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1. Abbreviations 

AHN Adult hippocampal neurogenesis 

ANP Amplifying neural progenitor 

AP Anteroposterior 

Ara-C Cytosine β-D-arabinofuranoside 

BDNF Brain-derived neurotrophic factor 

BLBP Brain lipid-binding protein 

BMP Bone morphogenetic protein 

BrdU Bromodeoxyuridin 

BSA Bovine seroalbumin 

BSAc Acetylated bovine seroalbumin 

CA Cornu Ammonis 

CSF Cerebrospinal fluid 

DAPI 4′,6-diamidino-2-phenylindole 

DCX Doublecortin 

DG Dentate gyrus 

Dkk1 Dickkopf 1 

DV Dorsoventral 

EA Epileptiform activity 



Abbreviations 

4 

EC Entorhinal cortex 

ECS Electroconvulsive shock 

ECT Electroconvulsive therapy 

EGFR Epidermal growth factor receptor 

FGF-2 (bFGF) Fibroblast growth factor 2 

GABA γ-aminobutyric acid 

GC Granule cell 

GCL Granule cell layer 

GFAP Glial fibrillary acidic protein 

GFP Green fluorescent protein 

IEG Immediate early gene 

IGF Insulin growth factor 

IL Interleukin 

KA Kainic acid 

KO Knockout 

LL Laterolateral 

LPA Lysophosphatidic acid 

LPA1 LPA receptor 1 

LPS Lipopolysaccharide 

LTP Long-term potentiation 



Abbreviations 

5 

maLPA1 Málaga variant of LPA1-null 

ML Molecular layer 

MTLE Mesial temporal lobe epilepsy 

MTLE-a Intraamygdalar MTLE model 

MWM Morris water maze 

NB Neuroblast 

Nestin Neuroepithelial stem protein 

NMDA N-acetyl-D-aspartate 

NSC Neural stem cell 

OB Olfactory bulb 

OPC Oligodendrocyte progenitor cell 

PBS Phosphate-buffered saline 

PFA Paraformaldehyde 

PLP Periodate lysine PFA 

PSA-NCAM Polysialylated-neural cell adhesion molecule 

PV Parvalbumin 

QNP Quiescent neural progenitor 

RA Reactive astrocyte 

React-NSC Reactive NSC 

RMS Rostral migratory stream 



Abbreviations 

6 

Sal Saline 

Sal-a Intraamygdalar Sal model 

SE Status epilepticus 

sFRP3 Secreted Frizzled-related protein 

SGZ Subgranular zone 

Shh Sonic hedgehog 

SVZ Subventricular region 

TEM Transmission electron microscopy 

WT Wild type 

YFP Yellow fluorescent protein 
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2. Extracto/Abstract 

2.1. Extracto 

En la regulación de la neurogénesis del hipocampo adulto, un paso fundamental es la 

división de las células madre neurales (NSCs) ya que, tras activarse, se dividen varias 

veces consecutivas y se diferencian después en astrocitos. En esta tesis demostramos 

que aumentar su tasa de activación mediante hiperexcitación neuronal conduce a su 

agotamiento e incluso induce un cambio en su diferenciación. Tras provocar epilepsia 

directamente en el hipocampo de ratones, hemos observado que las NSCs aumentan su 

tasa de activación pero dejan de generar neuronas y sin embargo se transforman en 

NSCs reactivas (React-NSCs) que se diferencian en astrocitos reactivos (RAs). Hemos 

validado mediante el empleo de una cepa transgénica que la expresión del receptor 1 del 

ácido lisofosfatídico (LPA1) sirve como marcador para rastrear las React-NSCs durante 

su conversión en RAs. Además, hemos probado que la deleción del gen LPA1 

disminuye la activación masiva de las NSCs producida por las convulsiones epilépticas. 

Al someter a ratones a un modelo alternativo de epilepsia, actuando en la amígdala, 

comprobamos que las NSCs también se dividen más y se transforman en React-NSCs, 

demostrando que independientemente del origen de las convulsiones las NSCs se ven 

afectadas. Estos resultados muestran cómo en condiciones de hiperexcitación neuronal 

severa las NSCs contribuyen a la gliosis reactiva, lo que puede empeorar el pronóstico 

de la epilepsia, y que el receptor LPA1 participa en esta nueva función de las NSCs. 

2.2. Abstract 

In the regulation of adult hippocampal neurogenesis, a critical step is the division of 

neural stem cells (NSCs) since, following activation, they divide several times 

consecutively and differentiate themselves into astrocytes. In this thesis we prove that 

increasing their activation rate with neuronal hyperexcitation leads to their exhaustion 

and even induces a change in their differentiation. After causing epilepsy directly into 

the hippocampus of mice, we have observed that NSCs increase their activation rate but 

stop generating neurons and however transform into reactive NSCs (React-NSCs) that 

differentiate into reactive astrocytes (RAs). We have validated by employing a 

transgenic strain that the expression of lysophosphatidic acid receptor 1 (LPA1) serves 

as a marker to trace React-NSCs during their conversion into RAs. Moreover, we have 

shown that deletion of the gene LPA1 decreases NSC massive activation provoked by 

epileptic seizures. Subjecting mice to an alternative epilepsy model, acting into the 

amygdala, we proved that NSCs also divide more and transform into React-NSCs, 

demonstrating that regardless of the seizure origin NSCs are affected. These results 

show how in conditions of severe neuronal hyperexcitation NSCs contribute to reactive 

gliosis, which can impair the outcome of epilepsy, and that LPA1 receptor is involved in 

this new function of NSCs. 
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3. Resumen/Summary 

3.1. Resumen 

La neurogenesis adulta, el proceso de formación de nuevas neuronas en el cerebro 

adulto, persiste en dos regiones cerebrales de los mamíferos: la zona subventricular 

(subventricular zone, SVZ) de los ventrículos laterales, que genera interneuronas 

destinadas al bulbo olfativo; y la zona subgranular (subgranular zone, SGZ) del giro 

dentado (dentate gyrus, DG), que genera células granulares (granule cells, GCs) que se 

integran en los circuitos hipocampales. El proceso neurogénico en la última, llamado 

neurogénesis hipocampal adulta (adult hippocampal neurogenesis, AHN), está 

implicado en funciones tales como el aprendizaje, la adquisición de memorias 

espaciales, el condicionamiento al miedo, la ansiedad y las respuestas al estrés. 

La AHN existe gracias a una población de células madre neurales (neural stem cells, 

NSCs) que permanece en la SGZ del DG adulto. Estas NSCs son en su mayoría 

quiescentes, pero cuando son activadas se dividen principalmente de manera asimétrica 

dando lugar a progenitores neurales amplificadores (amplifying neural progenitors, 

ANPs) que, a su vez, proliferan y originan los neuroblastos (NBs) que maduran y 

originan GCs, las cuales se integran en la circuitería hipocampal. Tras varias rondas de 

división, las NSCs se diferencian en astrocitos y salen de la reserva de células madre, a 

partir de lo cual son incapaces de generar más precursores neuronales. Este agotamiento 

acoplado a la activación es un mecanismo que contribuye al decremento de la 

neurogénesis con la edad, lo que hace más necesario el conocimiento acerca de la 

regulación de la activación de las NSCs. 

En parte debido a este paulatino agotamiento de las NSCs acoplado a su activación, el 

estudio de la multipotencia y de las propiedades de la división de estas células madre se 

ha centrado en las condiciones en las que las NSCs son activadas y en la posibilidad de 

su regreso a la quiescencia. Se ha descrito que las vías de señalización de los Wnts y de 

las proteínas morfogenéticas de hueso (bone morphogenetic proteins, BMPs) y la 

proteína proactivadora Ascl1, entre otros, están implicadas en el mantenimiento de su 

quiescencia, pero los datos sugieren cada vez más que cuando las NSCs se activan su 

vuelta a la quiescencia a largo plazo es improbable. Por tanto, los estímulos que inducen 

su activación favorecerían en último término su agotamiento. 

En la complicada regulación que gobierna la neurogénesis y la dinámica de división de 

las NSCs, se ha demostrado que la actividad neuronal excitadora promueve la 

activación de las NSCs, mientras que la inhibidora mantiene su quiescencia. Apoyando 

esta idea, se ha observado que modelos animales y alteraciones cerebrales que 

incrementan la actividad eléctrica en el hipocampo alteran la AHN y el reclutamiento de 

las NSCs. En la misma línea, en el tipo más frecuente de epilepsia, la epilepsia del 

lóbulo temporal mesial (mesial temporal lobe epilepsy, MTLE), se ha observado 

neurogénesis aberrante y una disminución a largo plazo de la AHN. Además, en 
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modelos experimentales de este trastorno neurológico se ha documentado la 

acumulación de astrocitos de nueva formación. En situaciones patológicas como esta, 

los astrocitos a menudo se transforman en astrocitos reactivos (reactive astrocytes, 

RAs), un tipo celular glial que se cree implicado en el desequilibrio eléctrico y las 

convulsiones recurrentes que constituyen un rasgo de la MTLE. 

Teniendo en cuenta el agotamiento progresivo de las NSCs acoplado a su división,  

propusimos que la activación de las NSCs es un evento único que conduce 

inevitablemente a su agotamiento y que el regreso a la quiescencia tras la 

activación inicial, así como la autorrenovación, son insignificantes a nivel 

poblacional. Para poner a prueba esta hipótesis, nuestro Objetivo 1 fue evaluar la 

dinámica de división frente a la quiescencia en el nicho neurogénico del 

hipocampo. Con este propósito, sometimos a ratones Nestin-GFP, en los que las NSCs 

y los ANPs del DG pueden ser fácilmente visualizados, a la administración continua del 

análogo de la timidina bromodesoxiuridina (BrdU) en el agua de bebida para marcar 

todas las células en división y realizamos análisis de imagen cuantitativo basado en la 

microscopía confocal tras la tinción inmunohistoquímica de marcadores celulares 

específicos. En un primer análisis de la proliferación, confirmamos la contribución 

predominante de los ANPs a las células en división del DG seguida de una baja 

proporción de NSCs. En dos análisis de diferenciación distintos, tanto administrando 

BrdU durante una semana como un mes, encontramos una mayoría de neuronas y la 

generación de algunos astrocitos entre las células procedentes de división. Debido a la 

escasa capacidad mitótica mostrada por los astrocitos en el análisis de proliferación, 

concluimos que los astrocitos de nueva formación observados a largo plazo eran 

aquellos derivados de la diferenciación de las NSCs. 

De forma destacable, las NSCs y ANPs marcados con BrdU fueron casi inexistentes en 

los análisis de diferenciación a largo plazo. Además, la reentrada al ciclo celular de las 

NSCs fue muy alta a corto plazo pero no se encontró ningún caso a largo plazo, 

revelando que en efecto la activación de las NSCs lleva a su agotamiento como células 

madre y que la vuelta a la quiescencia es un evento extremadamente infrecuente. 

En conjunto, estos resultados sugirieron que la cascada neurogénica en el DG sigue los 

mismos principios que se han propuesto a nivel poblacional sin importar la 

aproximación, habiendo obtenido resultados similares a los descritos en estudios que 

emplearon pulsos concretos de BrdU. En primer lugar, en un momento dado pocas 

NSCs se están dividiendo pero, cuando lo hacen, vuelven a entrar en el ciclo celular de 

forma consecutiva, encontrándose el 75% de ellas en división una semana después de la 

activación inicial. Nuestros resultados concuerdan con la esperada mayoría de 

divisiones asimétricas de las NSCs debido al decremento en la contribución de las NSCs 

a las células marcadas con BrdU que encontramos en ambos análisis de diferenciación. 

La mayor parte de las divisiones en el DG originan a progenitores neuronales que en 

último término dan lugar a neuronas, pero también se generan astrocitos. Dado que los 

astrocitos manifestaron una capacidad proliferativa muy limitada, los astrocitos de 

nueva formación fueron muy probablemente generados mediante diferenciación 
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terminal de las NSCs dado que los ANPs generan solo neuronas. Esta diferenciación es 

un proceso largo en el que se podría pensar que las pocas NSCs BrdU
+
 que quedan se 

encuentran en un estado quiescente tras la activación inicial, pero no se ha documentado 

nunca una nueva activación durante este periodo de tiempo, mientras que la conversión 

astrocítica final sí ha sido demostrada. 

A continuación, hipotetizamos que los estímulos que favorecen la entrada en el ciclo 

celular de las NSCs como la hiperactividad neuronal acelerarían su agotamiento o 

incluso provocarían un cambio en sus propiedades y alterarían el progreso 

correcto de la cascada neurogénica. Nuestro Objetivo 2 derivado de esta hipótesis fue 

estudiar la respuesta a niveles diferentes de hiperexcitación neuronal del nicho 

neurogénico y específicamente de las NSCs. Con este objetivo, inyectamos dos dosis 

diferentes de ácido kaínico (kainic acid, KA, un agonista del glutamato) directamente en 

el DG de ratones Nestin-GFP para inducir actividad epileptiforme (epileptiform activity, 

EA, descargas que no llegan a generar convulsiones) y MTLE (donde sí se dan 

convulsiones epilépticas), respectivamente, y marcamos las células en división con 

BrdU antes de analizar el nicho neurogénico mediante la tinción inmunohistoquímica 

para marcadores celulares. Encontramos un incremento en la proliferación celular y en 

la activación de las NSCs en ambos modelos de hiperactividad neuronal pero además un 

cambio cualitativo en la cascada neurogénica solo en ratones MTLE: mientras que la 

EA se asemejaba a una versión acelerada de la producción neurogénica normal derivada 

de la división asimétrica, en la MTLE la división de los ANPs disminuyó y las NSCs 

adquirieron una morfología reactiva (React-NSCs). 

Por consiguiente, caracterizamos el tipo de división celular de las NSCs en la MTLE, 

para lo cual aprovechamos la línea transgénica Nestin-CreER
T2

/R26R:YFP para rastrear 

inequívocamente y de manera inducible a las NSCs y su progenie. En ratones 

inyectados con salino (Sal) la división asimétrica (NSC+ANP) suponía la mayoría de 

las divisiones de las NSCs; sin embargo, en la MTLE las React-NSCs se dividían 

simétricamente dando lugar a más React-NSCs. Interesados en esta característica, 

estudiamos entonces la diferenciación de las células YFP
+
 en estos animales y 

descubrimos una nueva propiedad de las células madre: las React-NSCs se diferencian 

en RAs en la MTLE. Esta observación nos ayudó a reafirmar la teoría de que en el DG 

epiléptico se ve favorecida la astrogliogénesis en el nicho que normalmente es 

neurogénico, apoyando la idea de que las NSCs mismas pueden contribuir a la 

astrogliosis reactiva que es parte de la MTLE con esclerosis hipocampal. 

Para descartar la posibilidad de que esta activación masiva de las NSCs y el cambio 

fenotípico de las NSCs a React-NSCs fueran atribuibles únicamente a la inflamación 

que produce el modelo de MTLE en el DG, inyectamos lipopolisacárico (LPS) 

intrahipocampalmente a ratones Nestin-GFP. El marcaje con BrdU reveló la ausencia de 

inducción de la proliferación celular y de la activación de las NSCs en ratones 

inyectados con LPS, por lo que concluimos que nuestras observaciones previas habían 

sido debidas a la hiperexcitación y las convulsiones. 
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Con estos resultados probamos que niveles diferentes de hiperexcitación neuronal 

disparan respuestas diferentes en las NSCs. Cuando el nivel de esta hiperexcitación es 

suficientemente alto para disparar convulsiones, las NSCs cambian completamente su 

programa de ciclo celular prácticamente aboliendo el destino neurogénico en favor de la 

astrogliogénesis reactiva. Tanto las NSCs como sus células hijas dejan de producir 

progenitores de destino neuronal sino que en lugar de eso se convierten en React-NSCs 

que se diferenciarán terminalmente en RAs. Se ha descrito que los RAs empeoran el 

desequilibrio eléctrico y son parcialmente responsables de las convulsiones 

espontáneas, por lo que la diferenciación de las React-NSCs podría contribuir a estas 

alteraciones y a la formación de la cicatriz glial que es parte de la esclerosis hipocampal, 

un rasgo distintivo de la mayoría de casos de MTLE. 

A continuación  nos interesamos en caracterizar estas React-NSCs y RAs derivados de 

React-NSCs, para lo cual necesitábamos una herramienta mejor que las líneas basadas 

en la expresión de nestina ya que los RAs, incluso los derivados de astrocitos 

parenquimales, expresan nestina y por esa razón aquellos RAs derivados de React-

NSCs serían indistinguibles utilizando dicho marcador. Basándonos en la información 

disponible acerca del marcador de NSCs receptor 1 del ácido lisofosfatídico 

(lysophosphatidic acid receptor 1, LPA1), hipotetizamos que la expresión de LPA1, y 

de LPA1-GFP en un ratón transgénico, podría ser una herramienta única para 

identificar y analizar las NSCs mientras se convierten en React-NSCs y que LPA1 

podría tener un papel en la función de las NSCs. Por tanto, nuestro Objetivo 3 fue 

validar el ratón transgénico LPA1-GFP como herramienta para estudiar las React-

NSCs. Primeramente validamos mediante inmunotinción que el transgén se expresaba 

principalmente en NSCs y verificamos que la expresión del receptor LPA1 podía ser 

observada en estas NSCs LPA1-GFP
+
. 

A continuación, caracterizamos los efectos del tratamiento de MTLE en el nicho 

neurogénico de los ratones LPA1-GFP. Realizamos un curso temporal sometiendo a los 

animales al mismo modelo de MTLE que en el objetivo anterior, inyectamos BrdU 2d 

después y sacrificamos a los animales en seis puntos temporales diferentes para llevar a 

cabo tinción inmunohistoquímica y análisis cuantitativo de imagen basado en la 

microscopía confocal. Al cuantificar las proporciones relativas de los tipos celulares 

marcados con BrdU en el DG, confirmamos el destino neurogénico predominante en los 

ratones Sal y el cambio completo hacia astrogliogénesis reactiva en los MTLE. También 

observamos que la expresión de LPA1-GFP se mantenía en las React-NSCs mientras se 

activaban masivamente y perdían su morfología radial inicial en favor de una 

morfología multipolar típica de los RAs. 

Por lo tanto, rastreamos la expresión de LPA1-GFP a lo largo del tiempo en las React-

NSCs y otros tipos celulares del nicho. Acerca de las primeras, seguimos su 

transformación en RAs empleando la expresión de S100β como indicador de 

maduración astroglial y observamos una clara tendencia al aumento en la proporción de 

células LPA1-GFP
+
 que colocalizaban S100β, sugiriendo considerablemente la 

diferenciación terminal en RAs. Además, cuando restamos la proporción de esta 
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población  LPA1-GFP
+
 diferenciada de la población glial LPA1-GFP

+
 encontramos en 

animales MTLE una disminución significativa a lo largo del tiempo en la contribución 

de las React-NSCs no diferenciadas. Estos resultados fueron en la misma línea que 

aquellos obtenidos en ratones transgénicos Nestin-CreER
T2

/R26R:YFP en los cuales la 

mayoría de células derivadas de React-NSCs se terminaban convirtiendo en RAs 

maduros. 

Una nueva característica que descubrimos en estos ratones LPA1-GFP fue la expresión 

de novo del transgén en neuronas de la GCL en animales MTLE varias semanas después 

de la inducción de MTLE. Dado que solo apareció en este grupo, aislamos los datos de 

los ratones MTLE y encontramos un aumento significativo en la proporción de 

neuronas que expresaban LPA1-GFP a lo largo del tiempo. Esta es una peculiaridad para 

la cual las interpretaciones con complicadas debido a la escasez de trabajos previos, 

pero que podría ser debida a la respuesta a la neurotoxicidad inducida por la 

hiperexcitación neuronal y las convulsiones en el hipocampo. 

Continuamos investigando la utilidad del ratón LPA1-GFP para el análisis 

ultraestructural de las NSCs y React-NSCs. Con este propósito, realizamos 

inmunohistoquímica preinclusión contra GFP para microscopía electrónica de 

transmisión (transmission electron microscopy, TEM) y observamos el marcaje en el 

DG de ratones Sham y MTLE. Confirmamos la expresión específica del transgén en las 

NSCs y React-NSCs de la SGZ y su ausencia en astrocitos o RAs de áreas adyacentes. 

Recurriendo a esta aproximación para buscar diferencias ultraestructurales entre NSCs y 

React-NSCs observamos un incremento no significativo en el número de mitocondrias 

en las últimas. A pesar de que este aumento en el número de mitocondrias ha sido 

observado en RAs en otras condiciones patológicas, no observamos esta característica 

en los RAs en MTLE al compararlos con los astrocitos de las condiciones normales. 

Esto sugiere que, si este incremento en las React-NSCs es consistente, podría no ser 

debido a su fenotipo reactivo sino a la inducción masiva de su entrada en el ciclo 

celular. 

A continuación nos preguntamos la implicación de LPA1 en la activación de las NSCs y 

en su adquisición del fenotipo de React-NSCs en la MTLE. Para este objetivo, 

sometimos a ratones knockout del receptor, llamados maLPA1, y a sus wild-type (WT) 

al tratamiento de MTLE e inyectamos BrdU 2d después para analizar la proliferación y 

la activación de las NSCs a los 3d y dos semanas. Encontramos un decremento en el 

segundo punto temporal en el número total de células BrdU
+
 en el DG de los ratones 

maLPA1 en comparación con los WT. Recurriendo a la tinción de nestina y otros 

marcadores celulares y a criterios morfológicos, evaluamos la activación y el fenotipo 

de las NSCs y encontramos también un decremento, tanto a 3d como a 2 semanas, en la 

proporción de React-NSCs activadas o derivadas de división en los animales maLPA1. 

No observamos diferencias obvias en la morfología de las React-NSCs entre ratones 

WT y maLPA1, por lo que concluimos que la expresión de LPA1 está implicada en la 

proliferación celular y la activación de las NSCs en el DG epiléptico pero no parece 

afectar a la transformación de las NSCs en React-NSCs y más tarde en RAs. 
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Estos datos apoyan la noción de que las convulsiones provocan un cambio en el destino 

de la división de las NSCs hacia la generación de RAs. Además, el marcador LPA1-GFP 

marca específicamente a las React-NSCs en su transformación en RAs y la expresión 

del transgén se mantiene incluso en una subpoblación de estos RAs derivados de React-

NSCs. La diferencia funcional atribuible a esta expresión duradera debe aún ser 

estudiada, pero los resultados que obtuvimos acerca de la función de LPA1 en la 

activación masiva de las NSCs tras el tratamiento MTLE sugiere que este receptor está 

implicado en la fracción de la gliosis que podría ser debida a la expansión inicial de las 

React-NSCs. 

Por último, nos interesamos en analizar si los efectos en el nicho neurogénico de nuestro 

modelo de MTLE eran debidos a la hiperexcitación neuronal sola o a su combinación 

con otros efectos provocados por la administración local de KA. Hipotetizamos que 

independientemente del modelo de inducción de MTLE las NSCs y el nicho 

neurogénico se verían afectados de manera similar. Por tanto, nuestro Objetivo 4 

fue establecer un modelo alternativo de MTLE mediante la inyección 

intraamigdalar de KA. Para conseguir este objetivo, optimizamos un protocolo para 

realizar consistentemente la inyección en la amígdala evitando la difusión potencial del 

KA al hipocampo. 

Administramos BrdU 2d después de someter a ratones Nestin-GFP al modelo 

intraamigdalar de MTLE (MTLE-a) y sacrificamos a los animales una semana después 

para examinar el aspecto general del DG mediante análisis cuantitativo de imagen 

basado en la microscopía confocal. Al cuantificar el número total de células BrdU
+
, 

obtuvimos un incremento significativo en los ratones MTLE-a en comparación con los 

inyectados con salino (Sal-a). Nos centramos en la división de las NSCs y también 

observamos un incremento en la proporción de NSCs activadas en los animales MTLE-

a, en parte reproduciendo los resultados que habíamos obtenido con el modelo de 

MTLE intrahipocampal. Además, las NSCs muestran el fenotipo reactivo típico de las 

React-NSCs inducidas por MTLE. Por último, observamos astrocitos en división, 

aunque en números bajos, solo en ratones MTLE-a, sugiriendo que este tipo celular 

puede ser también afectado por la hiperexcitación neuronal provocada inicialmente en la 

amígdala. 

Estos datos sugieren que las convulsiones inducidas en la amígdala son suficientes para 

provocar cambios en el DG en las mismas líneas que aquellos producidos en el modelo 

directo de inducción de MTLE. La MTLE-a aumenta la activación de las NSCs, tal y 

como ocurre en el modelo intrahipocampal de MTLE, y promueve la división astrocítica 

en el DG. Este modelo de MTLE es también útil porque nos permite desarrollar 

manipulaciones en el DG para estudiar las NSCs y el nicho neurogénico, como las 

inyecciones de vectores retro- o adenovirales o la inserción de electrodos que serían 

incompatibles con la inyección en el DG. 

En conclusión, nuestros resultados prueban que, a nivel poblacional, cuando las NSCs 

se activan se dividen varias veces dando lugar a precursores neuronales y no vuelven a 
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la quiescencia tras ello. Si se favorece su activación mediante hiperexcitación neuronal 

suave (EA), se acelera la cascada neurogénica. Si esta actividad neuronal es lo 

suficientemente alta para provocar convulsiones (MTLE), sin embargo, cambian su 

fenotipo a la morfología de React-NSCs y salen del programa neurogénico. Las React-

NSCs en expansión, en su lugar, se diferencian en RAs. Durante este proceso el 

marcador de NSCs LPA1-GFP todavía se expresa en las React-NSCs y sirve como 

herramienta para rastrearlas y caracterizarlas ultraestructuralmente. Finalmente, el 

modelo de MTLE-a confirmó que más importante que el lugar epileptogénico, siempre 

que esté conectado con el hipocampo, es el nivel de hiperactividad neuronal que se 

dispara finalmente en el DG, y que puede ser capaz de manipular el destino de las NSCs 

hipocampales y alterar el nicho neurogénico. 

3.2. Summary 

Adult neurogenesis, the process of formation of new neurons in the adult brain, is 

preserved in two brain regions: the subventricular zone (SVZ) of the lateral ventricles, 

which generates interneurons destined to the olfactory bulb; and the subgranular zone 

(SGZ) of the dentate gyrus (DG), which generates granule cells (GCs) that are 

integrated into the hippocampal circuitry. Neurogenesis in the latter, called adult 

hippocampal neurogenesis (AHN), is involved in functions such as learning, spatial 

memory acquisition, fear conditioning, anxiety and responses to stress. 

AHN exists thanks to a population of neural stem cells (NSCs) that remains in the SGZ 

of the DG. These NSCs are mainly quiescent, but when they are activated they most 

often divide asymmetrically giving rise to amplifying neural progenitors (ANPs) that, in 

turn, proliferate and originate the neuroblasts (NBs) that maturate and give rise to GCs, 

which integrate into the hippocampal circuitry. After several rounds of cell division, 

NSCs differentiate into astrocytes and exit the stem cell pool, being unable to generate 

more neuronal precursors. This activation-coupled NSC depletion is a mechanism that 

contributes to the age-related decline in neurogenesis, which makes more necessary the 

knowledge of NSC-activation regulation. 

Partly due to the division-coupled NSC progressive exhaustion, the study of NSC 

multipotency and cell division properties has focused on the conditions in which NSCs 

become activated and the possibility of their return to quiescence. Wnts, BMPs and the 

proactivation protein Ascl1, among others, have been reported to be involved in their 

maintenance of quiescence, but data increasingly suggest that when NSCs are activated 

their return to quiescence in the long term is improbable. Thus, stimuli that induce their 

activation would ultimately favor their depletion. 

In the complicated regulation that rules neurogenesis and the dynamics of NSC division, 

it has been reported that excitatory neuronal activity promotes NSC activation, whereas 

the inhibitory maintains their quiescence. Supporting this idea, models and brain 

alterations that increase electrical activity in the hippocampus have been shown to alter 

AHN and NSC recruitment. Along the same lines, in the most frequent type of epilepsy, 



Resumen/Summary 

20 
 

mesial temporal lobe epilepsy (MTLE), aberrant neurogenesis and a long-term decline 

in AHN have been observed. Moreover, in models of this neurological disorder an 

accumulation of newly-born astrocytes has been documented. In these pathological 

situations, astrocytes often transform into reactive astrocytes (RAs), a glial cell type that 

is thought to contribute to the electrical imbalance and the recurrent seizures that 

constitute a hallmark of MTLE. 

Taking into account the division-coupled NSC progressive exhaustion, we proposed that 

NSC activation is a single event that inevitably leads to their exhaustion, and that 

return to quiescence after initial activation and self-renewal are negligible at the 

population level. To test this hypothesis, our Objective 1 was to evaluate division 

versus quiescence dynamics in the hippocampal neurogenic niche. For this purpose, 

we subjected Nestin-GFP mice, in which NSCs and ANPs in the DG can be readily 

visualized, to the continuous administration of the thymidine analog bromodeoxyuridine 

(BrdU) in drinking water to label every dividing cell and performed confocal-based 

quantitative image analysis following immunohistochemical staining of specific cell 

markers. In a first proliferation analysis, we confirmed the predominant contribution of 

ANPs to dividing cells in the DG followed by low proportions of NSCs. In two different 

differentiation analyses, administering BrdU for either 1w or 1m, we reported a 

majority of neurons among division-derived cells and the generation of new astrocytes. 

Due to the uncommon mitotic capacity shown by astrocytes in the proliferation analysis, 

we concluded that newborn astrocytes observed in the long term were those derived 

from NSC differentiation. 

Remarkably, BrdU-labeled NSCs and ANPs were almost absent in the long-term 

differentiation analyses. In addition, NSC reentry into the cell cycle was very high in 

the short term but inexistent in the long term, revealing that indeed NSC activation leads 

to their depletion as stem cells and that NSC return to quiescence is an extremely 

infrequent event. 

Together, these results strongly suggested that the neurogenic cascade in the DG follow 

the same principles that have been proposed at the population level no matter the 

approach, obtaining similar results to those reported in studies that employed discrete 

pulses of BrdU. First, in a given moment few NSCs are dividing but, when they do, they 

reenter the cell cycle in a consecutive manner, being the 75% of them in division one 

week after the initial activation. Our results agree with the expected majority of NSC 

asymmetric divisions due to the decrease in the NSC contribution to BrdU-labeled cells 

that we report in both differentiation analyses. Most divisions in the DG render neuronal 

progenitors that ultimately give rise to neurons, but astrocytes are generated too. Since 

astrocytes showed a very limited proliferative capacity, newborn astrocytes were most 

probably generated through NSC terminal differentiation since ANPs only generate 

neurons. This differentiation is a long process in which the few remaining BrdU
+
 NSCs 

could be thought to be in a quiescent state after initial activation, but a new activation 

during this period of time has never been reported whereas ultimate astrocytic 

conversion indeed has been documented. 
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We then hypothesized that stimuli that promote NSC entry into the cell cycle such as 

neuronal hyperactivity would accelerate their depletion or even provoke a shift in 

their properties and disrupt the correct progress of the neurogenic cascade. Our 

hypothesis-driven Objective 2 was thus to study the response to different levels of 

neuronal hyperexcitation of the neurogenic niche and specifically of NSCs. With 

this aim, we injected two different doses of kainic acid (KA, a glutamate agonist) 

directly into the DG of Nestin-GFP mice to induce epileptiform activity (EA, discharges 

that do not generate seizures) and MTLE (in which seizures are indeed generated), 

respectively, and labeled proliferating cells with BrdU before analyzing the neurogenic 

niche following immunohistochemical staining of cell markers. We found increased cell 

proliferation and NSC activation in both models of neuronal hyperactivity but a 

qualitative change in the neurogenic cascade only in MTLE mice: whereas EA seemed 

an accelerated version of the normal asymmetric cell division-derived neurogenic 

output, in MTLE ANP division was decreased and NSCs acquired a reactive-like 

morphology (React-NSCs). 

We therefore characterized the division type of NSCs in MTLE, for what we took 

advantage of inducible Nestin-CreER
T2

/R26R:YFP transgenic mice to unequivocally 

trace NSCs and their progeny. In saline-injected (Sal) mice the asymmetric division 

(NSC+ANP) accounted for most observed NSCs; meanwhile, in MTLE React-NSCs 

divided symmetrically giving rise to more React-NSCs. Interested in this feature, we 

then studied the differentiation of YFP
+
 cells in these animals and discovered a new 

property of stem cells: React-NSCs differentiate into RAs in MTLE. This observation 

helped us rejoin the theory that proposed that astrogliosis is favored in the otherwise 

neurogenic niche of the epileptic DG, supporting the idea that NSCs themselves can 

contribute to the reactive astrogliosis that is part of MTLE with hippocampal sclerosis. 

To rule out the possibility of this massive NSC activation and NSC-to-React-NSC 

phenotypical change being attributable to the inflammation the MTLE model produces 

in the DG, we injected lipopolysaccharide (LPS) intrahippocampally to Nestin-GFP 

mice. BrdU labeling revealed the absence of induction of cell proliferation and NSC 

activation in LPS-injected mice, so we concluded that our previous observations had 

been due to neuronal hyperexcitation and seizures. 

With these results we proved that different levels of neuronal hyperexcitation trigger 

different responses from NSCs. When the level of this hyperexcitation is high enough to 

trigger seizures, NSCs completely change their cell-cycle program almost abolishing the 

neurogenic fate in favor of reactive astrogliogenesis. Both NSCs and their daughter cells 

no longer produce neuronal fate-committed precursors but instead become React-NSCs 

that will later differentiate into RAs. RAs have been reported to impair the electrical 

imbalance and be partially responsible of spontaneous seizures, thus React-NSC 

differentiation could contribute to these features and to the formation of the glial scar 

that is part of hippocampal sclerosis, a hallmark of most cases of MTLE. 
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We then became increasingly interested in characterizing these React-NSCs and React-

NSC-derived RAs, for what we were in need of a better tool than nestin-based lines as 

every RA, even parenchymal astrocyte-derived ones, express nestin and for this reason 

those RAs derived from React-NSCs would be undistinguishable using that marker. 

Based on the information available on the NSC marker lysophosphatidic acid receptor 1 

(LPA1), we hypothesized that expression of LPA1, and LPA1-GFP in a transgenic 

mouse line, could be a unique tool to identify and analyze NSCs as they convert 

into React-NSCs and that LPA1 might play a role in NSC function. Thus, our 

Objective 3 was to validate LPA1-GFP transgenic mouse as a tool to study React-

NSCs. We firstly validated by immunolabeling that the transgene was mostly expressed 

in NSCs and verified that the expression of the receptor LPA1 could be observed in 

these LPA1-GFP
+
 NSCs. 

Next, we characterized the effects of MTLE treatment in the neurogenic niche of LPA1-

GFP mice. We performed a time course subjecting the animals to the same MTLE 

model as in the previous objective, injecting BrdU 2d later and sacrificing the animals at 

six different time points for immunohistochemical staining and confocal microscopy-

based quantitative image analysis. By quantifying the relative proportions of cell types 

labeled with BrdU in the DG, we confirmed the predominant neurogenic fate in Sal 

mice and the complete shift to reactive astrogliogenesis in MTLE. We also observed 

that the LPA1-GFP expression was maintained in React-NSCs as they became 

massively activated and lost their initial radial morphology in favor of a multipolar RA-

like morphology. 

Hence, we traced the expression of LPA1-GFP over time in React-NSCs and other cell 

types in the niche. Regarding the first, we followed their transformation into RAs 

employing S100β expression as an indicator of astroglial maturation and observed a 

clear increasing trend in the proportion of LPA1-GFP
+
 cells that colocalized S100β, 

strongly suggesting a terminal differentiation into RAs. Furthermore, when subtracting 

the proportion of this differentiated LPA1-GFP
+
 population from the LPA1-GFP

+
 glial 

population we found in MTLE animals a significant decrease over time in the 

contribution of non-differentiated React-NSCs. These results were along the same lines 

as those from Nestin-CreER
T2

/R26R:YFP transgenic mice in which most cells derived 

from React-NSCs ended up converting into mature RAs. 

A novel feature we discovered in these LPA1-GFP mice was the de novo expression of 

the transgene in neurons of the GCL in MTLE animals several weeks after MTLE 

induction. As it only appeared in this group, we isolated the data from MTLE mice and 

found a significant increase in the proportion of LPA1-GFP-expressing neurons over 

time. This is a peculiarity for which interpretations are complicated due to the lack of 

previous works, but that could be due to the response to the neurotoxicity induced by 

neuronal hyperexcitation and seizures in the hippocampus. 

We further investigated the usefulness of LPA1-GFP transgenic mouse for the 

ultrastructural analysis of NSCs and React-NSCs. For this purpose, we performed pre-
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embedding GFP immunohistochemistry for transmission electron microscopy (TEM) 

and observed the labeling in the DG of Sham and MTLE mice. We confirmed the 

specific expression of the transgene in NSCs and React-NSCs of the SGZ and its 

absence in astrocytes or RAs of adjacent areas. Moreover, taking advantage of this 

approach to search for ultrastructural differences between NSCs and React-NSCs we 

observed a non-significant increase in the number of mitochondria in the latter. Despite 

this rise in the number of mitochondria has been reported in RAs in other pathological 

conditions, we did not observe this characteristic in RAs in MTLE compared to 

astrocytes in normal conditions. This suggests that, if this increase in React-NSCs is 

consistent, it could be not due to their reactive phenotype but possibly to the massive 

induction of their entry into the cell cycle. 

We next wondered the involvement of LPA1 in the NSC activation and acquisition of 

the React-NSC phenotype in MTLE. Towards this aim, we subjected knockout mice of 

the receptor, called maLPA1, and their wild-type (WT) counterparts to MTLE treatment 

and injected BrdU 2d later to analyze proliferation and NSC activation at 3d and 2w 

time points. We found a decrease in the second time point in the total number of BrdU
+
 

cells in the DG of maLPA1 compared to WT mice. Resorting to nestin and other cell 

marker staining and morphological criteria, we evaluated NSC activation and phenotype 

and also found a decrease, at both 3d and 2w, in the proportion of activated or division-

derived React-NSCs in maLPA1 animals. We did not observe obvious differences in 

React-NSC morphology between WT and maLPA1 mice, thus we concluded that LPA1 

expression is involved in cell proliferation and NSC activation in the epileptic DG but 

does not seem to affect NSC transformation into React-NSCs and later RAs. 

These data strongly support the notion that seizures trigger a change in the fate of NSC 

divisions towards the generation of RAs. Furthermore, the NSC marker LPA1-GFP 

specifically labels React-NSCs as they transform into RAs and the transgene expression 

is even maintained in a subpopulation of these React-NSC-derived RAs. The functional 

difference attributable to this long-lasting expression remains to be studied, but the 

results we obtained regarding the function of LPA1 in the massive NSC activation after 

MTLE treatment suggest that this receptor is involved in the fraction of gliosis that 

could be due to the initial expansion of React-NSCs.  

We were lastly interested in assessing whether the effects in the neurogenic niche of our 

MTLE model were due to neuronal hyperexcitation alone or its combination with other 

effects provoked by local KA administration. We hypothesized that regardless of the 

model of induction of MTLE NSCs and the neurogenic niche would be affected in 

a similar manner. Therefore, our Objective 4 was to establish an alternative model 

of MTLE by intraamigdalar injection of KA. To accomplish this objective, we 

optimized a protocol to consistently perform the injection into the amygdala avoiding 

potential diffusion of KA to the hippocampus. 

We administered BrdU 2d after subjecting Nestin-GFP mice to the intraamigdalar 

MTLE model (MTLE-a) and sacrificed the animals at 1w to examine the general 
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appearance and the cell proliferation in the DG via confocal microscopy-based 

quantitative image analysis. When we quantified the total BrdU
+
 cells, we obtained a 

significant increase in MTLE-a mice compared to the saline-injected (Sal-a) ones. We 

focused on NSC division and also observed an increase in the proportion of activated 

NSCs in MTLE-a animals, partially reproducing the results we had obtained with the 

intrahippocampal MTLE model. In addition, NSCs seemed to be acquiring the reactive-

like morphology that is typical of MTLE-induced React-NSCs. Lastly, dividing 

astrocytes, although in low numbers, were only observed in MTLE-a mice, suggesting 

that this cell type can also be affected by the neuronal hyperexcitation initially provoked 

in the amygdala. 

These data suggest that seizures induced in the amygdala are enough to trigger changes 

in the DG along the same lines as those produced in the direct model of MTLE 

induction. MTLE-a increases NSC activation, just like occurs in the intrahippocampal 

MTLE model, and promotes astrocytic division in the DG. This model of MTLE is also 

useful because it allows us to develop manipulations in the DG to study NSCs and the 

neurogenic niche, such as retro- or adenoviral vector injections or electrode insertion 

that would be incompatible with the injection into the DG. 

In conclusion, our results prove that, at the population level, when NSCs are activated 

they divide several times giving rise to neuronal precursors and do not return to 

quiescence after that. If their activation is favored by mild neuronal hyperexcitation 

(EA), the neurogenic cascade is accelerated. If this neuronal activity is high enough to 

trigger seizures (MTLE), however, they change their phenotype to the React-NSC 

morphology and exit the neurogenic program. The expanding React-NSCs, instead, 

differentiate into RAs. During this process the NSC marker LPA1-GFP is still expressed 

in React-NSCs and serves as a tool to trace and ultrastructurally characterize them. 

Finally, the MTLE-a model confirmed that more important than the epileptogenic site, 

provided that it is connected to the hippocampus, is the level of neuronal hyperactivity 

which is ultimately triggered in the DG, and which can be able to manipulate the fate of 

the hippocampal NSCs and disrupt the neurogenic niche. 
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4. Introduction 

4.1. Adult neurogenesis 

Discovery, extent and controversy 

The common certainty that, once embryonic development is complete, neuronal 

generation and integration in the brain is abolished has been a dogma during an 

important part of the history of neuroscience. This strong belief was supported by 

pioneers such as the discoverer of the neuron doctrine, Santiago Ramón y Cajal, who 

affirmed: “In the adult centers, the nerve paths are something fixed, ended, and 

immutable. Everything may die, nothing may be regenerated. It is for the science of the 

future to change, if possible, this harsh decree.” (Ramón y Cajal, 1928). An increasing 

number of studies and the development of new techniques helped the field understand 

that this idea about impossibility of regeneration might be not so immutable. 

When the dogma of “no new neurons in adulthood” was a hundred years old, evidence 

of newborn neurons could mean a challenge and be responded with fierce opposition. 

The term referring to this putative generation of new neurons in the adult brain is adult 

neurogenesis, a process that most often involves division steps by neural stem cells 

(NSCs) and other progenitors and maturation steps from the neuroblast (NB) stage to 

the fully integrated neuron. 

The first evidence of adult neurogenesis was described by Joseph Altman. Employing 

[
3
H]-thymidine autoradiography studies, he showed newborn neurons being formed 

postnatally in the rat dentate gyrus (DG) of the hippocampus (Altman and Das, 1965). 

A few years later, the same laboratory discovered persistent neurogenesis in the 

subependymal layer of the lateral ventricles, which would later be named the 

subventricular zone (SVZ), from where most newly-formed cells migrated via rostral 

migratory stream (RMS) to the olfactory bulb (OB) (Altman, 1969). Interestingly, they 

also showed postnatal neurogenesis in the Guinea pig, a precocial rodent in which 

younglings are born with more mature brains than those of rats and mice (Altman and 

Das, 1967). These results proved that neurogenesis was not only restricted to rodents 

with considerable brain growth after birth. 

However, Altman’s work was long time discredited and marginalized despite his data 

were not empirically refuted. Reference to his published evidence was omitted by 

textbooks and original publications and his group lost all its public funding in the mid-

1980s, a sad reflection of what a group of influential scientists can do to bring down 

opposing evidence to a dogma (Altman, 2011). In the late 1970s, supporting evidence 

was found by Michael Kaplan. He added electron microscopic to the existing 

autoradiographic experiments and showed that indeed the radioactively labeled, 

newborn hippocampal and olfactory bulb GCs had axons, dendrites and synapses and 
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thus were neurons (Kaplan and Hinds, 1977). In spite of these efforts, the idea of adult 

neurogenesis remained marginal for years. 

In the 1980s, Fernando Nottebohm and colleagues collected new evidence in favor of 

adult neurogenesis in vertebrates revealing the addition of new neurons in the song-

controlling high vocal center of the forebrain in adult canaries (Goldman and 

Nottebohm, 1983; Paton and Nottebohm, 1984). This helped Altman introduce the 

hypothesis that postnatal experience could sculpt the fine wiring of circuits in the brain, 

an attractive but controversial idea. The requirement of adult-born neurons for 

mastering new skills, for example, does not explain neither why adult neurogenesis is 

much more common in birds than in mammals nor why some brain systems use 

“replaceable” neurons whereas others do not. Moreover, it would establish neurons, and 

not only synapses, as another mode of learning unit. These interesting questions still 

require empirically challenging work to be solved (Nottebohm, 2011). 

In the same decade as the data provided by Nottebohm, Kaplan again gave insight into 

neurogenesis in adult rats, this time showing that newly-formed GCs were a result of 

NB division and that this process lasted at least during the first 11 months of a rat’s life 

(Kaplan and Bell, 1984). These findings in rodents still contradicted previous 

observations such as Angevine’s, who affirmed neurogenesis in the mouse DG ended by 

postnatal day 20 (Angevine, 1965); and the general dogma of “no-new-neurons in the 

adult brain”. In an influential study, Pasko Rakic, although admitting the generation of 

neurons in some postnatal nonprimates, failed to find any “heavily” radiolabeled 

neurons in rhesus monkeys ranging from 6 months to 11 years of age (Rakic, 1985). He 

argued that the large mature brain of primates may not permit redistribution of new 

neurons, lacking this capacity to specialize in a more stable network of neurons. This 

piece of evidence made the concept of adult neurogenesis seem distant in species 

evolutionarily closer to humans. 

It was not until the late 1990s that this almost unique feature of the DG, later named 

adult hippocampal neurogenesis (AHN), was extended to primates. Thanks to the 

increased use of bromodeoxyuridine (BrdU), a nonradioactive thymidine analog that 

can be detected by antibodies (Gratzner, 1982), and the introduction of several 

molecular markers to identify steps of neuronal maturation, the study of mammalian 

neurogenesis became once again popular. As opposed to what Rakic had described, 

Elizabeth Gould and colleagues observed BrdU-positive cells that expressed markers for 

GCs located in the DG of tree shrews, marmosets and even Old World monkeys (Gould 

et al., 1997; Gould et al., 1999; Gould et al., 1998). Finally, Fred Gage and 

collaborators found proof of adult neurogenesis in humans. In postmortem tissue from 

patients previously treated with BrdU for cancer diagnostics purposes, BrdU-labeled 

cells colocalizing with neuronal markers were detected in the DG of the human 

hippocampus (Eriksson et al., 1998). 

The debate over adult neurogenesis in humans is still a hot topic and accounts for a 

scientific problem hard to solve, partly because of the difficulty in getting conclusive 
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quantitative results from postmortem or resected material. It is still in doubt, for 

example, whether or not neurogenesis in normal conditions exists in other adult brain 

areas such as the neocortex, the striatum or the amygdala (Gould, 2007). In an original 

paper by the laboratory of Jonas Frisén, researchers took advantage of the 
14

C imprint in 

genomic DNA in humans before and after above-ground nuclear bomb testing. 

Comparing individual age to hippocampal neuronal age, this team revealed a cell 

turnover dynamics of 700 new neurons added in each hippocampus per day, with a 

modest decline during aging (Spalding et al., 2013). To add more controversy, in the 

current year both evidence, and absence of evidence, of AHN in humans has been 

reported. In a recent article by Arturo Alvarez-Buylla and colleagues, no assumingly 

young neurons were detected in the human DG of postmortem brains and resected 

hippocampi after the first few years of life and similar results were observed in 

macaques (Sorrells et al., 2018). As opposed to these data, Maura Boldrini and 

collaborators found putative progenitors and immature granule cells (GCs) in 

postmortem human hippocampi (Boldrini et al., 2018). In agreement with the 

mentioned work authored by Spalding, they report a more constant presence of 

neurogenesis over time (Spalding et al., 2013). In the most recent contribution regarding 

this feature, the authors found putative stem cells in DG samples from adult human 

brains, but their proliferative capacity was very limited and few immature neurons, 

shown as doublecortin (DCX)-positive cells, were detected (Cipriani et al., 2018). 

These three research works employed similar methods but followed different criteria, 

what reveals the added trouble of choosing good markers and morphological features to 

define neurogenic populations in different species and ages. 

Regarding the SVZ, the controversy is not over either. Since its discovery by Joseph 

Altman and additional work by Shirley Bayer (Bayer, 1985), the multipotency of 

dividing cells located in the walls of the lateral ventricle of adult mice was later 

confirmed in vitro (Lois and Alvarez-Buylla, 1993; Reynolds and Weiss, 1992). In 

addition, their migration through the RMS to the OB, where these cells differentiate into 

neurons, was assessed tracing grafted and endogenous SVZ cells (Lois and Alvarez-

Buylla, 1994). After even describing a topographical model in the adult mouse (Doetsch 

et al., 1997), the scientific community has not stopped questioning to what extent this 

phenomenon consistently occurs throughout evolution. Two studies in 2004 reached 

opposite conclusions on the generation of neurons in the human OB. One found 

dividing cells expressing markers of immature and of γ-aminobutyric acid (GABA)-

ergic or dopaminergic neurons (Bedard and Parent, 2004), whereas the other found stem 

cells but not migrating NBs in the corresponding area (Sanai et al., 2004). As recently 

as 2007, the laboratory of Peter S. Eriksson described the ventriculo-olfactory 

neurogenic system in humans, which contains the SVZ, the RMS, the olfactory tract, 

and the OB (Curtis et al., 2007). However, their evidence supporting the presence of 

new neurons in the OB and that these were originated in the SVZ was still scarce (Sanai 

et al., 2007). Most recent works seem to accept the SVZ neurogenic niche persists at 

least until adulthood in humans (Sanai et al., 2011; Sorrells et al., 2018; Wang et al., 

2011), but further work is necessary to elucidate its prevalence. 
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Main adult neurogenic niches in mammals 

The two canonical brain regions where adult neurogenesis persists display similar 

neurogenic cascades (Fig. 1): NSCs divide asymmetrically originating amplifying 

precursors that, in turn, divide symmetrically giving rise to NBs, which will maturate 

into neurons. However, the architecture and cell fate of both niches are substantially 

different, thus will be discussed separately. 

SVZ 

The periventricular germinal niche, or SVZ, is located in the walls of the lateral 

ventricles and consists of NSCs (B cells) and transient amplifying cells (C cells), which 
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give rise to NBs (A cells) that migrate through the RMS to the OB (Doetsch et al., 

1997). Lining the ventricle, a bona fide epithelium remains in the adult brain that is 

formed by a single layer of multiciliated ependymal cells (E cells), which are 

postmitotic (Spassky et al., 2005). Both B cells (Merkle et al., 2004) and E cells 

(Spassky et al., 2005) have been proved to derive from developmental radial glia, what 

suggests a continuity between the embryonic and adult germinal niches. 

B cells present astrocytic properties such as glial fibrillary acidic protein (GFAP) 

expression and have been subdivided in two populations: B1 and B2 cells. B1 cells are 

radial cells that extend their apical process towards the ventricle and a have a long basal 

process ending in the vascular network present in the SVZ, whereas B2 cells show a 

stellate morphology and are not in contact with the ventricular cavity (Doetsch et al., 

1997). Both populations express GFAP and can proliferate (Doetsch et al., 1997; Ponti 

et al., 2013), but only B1 cells have been described as the true NSCs. Their neurogenic 

potential was proved when labeled neurons in the OB were observed after 

intraventricular injection of an adenovirus targeting GFAP-expressing cells. These 

neurons were reported even in the contralateral OB, thus ensuring that only the 

ventricle-contacting B1 cells and their progeny would be labeled (Mirzadeh et al., 

2008). It is now well accepted that B1 cells provide a continuous supply of new neurons 

for the OB (Imayoshi et al., 2008; Lazarini and Lledo, 2011; Petreanu and Alvarez-

Buylla, 2002; Ponti et al., 2013). 

B1 cells contact the ventricle with a thin apical process that is interdigitated between E 

cells conforming a unique architecture in which, when the ventricular wall is viewed en 

face, these endings appear at the center of pinwheels formed by the apical surfaces of E 

cells (Mirzadeh et al., 2008) (Fig. 2). This apical complex contains a primary non-

motile cilium with functions involved in coupling intrinsic and extrinsic signaling, 

adapting B1 cells response to soluble factors present in the cerebrospinal fluid (CSF) 

(Lehtinen et al., 2011). B1 cells can exist in either a quiescent or an activated state 

(Codega et al., 2014; Mich et al., 2014). Alterations in the CSF flow have been proved 

to promote their activated state via sodium and calcium signals in an epithelial sodium 

channel-dependent manner (Petrik et al., 2018). Another interesting feature is that 

nestin, an intermediate filament known to be a marker of NSCs, is only expressed in 

activated B1 cells that will generate C cells (Codega et al., 2014). 

Type C cells divide symmetrically three to four times before giving rise to A cells that 

will divide one or two more times during their migration to the OB (Ponti et al., 2013). 

These migrating NBs travel long distances through a glial network of interconnecting 

paths that converge at the anterior ventricle, forming the RMS that will carry A cells 

into the OB (Doetsch and Alvarez-Buylla, 1996). In the OB, they migrate radially and 

differentiate into up to ten different types of granule and periglomerular interneurons; 

interestingly, the location of the original NSC in the ventricular wall can predict the 

type of OB neuron that will be produced (Lim and Alvarez-Buylla, 2014; Merkle et al., 

2007). This postnatal inflow of new neurons has been described to be important for 
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flexible olfactory associative learning (Sakamoto et al., 2014) and overall OB circuitry 

plasticity (Lepousez et al., 2013). 

SGZ of the DG 

The hippocampal neurogenic niche, the SGZ of the DG, is located in the interphase 

between the GCL and the hilus. As opposed to the SVZ, the SGZ is not in contact with 

any ventricular cavity. See Fig. 3 for a schematic representation of the neurogenic 

cascade in the DG (Bielefeld et al., 2017; Encinas and Enikolopov, 2008). 
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NSCs have their triangular soma located in the narrow strip of tissue that constitutes the 

SGZ and extend a single apical process that crosses the GCL and arborizes in the 

molecular layer (ML), what gives them a typically radial morphology (Filippov et al., 

2003; Mignone et al., 2004). Because of their astroglial properties such as GFAP 

expression, they have been often referred to as a subtype of astrocytes (Seri et al., 

2001), radial astrocytes (Seri et al., 2004) or radial glia-like cells (Bonaguidi et al., 

2011). Because they represent the first step in the neurogenic cascade, they have also 

been named type-1 progenitors (Filippov et al., 2003; Kronenberg et al., 2003). 

Moreover, due to their scarce rate of cell division and quiescent state and before their 

multipotency was demonstrated they were also designated as quiescent neural 

progenitors (QNPs) (Encinas et al., 2006). 

Hippocampal NSCs were first identified as cells with astrocytic properties (Seri et al., 

2001) combined with some of radial glia such as morphology and vimentin expression 

(Gould et al., 1992). They also express brain lipid-binding protein (BLBP) and Sox2 
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(Encinas and Enikolopov, 2008). Nestin expression is particularly interesting because of 

its tissue pattern and the generation of transgenic strains. Nestin (from neuroepithelial 

stem protein) (Lendahl et al., 1990) is an intermediate filament selectively expressed in 

NSCs and early progenitors of the nervous system and has been used for a while as one 

of the best markers for these populations. However, its presence has been reported in 

some other tissues such as pancreatic islets, tooth and myoblasts (Sejersen and Lendahl, 

1993; Terling et al., 1995; Zulewski et al., 2001). This relatively extended nestin 

expression seems to be regulated by the presence of various regulatory elements, but the 

neural enhancer present in the second intron is strong and sufficient to direct the 

expression of an exogenous transgene to the developing neuroepithelium (Zimmerman 

et al., 1994). Therefore, this is the regulatory element that has been widely used for the 

generation of a number of transgenic mouse lines (Encinas et al., 2006; Imayoshi et al., 

2006; Kawaguchi et al., 2001; Mignone et al., 2004; Tronche et al., 1999; Yamaguchi 

et al., 2000). 

Subgranular NSCs, as we have mentioned, are mostly quiescent and in a given moment 

a 2-5% are dividing (Encinas et al., 2006; Kronenberg et al., 2003). When they are 

activated, they divide three times asymmetrically at the population level (Encinas et al., 

2011b; Pilz et al., 2018), in a horizontal plane parallel to the SGZ (Encinas and 

Enikolopov, 2008);  giving rise to amplifying neural progenitors (ANPs) or type-2 cells 

(Kronenberg et al., 2003). 

ANPs are small round or oval cells which are devoid of GFAP and vimentin expression 

but maintain that of BLBP and, at lower level, nestin (Encinas et al., 2006; 

Kempermann et al., 2004). These cells have a higher mitotic activity, with 20-25% of 

them dividing as shown by a single injection of BrdU (Kronenberg et al., 2003). ANPs 

usually group in clusters, with the division plane normally perpendicular to the SGZ 

such that the daughter cells extend horizontally along the SGZ (Encinas and 

Enikolopov, 2008). After dividing around 2.5 times in a symmetrical fashion (Encinas 

et al., 2011b), they exit the cell cycle and start to differentiate into neuronal precursors. 

During the transition from ANPs to NBs or type 3 cells (Kempermann et al., 2004), 

most progenitors undergo apoptosis and are efficiently phagocytosed by microglia 

(Sierra et al., 2010) such that only one third of the total of newborn cells will maturate 

into GCs. Surviving NBs start expressing markers of immature neurons, e.g. DCX, 

polysialylated neural cell adhesion molecule (PSA-NCAM) and Prox-1, and completely 

cease nestin expression. Most of these cells are larger and extend longer horizontal 

processes than ANPs and do not incorporate BrdU, thus are considered postmitotic 

neuronal precursors or type 1 NBs (NB1) (Encinas and Enikolopov, 2008). 

Type 2 NBs (NB2) are larger than NB1 cells, remain in the SGZ and extend longer 

processes horizontally and obliquely to the plane of the SGZ. They express similar 

markers as NB1s but also start NeuN expression and do not divide (Encinas et al., 

2006). 
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Immature neurons (INs) are larger than the previous classes and their morphology 

becomes more similar to that of mature GCs. During this stage, cells present a single 

apical process crossing the GCL and branching in the ML that will become the apical 

dendrite (Encinas and Enikolopov, 2008; Kempermann et al., 2004) and, apart from the 

markers that characterize NB2 cells, transiently express the calcium-binding protein 

calretinin (Brandt et al., 2003). As early as one week of age, these new neurons start to 

extend their axon towards the hilus (Stanfield and Trice, 1988; Zhao et al., 2006). 

Mostly coinciding in time, the onset of neurotransmitter receptor expression occurs. 

First, GABAergic inputs tonically activate newborn GCs due to their high cytoplasmic 

chloride ion content (Ge et al., 2006); a response that coincides in time with POMC-

EGFP transgene expression (Overstreet Wadiche et al., 2005). Two to four weeks after 

neuronal birth, the response to GABA shifts from excitatory to inhibitory, the most 

typical in the mature brain, at the same time that they start to manifest responses to 

glutamate and integrate in the hippocampal circuitry (Esposito et al., 2005; Ge et al., 

2007; Toni et al., 2008; van Praag et al., 2002). For a summary of this maturation 

process, see Fig. 4 (Zhao et al., 2008). 

Newborn neurons in the DG show typical features of mature GCs by four weeks of age 

but continue to change its morphology and behavior for months until full maturation 

(Ge et al., 2007; Toni et al., 2007; Zhao et al., 2006). Close to this age, calretinin 

expression is substituted by that of calbindin, marking a more mature state (Brandt et 

al., 2003). During the period in which synaptic input is established, there is a selection 

process dependent upon NMDA (N-acetyl-D-aspartate) receptor expression (Ge et al., 

2007; Tashiro et al., 2006); although this selection, in terms of cell loss, is much smaller 

(Sierra et al., 2010). 

The final stages in terms of integration in the hippocampal circuitry also involve 

functional changes. Even though calbindin is found in all mature GCs, it does not mark 

full maturation by itself. New neurons with ages from four to seven weeks are 
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electrophysiologically indistinguishable from preexisting GCs in the DG (Jessberger 

and Kempermann, 2003; van Praag et al., 2002), but in the last maturation steps long-

term potentiation (LTP) amplitude and threshold for LTP induction are different from 

neurons born during embryonic and postnatal neurogenesis (Ge et al., 2007; Schmidt-

Hieber et al., 2004). The integration of new neurons can also be studied by evaluating 

the expression of immediate early genes (IEGs), whose levels reach those of preexistent 

GCs when the newborn cells are older than five weeks (Jessberger and Kempermann, 

2003). However, other authors have reported that this difference in the recruitment of 

incorporating and preexisting neurons is maintained even when new GCs are five 

months old (Ramirez-Amaya et al., 2006). A recent contribution by the laboratory of 

Linda Overstreet-Wadiche reported that an enhancement of adult neurogenesis 

translates into a reduction in excitatory postsynaptic currents and dendritic spine density 

in mature GCs, suggesting a redistribution of preexisting synapse to newborn neurons 

(Adlaf et al., 2017). This piece of evidence strongly supports the idea that newly-

generated GCs indeed modify the hippocampal circuits. 

Functions dependent on hippocampal activity and inherent circuitry, such as episodic 

and spatial memory formation (van Strien et al., 2009; Whitlock et al., 2006), rely at 

least in part on remarkable anatomical features. One of these peculiarities involves a 

mostly unidirectional passage of information through its circuitry, in contrast to the 

reciprocal connectivity that is common in other cortical structures (Stepan et al., 2015). 

The most prominent pathway in this passage, which also gives the DG a special 

relevance, is called the trisynaptic circuit. The trisynaptic circuit is comprised of three 

excitatory (glutamatergic) synapses between the entorhinal cortex (EC) and the region 1 

of the hippocampal Cornu Ammonis (CA): EC layer II onto DG, DG onto CA3 and 

CA3 onto CA1. This circuit was already illustrated by Ramón y Cajal (Fig. 5) and was 

of great interest to him and one of his disciples, Rafael Lorente de Nó ( orente de N , 

1934; Ram n y Cajal, 1995). Neurons in layer II of the EC send their axons via the 

perforant path to the DG, where they synapse onto apical dendrites of GCs. These cells, 

in turn, give rise to mossy fibers that innervate the CA3 pyramidal neurons. Lastly, 

these cells synapse via the Schaffer collaterals onto CA1 pyramidal neurons completing 

the hippocampal trisynaptic circuit (Amaral and Witter, 1989; Witter et al., 2000). 

The EC is the origin of the main synaptic input the hippocampus receives and also acts 

as output region, allowing the origination of entorhinal-hippocampal loops (Witter et 

al., 2000). This position as the first station of information processing in the 

hippocampal formation makes the EC an almost mandatory relay for afferences 

originating from other brain areas (Stepan et al., 2015) and thus an influence on 

hippocampal LTP and cognitive functions (Basu and Siegelbaum, 2015). 

The integration of new neurons into the existing hippocampal network suggests they 

must be involved in hippocampus-related brain functions. The computational modeling 

of AHN has been recently reviewed (Aimone, 2016), but some remarks regarding its 

functional contribution will be pointed out. It has been proved that the level of AHN 

correlates with acquisition of spatial memory shown as performance in the Morris water 
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maze (MWM) (Kempermann and Gage, 2002). Voluntary exercise increases progenitor 

proliferation in the SGZ and enhances LTP in the DG, which correlates with improved 

performance in the MWM (van Praag et al., 1999). Causal evidence, however, has 

provided intriguing results depending on the approach used to ablate neurogenesis and 

the tests employed to evaluate learning tasks (Deng et al., 2011). AHN has also been 

reported to have a role in some types of hippocampus-dependent conditioning (Saxe et 

al., 2006; Shors et al., 2001), anxiety-like behaviors (Bergami et al., 2008), depression 

and stress responses (Snyder et al., 2011). Interestingly, increasing AHN has been 

related to forgetting of established memories (Akers et al., 2014). Nevertheless, 

limitations due to probable differences in animal species and strains, sensitivity of the 

methods and possible side effects of ablation of neurogenesis make it difficult to claim 

conclusions about the exact functions AHN has in cognition. 

4.2. Properties of the hippocampal NSCs 

When NSCs were first identified, by means of chemical antimitotic treatment to ablate 

neurogenesis, as the primary precursors in the adult DG, they were described as 

subgranular astrocytes with mitotic potential and the capability of producing new GCs 

(Seri et al., 2001). Even when this proliferative niche had been discovered, most cells 

derived from divisions were characterized by localization, morphology and markers as 

neurons (Altman and Das, 1965; Kaplan and Hinds, 1977). Years after the initial 



Introduction 

40 

surprise followed by confirmation and validation of this feature, however, these 

progenitors had been reported to render only neuronal progeny. 

In the 1980s, several works performed by the team of Pasko Rakic in rhesus monkey 

tried to deepen in the knowledge on new cell formation in the postnatal and adult DG. 

When addition of newborn GCs was described to stop, shortly after birth in these 

studies, new GFAP-positive or non-neuronal cells were still being added and even the 

proportion of glial cells increased during postnatal age (Eckenhoff and Rakic, 1984; 

Rakic and Nowakowski, 1981). This could be interpreted as an increase in astrocyte 

production in the neurogenic niche of the DG. Nevertheless, this possible turnover was 

only speculation and adult neurogenesis in primates had not been confirmed yet (Rakic, 

1985). New methods and studies provided new data to work on, and the proof of 

existence of AHN in Old World monkeys and humans (Eriksson et al., 1998; Gould et 

al., 1999; Kornack and Rakic, 1999) could make the study of the origin and fate of the 

neurogenic cascade more appealing. 

Multipotency and self-renewal are two features that bona fide stem cells must fulfill, 

what has maintained the interest in solving the question on whether or not adult NSCs 

present these properties. In spite of the specifically radial morphology and location in 

the SGZ (Garcia et al., 2004; Kosaka and Hama, 1986), their astroglial properties made 

the scientific community wonder if hippocampal NSCs could give rise to not only 

neurons but also astrocytes. Tracing cells labeled during proliferation, it was soon 

reported that markers of the neuronal lineage and one of mature astrocytes, S100β, did 

not coexist in the same division-derived cells. This indicated that the existence of a late 

common progenitor for neurogenesis and gliogenesis in the DG was improbable, but 

still astrogliogenesis was taking place in this neurogenic niche (Steiner et al., 2004). 

The identification of the SGZ astrocyte-like population as the true NSCs (Garcia et al., 

2004; Seri et al., 2004; Seri et al., 2001) narrowed the targets of the methods suitable 

for studying their divisions. Using a retroviral approach to label only dividing 

precursors, it was soon reported that NSCs could be multipotent at a single-cell level 

and could self-renew; and employing lentiviruses plus proliferation markers it was 

observed that at the population level they could originate both astrocytes and neurons, 

with a marked bias towards the latter cell type (Suh et al., 2007). From this point on, 

different analyses utilizing nestin-based reporter lines recapitulated this property and 

confirmed the production of mature astrocytes from subgranular NSCs (Bonaguidi et 

al., 2011; Encinas et al., 2011b). 

The debate over multipotency and the type of divisions NSCs can undergo has recently 

been another mystery to solve. In a report that resorted to genetic labeling and lineage-

tracing approaches, J. M. Encinas and colleagues proposed a coupling between NSC 

activation followed by asymmetric division and the subsequent appearance of newborn 

astrocytes derived from NSC differentiation (Encinas et al., 2011b). This programmed 

order-dependent kind of multipotency is a possible explanation for the preference NSCs 

present for generating neurons, as the existence of intermediate progenitors necessarily 



Introduction 

41 

increases the proportion of neurons produced over astrocytes, which would only be 

originated by final differentiation. In addition, this “disposable stem cell” concept offers 

an explanation for the observed age-related progenitor loss, since the few NSCs that 

enter the cell cycle get depleted in favor of transformation into postmitotic astrocytes 

(Encinas et al., 2011b; Lugert and Taylor, 2011). This eventual differentiation is 

supported by previous observations in which the majority of BrdU/GFAP-double 

positive cells also presented S100β expression, a marker of mature astrocytes, when 

evaluated four weeks after BrdU injection (Steiner et al., 2004). 

Nevertheless, another research work published the same year challenged in a way the 

idea that this asymmetric mode of cell division is the only manner in which NSCs can 

behave. This time using in vivo clonal analysis, the authors revealed that NSCs can 

divide symmetrically giving rise to two copies of themselves, although with low 

probability (Bonaguidi et al., 2011). Also, the majority of the labeled clones containing 

a NSC were multilineage and a 7-10% of the total clones contained at least one neuron 

and one astrocyte. Still, a high proportion of the labeled clones, especially the ones 

analyzed one or two months after labeling, were quiescent; and NSC depletion 

accounted for more than a 65% of the clones when evaluated at twelve months 

(Bonaguidi et al., 2011; Taylor, 2011). This is consistent with the previous finding that, 

when NSCs get activated, they lose their stem cell capabilities in the end. Furthermore, 

part of the symmetric division that this work reported can be attributed to the fact that 

NSCs tend to locate in clusters in the DG (Mineyeva et al., 2018). The conclusion that 

two NSCs formed a clone originated through symmetric division of one of them was 

made by quantifying how close the two labeled NSCs were (Bonaguidi et al., 2011), but 

the bias towards a paired distribution already exists in the general NSC population 

meaning that part of the assumed clones of NSCs could be just clusters of unrelated 

cells (Mineyeva et al., 2018).  

These apparently opposed theories have been tried to be unified in comments and other 

original works, being called the “pessimist’s and optimist’s” views of adult 

neurogenesis (Fig. 6). The variety of tools chosen, such as the reporter constructs and 

general genetic manipulations, and the difference in scale, from clonal to population 

level, could be partially blamed for the differing conclusions; but do not solve the 

specific problem on whether NSC symmetric division is improbable or does not occur at 

all (Kempermann, 2011a). Precursor heterogeneity has also been proposed as, 

ironically, a unifying hypothesis, based on divergences in morphology and properties 

found between the different progenitor types in experimental approaches (Bonaguidi et 

al., 2012; Lugert et al., 2010; Suh et al., 2007). 

In a recent and interesting report, mathematical modeling and experimental data may 

help us understand NSC dynamics and the reasons behind their age-related depletion 

(Ziebell et al., 2018). The authors suggest the existence of a “resilient stem cell 

population”, quiescent NSCs that neither get activated nor depleted, as a possible 

subpopulation necessary to fit the clonal data. However, for their model to fit clonal 

data they also need to assume that dividing NSCs return to quiescence after division, a 



Introduction 

42 

behavior that, along with the resilient stem cells, was not observed in the “disposable 

stem cell” population model (Encinas et al., 2011b) or that is infrequent and short-timed 

(Pilz et al., 2018). The most plausible scenario they predict in order to also fit the 

observed decline of NSC population is one in which aged cells exit quiescence through 

activation with a higher probability than through depletion, with half of this depletion 

explicable by astrocytic transformation and the rest explained by cell death/apoptosis 

(Ziebell et al., 2018); although this phenomenon has never been observed and if it exists 

is extremely uncommon (Sierra et al., 2015). 

With this full variety of possible situations, multipotency has been proved but 

frequencies and modes of division must be further explored. Frequency of the progeny 

obtained has been evaluated in a meticulous in vivo live imaging analysis (Pilz et al., 

2018), in which apart from confirming previously mentioned properties (Bonaguidi et 
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al., 2011; Encinas et al., 2011b) the authors observed other possible direct 

transformations or kinds of division that give rise to neurons and astrocytes. Some of 

the contributors to this work had published only three years before how genetic 

manipulation can differentiate hippocampal adult NSCs into oligodendrocytes that 

enhance remyelination in a model of a demyelinating disease (Braun et al., 2015). This, 

although artificially induced, extends NSC multipotency and should lead to more 

exhaustive studies on properties of NSCs and progenitors. 

4.3. Regulation of neurogenesis and NSC dynamics 

As it has been mentioned, NSCs are in baseline conditions a predominantly quiescent 

cell type at the population level. Whether or not their exhaustion is provoked either by 

astrocytic conversion or by cell death, age-related loss of NSCs and neurogenesis has 

extensively been proved in animal models since the discovery of the latter (Altman and 

Das, 1965; Andersen et al., 2014; Bonaguidi et al., 2011; Encinas et al., 2011b; Encinas 

and Sierra, 2012; Kuhn et al., 1996; Walter et al., 2011). Taking into account the 

functional significance of the addition of new neurons, it has been hypothesized that 

decreased neurogenesis could be partially responsible for age-related cognitive 

impairment (Cameron and McKay, 1999; Leuner et al., 2007). In conclusion, NSC entry 

into the cell cycle is a mechanism, if not the only, that contributes to their decline 

through a process of finite divisions and final differentiation into astrocytes (Encinas et 

al., 2011b) or might be cell death. In any case, although possible, the symmetric mode 

of division that could counterbalance NSC loss seems to occur with a low probability 

(Bonaguidi et al., 2011; Suh et al., 2007). 

Due to the described activation-coupled NSC gradual but steady depletion, stimuli that 

induced NSC exit from quiescence would accelerate the decline of their population 

(Pascual-Brazo et al., 2014). This notion has been supported by the fact that disruption 

of some quiescence signals can lead to a short increase in neurogenesis followed by a 

long-term decrease and suppression caused by a loss of NSCs (Ehm et al., 2010; Mira et 

al., 2010). Speaking in terms of saving resources, if the recruitment of more newborn 

neurons becomes necessary it seems “wiser” to regulate neurogenesis at a later stage, in 

more neuronal fate-committed precursors, thus sparing the NSC population. This is a 

possible interpretation from data gathered about how exercise, enriched environment, 

fluoxetine and deep brain stimulation, for example, promote ANP proliferation or 

recruitment of newborn neurons (Encinas et al., 2011a; Encinas et al., 2006; Hodge et 

al., 2008; Kronenberg et al., 2003). However, changes in the mitotic capability of NSCs 

seem restricted to some stimuli in which injury or high increases in neuronal activity 

participate (Gao et al., 2009; Huttmann et al., 2003). 

Although direct connection between signaling pathways and external stimuli that 

regulate AHN is still lacking, some mechanisms involving extracellular cues have been 

described, such as those downstream to bone morphogenetic proteins (BMPs), Notch, 

Wnts, GABA, insulin growth factors (IGFs) and Sonic hedgehog (Shh) (Faigle and 

Song, 2013; Ming and Song, 2011; Urban and Guillemot, 2014). For example, BMPs 
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are necessary for the maturation and integration of GCs, possibly via activation of the 

BMPR-Ib present in NBs and neurons (Mira et al., 2010). 

In this complicated regulation, other cell types of the hippocampal niche that are not 

strictly involved in the neurogenic cascade also have a function (Aimone et al., 2014). 

To begin with, astrocytes can secrete Wnt3a and ephrin-B2, which have been proved to 

regulate neurogenesis possibly via β-catenin signaling (Ashton et al., 2012; Lie et al., 

2005). Astrocytes can also release interleukins (ILs) IL-1 and IL-6, proinflammatory 

cytokines that, combined with other factors, can increase neuronal differentiation from 

neural progenitors (Barkho et al., 2006). Microglia, for its part, is required to respond to 

fractalkine for AHN to occur normally, what suggests that a balance between pro- and 

anti-inflammatory cytokines and chemokines is necessary (Bachstetter et al., 2011). 

Importantly, microglia also shapes neurogenesis by phagocytosis of apoptotic newborn 

cells that failed to survive their first weeks (Sierra et al., 2010). 

At the exclusive level of NSCs, the signaling involved in their switch from quiescence 

to an activated state and overall cell cycle dynamics are not fully understood but 

remarkable steps have recently been taken. The interest in these characteristics is 

double: first, we need to ascertain whether NSC activation/depletion is actually 

advantageous for neurogenesis or detrimental in the long term; second, the notions 

about regulation of NSC cell cycle are vital to be able to take advantage of their 

regenerative potential. For example, it is known that aging is marked by a decrease in 

the number of newborn neurons in the DG but it is not clear if the reason behind is 

either the increase in quiescence of aged NSCs, the diminished capability of ANPs to 

proliferate, the loss of NSCs over time or all of them. 

The thymidine analog BrdU has been extensively employed in the study of adult 

neurogenesis (Eriksson et al., 1998; Gould et al., 1997) since every dividing cell 

incorporates it in their DNA and daughter cells are readily observable by detection with 

antibodies (Gratzner, 1982). Most typically, pulse-and-chase experiments have been 

carried out to label dividing cells in a specific time point, but continuous administration 

paradigms have been rarely used for this purpose. The fact that only a 1-5% of 

hippocampal NSCs are dividing in a given moment (Kronenberg et al., 2003) makes 

them harder to “capture” and in turn observe their progeny and activation-quiescence 

behavior. Resorting to a two-marker paradigm, it was observed that, after dividing three 

times in a row at the population level, NSCs do not return to quiescence but exit the 

stem cell pool (Encinas et al., 2011b). This behavior somehow goes against what was 

observed in the mentioned clonal analysis, in which some activated NSC-derived clones 

maintained a NSC or even two (Bonaguidi et al., 2011). More recent observations have 

described the participation of the E3-ubiquin ligase Huwe1 destabilizing the 

proactivation protein Ascl1 as a mechanism that promotes NSC return to quiescence 

and prevents their exhaustion, although long-term analyses of quiescence were not 

performed (Urban et al., 2016). Precisely employing Ascl1 as a target gene to label 

NSCs, an in vivo two-photon imaging approach managed to follow their division modes 

and progeny over time and reported no symmetrical NSC divisions after the more 
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typical asymmetrical ones and a progressive depletion of NSC-containing clones after 

three divisions (Pilz et al., 2018), thus confirming the previously reported data at the 

population level obtained by Encinas et al. (Encinas et al., 2011b). 

Regulation of quiescence has been addressed in a number of other papers lately, trying 

to overcome at least the difficulty in telling activated from dormant NSCs. BMP 

signaling, this time through BMP-Ia receptor activation, has been described to be 

necessary for NSCs to maintain their quiescent stage, and its deletion leads to an over-

activation of adult NSCs that ultimately depletes their population (Mira et al., 2010). 

Inhibitors of BMPs such as noggin are present in the DG and promote NSC activation, 

self-renewal and multipotency, an effect that seems specific for hippocampal NSCs 

(Bonaguidi et al., 2008).  

It has been reported that EGFR-expressing NSCs in the SVZ are more proliferative and 

neurogenic whereas EGFR
-
 ones are more quiescent, suggesting EGFR as an identity 

marker to distinguish the activated state (Codega et al., 2014; Pastrana et al., 2009). 

This strategy was successfully reproduced in the DG, where EGFR
+
 NSCs were able to 

generate more neurospheres than the respective population devoid of this receptor 

(Walker et al., 2016). 

Wnts also have a role in regulation of quiescence. They are secreted by astrocytes and 

NSCs, thus they are thought to act both in a paracrine and an autocrine manner 

(Okamoto et al., 2011; Qu et al., 2010), and through their canonical pathway they can 

directly promote NSC proliferation and induce neurogenesis in vitro (Lie et al., 2005). 

There is also in vivo evidence suggesting that the Wnt inhibitor secreted Frizzled-related 

protein 3 (sFRP3), secreted by GCs, participates in NSC quiescence maintenance and 

neurogenesis, as in its absence NSCs proliferate more and newborn neuron maturation 

is promoted (Jang et al., 2013). Expression of another Wnt inhibitor, Dickkopf 1 

(Dkk1), increases with age and its deletion from the brain was also able to restore 

neurogenesis in aged mice, what supports the idea of increased NSC quiescence as a 

process involved in the decline of AHN with age (Seib et al., 2013). The mechanisms 

by which the Wnt pathways are thought to regulate AHN were summarized in a 

comment on these two papers and are shown in Fig. 7 (Wu and Hen, 2013). 

Notch signaling is also important for NSC quiescence and adult neurogenesis, although 

differences in receptors and neurogenic niches could lead to divergent conclusions. 

Particularly, deletion of Notch1 receptor from nestin
+
 hippocampal NSCs and their 

progeny translated into a premature loss of stem cells and transient progenitors, 

suggesting again that increased NSC activation provokes a decline in their population 

(Ables et al., 2010). Nevertheless, this effect seems different in the SVZ, where a 

similar Notch1 selective ablation affected the activated population by promoting its 

division and ultimate depletion but was not enough to make the quiescent NSCs exit the 

dormant stage and their population remained unchanged (Basak et al., 2012). In 

zebrafish, different Notch receptors seem to regulate different properties of NSCs 

(Alunni et al., 2013), a feature that could partly explain these differences between SGZ 
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and SVZ adult NSCs or even contribute to the population heterogeneity present in the 

SVZ (Codega et al., 2014) and proposed for the SGZ (Giachino and Taylor, 2014). 

An interesting hypothesis that could explain the effect of Notch signaling pathways on 

stem cell quiescence involves Hes proteins and one of their targets, the already 

mentioned Ascl1 (Urban and Guillemot, 2014). Hes proteins are transcription factors 

induced by Notch activity which act as gene expression inhibitors and have oscillating 

levels, due to their own gene repression and their short half-life, that regulate 

quiescence of neural progenitors in the embryonic brain (Imayoshi and Kageyama, 

2014; Imayoshi et al., 2010; Shimojo et al., 2008). Their oscillation, although not 

confirmed yet in adult NSCs, is opposite to the one of their targets, including Ascl1. 

Ascl1 is another transcription factor whose expression is induced by activating signals 

received by adult NSCs and promotes their exit from quiescence. Indeed, its expression 

is specific in proliferative NSCs, although not always present in them (Andersen et al., 

2014). Ascl1 destabilization by Huwe1 has been proved to be necessary for the 

hippocampal stem cells to return to quiescence after activation, and if they fail this 

return the proliferative NSC pool gets depleted (Urban et al., 2016). These sets of data 

further support the idea that stimuli or pathways which favor NSC entry into the cell 

cycle also derive in a more rapid depletion of their population. 

A specific gene whose function has been linked to several steps of the neurogenic 

process is the lysophosphatidic receptor 1 (LPA1) (Matas-Rico et al., 2008). During 

cortical development, LPA1 is expressed in neuronal precursors suggesting a regulatory 

function in neurogenesis (Hecht et al., 1996). Traditionally, postnatal expression of this 

gene has been reported in oligodendrocytes during the progress of myelination (Weiner 
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et al., 1998), but this receptor has recently been proposed as a good marker for 

hippocampal adult NSCs (Walker et al., 2016) (Fig. 8). In a recent single-cell RNA 

sequencing analysis that followed the different neurogenic populations from 

development to adult stages, this receptor was one of the few markers found to be 

specifically enriched in NSCs even in their quiescent state (Hochgerner et al., 2018). 

Given this specificity and enrichment in NSCs, we could expect defects in neurogenesis 

in its absence. However, a mouse strain lacking LPA1 did not show apparent 

abnormalities in the hippocampal formation or differences in DG volume (Matas-Rico 

et al., 2008); whereas defects in cortical layer width in adults had been previously 

described (Estivill-Torrus et al., 2008). In addition, around a 50% perinatal lethality due 

to defective suckling behavior and brain metabolism alterations had been reported in a 

formerly-generated null mouse strain (Contos et al., 2000; Harrison et al., 2003). 

In the paper regarding hippocampal features of the Málaga variant of LPA1-null 

(maLPA1), the authors indeed found defects in proliferation in the DG and adult 

neurogenesis based on a reduction in PSA-NCAM and DCX expression. These deficits 
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were still present after exposure to environmental enrichment and voluntary exercise to 

increase newborn neuron generation (Matas-Rico et al., 2008). Nevertheless, 

conclusions on the contribution of the constitutive deletion of this gene to the effects of 

enrichment should be taken cautiously as it seems to affect baseline neurogenesis 

(Kempermann, 2011b). More evidence on the participation of LPA1 in AHN, however, 

was found in the fact that its endogenous ligand LPA induced net neurogenesis by 

enhancing precursor survival without changing proliferation in vivo (Walker et al., 

2016). Works on the function of this relatively new adult NSC marker are lacking and 

future research on this topic should improve our knowledge on the possibilities and 

properties of SGZ stem cells and overall neurogenic niche. 

Accumulating data suggest a relationship between neuronal activity and NSC activation. 

In fact, some of the mentioned mechanisms have been proposed as mediator pathways 

for activity-dependent NSC recruitment. Secretion of the Wnt inhibitor sFRP3 by GCs, 

for example, seems to decrease with neuronal activity and in its absence quiescent 

NSCs get activated and newborn neuron maturation is favored (Jang et al., 2013). For 

its part, a single injection of kainic acid (KA), an agonist of ionotropic glutamate 

receptors that mimics neuronal hyperactivity, increased Ascl1 expression in quiescent 

NSCs and promoted their division (Andersen et al., 2014). On the contrary, tonic 

release of the typically inhibitory neurotransmitter GABA by parvalbumin (PV)-

expressing interneurons maintains NSCs in their quiescent state and the deletion of a 

subunit of the ionotropic GABAA receptor is enough to activate a symmetric mode of 

NSC division (Song et al., 2012). These PV
+
 neurons are depolarized by GABAergic 

projections coming from the medial septum, which have been proved to regulate stem 

cell quiescence too (Bao et al., 2017). Moreover, inhibition of the metabotropic GABAB 

receptor and deletion of its subunit GABAB1 stimulated NSC proliferation (Giachino et 

al., 2014). Therefore, evidence increasingly suggests that excitatory neuronal activity in 

the DG drives NSCs towards their activation state, whereas the inhibitory maintains 

their quiescence. A schematic summary of the different proposed mechanisms of 

regulation is shown in Fig. 9. 

The fact that neuronal excitation affects hippocampal stem cell division is in addition 

supported by several reports in which manipulations or brain alterations that affect 

electrical activity have been observed to alter AHN (Pineda and Encinas, 2016). 

Seizures increase NSC recruitment and activation (Huttmann et al., 2003; Indulekha et 

al., 2010), a feature that has been also proved in the animal model for electroconvulsive 

therapy (ECT), electroconvulsive shock (ECS) (Jun et al., 2015; Segi-Nishida et al., 

2008). Studies on long-term effects of the NSC division enhancement, their fate choices 

and overall neurogenesis are still lacking, thus will be partly addressed in this work. 

4.4. Neurogenesis and epilepsy 

Mesial temporal lobe epilepsy (MTLE), the most frequent form of human epilepsy, is a 

chronic neurological disorder characterized by spontaneous recurrent motor seizures 

generated in the mesial temporal lobe. It is thought that, in most patients, MTLE is 
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initiated by lesions or functional alterations triggered by events such as febrile seizures, 

encephalitis or traumatisms which, after a latency period of 5-10 years, originate these 

convulsions (Engel, 1993; O'Dell et al., 2012; Sharma et al., 2007). This pathology is 

associated with histological changes in the hippocampus that involve neuronal loss, 

dispersion of the GCL and lesions in CA (Bae et al., 2010; de Lanerolle et al., 2003; 

Sharma et al., 2007), as well as gliosis with reactive astrocytes (RAs) (O'Dell et al., 

2012; Sierra et al., 2015). This series of alterations is known as hippocampal sclerosis 

and its severity usually correlates with an increased loss of the cognitive functions 

related to the hippocampus (Fig. 10) (Wieser, 2004). 

Neuronal alterations such as aberrant GC mossy fiber growth towards the GCL and 

even inner ML of the DG are also present in MTLE (Buckmaster et al., 2002; Nadler et 

al., 1980; Okazaki et al., 1999; Tauck and Nadler, 1985). This axonal sprouting could 

contribute to epileptogenesis, possibly through the excitatory synapses with other GCs 

that have been reported and that would result in a predominantly excitatory circuit 

deriving in recurrent excitation and seizures (Scharfman et al., 2003; Sharma et al., 

2007). 

Adult neurogenesis is also affected in MTLE. In experimental models of this disorder 

such as the pilocarpine model in rat, it has been observed that there is an initial boost in 

newborn neuron generation (Cha et al., 2004) with development of aberrant axonal 

projections (Parent et al., 1997). This could be due to the mentioned increase in NSC 

activation that follows systemic KA injection-induced seizures (Huttmann et al., 2003), 
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but as we will see NSCs in epilepsy models do not seem to behave normally in terms of 

newborn neuron generation. This short-term stimulation of neurogenesis might 

contribute to the epileptogenic process favoring recurrent hyperexcitation; indeed, this 

idea is supported by the decrease in convulsive activity observed after infusion with 

cytosine β-D-arabinofuranoside (Ara-C), an antimitotic agent which inhibits AHN (Jung 

et al., 2004). Inhibition performed by means of brain irradiation, though, was not 

enough to prevent mossy fiber reorganization in the ML, suggesting that the major 

contribution belongs to preexistent GCs (Parent et al., 1999). 

Nevertheless, the neurogenic boost would be transitory, as other studies suggest that 

neurogenesis is abolished as a long-term consequence in chronic epilepsy developed 

after KA- or flurothyl-induced seizures (Hattiangady et al., 2004; Hattiangady and 

Shetty, 2010; McCabe et al., 2001). One possibility to explain this impairment is the 
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reported generation of new GABAergic interneurons as a fraction of the product of 

AHN (Liu et al., 2003). If no new inhibitory neurons can be incorporated into the 

circuitry, this could derive in an increased neuronal excitability. However, this 

possibility does not seem probable since GCs still account for the majority if not all of 

neurons produced in the neurogenic cascade; and especially because SGZ NSCs 

generate and differentiate into RAs following intrahippocampal KA injection at the 

expense of neurogenesis (Sierra et al., 2015). This shift from the predominant 

neurogenic fate towards an almost pure reactive astrogliogenesis would indeed be a 

plausible explanation for the ablation of neurogenesis observed in the mentioned 

chronic MTLE models. 

Another common feature in experimental models of MTLE and human samples is 

aberrant neurogenesis, the generation of abnormal neurons in the DG. The aberrations 

include ectopic location (mostly in the hilus), abnormal morphology with mossy fiber 

sprouting (Parent et al., 1997), and altered electrophysiological properties (Scharfman, 

2000; Scharfman et al., 2003). The contribution of this aberrant neurogenesis to MTLE 

is not completely understood, but a positive correlation between some of these 

peculiarities and the frequency of seizures was found in a model of mouse epilepsy 

(Hester and Danzer, 2013). Although causality cannot be claimed from that study, it has 

also been observed that reducing overall neurogenesis by triggering apoptosis in 

dividing nestin-expressing cells reduced aberrant neurogenesis and the frequency of 

chronic seizures (Cho et al., 2015). This ectopic location of newborn neurons can also 

occur when seizures are induced in other brain areas connected to the DG such as in the 

amygdala via kindling (Fournier et al., 2010; Fournier et al., 2013). The amygdalar 

region is connected to the DG via EC synapses (Finch et al., 1986) and its involvement 

is not trivial in hippocampal excitatory loops as it has been shown to modulate 

hippocampal-mediated memory processes (Packard et al., 1994) and synaptic plasticity 

(Nakao et al., 2004). 

The ultimate neurogenic decline in MTLE fits with the division-coupled astrocytic 

differentiation of adult NSCs once they are activated. The increase in neuronal activity 

would translate into NSC recruitment for cell division and, in turn, NSCs would finally 

transform into astrocytes (Encinas et al., 2011b). This hypothesis was supported by the 

fact that, in animal models of the disorder, an accumulation of newly-born astrocytes is 

observed in the long term (Kralic et al., 2005; Nitta et al., 2008). 

In human tissue, putative NSCs defined as nestin-positive radial cells were found in 

hippocampi from young TLE patients but none was found in those of adult patients, 

suggesting that the NSC pool is depleted after chronic seizure activity in humans 

(Blumcke et al., 2001). Moreover, neural progenitors were absent in an ex vivo study of 

epilepsy patients with hippocampal sclerosis (Paradisi et al., 2010). 

The data and especially the conclusions obtained from postmortem or ex vivo tissue, 

however, have not been proved to be really reproducible and sometimes seem 

contradictory. Until further exploration and even confirmation of the presence of NSCs 
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in the adult human DG, the general consensus might be that an initial boost in 

proliferation is followed by decreased cell division and neurogenesis (Pineda and 

Encinas, 2016). 

Some of the mechanisms involved in the relationship between excitability and NSC 

activation, such as GABA activity, have been commented but others are noteworthy. 

The levels of brain-derived neurotrophic factor (BDNF) are acutely upregulated after 

seizure generation (Shetty et al., 2003) and when locally synthesized in dendrites of 

GCs it promotes differentiation and maturation of progenitors in the SGZ via GABA 

release from PV
+
 interneurons (Waterhouse et al., 2012), suggesting another mechanism 

of excitation-dependent NSC regulation. Neuronal activity can also upregulate the 

expression of growth factors such as basic fibroblast growth factor (bFGF, FGF-2) 

(Riva et al., 1992). FGF-2 is acutely overexpressed after seizures (Indulekha et al., 

2010) and has been related to astrocyte hypertrophy after inflammatory insult (Kang et 

al., 2014) and to cell proliferation in the hippocampus in response to KA injection 

(Yoshimura et al., 2001). Nevertheless, in chronic epilepsy its expression decreases 

(Hattiangady et al., 2004) as well as the number of FGF-2-positive RAs (Erkanli et al., 

2007), so its role in the chronification of the disease and the reactive astrogliosis is still 

unclear. Lastly, Shh not only regulates neurogenesis but also directly induces stem cell 

properties in the reactive astroglia found after brain injury (Sirko et al., 2013). In 

addition, the hedgehog signaling that Shh activates was observed to be enhanced 

following both acute and chronic ECS treatment (Banerjee et al., 2005). The regulation 

of the downstream protein Smo and its mRNA are not well understood, however, and 

further research is necessary to unveil the mechanisms involved in the relationship 

between Shh and the astrocyte and NSC responses to neuronal activity. 

Not only increased neuronal activity recruits NSC for division and, potentially, eventual 

differentiation into astrocytes, it has been reported that neuronal hyperexcitation in the 

DG favors astrogliogenesis at the expense of neurogenesis (Kralic et al., 2005). Indeed, 

although epileptiform activity (EA) acts like an accelerated form of aging impairing 

neurogenesis through NSC depletion, MTLE qualitatively changes the fate of NSC 

division towards reactive astrogliogenesis (Sierra et al., 2015). RAs, on their part, have 

impaired glutamate buffering and produce proinflammatory cytokines with 

proepileptogenic potential such as IL-1β, which could participate in the development of 

secondary recurrent seizures (Devinsky et al., 2013). 

Interestingly, reactive astrogliosis induced by adenoviral infection of hippocampal 

astrocytes impaired the excitation/inhibition balance of network activity, what translated 

in neuronal hyperexcitability (Ortinski et al., 2010). Furthermore, widespread chronic 

astrogliosis caused by β1-integrin conditional deletion in radial glia and its progeny led 

to the development of spontaneous seizures in vivo and neuronal hyperexcitability in 

acute brain slices, supporting the hypothesis that reactive astrogliosis is sufficient to 

trigger epileptic seizures (Robel et al., 2015). 
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Given the probable exacerbation of MTLE by the presence of RAs, the newly-formed 

ones would contribute to this imbalance in neuronal activity that could act in favor of 

the chronification of this neurological disorder. The apparent benefit of increasing 

neurogenesis in epileptic patients due to the long-lasting loss of this capacity, therefore, 

meets opposition in the fact that stimulating NSC activation in this condition, if any is 

left spared, promotes reactive astrogliogenesis instead (Sierra et al., 2015). Studying 

this new possibility of adult NSCs of transforming into reactive NSCs (React-NSCs) 

that ultimately derive in RAs, as well as establishing markers and differential 

functionalities for these versus those of parenchymal astrocytes-derived RAs, should 

open new perspectives to interpret the “virtues” and “failures” this stem cell population 

is capable of. 
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5. Hypothesis and Objectives 

Effective AHN depends large- and primarily on the cell output of NSCs. These cells act 

as a finite and non-renewable resource and thus preserving their population and 

properties is desirable to counteract the progressive depletion of neurogenesis that 

associates with aging or some pathological conditions. Many of the properties that 

characterize NSCs are still not fully understood as essential experiments and appropriate 

tools are still missing in the literature. In our attempt to generate new knowledge about 

NSCs and AHN we have generated the following hypotheses and objectives: 

- We hypothesize that NSC activation is a single event that inevitably leads to 

their exhaustion and return to quiescence after initial activation and self-

renewal are negligible at the population level. 

Objective 1. To evaluate division versus quiescence dynamics in the hippocampal 

neurogenic niche. 

Objective 1.1. To assess proliferation and NSC activation in the normal DG 

employing a continuous BrdU-administration paradigm. For this purpose, we will 

take advantage of BrdU administration in drinking water for 1w, sacrificing the animals 

1d later to stain and visualize specific markers of dividing populations and quantify 

their relative proportions by means of confocal microscopy-based quantitative image 

analysis. 

Objective 1.2. To analyze the differentiation output of the cell division-

derived populations in the DG after prolonged exposure to BrdU labeling. Towards 

this aim, we will administer BrdU in drinking water for 1w, or 1m, and wait for 1m 

after BrdU withdrawal to study the division-derived differentiated populations in the 

DG by means of confocal microscopy-based quantitative image analysis. 

Objective 1.3. To study the reentry into the cell cycle versus quiescence or 

differentiation of cells that have already experimented division in the DG during 

continuous BrdU administration. We will evaluate the reentry into the cell cycle in all 

three paradigms of BrdU administration utilizing Ki67as a marker of cell division in 

already BrdU-labeled cells. Specifically, we will also focus on the possibility of reentry 

of NSCs. 

- We hypothesize that stimuli that promote NSC entry into the cell cycle such 

as neuronal hyperactivity would accelerate their depletion or even provoke 

a shift in their properties and disrupt the correct progress of the neurogenic 

cascade. 

Objective 2. To study the response to different levels of neuronal hyperexcitation 

of the neurogenic niche and specifically of NSCs. 
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 Objective 2.1. To study cell proliferation and NSC activation in the DG 

following two models of neuronal hyperexcitation: EA and MTLE. For this purpose, 

we will inject two different doses of KA into the DG that induce neuronal 

hyperexcitation in the form of spike discharges (EA) or seizures (MTLE) and acutely 

label proliferating cells with BrdU at 2 or 6d postinjection. We will then analyze the 

overall cell division and that of NSCs, ANPs and astrocytes with the help of cell 

markers and confocal microscopy-based quantitative image analysis. 

Objective 2.2. To evaluate the symmetric versus asymmetric mode of cell 

division of NSCs after seizures. For this objective, we will perform clonal analysis of 

dividing cells resorting to inducible Nestin-CreER
T2

/R26R:YFP transgenic mice in 

control and MTLE conditions by means of confocal microscopy-based quantitative 

image analysis. 

Objective 2.3. To study the differentiation output of NSCs after seizures. 

With this aim, we will perform a long-term analysis in inducible Nestin-

CreER
T2

/R26R:YFP transgenic mice and quantify the cell types derived from NSC 

division following EA and MTLE by means of confocal microscopy-based quantitative 

image analysis. 

Objective 2.4. To assess the effect on cell proliferation and NSC activation 

of an inflammatory stimulus. For this purpose, we will inject lipopolysaccharide 

(LPS) directly into the DG and administer BrdU 2d later to perform at 3d a short-term 

analysis by means of confocal microscopy-based quantitative image analysis. 

- We hypothesize that expression of LPA1, and LPA1-GFP in a transgenic 

mouse line, can be a unique tool to identify and analyze NSCs as they 

convert into React-NSCs and that LPA1 might play a role in NSC function. 

Objective 3. To validate LPA1-GFP transgenic mouse as a tool to study React-

NSCs.  

 Objective 3.1. To validate the expression of LPA1 in hippocampal NSCs. For 

this purpose, we will quantify the contribution of NSCs to LPA1-GFP
+
 cells in the 

neurogenic niche of the DG and perform immunolabeling of LPA1 to verify that the 

receptor is indeed expressed in LPA1-GFP
+
 NSCs. 

 Objective 3.2. To characterize the effects of MTLE in the DG of LPA1-GFP 

mice. For this objective, we will perform a time course sacrificing the animals at six 

different time points after MTLE induction. Employing BrdU labeling and specific 

markers, we will evaluate the changes provoked in the neurogenic capacity of the DG 

and in LPA1-GFP
+
 NSCs by means of confocal microscopy-based quantitative image 

analysis. 

 Objective 3.3. To trace the expression of LPA1-GFP in React-NSCs until 

their ultimate transformation into RAs. For this goal, we will follow the 

transformation of LPA1-GFP
+
 NSCs in the time course after seizure induction with the 
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help of BrdU labeling and specific cell markers and assess the expression of the 

transgene during NSC transformation and the potential expression in other cell types in 

the DG. 

Objective 3.4. To validate the usefulness of LPA1-GFP transgenic mice for 

ultrastructural studies. For this purpose, we will validate LPA1-GFP specific 

expression in NSCs and React-NSCs in the DG of Sham and MTLE mice and search for 

putative ultrastructural particularities of these cell types via GFP pre-embedding 

immunohistochemistry for transmission electron microscopy (TEM). 

Objective 3.5. To study the involvement of LPA1 in the seizure-induced NSC 

activation. For this objective, we will resort to knockout (KO) mice of the receptor 

called maLPA1, and their wild-type (WT) counterparts, to evaluate how the absence of 

LPA1 affects cell proliferation and NSC activation after MTLE. 

- We hypothesize that regardless of the model of induction of MTLE NSCs 

and the neurogenic niche will be affected in a similar manner. 

Objective 4. To establish an alternative model of MTLE by intraamygdalar 

injection of KA. 

 Objective 4.1. Characterize cell proliferation and NSC activation in the DG 

of mice injected with KA into the amygdala. For this goal, we will optimize a 

protocol to consistently inject KA into the amygdalar region and study the changes 

induced in the DG of Nestin-GFP mice with the help of BrdU labeling and specific 

immunolabeling for confocal microscopy-based quantitative image analysis. 
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6. Materials and Methods 

6.1. Animals 

All the animals were housed with ad libitum food and water access, in 12:12h light 

cycle, and were 2 months old at the time of the start of the experiments. All procedures 

were approved by the University of the Basque Country EHU/UPV Ethics Committees 

(Leioa, Spain) and Diputación foral de Bizkaia under protocol M20/2015/236. All 

procedures followed the European directive 2010/63/UE and NIH guidelines. 

Nestin-GFP transgenic mice, generated in the laboratory of Dr. Grigori Enikolopov at 

Cold Spring Harbor Laboratory (Cold Spring Harbor, NY, USA) (Mignone et al., 

2004), who also kindly provided the strain, were crossbred with C57BL/6 mice for at 

least 10 generations. 

Nestin-CreER
T2

/R26R:YFP mice, from Dr. Amelia J. Eisch laboratory (University of 

Texas Southwestern Medical Center, Dallas, TX, USA), were crossbred with C57BL/6-

Tyr
c-2J

/J (Jax labs, stock no. 000058), creating white furred albino mice in a C57BL/6 

genetic background (Lagace et al., 2007). A batch of these mice was hosted at the 

Catholic University of Leuven (Katholieke Universiteit Leuven, Leuven, Belgium), 

given tamoxifen and then subjected to the saline, EA and MTLE models at the Research 

Group for Neurobiology and Gene Therapy headed by Dr. Veerle Baekelandt. After 

that, the fixed brains were sent to us for analysis. Another batch of mice was sent to our 

laboratory at the Achucarro Basque Center for Neuroscience, subjected to tamoxifen 

injection and the saline, EA and MTLE models and further processed here. 

LPA1-GFP transgenic mice, generated by the GENSAT project at Howard Hughes 

Medical Institute (The Rockefeller University, NY, USA) (Gong et al., 2003), were 

provided by Dr. Gerd Kempermann at the Center for Regenerative Therapies Dresden 

(Technische Universität Dresden, Dresden, Germany) and crossbred with C57BL/6 

mice for at least 10 generations. 

For the studies regarding absence of LPA1, mice of the spontaneous variant maLPA1-

null (Estivill-Torrus et al., 2008), derived from previously reported LPA1-null (Contos 

et al., 2000); and their WT counterparts (on a mixed background C57BL/6 x 3129SW) 

were kindly provided by Guillermo Estivill-Torrús at the Instituto de Investigación 

Biomédica de Málaga (IBIMA, Hospital Regional de Málaga, Málaga, Spain). 

6.2. Tamoxifen injection 

To induce YFP expression in the Nestin-CreER
T2

/R26R-YFP mice, 1mg of tamoxifen 

(dissolved at 20mg/ml in corn oil) was administered intraperitoneally twice a day for 5 

consecutive days. This experimental paradigm assures that upregulation of nestin in 

astrocytes following insult does not contaminate our results. The inducible expression 
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of GFP by tamoxifen was several days prior to the KA injection. Therefore, nestin 

upregulation in astrocytes due to KA injection could not translate into expression of 

YFP as nestin expression would start days after tamoxifen administration stopped. 

6.3. Stereotaxic intrahippocampal injection 

Mice were anesthetized with intraperitoneal ketamine (Dechra Veterinary Products, 

Barcelona, Spain)/medetomidine (Braun VetCare, Tuttlingen, Germany) (75:1 mg/kg) 

and received a single dose of the analgesic buprenorphine (1mg/kg) (Animalcare, York, 

United Kingdom) subcutaneously. After positioning in the stereotaxic apparatus, a 

0.6mm hole was drilled at coordinates taken from Bregma to target the DG (based on 

(Franklin and Paxinos, 1997)): anteroposterior (AP) -1.8mm, laterolateral (LL) -1.6mm. 

A pulled glass microcapillary was inserted at -1.9mm dorsoventral (DV), and 50nl of   

saline (NaCl 0.9%, Sal group), KA (Sigma-Aldrich, St Louis, MO, USA) 0.74mM 

(0.037nmol, EA group) or KA 20mM (1nmol, MTLE group); or 500nl of LPS (4µg of 

lipopolysaccharides from Salmonella enterica serotype typhimurium, Sigma-Aldrich, St 

Louis, MO, USA) were delivered into the right hippocampus using a microinjector 

(Nanoject II, Drummond Scientific, Broomal, PA, USA). After 2min, the microcapillary 

was retracted, and the mice sutured and maintained on a thermal blanket until recovered 

from anesthesia. The animals were continuously monitored during the first hours 

following the procedure and once or twice daily after the first 24h. 

6.4. Stereotaxic intraamigdalar injection 

Mice were subjected to similar procedures as in the intrahippocampal KA injection 

except for the specifications that follow. A dose of 100nl of KA 12.96mM (1.3nmol) 

was injected to induce status epilepticus (SE) following previous literature (Alves et al., 

2017; Engel et al., 2017), but coordinates taken from Bregma to target the right 

amygdalar complex were adapted to improve reproducibility and avoid crossing or 

contacting the lateral ventricle or the most lateral region of the hippocampus (Franklin 

and Paxinos, 1997): AP -1.4mm, LL -3.1mm and DV -4.7mm. 

6.5. BrdU administration 

For the NSC fate-chase experiments, the thymidine analog BrdU (Sigma-Aldrich, St 

Louis, MO, USA) was diluted in drinking water with 1% (w/v) sucrose at 1mg/ml 

concentration. For the proliferation analysis, BrdU was administered for 1w and animals 

were sacrificed 1d after BrdU removal from water (1w+1d). For differentiation 

analyses, animals were sacrificed 1m after either 1w- (1w+1m) or 1m-long (1m+1m) 

BrdU administrations in drinking water. 

For the rest of experiments, BrdU was diluted in sterile phosphate-buffered saline (PBS) 

with 0.01N sodium hidroxyde and administered through intraperitoneal injections at 

150mg/kg concentration. Nestin-GFP, LPA1-GFP e and maLPA1-null/WT mice were 

given four injections separated by 2-h intervals on the second or the sixth day (only for 
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the Nestin-GFP 7dpKAi analysis) after intrahippocampal injection of KA or Sal. 

Animals were sacrificed at different time points specified in each set of experiments. 

6.6. Immunohistochemistry 

Immunohistochemical techniques were performed essentially as described before 

following methods optimized for the use in transgenic mice (Encinas and Enikolopov, 

2008; Encinas et al., 2011b). Animals were subjected to transcardial perfusion with 

30ml of PBS followed by 30ml of 4% (w/v) paraformaldehyde (PFA) in PBS, pH 7.4. 

The brains were removed and postfixed, with the same fixative, for 3h at room 

temperature, then transferred to PBS and kept at 4ºC. 

Due to antigen sensitivity, mice whose brain sections were destined to LPA1 

immunostaining were perfused with periodate lysine PFA (PLP) fixative consistent of 

0.01M sodium metaperiodate, 0.075M lysine and 4% PFA in 0.1M phosphate buffer 

(PB) (McLean and Nakane, 1974). The same fixative was used for overnight 

postfixation. 

Serial 50µm-thick sagittal sections were cut using a Leica VT 1200S vibratome (Leica 

Microsystems GmbH, Wetzlar, Germany). Immunostaining was carried out following a 

standard procedure: the sections were incubated with blocking and permeabilization 

solution containing 0.25% Triton-X100 and 3% bovine serum albumin (BSA) in PBS 

for 3h at room temperature, and then incubated overnight with the primary antibodies 

(diluted in the same solution) at 4ºC. After thorough washing with PBS, the sections 

were incubated with fluorochrome-conjugated secondary antibodies diluted in the 

permeabilization and blocking solution for 3h at room temperature. After washing with 

PBS, the sections were mounted on slides with Dako fluorescent mounting medium 

(Dako, Carpinteria, CA). Those sections destined to the analysis of BrdU incorporation 

were treated, before the immunostaining procedure, with 2M HCl for 20min at 37ºC, 

rinsed with PBS, incubated with 0.1M sodium tetraborate for 10 min at room 

temperature, and then rinsed with PBS. The GFP signal from the transgenic mice was 

detected with an antibody against GFP for enhancement and better visualization. 

The following primary antibodies were used: chicken anti-GFP (Aves laboratories, 

GFP-1020, 1:1,000), rat anti-BrdU (Bio-Rad, MCA2060, 1:400), rabbit anti-GFAP 

(Dako, Z0334, 1:1,500), goat anti-GFAP (Abcam, Ab53554, 1:1,000), rabbit anti-NeuN 

(Abcam, Ab177487, 1:500), rabbit anti-Iba1 (Wako, 019-19741, 1:1,000), rabbit anti-

S100 (Dako, Z0311, 1:500), and rabbit anti-LPA1 (EDG2, ThermoFisher Scientific, 

PA1-1041, 1:100). The secondary antibodies used, all in 1:500 concentration, were: 

goat anti-chicken Alexa Fluor 488 (ThermoFisher Scientific, A11039), donkey anti-

chicken FITC (Rockland, 603-702-C37), donkey anti-rabbit Alexa Fluor 488 

(ThermoFisher Scientific, A21206), donkey anti-rabbit Alexa Fluor 568 (ThermoFisher 

Scientific, A10043), donkey anti-rat Alexa Fluor 594 (ThermoFisher Scientific, 

A21209), donkey anti-rabbit Alexa Fluor 680 (ThermoFisher Scientific, A10043), and 

donkey anti-goat Alexa Fluor 680 (ThermoFisher Scientific, A21084). 4′,6-diamidino-
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2-phenylindole (DAPI, Sigma-Aldrich), at 1:1,000, was also added to the sections 

during the incubation with the secondary antibodies to counterstain cell nuclei. 

6.7. Pre-embedding immunohistochemistry for TEM 

Mice destined to immunogold TEM study were perfused with saline followed by 4% 

PFA-0.5% glutaraldehyde. Brains were postfixed overnight at 4ºC in 4% PFA and then 

washed in 0.1M PB, after what they were sent to the Laboratory of Comparative 

Neurobiology, headed by Dr. José Manuel García Verdugo, at the Instituto Cavanilles 

de Biodiversidad y Biología Evolutiva (Universidad de Valencia, Paterna, Spain) where 

the samples were processed by Dr. Arantxa Cebrián Silla. 

The immunogold-labeling protocol was performed as described (Sirerol-Piquer et al., 

2012). 50µm-thick coronal sections were obtained employing a VT 1000M vibratome 

(Leica) and incubated in 0.1% sodium borohydride to eliminate glutaraldehyde 

crosslinks. In order to permeabilize the tissue without damaging membranes, sections 

were cryoprotected in 25% sucrose for 30min and were subjected to 5 freeze-thaw 

cycles in methylbutane at -60ºC. Next, sections were incubated in blocking solution 

with acetylated bovine seroalbumin (BSAc, Aurion, Wageningen, The Netherlands) and 

the primary antibody chicken anti-GFP (Aves laboratories) for 72h at 4ºC. Sections 

were then washed with PB and blocked with 0.5% BSAc and 0.15% fish gelatin for 1h. 

After that, they were incubated with the 0.8nm-colloidal gold-conjugated secondary 

antibody (1:50) overnight at room temperature. To increase the size of colloidal gold 

particles and make them visible for TEM, samples were washed with 0.1M PB and 2% 

sodium acetate and incubated with silver intensification kit (Aurion) for 10-30min. To 

stabilize silver particles and avoid their loss, sections were incubated with 0.05% gold 

chloride and fixed with 0.3% sodium thiosulfate. Last, samples were postfixed with 2% 

glutaraldehyde and processed for TEM. 

Sections were treated with 1% osmium tetroxide with 7% glucose for 30min, then 

dehydrated with increasing alcohol concentrations and contrasted with 2% uranyl 

acetate for 2h, after which they were included in epoxy resin (Durcupan, Sigma-

Aldrich). Once polymerized (2d later), SGZ-containing samples were selected and 

1.5μm-thick semithin sections were obtained with a diamond blade. These sections were 

stained with toluidin blue and analyzed with an Eclipse E800 (Nikon, Tokio, Japan) 

optic microscope. For TEM ultrastructural study with a Tecnai G2 Spirit (FEI, 

Hillsboro, OR, USA) electron microscope, 60-70nm-thick ultrathin sections were 

obtained. Images were acquired with a Morada digital camera (Olympus Soft Imaging 

Solutions, Münster, Germany). 

6.8. Image capture 

All fluorescence immunostaining images were collected employing a Leica SP8 (Leica, 

Wetzlar, Germany) laser scanning microscope and LAS X software. Brightness, 

contrast, and background were adjusted equally for the entire image using the 

“histogram” set of tools without any further modification. All images shown are 
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projections from z-stacks ranging from 3 to 20µm of thickness, typically 10µm for 

individual cell images. 

6.9. Cell quantification 

Quantitative analysis of cell populations in constitutive transgenic mice was performed 

by design-based (assumption free, unbiased) stereology using a modified optical 

fractionator sampling scheme as previously described (Encinas and Enikolopov, 2008; 

Encinas et al., 2011b). Slices were collected using systematic-random sampling. 

Hemispheres were sliced sagittally in a lateral-to-medial direction including the entire 

DG. The 50-µm slices were collected in 6 parallel sets, each set consisting of 

approximately 12 slices, each slice 250 µm apart from the next. 

For proportion quantifications, representative numbers ranging from 50 to 300 cells of 

interest were quantified and classified in randomly-selected confocal z-stacks from 

30µm below to 30µm above the GCL using a 63x oil immersion objective. 

Cells were categorized as NSCs, ANPs, neurons, astrocytes, oligodendrocyte progenitor 

cells (OPCs) or microglia following the criteria described previously (Encinas and 

Enikolopov, 2008; Encinas et al., 2011b). NSCs were defined as radial glia-like cells 

positive for Nestin-GFP, YFP or LPA1-GFP and GFAP with the cell body located in the 

SGZ or the lower third of the GCL and with an apical process extending from the SGZ 

towards the ML through the GCL. ANPs were defined as Nestin-GFP-positive cells 

devoid of GFAP immunostaining with the cell body located in the SGZ or the lower 

third of the GCL and with none or short horizontal processes. Neurons were defined as 

NeuN
+
 cells with round big nucleus located in the GCL. Astrocytes were identified as 

GFAP- or S100β-positive cells with stellate morphology. OPCs were identified as 

Nestin-GFP-positive cells negative for GFAP with arborizing processes in every 

possible direction. Microglia was identified by Iba1 immunostaining. Reentry into the 

cell cycle was evaluated as proportion of Ki67-positive among BrdU-positive cells.  

In the LPA1-GFP time course, React-NSC-derived RAs were defined as LPA1-GFP-

positive cells with GFAP and S100β immunostaining, hypertrophic soma, thickened 

processes and stellate morphology, whereas their LPA1-GFP-negative counterparts were 

considered parenchymal astrocyte-derived RAs. 

In the maLPA1-null/WT mice experiments, NSCs were defined as nestin
+
GFAP

+
 cells 

with an apical process extending from the SGZ towards the ML through the GCL. At 

the 2w-time point, though, we did not take into account the radial morphology due to 

the expected morphological change induced by seizures. 

For total numbers of BrdU-positive cells, all BrdU
+
-nuclei in the SGZ and the GCL 

were counted following bias-free stereology employing a Zeiss ApoTome2 (Carl Zeiss, 

Jena, Germany) microscope with a 40x oil immersion objective. 

For the type of NSC division, the analysis was carried out in flat projections from 20-

25µm-thick z-stacks. Only those pairs of cells whose nuclei were clearly still in contact 
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were scored. Asymmetric cell division was defined as the daughter cell of the NSC 

bearing none or short (less than 10µm) and thin (less that 1µm) processes, and lacking 

GFAP expression. Symmetric division was defined when the daughter cell presented 

clearly defined prolongations of at least 10µm in length and 1µm in thickness 

immunostained for GFAP. 

6.10. Statistical analysis 

SigmaPlot (San Jose, CA, USA) was used for statistical analysis. For analysis of pairs 

of groups, a Student´s t test was performed. For analyses involving more than two 

groups, a one-way ANOVA was performed. When evaluating the time x treatment 

interaction in the LPA1-GFP time course a two-way ANOVA was employed, and 

analyses only continued when normality assumptions were fulfilled. 

In all cases, all pairwise multiple comparisons (Holm-Sidak method or Dunn’s) were 

used as a posthoc test to determine the significance between groups in each factor. Only 

p<0.05 is reported to be significant. Data are shown as mean ± standard error of the 

mean (SEM). 
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7. Results 

7.1. NSC-fate chase with continuous exposure to BrdU 
confirms they follow a “disposable”-stem cell model 

Proliferation in the short term originates mostly neuronal fate-

committed ANPs 

One of the main issues regarding NSC biology is whether they can go back and forth 

between division and quiescence or not. Although the evidence points at that they do 

not do it, the lack of observation of this behavior could be due to a very long cell cycle 

or too sporadic entry (and reentry) into the cell cycle easy to miss by the normal 

division markers and BrdU pulse-and-chase experiments. For this purpose, we resorted 

to a continuous labeling protocol to guarantee that every cycling cell was “captured” 

and thus observable, along with its progeny, at posterior time points. 

To firstly evaluate the initial proliferative potential of DG populations, a short-term 

analysis of dividing cells in the neurogenic niche was performed. With the objective of 

labeling proliferating cells, we took advantage of the thymidine analog BrdU, that is 

incorporated during the S phase of the cell cycle and can be detected with specific 

antibodies (Gratzner, 1982). BrdU was administered in drinking water to 2-month-old 

Nestin-GFP mice for 7d (1w) and animals were sacrificed 1d after BrdU removal 

(1w+1d group, Fig. 11A). This initial paradigm serves us to assess which cell types are 

more proliferative in the normal DG and help us interpret the data in longer-term 

experiments. 

The proliferation analysis showed a great majority of Nestin-GFP
+
 ANPs (more than a 

70%) among the BrdU-labeled cell population, with a low proportion of Nestin-

GFP
+
GFAP

+
 NSCs (Fig. 11B and C). In agreement with the fact that NSCs are a 

predominantly quiescent cell type but constitute an approximate 2-5% of dividing cells 

in a given moment (Encinas et al., 2006; Kronenberg et al., 2003), they accounted for a 

6% of cells that had experimented division. A slightly less frequent type of BrdU-

positive cells was classified as OPCs, although most of them were found in the ML 

adjacent to the GCL or below the SGZ (Fig. 11B and C). A proportion of a 1% of 

BrdU-immunopositive cells was identified as microglia, mostly also in the ML or the 

hilus but within the limits of quantification (Fig. 11B and D). Similarly, a 1% of BrdU
+ 

cells was classified as neurons. Conservative criteria were considered for this category 

and not only NeuN immunostaining was taken into account but also round or slightly 

oval nuclear morphology, GCL location and absence of Nestin-GFP labeling. Thus, 

early NBs with Nestin-GFP expression were classified as ANPs in our quantifications. 

Another 1% of BrdU-labeled cells was represented by astrocytes. 
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Differentiation of dividing cells originates predominantly a neuronal 

fate in the DG 

Using the same 1w-long BrdU-administration paradigm but sacrificing the animals 30d 

(1m) later (1w+1m group, Fig. 12A), we aimed to analyze the differentiation spectrum 

in the DG neurogenic niche. Waiting for a whole month should assure that every 

initially-dividing cell has reached its final fate, even those with long maturing processes 

such as GCs or astrocytes (Encinas and Enikolopov, 2008; Encinas et al., 2011b; 

Encinas et al., 2006). As expected, BrdU-positive cells in the DG were mainly 

identified as neurons located in the GCL (Fig. 12B and C). This cell type accounted for 

almost a 70% of the cells derived from division in the first week. A proportion of a 13% 

of BrdU-labeled cells was again classified as OPCs, what shows this cell type continues 

dividing in normal conditions (Fig. 12B and D). A noticeable 10% of newly-born cells 
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was represented by astrocytes, despite their negligible mitotic potential found in the 

proliferation analysis and therefore suggesting their origination from NSCs after 

division. An approximate 2.5% was classified as microglia cells (Fig. 12B and E). 

ANPs and NSCs, on their part, represented only a 1.6 and 1%, respectively, of BrdU-

labeled cells. 

In an additional differentiation experiment, we performed a long-term administration of 

the BrdU protocol. This was done with the purpose of maximizing the cell populations 

that incorporate BrdU and avoiding missing divisions of cells which enter the cell cycle 

with very low probability. The long-term-administration protocol consisted of BrdU 

administration in drinking water during 1m and sacrificing the mice after another 1m 

(1m+1m group, Fig. 13A). The overall result of this experiment was similar to the 

previous one but the obtained proportions were slightly different. Almost an 85% of 

BrdU-positive cells were categorized as neurons, confirming the data in the previous 

protocol in which neurons accounted for most division-derived cells (Fig. 13B and C). 

We observed a proportion of a 6% of astrocytes among cells immunopositive for BrdU 

(Fig. 13B and D). OPCs and microglia cells were also found among the BrdU-labeled 

population representing, respectively, a 3.6 and 1.1% (Fig. 13B). 

In both differentiation analyses the proportions of BrdU
+
 cells that were classified as 

NSCs or ANPs were extremely low, reaching the lowest points in the 1m+1m paradigm 

in which they represented together less than a 1% (Fig. 13B). Therefore, dividing NSCs 

or ANPs do not remain for a long period of time without transforming into another cell 

type (or dying) in the DG neurogenic niche. 

Reentry into the cell cycle only occurs in the short term 

We were especially interested in evaluating the reentry capacity of cells that have 

already divided. In all three performed paradigms, we quantified the proportion of 

BrdU-positive cells that expressed Ki67, a marker of cell division (Scholzen and 

Gerdes, 2000), and took it as frequency of reentry into a new round of cell division. In 

1w+1d animals, a proportion of more than a 41% of cells was reentering the cell cycle 

(Fig. 14A and C), whereas in both differentiation analyses (1w+1m and 1m+1m) the 

levels of reentry were below a 1.5% or not even detected in some animals (Fig. 14A). 

With the purpose of analyzing the potential NSC return to quiescence, we specifically 

focused on NSC reentry. We quantified the percentage of BrdU
+
 NSCs that colocalized 

with Ki67 as a token for reentry frequency. Even though as high as a 75% of BrdU-

labeled NSCs were also immunopositive for Ki67 in the proliferation assay (1w+1d), 

not a single NSC was observed with expression of the proliferation marker Ki67 1m 

after BrdU removal from drinking water (Fig. 14B). Not a NSC with BrdU incorporated 

that remained as a NSC 1m later, although very few were found, was detected 

reentering the cell cycle. 
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Together, these results strongly suggest that the neurogenic cascade in the DG follow 

the same principles that have been proposed at the population level no matter the 

approach. First, in a given moment few NSCs are dividing but, when they do, they 

reenter the cell cycle shortly after the initial activation. Although no direct proof was 

provided, our results agree with the expected majority of NSC asymmetric divisions due 

to the decrease in the NSC contribution to BrdU-labeled cells that we report in both 

differentiation analyses. Most divisions in the DG render neuronal progenitors that 

ultimately give rise to neurons, but astrocytes are generated too. Since astrocytes 

showed a very limited proliferative capacity, our data support the notion that newborn 

astrocytes are generated through NSC terminal differentiation. 
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7.2. MTLE provoked by KA injection into the DG causes 
a shift in NSC division towards reactive 
astrogliogenesis 

Neuronal activity increases cell division in the short term and activates 

NSCs 

As mentioned, NSC activation has been related to neuronal excitability (Pineda and 

Encinas, 2016), which is maximized in some neurological disorders that involve 

seizures such as MTLE (Huttmann et al., 2003). Additionally, it is still unclear whether 

MTLE increases or decreases neurogenesis and at which steps seizures exert their 

effect. Thus, we are interested in testing how neuronal activity affects NSC behavior in 

terms of activation and fate. 

To evaluate the hypothesis that different levels of neuronal activity lead to different 

NSC responses, we subjected Nestin-GFP animals to two models of neuronal 

hyperexcitation. For these models we chose a local administration of KA into the DG. 

Intrahippocampal KA injection has been largely employed to reproduce the 

pathophysiological features of human MTLE: spontaneous seizures and hippocampal 

sclerosis (Babb et al., 1995; Bouilleret et al., 1999; Kralic et al., 2005; Nitta et al., 

2008); and for that model we injected 1nmol of KA in 50nl of saline. In addition, we 

wanted to mimic EA that occurs between seizures without triggering these seizures, for 

which we resorted to a 1/27 dilution of the previous KA dose: 0.037nmol in 50nl of 

saline. No seizures were detected in Sal or EA animals. 

To determine cell proliferation in the DG after acute KA injection, we administered 

BrdU intraperitoneally to these Sal-, EA-, or MTLE-treated mice at 2 or 6 days post-KA 

injection (dpKAi) and sacrificed them 1d later. Overall proliferation, measured by total 

number of BrdU
+
 cells, expectedly increased in KA-injected animals at 3dpKAi, with a 

45% of rise in EA and a 150% in MTLE compared to Sal animals (Fig. 15A). This 

increase, however, only persisted, and even grew to a 160%, in EA mice at 7dpKAi 

(Fig. 15B). The total number of BrdU
+
 NSCs was significantly higher in MTLE mice at 

both time points (over a 500% increase at 3dpKAi and 240% at 7dpKAi compared to 

Sal mice), but ANP proliferation was not increased (Fig. 15A-D). In fact, the number of 

dividing ANPs was reduced almost a 70% compared to Sal animals and more than an 

80% compared to EA animals at 7dpKAi (Fig. 15A and B). 

EA, however, not only promoted NSC activation at 3 and 7dpKAi (100% and 250% 

increase, respectively) but also ANP division at both time points (about a 45% at 

3dpKAi and a 100% at 7dpKAi) (Fig. 15A and B). Dividing astrocytes (BrdU
+
GFAP

+
 

cells with stellate morphology) were rare and their number was not affected after EA or 

MTLE (Fig. 15A and B). BrdU
+
 cells found were almost completely restricted to the 

SGZ in Sal and EA animals, but in MTLE animals these cells were also found in the 

hilus and the ML (although BrdU
+
 cells in these areas were excluded from the 

quantifications, Fig. 15 E). 
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To summarize, MTLE induced a rapid and massive activation of NSCs whereas EA 

induction of NSC activation was milder but also promoted ANP proliferation. 

NSCs become reactive in MTLE 

Importantly, MTLE not only activated NSCs in higher numbers but triggered in them 

the acquisition of a characteristic morphology that could answer to a “reactive 

phenotype”. These NSCs, which will be called React-NSCs from this point forward, 

displayed after seizures obvious radial process thickening, multibranching with basal 

processes and Nestin-GFP and GFAP overexpression (Fig. 15D), very similar criteria to 

those used to describe RAs. The mentioned morphological changes, in addition to the 

migration in some cases from the SGZ to the GCL, led to the loss of the radial 

morphology in favor of a ramified one and contributed to the disruption of the 

neurogenic niche. 

Remarkably, this React-NSC phenotype spread to almost every NSC including those 

that had experimented cell division as shown by BrdU immunolabeling (Fig. 15D). This 

made us wonder whether the massive NSC activation induced by MTLE could also 

have provoked a change in their cell-cycle program that derived in the generation of a 

different cascade in the DG. 

React-NSCs divide symmetrically 

As we have introduced, we observed that in MTLE animals most of the daughter cells 

of NSCs (also positive for BrdU labeling) presented a similar phenotype to that of the 

mother cell, suggesting a switch from the typical asymmetric division in normal 

conditions (Encinas et al., 2011b) to a symmetric mode. If this were true, seizures might 

induce a switch in the differentiation of activated React-NSCs possibly leading to 

reactive astrogliogenesis. 

To test this hypothesis, we resorted to inducible Nestin-Cre-ER
T2

/R26R:YFP transgenic 

mice and performed genetic fate-mapping after tamoxifen injection (Lagace et al., 

2007). Nestin-Cre-ER
T2

/R26R:YFP is a double transgenic mouse in which expression of 

the mutant recombinase Cre-ER
T2

 is regulated by the expression of nestin and can only 

access the genomic DNA upon tamoxifen administration, being the target in this case a 

floxed stop sequence that prevents the expression of the YFP reporter. Therefore, 

tamoxifen induces a recombination in nestin-expressing cells, mostly NSCs in our case, 

(see below) that leads to YFP expression in them and their progeny. 

First, we analyzed the cell types in which YFP expression was activated 3d after 

tamoxifen induction. As expected, most YFP-positive cells were NSCs, with over an 

85% representation, and proportions of an approximate 8% of ANPs and a 5% of NBs 

were found (Fig. 16A and B). 
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We next performed a short-term lineage analysis of YFP-expressing cells in inducible 

Sal and MTLE mice at 1 and 3dpKAi. We searched for pairs of YFP
+
 cells, joined by 

the cytoplasm, whose nuclei could be unequivocally identified less than 5µm apart so 

that there was no doubt that the pairs of cells had been originated from cell division 

(Fig. 16C-E). To meet with our criteria, one of the cells had to be GFAP
+
 and with NSC 

morphology so that the clones contained at least one NSC. In Sal mice, most of these 

clones contained a NSC and an ANP and thus derived from an asymmetric division 

(Fig. 16C, F and G). In contrast, in MTLE mice as soon as 1dpKAi we found a 
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significantly increased proportion of NSC-derived clones formed by a NSC and a 

GFAP-expressing cell with long processes (Fig. 16D and F). At 3dpKAi the majority of 

the clones belonged to this symmetric-division category (Fig. 16E and G). 

MTLE-induced React-NSCs differentiate into RAs 

The observed switch in NSC division and change in morphology towards React-NSCs 

made us wonder whether the differentiation of these cells after MTLE treatment would 

lead to reactive astrogliogenesis. To test this, we subjected   tamoxifen-treated Nestin-

Cre-ER
T2

/R26R:YFP transgenic mice to Sal, EA, or MTLE treatments (Fig. 16) and 

evaluated the fate of NSC-derived cells at 3, 14, and 30dpKAi (Fig. 17 and 18). Firstly, 

we observed an increase, sustained in time, in the total number of YFP-expressing cells 

with neuronal hyperactivity, i.e., in EA and MTLE groups, compared to Sal mice (Fig. 

17A and 18). This increase was statistically significant only between MTLE and Sal 

groups at 3dpKAi (Fig. 18A) but between both KA-treated groups and Sal mice at 14 

(Fig. 18B) and 30dpKAi (Fig. 18C). 

Regarding the cell fate of the NSC-derived cells, we found no changes at 3dpKAi (Fig. 

18A). At later time points, we observed that most NSC-derived cells were neurons in 

Sal and EA mice (Fig. 17B and 18B and C). However, in MTLE mice the neuronal 

population was a minority among the total YFP-expressing population and the vast 

majority corresponded to RAs unambiguously distinguished by their multibranched 

hypertrophic morphology (Fig. 17A) and expression of GFAP and S100β (Fig. 17C and 

D). We avoided interference with our results due to the possible upregulation of nestin 

in parenchymal astrocytes by inducing the expression of YFP with tamoxifen several 

days prior to the KA injection. Therefore, nestin upregulation in astrocytes following 

KA injection could not lead to YFP expression as that of nestin would start days after 

tamoxifen administration stopped. The confirmation that this strategy worked is that we 

did not find YFP
+
 astrocytes anywhere but in the SGZ or the GCL or regions in contact 

with them. 
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Inflammatory response alone does not increase NSC activation 

Lastly, we wondered whether NSCs become React-NSCs not because of neuronal 

hyperactivity per se after MTLE, but because of secondary inflammation following 
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seizures. Hyperexcitation leads to excitoxicity-derived loss of neurons, a known 

hallmark of MTLE (Sharma et al., 2007), which triggers an inflammatory response that 

could be partly responsible of the phenotypical changes we observed. To test this 

possibility, we injected LPS intrahippocampally to Nestin-GFP mice and compared 

NSC activation and phenotype with those observed in Sal, EA and MTLE animals. To 
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assess overall cell proliferation, we injected BrdU 2d after injection and quantified the  

total number of BrdU
+
 cells 1d later in the SGZ and GCL. Cell proliferation in the 

neurogenic niche of the DG was decreased in LPS mice compared to both groups 

injected with KA (Fig. 19A-C). The proportion of activated NSCs was also 

significantly lower than that of EA and MTLE mice (Fig. 19D-F). No obvious 

morphological particularities were observed in the NSCs of LPS-injected animals. Thus, 

these results indicate that inflammation alone is not sufficient to provoke the NSC 

response to seizures in terms of activation and morphology. 
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Overall, these results prove that different levels of neuronal hyperexcitation trigger 

different responses from NSCs. When the level of this hyperexcitation is high enough to 

trigger seizures, NSCs completely change their cell-cycle program almost abolishing the 

neurogenic fate in favor of reactive astrogliogenesis. Both NSCs and their daughter cells 

no longer produce neuronal fate-committed precursors but instead become React-NSCs 

that will later differentiate into RAs. 

 

  



Results 

86 
 

7.3. LPA1 labels NSCs during their transformation into 
RAs and participates in their massive activation after 
seizures 

LPA1 is a specific marker for adult NSCs in the DG 

Having revealed the new facet of NSC multipotency, we aimed to characterize the 

transformation process from NSCs to RAs through React-NSCs. For this purpose, we 

were in need of a new tool that selectively labeled this lineage. There are not really 

good markers that are exclusively expressed in hippocampal NSCs, what constitutes one 

of the reasons why they avoided unambiguous detection for decades after AHN had 

been discovered. Additionally, the suitability of the widely-employed nestin-based 

transgenic lines gets deeply weakened in our case, since nestin is also expressed in RAs 

whichever their origin is. This makes the work of distinguishing between parenchymal 

astrocyte-derived RAs and React-NSC-derived RAs impossible due to de novo nestin 

expression in the former. 

Thus, we resorted to a new transgenic mouse line: LPA1-GFP. This transgenic mouse 

was employed and described for the first time by the group of Kempermann (Walker et 

al., 2016), but prior to our MTLE experiments we performed two more simple 

validation methods. 

First, we quantified in the neurogenic niche of the DG (SGZ+GCL), based on GFAP 

labeling and morphology, the proportion of cell types among the LPA1-GFP-expressing 

population. More than an 85% of this population was classified as GFAP
+
 NSCs with 

radial morphology, being the rest most often cluster-forming ANPs still in contact with 

presumably their mother NSC (Fig. 20A and B). This suggests transgene expression is 

downregulated as neural progenitors get more committed for the neuronal lineage and 

confirms the NSC-specific labeling as described before (Walker et al., 2016). 

Second, we performed an immunohistochemical staining for LPA1 protein. We 

observed good colocalization between LPA1 and LPA1-GFP in hippocampal NSCs, 

including their radial apical projection despite the LPA1 puncta-like staining (Fig. 20C). 

Immunohistochemical techniques for the receptor required a specific fixative (PLP, see 

Materials and Methods), thus were only performed for this validation experiment. 

These results show LPA1-GFP is a good tool to label NSCs in the DG. Even though 

GFP expression is dimmer, especially in the radial processes, than in Nestin-GFP 

animals, its narrower expression in the cells participant of the neurogenic cascade suited 

it well as a good candidate for our purposes of visualizing React-NSCs. 

LPA1-GFP recapitulates the abolition of neurogenesis and the majority 

generation of RAs after MTLE 

Our next goal was to assess whether the React-NSCs originated following MTLE 

treatment maintain LPA1-GFP expression or not. More importantly, we were interested 
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in finding out if this expression extended through the complete transformation from 

React-NSCs into React-NSC-derived RAs. It was also critical for us to rule out the 

transgene expression in other cell types in the epileptic DG, especially in parenchymal 

astrocyte-derived RAs, to be able to unequivocally trace those RAs differentiated from 

React-NSCs. 
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Firstly, we aimed to confirm the previously described changes in the DG following 

MTLE in LPA1-GFP transgenic mice, for what we performed a time course with six 

different analysis time points after Sal or MTLE treatment. To label division-derived 
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cells, we also administered BrdU in a similar fashion as in the in the Nestin-GFP 

animals (Fig. 21A). 

To evaluate the predicted ablation of neurogenesis in favor of reactive astrogliogenesis, 

we quantified the contribution, expressed in percentage, of known proliferative 

populations and their progeny to the total BrdU
+
 cells found in the neurogenic niche of 

the DG. As expected, most cells derived from division were classified as neurons from 

the 3w-time point on in Sal mice, accounting for an approximate 60%. A mild 

maintained astrogliogenesis of around a 5% was observed too (Fig. 21B). Microglia 

also proliferated profusely in the short term, but its proportion among the BrdU
+
 cells 

stabilized close to a 15% 3w after surgery. The proportion of NSCs decayed over time, 

as expected by their usual division-coupled-astrocytic-differentiation dynamics (Encinas 

et al., 2011b), representing less than a 1% from the 6w-time point on. 

Nevertheless, in MTLE animals neurogenesis was abolished. Neurons were a minority, 

with a 1.6% contribution at its maximum point, or even inexistent among the labeled 

division-derived cells (Fig. 21C). Reactive astrocytes, on the contrary, were generated 

in important numbers after only 2w following MTLE treatment, representing over a 

35% of division-derived cells in the latest two time points. An approximate 30% of 

BrdU
+
 cells was represented by microglia. Remarkably, React-NSCs still recognizable 

by their persistent LPA1-GFP expression were also an appreciable proportion of BrdU
+
 

cells in the DG, with its minimum being below 7% at 10w. 

In order to appreciate changes in the stem cell population, we quantified the total 

number of NSCs and React-NSCs in Sal and MTLE mice, the total number of those 

which colocalized with BrdU and expressed the latter as a proportion (Fig. 24A-C). 

Even though normality was not achieved for two-way ANOVA to be performed, there 

seems to be an expansion of the React-NSC population in the short term (Fig. 22 and 

24A) followed by a decrease in the long term (Fig. 23 and 24A). The number of BrdU
+
 

React-NSCs in MTLE animals was much higher than that of BrdU
+
 NSCs in Sal 

animals (Fig. 22, 23 and 24B), and when these numbers were expressed as a percentage 

of BrdU-labeled among the NSC or React-NSC population a similar increase was 

observed (Fig. 24C). This increase in the proportion of division-derived React-NSCs 

was more obvious in the 6w and 10w time points, being BrdU
+
 NSCs in Sal animals in 

those time points almost inexistent. 

These results confirmed the shift from neurogenesis to reactive astrogliogenesis that 

appears after seizures provoked by a model of MTLE and that we first observed in 

Nestin-GFP mice. Furthermore, LPA1-GFP
+
 NSCs preserve the transgene expression as 

they become React-NSCs. We next sought to analyze for how long the expression of 

GFP continued and whether it appeared in other cell types over time. 
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React-NSCs maintain LPA1-GFP expression as they differentiate into 

RAs 

Given our previous results with inducible Nestin-Cre-ER
T2

/R26R:YFP transgenic mice 

indicating that React-NSCs finally differentiate into mature RAs, we wondered whether 

LPA1-GFP could be employed as a marker to trace, visualize and, in the future, isolate 

React-NSCs through their transformation into RAs. 

To analyze RA generation from React-NSCs, we used S100β as a marker of mature 

astrocytes, using its expression as a token for complete differentiation. We quantified 
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the number of S100β
+
LPA1-GFP

+
GFAP

+
 cells in the DG of Sal and MTLE mice 

throughout the performed time course and observed an increasing trend over time only 

in MTLE-treated animals (Fig. 25A). This differentiation process was much more 

evident when S100β expression was represented as a proportion of the total number of 

NSCs or React-NSCs, defined as LPA1-GFP
+
GFAP

+
 cells (Fig. 25C). In the short term, 

up to 2-3w, a low proportion of React-NSC is immunopositive for S100β (Fig. 25B and 

C), but especially from 6w after MTLE induction most LPA1-GFP
+
 React-NSCs 

expressed this mature astrocytic marker (Fig. 25C and D). As a positive control for 
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S100β expression, we also quantified the proportion of S100β
+
 parenchymal astrocytes, 

i.e., GFAP
+
 cells devoid of LPA1-GFP expression, and observed no changes between 

time points or treatments (Fig. 25E). 

As another proxy of the differentiation process towards RAs, we also quantified the 

total number of BrdU
+
 astrocytes and RAs found in the DG. High numbers of division-

derived RAs were only observed in MTLE animals (Fig. 26A). In addition, instances of 

BrdU
+
LPA1-GFP

+
S100β

+
 cells were only detected in the MTLE group (Fig. 26B and 

D). As occurred in previous quantifications, not achieving normality in our population 

of BrdU
+
 astrocytes and RAs prevented us from performing two-way ANOVA. Thus, 

taking advantage of GFAP expression as a marker of general-astrocytic lineage, we 

indicated the NSC and React-NSC population as the proportion of LPA1-GFP
+
 cells 

devoid of S100β immunolabeling among the GFAP
+
 population. This helped us isolate 

the contribution of the undifferentiated React-NSCs to the overall astroglia-like cells 

and rendered important statistically significant differences. There was a strong reduction 

in the “pure” React-NSC population over time in MTLE mice, consistent with the 

differentiation process into RAs (Fig. 26C). Moreover, there was a significant decrease 

in the proportion of the stem cell population in MTLE-treated animals compared to the 

Sal group. 
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These data strongly support the notion that neuronal hyperactivity massively activates 

NSCs and triggers a change in the fate of their divisions towards the generation of RAs. 

Furthermore, although the NSC marker LPA1-GFP specifically labels React-NSCs it 

seems to be downregulated at the later stages of the React-NSC ultimate transformation 

into RAs. The expression of GFP is however maintained in a small proportion of them 

even after differentiation is complete. 
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Neurons start LPA1-GFP expression weeks after seizures 

A notable feature we found in the DG of LPA1-GFP after MTLE was de novo 

expression of the transgene in neurons of the GCL. The appearance of GFP staining in 

this case was more puncta-like and present mostly in only the neuronal nuclei and 

somata instead of the whole cell body. We quantified the proportion of LPA1-GFP-

expressing NeuN
+
 neurons in Sal and MTLE animals and, remarkably, we did not detect 

any in Sal mice (Fig. 27A and B). As we only observed this phenomenon in MTLE 
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mice, we performed an analysis taking only these data and observed a significant 

increase in the last two time points (6w and 10w) compared to every previous time point 

(Fig. 27B and C). Thus, neurons in the DG start LPA1-GFP expression following 

seizures induced in this area. 

Ultrastructural analysis confirms specific LPA1-GFP expression in 

React-NSCs and reveals novel features 

To validate the usefulness of the LPA1-GFP and further characterize React-NSCs, we 

resorted to ultrastructural analysis via TEM microscopy. We performed pre-embedding 

immunohistochemistry for GFP staining in the brains of Sham and MTLE LPA1-GFP 

mice 10d after treatment. The reason for Sham treatment instead of Sal in this case was 

to avoid any type of reactivity induction in NSCs due to the injection in the DG, thus 

the stereotaxic protocol stopped after drilling the cranium. We focused on React-NSCs 

in the SGZ of MTLE animals and compared their LPA1-GFP expression to that of 

astrocytes in other areas of the DG such as the hilus or the ML (Fig. 28). We observed 

the expected presence of GFP-immunogold particles in the cytoplasm of React-NSCs in 

MTLE mice (Fig. 28A) but did not detect obvious presence of them in astrocytes in the 
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hilus (Fig. 28B) or the ML (Fig. 28C). This confirmed that even after seizures LPA1-

GFP expression is restricted to React-NSCs and does not “leak” in parenchymal 

astrocytes or RAs. 

Remarkably, TEM microscopy imaging revealed high numbers of mitochondria in 

React-NSCs (Fig. 29B). When quantifying these numbers and compared them to those 

of NSCs in Sham animals, we observed an increasing trend in React-NSCs induced by 

MTLE treatment. This increase, however, did not show statistical significance (Fig. 

29A). 

The absence of LPA1 decreases MTLE-induced cell proliferation and 

React-NSC activation 

Continuity of LPA1-GFP expression during NSC transformation into RAs through 

React-NSCs (at least for the first weeks after seizure induction and even after 

differentiation in some of them in the long term) made us ask whether LPA1 has a 

function in NSC massive activation and change of fate in MTLE or this behavior is 

independent on the expression of the receptor. In addition, several reports have 

attributed to this receptor a function in neurogenesis in the DG (Matas-Rico et al., 2008; 
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Walker et al., 2016), a function into which we want to delve. We took advantage of the 

already generated and described maLPA1 mice, a mouse line devoid of LPA1 expression 

(Estivill-Torrus et al., 2008), and subjected them and their WT counterparts to MTLE 

induction. We injected them with BrdU 2d later and analyzed the DG of these animals 

at 3d and 2w (Fig. 30A). 

Immunohistochemical staining for nestin, BrdU and GFAP did not reveal any gross 

anatomical changes between the DG of WT and maLPA1 mice (Fig. 30D and E). In 

order to evaluate possible changes in cell proliferation, we quantified the total number 

of BrdU
+
 cells in the neurogenic niche of WT and maLPA1 mice. At 3d, a non-

significant decrease in the number of overall dividing cells was detected in maLPA1 

animals (Fig. 30B). By 2w, however, this number was significantly different with 

almost a 50% reduction in animals devoid of LPA1 (Fig. 30C). 
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To specifically focus on React-NSCs, we also quantified the percentage of BrdU
+
 

React-NSCs at both time points. Due to the absence of a reporter gene in this mouse 

line, we followed tight criteria to define this cell type. We employed nestin expression 

as an indicator to distinguish between React-NSCs and astrocytes or RAs. However, 

nestin is also expressed in RAs. Therefore, we also took into account the radial 

morphology of React-NSCs in the short term (3d) to avoid possible contamination of 

our results by RAs in the GCL (Fig. 31A and C). We considered the 2w time point to be 

long enough for React-NSCs to lose their typical radial projection in favor of the more 

multipolar morphology of RAs, so this feature was not contemplated in the analysis 

(Fig. 31B and D). Nevertheless, we expected the contamination by parenchymal 

astrocyte-division-derived RAs to be improbable due to the scarce proliferative capacity 

astrocytes usually present, as we have documented in both the Nestin-GFP and the 

LPA1-GFP mice even after seizure induction. In both time points, the proportion of 

BrdU
+
 React-NSCs was decreased in maLPA1 mice compared to WT animals in a 

statistically significant manner (Fig. 31A and B). 
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In summary, the constitutive deletion of LPA1 decreases cell proliferation in the DG and 

React-NSC activation after MTLE treatment. This effect is much higher than that 

observed in normal (non-MTLE) mice, suggesting that LPA signaling can be of 

importance in brain pathophysiology. In contrast, other morphological or anatomical 

changes in this area due to the absence of this receptor were not obvious suggesting a 

lack of involvement in the overall reactive gliosis response. 
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7.4. Seizure induction in the amygdala recapitulates 
changes observed in the DG 

Intraamygdalar KA injection provokes an increase in cell proliferation 

in the DG 

Next, we searched for a manner to isolate the intrinsic effect of neuronal hyperexcitation 

in the DG avoiding the direct impact of injecting KA into the same area in which we are 

evaluating the consequences. Both KA and the mechanical damage of the cannula and 

the injected volume could be argued to contribute to the alterations observed in the 

MTLE mice. Although the Sal-injected animals show that this is not a real concern we 

thought that other models of MTLE could give valuable additional information. For 

instance, we wondered whether seizures generated in another brain area connected with 

the DG and also frequently involved in the pathophysiology of MTLE, e.g., the 

amygdala (Fournier et al., 2010), could also affect the stem cell population in the DG. 

We optimized a model to administer KA in the amygdalar complex with exactitude 

avoiding contact with the lateral ventricular cavity and CA, so that the injection site was 

not only restricted to the amygdala but also diffusion of the excitatory substance to the 

hippocampus was improbable. 
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We performed this model of MTLE induction in the amygdala (MTLE-a) in Nestin-

GFP transgenic mice and compared their DG to that of saline-injected mice (Sal-a). We 

also labeled dividing cells and their progeny with BrdU 2d after the procedure and 

analyzed the tissue 1w after the KA injection (Fig. 32A). 

We quantified the number of BrdU
+
 cells and observed a statistically significant 

increase of more than a 900% in MTLE-a animals compared to those of the Sal-a group 

(Fig. 32B and C). Thus, cell proliferation in the DG of animals subjected to MTLE-a 

induction is strongly promoted, as occurs when MTLE is induced by acting directly in 

the DG. 
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MTLE-a increases NSC activation 

To further explore the effects of the MTLE-a model in the DG, we focused on NSCs. 

We quantified the total number of NSCs and the number of those labeled with BrdU and 

expressed the latter as a proportion, as we have seen that the percentage of activation is 

a good indicator to describe NSC behavior. 

We did not find differences in the total number of NSCs (Fig. 33A), but both the 

number of BrdU
+
 NSCs and the percentage of BrdU

+
 NSCs were increased in MTLE-a 

mice compared to Sal-a mice (Fig. 33B-D). 

Finally, we also evaluated astrocytic division by quantifying the number of BrdU
+
 

astrocytes and the percentage BrdU
+
 astrocytes and found instances only in MTLE-a-

treated animals (Fig. 34A-C). The number of BrdU
+
 astrocytes found in the DG of some 
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MTLE-a mice was higher than that in MTLE animals injected directly into the DG, but 

still was very low and accounted for only a 1% of the total astrocyte number. 

These data suggest that neuronal hyperactivity in the amygdala is enough to trigger 

changes in the DG along the same lines as those produced in the direct model of MTLE 

induction. MTLE-a increases NSC activation, just like occurs in the intrahippocampal 

MTLE model, and promotes astrocytic division in the DG. This model of MTLE is 

useful because it allows us to develop manipulations in the DG to study NSCs and the 

neurogenic niche, such as retro- or adenoviral vector injections or electrode insertion 

that would be incompatible with the injection into the DG. 





 

 
 

 

 

 

 

 

 

 

 

 

 

 

8. Discussion 





Discussion 

107 
 

8. Discussion 

8.1. NSCs follow a “disposable” mode of activation 

Divisions in the DG render mostly ANP-derived new neurons 

BrdU has been largely employed in the study of adult neurogenesis, but normally pulse-

and-chase experiments have been performed to label dividing cells in a specific time 

point. The fact that only a 1-2% of hippocampal NSCs are dividing in a given moment 

(Encinas et al., 2006; Kronenberg et al., 2003) makes them harder to label and in turn 

observe their progeny and activation-quiescence behavior. Even though the evidence 

points at NSCs do not do return to quiescence after activation (Encinas et al., 2011b), a 

very long cell cycle or too sporadic division makes them easy to miss by the normal 

division markers and BrdU pulse-and-chase experiments. Resorting to the continuous 

labeling protocol that we employed in this work we guarantee that every cycling cell 

was “captured” and therefore they and their progeny could be observable at posterior 

time points both for proliferation and differentiation analyses. 

The results obtained via prolonged exposure to BrdU are in agreement with the well-

established notion that NSCs and progenitors in the DG are mostly neurogenic. In the 

short term, only 1 day after BrdU withdrawal from drinking water, most dividing cells 

could be readily classified as ANPs by their Nestin-GFP expression, location, 

morphology and lack of GFAP immunostaining. This result agrees with their high 

proliferative activity, with 20-25% of them dividing in a given moment (Kronenberg et 

al., 2003). In addition, the constant exposure to BrdU during their repetitive divisions 

(2.5 on average) (Encinas et al., 2011b) guarantees that during one of the most 

vulnerable stages of the neurogenic cascade to the potential dilution of the label keeps 

there is still access to the nucleotide, so that the dilution below the level of detection 

turns to be extremely improbable. 

The strict criteria employed to categorize BrdU-labeled cells as neurons (NeuN 

expression, big round or slightly oval nucleus, GCL location and absence of Nestin-

GFP labeling) were derived from our aim of clearly separating postmitotic populations 

from those that putatively can divide at least once more. Nomenclature for stages 

ranging from differentiating ANPs to mature GCs can vary between authors, due to 

favoring some factors such as mitotic potential over other such as the expression of 

certain specific markers. Thus, we avoided differentiating these subdivisions, which 

rather reflect a continuum, in favor of establishing clear populations in terms of mitotic 

potential. In the 1w+1d paradigm, the time window existent from the BrdU labeling to 

the analysis is, presumably, long enough for most of even late ANPs or early NBs to 

start NeuN expression and enter the neuronal maturation process (Encinas and 

Enikolopov, 2008). However, although Nestin-GFP coexpression is uncommon 

sometimes a dim immunolabeling of the transgene can be visualized at the same time 
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NeuN expression in NBs has started. The expression of GFP can linger longer than the 

actual expression of nestin, especially in this line that was selected for being the 

brightest of the initial founder lines (Mignone et al., 2004). Nevertheless, Nestin-GFP-

expressing cells were excluded from the neuron category and classified as ANPs. Most 

often coinciding with this feature, the same exclusion was applied to cells with slightly 

horizontal oval-like small nucleus characteristic of early-differentiating precursors. All 

instances of cells belonging to this neuronal lineage but not accomplishing every 

requirement to be considered already a neuron were therefore classified as ANPs in our 

quantifications. 

The quiescent state in which most NSCs usually remain is complementary to their 

observed 6% contribution to the overall number of cells that experienced cell division in 

the DG. Giving a single dose of BrdU, Kronenberg et al. defined as NSCs an 

approximate 4% of BrdU
+
 cells that did not change much from 2h to 7d (Kronenberg et 

al., 2003), whereas Encinas et al. obtained more than a 10% that was maintained for 

10d (Encinas et al., 2011b). Given our continuous model of BrdU administration, it is 

more probable to label a NSC that is entering the cell cycle as every S phase occurring 

within the first 7d will have available BrdU to incorporate into the DNA but 

interestingly the proportions that we quantified with this paradigm are comparable to 

those from previous studies based on single pulses of BrdU. This result strongly 

suggests first, that the continuous BrdU administration is not altering the dynamics of 

proliferation or differentiation; and second, that single or discrete pulses of BrdU are a 

valid tool as they actually capture most of the information about proliferation and 

differentiation dynamics. Even though ANP labeling is easier to happen due to their 

higher mitotic activity, the time lapse before evaluating the tissue is also enough for 

some of them to start differentiation and, more importantly, die from apoptosis and be 

phagocytosed. More than two thirds of these neuronal progenitors die in the first 4d 

(Sierra et al., 2010), reducing their relative contribution to the number of visualized 

BrdU
+
 cells. On the contrary, dividing NSCs can remain unchanged for this period. 

After undergoing three asymmetrical divisions at the population level, NSCs 

differentiate into astrocytes but fail to express the mature astrocytic marker S100β until 

3w later (Encinas et al., 2011b). This period of time mostly coincides with the moment 

in which other authors had reported to observe BrdU
+
S100β

+
 newborn astrocytes in the 

DG (Steiner et al., 2004; Suh et al., 2007) and also explains the low proportion of them 

we found in our short-term analysis. 

The observed proportion of OPCs among BrdU
+
 cells also agrees with their known 

proliferative capacity. However, as noted in Results, most of them were observed in the 

ML next to the GCL or the hilus next to the SGZ from which they are largely excluded. 

The 30µm margin we allowed most probably included cells that were excluded in other 

analyses (Encinas et al., 2011b), thus slightly increasing their contribution to the 

population of division-derived cells. Still, the deviation that their numbers could induce 

in the quantification of those of other cell types seems acceptable, as we have 
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mentioned that the NSC and ANP percentages we obtained are not very different to the 

ones reported in the bibliography. 

When waiting 1m after removing the thymidine analog from drinking water, as 

expected, the vast majority of BrdU
+
 cells were neurons, as shown by their NeuN 

immunolabeling in a big round nucleus located in the GCL. Previous reports employing 

lineage-tracing techniques or BrdU injections showed similar results, being little 

differences possibly attributable to variations in the chosen methods (Encinas et al., 

2011b; Kronenberg et al., 2003; Suh et al., 2007). This result was consistent between 

the 1w+1m and 1m+1m paradigms, revealing that the long-term exposure to BrdU does 

not visibly change the division and maturation dynamics in the DG and again arguing 

against the toxicity of continuous BrdU administration and validating the use of shorter 

pulses. A slightly higher percentage of neurons was found in the latter (1m+1m), 

probably because of the amplification effect ANP divisions are responsible of. Being 

GCs derived from the most proliferative cells in the neurogenic niche, it seems logical 

to assume that the more ANPs are labeled (due to prolonged exposure) the higher the 

contribution of newborn GCs will be in the differentiation analysis. This, in parallel, 

translates into the reduction of the proportion of the remaining cell types observed in the 

1m+1m protocol. 

Comparing both differentiation analyses, an interesting shift is also found: whereas in 

the 1w+1m paradigm the contribution of OPCs was slightly higher than that of 

astrocytes, it occurs the other way around in the 1m+1m paradigm. Even though OPCs 

are a highly proliferative cell type, most divisions in the DG take place in the SGZ 

where NSCs and ANPs are much more frequent (Encinas et al., 2011b). Moreover, 

OPCs usually locate in areas less densely packed than the GCL and both they and their 

progeny could “escape” the quantifications after dividing. If so, the 1m+1m-total-long 

experiment could make this migration more probable to occur and thus reduce their 

proportion among BrdU
+
 cells. New astrocytes are most likely derived from NSC 

divisions, as they were rarely seen in the 1w+1d proliferation analysis and NSCs are 

known to derive in or give rise to astrocytes (Bonaguidi et al., 2011; Encinas et al., 

2011b). When the NSC postmitotic transformation into astrocytes was observed, some 

of these astrocytes also tended to migrate to the ML or the hilus close to the SGZ 

(Encinas et al., 2011b). However, although this migration could potentially make them 

escape too from our quantifications, we believe the upper and lower 30µm margin 

should be wide enough for us to detect most cells moving from the SGZ. In any case, 

variations in the percentages of OPCs and astrocytes among BrdU
+
 cells between both 

differentiation analyses are not so relevant and could reflect intricate dynamics we 

cannot evaluate following only a-posteriori studies. 

BrdU, as can be predicted from its thymidine analog nature, can be toxic and produce 

morphological and behavioral alterations or trigger cell death (Kolb et al., 1999; 

Sekerkova et al., 2004; Taupin, 2007). Yet, at the dose we employed we neither 

observed obvious abnormalities in mice nor cell death in the tissue. We found no 

reasons to think that our results could have been modified due to the possible influence 
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of BrdU on cell division of differentiation. The similar proportions we obtained to 

previous single pulse-and-chase experiments act in support of the validity of our 

continuous-administration paradigm. Some minor differences with previous results, 

such as the presence of some BrdU-labeled ANPs 1m after stopping the administration, 

as commented below, could be due to the prolonged BrdU administration. 

ANPs and NSCs do not return to quiescence for a long time after 

activation 

The main goal of these sets of experiments was to address whether NSCs are activated 

and then enter longer periods of quiescence before entering the cell cycle again, an 

event that would be easier to miss using single or discrete BrdU experiments. The 

literature massively argues against this possibility, though, as thousands of papers report 

only neurons and astrocytes in survival and differentiation studies without mention of 

BrdU-labeled NSCs. While ANPs and NSCs represented together a high proportion of 

the cells experiencing division in the proliferation analysis, their contribution was 

almost abolished when we waited times sufficient for differentiation to occur. 1m after 

BrdU withdrawal, instead of 1d, ANPs expectedly decreased to less than a 2% as they 

differentiated into neurons. We may have expected them to drop even more, but the 

instances found were most probably some of the mentioned rare cases in which an early 

NB still presents perceptible Nestin-GFP expression. The results at the population level 

again support the previous idea that ANPs divide consecutively several times, 2.5 on 

average, and eventually differentiate into GCs (Encinas et al., 2011b; Kempermann et 

al., 2004; Pilz et al., 2018). Evaluation of the overall reentry into the cell cycle further 

reinforces the fact that in the short term these cells are continuously proliferating but 1m 

is enough for the vast majority of them to exit mitosis and start neuronal differentiation 

and maturation. In fact, as commented before, this period is usually much shorter. The 

1m+1m protocol revealed an even more negligible contribution of this cell type to the 

division-derived population, following these principles. 

As for NSCs, their presence among BrdU
+
 cells was of a scarce 1% in the 1w+1m 

paradigm. Despite this contribution is very low compared to that of neurons, we could 

expect BrdU
+
 NSCs to be less than anecdotal if they also divide consecutively and 

transform into astrocytes. Even though this might reflect the capacity of some of them 

to divide symmetrically (Bonaguidi et al., 2012; Bonaguidi et al., 2011), this result can 

be explained by other causes. Differentiating postmitotic NSCs usually start S100β 

expression few weeks after the last division, but this process could be a cellular 

spectrum from short to longer periods in which the multipolar stellate morphology, 

migration and expression of this marker are progressively acquired. Also, these criteria 

were all taken into account to define astrocytes but the quantifications for these two cell 

types (NSCs and astrocytes) were performed in different sets of tissue to get reliable 

immunohistochemical staining. This is the reason why percentages do not add up to 

100% and could reflect that some of the NSCs we found were actually differentiating 

into astrocytes but did not fulfill all the requirements necessary to be considered mature 
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astrocytes. To further support this final differentiation, in the 1m+1m paradigm BrdU
+
 

NSCs were abolished in all but one animal in which we observed a single one. The 

percentage of division-derived cells they represented may have added to that of 

astrocytes, what would partially explain, in addition to previously mentioned causes, the 

increase in the latter compared to the proportion of OPCs. 

Reentry into the cell cycle, revealed by Ki67
+
BrdU

+
 cells, was high in the proliferation 

analysis but very low in 1w+1m and 1m+1m differentiation analyses. Given that at the 

population level both NSCs and ANPs (the most frequent cell types in the SGZ where 

the majority of divisions take place) divide several consecutive times and exit the cell 

cycle (Encinas et al., 2011b), these results are consistent with previous observations. 

Regarding exclusively NSCs, their reentry average is almost twice as high as the level 

corresponding to the overall BrdU
+
 population 1d after 1w-long BrdU labeling. This 

further reinforces their participation in the initial proliferation and their repetitive 

divisions in the short term. Remarkably, in both experiments in which quantifications 

were conducted 1m after BrdU removal NSC reentry was not found. BrdU
+
 NSCs in 

those evaluations presented very low numbers or were completely absent in some mice, 

but still not a single one colocalized with Ki67. This means that the few of them that 

remained as NSCs after division were not dividing again after a 1m period. 

NSC quiescence is a majority feature in the DG, but their activation seems a one-way 

ticket to ride. Once activated, NSCs suffer 3 asymmetric divisions and start 

differentiating into astrocytes (Encinas et al., 2011b). Even when symmetric division in 

normal conditions has been reported, a property we have not observed, its probability 

was very low (Bonaguidi et al., 2011; Pilz et al., 2018) or the criteria utilized to identify 

NSCs were not unambiguous (Suh et al., 2007). In a clonal analysis based on an 

inducible Ascl1-tdTomato reporter model, the frequency of NSCs in a clone fell below 

0.4 before 20d from labeling had gone by. Moreover, a cycling NSC disappeared less 

than 10d after activation and, importantly, no repeated shuttling between quiescence and 

activation was observed. Although in this case no evidence of final astrocytic 

differentiation was found (instead they reported neuronal differentiation), their results 

strongly suggested the depletion of activated NSCs (Pilz et al., 2018). 

Despite the invaluable information this in vivo clonal analysis provided, interpretations 

extracted from such approach must be taken cautiously. The cortical window the mice 

had to be implanted with was reported to leave the hippocampus intact, but possible 

alterations on NSC behavior and the neurogenic niche induced by the invasive surgery 

remain unknown. In our laboratory we have observed that traumatic brain injury (by 

controlled cortical impact) increases NSC activation (Durá et al., work in progress) and 

it is known to alter neurogenesis, therefore it is reasonable to argue that some alterations 

can be induced by methodology in the in vivo two-photon microscopy experiments. In 

our experiments we have seen the negligible effect the injection of saline, for example, 

has on NSCs, but this case is an acute treatment performed with the help of a thin 

cannula instead of the chronic removal of brain tissue. On the other hand, we have also 

observed that a strong stimulation in the amygdala is able to induce remarkable changes 
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in the DG; thus, we cannot predict the extent to what this cortical window can cause 

abnormalities in the circuitry that could lead to a slight disruption of the neurogenic 

niche and explain some divergences in the results obtained with different methods. 

Another approach-derived concern this clonal analysis might present is the choice of 

Ascl1 to label NSCs and their progeny: Ascl1-expressing cells could represent only a 

subpopulation of hippocampal stem cells, a possibility the authors even considered (Pilz 

et al., 2018). Indeed, Ascl1 was reported to be a specific marker of proliferative NSCs 

and necessary for quiescent ones to get activated (Andersen et al., 2014); so maybe the 

labeled population is more prone to originate the neurogenic burst than the remaining 

NSCs. Even though this proactivation protein was reported to be destabilized by Huwe1 

to return to quiescence, cell cycle reentry in this study was evaluated only 1d after the 

thymidine analog ethynyl deoxyuridine (EdU) was administered and still accounted for 

more than a 75% of NSCs in WT animals (Urban et al., 2016). When the authors also 

analyzed BrdU-retaining NSCs 3w after labeling both in WT and Huwe1cKO mice, 

BrdU
+
 NSCs were significantly reduced in the latter but their numbers were not that 

high in WT mice. This period of time in which they are not lost could overlap with the 

astrocytic differentiation process we propose instead of representing a true quiescent 

state. Nevertheless, Urban and colleagues did not claim a long-term return to quiescence 

but suggested the existence of a pool of temporarily-resting NSCs that is different from 

the main quiescent population. To avoid misinterpretations on whether return to 

quiescence is possible (although not probable) or it just manifests the postmitotic state 

towards eventual astrocytic differentiation, thorough experiments employing a wider 

spectrum of time points, especially during the second to third week after labeling, are 

still needed. 

In any scenario, we can claim that at the population level the behavior of most NSCs in 

the DG matches the “disposable stem cell” model. When a NSC gets activated, its most 

plausible fate is depletion. Even if some them were able to divide symmetrically, as was 

reported in Bonaguidi’s clonal analysis, the frequency of this event would be very low 

and not sufficient to counteract the usual depletion (Bonaguidi et al., 2011). The 

astrogliogenesis we see in parallel to the disappearance of BrdU
+
 NSCs suggests 

newborn astrocytes are derived from stem cells after division. If these astrocytes were 

generated directly from NSC division, however, we would expect a higher 

representation of them among BrdU
+
 cells in the initial proliferation analysis than the 

observed 1 astrocyte per 6 NSCs ratio. NSC ultimate differentiation into astrocytes after 

activation (Encinas et al., 2011b), on the contrary, meets the requirements needed for 

the tenfold increase in the proportion of division-derived astrocytes 1m after BrdU 

withdrawal. Anyway, NSC depletion through division-coupled astrocytic differentiation 

only explains about half of the stem cell decline and apoptosis has been proposed as a 

likely contributor (Ziebell et al., 2018). A bump in the road for the whole model to 

adapt to the real cell behavior is the fact that NSC death or apoptosis is an unobserved 

process in normal conditions and very infrequent following insult (Sierra et al., 2015). 

Nevertheless, the non-detectable level of NSC apoptosis could be explained by the rate 
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at which apoptotic cells are cleared thanks to the prompt microglial phagocytic response 

(Sierra et al., 2010). 

8.2. Seizures in the hippocampus shift NSCs from 
neurogenesis to reactive astrogliogenesis 

Different levels of neuronal hyperactivity affect NSC behavior and can 

deplete neurogenesis 

Given the “disposable” type of activation that NSCs most frequently suffer, a model we 

supported providing additional proof, we hypothesized that stimuli which induce their 

entry into the cell cycle would accelerate their division-coupled progressive exhaustion. 

We have mentioned that NSC activation has been related to neuronal excitability 

(Pineda and Encinas, 2016) and high levels of hyperexcitation involving seizure 

generation might even trigger a shift in their properties and disrupt the correct progress 

of the neurogenic cascade. We were also interested in clarifying whether MTLE 

increases or impairs neurogenesis and unveiling the mechanisms by which 

astrogliogenesis is presumably favored in this neurological disorder. 

In this study we proved how neuronal hyperexcitation induces NSC activation in the 

DG. Although this effect was known thanks to previous studies, e.g., utilizing ECS 

(Segi-Nishida et al., 2008) or intraperitoneal KA models (Huttmann et al., 2003), the 

studies of the long-term effect were lacking. We characterized the effect of two degrees 

of neuronal hyperactivation and how, first, NSCs behave in terms of cell division and 

differentiation, and second, the overall proliferation in the DG and that of other cell 

types is affected. Neuronal hyperactivity in the form of EA, characterized by abnormal 

discharges with increased frequency of spikes but that do not induce seizures, was 

enough to recruit higher numbers of NSCs into the cell cycle in the short term and 

maintain this enhanced activation state up to 7dpKAi. Meanwhile, ANP proliferation 

was also increased following EA suggesting that a boost in neurogenesis was triggered. 

Indeed, the quantifications in inducible Nestin-Cre-ER
T2

/R26R:YFP transgenic mice, in 

which we were able to trace NSC-derived progeny, subjected to EA treatment 

manifested a rise in the number of newborn neurons at 14 and 30dpKAi. 

The higher KA concentration employed to trigger convulsive seizures mimicking 

MTLE provoked a huge increase in NSC activation, but the mode of NSC division the 

model of MTLE induced was, surprisingly, not the typical ANP-generating asymmetric 

one. ANP generation was decreased below Sal levels at 7dpKAi, what translated in a 

persistent decline in neurogenesis as revealed by lineage tracing in Nestin-Cre-

ER
T2

/R26R:YFP mice and the time course we performed on LPA1-GFP mice. As 

additional evidence to support this change in dynamics, most NSC divisions that were 

observed belonged to the symmetric category. However, both the mother and daughter 

NSCs had acquired a hypertrophic multibranched phenotype with enlarged cytoplasm, 

thus being termed React-NSCs, that seemed incompatible with the generation of 
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neurogenic progeny. No matter the transgenic line we subjected to MTLE treatment, 

seizures induced the abolition of neurogenesis in favor of reactive astrogliogenesis. 

Provided that NSC activation is mostly coupled with their depletion even in normal 

conditions, the increased rate of entry into the cell cycle induced by neuronal 

hyperactivity would expectedly accelerate the loss of the stem cell pool and thus of their 

neurogenic capabilities. Indeed, following these principles we reported a decrease in 

both the number of NSCs and that of newborn neurons in the long term after either EA 

or MTLE treatment (Sierra et al., 2015). This long-lasting impairment of neurogenesis 

would lead to the loss of the cognitive functions related to this process and the 

restorative potential to replace the neurons lost due to excitotoxicity. 

The level of AHN correlates with acquisition of spatial memories (Kempermann and 

Gage, 2002) and it has also been reported to have a role in hippocampal-dependent 

associative learning (Saxe et al., 2006) as well as in responses to stress and depression 

(Snyder et al., 2011). Interestingly, epileptic patients have a high incidence of memory 

impairment (Gargaro et al., 2013) and anxiety and depression (Heuser et al., 2009). 

Intuitively, it has been speculated that increasing neurogenesis could benefit these 

patients. However, given our data enhancing neurogenesis in MTLE does not seem a 

good strategy as NSCs, the origin of the cascade itself, present an affected division 

behavior. Instead, therapeutic strategies should try to prevent the NSC massive 

activation that leads to reactive astrogliogenesis. 

8.3. LPA1-GFP mice, a new tool to study NSCs and React-
NSCs 

React-NSCs derive in RAs maintaining LPA1 expression during most of 

their differentiation process 

React-NSCs not only lose their neurogenic capabilities, as their divisions render mainly 

more React-NSCs and neurogenesis was observed to be depleted, but progressively 

differentiate into RAs. Whereas in EA animals the change in NSC and ANP divisions 

was merely quantitative, MTLE completely changed the fate of NSC-derived cells. 

React-NSCs in Nestin-Cre-ER
T2

/R26R:YFP mice unambiguously gave rise to RAs, 

which ended up being the most represented cell type among YFP
+
 cells. In support of 

these data, LPA1-GFP
+
 React-NSCs also differentiated into RAs in a process that often 

involved a progressive loss of the transgene expression. 

Reactive astrogliosis is a common hallmark of MTLE (O'Dell et al., 2012), but usually 

RAs are derived from parenchymal astrocytes in this and other neuropathological 

conditions (Norton et al., 1992; Sofroniew, 2009; Zamanian et al., 2012). RAs have 

impaired glutamate buffering due to altered expression of glutamate transporters such as 

GLAST and release cytokines with proepileptogenic potential such as IL-1β (Devinsky 

et al., 2013). Furthermore, different models employed to induce reactive 

astrogliogenesis in the hippocampus led to increased neuronal hyperexcitability 
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(Ortinski et al., 2010) and the development of spontaneous seizures (Robel et al., 2015). 

These data strongly suggest that impaired astrocytic function favors the development of 

secondary recurrent seizures. According to our results, React-NSCs can also originate 

RAs and thus partially contribute to the gliosis that is part of hippocampal sclerosis. 

This addition to stem cell multipotency was also proved for the subventricular NSCs, 

which under stroke conditions leave their niche to become RAs that indeed contribute to 

the glial scar formation in the site of injury (Faiz et al., 2015). 

The React-NSC phenotype constitutes a new property of NSCs with critical functional 

implications: neurogenesis becomes chronically impaired due to the disruption of the 

neurogenic cascade, that no longer produces neuronal progenitors, and the steady decay 

of the stem cell pool coupled to their conversion into RAs. These RAs, as we have just 

mentioned, in turn could exacerbate MTLE. Therefore, characterizing this 

transformation should open a window of opportunity in which React-NSCs or React-

NSC-derived RAs are functionally different from parenchymal astrocyte-derived RAs 

and the transition step can be redirected. Here, we provide insight into the expression of 

a specific NSC marker, revealed by LPA1-GFP transgenic mouse, that labels this 

transition into RAs and further up to the apparent complete differentiation in a 

subpopulation of them.  

The molecular mechanisms leading to this transformation must be further studied, and 

in particular we can emphasize the importance of LPA1. Even though nestin-based 

mouse lines have been extremely useful tools in the study of NSCs, they lose potential 

in the research on their acquisition of a reactive phenotype that leads to the generation 

of RAs. Nestin is also expressed by RAs (Clarke et al., 1994), what makes us 

impossible to distinguish between React-NSC-derived RAs and those derived from 

parenchymal astrocytes on the basis of its expression. However, in this work we did not 

find evidence of LPA1-GFP expression in astrocytes other than RAs differentiated from 

React-NSCs. This makes LPA1-GFP transgenic strain a very valuable tool for the 

specific purpose of studying the transition from React-NSC to RAs, as it allows us to 

define a conspicuous difference to tell them from other RAs. As a proof of principle, we 

are in the laboratory isolating NSCs and React-NSCs from LPA1-GFP mice and we 

have found, for instance, a huge increase in the expression of IL-1β in React-NSCs 

when compared to control NSCs (Martín-Suárez et al., work in progress). A schematic 

representation of the conclusions we reached regarding LPA1 were summarized in Fig. 

35. 

We have reported the observation of React-NSCs and their massive activation after 

seizures, but they do not manifest this response following other pathophysiological 

alterations. Specifically, neuronal hyperexcitation in the form of EA activated NSCs in 

higher numbers but only seizures caused by the MTLE model qualitatively changed 

their division type and fate. Moreover, inflammation alone provoked by LPS injection 

did not exert even similar effects on NSC morphology and activation. Thus, in spite of 

NSC similarities with astrocytes (Seri et al., 2001), molecular pathways leading to NSC 

transformation into React-NSCs and eventually into RAs could be not the same as in the 
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reactive gliosis derived from parenchymal astrocytes. There are, however, common 

features between astroglial and NSC reactivity. In addition to their hypertrophic 

phenotype, interestingly, we have reported an increasing trend in the number of 

mitochondria in React-NSCs following MTLE treatment. A rise in this number is also a 

characteristic of RAs (Maxwell and Kruger, 1965), which strengthen the biogenesis of 

mitochondria to cope with the increased demand for energy, e.g., under sepsis 

conditions (Wang et al., 2014; Zhao et al., 2017). Nevertheless, in our TEM analysis no 

obvious changes in the number of mitochondria in astrocytes or RAs 10d after seizure 

induction were observed compared to Sham animals. 

The increase in the number of mitochondria during NSC acquisition of their reactive 

phenotype could also be interpreted as an effort to fulfill the energetic requirements 

necessary to maintain the high rate of division they present. Furthermore, mitochondria 

usually suffer fission events during the G2 and M phases of the cell cycle to facilitate 

the equal distribution to each of the daughter cells after mitosis (Mishra and Chan, 

2014). This reason, yet, is not probably applicable to the previously reported increase in 

the number of mitochondria in RAs, since we have shown in several experiments that 

astrocytic division is very infrequent even following damage. Thus, this peculiarity 

could represent another difference between astrocytic and NSC reactivity acquisition in 

MTLE. Increasing numbers of mitochondria in parenchymal RAs might not be common 

to reactive astrogliosis as an overall mechanism but exclusive to specific responses, for 

example, to stimuli that induce injury of the ultrastructure of the mitochondria (Zhao et 

al., 2017). This argument, still, is weakened by the fact that oxidative stress has been 

indeed reported in the hippocampi of epileptic patients, mainly in neurons but also in 

astrocytes (Ristic et al., 2015). In any scenario, in the future we will perform further 

analyses to elucidate whether the increase in the number of mitochondria is a real 

difference between cell types and/or between treatments. 

More important than the presumable ultrastructural differences between NSCs and 

React-NSCs we could find, we would like to emphasize the suitability of the LPA1-GFP 

transgenic mouse for TEM studies, especially for those focused on React-NSCs. The 

specificity of the transgene expression in this lineage was validated by the fact that an 

almost complete absence of immunogold labeling was found in astrocytes located in 

adjacent areas to the SGZ or GCL even after a reactive response could have been 

provoked by the MTLE model. This reactivity, for instance, would have contaminated 

some sets of results if we had employed nestin-based transgenic strains due to de novo 

nestin expression in RAs, unless performing approaches to avoid the interference of this 

a posteriori expression like the one we applied on inducible Nestin-Cre-

ER
T2

/R26R:YFP mice. 

LPA1 contributes to React-NSC activation 

We have reported the persisting LPA1-GFP expression in React-NSCs and even in a 

subpopulation of React-NSC-derived RAs after differentiation, but the specific function 

of the receptor in this transformation remains elusive. In normal conditions, its absence 
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has been related to decreased neurogenesis (Matas-Rico et al., 2008) and increased 

neuronal survival in vivo without a rise in cell proliferation was promoted by the agonist 

LPA (Walker et al., 2016), but React-NSCs are a novel property of NSC multipotency 

and remain to be specifically characterized. MTLE induction in maLPA1 mice, devoid 

of LPA1 expression, did not lead to conspicuous morphological differences in React-

NSCs compared to their WT counterparts. No obvious anatomical or tissue changes in 

the DG between these two mouse genotypes were observed, either. Nevertheless, a 

strong effect on overall cell division and React-NSC activation was shown.  

Even though under normal conditions maLPA1 mice had been reported to have reduced 

cell proliferation compared to WT mice (Matas-Rico et al., 2008), we did not observe 

such decrease to be significantly different 3d after MTLE treatment. It seems probable 

that the stimulation of cell division after seizures is so high that the baseline levels are 

covered up by this increase. By 2w, however, BrdU
+
 cells were decreased almost a 50% 

in maLPA1 compared to WT animals, suggesting an accumulative effect on proliferation 

of the absence of the receptor. 

Regarding NSCs exclusively, React-NSC activation rate in the MTLE model was much 

higher in WT animals than in maLPA1 animals both at 3d and 2w time points, although 

it remained higher than NSC activation in normal conditions. Despite we did not 

include control (Sal-injected) mice in this experiment as we wanted information about 

React-NSCs and not normal NSCs, we can consider some speculations comparing 

MTLE data with those of MTLE mice of our reporter transgenic strains. For example, 

the approximate 8% of dividing React-NSCs in maLPA1 mice at both time points that 

we found was lower than any proportion of dividing React-NSCs in our LPA1-GFP 

animals up to 2w after MTLE treatment. On the contrary, the percentages we obtained 

in WT animals were slightly higher than any of LPA1-GFP mice in those first three time 

points. Thus, the different genetic background between mouse lines that for sure can 

give rise to divergences in results in this case do nothing but emphasize the relevance of 

LPA1 expression. This is so because the large differences observed between WT and 

maLPA1 animals must be only due to the presence or absence, respectively, of this 

receptor. 

Whether the absence of LPA1 expression leads to differences in basal NSC activation or 

not, a possibility we will study in the near future, our results strongly suggest that it has 

an important role in the massive activation React-NSCs suffer following MTLE 

treatment. However, the fast React-NSC-phenotype acquisition was found no matter the 

genotype the animals presented. Therefore, it seems that the action of this receptor in 

NSCs is restricted to their entry into the cell cycle, at least after seizures. React-NSC 

conversion into RAs and their contribution to the reactive gliosis, a characteristic of 

hippocampal sclerosis in MTLE patients, would then be an independent mechanism on 

React-NSC high rates of division in pathways in which LPA1 is involved. This might be 

interpreted as a fateful discovery, since possible therapeutic targets would only act in 

one of the features appearing in MTLE. Yet, the fact that in this pathological condition 

both the mother and daughter cells of a React-NSC division differentiate into RAs 
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suggests the more React-NSCs get activated, the higher their contribution to reactive 

astrogliosis must be. In this scenario, LPA1 antagonists would partly prevent the 

fraction of the glial scar of which React-NSC massive activation is presumably 

responsible. 

LPA1 starts to be expressed by GCs weeks after the onset of seizures in 

MTLE 

Another noteworthy discovery we reported is the surprising de novo LPA1-GFP 

expression in neurons only in MTLE-treated mice. LPA1 expression analysis has been 

problematic since its regulatory functions in AHN was first proposed (Hecht et al., 

1996) due to the difficulty in getting a good specific antibody against the receptor and 

the contradictory effects that its ligand LPA has been reported to have. For example, we 

have documented specific LPA1 expression in NSCs via immunohistochemistry and 

LPA1-GFP reporter supporting recently published data (Hochgerner et al., 2018; Walker 

et al., 2016). However, it has been claimed to have functions preventing neuronal 

differentiation and inhibiting neurosphere formation from human embryonic stem cells 

(Dottori et al., 2008). On the other hand, other authors have described that neurosphere 

formation from primary cultured hippocampal precursor cells and net neurogenesis in 
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vivo were increased by the agonist LPA (Walker et al., 2016). Results of both studies 

suggest that LPA1 signaling pathways have functions in the neurogenic cascade beyond 

the NSC stage, even though LPA1 expression is fast downregulated in ANPs. 

Moreover, LPA receptor activation induced by gintonin has been reported to enhance 

both excitatory and inhibitory synaptic transmission in the adult rat hippocampus (Park 

et al., 2015). Even more specifically, LPA signaling has been proposed to play a role in 

the regulation of KA-induced cell death, but this was especially observed in CA3 and 

the receptor whose expression was affected in the DG, decreasing its immunoreactivity, 

was LPA3 and not LPA1 (Lee et al., 2014). If this last result has something to do with 

the start of the transgene expression that we observed in GCs we cannot know for sure, 

as we found this result weeks after KA injection and the authors of this paper only 

evaluated the acute effect on the expression of these receptors up to 24h later. As other 

pathological conditions such as GCL dispersion can be observed in MTLE, the start of 

LPA1 expression could be part of the group of mechanisms that the neuronal population 

manifests to try to adapt to the new recurrent circuitry or even prevent excitotoxicity-

induced cell death. 

Interestingly, brain sections of mice devoid of LPA1 expression of the same strain we 

employed (maLPA1) showed no gross anatomical abnormalities in the hippocampal 

formation but indeed presented a reduced volume in this region (Castilla-Ortega et al., 

2011; Matas-Rico et al., 2008). However, this volume reduction was not observed in the 

DG suggesting a normal embryonic development in this specific area. More 

intriguingly, adult neurogenesis in terms of cell proliferation was decreased in maLPA1 

mice in such a way that environmental enrichment was not able to rescue the normal 

phenotype (Matas-Rico et al., 2008) and chronic stress-induced impairment was more 

aggravated than in WT animals (Castilla-Ortega et al., 2011). These results support the 

hypothesis that LPA has a positive effect on AHN, although it remains to elucidate the 

manner by which it could affect only newborn-neuron survival in vivo without 

expression of the receptor LPA1 in late progenitors (Walker et al., 2016). Whether this 

action is exerted via the activation of other receptors or other intricate mechanisms are 

involved deserves further research. An interesting interpretation of these results, 

however, is that embryonic and adult neurogeneses are not regulated by the same 

pathways suggesting that AHN would not be a remnant of the developmental process. 

8.4. Intraamygdalar injection of KA is an alternative 
valid model of MTLE 

Lastly, we have implemented an MTLE model originating seizures in the amygdalar 

complex that triggers changes in the neurogenic niche of the DG. Optimizing the KA 

injection site for our purposes of avoiding contact with the hippocampus or the lateral 

ventricle (that could lead to a more widespread distribution of the drug) we now have an 

alternative method to induce seizures that does not exert its action directly into the DG. 

We have reported that inflammation alone, which could have been facilitated by injury, 

is not enough to activate NSCs in higher numbers or induce the phenotypical React-
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NSC change that we observed in the intrahippocampal MTLE model. However, KA per 

se could provoke widespread effects in the DG that would exacerbate those attributable 

specifically to neuronal hyperexcitation. In addition, this model will help us technically 

since it allows us to perform manipulations in the DG such as the insertion of permanent 

electrodes to carry out electrophysiological and electroencephalographic recordings or 

the injection of viral vectors. 

Previous works have reported the epileptic behavior that is observed in animals treated 

with this model (Berger et al., 1989; Mouri et al., 2008), whereas we focused on 

describing the neurogenic niche. We have observed in MTLE-a animals an increase in 

cell proliferation in a similar fashion as in the intrahippocampal MTLE model. More 

importantly, NSC activation was induced by MTLE-a up to levels comparable to those 

in the short term after direct injection into the. Although not quantified, we found 

indicators of NSC reactivity similar to the ones in the React-NSC phenotype (Sierra et 

al., 2015) such as GFAP overexpression and apical process thickening but in a milder 

manner. We also observed BrdU
+
 astrocytes in MTLE-a mice, whereas in Sal-a mice 

none was found. The number of these division-derived astrocytes, although low, was 

even higher than in MTLE mice, but administration paradigms were slightly different 

and could be a reason for this divergence. 

These results reveal that more important than the epileptogenic site, provided that it is 

connected to the hippocampus, is the level of neuronal hyperactivity that is ultimately 

triggered in the DG. It seems that once a threshold in neuronal excitation is exceeded 

NSCs stop their normal neurogenic program, acquire a reactive phenotype and both they 

and their progeny differentiate into RAs. Even though long-term evaluations must be 

performed to validate this hypothesis in MTLE-a mice, the appearance of NSCs, their 

daughter cells and the overall neurogenic niche suggest they will follow a similar 

evolution as that discussed for React-NSCs and their progeny in MTLE but probably in 

a slower manner. 

We have seen that, avoiding the damage produced by the physical injection and the 

local action of KA in the DG, neuronal hyperactivity alone is capable of altering cell 

proliferation and NSC activation and reactivity. Nevertheless, it would be necessary to 

analyze reactivity and inflammation parameters and compare them between models to 

validate that the neurogenic alterations are a consequence of the sole hyperexcitation 

and are not exacerbated by the local injection of the glutamate agonist. 

Other areas such as the rhinal and piriform cortices are highly epileptogenic regions that 

are broadly interconnected with other limbic areas (Vismer et al., 2015). Induction of 

SE has even been performed in the piriform cortex (Milhaud et al., 2003), but 

approaches to limbic seizures with KA, out of the direct injection, have more often 

employed the intraamygdalar injection to visualize influences to the hippocampus 

(Alves et al., 2017; Kobayashi et al., 2002). An additional reason to choose this model 

is the fact that aberrant AHN due to amygdaloid seizure induction has been reported 

(Fournier et al., 2010; Fournier et al., 2013). Even though the authors utilized kindling 
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instead of KA administration in these works, the relevant effect the stimulation of this 

circuitry showed in the DG made the amygdala an adequate target for our research 

purposes. Moreover, the epileptogenic cortices are generally associative region-related 

areas in which neuronal hyperactivity could lead to widespread effects in the brain; 

whereas the amygdalar complex is a more specific location from where we find more 

difficult the diffusion of KA to other hippocampus-related circuits. 

In any case, the alterations in the neurogenic niche we described following MTLE-a are 

preliminary proof that must be further explored, especially in terms of final 

differentiation of the React-NSC-like cells and the possible contribution of the reported 

seizure-induced changes to hippocampal sclerosis. 
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9. Conclusions 

1. NSCs follow a “disposable/one-time only” model of activation and do not 

cycle between periods of cell division and quiescence. 

 

2. NSCs, when activated, reenter the cell cycle with a very high probability in 

the short term but they neither remain as NSCs nor reenter the cell cycle in 

the long term. 

 

3. Reentry into the cell cycle is probable in the neurogenic niche in the short 

term but negligible after cell differentiation. 

 

4. Long-term BrdU labeling does not alter cell division or differentiation 

dynamics in the DG neurogenic niche and is therefore a valid tool to study 

AHN. 

 

5. Neuronal hyperexcitation in the form of EA increases cell proliferation and 

NSC activation in the DG but does not change differentiation or the 

neurogenic capability of NSCs. 

 

6. A higher level of neuronal hyperexcitation, in the form of MTLE, massively 

activates NSCs, induces React-NSCs and switches them to symmetric cell 

division that abolishes neurogenesis. 

 

7. Seizure induced-React-NSCs and their progeny differentiate into RAs in the 

DG thus contributing to hippocampal sclerosis. 

 

8. Inflammation (LPS-induced) alone does not trigger an increase in cell 

proliferation or NSC activation, as they are observed after neuronal 

hyperexcitation. 

 

9. NSCs in the DG specifically express LPA1 and LPA1-GFP. 

 

10. MTLE-induced React-NSCs maintain LPA1-GFP expression until their 

final transformation into RAs, remaining in some of these React-NSC-

derived RAs as a characteristic that distinguishes them from other RAs. 

 

11. The proportion of undifferentiated React-NSCs, based on LPA1-GFP 

expression, decreases over time in MTLE. 

 

12. Neurons in the GCL start LPA1-GFP expression weeks after induction of 

MTLE. 
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13. Ultrastructural analysis by TEM confirms the utility of LPA1-GFP 

transgenic mice to study NSCs and React-NSCs and revealing an increasing 

trend in the number of mitochondria in the latter. 

 

14. In the absence of LPA1 MTLE-induced cell proliferation and NSC 

activation in the DG are decreased. 

 

15. An alternative model of MTLE based on the intraamigdalar injection of KA 

also increases cell proliferation, NSC activation and induction of React-

NSCs in the DG. 
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