg/ml) for 0,

1, 3, 6, 12, 24, 48, 72 and 96 h, and stained for NfH (red) and

MBP (green). The time points 12 h and 96 h after LPS challenge

are shwon. Arrows indicate axonal beads and arrowheads indicate

axonal transection (end-bulbs). Scale bar = 10 mm.

(TIF)

Figure S3 Microglial activation induces oligodendrocyte
death in mouse cerebellar cultures. A) Cerebellar cultures

were treated with LPS (15 mg/ml) for 24 h and then immuno-

stained for MBP (green) or NeuN (blue) and counterstained with

propidium iodide (red). The graph shows the number of PI-MBP-

positive cells. Higher magnification images of white (g) and grey (h)

matter in cultures treated with LPS. Scale bar = 100 mm (panels a-

f) and 10 mm (panels g and h). B) Cerebellar cultures were

incubated for 24 h in the presence (LPS) or absence (Ctrl) of LPS

(15 mg/ml). Immunocytochemistry was performed to detect

activated (cleaved) caspase-3 labeling. Graphs show the percentage

of cell death by quantifying the co-localization of active Casp3

immunofluorescence in conjunction with Hoechst 33258 nuclear

staining. Asterisk indicates the standard error calculated respect to

the control. *P,0.05, **P,0.01 (Student’s t-test). Representative

images of double staining for active Casp3 (green) and Hoechst

(blue) are shown. Scale bar = 5 mm.

(TIF)

Acknowledgments

We would like to thank Ali Taubes for the English review.

Author Contributions

Conceived and designed the experiments: AdP PV JC. Performed the

experiments: AdP BM SR BFD MV OE NE. Analyzed the data: AdP KV

JC PV. Contributed reagents/materials/analysis tools: KV ER JC. Wrote

the paper: AdP KV JC PV.

References

1. Coleman M (2005) Axon degeneration mechanisms: commonality amid

diversity. Nat Rev Neurosci 6: 889–898.

2. Coleman MP, Perry VH (2002) Axon pathology in neurological disease: a

neglected therapeutic target. Trends Neurosci 25: 532–537.

3. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration.

Ann Neurol 58: 495–505.

4. Su KG, Banker G, Bourdette D, Forte M (2009) Axonal degeneration in

multiple sclerosis: the mitochondrial hypothesis. Curr Neurol Neurosci Rep 9:

411–417.

5. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-

neurodegenerative diseases: the need for antioxidants that penetrate the blood

brain barrier. Neuropharmacology 40: 959–975.

6. Roediger B, Armati PJ (2003) Oxidative stress induces axonal beading in

cultured human brain tissue. Neurobiol Dis 13: 222–229.

7. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic

cultures of nervous tissue. J Neurosci Methods 37: 173–182.

8. Dusart I, Airaksinen MS, Sotelo C (1997) Purkinje cell survival and axonal

regeneration are age dependent: an in vitro study. J Neurosci 17: 3710–3726.

9. Stansley B, Post J, Hensley K (2012) A comparative review of cell culture systems

for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation

9: 115.

10. Miron VE, Ludwin SK, Darlington PJ, Jarjour AA, Soliven B, et al. (2010)

Fingolimod (FTY720) enhances remyelination following demyelination of

organotypic cerebellar slices. Am J Pathol 176: 2682–2694.

11. Zhang H, Jarjour AA, Boyd A, Williams A (2011) Central nervous system

remyelination in culture – a tool for multiple sclerosis research. Exp Neurol 230:

138–148.

12. Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S, Inoges S, Lopez-

Diaz de Cerio A, et al. (2008) IL-10 suppressor activity and ex vivo Tr1 cell

function are impaired in multiple sclerosis. Eur J Immunol 38: 576–586.

13. Schneider P (2000) Production of recombinant TRAIL and TRAIL receptor: Fc

chimeric proteins. Methods Enzymol 322: 325–345.

14. Cavaliere F, Dinkel K, Reymann K (2005) Microglia response and P2 receptor

participation in oxygen/glucose deprivation-induced cortical damage. Neuro-

science 136: 615–623.

15. Sherwin C, Fern R (2005) Acute lipopolysaccharide-mediated injury in neonatal

white matter glia: role of TNF-alpha, IL-1beta, and calcium. J Immunol 175:

155–161.

16. Kim HS, Cho IH, Kim JE, Shin YJ, Jeon JH, et al. (2008) Ethyl pyruvate has an

anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in

activated microglia. Free Radic Biol Med 45: 950–963.

Cerebellar Culture Model of Neuroinflammation

PLOS ONE | www.plosone.org 12 February 2013 | Volume 8 | Issue 2 | e54722



17. Kao KK, Fink MP (2010) The biochemical basis for the anti-inflammatory and

cytoprotective actions of ethyl pyruvate and related compounds. Biochem
Pharmacol 80: 151–159.

18. Yang CS, Lee HM, Lee JY, Kim JA, Lee SJ, et al. (2007) Reactive oxygen

species and p47phox activation are essential for the Mycobacterium tubercu-
los is- induced pro-inf lammatory response in murine microgl ia.

J Neuroinflammation 4: 27.
19. Bogdan C, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate

immunity. Immunol Rev 173: 17–26.

20. Yao SY, Ljunggren-Rose A, Stratton CW, Mitchell WM, Sriram S (2001)
Regulation by IFN-beta of inducible nitric oxide synthase and interleukin-12/

p40 in murine macrophages cultured in the presence of Chlamydia pneumoniae
antigens. J Interferon Cytokine Res 21: 137–146.

21. Hua LL, Liu JS, Brosnan CF, Lee SC (1998) Selective inhibition of human glial
inducible nitric oxide synthase by interferon-beta: implications for multiple

sclerosis. Ann Neurol 43: 384–387.

22. Kim JY, Shen S, Dietz K, He Y, Howell O, et al. (2010) HDAC1 nuclear export
induced by pathological conditions is essential for the onset of axonal damage.

Nat Neurosci 13: 180–189.
23. Birgbauer E, Rao TS, Webb M (2004) Lysolecithin induces demyelination in

vitro in a cerebellar slice culture system. J Neurosci Res 78: 157–166.

24. Harrer MD, von Budingen HC, Stoppini L, Alliod C, Pouly S, et al. (2009) Live
imaging of remyelination after antibody-mediated demyelination in an ex-vivo

model for immune mediated CNS damage. Exp Neurol 216: 431–438.
25. Vladimirova O, O’Connor J, Cahill A, Alder H, Butunoi C, et al. (1998)

Oxidative damage to DNA in plaques of MS brains. Mult Scler 4: 413–418.
26. Felts PA, Woolston AM, Fernando HB, Asquith S, Gregson NA, et al. (2005)

Inflammation and primary demyelination induced by the intraspinal injection of

lipopolysaccharide. Brain 128: 1649–1666.
27. Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, et al. (2011)

Systemic inflammation induces axon injury during brain inflammation. Ann
Neurol 70: 932–942.

28. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, et al. (2002) The toll-

like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte
injury in the CNS. J Neurosci 22: 2478–2486.

29. Matsumoto Y, Ohmori K, Fujiwara M (1992) Microglial and astroglial reactions
to inflammatory lesions of experimental autoimmune encephalomyelitis in the

rat central nervous system. J Neuroimmunol 37: 23–33.

30. Baud O, Li J, Zhang Y, Neve RL, Volpe JJ, et al. (2004) Nitric oxide-induced

cell death in developing oligodendrocytes is associated with mitochondrial

dysfunction and apoptosis-inducing factor translocation. Eur J Neurosci 20:

1713–1726.

31. Jack C, Antel J, Bruck W, Kuhlmann T (2007) Contrasting potential of nitric

oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis.

Glia 55: 926–934.

32. Li J, Ramenaden ER, Peng J, Koito H, Volpe JJ, et al. (2008) Tumor necrosis

factor alpha mediates lipopolysaccharide-induced microglial toxicity to devel-

oping oligodendrocytes when astrocytes are present. J Neurosci 28: 5321–5330.

33. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW (2003) Interleukin-1beta

promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol

53: 588–595.

34. Counterman AE, D’Onofrio TG, Andrews AM, Weiss PS (2006) A physical

model of axonal damage due to oxidative stress. Proc Natl Acad Sci U S A 103:

5262–5266.

35. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon

function. Annu Rev Neurosci 31: 535–561.

36. Irvine KA, Blakemore WF (2008) Remyelination protects axons from

demyelination-associated axon degeneration. Brain 131: 1464–1477.

37. van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, et al. (2008)

Severe oxidative damage in multiple sclerosis lesions coincides with enhanced

antioxidant enzyme expression. Free Radic Biol Med 45: 1729–1737.

38. Guthikonda P, Baker J, Mattson DH (1998) Interferon-beta-1-b (IFN-B)

decreases induced nitric oxide (NO) production by a human astrocytoma cell

line. J Neuroimmunol 82: 133–139.

39. Stewart VC, Giovannoni G, Land JM, McDonald WI, Clark JB, et al. (1997)

Pretreatment of astrocytes with interferon-alpha/beta impairs interferon-gamma

induction of nitric oxide synthase. J Neurochem 68: 2547–2551.

40. Lieb K, Engels S, Fiebich BL (2003) Inhibition of LPS-induced iNOS and NO

synthesis in primary rat microglial cells. Neurochem Int 42: 131–137.

41. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, et al. (2008)

Nrf2-induced antioxidant protection: a promising target to counteract ROS-

mediated damage in neurodegenerative disease? Free Radic Biol Med 45: 1375–

1383.

Cerebellar Culture Model of Neuroinflammation

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e54722


