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Abstract

Over the most recent decades, research in the field of social robotics has considerably
grown up. There are a growing number of different types of robots, and their roles
within society are expanding little by little. Robots endowed with social abilities
aim to be used for different applications; for instance, as interactive teachers and
educational assistants, to support diabetes management in children, to assist elderly
with special needs, as interactive characters in theatre, or even as hotel and shopping
mall assistants.

The RSAIT research team has worked on several areas of robotics, particularly,
in control architectures, robot exploration and navigation, machine learning, and
computer vision. This new research work aims to add a new layer to the previ-
ous development, the layer of human-robot interaction that focuses on the social
capabilities that a robot must show while interacting with people, such as express
and perceive emotions, communicate with high-level dialogue, learn models of other
agents, establish and maintain social relationships, use natural cues (gaze, gestures,
etc.), show distinctive personality and character and learn social competencies.

In this dissertation, we have tried to bear our grain of sand to the basic questions
that arise when thinking about social robots: (1) How do we, humans, communicate
with (or operate) social robots?; and (2) How do social robots act with us? In
that vein, the work has been developed in two phases: in the first phase we have
focused on exploring from a practical point of view several ways that humans use to
communicate with robots in a natural manner. Additionally, in the second phase,
we have investigated on how social robots must act with the user.

With respect to the first phase, three natural user interfaces intended to make
the interaction with social robots more natural have been developed. Those inter-
faces have been tested by developing two applications of different use: guide robots
and a humanoid robot control system for entertainment. Working on those appli-
cations allowed us to endow our robots with some basic skills, such as navigation,
inter-robot communication and speech recognition and understanding capabilities.

On the other hand, in the second phase we have focused on identifying and
developing the basic behavioural modules that this type of robots need to be socially
believable and trustworthy while acting as social agents. We presented a framework
for socially interactive robots that allows the robot to express (kind of) emotions
and show a natural human-like body language according to the task to be performed
and the environmental conditions.

The validation of the different states of development of our social robots is done



in public representations. Exposing our robots to the public in those performances
has become an essential tool for qualitatively measuring the social acceptance of
the prototypes being developed. In the same way robots need a physical body
to interact with the environment and to become intelligent, social robots need to
socially participate in the real tasks they are being built for in order to improve
their sociability.
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Chapter 1

Introduction

On April 18, 2012, the dean of the University of the Basque Country organised a
unique event of Basque improvised poetry (called bertsolaritza), a performance of
bertsolari-s and robots. Galtxagorri and Tartalo — two standard wheeled platforms
— shared the stage with several professional verse-makers or bertsolari-s, and per-
formed in front of an audience. The performance aroused great interest, and almost
every local newspaper, radio and television covered the event (see Figure 1.1 and
videos!?). Several researchers from the Faculty of Informatics worked together to
meet the challenge, and the work developed for the event turned out to be the first
prototype of a bertsolari robot [7].

Figure 1.1: Speaker’s corner inauguration event

The event, which was initially meant as a “game”, placed us in a completely new
scenario for the robots: the robots we had used so far for navigational tasks were
placed in a new environment and had to perform a task in which it was essential to
interact with people. Several lessons were extracted from that event. The first one

Thttps: / /www.youtube.com /watch?v=x8w4YuNY-Z0
Zhttps://www.youtube.com /watch?v=0pQBVmkzRWg&t—=82s
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was related to the robot morphology: despite the empathy that the public showed
towards the robots, we realised that the robots used were not entirely suitable for
social interaction due to their small number of DoF. Their expressiveness was limited
to small oscillations and camera movements simulating dancing and head movements
while singing. The second lesson learnt involved verbal communication: even though
the improvised poems proved to be an effective communication tool, methods were
needed to enhance verse coherence, as well as to make the robots understand verbal
orders and give appropriate responses. Finally, the autonomy level of the robots on
the stage had to be increased and, more importantly, the way the robots behave on
the stage had to be humanised.

What started as a challenge for a special event, became a new line of inves-
tigation for the RSAIT research group, with a practical purpose: the design and
development of a bertsolari robot, which we called Bertsobot. But whereas the
main task of a troubadour robot is to process the verbal instructions of the pre-
senter and to compose the best possible verse, the main reason that motivated this
research work, was not to create a machine able to compose verses and sing them
but to develop a robot with social skills able to understand verbal instructions,
navigate around, recognise the key elements of its surroundings and interact in a
natural way with other agents and the audience, showing the appropriate degree of
expressiveness.

We believe that such stage performance is valuable both as an implementation
platform and as a testing ground for Social Robotics (SR) research. On the one hand,
the performance setting is constrained to some degree as it limits the perception
and actuation possibilities of the robotic system. On the other hand, it provides
a unique environment in which humans and robots collaborate and where dialog,
sensory processing, action selection and behaviour coordination are required.

This dissertation proposes a framework for Socially Interactive Robots (SIR)
[59] composed by several robot behaviours that endow the robots with some Human-
Robot Interaction (HRI) abilities needed in social interactions: expressing and per-
ceiving emotion, and communicating at high-level dialogue and using natural cues
(gaze, gestures, etc.).

1.1 Goals

The RSAIT research team has worked in several areas of robotics, particularly,
in control architectures, robot exploration and navigation, machine learning, and
computer vision. Safe navigation in indoor environments is one of the group’s main
goal [97], avoiding obstacles, identifying objectives, exploring new places [83], etc.

This new research work aims to add a new layer to the previous work, the layer
of HRI that focuses on social interaction. This means that we need to take the
robots out of the laboratory, place them in complex human contexts, and prepare
them to understand human orders and expressions, as well as to act appropriately
showing human-like behaviours.

The Bertsobot project provided us with the opportunity to get an in-depth view
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of the area of social robotics, and brought about new challenges. Taking the robots
out of the faculty and putting them at the service of people marked a milestone for
the RSAIT? group.

Given that the word interaction implies a two-way action, this research work
intends to contribute to two basic questions that arise when thinking about social
robots:

1. How do we, humans, communicate with (or operate) social robots?

2. How do social robots act with us?

Our first steps will focus on a more classic HRI research, which aims to design
interfaces that enable a person to process and understand the state of the robot
and to simultaneously provide the robot with appropriate movement and action
commands. We will start experimenting with three different ways to communicate
with robots:

e Through Graphical User Interfaces (GUISs).
e By using the human operator’s body as a controller.

e By voice commands.

This experimentation is done by developing two robot applications for different
purposes: guide robots, that can be categorised as service robots with some social
capabilities; and a Natural User Interface (NUI) for entertainment.

In addition to the interfaces for interaction developed, working on the two
applications should allow us to endow our robots with some basic skills, such as
navigation, inter-robot communication, and speech recognition and understanding
capabilities. This phase should also help us gain knowledge and a better under-
standing of the capabilities the robots can show.

Afterwards, we shall move on to explore the idea of social and affective interac-
tion with robots, focusing on the behaviours that they must show when interacting
with the user. The main purpose of this step is to develop the basic behavioural
modules that robots need to be socially believable and trustworthy when they act
as social agents. We would like to take the communication and interaction between
humans and robots one step further by developing a framework (architecture) that
will allow robots to:

e Have a conversation with other agents, understanding their requirements and
providing appropriate responses.

e Have a perception of the environment, identifying and recognising objects and
other agents in the environment.

e Have a perception of their own body configuration.

3http://www.sc.ehu.es /ccwrobot /seccion /home /lang /en
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e Obtain emotional feedback from the environment.

e Express (some kind of) emotions and show a natural human-like body lan-
guage according to their emotional state, the task to be performed and the
environmental conditions.

Here, we propose bertsolaritza as test-bed application. Robots acting as human
troubadours in public events is an ambitious aim that entails a complex scenario.
In our case, the behaviours to be developed are limited to some degree by the
bertsolaritza context, the task that the verse-maker has to perform (speak, sing,
react, etc.) and the sensory-motor capabilities of the robots.

The work proposed has also an extra goal: to disseminate to the general public
the state of development of social robots. Therefore, the validation of the different
stages of the development of our social robots will be performed in public perfor-
mances. Taking into account the difficulties that robots have to adapt to different
environmental conditions, this is not an easily attainable goal, but since social robots
are intended to socially interact with humans, this seems the best way to evaluate
the appropriateness of the work implemented.

1.2 Robotic platforms

The research activity described in this dissertation has been carried out mainly as
an extension of the investigation conducted in the RSAIT* research group. RSAIT,
founded around year 2000, is a small research group that develops its work at the
Faculty of Informatics located in Donostia-San Sebastian, University of the Basque
Country (UPV/EHU).

RSAIT owns a heterogeneous set of robots with which we can experiment and
empirically evaluate the research done. Two different types of robots have been used
in the present research work: several wheeled mobile platforms and two humanoid
robots.

The mobile platforms were mainly designed to do research in indoor naviga-
tion techniques, but they were adapted with time to make them more suitable for
interaction with humans.

MariSorgin is our heirloom robot, a synchro-drive robot that dates from 1996.
It is a B21 model from Real World Interface provided with a ring of ultrasounds,
infrared and tactile sensors for obstacle avoidance. In addition, a Hokuyo URG-30
laser, a Kinect sensor, a Heimann thermopile and a touch screen have been placed
on top of the enclosure (see Figure 1.2(b)).

Galtragorri and Tartalo (see Figures 1.2(d) and 1.2(c)) are two differential
robots marketed by Omron Adept MobileRobots®. The former is a Pioneer-3DX
model with a Leuze RS4 laser scanner, while the later is a PeopleBot platform with
a Sick LMS200 laser sensor mounted on top of its base. For interaction purposes,

4http:/ /www.sc.ehu.es/ccwrobot /seccion /home/lang /en
Shttps://www.adept.com /home/?region—eu
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both are provided with a ring of ultrasound sensors, a Cannon VCC5 ptz camera
and a Gechic OnLap 13-inch touch screen added.

On the other hand, Kbot (see Figure 1.2(a)) was designed and developed by
Neobotix® in 2004 to act as a tour guide at the Eureka Museum of Science in San
Sebastian. It was put away in 2006 after breaking down, and was kept in a warehouse
until RSAIT inherited it in 2015. The differential drive was repaired, and some
components were removed giving it a more suitable morphology. The computer
capability was substituted with a Zotac’s Zbox mini PC and a Kinect sensor, and a
smaller touch screen were mounted on it.

(c) Tartalo (d) Galtxagorri

Figure 1.2: RSAIT’s wheeled mobile robots

Regarding the humanoid platforms, NAO is a well-known humanoid biped robot
developed by Softbank Robotics” designed to work on social capabilities. It has a
height of 58 cm and has 25 DoF. NAO has 2 CMOS video cameras, full-colour RGB

Shttp:/ /www.neobotix-robots.com/mobile-robots-overview.html
"https://www.ald.softbankrobotics.com/en/robots/pepper
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LEDs placed in the forehead, eyes and ears, 4 omnidirectional microphones, and 2
loudspeakers in its head. It is also equipped with 2 sonars in its chest to detect
obstacles, 8 FSR (Force Sensitive Sensors) in its feet, 2 bumpers at the front of
each foot for collision detection and several tactile sensors located on its forehead
to receive tactile input through touch (see Figure 1.3(a)).

Finally, Pepper is a humanoid robot, also developed by Softbank, with a human-
like torso that is fitted onto a wheeled platform supplied with 3 omnidirectional
wheels, with a height of 120 cm and which has 20 DoF. It is provided with full-
colour RGB LEDs placed in forehead, eyes, ears and shoulders, 4 omnidirectional
microphones, 2 loudspeakers, and 3 cameras (two RGB cameras and one 3D cam-
era) placed in its head. It is also equipped with an inertial measurement unit, 2
ultrasound transmitters and receivers, 6 laser sensors and 3 bumpers placed in its
base. Pepper also has tactile sensors in its hands and forehead (see Figure 1.3(b)).

- @
@
N

(a) NAO (b) Pepper

Figure 1.3: RSAIT’s humanoid robots

Standardising the software for application developing enables the possibility
of testing in different platforms the algorithms and behaviours being implemented
with just small modifications, which in turn lightens the burden of rewriting code
and adapting it. ROS® (Robot Operating System) is a well-known framework in
the robotics community used for robot software development, which also provides
operating system-like functionality on an heterogeneous computer cluster. ROS is
a modular system that combines drivers and algorithms (such as navigation algo-
rithms, control algorithms for robotic arms, etc.) to create robotic applications.
Modules are named nodes in ROS and nodes communicate via topics or services
following a publisher/subscriber protocol.

The first step before starting with this research work was to get all the robots
running in ROS. Tartalo and Galtxagorri’s basic drivers where already available
thanks to the ROS community” whereas Kbot’s and Marisorgin’s drivers had to be
implemented from scratch. Regarding the humanoid robots, both share a software

8http://www.ros.org/
Yhttp:/ /wiki.ros.org
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named NAQOqi'® which was designed so that modules can be run independently across
multiple machines and robots. Each module has an external API (i.e., functions
and parameters) that other modules can call. The ROS community also offers a
package named naogqi_driver that wraps the needed parts of NAOqi library and
make available the control of the robot in ROS.

After the setup step all RSAIT robots could be controlled using ROS, i.e we
had a standard tool to uniformly use this society of heterogeneous robots.

1.3 Structure of the document

This document brings together the most relevant publications related to the research
work carried out in this field. Those publications describe more in detail the work
done and the results obtained during the experiments. They have been published in
international journals and conference proceedings and therefore, they are available
to the scientific community. We hope that the work carried out in the context of
social robotics will be useful for future researchers.

This report has 5 parts which are divided into a total of 12 chapters. Chapter
by chapter, the contents are organised as follows:

Part I is an introductory part that is composed by a single chapter.

Chapter 1 includes an introduction to this research work, the motivation
to start this project, the goals and the structure of the document.

Part II collects the research work related to the first steps made for social
interaction with robots. Here, we start experimenting with different ways to
communicate with robots and we propose two different applications: guide
robots and a Natural User Interface (NUI) for entertainment.

Chapter 2 provides an introduction to service robots and tour guide
robots showing some social interaction capabilities (including interaction
through GUIs among others), and it explains concisely the main concepts
of robot navigation. At the end of the chapter, the GidaBot application,
which allows our heterogeneous team of robots to act as tour guides in
multi-floor buildings, is presented.

Chapter 3 introduces robot teleoperation and its main applications, to-
gether with a review of the most relevant works related to robot operation
using other NUIs (apart from GUIs). It also presents a body motion im-
itation interface that includes robot arm control and gesture-based robot
locomotion commanding, and a speech-based commanding interface.

Part III brings together the work done in relation to the core of this disser-
tation, the Bertsobot system. It proposes a framework for socially interactive
robots acting as verse-makers in the context of bertsolaritza.

Ohttp:/ /doc.aldebaran.com /2-5/naoqi/index.html



1.3. Structure of the document

Chapter 4 gives an introduction in social robotics, including the most
important features of social robots and some possible applications. It also
proposes bertsolaritza as a showcase to disseminate the state of the art
of social robots to the general public, and describes the ecological niche
of the Bertsobot system.

Chapter 5 defines the basic behaviours that constitute the Bertsobot’s
architecture. The developed modules that endow the robots with verbal
communication, perception of the environment and non-verbal commu-
nication capabilities are also described in this chapter.

Chapter 6 addresses the body posture recognition and action selection
mechanisms developed to increase the autonomy of Bertsobot.

Chapter 7 presents the two emotional behaviours developed for our
social robots. The first one is related to the emotional response (according
to the audience feedback) that the robot must show after singing a verse.
The second one refers to the expression capability of the robot whilst
talking.

Chapter 8 presents the talking gestures generation system developed
using Generative Adversarial Networks, and how it is coupled with emo-
tional behaviour.

Chapter 9 summarises the developed control framework and describes
the evolution of the system through the different public performances
carried out.

Part IV concludes this report.

Chapter 10 gives the reader a general vision of the issues addressed by
socially interactive robots. It summarises the key contributions and the
lines of research that could be tackled in the future.

Part V collects all the publications related to the work performed in this
research work.

Chapter 11 groups the publications related to Part II
Chapter 12 includes the publications related to Part I1I
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Chapter 2

Interacting with tour guide robots

The evolution of robotics has always been linked to the human social needs. Robots
have been used in factories since the 1960s helping to build products and relieving
humans in performing dangerous or repetitive tasks. However, this situation is
changing. The robot market, which has been increasing for decades in industrial
applications, is now growing drastically in a wide range of service applications. These
applications address the challenges of service robots capable of working in dynamic,
uncertain, and uncontrolled environments alongside humans without being a hazard.

The coexistence between robots and humans is becoming a reality. Robots
performing simple housework, transporting people, and even carrying out care tasks
is no longer an unimaginable picture. But it is also a complicated scenario, with
several problems to be considered. This scenario requires robots with certain survival
capabilities [172]:

e Cognition: the robot’s ability to perceive, understand, plan, and navigate in
the real world.

e Manipulation: precise control and dexterity for manipulating objects in the
environment.

e Interaction: the robot’s ability to interact with humans, including support
for verbal and non-verbal communications, observing and copying human be-
haviour, and learning from experiences.

This chapter presents the development of a system of heterogeneous robots col-
laborating as guides in multi-floor environments, which we have called GidaBot.
Gidabot system includes some of the capabilities mentioned above; the system en-
ables individual navigation and robot communication for cooperative guiding tasks
in different floors, and incorporates a GUI that has been designed to facilitate the
operation of the robot and improves the interaction with the user. The user can
interact with the robot through the GUI we have developed, and the robot com-
municates with the user in return by using both the GUI and voice. Concerning
the structure of this chapter, first, service robots and some possible applications are
discussed. Next, we will introduce several tour guide robots and their interaction
capabilities. After that, the concept of robot navigation and what a robot needs to

13
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know in order to navigate in an unstructured environment will be described. Finally,
the conclusions and our contributions in this field are presented.

2.1 Service robots

As mentioned before, robots are no longer limited to industry, they are progressively
spreading to other domains (e.g. urban, social and assistive domains). Nowadays,
research in robotics aims to develop socially interactive robots [55] that are going
to live in our homes, workplaces, offices, etc. This type of robots pose two main
challenges: on the one hand, they must be able to perform tasks in complex and
unstructured environments, and on the other hand, they must naturally interact
with humans.

Robots that aim to assist and/or perform useful tasks for humans are named
service robots [81]. The idea of using robots in our daily lives is an inspiring research
in the field of robotics. Service robots developed for different purposes can nowadays
be found in some restaurants, offering a coffee to clients [124]; in hospitals, trans-
porting critical patients to the surgery room [169]; in warehouses, moving material
from location to location within distribution centres [173]; in retail stores, guiding
the customers to the products of their choice in a shopping mall [70]; or even in
museums, guiding visitors through the different rooms of the museum [149]. In an
attempt to classify the different service robots that currently can be found in real
environments, the International Federation of Robotics (IFR) proposes a list ordered
by category and type of interaction [81]. On the one hand, there are those robots
related to personal/domestic use, and on the other hand, those for professional use.

Despite the variety of already commercially available service robots, most of
them have little presence in our lives yet. The most well-known exception is the
iRobot’s Roomba vacuum cleaner [61], which was designed to carry out the domestic
task of cleaning the floor of our houses (see Figure 2.1(a)). Even though it is able
to speak, its interaction capabilities are limited to basic interaction through the
smartphone application or the robot’s base buttons. Paro is another popular service
robot, mostly used for therapeutic purposes with the elderly [112]. By interacting
with people through its tactile and audition sensors, Paro responds as if it was alive,
moving its head and legs, making sounds and imitating the voice of a real baby harp
seal (see Figure 2.1(b)). Assistant-companion robots are another example of service
robots with higher interaction capabilities than those kind of robots aforementioned,
and that are currently gaining attention. Robots like Jibo [84] (see Figure 2.1(c)) or
Buddy [24] are voice-assistants inside a robot body with high verbal-communication
capabilities. They show some capabilities such us talking, recognising different users,
answering some questions, etc., that make them more interactive. And although they
are evolving little by little, at the present time they are just a seed of what humans
expect of a friendly social companion robot.

Definitely, the level of interaction between robots and humans mostly depends
on the task that the robot has to perform. A vacuum cleaner robot does not need the
same interaction capabilities that assistant robots or guide robots do. Of course, not
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(a) Roomba (b) Paro (c) Jibo

Figure 2.1: Several examples of service robots

all service robots have to be highly socially interactive, but in one way or another,
they must be able to interact with humans.

2.2 Tour guide robots

Robots acting as tour guides is one possible application for service robots. Travelling
and exploring new cities or small towns is one of the things that people like most.
Museums, churches, and castles are places that tourists want to visit. However,
exploring places with the help of a guide can be advantageous. Robots can help or
replace human guides in these tasks, taking visitors from one place to another of
the building, avoiding obstacles, and providing information about the place that the
visitors have commanded.

The literature review reveals several instances of tour guide robots. Minerva
[156] is very likely the first robot that acted as such in the Smithsonian’s National
Museum of American History in Washington, and by far the most cited one. Min-
erva interacts with people using a combination of its voice and facial expressions,
and is commanded by the visitors through the touch-sensitive screen mounted at
robots’s back, with which they can select the tour they want to perform. In [134]
the navigation capabilities of CoBot are evaluated while acting as a guide through
a cooperation between the visitor and the robot, helping each other to fulfil the
task. Its dialogue capabilities enable the robot to answer to task-related requests,
and it can ask for help. The visitor also can interact with the robot through the
GUI (displayed in the laptop screen) to help it localise in the map. More recently,
kTBot, a robot that performs guided tours was designed, built and set up at the
Eureka Science Museum of San Sebastian by Tekniker-IK4 [149]|. The robot is able
to interact with humans, interpret and understand their guiding requirements and
plan the path to the destination. Visitors can choose between different points of
interest to visit through the GUI showed in its touch screen located in its back.
Some authors defend the need of humanoid platforms for social interaction with the
visitors. Robovie [142] and Robotinho [54] are two humanoid robots with verbal
communication and human-like body expression capabilities that act as guides at
the Osaka Science Museum Exhibit and the Deustches Museum of Bonn respectively.
Surprisingly, they are not provided with a touch screen to interact with visitors.
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The research works aforementioned are limited to single robot navigation sys-
tems, and most of them perform the guiding tasks in a single floor of the building.
Instead, references to multi-robot guiding systems are few. Trahanias et al. [159]
present a different approach in which a group of robots can perform on-site and
web-based tours. Its on-board interface allows the visitors to select tours and send
the robots to different locations, while the web interface adds more characteristics,
such as the option to teleoperate the robots from distance. In that vein, Hristoskova
et al. |78] propose a distributed collaboration between two CoBots acting as guides.
In addition to the characteristics and capabilities mentioned before, these robots
share profiles and tour information with the aim of automatically exchanging the
group members.

The problem of navigation becomes more complicated when the robot needs
to travel to more than one floor. A possible solution to the multi-floor navigation
problem is the use of a single robot that utilises lifts to navigate through different
floors, as the robot Charlie [160] is able to do. A similar approach extended to
multiple robots, also using elevators, is proposed in the GuideBot tour guide [104]
and the BellBot hotel assistant [105] systems. In both systems, robots show some
social capabilities, such as speaking and facial expression skills, and visitors and
employers can interact with the assistant system through three types of GUIs: the
on-board interface is used to interact with the robot and the overall system; the guest
interface is located in the rooms allowing the user to request different services, such
as guide the user to some place or bring her/him snacks, etc.; and the administrator
interface that includes tools to see the location of all the robots in the building maps,
monitor the state of the robots, list of tasks assigned to them and even monitor the
on-board sensors. But entering lifts may be dangerous for robots; depending on the
security measures, the size of the gap on the floor, the geometry of the robot, and
especially the drive system, it may not be appropriate for the robot to use the lift.
Moreover, robots that get into lifts are supposed to have the necessary abilities to
interact with the lift interface, from inside and outside, to execute precise actions.
The lack of proper actuators can be overcome by interacting with humans as CoBot
does [134][165]. This symbiotic collaboration approach has been further expanded
to a homogeneous team of up to 4 robots that are also able to perform delivery tasks
[164].

An alternate solution would be the use of Internet of Things (IoT), a currently
fashionable topic that aims to connect different devices via network enabling them
to exchange data. In this way, robots would be connected to the network, being part
of smart buildings, and they would remotely control a lift in order to move from
one floor of the building to another. However, IoT technology is still not mature
enough, and for now few buildings are equipped with the required measures.

2.3 Robot navigation

A robust guide system mainly relies on robust navigation capabilities. For any
service robot it is fundamental to be able to safely and accurately navigate in its
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environment, and so it is for guide robots. Robot navigation implies that the robot
is able to determine its own position in the environment and move towards the
goal location. The most well-known classical solution to the navigation task is
the probabilistic approach. The key idea in probabilistic robotics is to explicitly
represent the uncertainty in robot perception and action using probability theory
[157]. Within the probabilistic robotics field, navigation consists of answering three
questions:

1. Where am I?
2. Where are the other places with regard to my position?

3. How do I get there?

The answer to these three questions is performed through three fundamen-
tal processes: the construction and interpretation of environmental representation
(maps), self-localisation, and trajectory planning.

The construction of the map is usually made during a learning phase of the
navigation, called mapping. In this step, a model of the environment is acquired by
the robot using its sensors. Solution algorithms to the problem of SLAM (Simul-
taneous Localisation and Mapping) take into account the uncertainty in the robot
localisation while building the map. SLAM has been and it still is one of the most
successful research area in the field of robot navigation and more specifically, in
probabilistic robotics. It offers different approaches for building different map rep-
resentations and Occupancy Grid Mapping is commonly used nowadays for indoor
robot navigation.

During the localisation step, the robot establishes its own position and orien-
tation within the map. Again, there are several probabilistic approaches to robot
localisation that cope with the uncertainty associated to odometry. One of the
most well-known localisation algorithm is the Adaptive Monte Carlo Localisation
(AMCL) method. It uses a particle filter to track the pose of a robot against a
known map. Other common approaches are the Markov Localisation algorithm,
that is the straightforward application of the Bayes filter to the localisation prob-
lem, and the Kalman filter algorithm, a technique for filtering and predicting linear
Gaussian systems that represents the belief through a multivariable Gaussian func-
tion.

Finally, in the last step, the planning of the trajectory to go from the current
robot position to the goal location is calculated and executed. The trajectory plan-
ning problem can be divided into two sub-problems: global planning (path planning)
and local planning (obstacle avoidance). Most common approaches for trajectory
planning are probabilistic roadmap methods, grid based algorithms (e.g. A* greedy
algorithm) and reward-based algorithms (see [145] for a more detailed review).

ROS provides a navigation stack initially developed for the PR2 robot by Wil-
low Garage [109] that has been adapted for many robots'. This navigation stack

Thttp://wiki.ros.org/navigation /RobotsUsingNavStack
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offers tools for constructing a global map of the robot’s environment by means of a
SLAM technique that uses a RAO-Blackwellized particle filter in which each particle
represents an individual map of the environment. It also uses an adaptive technique
to redistribute particles across high probability regions of the probability density
function and avoid the problem of particle depletion? techniques. Besides, robot
localisation during navigation is maintained using the AMCL algorithm. Together
with the map and robot localisation mechanisms, the navigation stack needs a plan-
ner to find and select the path to be followed by the robot. ROS allows the user
to configure the stack by choosing, among several planners, the one that better fits
to the robot/environment system. The default navigation function makes use of
Dijkstra’s algorithm for planning purposes.

2.4 Contributions and conclusions

Our contribution related to the topic of this chapter is a system of heterogeneous
robots collaborating as guides in multi-floor environments. We have developed a
system, which we have called GidaBot, that enables robot communication for co-
operative guiding tasks in different floors, and allows individual navigation in each
floor at the same time. The system is designed to operate in buildings where robots
can not move from one floor to another. Its robustness has been tested using four
real robots (Tartalo, Kbot, Galtxagorri and Marisogin) at the Faculty of Informatics
in Donostia-San Sebastian, one on each floor of the building.

The first step of the process to reach the actual state of the GidaBot system
was to setup all the robots, to develop the missing drivers and to establish a uniform
configuration for all of them. ROS has provided us the opportunity to set the same
programming and control environment to standardise our society of robots. Having
all robots “standardised” with ROS next step was to endow them with navigation
capabilities. The multi-floor guide system developed in this work makes use of the
ROS navigation stack, adapted to each of the platforms involved in the system.

Kbot was the first of our robots to become a robot guide. The tour-guide system
implemented in Kbot allows the robot to perform guiding tasks in the first floor of
our Faculty. The system relies on the ROS navigation stack and a Qt® based GUI;
ROS navigation tools have been used to build the map, localise the robot within
the map during navigation, and to plan the trajectory to move towards the goal
location, while the Qt-GUI permits the user to interact with the system by choosing
the desired goal in the map displayed in the robot’s touch screen.

The research work related to the single robot navigation system aforementioned
is collected in the following publication:

e Standardization of a Heterogeneous Robots Society Based on ROS.
I. Rodriguez, E. Jauregi, A. Astigarraga, T. Ruiz, E. Lazkano. In A. Koubaa
(Ed.) Robot Operating System (ROS), Volume 1, 2016, pp. 289-313. Springer.

2https://openslam-org.github.io
3http:/ /wiki.ros.org/IDEs#QtCreator
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The single robot navigation setup carried out in Kbot has been used as a base
for developing the interfloor multi-robot guide system. The previous system limited
the operation of the robot to a single floor, thus the next goal was to extend it
to be able to allow tours all along the different floors of the building. Four robots
have been used to cover the four floors of our Faculty, which are communicated to
perform cooperative guiding tasks. The interfloor multi-robot guide system provides
two different operation modes: single target mode and tour mode.

In single target mode, the robots must cope with different situations: the sim-
plest case is when the user and the goal are in the same floor; only one robot will
guide the user from the beginning to the end of the navigation. However, when the
user and the desired goal are in different floors, two robots are involved in the guid-
ing task; the first will drive the user to its floor meeting point (the lift or staircase),
while the second one will be waiting for the user in the goal floor’s meeting point
to solve the remaining path to the goal location. Each robot has its request queue,
and pending goals are processed in the same order they are requested.

Often, when welcoming visitors it is interesting to follow a predefined sequence
of locations, i.e. to offer guided tours. Those tours should be adapted to visitors’
profiles, giving priority to some locations and focusing on the most interesting loca-
tion for them. For this purpose, the system allows to create tours as a collection of
location goals in the desired sequence. Tours are saved in a local directory and can
be edited. New and edited tours are automatically shared among all the available
robots involved in the tour.

Extending the system to allow guided tours among different floors also requires
improvements in usability and intuitiveness of the GUI to satisfy the users’ needs.
The previously developed GUI was renewed, new options related to the operation
modes (single target and tour modes) were added, and actually information about
all the robots that are part of the system is displayed. It also shows informative
messages to the user that are supported by the speech. The speech system employed
in GidaBot is the same developed for the NAO robot guidance system described in
the next chapter (see Chapter 3.3). Figure 2.2 shows the renewed aspect of the
interface.

In order to make the system work as desired, each robot has to inform the
others, on the one hand, about user’s requests and, on the other hand, about its state
(current location and navigation state). They exchange different types of messages
concerning goal descriptions, tour description, robots position, and pending requests.

Different experiments have been carried out to evaluate the robustness of the
Gidabot system. Experiments have been performed in both simulated an real world
environments (see videos 4%). The application has been used for several times since
2015 in the open door event hold at our faculty every year. About 100 candidate
students come every year to visit the facilities, and divided into groups they follow
a tour in which our robots show them the most interesting rooms and places of the
faculty. Figure 2.3 shows Kbot and Marisorgin making a guided tour with bachelor

4https: //www.youtube.com /watch?v=fER54Me-qcU
Shttps://www.youtube.com /watch?v=i1UtxrGieks
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Figure 2.2: Main view of the renewed GUI

students in the first and fourth floors of the faculty, respectively.
The research work related to the interfloor multi-robot guide system described
before is collected in the following publication:

e GidaBot: a system of heterogeneous robots collaborating as guides
in multi-floor environments. O. Parra, I. Rodriguez, E. Lazkano, T. Ruiz.
International Journal of Advanced Robotic Systems (IJARS), 2017 (Submit-
ted).

To conclude, we must say that robots performing tasks in human settings must
be able to adapt to the environment. Navigation is a basic ability that all mobile
robots must be endowed with. They should be able to autonomously explore the
environment in order to obtain the information necessary to create a map of the
surroundings, but also able to localise themselves in it.

Concerning service robots, there are many applications in which they can be
useful to assist or help humans performing different tasks. This type of robots are
very useful for guiding purposes. Endowed with the appropriate capabilities, such
as verbal-communication and facial expression skills, they can take visitors from one
place to another while offering information (through speech or touch screens) about
the location that the visitors want to know.

Albeit the GidaBot system was set up to solve the multi-floor navigation prob-
lem of a specific environment, our Faculty, the system can be adapted to a different
building and robot configuration. It would be necessary to map the new environ-
ment and to setup the GUI with the interesting places. Besides, GidaBot’s system
robustness depends on the performance of two building blocks: navigation behaviour
and wireless communication. The ROS navigation stack offered us the basic tools
to setup the navigation capabilities of our robots. It showed to work well in spite of



Chapter 2. Interacting with tour guide robots

21

(b) Marisorgin showing the students the fourth floor of the faculty

Figure 2.3: Kbot and Marisorgin making guided tours in the faculty
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some bizarre “turning on the spot” tendency when trying to relocalise after getting
lost. On the contrary, setting up robust wireless communication in a public building
has shown to be a big burden and the obtained behaviour still needs refinement to
eliminate break downs during a guiding task.

Regarding the interacting methods, it is undeniable that verbal communication
is more natural and intuitive. But GUIs are becoming more and more present in our
dairy lives thanks to mobile devices and they can display a window of the options
the system offers in a single view.



Chapter 3

Interacting with a humanoid robot
through Natural User Interfaces

Since social robots directly interact with people, finding “natural” and easy to use
user interfaces is of fundamental importance. In the previous chapter we analysed
some of the social capabilities that service robots show, such as talking, speech
recognition, etc. We have also seen that in addition to those skills, in the context of
tour guide robots, the most usual way for the users to command robots is through
a GUI displayed in robots’ touch screens.

Natural user interfaces are an emerging technology that enables users to in-
teract with robots through natural means, such as body and voice, eliminating the
traditional interfaces like the keyboard to command the robot. This chapter presents
a remote control (teleoperation) system that aims to humanise the way to operate
a humanoid robot. It is composed by two natural interfaces: a body motion imi-
tation interface with which the user can control the robot arms and command the
robot through body gestures recognised using the Kinect sensor; and a speech-based
commanding interface. Regarding the structure of this chapter, first remotely con-
trolled robots and their main applications are introduced. Next, a review of the
principal works related to robot teleoperation using motion capture devices is pre-
sented together with a review of robot control through body imitation. Finally, the
conclusions and our contributions in this field are presented.

3.1 Remotely controlled robots

Teleoperation is the term used in research and technical communities to allude to
operating a system remotely [60]. In other words, it refers to the action in which
a slave manipulator reproduces faithfully the movements of a master manipulator,
controlled manually by a human operator. Thus, a teleoperated system is a system
based on a master-slave communication model that in addition to extend the human
capability of manipulating an object at distance, it provides the operator with the
feedback of the action performed in the remote location.

The concept of teleoperation is commonly associated with robotics and mobile

23
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robots, although it can be also applied to a wide range of areas, such as entertainment
systems, industrial machinery, etc. From now on, when mentioning teleoperated
systems we will be referring to the teleoperation of robots.

In a typical scenario, a remote controlled robot is operated by a user that sends
commands to the robot from a remote centre, and supervises the performed motion
by receiving feedback from its sensors. This type of systems are conceptually divided
into two parts: local area and remote area. The local area represents the place where
the human operator (master) and all the necessary elements to communicate with
the remote site and receive the feedback from it are located. On the other side, the
remote area comprises the environment to be manipulated and the robot (slave),
equipped with the required sensors to perceive the environment. Figure 3.1 shows
a general overview of a robot teleoperation system.

Master Slave

____________________________________________

Display i

or’j

Communication

Control
Actuators

Interface

Local Space Remote Space

Figure 3.1: General overview of a robot teleoperation system

We have been using different tools to increase our manipulation abilities since
ancient times. Tools like simple sticks have allowed us to reach objects that were
at a distance, or others like clamps have helped us to manipulate dangerous pieces.
Looking back in history, we find that research activities about remote manipulation
of objects were born in laboratories of nuclear industry, however, over the years
its applicability has been extended to other sectors of society. Some of the most
significant fields of application of teleoperation are listed below:

e Space exploration: the difficulties of sending humans safely to remote and dan-
gerous environments make teleoperated vehicles the best resource to explore
and collect information in the space. The most known example of exploration
rovers are NASA’s Spirit and Opportunity, which were developed for search-
ing evidences of past water activity in Mars [148]|23]. These rovers were not
directly teleoperated. Instead, they received a sequence of commands every
Martian morning. Besides, humanoid robots have also been sent into space;
Robonaut is currently operated inside the International Space Station (ISS)
and can be teleoperated to mimic the motions of a crew member wearing a
3D-view device, a vest, and specialised gloves [45].

e Rescue: Search and Rescue Robots (SAR) are a tool aimed to help people. The
overall goal of teleoperated rescue robots is to explore unknown disaster scenes
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while searching for victims in situations, like earthquakes, urban disasters, or
explosions, where humans can not fit or operate. They have been used in the
rescue and recovery operations of many past devastation, such as the World
Trade Center (WTC) catastrophic damage [116] and Tohoku earthquake in
Japan |71].

e Surgery: remote surgery allows surgeons to perform precise operations from
remote locations. A robotic surgical system requires advanced communication
technologies that allow the surgeon to operate the patient through the control
of a robotic arm and receive feedback from a sensory system in real time.
Da Vinci is one of the most well-known commercial surgical system, designed
to facilitate complex surgery using a minimally invasive approach [14]. It is
commonly used for prostatectomies, and increasingly for cardiac valve repair
and gynaecology surgical procedures. A newer remote surgery robot generation
is the robot Versius, which uses five self-contained robotic surgical arms that
are part of a modular system adaptable to the surgery [31].

e Telepresence: the aim of a telepresence system is to replace a human presence
with a robot at a remote location, and in turn, to make the operator feel that
she/he is present at the remote site. A telepresence robot is typically composed
by a touch-screen and a wheeled mobile base equipped with vision and sound
technologies. These sort of robots are used for different purposes, such as
for elderly healthcare [92], education [152], or home-rehabilitation [25]. More
sophisticated and with a very realistic human appearance are Ishiguro’s gemi-
noids, which are used by its creator to replace him in meetings and conferences
[136].

e Entertainment: entertainment robots are designed for recreational purpose
and are increasingly common to find in our daily life. There are many types
of entertainment robots which have been developed for different purposes. A
prominent example are drones, that are used for different applications, such us
remotely controlled mission games, to compose music or in live performances
[89]. Social robots like Cozmo! are also designed to entertain the user. Cozmo
plays with its cubes challenging the user with its favourite games of speed and
skill, but it can also be used in explorer mode (remotely controlled) to guide
it through its environment.

3.2 Natural user interfaces for remote controlled
robots
Despite the fact that touch screen-based GUIs improve the sense of control of the

robot over those GUIs that need a mouse or keyboard to interact with the system,
there is still a barrier in the communication between humans and robots. Together

Thttps://www.anki.com /en-us/cozmo
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with advances in technology there has also been progress in human-machine inter-
faces looking for a greater sense of control of the machine. Consequently, there is a
growing demand to create more immerse user interfaces that take full advantage of
modern technologies allowing users to act with the machine in a more natural way.
That is precisely the aim of natural user interfaces: to allow users to engage with
machines in a similar way they would interact with the real world through using
body movements, hands or even voice [126].

Each environment and each task to be performed require a different type of
teleoperation interface. And naturally, the interface varies depending on the type of
robot; the teleoperation of a wheeled robot differs from that of a humanoid robot,
which has more degrees of freedom to be controlled. According to Fong et al. [60]
there are four categories for teleoperation interfaces: direct interfaces enable the
operator to control the robot via hand-controllers (e.g. joystick, keyboard, or touch
screen) obtaining the feedback from the robot’s cameras; multimodal /multisensor
interfaces allow the operator more complex control modes (individual actuator, co-
ordinated motion, etc.) and/or integrate information from various sources in one
view (text, visual, sound, etc.); in supervisory control interfaces the user is able
to send high-level commands, monitor the remote scene and get a diagnosis; and
novel interfaces have special input methods (e.g. gestures) or input-output devices
(haptics), or used new display systems (virtual reality).

Early approaches for humanoid robot teleoperation were mostly based on a con-
trol by direct and multimodal /multisensor interfaces, which captured user intentions
through the use of joysticks, buttons and keyboards [144], or by the use of Graphical
User Interfaces (GUIs) [151]. Nowadays, research is focused on developing more ad-
vanced interfaces that permit a more natural interaction between the operator and
robot. Motion capturing devices are very suitable for that purpose, particularly for
commanding humanoid robots. They enrich the teleoperation allowing the user to
operate robots by means of gestures or by imitating whole body motion. In addition,
the advances in software development, such as modern tools for voice recognition,
make possible a more instinctive control of the robot. In this way, the operator
can exchange information with the robot by verbal communication, giving it orders
while interacting in a natural way:.

3.2.1 Teleoperation by motion imitation

In recent years, many new motion capture products have come onto the market,
ranging from depth cameras to full-body motion capture suits. This type of devices
have opened new research paths in robotics that led researchers to develop systems
which help to improve humanoid locomotion [125] or allow robots learning from
human demonstration [5] among other things.

Motion capture devices are also very suitable for robot teleoperation, specially
for humanoid robots that require advanced control due to its amount of degrees of
freedom. Gesture-based teleoperation is increasing adepts specially due to availabil-
ity of cheap depth cameras like Microsoft’s Kinect sensor. Such devices allow the
operator to drive the robot in a more natural way, by means of simple communi-
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cation channels, like gestures. Several works can be found related to gesture-based
teleoperation systems using depth camera images: Tara et al. [154] proposed a
sign language recognition system for robot teleoperation in which they acquire hand
gesture information from depth images. Du et al. [46] also used the Kinect sensor
in order to track human hand motions aiming to control a robot manipulator to
perform pick and place tasks.

Real-time teleoperation of humanoid robots by imitating body motion (full-
body or some parts) is another active research area. Related work on this topic is
abundant. For instance, Setapen et al. [140] used an active-marker motion capture
system to teleoperate a NAO humanoid robot, with the aim of teaching the robot
new motions. They applied inverse kinematic calculations for finding the mapping
between motion capture data and robot actuator commands. Matsui et al. [111]
applied a capture system based on body markers to measure the motion of both,
a humanoid robot and a human, and then adjust the robot motion to minimise
the differences, with the aim of creating more naturalistic movements on the robot.
Song et al. [146] utilised a custom-built wearable motion capture system, consisting
of flex sensors and photo detectors, to convert motion capture data to joint angles.
Koenemann and Bennewitz [93] presented a system that enables a humanoid robot
to imitate complex whole-body motions of humans in real time, ensuring static
stability when the motions are executed and capturing the human data with an
Xsens MVN motion capture system consisting of inertial sensors attached to the
body (see Figure 3.2(a)).

The above mentioned methods are limited in the sense that the human needs to
wear different types of sensors in order to interact with the robot. Moreover, the cost
of the equipment is quite high in comparison with depth-sensing cameras. That is
why researchers have become more interested in using depth cameras for humanoid
teleoperation. Song et al. [147| proposed a teleoperation system using a Kinect
sensor to capture human motion and control the actions of the Robonova robot. A
more advanced system to teleoperate a robot with higher DoFs was proposed by
Almetwally and Mallen [3]. Their technique also used the Kinect and allowed the
user to move not only the arms but also to drive the robot. A similar approach to
imitate the arms and head movement of the user was presented by Li et al. [102].
Finally, Ou et al. [119] propose a human imitation system for NAO using the Kinect
sensor. The robot mimics the whole body motions made by the user in real time
while maintaining the balance (see Figure 3.2(b)).

Any humanoid robot teleoperation system based on body motion or gestures
imitation requires an interface composed at least by two main elements:

e A system that captures the motion or gesture made by the user.
e A control system that translates the captured motion to the robot space.

The main problem of humanoid robot teleoperation, in particular that based on
motion imitation, lies on converting a movement from the capturing system space
into the robot space. This conversion is known as inverse kinematics and usually
has no solution. Thus, the system must provide an approximated solution using
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(b) Ou et al.’s teleoperation [119]

Figure 3.2: Two examples of NAO teleoperation through motion capturing interfaces

kinematics equations, and in turn it must also guarantee the robot stability while
imitating the human movements.

3.2.2 Teleoperation by verbal commands

Verbal communication should be a natural way of human-robot interaction. Humans
feel more comfortable when the interaction with machines is through voice. Interac-
tion by verbal communication requires that both, the interlocutor and the receiver
use the same communication channel. In this way, the operator can give verbal
commands to the robot, which the latter must understand, in order to perform the
task associated with the order.

To serve people, it is necessary to develop an active auditory perception sys-
tem for the robot that can execute various tasks in everyday environments obeying
spoken orders given by a human and answering accordingly. Several systems have
been developed that permit natural-language human-robot interaction. Foster et al.
[62] proposed a human-robot dialogue system for the robot JAST, where the user
and the robot work together to assemble wooden construction toys on a common
workspace, coordinating their actions through speech, gestures, and facial displays.
Wang et al. [168| introduced a human-robot speech system for teleoperating a hu-
manoid mobile robot that can move around in environments, and perform physical
tasks, such as searching objects. The speech control is event-based in order to avoid
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communication delays. Gallardo and Poncela [66] presented a human-robot interface
for command-based voice teleoperation of a Pioneer P2AT robotic platform. They
also developed a user and command dependent acoustic model in Spanish for voice
recognition commands.

Any speech based teleoperation interface should provide the user the possibility
to control the robot giving voice orders. The interface receives the user’s input in the
form of voice command (captured from a microphone), and in response the interface
interacts with the robot sending the corresponding commands. Two main elements
are identified in an architecture for speech-based teleoperation:

e The automatic speech recognition system (ASR)

e The robot control system

The system also should feedback the operator when an instruction is not under-
stood, and this feedback should also be verbal. For that purpose another element
is required, a text-to-speech (T'TS) system that converts the text to be said by the
robot into speech.

Most speech-based teleoperation systems, including those mentioned before,
make use of external tools in order to capture and recognise the speech, and also
for converting the text into speech. It is worth mentioning some of the most known
ASR systems, such as Microsoft’s Speech Recognizer?, Sphinx?, Julius®, or Google’s
speech-to-text engine’.

On the other hand, with respect to TTS systems, there is much more variety,
and some of them are even multi-language, such as Acapela®, Nuance’, or Google’s
TTS engine®.

3.3 Contributions and conclusions

In this chapter, we propose a real-time humanoid robot commanding system using
two different natural user interfaces to enrich the interaction with NAO: a body
motion imitation interface that includes the option of arm motion imitation and
gesture-based robot locomotion commanding; and a speech-based commanding in-
terface. Here we will describe each one separately, as if it were two different robot
teleoperation systems, but both can be combined in a single one to control simulta-
neously the robot through speech and body motion.

The body motion imitation interface proposed in this research work, which is
based on motion capturing using the Kinect sensor, allows the user to control not

2https://msdn.microsoft.com/en-us/library /hh378380(v=office.14).aspx
3http://www.sphinx-doc.org/en /master/
4http://julius.osdn.jp/en_index.php

Shttps://cloud.google.com /speech-to-text /

Shttp:/ /www.acapela-group.com/
"https://www.nuance.com/dragon.html

8https://cloud.google.com /text-to-speech /
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only the arms of the NAO robot but also to navigate the robot. Regarding the
control of the arms, our approach is based on imitation of movements, i.e. NAO
replicates the operator’s arm movements. For the purpose of imitation, first human
skeleton is tracked, then data are suitably transformed to NAQO’s coordinate space,
and finally, the gesture is executed by NAO. To transform the Cartesian coordinates
obtained from the Kinect to NAQO’s coordinate space, a joint control approach is
employed; human joint angles at shoulders and elbows are calculated and translated
to NAQO'’s coordinate space. On the other hand, for robot locomotion we propose
to use a predefined set of gestures (based on body positions). The operator’s body
position defines the action she/he wants the robot to perform, for instance, to make
the robot move forwards the user has to take a step forward, to make the robot
turn right she/he has to lean the shoulder to the right, etc. Moreover, a GUI that
shows the visual information obtained from both NAQO’s camera and the Kinect’s
camera has been developed, that facilitates to the user the control of the robot from
distance (see Figure 3.3).

IG{ Topic Monitor DE@ - ox% “Rviz[*] DC@ -oxn
Topic File Panels Help
» [] fblink/feedback dhy Interact | % Move Camera  [“]Select - FocusCamera == Measure # 2DPoseEstimate . 2D NavGeal »
/blink/result
fblink/status
fbody pose/cancel
fbody_pose/feedback
fbody_pose/goal
fbody_pose/result
fbody_posefstatus
/bumper
» 7] fcamera/debayer/parameter_descriptions
fcamera/debayer/parameter_updates
fcamera/depth_rectify_depth/parameter_descr .

Reset 12fps
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Jnao_camera/image_raw i L] | o 10.00m Jskeleton_image = | € || & 10.00m | .

Figure 3.3: Teleoperation graphical user interface

The speech-based commanding interface presented in this research work to com-
mand NAO follows the three elements architecture aforementioned; it is composed
by ASR, robot control and TTS systems. The order given by the operator is cap-
tured by the ASR system that uses two external tools to translate it into text; SOX?
is employed to capture the audio and Google speech-to-text engine to convert it into
text. Then, the action to be executed by the robot is determined according to the
text obtained in the previous step; keywords that matches the list of commands

9http://sox.sourceforge.net/
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defined for the control of the robot are looked up in the sentence. If a match is
found, the robot performs the movement corresponding to the received command,
such as “Stand up”, “Move forward”, “Turn left”, etc. Otherwise, the robot says that
it could not understand the order and asks the user to try again. AhoTTS [76] has
been used to provide the robot with speaking capability. Its main task is to convert
the text to speech. AhoTTS was mainly developed for Basque language, but it is
also available for Spanish and English.

The research work related to the natural user interfaces for humanising the way
to interact with NAO is collected in the following publication:

e Humanizing NAO robot teleoperation using ROS. I. Rodriguez, E. Jau-
regi, A. Astigarraga, T. Ruiz, E. Lazkano. 2014 IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids), Madrid, Spain, November 2014,
pp. 179-186.

Experiments in the laboratory have been conducted to evaluate the usefulness
of the natural user interfaces for robot commanding proposed in this chapter. We
have recorded two videos during the experiments carried out in the laboratory:

e The first video!? shows how the operator commands the robot to transport an
object from one place to another. The aim of this experiment was to test the
arm and walking movements of the robot while performing a simple task in
cooperation with humans.

e The second video!! shows the guidance of the robot using speech commands.
The system also gives a feedback to the operator when an instruction is not
understood, and this feedback is also verbal.

The experiments carried out revealed three aspects that might be improved:

1. The lack of side view makes more difficult the guidance of the robot: the
head control was afterwards added into the system in order to alleviated this
problem. Currently the user can control NAO’s head movements by moving
her/his own head. The robot’s head joint pitch and yaw angles are calculated
just like in the joint control approach employed for the arm motion imitation.

Another experiment was carried out in order to test the full system, this time
including the arm, head and walking control options (see video'?). The following
publication includes the full system:

e Standardization of a Heterogeneous Robots Society Based on ROS.
I. Rodriguez, E. Jauregi, A. Astigarraga, T. Ruiz, E. Lazkano. In A. Koubaa
(Ed.) Robot Operating System (ROS), Volume 1, 2016, pp. 289-313. Springer.

Ohttps: / /www.youtube.com/watch?v=Toacwmm9OkU
Hhttps:/ /www.youtube.com /watch?v=ynfNMgZjiVA
2https: / /www.youtube.com /watch?v=EaFrgyzorFA
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Furthermore, the two natural user interfaces proposed in this chapter were used
and tested in a public performance held in December 2014. NAO was invited to the
“ScienceClub 2014”, an event that aim to disclose science and technologies to the
society. In such event, NAO showed its imitation and verbal communication capa-
bilities, mimicking the body motion the user performed and maintaining a simple
dialogue with the presenter (see video'?).

To end the chapter, some conclusions are extracted. Although teleoperation
can be considered an ancient concept in robotics, there are still many situations in
which robots require to be supervised and teleoperated by an operator. For instance,
it provides the possibility of performing complex tasks in environments otherwise
inaccessible or dangerous. Additionally, teleoperation can be used for robots to
learn imitating human motion. Imitation is also a way of social interaction. A
social robot must have the capability to imitate the agents around it. In a human
society, people generally teach new skills to other people by demonstration; we do
not learn to dance by programming, instead we see other dancers and try to imitate
them. Hence, our artificial partners should be able to learn from us by watching
what we do. In that vein, natural user interfaces make easier the way to interact
with robots, allowing users to command robots through natural means like body
motion and gestures, and even through voice.

The developed application was designed for entertainment purposes and it has
been used several times as a such. But it must be taken into account that the tool
itself can have many applications. We made one step forward and proposed the
system as a rehabilitation tool. In the following publication a system that aims
to monitor home rehabilitation exercises is presented. This system uses Machine
Learning paradigms to classify human poses; a NAO robot is used to motivate the
users to perform the rehabilitation exercises at home, and a Kinect sensor to measure
the quality of the movements. NAO reproduces the exercises that have been taught
through the body motion imitation interface presented before.

e NAO Robot as Rehabilitation Assistant in a Kinect Controlled Sys-
tem. I. Rodriguez, A. Aguado, O. Parra, E. Lazkano and B. Sierra. Interna-
tional Conference on Neurorehabilitation, Segovia, Spain, October 2016, pp.
419-423.

Bhttps: / /www.youtube.com /watch?v=HKxe40-Qi6w
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Chapter 4

Socially interactive robots

Human behaviour has been studied from many perspectives over years. Psychology,
neuroscience, or other disciplines like sociology, aim to study and understand the
different aspects of human behaviour. Robotics also offers a complementary per-
spective on the study of human social behaviour. Understanding how we perceive
and interact with others is currently a core challenge in robotics research.

Social robotics aims to provide robots with artificial social intelligence to im-
prove human-machine interaction and to introduce them in complex human contexts
[27]. The demand for sophisticated robot behaviours requires to model and imple-
ment human-like capabilities to sense, process, conduct high-level dialogue, learn,
and act /interact naturally by taking into account emotions, intentions, motivations,
and other related cognitive functions. And, of course, the ability to communicate
through natural language and non-verbal signs is in the front line of research.

Verbal and non-verbal communication are therefore essential skills that any So-
cially Interactive Robot (SIR) [55] [59] must show. Naturally, speech plays a relevant
role to convey messages or emotions, however facial expressions, voice intonations,
or body expressions can disclose as much information as words. The design of a
social platform has an important function when a natural HRI is intended. Physi-
ological and biological studies conducted over the years describe how the design of
robots affects the interaction between humans and robots [75], and the importance
of developing robots with anthropomorphic (human-like appearance) features [47]
for natural interaction. Both, anthropomorphic design and social skills with which
robots are programmed, will help to increase the empathy and the acceptance level of
robots. On the contrary, robots with extreme likeness to humans can elicit uncanny
feelings of rejection and revulsion in observers [107].

In the last years, research in the field of social robotics has considerably grown
up, and several robots showing verbal and non-verbal communication capabilities
have been developed in this area. Robots endowed with social abilities have been
used for different applications, for instance, as interactive teachers [65] and edu-
cational assistants [87], to support diabetes management in children [32], to assist
elderly with special needs [21], or even as flyers delivery in shopping malls [141].

In addition to the applications mentioned before, social interactive robots can
also be used for entertainment purposes. In the following section we will explain
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and describe several examples of robots acting on stages.

4.1 Robots on stage

Entertainment is an area in which social robots can have high impact. Social robots
can be used for different activities associated with amusement and which aim to
hold the interest of an audience. Moreover, cultural Robotics, defined as the study
of robots that participate in or create culture, is an emerging field that contributes to
the advancement of social robotics [48], and several works make reference to robots
participating in cultural activities. Fridin [64] proposes a robot that tells stories to
kindergarten children. The humanoid robot employed in her work is able to show
appropriate emotions through body expressions and voice intonations according to
the story being told. Related to the art of music, Taheri et al. [150] present a robot
with verbal capabilities for teaching music to autistic children, which also plays the
xylophone and the drum. But robots can also dance. Augello et al. [12] describe a
cognitive architecture for a humanoid robot that makes it able to create and perform
dances driven by the perception of music. The humanoid robot also reacts to human
mate dancers, tracking their face and listening the knocking sound they made with
hands.

Theatre performances using robots show to be an appropriate showcase for
disclosing the state of the art of social robots to the general public, and thus, to
measure social acceptance of robots. Although everything is rehearsed beforehand,
theatre offers an invaluable sphere to research and develop social behaviours in
robots, to work and extend the expression of emotions and the natural communi-
cation among humans and robots [103][57]. Theatrical performances are also being
used to evaluate HRI features [34] and to develop plausible scenarios for socially
assistive robots [85]. The experiment made by Ogawa et al. [118] to measure the
advantages androids might have as poetry-reciting agents is remarkable. A review of
robot performances can be found in [117]|[106]. Little by little, robots are appearing
in theatres motivated by researchers as a means, but also by artists [101].

4.2 Bertsolaritza

Bertsolariza, the art of creating extemporary verses in Euskara (the language of
the inhabitants of the Basque Country), is one of the manifestations of traditional
Basque culture that is still very much alive. The Basque troubadours, named bertso-
lari-s, use this improvisational poetry context not merely to entertain but to discuss
contemporary social, cultural, sexual, and political problems.

Events and competitions (see Figure 4.1(a)) in which the verse-makers have to
produce impromptu compositions, named bertso-s, about topics or prompts are very
common. A typical scenario involves an emcee (or presenter) suggesting a topic to
the bertsolari, who must then, within the space of less than a minute, compose and
sing a poem along the pattern of a prescribed verse-form that also involves a rhyme
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scheme and a melody. And of course, the bertsolari must perform that verse, in
front of an audience and without any musical accompaniment (see Figure 4.1(b)).

(a) National championship (2015) (b) Typical scenario

Figure 4.1: Description of the Bertsolaritza context

Xabier Amuriza, a famous verse-maker that modernised and contributed to the
spread out of the bertsolaritza culture, defined bertsolaritza in a verse as:

Neurriz eta errimaz Through meter and rhyme
kantatzea hitza to sing the word
horra hor zer kirol that is what kind of sport

mota den bertsolaritza. bertsolaritza is.

Different poetry disciplines similar to bertsolaritza can be found around the
world, such as Italian bards, Argentine payadors or Catalan glossators. However, the
closest example is the American poetry slam, another oral poetry contest in which
poets read or recite poems and are judged by selected members of the audience, and
sometimes also by a panel of judges, like in bertsolaritza championships.

The art of composing extemporary verses requires a number of formal prereq-
uisites that must be taken into account. Rhyme and meter are inseparable elements
in improvised verse singing. A person able to construct and sing a bertso with the
chosen meter and rhyme is considered as having the minimum skills required to be a
bertsolari. But the true quality of the bertso does not only rely on those demanding
technical requirements, the real value of the bertso resides on its dialectical, rhetor-
ical and poetical value. Thus, a bertsolari must be able to express a variety of ideas
and thoughts in an original way while dealing with the mentioned technical con-
straints. In this balance lies the magic of a bertso. Moreover, bertsolaritza belongs
to oral poetry genre, which implies that a work has to be composed and performed
at the moment, with no prior preparation. Performing in public is extremely impor-
tant in such context, because the verse generation process is influenced by multiple
factors perceived at each specific instant by the “actor”.

From the point of view of social robotics, we consider that bertsolaritza offers
another sphere for improving social behaviours in robots. It can be an appropriate
context to develop robot body language and robot communication capabilities for
humanoid robots. Thus, we have defined an experimental goal to this research work:
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design and develop a framework for a bertsolari robot, named Bertsobot. But the
aim of this research work goes beyond to develop a robot capable of singing verses,
we would like to take a step forward in the communication between humans and
robots, designing and implementing the set of behaviours the robot needs in the
stage to increase in one hand robot autonomy, and in the other hand, credibility
and sociability of robots. In other words, we want our Bertsobot to behave social.

4.3 The ecological niche of Bertsobot

As mentioned before, we will focus on developing minstrel robots that sing impro-
vised poetry to the public in Basque. If our robots are meant to participate in such
events, they require certain capabilities that allow them act as human bertsolari-s.

The first step is to analyse the behaviour that troubadours show on stage. In
bertsolaritza there are different type of public performances, such as tribute sessions
in which one or several bertsolaris take part, free sessions between only two or
three troubadours, or bertso-saio-s (sessions) guided by a presenter in which she/he
proposes different exercises to the bertsolari-s. The dynamics of those performances
differs from one to another, but here we will focus on the last one, that is the most
typical scenario. Figure 4.1(b) gives a good overview about such scenario, composed
by several chairs and microphones, some bertsolari-s, an emcee, and the audience.

The dynamics of a public performance guided by an emcee can be summarised
in five main steps:

1. Wait sitting for its turn.
2. When it is its turn, approach the microphone.

3. Listen to the emcee and compose and sing the mandated set of verses to the
public.

4. Observe and receive audience’s feedback and react accordingly.
5. Go back to the sitting place.

These five steps describe the basic flow of an event, and therefore, the general
behaviour that Bertsobot must show on stage, i.e. the ecological niche [123] of the
robot. It is not a sequential process, each bertsolari can be called several times by
the emcee, either alone or together with one or more fellows, and each time they
can be mandated to sing several verses, i.e. steps 3 to 4 are looped. Moreover, on
each step or phase of the performance the system must accomplish different tasks.
For instance, in the second step the robot has to recognise its turn to sing, get up
from the chair and find the microphone, move towards the microphone, listen to the
exercise, and obtain the exercise requirements (topic or rhymes).

Having explained the general behaviour of the robot, the next step is to define
and implement the behaviours that endow Bertsobot with the required capabilities
to perform the actions associated to every phase of the performance.



Chapter 5

Describing the basic behaviours of
Bertsobot

This chapter pretends mainly develop the basic capabilities that Bertsobot needs
to be socially believable while acting as human troubadour. Those capabilities
are going to be integrated in a robot framework that will be composed by several
behavioural modules. From now on, the terms “framework” and “architecture” will
appear several times throughout this report. We will use both interchangeably to
refer to the implementation of the architecture that describes the structure and
internal connections of the behavioural modules defined for our robots. There is
no standard framework that defines which are the specific capabilities that a social
robot must show while interacting with humans, but such capabilities indicate how
effectively such agents interact. According to Dautenhahn [41] social interactive
robots should exhibit the following characteristics: express and perceive emotions;
communicate with high-level dialogue; learn models of other agents; establish and
maintain social relationships; use natural cues (gaze, gestures, etc.); show distinctive
personality and character; and learn social competencies.

While reviewing other existing robotic frameworks to take inspiration for our
Bertsobot’s framework, we found several papers introducing human-robot interac-
tion and social interaction-related frameworks that include some of the characteris-
tics aforementioned. For example, Sarabia et al. [138] present a generic middleware
for prediction and recognition of human actions and intentions, showing its appli-
cation in a social context where the robot recognises and imitates human dancing
movements. A framework composed by a bundle of ROS modules for HRI, named
HRItk, is proposed by Lane et al. [96], which allows for simple interaction capa-
bilities like speech recognition, natural language understanding, and basic gesture
recognition as well as gaze tracking. Dias et al. [44] present a generic and flexi-
ble modular architecture for emotional agents with planning capabilities, designed
to use emotions and personality to influence the agent’s behaviour. Jang et al.
[82] propose a social HRI framework that provides two primary elements: cognitive
capabilities for perceiving and interpreting social situations and planning socially
appropriate actions, and high-level semantic interfaces for sensing and control ca-
pabilities. Finally, Fischer et al. [58] provide a software framework for the iCub
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robot which integrates several components related to perception (object recogni-
tion, agent tracking, speech recognition, and touch detection), object manipulation
(basic and complex motor actions), and social interaction (speech synthesis and joint
attention).

As we have noticed throughout the review of the literature, the characteristics
considered as essential are: verbal communication, non-verbal communication and
perception of the environment. Moreover, we have also identified those related to
perceiving and showing emotions, and the emotional state of the robot. In the fol-
lowing sections we will focus on defining the minimum skills or basic behaviours that
constitutes the Bertsobot’s architecture; the behaviours related to verbal communi-
cation, perception of the environment, and non-verbal communication capabilities
will be introduced. Those basic behaviours will be explained without considering
an important factor, the emotional state of the robot. How the robot perceives and
shows emotions, and how the emotional state affects the behaviour of the robot will
be explained later on in Chapters 7 and 8.

5.1 Verbal communication

One of the most natural way of interaction between humans is through speech.
People use verbal communication to inform others of our needs, as well as to im-
part knowledge. If we intend human-robot social interactions, robots with speaking
and understanding capabilities are essential. As previously discussed in Chapter
3, speech-based interaction means that the interlocutor and receiver use the same
communication channel. Therefore, when designing a robot interface for verbal com-
munication it is necessary to develop a TTS system for speaking capabilities and an
ASR system for speech recognition.

Speech-based interaction is accomplished in two ways in our Bertsobot system:
on the one hand, the system is able to maintain a dialogue with its interlocutor
to receive instructions about the performance: when to start and when to finish,
the theme and the metric to compose the poem, etc. On the other hand, oral
communication is accomplished when the robot creates, under the given instructions,
a new poem and sings it with a proper melody.

5.1.1 Speech-based dialogue

A Speech-based dialogue system is defined as computer system with which humans
can interact through spoken natural language [63]. Its main purpose is to provide
an interface between the user and the computer-based application that allows the
interaction on a turn-by-turn basis. This definition covers a wide range of systems,
ranging from simple question-answer systems to a more complex conversational sys-
tems. According to McTear [114], speech-based dialogue systems can be classified
into three main types, depending on the methods used to control the dialogue with
the user:

1. Finite state-based systems: the user follows a sequence of predefined steps or
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states. At each dialogue state the system recognises specific words and phrases
and produces actions based on the recognised response.

2. Frame-based systems: the dialogue flow is not predetermined but depends on
the content of the user’s input and the information that the system has to
elicit.

3. Agent-based systems: the dialogue model takes the preceding context into
account, with the result that the dialogue evolves dynamically as a sequence
of related steps that build on top of each other.

Bertsobot’s dialogue system allows the robot to maintain a simple conversation
with the emcee. The dialogue is mainly guided by the emcee, who decides the turn to
sing, the exercise and the topic or rhymes the troubadour has to employ to compose
the verse, etc. The dialogue system proposed in this research work is composed by
several modules that allow the robot to follow the dynamics of the dialogue with the
emcee in a performance. Figure 5.1 depicts the architecture of our dialogue system
that includes an “Automatic Speech Recogniser” (ASR), “Language Interpreter”,
“Dialogue/Performance Manager”, “Response Selector”, “Text Generator”, “Speech
Synthesiser” (T'TS) and the “Singing Synthesizer” (TTSKantari).

ASR Iex Language Keyword | Dialogue/Performance
Interpreter Manager
Signal
Speech
v ce
: teral TTS ———
Text Generation | S55—
Response Response | _
Selector (utterance | Rhymes —>| . VOrSe Poem | TTS |sun
or Topic Generation > . Verse
command) Kantari

Figure 5.1: Description of the Bertsobot dialogue system

The “Automated Speech Recognition” (ASR) component converts the raw audio
input into a sequence of words. Google Speech service! is used as ASR, which
can be configured for many languages, including Basque. This is forwarded to
a Language Interpreter module to extract the semantics of the utterance. The
“Language Interpreter” module parses the input text and makes use of a database of
keywords to identify user’s query. Then, the “Dialogue/Performance Manager” (PM)
decides upon the action to take according to the employed dialogue strategy. The
PM is the module that brings the coherence necessary to the system in order to follow
the dynamics of the performance. Implemented as a finite state automaton, the PM
defines the different phases of the event and controls the actions to be performed

Thttps://cloud.google.com /speech-to-text /
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at each state. The “Response Selector” selects the proper text output for the actual
state. The output can be a predefined response according to the dialogue state (a set
of utterances to receive information about the stage performance), or a command to
compose a novel poem under the given constraints. The “Text Generator” module
receives the input and generates the poem when it is commanded. Finally, the
last step converts the text into audio. When the text output is an utterance it is
passed to the text-to-speech engine (TTS) component to be synthesised. AhoTTS
tool, a speech synthesizer for Basque language developed by AhoLab [76] is used for
that purpose. Otherwise, when the output is a poem text, the last step consists of
translating from text to a song that will be immediately performed by the robot.

To do so, poem’s metric is analysed and a melody is chosen randomly from an
available database. The poem and the melody are sent to the TT'Skantari singing
synthesizer [1] which produces the audio file with the sung poem.

This is an illustrative example of user-robot dialogue in a stage performance:

HuMAN : Hello /robot/. Come to the microphone please. It’s your turn.
(The robot stands up, reaches the microphone, and looks around until it finds
the emcee. It gazes to him/her.)

RoOBOT : I am ready. Tell me, what exercise do I have to do?

HUMAN : Nothing is so beautiful as spring, that is the theme to compose a poem.
RoOBOT : Sorry, but I did not understand what you said.

HuMAN : I will give you a theme and you have to compose a poem about it.
ROBOT : The exercise is theme-given. Great. What will be the theme of the poem?

HUMAN : The Spring. The theme to compose the poem is the spring.
(The robot takes few seconds to create the poem and sings it)

5.1.2 Verse generation

The core element of the “Text Generation” module is the “Verse Generation” system.
Our approach implements the same strategy used by bertsolari-s for the creation of
impromptu verses, and in a few seconds - less than a minute - assembles a new poem
along the prescribed verse-form. The proposed system receives as input the type
of exercise and the topic or four rhymes (depending on the exercise) and tries to
give as output a novel poem that: (1) satisfies the formal constraints of rhyme and
metric, and (2) shows coherent content related to the given topic.

The poetry generation strategy employed is a corpus-based method [10]| and
the overall semantic relationship has been implemented with an Latent Semantic
Analysis (LSA) model [42][8]. The verse generation procedure relies in the extraction
of sentences from corpora and combining them (under rhyme and metric constraints)
to form the final poem. The LSA model assures the internal coherence between poem
lines and the overall coherence with respect to the theme.

The two text generation methods are:

e Sentence retrieval: The basics of this method is to extract from the corpus
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sentences which meet rhyme and metric constraints.

e N-gram probabilistic model: Starting from the rhyming word, the verse is
built backwards using the selected N-gram model; extending at each step the
sequence of words with new ones that have a non-zero probability of appearing
after the last word.

Figure 5.2 depicts the verse generation system. A detailed explanation of the
verse generation process and the tools developed for that purpose can be found in
Astigarraga’s research work [6].

__N-gram model m _ Topic
Sentence retrieval Exercise Rhymes

Word X Next Word l l
- Rhyme Poem
Sentence | <~ Poem .
Generator |~ _~» Generator
Y Sentence A
_______________ TextUtilittes_____ | |

;(Syllables (Rhymes Semantic
Ll Uil Util

Figure 5.2: Verse generation system

It must be noted that the goal of the verse-makers is not only to convey a
message in the form of a poem but also to respond to an affective target and/or to
create an affective response in the audience. How audience reactions are processed
and coded and how are used to adapt the emotional behaviour of the robot is
addressed in Section 7.2.

5.2 Perception of the environment

Embodied cognition establishes that cognition depends upon experiences that come
from having a body and thus, feedback between agents and the world is essential
to develop cognitive capabilities [37]. In order to interact with its environment, a
social robot must be able to perceive it. Perception is fundamental for the robot to
detect changes and react to the stimuli.

Bertsobot is able to interact with the environment in different ways, it can
identify and recognise the key elements of the scenario, locate voice sources, and
orient the gaze to the interlocutors’ faces. Bertsobot’s perception is composed by
two main modules: “Key Objects Perception” and “People Perception”. The former
allows the robot to find and track the key elements on stage, and the latter permits
the robot to perceive people and direct its gaze towards the interlocutor.
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5.2.1 Perception of the key elements

The robot pays attention to different elements at different steps. The robot can be
requested to reach the microphone to start its singing turn or it may need to go
to rest to its chair. For the time being, those elements, as well as being adapted
to the robot’s morphology, they have labels to make it easier the identification and
recognition processes. They all have colour tags that make them distinguishable;
chairs have been painted with different colours and, similarly, the microphone has a
blue tag on its base. Every key object has a QR code to make it recognisable. Our
approach for object identification combines a colour tracking algorithm with QR
detection. The colour tracking procedure enhanced with a Kalman filter? is used
to produce a more robust behaviour against illumination conditions and balancing
produced during walking. The QR detection is done by using the ZBar bar code
reader library® that gives the text related to the QR codes detected in the source
image. No location information in form of odometry or frame of reference is used
because the location of those elements with respect to the robots varies depending
on the scenario.

5.2.2 People perception

A natural reaction when we want to interact with someone is to direct our gaze
towards the interested agent. The gaze feeds the communication, and conveys in-
terest or attention to the interlocutor. It requires positioning the robot to make
the most out of its sensors and to let the human talker know what the robot is
actually paying attention to. Research in social interactions has investigated that
displaying appropriate human-like gaze behaviour improves people’s perceptions of
the conversational effectiveness of humanoid robots [4][163].

Spontaneity during verbal communication involves two main behaviours, face
and sound localisation, and Bertsobot’s “People Perception” module combines both
to perceive and track the presenter.

Face localisation is done applying OpenCV’s Haar feature-based cascade clas-
sifiers [166] to the images taken by the upper camera on the robot’s head. Once the
face is detected within an image, the centre of the face (C'F,, CF,) in the image is
obtained, and the head joint angles (pitch and yaw) to track the face, with respect
to the centre of the image, are calculated as shown in equations 5.1 and 5.2.

num_ rows
2

num__cols
2

Sound localisation allows a robot to identify the direction of sound, and it is

done using Aldebaran’s “ALSoundDetection” algorithm based on Time Difference of
Arrival (TDOA) approach [22]. The sound wave emitted by a source is received at

Hpitch = (fovvertical/img_sz.ze) * ( - CFJ:) (51)

—CF) (5.2)

Hyaw = (fOUhorizontal/img_Size) * (

2https://docs.opencv.org/trunk/d1/da2 /kalman_8cpp-example.html
3http:/ /zbar.sourceforge.net/
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slightly different times on each of the robot’s four microphones, from the closest to
the farthest. These differences are related to the current location of the emitting
source. By using this relationship, the robot is able to retrieve the direction of the
emitting source (azimuth and elevation angles) from the TDOAs measured on the
different microphone pairs. In this case, pitch and yaw angles to track the sound
with the robot’s head are obtained as shown in equations 5.3 and 5.4:

Hyiten = head, + elevation (5.3)

Hyqw = head, + azimuth (5.4)

5.3 Non-Verbal communication: Body language

Verbal communication and non-verbal signs come together in humans; verbal com-
munication is the most natural communication way that we use for social interaction,
but it is the non-verbal communication what really helps us to understand sociabil-
ity [90]. Much of non-verbal communication is unintentional, people are not even
aware that they are sending messages through body gestures and postures, facial
expressions, eye contact, and head movements.

Social robots must be expressive in a human-like way in order to be socially
accepted. In order to achieve the most basic degree of naturalness any humanoid
robot must be endowed with some of the non-verbal signs mentioned above. For the
moment we will focus on how to enhance the expression capabilities of our Bertsobot
through body gestures.

L’hommet and Marsella [100] discuss body expression in terms of postures,
movements and gestures. Gestures, defined as movements that convey information
intentionally or not, are categorised as emblems, illustrators and adaptors. Em-
blems are gestures deliberately performed by the speaker that convey meaning by
themselves and are again culture dependent. Illustrators are gestures accompanying
speech, that may (emblems, deictic, iconic and metaphoric) or may not (beats) be
related to the semantics of the speech [113]. Lastly, adaptors or manipulators belong
to the gesture class that does not aid in understanding what is being said, such as
ticks or restless movements.

When bertsolari-s are on stage they are continuously conveying information,
through facial expressions, body gestures, or head movements about their mental
state. The body expression of the troubadours changes depending on its mental
state, that varies throughout the performance. After identifying the main different
states of the global behaviour, a gesture library composed by a set of adaptors and
a set of illustrators has been defined to mimic verse-maker’s expressiveness on stage:
the former set consists of waiting gestures, thinking gestures and singing gestures,
that refer to a different mental state of the troubadour, while the latter set includes
those gestures that accompany the speech (specifically, beats).
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5.3.1 Waiting gestures

Humans are not designed to be motionless while awake, and so, it is not appropriate
to have a robot sat inert or stood up still on stage. Humans stretch or cross their
legs, drink water or move their head to change their gaze while sitting. Without
doubt, our robots’ movements are very limited in that position, and most of the
mentioned moves cannot be replicated. But they can change their arms’ position
and make movements with their heads. Figure 5.3 shows an example of the gestures
that the robot performs while remain sat on their chair waiting their turn to sing.

Figure 5.3: Example of a waiting gesture

5.3.2 Thinking gestures

Those gestures that troubadours unconsciously make while standing up in front of
the microphone and thinking the verse (see Figure 5.4). They are movements to
unstress, to relax tension, such as putting one’s hands behind one’s back, swinging
the hip, scratching one’s head, etc. There is one extremely important gesture while
thinking: reaching and maintaining a neutral pose. The robot needs to move, needs
to reproduce some gestures but it cannot be continuously gesturing like a puppet;
improvising a verse is a very hard mental process that requires extreme concentration
and that is reflected in the body language of the performers.

Figure 5.4: Example of a thinking gesture
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5.3.3 Singing gestures

Just after the improvisation process finishes and before the bertsolari starts singing,
they need to accommodate the body and/or clear the throat, look around and prob-
ably stare off into space, above the public (see Figure 5.5). Oddly, and probably
due to the extreme concentration effort that must be maintained, the verse-maker
stands still while singing. Of course, not everyone maintains the same pose, some-
times they keep their hands in their pockets, or behind their back, or just have their
arms hanging down, but that pose does not vary significantly from one bertsolari to
another. Thus, no gesture is reproduced while singing.

Figure 5.5: Example of a singing gesture

5.3.4 Talking gestures

Humans don’t stay still while talking, we naturally gesticulate by moving the hands.
Our robots also accompany their speech by moving their arms. The gestures that the
robot perform while talking are not associated with particular meanings, they occur
with the rhythm of the speech. The first approach we used to generate talking
gestures was simple, the sequence of the predefined gestures to be executed was
randomly selected and the number of gestures was chosen according to the duration
of the speech. Those gestures were obtained from NAO and Pepper’s animation
library. Another two approaches that enhance the behaviour of the robot while
talking will be described later in Chapters 7 and 8.

On the other hand, as well as humans nod when they are talking with other
people, our robots also move their head up and down to make it know that they
has understood something. It does not mean that they know what has been said,
but it makes the interlocutor realise that the robot has successfully processed the
captured audio.
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5.4 Contributions and conclusions

The main contribution related to this chapter is a set of behaviours that allows
Bertsobot to perform the following tasks:

1. Communicate in natural way with the emcee and with the other contestants.
2. Identify some environmental key objects.

3. Compose and sing verses based on demanded technical requirements.

4. Show human troubadours-like body expression on stage.

Those behaviours are the principal components of the Bertsobot’s framework,
which has been developed using ROS. The framework has been defined as a ROS
based control architecture that endows the robots with some of the social capabilities
that bertsolari-s possess, which here have been considered as the basic ones. The
control architecture is composed by different behaviours or modules that make the
robot act in a consistent manner and resemble to a real bertsolari. Those ROS
modules are activated by different stimuli (speech orders, object detection, etc.)
and depending on the state of the performance the robot executes the corresponding
tasks. Different behaviours can be activated and combined at each state.

Figure 5.6 shows the state of the Bertsobot’s architecture at this point, including
the behaviours that allow the robot to perform 1-4 tasks.
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Figure 5.6: Bertsobot’s architecture with basic behaviours

Summarising Figure 5.6, the ‘“Performance Manager” is the behaviour that
brings the coherence necessary to the system in order to follow the dynamics of
a performance. The “People Perception” as well as the “Speech-Based Dialogue”
behaviours allow the interaction with the emcee, while “Environmental Key Objects
Perception” provides the robot with necessary skills to interact with environmen-
tal key objects. These interactions, usually executed as motion actions (head or
walking movements), are managed by the “Motion Control” behaviour. The verse is
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composed and translated to a sung verse by the “Verse Generation” behaviour, and
the robot body expression is managed by the “Body Expression” behaviour.

The set of basic behaviours defined throughout this chapter has been used and
tested in several public performances. In April 2014 was the first time that NAO
acted as verse-maker. It was in an event, called “Badu, Bada”, to which we were
invited to give a talk about bertsolaritza and robots. NAO robot showed his verse
improvisation and verbal communication capabilities, and it only gesticulates while
thinking the verse. Later, in December of that same year, we also participate in
“ScienceClub 2014”, an event that aim to disclose science and technologies to the
society. A dialogue with NAO of approximately 10 minutes was presented, showing
the same capabilities demonstrated in the previous event (see video!). We were also
invited the following year to the “ScienceClub 2015” event. This time all gestures
repertoire mentioned in section 5.3 were integrated and chatting abilities were shown.
The key element recognition was tested together with the face and sound localisation
behaviours (see video®).

The developed work resulted on the following publications:

e Singing minstrel robots, a means for improving social behaviors. I.
Rodriguez, A. Astigarraga, T. Ruiz and E. Lazkano. 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May
2016, pp. 2902-2907.

e BertsoBot: Towards a Framework for Socially Interacting Robots. A.
Astigarraga, I. Rodriguez, T. Ruiz, E. Lazkano. Spanish Robotics Conference
(JNR), Valencia, Spain, June 2017, pp. 117-122.

To conclude, the identified building blocks have shown to be enough for an
effective behaviour. The developed architecture is able to produce the desired robot
behaviour. The main limitation of the system at this point relies on the “Performance
Manager”. It has been defined as a finite state automaton that operates in a open-
loop, which requires the emcee to act as a sequencer, following successively all the
phases/states of the performance. The initial setup of the system should always be
the same (the robot started sat on the chair). Any discordance between the real
state and the sequence of actions to be executed produces an undesirable global
behaviour and requires the intervention of the operator and the interruption of the
performance. In other words, the systems is fragile. This lack of autonomy is later
on fixed by adding some level of self-awareness to the robot (see Chapter 6).

The Bertsobot’s gestures library has been defined using Choregraphe, a multi-
platform desktop application developed by Softbank for creating applications and
animations for NAO and Pepper humanoid robots. Except the talking gestures,
that most of them have been collected from NAOqi’s animation library®. Each of
the gestures of the library has been recorded with a predefined motion timing. In

4https://www.youtube.com/watch?v=HKxe40-Qi6w
Shttps://www.youtube.com/watch?v=IMMXHWB2mZA
Shttp://doc.aldebaran.com/2-1/naoqi/audio/alanimatedspeech _advanced.html
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order to maintain public attention and interest, gestures cannot be predictable. Our
approach to enhance the spontaneity of the robot consists of randomly select all,
the number of gestures (between a delimited interval), the gesture set and the order
in which they must be reproduced, at each state as the performance progresses.
Although this solution seems a little naive, it has shown to be effective to increase
the naturalness of the robot, from the perspective of the observer and thus, the
empathy with the robot. This aspect will be improved by means of generative
models (see Chapter 8).



Chapter 6

Improving autonomy of social robots
by self-awareness

As social robots are increasingly endowed with human natures (e.g., voice, appear-
ance, and motion) and applied in different contexts (e.g., education, care, enter-
tainment), it is desired that robots are able to accomplish the tasks for which they
have been designed (e.g., teaching children, supporting elderly, singing verses) by
themselves and without surveillance. This idea implies a certain level of autonomy.
According to the Merriam-Webster! dictionary, autonomy is the quality or state
of being self-governing. However, the concept of autonomy in robots goes further
and comprises many qualities, such as long term functioning, adaptability, learning
capabilities, operation with little human intervention, self detection of errors, etc.
There is agreement in the robotics community that autonomy is not a yes or
not property; the degree of autonomy of a robot is a characteristic that ranges from
no autonomy to high autonomy. Several definitions can be found in the literature
about robot autonomy. Thrun [155] defines autonomy as the ability of a robot to
accommodate variations in its environment. Patrick Rau et al. [130] define it as the
degree to what a robot can act on its own accord. Rather differently, Bekey [20] refers
to autonomy as a system capable of operating in the real-world environment without
any form of external control for extended periods of time. However, related to social
robotics, the autonomy depends on its social roles, capabilities and the requirements
expected from both itself and the other agents in its social environment [47].
Concerning HRI, a few attempts can be found in the literature about a tax-
onomy for measuring the degree of autonomy of robots. Yanco and Drury [174],
identify several categories, such as task type, task criticality, robot morphology, and
interaction roles, and define a taxonomy based on those categories. The autonomy
level (A) of the robot and the amount of operator intervention required (I) are also
considered. On the other hand, the autonomy level then measures the percentage of
time that the robot is carrying out its task on its own; the amount of intervention
required measures the percentage of time that a human operator must be controlling
the robot. These two measures sum to 100%. Teleoperated robots are in the lowest

Thttps: / /www.merriam-webster.com
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level (A=0% and I=100%), and at the other end of the spectrum are robots with full
autonomy like guided tour robots and delivery robots (A=near 100% and I=near
0%). In between these two points are shared control robots, those that are able to
do some part of the task on their own but need the human operator help to perform
other part of the task (A=75% and [=25%).

Alternatively, the LORA (Level of Robot Autonomy) framework [19] proposes a
guideline to categorise the robot autonomy level in a 10-point qualitative taxonomy
considering HRI variables such as trust and acceptance, reliability, and situation
awareness. Again, the autonomy level is associated with the need for human inter-
vention. Thus, robots that need to be operated by humans (teleoperated robots) to
perform well have lower autonomy, and robots able to sense-plan-act with minimal
human input are categorised as highly autonomous.

Some service robots are able to exhibit increasing levels of autonomy, capable
of surviving and performing useful tasks (such as surgery or vacuum cleaning) in
real environments for extended periods, but most of them performs under highly
structured situations. However, at the present time, social robots are not fully
autonomous. Although some robots in real life have impressive human-like appear-
ance, none of them has a level of autonomy that comes close to that of humans. To
increase the autonomy of social robots they should meet other certain capabilities
that require awareness of their body. For instance being able to decide their own
actions (walking, talking, gesticulating, etc.).

In the following sections we will discuss about self-awareness in robots, and how
being aware of one’s body can help to determine the next actions, and therefore, to
improve the autonomy level.

6.1 Self-body awareness

According to Lagercrantz et al. [95] a simple definition of consciousness is the sen-
sory awareness of the body, the self, and the world. The first thing children perceive
is their own body, which serves as a means of interaction with others and the environ-
ment. Thanks to her/his body, the child experiences different sensations, mobilises
and learns [167]. Recognising oneself, although it seems easy, at least requires to
be conscious of one’s body and one’s actions. The five senses (sight, hearing, smell,
touch and taste) are the traditionally recognised methods of perception responsible
for our interaction with the external world. But additionally to the exteroceptive
sensors, we have senses that are responsible for our internal functioning. That fun-
damental internal sensory system, called proprioception, provides feedback about
the status of the body internally without the aid of vision. Thanks to muscle spin-
dles, which detect changes in the muscle and signal the angle of related joints, we
get information about limb positions, and we realise our body’s position.

Just as humans show consciousness of their body, social robots, in the way to be
truly autonomous, should also be able to recognise their own configuration. Several
robotic systems can be considered as self-aware systems to some degree, being able
to recognise themselves in the mirror [73], or being aware of their motion [115]. In
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[13] authors show a bio-inspired somatosensory system for a humanoid robot based
on a set of soft sensors that allows the robot to perceive and interpret physical
sensations. Finally, Zeng et al [175] propose a brain-inspired bodily self model that
permits a NAO humanoid robot to recognise its own body in real world and in a
mirror.

As mentioned before in Section 5.4, the main limitation of the Bertsobot system
relies in the “Performance Manager”. The emcee must act as a sequencer and the
robot must execute successively given orders, starting the sequence always from
sat on the chair position. The robot does not have any mechanism to detect any
discordance between the real state of the robot and the sequence of actions to be
executed. Consequently, undesirable robot behaviour can occur when the robot is
not able to fulfil the action requested. For instance, when the robot is called to
approach the microphone it has to perform the following sequence of actions: stand
up from the chair, find the microphone, and move towards the microphone. If it
fails in any of those actions the interruption of the performance is required and the
system must be restarted.

In order to overcome this limitation Bertsobot must be able to “decide” its own
actions, of course limited to the orders given by the emcee. To do so, it requires
an action selection mechanism that will plan the sequence of actions to be executed
depending on the current posture of the robot and the state of the performance. We
propose a body self-awareness behaviour for the Bertsobot based on robot posture
recognition. This approach is described in the following sections.

6.1.1 Posture recognition

Humanoid bodies with human-like gesticulation capabilities enhance the body ex-
pressiveness of the robot, and hence, the effectiveness of the interaction between
humans and robots. A social robot must also be aware of what happens in its body
before performing any action. Feasible gestures, movements and actions depend on
the current body posture. Multiple works can be found related to human posture
recognition: approaches based on depth images [143|[170] or approaches that rely
on skeleton information [131][35], to mention some.

All works mentioned above, both self-aware systems and human posture recog-
nition related works, are based on external perception. We tackled the problem
in a rather different way, taking into account only internal sensory receptors; the
body posture recognition system proposed here allows Bertsobot to know self-body
posture without the aid of visual information. It must be noted that this part of the
work was mainly developed for NAO. According to the flow of a performance two are
the principal postures the robot can show: sat on a chair and stood up (see Section
4.3). But the robot can often initialise in a typical comfort pose like crouched or sat
on the floor. Thereby, four different body postures have been defined as body states
to be recognised: sat down on the floor, sat on a chair, stood up and crouched.

The taken approach for posture recognition relies on a skeleton based approach
that uses proprioceptive sensors. Every posture of the robot is defined as a vector
including the positions (x, y, z) and the Euler angles (roll, pitch, yaw) of each
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joint of the robot. Those values are obtained from the robot’s coordinate system.
The problem of recognising the posture is one of classification: different postures
are associated to different vectors and given a vector, the robot position has to be
inferred.

This problem lies in the field of supervised learning, where a model is built
from a training set of known instances to predict the correct class of new presented
instances. Several classification methods (decision trees, Naive Bayes, K-Nearest
neighbours and Support Vector Machines) have been considered to build our model
for posture recognition. Among the mentioned classifiers C4.5 [128] and3-NN |[2]
slightly outperformed. We need fast response from the classification system because
the robot is moving permanently and thus, the non lazy nature of the classification
tree made it more suitable for our needs.

Once the model is built, the posture recognition process is quite simple. It
can be summarised into two main steps as shown in Figure 6.1. In the initial step,
required features are obtained with respect to the robot’s main reference system.
And then, the acquired decision tree model is applied to the extracted data, which
returns as output the predicted posture of the robot.
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Figure 6.1: Posture selection mechanism

6.1.2 Action selection

According to Matari¢ an autonomous robot should be able to take its own decisions
in order to fulfil its goals [110]. To this end, it must know the tasks or the actions to
execute in each situation. The autonomy is then related to the selection of actions
during the robot’s “life”. Castro et al. [33| state that the behaviour of the robot
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differs according to the policy that determines the next action that will be executed
at each moment. This policy can be acquired in two different manners:

1. The policy is assigned and the robot follows this pre-designed policy.
2. The robot learns the best policy according to certain requisites.

Regarding Bertsobot’s decision making capability, the action selection proce-
dure employed up to now was quite simple: the robot executed the action or the
sequence of actions associated to the order given by the emcee. Those actions were
hardcoded and executed sequentially without considering whether it was feasible or
not for the robot, due to its current body posture. Therefore, the robot’s autonomy
to determine the action to perform was minimal.

Aiming to enhance the autonomy level of Bertsobot, we have developed an
action selection mechanism that determines robot’s actions algorithmically. Its main
task consists of translating the order given by the emcee into an action or sequence of
actions that are selected depending on the current posture of the robot. In this way,
the robot has no longer to start always the performance in a unique valid position,
and the presenter has flexibility to change the flow of the performance on the fly.
Moreover, the action verification process allows the system to notify the presenter
about some failures when executing actions, such as it has not been able to get up
from the chair or to find the microphone.

6.2 Contributions and conclusions

The main contribution of this chapter is the self-awareness behaviour (called “Body
Self-Awareness”) developed for NAO robot. This behaviour is composed by two main
modules, the action selection and the body posture recognition modules. Figure 6.2
depicts Bertsobot’s architecture after introducing that behaviour. Improvements
have been highlighted in the figure with red colour.
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Now, “Performance Manager” includes an action selection mechanism (“Action
Selection”) that together with the posture recognition system (“Body Posture Aware-
ness’) allow the robot to take decisions in a more autonomous manner. The “Action
Selection” module receives the order and translates it into an action or sequence of
actions to perform according to the current posture of the robot, which is given by
the “Body Posture Awareness”. Fach action emerges in a gesture or a movement,
and must end in a specific posture. After the execution of the action, “Action Se-
lection” verifies that the gesture/movement ends successfully and it checks whether
the actual posture of the robot corresponds to the expected one. It also controls the
postures in which walking is possible. For instance, if the robot needs to reach the
microphone, it needs to stand up before it starts to walk. This behaviour verifies
this condition and commands the proper movements (depending upon the current
posture) to the “Motion Control” module to perform desired movement, or to the
“Body Expression” module to execute the desired gesture.

Therefore, the improvements introduced in the overall system are three-fold:

1. The robot gestures always match the gestures allowed by its current body
position and thus, no weird behaviour occurs.

2. There is no need to execute the same sequence of actions during the perfor-
mance. The emcee is free to change the flow in real time and the initial setup
is unnecessary. The robot adapts the actions to perform accordingly to its
current state independently of the initial posture.

3. More complex actions can be defined that comprise several sub-goals. The
emcee does not need to worry about each next step anymore.

We empirically show the improvements introduced in the system by incorporat-
ing the “Body Self-Awareness” module by making and recording two experiments:

e Experiment 1: the robot receives a “stand up” order from every different pose.
The video? shows how the robot adjusts the movement to be executed de-
pending on its current body posture to obey the order given by the human.
NAO nods to confirm it has understood the command and when it reaches the
desirable final posture it says so.

e Experiment 2: the bertsolari-s are not always called to approach the micro-
phone directly while sitting on the chair, they can be required to first stand
up and listen to the exercise, before they approach the microphone to sing.
In this second video® the robot is told to reach the microphone, again from
different initial postures. The complexity of this order (as that of sitting on
the chair) is higher because the reference element does not need to be in the
robot’s current field of view.

https://www.youtube.com /watch?v=x88fK8IuYMc
3https: //www.youtube.com /watch?v=0uax6qilK30
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Bertsobot’s body self-awareness behaviour is deeper explained in the following
publications:

e Body Self-Awareness for Social Robots. I. Rodriguez, A. Astigarraga,
T. Ruiz and E. Lazkano. 2017 International Conference on Control, Artificial
Intelligence, Robotics & Optimization (ICCAIRO), Prague, Czech Republic,
May 2017, pp. 2902-2907.

e On how self-body awareness improves autonomy in social robots.
[. Rodriguez, J.M. Martinez-Otzeta, E. Lazkano, T. Ruiz and B.Sierra. 2017
IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau,
China, December 2017, pp. 1668-1693.

Finally, the work presented here is related to the long-term goal of building
a social robot with consciousness, especially with self-awareness. The “Body Self-
Awareness” behaviour proposed here permits to derive robot’s action algorithmically
instead of being prescribed by a human, adapting those actions/gestures to what-
ever its body posture is. As mentioned in the introduction of this chapter, autonomy
is a gradual property not easy to be measured neither quantitatively nor qualita-
tively. But the newly integrated module gives the system robustness and at the
same time, makes it more flexible. It contributes to ease the work of the emcee and
basically, it increases the system’s autonomy. We believe that this module entails a
big improvement in the overall behaviour.
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Chapter 7

Making our robots affective

Emotions are an important part of multimodal communication, and strongly affect
social interactions. When we interact with other people, we transmit our emotional
state, giving clues about how we are feeling and, at the same time, the emotional
expressions of those around us give us a glimpse into their inner mental state. Emo-
tional expressions can occur with or without self-awareness during the interaction,
and can be manifested in different ways, such as facial movements, body postures,
gestures, etc. Those expressions are also often used to support the verbal commu-
nication, accompanying the speech and conveying in turn information about the
emotions and thoughts of the sender.

Designing robots able to perceive and show some kind of emotions can make so-
cial interactions between humans and robots more effective and natural [80]. Robots
with expressive characteristics have benefits for people in two ways: by communi-
cating emotions to humans and by influencing humans’ behaviour. Systems that
can both be influenced by and influence users exhibit an affective loop experience
[77]. The affective loop is the interactive process in which the user of the system
first expresses his/her emotions through some physical interaction involving his/her
body, and the system responds by generating emotional expression. This expression
in turn makes the user respond and feel more and more involved with the system (see
Figure 7.1). Two requirements are needed to establish this affective loop between
users and robots [120]. On the one hand, robots require an emotion perception sys-
tem that recognises, among other states, whether the user is experiencing positive or
negative feelings. On the other hand, a reasoning and response selection/generation
mechanism is needed that chooses the emotional response to display at the cognitive
level.

In this chapter we will describe the two emotional modules developed that will
make our social robots affective. The first one is related to the emotional response
that the robot must show after singing a verse. If the troubadour performance is to
be perceived as credible, lively and creative, public reaction must be sensed somehow
by the robot and its behaviour must reflect the noticed sensations, either integrating
them in the next sung verse like real troubadours do or showing a proper body
language. The second one refers to the expression capability of the robot during
talking. In order to improve the naturalness of the robot during the interaction
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Emotional User’'s emotion
elicitation in = detection by the
users robot
Robot’s behaviour User's affective state

Emotional Behaviour Generation

Figure 7.1: Graphical description of the affective loop process

with the user, the robot must be able to talk and gesticulate showing appropriate
emotions that fit the emotional content of the spoken text. Thus, the affective
talking behaviour allows us to give a step forward and go beyond the BertsoBot, by
integrating expression into one of the basic skills social robots should show: verbal
communication.

7.1 Emotion theories

When it comes to developing an emotional system for a robot, two questions must be
answered: what emotions are going to be considered? and how must those emotions
be represented?

The theory of basic emotions states that emotions can be divided into dis-
crete and independent categories [49]. Paul Ekman identified six basic emotions
(anger, disgust, fear, happiness, sadness and surprise). Alternatively, dimensional
affective models regard affective experiences as a continuum of highly interrelated
and ambiguous states. Emotions are described as linear combinations of Valence-
Arousal-Dominance (VAD). Valence defines how positive or negative the stimulus
is, Arousal specifies the level of energy and Dominance defines how approachable
the stimulus is. These models allow for a wider range of emotions [135].

We must note that at this point we do not have defined a global emotional state
that drives the behaviour of the robot combining several inputs. The aforementioned
emotional behaviours work independently, and each behaviour employs a different
strategy to select the emotion to be displayed by the robot.
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7.2 Understanding and reacting to audience feed-
back

Audience plays an important role in live performances, specially in bertsolaritza.
The crowd shows how pleasant the verses have been, usually clapping as well as
laughing when they have found it amazing. Bertsolari-s create the verses on the
spot, based on current perceptions, and the feedback of the audience strongly affects
in such composition process.

Developing an approach to react to the audience’s feedback covers multiple
fields, such as applause detection, classification, selection of the robot’s appropri-
ate reaction in the context of the performance and generation of messages with
predetermined sentiment.

The goal of this work is to move on to a closed-loop form of the robot perfor-
mance where the robot perceives audience’s feedback measuring the intensity and
duration of the audience’s applauses, and in response the robot changes its mood
and tries to better please the public. The change in its mood is reflected on the one
hand, in its body expression by reacting through subtle gestures, and on the other
hand, in the composition of next verse by adapting the sentiment of the message.

7.2.1 Obtaining emotional feedback from audience applause

The problem of content-based audio classification and segmentation has been studied
intensively outside the field of robotics and some work has specifically focused on
applause. Cai et al. [30] have successfully used Mel-Frequency Cepstral Coefficients
(MFCC) and a set of low-level features such as sub-band energies to find significant
audience reactions including applause and laughter.

Few works have been done when it comes to observing robot induced audience
expressions. Knight et al. [91] have developed a stand-up comedian robot that
varies joke selection depending on pre-communicated visual feedback and noise level.
Another performance robot by Katevas et al. [88| similarly features joke-telling. It
incorporates visual emotion recognition and detecting the noise levels to delay the
performing of the comedy script. Audience feedback is partly elicited by the robot
itself leaving the spectators in a natural comedy setup without human interference.

Our approach for detecting the emotional state of the public uses audience ap-
plause as feedback to the robot system. Applauses are captured and translated into
a response from the public by means of energy (E) and duration (d) of the applause.
The addressed strategy can be split up into a straight-forward work-flow (see Figure
7.2). In the initial step, audio processing and machine learning techniques prepare
the input audio stream by first chunking it, and then classifying each chunk as being
applause or not. Several supervised classification algorithms were tested, and C4.5
decision tree was selected as the audio classifier. Next, the incoming stream of clas-
sified chunks is segmented into sections of consecutive applauses, leading to a small
descriptor (|E, d]) for every evaluated applause. Based on all previous applauses of
the event, the most recent one can subsequently be classified. The applauses are
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coarsely categorised as belonging to one of the following classes: Negative, Neutral,
Positive and Very Positive.

Audio Audio Chunk Applause Applause Applause
Classification Segmentation Classification class

Figure 7.2: Approach work-flow for applause classification

As all events are different, due to enormous variety in audience sizes, acoustic
perception and emotional state of the audience, it is difficult to compare them.
Thus, in our approach for applause classification we decided to use unsupervised
online learning techniques. We use k-means to do clustering with a variable number
of classes. The first applause is always classified as Neutral, after that, the number
of available classes is increased.

7.2.2 Emotional response through gestures

Once Bertsobot is able to perceive the audience’s emotional reaction, the system
needs to choose the proper emotional response to show, it must be one that mirrors
the audience’s acceptance of the sung verse. This process requires a reasoning step
and a displaying step.

Our approach to select the robot’s emotional state is based on a direct transla-
tion from the class obtained in the applause classification process into an emotion.
Table 7.1 shows the correspondence between the applause class and emotion.

Applause class ‘ Robot emotion

Negative Sadness
Neutral Calm, serene
Positive Pride

Very positive | Joy

Table 7.1: Applause classification output and emotion correspondence

Emotion communication research strongly focuses on how the emotions are
reflected in different parts of our body. When it comes to expressing emotion with
facial features, a well defined standard exists called Facial Action Coding System
(FACS), developed by Ekman and Friesen [50]. However, no such method can be
found for body features. An attempt is made in [40], where authors present a Body
Action and Posture Coding System (BAP) based on 141 human body features that
can convey emotion.

Alternatively, in [29] Darwin’s observations about human behaviour are gener-
alised and some relevant features are extracted for differentiating behaviours: pos-
ture height, shoulder height, arm position, gaze, body activation, head activation
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(nodding or shaking), periodicity and exaggeration (range of motion exhibited by
cach DoF). Bretan et al. [29] applied some of those features in the robot Shimi, in
which a dimensional model of emotions is implemented using Arousal and Valence
as reference values to raise different emotional states.

Several research work can be found in the literature regarding humanoid robots
showing emotions. Focusing on those related to the emotional behaviour of the
robot NAO, we find interesting the work developed by Erden [52]. He proposes a
set of body postures based on the human body model described in Coulson’s [3§]
work to display different emotional states, such as angry, happy and sad. Another
example is the approach taken by Barakova and Lourens [16], in which a framework
for expressing and interpreting emotional movements based on the Laban Move-
ment Analysis is presented. They propose a method and language for describing,
visualising, interpreting and documenting human movement.

We chose to represent our Bertsobot’s emotional behaviour by means of ges-
tures, i.e., fluent sequences of postures. For each emotion class defined in Table 7.1,
a set of 3 predefined gestures has been prepared, giving a total amount of 12 dif-
ferent gestures. Each gesture consists of a fluent concatenation of postures. Those
gestures have been generated based on the relation between posture and emotional
state described in [100] and reproduced here in table 7.2.

Emotion ‘ Frequent posture features

Anger Head backward, chest not backward, no abdominal twist, arms
raised forwards and upwards, shoulders lifted
Joy Head backward, chest not forward, arms raised above shoulder and

straight at the elbow, shoulders lifted

Sadness | Head forward, chest forward, no abdominal twist, arms at the side
of the trunk, collapsed posture

Surprise | Head backward, chest backward, abdominal twist, arms raised with
straight forearms

Pride Head backwards or tilted lightly, expanded posture, hands on the
hips or raised above the head
Fear Head backward, no abdominal twist, arms raised forwards, shoul-

ders forwards
Disgust | Shoulders forwards, head downwards
Boredom | Collapsed posture, head backwards not facing the interlocutor

Table 7.2: Posture features of emotions

Therefore, after the classification of a feedback event, the corresponding emotion
is selected, and as response one gesture is randomly chosen out of the correspond-
ing set and displayed to the audience. Figure 7.3 shows several examples of those
prepared emotional reaction gestures.
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(c) Joy (d) Excited

Figure 7.3: Some examples of emotional reaction gestures

7.2.3 Generating verses with sentiment

The purpose of the verse is not only to convey a message in the form of a poem but
also to respond to an affective target and/or to create an affective response in the
audience. The emotion perception system described in Section 7.2.1 is intended to
be used as input in the verse generation process. In this way, Bertsobot will be able
to use audience’s feedback for self-evaluation and give a response accordingly, main-
taining the affective response when the audience reaction is positive, and changing
the sentiment target when it is not.

Bertsolari-s do not always respond to the proposed theme and context with the
same mood. Sometimes their response to a specific theme is positive, while others
they address it from a negative perspective. We also want to find a way to introduce
emotions in our verse generation system.

The verse generation system (see Section 5.1.2) only took as input the exercise
type and the topic or four rhymes (depending on the exercise type). A new input
has been added to the system, the sentiment polarity. In order to compose verses
with a predetermined sentiment polarity (positive, negative or neutral) a sentiment
tool has been developed and integrated in the verse generation system. Such tool is
used in the sentence selection process allowing to choose those sentences that match
the intended sentiment. To extract the sentiment evaluation from the sentences, we
use EliXa, a supervised Sentiment Analysis system [137]. It estimates the negative,
neutral and positive sentiment values in short texts by means of a a multi-class
Support Vector Machine (SVM) algorithm. See Astigarraga’s research work [6] for
a deeper explanation about the verse generation system.

Figure 7.4 shows the current version of the verse generation system. In addition
to the type of exercise and the topic or rhymes, the system also receives as input the
affective state (sentiment polarity) with which the robot must compose the verse.

The verse generation system is now connected with the applause classification
system. If the sentiment polarity is not given by the emcee, the system generates
the first verse with a neutral mood by default. After that, the applause classifica-
tion system is used for self-evaluation maintaining the affective response when the
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Figure 7.4: Emotional Verse generation system

audience reaction is positive, and changing the sentiment target when it is not.

7.3 Talking with sentiment

Speaking in monotone, without any kind of expression is not natural if we intend
a natural interaction between human and robots. While speaking, a social robot
has to generate credible body language and talk with life and expression, i.e. with
emotion, in order to be socially accepted.

Body language is an important mean of communication; face expressions, body
gestures, postures, and movements are used to convey information about the emo-
tions and thoughts of the sender while supporting verbal communication. In other
words, is the key to express emotions.

Several works propose facial expressions as principal mechanism to show emo-
tions. Kismet [26], Nexi [28], and Sophia [133] are three well-known examples of
robotic heads endowed with several facial features (such as eyebrows, eyelids, eyes,
mouth, lips, etc.) able to show high facial expression capabilities. There are also
other possible facial communicative channels for robots that do not have those fea-
tures, for instance, colour LEDs. Low-resolution RGB-LEDs can evoke associations
to basic emotions (happiness, anger, sadness, and fear), by using suitable colours
[86] and combining colours with dynamic light patterns [56].

Relevant work can also be found related to the body expression of NAO and
Pepper. Beck et al. [17] investigate the creation of an Affect Space, based on the
VAD model, for the generation of emotional body language to be displayed by robots;
they assessed the effect of varying a robot’s head position on the interpretation of
predefined emotional key poses. Tielman et al. [158] define a model for a expressive
behaviour of the NAO robot in which Valence and Arousal values are influenced
by the emotional state of its interaction partner and emotional occurrences while
interacting with its environment. NAO expresses emotions through its voice, eye
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colour, and predefined posture and gestures. Deshmukh et al. [43] modulates some
default animations of Pepper by systematically varying the amplitude and speed of
the joint motions and gathering user evaluations of the resulting gestures. Finally,
Claret et al [36] presented a model that for a given emotion, generates specific kine-
matic motions of the Pepper robot. The emotion is defined as a point in VAD space,
and the desired emotion values are transformed into the kinematic features jerkiness,
activity and gaze, which are mapped to a continuous range of body configurations.

Naturally, speech also plays a relevant role to convey emotions, and human voice
can be shaped in a very complex way. In the context of human-robot interaction,
Crumpton and Bethel explain the importance of using vocal prosody in robots to
convey emotions [39].

Our approach combines all the previous aspects in a expressive behaviour that
endows the robots with the ability to adapt their way to express different emotions,
defined in the VAD space, according to the sentiment of the speech. Head and
arms movements, along with eye LED lighting and voice intonation are combined
to generate an adaptive expression, i.e., to make the robot express the content of
a spoken text with emotion. For the time being we only consider to express the
emotion in the sadness-happiness continuum, considering the midpoint as neutral.
In order to make the robots able to express the emotional content of a spoken text,
two main tasks are required: extract the emotion from the text and translate it to
a robot expression. This process can be summarised into three main steps:

1. Extract the sentiment from the text. A sentiment analyser assesses the senti-
ment of the text and gives as output a descriptor with information about the
polarity of the sentiment (positive/negative/neutral).

2. Sentiment to emotion conversion. In this step, the sentiment polarity is en-
coded into emotion. Only sadness, neutral and happiness emotions have been
considered in this work.

3. Generate the appropriate expression. The translation from emotion to expres-
sion is performed in this stage. The robot shows an emotional expression by
means of body expression (talking gestures), facial expression (eyes lighting)
and voice intonation (pitch and speed variation).

In the following sections the approach taken to perform 1-3 steps will be de-
scribed in detail.

7.3.1 Text sentiment extraction

Sentiment analysis is the research field related to the analysis of people’s opinions,
sentiments, evaluations, attitudes, and emotions from written language [121]. The
main purpose of sentiment analysis is to extract the polarity (positive/negative /neu-
tral) of a given text, but more advanced sentiment analysers appraise the emotional
content from the text as emotional state in the VAD space.

Bertsobot already includes a sentiment analyser in the verse generation system
(see Section 7.2.3). EliXa is used to extract the sentiment polarity from the sentences
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in order to generate verses (in Basque) with an affective state. Now, we intend to
generalise the sentiment analysis and integrate it into the global talking behaviour, a
fundamental capability for social robots. This step forward is given by developing a
“Sentiment Analyzer” module that: on the one hand, extracts the sentiment polarity
of a given text, and on the other hand, appraises the emotional content from the
text as emotional state in the VAD space.

To that end, we propose a sentiment analyser module that combines two differ-
ent open-source tools: EliXa [137] and MixedEmotions' sentiment analysers. EliXa
extracts the sentiment polarity from the text but without any confidence level, and
it is available in Basque, Spanish and English. MixedEmotions assesses a confi-
dence level for each of six basic emotions (surprise, anger, disgust, fear, sadness and
happiness), and it is available in Spanish and English. The module developed com-
bining these two tools outputs a descriptor composed by the sentiment polarity label
extracted from the text using EliXa and the VAD numbers obtained with MixedE-
motions. As MixedEmotions tools are not available for Basque, the translation of
the text from Basque to English has to be performed in advance.

7.3.2 Sentiment to emotion conversion

From the two pieces of information returned by the text sentiment analyser mod-
ule we want to assess the emotion of a text in the sadness-happiness continuum,
computing its numerical value.

As mentioned before in this chapter, in dimensional affective models emotions
are described as linear combinations of Valence-Arousal-Dominance, and Valence
defines how positive or negative the stimulus is. Therefore, the Valence deals with
the positive or negative character of the emotion, which scales from sadness to
happiness.

The “Emotion Selector” module we have developed to compute the conversion
from sentiment to emotion uses the output obtained from the “Sentiment Analyser”
module. We have define the [0,10] range for the numerical value that represents the
emotion, and it is divided into three parts; where the interval [0,4.5) corresponds to
negative polarity, [4.5,6.5] to neutral polarity and (6.5,10] to positive polarity. This
division of the scale comes from the observation of the Valence values returned by
MixedEmotions in a set of sentences. The aim is to directly translate the Valence
into the sadness-neutral-happiness scale with a few caveats. The approach employed
is the following one: first we analyse the polarity of the text according to EliXa, and
if the Valence according to MixedEmotions lies in the interval corresponding to the
polarity (where lowest interval corresponds to sadness emotion, middle interval to
neutral emotion and highest interval to happiness emotion), then the Valence value
is used as it is. Otherwise, the limit value of the closest interval is chosen.

For the time being, the emotion appraisal is done as a direct translation from
the sentiment value into emotion in sadness-happiness continuum. It is worth men-
tioning that more inputs and more emotions should be considered for the emotion

http: / /mixedemotions.insight-centre.org/
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appraisal in the future.

7.3.3 Displaying the emotion

Once the analysis of the emotion is done, the robot must appropriately express such
emotion. Our approach to display emotions consists of mapping the emotion into
expression that combines natural body gestures enriched with facial expressions and
voice intonation. The duration of the expression will be fixed by the duration of the
speech (generated audio file duration).

Body gestures

Typically, humans accompany their speech with body gestures (head, hands and
arms movements). We use gestures to communicate with others; gestures are used
both to reinforce the meaning of the words and to express feelings through non-
verbal signs.

Consciously or not, emotions are reflected in different parts of our body [100].
For instance, the position of the head convey sadness if is tilted down, or happiness
if is tilted up. On the other hand, we do not stay still while talking, we natu-
rally gesticulate with hands. McNeill defines gestures as the movement of the arms
and hands which is synchronised with the flow of the speech [113]. He categorises
five main types of conversational gestures (illustrators): emblems, deictic, iconic,
metaphoric and beats; emblems are those gestures whose meaning can be under-
stood without spoken words; deictic gestures utilise arm and hand movements to
direct the listener’s to specific event or object in the environment; iconics refer to
gestures representing concrete things and actions; metaphorics describe the content
of abstract ideas; and beat gestures are rhythmic hand motions that move up and
down in synchrony with the speech. Unlike the others types, beats are not asso-
ciated with particular meanings, and they occur with the “rhythm” of the speech.
Such kind of gestures have been considered both in the work related to this chapter
and with that of Chapter 8.

The talking body language described in Section 5.3.4 did not show any emo-
tional state; the sequence of the predefined gestures to be executed was randomly
selected and the number of gestures was chosen according to the duration of the
speech. Here on, the strategy to generate talking gestures is similar, but it modifies
the gesture selected in two ways: changing the head tilt angle and the execution
velocity of the arms movements. For the head tilt, the Valence obtained is directly
translated from VAD space to head pitch physical range. Instead, for the execution
velocity of the arm movements, we have set a maximum and minimum range and
just like with the head, the Valence obtained is translated to minimum-maximum
velocity range. In this way, if the emotion to be shown is “happiness” the gesture will
be executed at a faster pace than when the gestures bound to the emotion “sadness”.
These changes have been introduced in the “Body Expression” behaviour previously
developed.
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Facial expression

The design of humanoid robots’ eyes is usually inspired by human face, trying to
exactly reproduce human eyes’ shape and movements. However, SoftBank’s robots
have some limitations due to the structure of their eyes. In particular, NAO and
Pepper robots’ eyes are composed by two rings of LEDs with a black pupil inside.
The LEDs can be controlled to show different hues, to change colour intensity and
can be turned on/off for different time duration.

Johnson et al. [86] demonstrate in their work that NAO’s eyes can be used
to express emotions. Taking inspiration from their colour-emotion study, in our
approach we adopt the same colour configuration, and in addition we use the emotion
Valence to change the intensity of the colour. For each emotion a range of colour
in the RGB space has been defined. Sadness is displayed by a dark blue-greenish
colour that varies from RGB(0, 0, 255) to RGB(0, 255, 255), neutral is displayed
by a light blue-white colour from RGB(127, 255, 255) to RGB(255, 255, 255) and
happiness is displayed by a yellow colour from RGB(76, 76, 0) to RGB(255, 255, 0).

The “Eyes Lighting Controller” is employed to convert emotion into facial ex-
pression, specifying the colour and the intensity of each eye LEDs (see Figure 7.5).
The controller codes the emotion’s Valence value code into the RGB space that will
be displayed in the robot.

8 & o o e o

(a) Sadness (b) Neutral (c) Happiness

Figure 7.5: Sadness-Neutral-Happiness emotions displayed by the robot’s eyes

Voice intonation

In ordinary life humans use different voice intonation depending on the context and
also to emphasise the message being conveyed. The voice intonation has a key
role to understand the mood of the speaker. The influence of the voice intonation
in emotional expression is clearly argued in [15]. The authors prove that some
emotions, such as fear, happiness and anger, are portrayed in a higher speech rate
and also at a higher pitch than emotions such as sadness.

We have used the happiness, neutral and sadness intonations to portray the
three emotions available in our system. For Basque language we have used the
AhoTTS synthesizer, that offers different types of voice intonation; one for each
of six basic emotions (anger, disgust, fear, happiness, sadness, and surprise) and
another one for neutral emotion. AhoTTS is also available for Spanish and English,
but unfortunately the voice intonation option is not possible for those languages.
Therefore, for Spanish and English NAO and Pepper’s TTS tool has been used,
which employs the ACAPELA? speech synthesizer. This synthesizer does not offer

2http: //www.acapela-group.com/
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direct voice intonation selection as AhoTTS does, but it does provide the option to
setup some voice parameters, such as pitch and speech rate, which can be tuned to
obtain different voice intonations.

Our approach consists of changing the pitch and speed rate parameter values
according to the emotion Valence value, i.e. the emotion’s Valence obtained from the
emotion appraisal is normalised between the maximum and minimum values for the
voice pitch and speed rate. Maximum and minimum values have been experimentally
defined for our system. This approach is employed for Spanish and English. For
Basque, the intonation parameters are fixed and only the emotion type can be
selected though.

7.4 Contributions and conclusions

Two emotional modules have been developed that contribute to improve the overall
robot behaviour.

On the one hand, the first module endows the robots with the ability to un-
derstand and reacting to the audience feedback. Such behaviour permits the robot
to infer self-evaluation about its actions and to close the loop of the performance;
perceiving audience’s feedback by measuring the intensity and the duration of the
applause, and adapting its response to better please the public by reacting through
subtle gestures and changing the sentiment of the verse.

That behaviour has been used and tested in two public performances. In Febru-
ary 2016 we organised a local event in the Faculty in order to be able to evaluate the
applause classification and the emotional expression modules. NAO robot in front
of the audience sang previously generated verses staging only the phase of thinking
and singing the verse. After each sung verse the robot reacted giving an emotional
response according to the audience’s applause feedback (see video®). In September
of the same year Bertsobot was invited to the closing of a a summer university course
entitled "educational assessment: unresolved matter". In such event, NAO showed
its dialogue, body expression and singing capabilities, and it also showed the ability
to perceive audience’s feedback and to adapt its emotional response accordingly.

The following publication collects the work done related to the behaviour men-
tioned above:

e Minstrel robots: Body language expression through applause evalu-
ation. F. Kraemer, I. Rodriguez, O. Parra, T. Ruiz, E. Lazkano 2016 IEEE-
RAS International Conference on Humanoid Robots (Humanoids), Cancun,
Mexico, November 2017, pp. 332-337.

On the other hand, the emotional behaviour of the second module provides the
robot with the necessary skills to adapt its way to express different emotions while
talking according to the sentiment of the speech. The adaptive emotional system
we have developed generates an expression combining head and arm gestures along

3https:/ /www.youtube.com /watch?v=SdxNgmV3CzA
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with eye LED lighting and voice intonation. This “Adaptive Talking Behaviour” is
composed by several ROS modules, as illustrated in Figure 7.6. The “Sentiment
Analyser” analyses the sentiment of the text, the “Emotion Selector” converts the
sentiment into an emotion, the “Eyes Lighting Controller” manages the eyes colour,
the “Speech Synthesizer” tunes voice parameters, and the “Gesture Adapter” gener-
ates the body expression including arms, hands and head.

Chatting
Adaptive Expression
Sound | | Speech Text Reasoner\ Text
0 Analyser | i Eyes Lighting | Leds color
\@' ; Controller |
Knowledge - 1 Speech ! Speech
% Synthesiser
1 UEJ Duratiunl
EliXa + Polarity Emotion ! | Gesture
R
MixedEmotions | VAD Selector | Gesture Adapter —;
Emotion

Figure 7.6: Description of the Adaptive Talking Behaviour architecture

This behaviour has not been tested in any public performance yet, but we
have recorded a video that demonstrates how our NAO is able to adapt its way to
express different emotions while talking according to the sentiment of the speech
(see video?).

The work related to the “Adaptive Talking Behaviour” is collected in the fol-
lowing publication:

e Adaptive Emotional Chatting Behavior to Increase the Sociability of
Robots. I. Rodriguez, J.M. Martinez-Otzeta, E. Lazkano, T. Ruiz. 2017 In-
ternational Conference on Social Robotics (ICSR), Tsukuba, Japan, November
2017, pp. 666-675.

A global overview of all the behaviours developed up to this point is sketched
in Figure 7.7. It shows the current state of the system and describes the inter-
communication between all behaviours presented up to now. New modules added
are highlighted in the figure with red colour, while adapted modules are highlighted
with orange colour.

The two emotional behaviours proposed in this chapter have allowed us to
improve the social capabilities of our robots. In this way the expression ability of the
robots has been considerably enhanced achieving in turn a more natural interaction
with the user. Both behaviours have been successfully integrated in Bertsobot’s
architecture, however, there are still some limitations we need to consider:

e Talking gestures generation: the strategy employed to generate talking ges-
tures (adapting head tilt and the execution velocity of the arms) has brought

4https: //www.youtube.com /watch?v=wI2BD4j4 tU
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Figure 7.7: Bertsobot’s architecture after including emotions into the system

improvements concerning the expressiveness of the robots, but the shortage
amount of predefined gestures included in NAOqi’s animation library still
makes the robot expression ability limited and repetitive.

e Sentiment analyser and emotion selector modules: in many cases there were
inconsistencies between the outputs obtained with EliXa and MixedEmotions;
high Valence values of the emotional state returned by MixedEmotions should
match the positive polarity returned by EliXa, or low Valence values with
negative polarity, but it was not always the case. This made it difficult the
conversion from sentiment to emotion. We tried to tackle the problem giving
more weight to EliXa’s assessment (as explained in Section 7.3.2), but the
performance of this module does not fully meet our requirements.
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Enhancing spontaneity

This chapter aims to improve the verbal and non-verbal aspects of the robots’ talking
behaviour that showed insufficient:

1. Talking illustrators (beats): the naive talking gesticulation behaviour was ap-
propriate for the Bertsobot because the talking periods did not take long,
the troubadours only may require brief clarifications from the emcee. But we
moved forward beyond the Bertsobot and developed a more general talking
behaviour that included some emotional aspects that intends to be used for ba-
sic social interactions. Thus, the problem of generating repetitive movements
becomes more noticeable in longer conversations.

The taken approach relies on the use of generative learning methods and more
specifically, the use of Generative Adversarial Networks that produce synthetic
gestures (head, arm and hand movements) using proprioceptive 3D joint in-
formation exclusively.

2. The second improvement goes hand in hand with the modification of the sen-
timent extraction system. The EliXa and MixedEmotios tools combination
previously presented pop up contradictory results that were not solved and
encouraged us to look for new alternatives. In this vein, we present a new
version of the text sentiment extractor that uses VADER [79]| as a unique
tool.

8.1 Generative models and their applications

Generative models are probabilistic models capable of generating all the values for
a phenomenon. Unlike discriminative models, they are able to generate not only
the target variables but also the observable ones [153]. They are used in machine
learning to (implicitly or explicitly) learn the distribution of the data for generating
new samples. There are many types of generative models. For instance, Bayesian
Networks (BNs), Gaussian Mixture Models (GMMs) and Hidden Markov Models
(HMMs) are well known probability density estimators. Explained in short, a BN is
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a model representation for reasoning under uncertainty [51]. Formally, its represen-
tation is a directed acyclic graph where each node represents a random variable and
the edges represent dependence relations between them; GMMs are those that at-
tempt to find a mixture of multi-dimensional Gaussian probability distributions that
best model any input dataset [53]; and HMMs can be considered a generalisation
of mixture models where the hidden variables (or latent variables), which control
the mixture component to be selected for each observation, are related through a
Markov process rather than independent of each other [129].

Deep learning techniques have also been applied to generative models, giving
rise to deep generative models. A taxonomy of such models can be found in [67].
Here we will focus on Generative Adversarial Networks (GANs) [68], deep generative
models capable to implicitly acquire the probability density function in the training
data, being able to automatically discover the internal structure of datasets by
learning multiple levels of abstraction [98].

Applications of generative models range from photo-realistic single image super-
resolution [99] and text-to-image synthesis [132] to handwriting sequences genera-
tion [69] using recurrent neural networks (RNN) or speech synthesis [162] based on
WaveNet [161], an autoregressive deep generative model. In [127] the authors pro-
pose Deep Generative Spacial Models (DGSM), the first application of Sum-Product
Networks to the domain of robotics. A generative model is able to learn a single, uni-
versal model of the robot’s spatial environment. In astronomy GANs are becoming
popular for improving images [139].

Generative models are also being used for motion generation. In [94] the au-
thors propose the combination of Principal Component Analysis (PCA) [171] and
HMMs for encoding different movement primitives to generate humanoid motion.
Tanwani [153] uses HSMM (Hidden Semi-Markov Models) for learning robot manip-
ulation skills from humans. Focusing on social robotics, some generative approaches
are being applied with different objectives. In [108] Manfré et al. use HMMs for
dance creation and in a later work they try variational auto-encoders again for the
same purpose [11]. Regarding the use of adversarial networks, Gupta et al. 72| ex-
tend the use of GANSs to generate socially acceptable motion trajectories in crowded
scenes in the scope of self-driving cars.

8.1.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [68] are semi-supervised emerging models
that basically learn how to generate synthetic data from the given training data. A
GAN network is composed by two different interconnected networks. The Generator
(G) network generates possible candidates so that they are as similar as possible
to the training set. The second network, known as Discriminator (D), judges the
output of the first network to discriminate whether its input data are “real”, namely
equal to the input data set, or if they are “fake”, that is, generated to trick with false
data. As one of the most researched field of application of GANs is in the context of
image generation, the GAN generator is typically a deconvolutional neural network,
while the discriminator is a convolutional one. The general architecture of this type
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of GAN with the G and the D networks is shown in Figure 8.1. However, when the
input data has not a spatial structure that makes convenient the use of convolutional
layers, standard dense layers are used instead. The latter approach is the one used
in this research.

Real
Samples

I

] 1 {_ Correct? -

Latent
Space

Generated
Fake
_ = Samples

Fine Tune Training

Figure 8.1: Description of a general GAN architecture

In the first step, D takes as input both, real data and fake data, and returns
for each sample its probability to come from real data. In the second step, the
G network is trained. While the parameters of D are fixed, in each epoch, the
weights of the G network are updated to let the discriminator results on the sample
generated by G be as near as possible to 1. That is, this second step is aimed to
modify the G network in order to be able to generate samples that can trick the D
network.

The G network is never exposed to real data, therefore the only manner to
enhance its generation capability is through the interaction with D by means of
the output. Instead, D has access to both, real data and fake data, and produces
as output the ground truth to know if the data came from the generator or the
dataset. The discriminator’s output value is exploited by the generator to enhance
the quality of the forgery data.

Back-propagation [74] is applied in both networks to enhance the accuracy of
the generator to produce valid movements; on the other side, the discriminator
becomes more skilled to flag false data.

8.2 Beyond deterministic body language

According to Beck et al. [18], there are three main motion generation approaches:
manually creating motion, motion capturing, and motion planning; for manual cre-
ation, it is required to set each joint position of the humanoid robot for each key
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frame (time step); the motion capture-based approach tries to mimic human ges-
tures, recording human movements and mapping these data to a humanoid robot;
and motion planning approach relies on kinematics and/or dynamics equations to
solve a geometric task. They find that motion capturing approach produces the
most realistic results, because the robot reproduces previously captured human
movements. They also point out that motion planning approach is the only one
that generate gestures that can be adapted to new situations, but the challenge here
is how to use these methods to generate believable movements for social interaction.

With respect to the talking gesticulation behaviour we are focused on, in its
current state (see Section 7.3), we randomly selected the gestures (full animations)
from a set of movements previously compiled, generating sequences of gestures to
accompany the speech. Those movements were manually generated, by means of
the Choregraphe’s animation creation tool. Each joint position was recorded at a
precise key frame, generating realistic movements that resemble to those gestures
shown by humans.

The number of gestures selected was determined by the duration of the speech.
However, despite the attempts made to improve the body language capabilities of
our robots, and after observing the behaviour of the robot when talking, we con-
cluded that such approaches were prone to produce repetitive movements, resulting
in unnatural jerky behaviour.

What if we could generate novel movements each time the robot talks? The au-
tomatic generation of non predictable motions would undoubtedly enhance robot’s
spontaneity. Nevertheless, the motion producing system should guarantee the ab-
sence of weird ticks and too fast moves that would be categorised as unnatural and
strange by any human observer.

We started to investigate whether generative models and GANs in particular
could be used to create novel movements while retaining the nature of the move-
ments that we already have. The goal is to provide the GAN network with 3D
proprioceptive sensor information to generate natural talking gestures. The gesture
repertoire of the robot will be limited to head motions and beat gestures [113], i.e.,
rhythmic arm and hand motions, that move in synchrony with the speech.

With that aim, a GAN was trained with the information obtained from Pepper’s
proprioceptive sensors, specifically it takes as input uniquely motors joint position
information. In order to collect training data, we sampled the poses during the
selected animations with a frequency of 4 Hz. Pose refers to the fixed picture of the
position and orientation of the joints of the robot. A pose is composed by 14 float
numbers and thus represented by a set of 14 joint values, comprising robot’s head,
hands and arms (Table 8.1). Pelvis, knee and wheeled base information were ignored
because those elements are not involved in talking adaptors. As we are interested
in generating movements, i.e., a sequence of poses, the input to the learning process
needs to take into account the temporal sequence of poses. We defined the unit of
movement as a sequence of four consecutive poses, i.e. a vector of 56 float numbers,
14 from each pose and four poses concatenated (see Table 8.2). The training set
is thus a set of units of movement generated taking four consecutive poses from a
database of poses. The output of the generative model will be a unit a movement
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as well.
Head H,(J1) Hg(J>)
Right Shoulder | RS3(J3) | RSa(J4)
Right Elbow | REg(Js) | RE-(Jg)
Right Wrist RW,(J7)
Right Hand RH(J3)
Left Shoulder | LSs(Jy) | LSa(J10)
Left Elbow | LEs(J11) | LE-(J12)
Left Wrist LW, (J13)
Left Hand LH(J14)

Table 8.1: Format of a robot pose. «a: roll, 3: pitch, v: yaw angles. Hands can be
opened or closed. In parenthesis, a more convenient notation for formal use, where
J; refers to joint of index ¢

Jl(t) s J14(t), Jl(t + At) s J14(t + At), s ,Jl(t + 3At) s J14(t + 3At)

Table 8.2: Characterisation of a unit of movement (4 consecutive poses). At depends
on the data sampling frequency

The talking gestures generation system executes those units of movement pro-
duced by the generative model. It needs to be mentioned that the temporal length
of the audio intended to be pronounced by the robot determines the number of units
of movement required to the generative model. Thus, the execution of those units
of movements, one after the other, defines the whole movement shown by the robot.

These videos demonstrate the appropriateness of the obtained behaviour:

1. A first video' shows the evolution of the robot behaviour during different
steps of the training process. The final number of epochs has been empirically
defined, observing the behaviour of the robot.

2. A second video? qualitatively demonstrates the adequateness of the approach
by showing how the robot behaves while talking.

Observed robot behaviour suggests that GANs are a suitable method for gen-
erating robot movements that capture the essence of the predefined gestures, while
allowing more variability and, overall, giving a subjective impression of naturalness.

8.2.1 Comparing GAN with other approaches

GANs are deep learning methods and as such, they need high computational re-
sources to be trained. A question that evidently arises is why we chose such a

Thttps:/ /www.youtube.com /watch?v=AW3BmfS7DIY
2https:/ /www.youtube.com /watch?v=KVyTbFEMcHE
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method and if it wouldn’t be enough to employ a less demanding generative ap-
proach. To try to answer that issue, we compared the obtained motion generation
system with three other generative approaches:

1. Random generation of movements, by just randomly concatenating poses from
already existing ones.

2. Gausslan mixture models.
3. Hidden Markov models.

Evidently, it is not easy how to make that comparison. We are dealing with
rather subjective properties of robots’ behaviour like naturalness and spontaneity
difficult to be quantitatively measured.

We made a two step performance analysis. On the one hand, variability de-
composition after applying Principal Coordinate Analysis and the projections of the
joints on the corresponding principal axes for each method revealed that GAN re-
tains the underlying structures of the joints present in the training database. Other
methods do not show this property. On the other hand, we defined a method to
analyse the robot motion based on three factors: Norm of jerk, 3D space coverage
and length of the generated paths. Gestures generated using GAN showed smaller
jerk values, together with smaller path lengths but at the same time, the correspond-
ing dispersion measure value is the highest for both, left and right hands. Obtained
results show that GAN produces trajectories more similar in shape to those in the
original gesture set.

A third video® shows the differences among the distinct methods in the robot.

8.3 Combining the gesture generation system with
the Adaptive Talking Behaviour

It is important to adapt the gestures to convey emotion, introducing some variations
according to the robot’s “mood”. Recalling Chapter 7, to change the motion timing
of the gestures and the head tilt, the sentiment of the text to be pronounced was
extracted by means of EliXa and MixedEmotions. However, several issues aroused
from that combination. They often gave contradictory results that were not easy to
balance. In this step, we propose a new version of the emotional talking behaviour
by changing the sentiment analyser. We chose to use VADER |[79] instead, because
it provides both, the sentiment polarity and the compound score, and it is no more
necessary to combine two different tools.

This VADER sentiment analyser is based on dimensional affective models, and
gives an output composed by:

1. The score ratios for proportions of text that fall in each category.

3https://www.youtube.com /watch?v=YEg326L _ p4s
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2. A compound score, obtained by summing the Valence scores of each word in
the lexicon.

The VADER python library* is mainly available for English, but it also can
work with texts in other languages; so for, it provides an option to automatically
translate the text into English by using a web service call.

Heading back to the “Adaptive Talking Behaviour”, the new “Sentiment Anal-
yser” module takes as input a text and a language and first, makes a translation to
English (if required), then infers the sentiment polarity (positive/negative/neutral)
with the compound score obtained from VADER, and finally gives as output a de-
scriptor with the sentiment polarity label and the compound score obtained. This
time, the approach employed in the “Emotion Selector” lies on a direct translation of
the compound score into the sadness-happiness continuum in the Valence axis that
ranges from [-1,+1] (Sadness: compound score < —0.5; Neutral: —0.5 < compound
score < 0.5; Happiness: compound score > 0.5).

The talking gestures generation system developed using GANs has been success-
fully integrated in the architecture. Main changes introduced refer to the “Adaptive
Talking Behaviour”, in which the previous “Gesture Adapter” module has been re-
placed by the “Gesture Generator” module (the system presented in this chapter).
Figure 8.2 shows the architecture of the “Adaptive Talking Behaviour” after inte-
grating the GAN-based talking gestures generation system and the VADER based
emotional system. Changes are highlighted in orange colour.

Chatting
Adaptive Expression
Sound | | Speech |Text [ o || Text
0 Analyser \ ' | EyeslLighting | i ledscor
\@’ ! Controller ,
Knowledge - ' Speech ! Speech
% Synthesiser
| UEJ Durationl
I’
Polarity i | Gesture
Camoonnd | T _—

Compound

Emotion

Figure 8.2: Description of the Adaptive Talking Behaviour architecture after inte-
grating the GAN-based gesture generation and the new sentiment analyser

The potentiality of the generated robotic gesticulation is enhanced by the pos-
sibility to convey also emotions depending on the pronounced speech, and enriching
the interaction with other relevant factors such as head and arms movement speed,
the tone of the voice and the colour of the eyes. The robot expression is now dis-
played through generated beats adapted and combined with eyes’ colours and voice
intonation.

4https://github.com/cjhutto/vaderSentiment
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8.4 Contributions and conclusions

Two are the contributions of the work described in this chapter:

1. The gesture generation system developed for talking illustrators:

e Spontaneous Talking Gestures Using Generative Adversarial
Networks. I. Rodriguez, J.M. Martinez-Otzeta, I. Irigoien, E. Lazkano.
IEEE Robotics and Automation Society, 2018 (Submitted).

2. The enhancement of the text sentiment extraction procedure and its applica-
tion to modulate the gestures generated for talking:

e Talking with Sentiment: Adaptive Expression Generation Be-
havior for Social Robots. 1. Rodriguez, A. Manfré, F. Vella, 1. In-
fantino, E. Lazkano. 2018 International Workshop of Physical Agents
(WAF), Madrid, Spain, November 2018 (Submitted).

We developed a suitable generator of rhythmic gesticulation movements with
few other expressive features (the head position, the arm movements velocity, the
variation of the voice tone and the change of colour eyes) dependent from sentiment
detected on sentences. We have not had the opportunity to test this behaviour
in any public performance yet, but we have recorded a video® that demonstrates
how our Pepper is able to adapt its way to express different emotions while talking
according to the sentiment of the speech.

Robot behaviour observed suggests that GANs are a suitable method for gen-
erating robot movements that capture the essence of the predefined gestures, while
allowing more variability and, overall, giving a subjective impression of naturalness.
The appropriateness of GANs to cope with this type of problem in which robot mo-
tion is generated using proprioceptive 3D joint information has been demonstrated
by making a comparison with other (non-deep) generative approaches.

Shttps://www.youtube.com /watch?v=Vo0t9l4exwl



Chapter 9

A framework for socially interacting
robots

We adopted bertsolaritza as ecological niche and used it as starting point to develop
the building blocks of a control framework for social robots. We focused on creating
a practical control architecture that follows the dynamics of real events, as verse-
makers do:

1. Wait sitting for its turn.

2. When demanded, place itself in front of the microphone and listen to the
exercise proposed by the emcee.

3. Compose and sing the verse to the public.
4. Observe and receive audience’s feedback and react accordingly.

5. Go back to its sitting place.

During several years, we endowed the Bertsobot with different modules that
define its behaviour. In its final stage, it supplies the robots with some of the
bertsolari-s’ capabilities allowing them to take part in public performances. Besides
singing and chatting, our robots are able to perceive the feedback and emotional
state of the audience through their applause and react accordingly, as human oral
improvisers do, modifying in real time the sentiment of the poem and its corporal
expression accordingly.

All these tasks are accomplished and managed by a ROS based control archi-
tecture. The control architecture is composed by different behaviours or modules
that make the robot act in a consistent manner. Those ROS modules are activated
by different stimuli (speech orders, object detection, etc.) and depending on the
state of the performance the robot executes the corresponding task.

This chapter is intended to give a summary of the evolution of the architecture
and describe in more detail its final state.
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9.1 Stages of the architecture

The evolution of the architecture has evolved over time, however we can highlight
three main prototypes or versions of Bertsobot’s architecture:

1. Version 1: the first version of the architecture was implemented in Tartalo
and Galtxagorri (two of our wheeled mobile robots) using SORGIN [9], a soft-
ware framework for behaviour control implementation (coupled with Player?).
These robots show verse generation (using sentence-retrieval method) and
singing capabilities, but they could only perform one exercise, rhymes given.
Besides singing, they also incorporated the verbal communication and basic
body expression capabilities; robots could listen and talk to the emcee but
the dialogue was a precompiled script, and they only made basic movements
such as turn on the base and move the camera. Robot movements on stage
were limited to teleoperated commands. Figure 9.1 shows the first control

architecture.
state
Robot ‘ Robot
behaviours‘ Bt Architecture
Bertsolari -
speech ASR ‘ text
Theme
Prompter
speech s text rhymes
' 1 Verse | | Text
audience generator /| corpus
son Singing «tEXt  MEISE ]
module

Figure 9.1: Version 1: Bertsobot’s architecture implemented in Tartalo and
Galtxagorri

2. Version 2: the second version of the architecture added new features in respect
of the first version. Some significant changes were made: the architecture was
reimplemented in ROS and the wheeled mobile platforms were replaced by
the humanoid robot NAO. Verbal communication capabilities were improved;
a new exercise was included in the verse generation module, theme given, and
the dialogue manager was added allowing the robot to maintain a simple con-
versation with the emcee. In addition a key object recognition (chair and
microphone) module was integrated together with autonomous navigation ca-
pability. The body expression capability of the robot was also improved, a
gesture library to represent different states (waiting, talking, thinking and

Thttp:/ /playerstage.sourceforge.net
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singing) of the performance was included; all those gestures were generated
with Choregraphe. Figure 9.2 describes the second version of the architecture;
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Figure 9.2: Version 2: Bertsobot’s architecture implemented in NAO

3. Version 3: the latest version of the architecture (working on NAO and Pepper)
includes several important changes in relation to the previous versions. Verbal
communication capability has been enhanced, on the one hand by the people
perception module that enriches the interaction with the user, and on the other
hand, by the new features added in the verse generation module, that now
includes the option to compose the verse using n-gram generation methods and
integrates the affective state in the creation process. Emotions have also been
integrated in the architecture: two emotional behaviours have been developed
that endow the robots with the capabilities for, on the one hand, understanding
and reacting to the audience feedback, and on the other hand to adapt its way
to express different emotions while talking. The autonomy of the robot has
also been improved by the body self-awareness behaviour, that includes the
body posture awareness and the action selection modules. Lastly, in order
to enhance robot spontaneity the gesture generation system using GANs has
been integrated in the talking behaviour, which now automatically generate
gestures based on the sentiment of the speech.

Focusing attention in Figure 9.3 that graphically describes the Version & of the
architecture, we would like to emphasise that it is beyond the Bertsobot system.
Only the “Verse Generation” and “Feedback From the Audience” boxes betrays its
task specificity. We think that robot development is task specific and that social
robots must be provided with some general capabilities but their behaviour will be
dependent on the niche they are meant to occupy.

In that vein, the generative approach for talking gesticulation and the emotion
selection and representation perspective taken are applicable beyond the Bertsobot.

We will focus on describing the different behaviours that form the latter one.
The “Performance Manager” is the behaviour that brings the coherence necessary to
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Figure 9.3: Version 3: Bertsobot’s final architecture implemented in Pepper

the system in order to follow the dynamic of a performance. It decides the action/ac-
tions the robot has to perform depending on the current state of the performance
and the current body posture of the robot. The latter information is provided by
the “Body Posture Awareness” module. The “People Perception” as well as the
“Speech-Based Dialogue” behaviours allow the interaction with the emcee, while
“Environmental Key Objects Perception” provides the robot with necessary skills
to interact with environmental key objects. These interactions, usually executed as
motion actions, are managed by the “Motion Control” behaviour. The verse is com-
posed and sung by the “Verse Generation” process, and audience applauses, which
affect the robot’s emotional state, are captured and classified by “Feedback From
the Audience” behaviour. The robot’s emotional state is managed by the “Emotion
Selection” module, which decides the emotional state that the robot must show con-
sidering both the feedback obtained from the audience and the emotion extracted
from the text to be said by the robot. The emotional response of the robot is
reflected in the verse generation process and in the robot body expression. The
robot body expression is managed by the “Adaptive Full Expression Generation”
behaviour that decides the expression the robot has to show according to the state
of the performance, the robot posture, and the emotional state of the robot. Such
expression can be both a predefined gesture chosen from the appropriate gesture set
or a full expression generated.

9.2 Evolution of the system through public perfor-
mances

The robots’ performance capabilities have been demonstrated in different events in
a b years period. These public performances show the evolution of the Bertsobot
project since its start up, when no humanoid platform was available, and up to now.
First experiments were carried out by Tartalo and Galtxagorri, two of our wheeled
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mobile robots. Later on, we move to humanoids robots, and we employed NAO and
Pepper robots.

The objective of the live performances was to bring social robotics to the gen-
eral public and, along with that, to receive audience’s feedback about human-robot
interaction.

Let’s make a quick review of the public performances carried out with our
robots:

e 2012/04: First public appearance: Inauguration of the speaker’s corner
of our Campus. Paradoxically the most audacious one, due to the importance
of the event and the preliminary state of the project.

Tartalo and Galtxagorri were brought out and acted outdoor. No significant
body language was shown, neither chatting was possible. Robots were mainly
teleoperated and control software was Player/Stage?. Only the automatic verse
generation system was embedded in wheeled robots.

e 2013/05: Robots against bachelor students: The robots took part in an
event hold in our faculty where they competed against some bertso-amateur
students.

Tartalo was accompanied by NAO for the first time. Tartalo acted as troubadour,
while NAO acted as the emcee semi-autonomously. Primary gestures were
shown by NAO, that was controlled using Choregraphe, its native controller.

e 2014/03: Women’s day at the Faculty: Our university annually celebrates
the woman’s international day in a different centre and in 2014 it was held at
our Faculty. The program included a bertso event where two big professionals
and two robots (NAO and Tartalo) took part.

NAO showed improved chatting abilities, but still “unROSified". Primary
gestures were shown in NAO, that guided the event but semi-autonomously.

e 2014/04: Badu, Bada exhibition: Badu, Bada exhibition offers an arca
to reflect on and debate about the survival of languages like Euskara, the
multilingual world and coexistence between languages. Astigarraga and Ro-
driguez were invited to give a talk in Bilbao’s Alhondiga about bertsolaritza
and robots, entitled “Minstrel robots: a science or fiction”.

This was the first time that NAO acted as verse-maker, and its first perfor-
mance after being “ROSified”. NAO robot showed its verse improvisation and
speech-based communication capabilities. The robot only gesticulates while
thinking the verse.

e 2014/11: ScienceClub: Club of Sciences events aim to disclose science and
technologies to the society. A dialogue with NAO entitled “Chatting with
NAQO” of approximately 10 minutes was presented.

2http://playerstage.sourceforge.net/
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In that event NAO acted semi-autonomously. Gesture and arm imitation-
based teleoperation control was shown in the first part of the event. In the
second part, the capabilities showed were the same demonstrated in the pre-
vious event.

2015/11: ScienceClub: Next year the title of the event was “NAO, an
empathetic or just amusing robot?”

Body gestures were integrated and chatting abilities were shown. The key
object recognition was tested together with the face and sound localisation
behaviours.

2016/02: Event at the Faculty: A local event was organised at the Fac-
ulty in order to be able to evaluate the applause classification and emotional
expression modules. This time, there was no emcee neither environmental key
objects to be easier for the audience to concentrate in the aspects that needed
evaluation.

The bertsolar: robots in front of a seated audience, sang previously generated
verses staging only the phase of thinking and singing the verse. After each
sung verse the robot gave an emotional response according to the audience

feedback.

2016/09: Closing of a Summer University Course: Our university an-
nually organises several summer courses. Bertsobot was invited to the closing
of a course entitled “Educational assessment: unresolved matter”. It was not
a bertso-saio event but it covered all aspects of the interaction.

It was a short exhibition in which NAO showed its dialogue and body expres-
sion capabilities. During the scripted dialogue it also sang a verse, and reacted
to the audience applause.

2017/06: Astigarraga’s thesis presentation During Astigarraga’s thesis
presentation a short bertso-saio was carried out to demonstrate the state of
the system at that time. Astigarraga acted as the presenter and NAO as
troubadour.

The robot showed singing, chatting, and body expression capabilities and its
behaviour was influenced by the audience’s emotional state (perceived through
applauses). Regarding body expression while talking, no adaptive capabilities
were shown, gestures were chosen from a predefined set of gestures.

Table 9.1 summarises the main differences between the first and last version of

the Bertsobot system, and the degree of implementation of the main capabilities.

Some of those events were recorded and are available in RSAIT’s YouTube

channel®.

3https: //www.youtube.com /channel /UCT1s60521d8fxFeugxCrinQ
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Galtxagorri/Tartalo (2012)

NAO/Pepper (2017)

Dialogue

Precompiled text

Basic chatting capabilities

Poetry Gener-
ation

Only one exercise, rhymes given:
the system is given the four
rhyming words and it is required
to compose the bertso. Sentence-
retrieval method

Two different exercises: rhymes
given and topic given. Sentence-
retrieval and n-gram generation
methods.  Affective state inte-
grated in the creation process.

Affective Per- | No Audience applause as feedback
ception

Interaction Mainly teleoperated robots Key object recognition inte-
with the envi- grated, autonomous navigation
ronment in the scenario

Body expres-
sion

Basic movements (turn on the
base and camera tilt movements)

Gesture sets to represent differ-
ent states of the performance
(waiting, thinking, singing, etc),
including emotional response ges-
tures to the audience’s applause
perceived. Automatically gener-
ated gestures based on the senti-
ment of the speech.

Table 9.1: Comparative table showing the capabilities of the first (2012) and last
(2018) version of the Bertsobot system
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Chapter 10

Conclusions and further work

10.1 Conclusions

This research work focuses on social robotics, an area that is strongly related to
but goes beyond HRI and service robots. Social robots are starting to become more
common in our society and can benefit us as providers of companionship, comfort,
entertainment, etc. Many are the applications or purposes of those robots (some
of them have been mentioned in Chapter 4). Social robotics is growing fast, and
taking news and social media more and more. But it is worth mentioning that social
robots are being manufactured rather rapidly even though their capabilities are not
yet mature. Before starting this research work we set out two basic questions related
to how the interaction with a social robot should be:

1. How do we, humans, communicate (or operate) with social robots?

2. How do social robots act with us?

In this work we have tried to find answers to those questions. In that vein,
the work has been developed in two phases: in the first phase we have focused on
exploring from a practical point of view several ways that humans use to commu-
nicate with robots in a natural manner. Additionally, in the second phase, we have
investigated on how social robots must act with the user.

1. Phase: How do we, humans, communicate with social robots?

We have developed three natural user interfaces intended to make the interaction
with social robots more natural. Those interfaces have been tested by developing
two applications of different use: guide robots and a humanoid robot control system
for entertainment.

With respect to the guide robots application, a system of heterogeneous robots
collaborating as guides in multi-floor environments has been developed, which we
have called GidaBot. This system has led us to make our wheeled mobile robots more
social; the user can interact with the robot through the GUI we have developed, and
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the robot communicates with the user in return by using both the GUI and voice.
In addition, the system enables robot communication for cooperative guiding tasks
in different floors and allows individual navigation in each floor at the same time.

On the other hand, a NAO robot commanding system has been developed
for entertainment purposes. Due to their nature, humanoid robots require a more
advanced control interface, they have more DoF. This system aims to humanise
the way to operate a robot, allowing humans to interact with robots in a way that
goes beyond the classic HRI, thus making the interaction more social. The body
motion imitation interface and the speech-based interface developed let the user
command the robot through natural means, which usually are involved in social
interactions, such us body motion, gestures, and voice (including speech recognition,
understanding and talking).

2. Phase: How do social robots act with us?

Social robots must show social and affective capabilities during interaction with hu-
mans. In this phase we focused on identifying and developing the basic behavioural
modules that are needed for this type of robots to be socially believable and trust-
worthy while acting as social agents. We have presented a framework for socially
interactive robots that allows the robot to express (some kind of) emotions and to
show a natural human-like body language according to the task to be performed
and the environmental conditions.

We conclude that an architecture for social robots should be built by at least
these building blocks:

1. Verbal communication is required to have a conversation with other agents,
understanding their requirements and providing appropriate responses.

2. Perception of the environment is essential in order to interact with the envi-
ronment, and allows to identify and recognise objects and other agents in it.
Verbal communication is highly enhanced when interlocutor localisation and
recognition is shown.

3. Non-verbal communication (body language) is needed to make robots expressive
in a human-like way, and socially accepted. The interaction is enhanced when
the robot conveys information through facial expressions, body gestures or
head movements.

4. Proprioception (body position awareness) helps to autonomously adapt the
actions to be performed according to the current body configuration of the
robot. It increases robustness and is fundamental for the system’s autonomy.

5. Affective loop: perceiving and showing emotions is essential to convey inten-
tion. Closing the affective loop makes the user feel more engaged with the
system instead of feeling like a mere observer.
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All the above enumerated modules should be of course adapted to the ecolog-
ical niche of the robot. The context, the task to be performed (that delimits the
robot behaviour) and the sensory-motor capabilities of the agent to interact within
a concrete environment must be taken into account.

Here, we adopted bertsolaritza as a test-bed application. This research work
takes the bertsolari as a cognitive model and presents the Bertsobot architecture,
which endows the robots with the required social capabilities to take part in public
performances acting and singing verses with other human troubadours and robots.
Consequently, the global behaviour is defined according to the features of the impro-
vised poetry sung, and taking into account the competences that bertsolari-s show
on stage. Bertsobot’s architecture includes all the building blocks aforementioned.

Special attention should be paid to the affective loop, fundamental in social
robots. To establish the affective loop between users and robots, the latter ones
require an emotion perception system that recognises the user emotions, and also a
reasoning and response selection/generation mechanism that chooses the emotional
response to display at the cognitive level [120] (see Figure 7.1). These mechanisms
have been successfully integrated in Bertsobot’s architecture. Our robots are able
to perceive the audience’s feedback measuring the intensity and duration of the
audience’s applauses by means of the applause detection and classification system.
In response the robots change their mood and try to better please the public. The
change in the mood is reflected, on the one hand, in the body expression, which is
shown through subtle gestures, and on the other hand, in the composition of next
verse, which is adapted to the sentiment of the message set in the instructions.

Our work had also a secondary goal: to disseminate to the general public the devel-
opment state of social robots. That is why the validation of the different stages of
the development of our social robots was done in public representations (see Section
9.2). These events gave us the opportunity to draw valuable lessons and became
an essential tool for qualitatively measuring the social acceptance of the prototypes
being developed. In the same way that robots need a physical body to interact with
the environment and to become intelligent, social robots need to socially participate
in the real tasks they are being built for in order to improve their sociability.

10.2 Autonomy of our social robots

Autonomy is a property that can be used to evaluate the “goodness” of the developed
framework, but it is difficult to measure since there is no standard definition for it.
It is agreed that it is not a yes/no measure and that the degree of autonomy is what
should be somehow measured. There is no doubt that social robots must be highly
autonomous, no matter what definition of autonomy we take as ground truth.

Lu [106] proposed an ontology of robot theatre that in our opinion is appropriate
to measure the state of the Bertsobot. Lu’s ontology is based on the automation
level and the required control the robots depend on. As you can see in Figure 10.1,
Lu divided the area into nine separated regions, which correspond to nine different
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classes of robot actor, and further grouped into four larger categories: Category
1 refers to playback, Category 2 to teleoperated, Category 3 to collaborative and
Category 4 to autonomous acting.

Autonom
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Figure 10.1: Ontology of robot theatre proposed by David Lu

Analysing the evolution of the Bertsobot (see Section 9.2), the first prototype
(Version 1) utilised in our first performance could be categorised as a Category
1 Class II robot, an open-loop with a hybrid control, hybrid in the sense that its
behaviour was partially specified by the human, but there were also algorithmically
specified behaviours.

The body motion imitation interface for NAO teleoperation could be classified
as Category 2 Class IV, a closed-loop system with human input where the perfor-
mance changes according to some conditions on the stage but not arbitrarily.

On the other hand, Bertsobot’s second prototype ( Version 2) the robot gen-
erates its behaviour via computation, without explicit human intervention further
than the oral instructions given by the emcee. The behaviour depends on the robot’s
own perceptions and the behaviour is produced algorithmically in a closed-loop con-
trol. According to those characteristics, it could be categorised as Class VIII. This
is a rather forced classification given the fragility of the system. The initial state
should always be the same. The lack of self-awareness limits the autonomy.

Regarding the latest prototype (Version 3), the affective loop does not in-
crease autonomy itself but improves the degree of sociability and thus, the overall
behaviour. The same happens with the capability of spontaneous movement gen-
eration. But, it is the body self-awareness behaviour (based on proprioceptive in-
formation) which definitively brings the system’s autonomy one step forward, and
raises the system to the Class VIII without tentative doubt.
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Summing up, we are still far from having autonomous free robotic bertsolari-s
(Class IX in Lu’s ontology) but we are little by little making steps forward.

10.3 Further work

There are several research lines that we would like to explore more in depth in a
near future that we believe might contribute to the development of the area of social
robots:

e Emotion appraisal: we have not managed to maintain an internal emotional
state, we just modified the basic neutral emotion as a reaction to the current
perceptions. To correct this lack we have in mind to define a global emotional
state of the robot which will be defined as a combination of the set of internal
and external states (see equation 10.1):

S = Sintermzl + Semternal (101>

Where the internal state is defined by proprioceptive inputs, i.e information
obtained from battery level, motor’s overheating, etc, and the external state
is related to external inputs obtained from the perception of the environment
(such as audience’s applause, user’s face expression and voice intonation) or
from the state of the robot after performing the mandated task (whether the
task is accomplished or not). All this must be accomplished with a wider set
of emotions such as surprise, anger, disgust and fear.

e Emotional behaviour: focusing on how perceived emotions affect the body
expression, we intend to investigate the effect of moving the different parts of
the body in the same way we have done with the head inclination and the
execution velocity of the arm movements. It remains to be analysed how the
trunk and arms inclination affects the emotion displayed.

e Self awareness: with respect to the body self-awareness system, this system
could also be helpful for any application which requires action planning that
depends on the actor’s body pose; for instance, to recover the last body po-
sition when the robot falls, or to determine which was the last safe position
before falling. To that end, we should add fall-down poses into the posture
recognition system. Increasing the self-awareness would improve robot auton-
omy and thus, the global robot’s behaviour.

e Learning: social robots need to be adaptive. In the presented work we used
learning as a mere tool for implementing concrete behaviours. Generative
methods have shown to add a level of spontaneity/naturalness not achieved
using deterministic methods. We are aware of the importance of learning
for the development of social robots and we consider continuous learning for
adaptation a further research area in which we should get involved.
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e Intentionality: most robots, the ones we developed included, are merely re-
active in the sense that they show no intentionality. They just react as a
consequence of a given command. Of course, the intentionality should be
explored in the context of the social capabilities the robot is being designed
for. This line of research is closely related to that of self decision making. R.
Pérula [122| presents a decision-making system based on bio-inspired concepts
aimed at deciding the actions to be performed during the interaction between
humans and robots that could serve as a starting point for further research.

Finally, we have pending a duel between professional verse-makers and our
Bertsobot to show and test the final state of the architecture.
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Abstract In this use case chapter the use of ROS is presented to achieve the
standardization of a heterogeneous robots society. So on, several specific packages
have been developed. Some case studies have been analized using ROS to control par-
ticular robots different in nature and morphology in some applications of interest in
robotics such as navigation and teleoperation, and results are presented. All the devel-
oped work runs for Indigo version of ROS and the open source code is available at
RSAIT’s github (github.com/rsait). Some videos can be seen at our youtube:
channel https://www.youtube.com/channel/UCT1s60S21d8fxFeugxCrjnQ.
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1 Introduction

The Robotics and Autonomous Systems Lab (RSAIT) is a small research group that
focuses its research on applying new machine learning techniques to robots.

The group was founded around year 2000 and inherited a B21 robot (RWI). Since
then, the group has grown up and, in its development, has acquired different robots.
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In our experience, robot maintenance is laborious, very time consuming, and does
not provide immediate research results. Moreover, robots from different suppliers
have their own control software and programming framework that require senior
and incoming members to be trained once and again. This makes robot maintenance
harder. That’s why robotics labs often become scrap yards in the sense that old
robots are often retired instead of upgraded and broken robots are discarded instead
of repaired. But small research groups often do not have enough budget to invest in
new robots, so that upgrading and repairing robots become mandatory.

We now own a heterogeneous set of robots, consisting of an old B21 model from
RWI named MariSorgin; a Kbot-1 from Neobotix; Galtxagorri a Pioneer 3DX and
the PeopleBot Tartalo, both from MobileRobots; a humanoid NAO from Aldebaran;
five Robotino-s from Festo (these ones used for educational purposes in the Faculty
of Informatics). Each one came with its own API and software, most running on
Linux. Thanks to ROS we now have a standard tool to uniformly use this society of
heterogeneous robots.

Contributions of the book chapter: several case studies are presented in which
some new ROS drivers and packages have been developed for navigation and gesture
and speech based teleoperation that can be used for robots different in nature. Those
applications are fully operative in real environments.

2 Robot Description

A brief description of the robots and the modifications and upgrades suffered during
their operational life follows up, together with a reference to the software used to
control them.

2.1 MariSorgin

Our heirloom robot is a synchro-drive robot that dates from 1996. It is a B21 model
from Real World Interface provided with a ring of ultrasound, infrared and tactile
sensors for obstacle avoidance. Opposite to its successor, the well known B21r model,
it was not supplied with a laser sensor. In 2002 its motor controllers were damaged
and sent to RWI for replacement, but they never came back to us. Ten years later,
those boards were replaced with Mercury motor controllers from Ingenia Motion
Control Solutions [8]. The two internal 1386 PCs were replaced with a single newer
motherboard. So, after 10 years MariSorgin became again fully operational.

In the beginning the original API, named BeeSoft [19] was replaced by a home
made library that better suited to our control architecture development philosophy
(libB21"). We combined it with Sorgin [2], a framework designed for developing

Developed by I. Rafié at Miramon Technology Park, 2001 [17].
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void main ()

{
/* Data declarations x*/
io_data_t laser_readings;
io_data_t motor_output;

/* Behavior declaration */
behavior_t avoid_obstacles;

/* Data initialization x*/
io_data_alloc(&laser_readings, 181, NULL, 0, 0);
io_data_alloc (&motor_output, 2, NULL, O 0);

/* Behavior initialization */

behavior_define (2, i, avoid_obstacles_start,
avoid_obstacles_stop,
avoid_obstacles_calculate);

/* input/output connections */

behavior_set_input (&avoid_obstacles, 0, running);
behavior_set_input (&avoid_obstacles, 1, laser_readings);
behavior_set_output (&4avoid_obstacles, 0, motor_output);

behavior_start (&avoid_obstacles);
behavior_run(&avoid_obstacles);

sleep (100);
behavior_stop(&avoid_obstacles);

¥

Fig.1 Sorgin: example program

behavior-based control architectures. Sorgin allowed us to define and communicate
behaviors in a way similar to ROS topics and nodes. Topics equivalents were arrays
of floats defined as 1o_data structures, and nodes were behavior_ t structures,
with different associated functions (initialization, main loop and stop) launched in
separated threads. Thus, Sorgin’s modular structure resembled ROS procedural orga-
nization and communication but in a more modest implementation. Figure 1 shows
what a Sorgin program looks like.

After the “resurrection”, we had no doubt: we must adapt it to ROS. So, we
developed the necessary ROS drivers for the motor controllers and mounted a Hokuyo
URG-30 laser on top of the enclosure, a Kinect camera and a Heimann thermal sensor
(see Fig.2).
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Fig. 2 MariSorgin and its URDF model. a Renewed B21, b URDF model visualized in Rviz

2.2 Tartalo and Galtxagorri

Two differential drive robots from MobileRobots. Galtxagorri, a Pioneer-3DX robot
suffered some modifications from its initial configuration. On the one hand, a Leuze-
RS4 laser sensor was mounted on top of its body (fed externally to extend the duration
of the internal batteries and so, the robot’s autonomy). Speakers have been added
together with an amplifier (Fig. 3). Besides, Tartalo is a PeopleBot robot that facili-
tates human-robot interaction. Both platforms have a MAMBA VL-EBX-37A board
with a 2.26 GHz Intel(R) Core(TM2) Duo CPU.

These two robots came with Aria, a framework that again did not fulfill our
control architecture development schemata. Before ROS came up, our trend was to
use Player/Stage (see [27]). Player/Stage offered us a wide set of drivers and a proper
tool for developing our own algorithms without imposing restrictions in the type of
control architecture being developed.

Player/stage shares with ROS the definition of what a robot is, i.e. a set of devices
(sensors and actuators), each one with its own driver that gives access to the device
data. Player offered an abstract layer of interfaces that allowed to access differ-
ent devices similar in nature using the same code. Combining Player with Sorgin
turned out to be straight forward (Fig.4). This coupling allowed us to work with
MobileRobots platforms in a flexible and suitable way for several years. But Player
focused more on developing drivers than algorithms and stopped evolving when ROS
appeared.

ROS provides the P20S package that allows to control Tartalo and Galtxagorri’s
base. Moreover, it also offers the appropriate driver for the Leuze RS4 laser scanner.
Thus, only the URDF models were needed to set up for the two robots.
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2.3 Robotino-s

Those are omnidirectional circular platforms from Festo Didactic that we mainly
use for education. They are provided with several sharp GP2D12 infrared sensors,
a bumper ring, a webcam and a Hokuyo URG-04LX sensor in order to be able to
experiment with mapping and planning techniques. The control unit, placed on top
of the wheeled platform, contains a 500 MHz PC104 processor that runs RTLinux.
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All the software is installed in a 4 GB Compact Flash card. The unit also offers an
Ethernet port and a WLAN access point, 2 USB ports and a VGA connector.

RobotinoView is the interactive, graphic programming environment for Robotino.
Besides, Robotino ships with an application programming interface (RobotinoAPI2)
allowing the user to create programs using different programming languages like C,
C++, Java and more. Communication between the control program and Robotino
is handled via TCP and UDP and is therefore fully network transparent. The new
API2 is based on a RPC like infrastructure. The REC-RPC library is an interprocess
communication middleware similar to ROS. It is completely based on Qt and does
not have any other dependencies.

Migration to ROS has been straight forward, since packages for Robotino can be
found at wiki.ros.org/robotino.

2.4 NAO

NAO is an autonomous programmable humanoid robot developed by Aldebaran
Robotics. NAO’s human like shaped body is about 58 cm tall and weights about
4,8 kg. It is built in polycarbonate and ABS (a common thermoplastic) materials that
allow better resistance against falls and it has a lithium battery with which it can
get an autonomy of 90 min approximately. Its heart is composed by a 1.6 GHz Intel
Atom processor running Linux. 25 servos enable to control the 25° of freedom of the
robot. Regarding to robot motion, NAO can move in any direction (omnidirectional
walking), it uses a simple dynamic model (linear inverse pendulum) and quadratic
programming. It is stabilized using feedback from joint sensors. It can walk on a
variety of floor surfaces, such as tiled and wooden floors, and he can transition
between surfaces while walking.

NAO sees using two 920p cameras, which can capture up to 30 images per second.
Also, it uses four microphones to track sounds and two loudspeakers to talk or play
sounds.
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Choregraphe is the original programming software of NAO. It is a multi platform
desktop application that allows to create animations and behaviors, test them on a
simulated robot, or directly on a real one and monitor and control the robot. Chore-
graphe allows to create very complex behaviors (e.g. interaction with people, dance,
send e-mails, etc.) without writing a single line of code. In addition, it allows the
user to add her own Python code to a Choregraphe behavior.

The behaviors created with Choregraphe are written in its specific graphical lan-
guage that is linked to the NAOgi Framework, the main software that runs on the
robot. NAO interprets them through this framework and executes them. Choregraphe
also interacts with NAOgi to provide useful tools such as the Video monitor panel,
the Behavior manager panel, the Toolbar, the Robot view or the Timeline Editor.

Again, transition to ROS was easy. ROS drivers for NAO can be found at http://
wiki.ros.org/nao.

2.5 Kbot-1

A differential drive robot built by Neobotix in 2004 for acting as a tour guide at
the Eureka Museum of Science in San Sebastian. Supplied with a Sick S3000 laser
scanner, the robot held a touch screen for receiving orders. An application specifically
developed for the robot to act as a guide in the museum was running on the onboard
Windows 2000 Professional machine. In 2006 the robot was damaged and stored
in a garage until 2014. The robot was transferred to the University of the Basque
Country (UPV/EHU). In spite of the lack of any detailed manual, our group managed
to locate and repair broken connections. The onboard PC was replaced by a Zotax
MiniPC with a NVIDIA graphics card, and the webcam on its head was removed
and instead, a Kinect sensor has been mounted. The rigid arms that supported a huge
touch monitor were also removed and replaced by plates built with a 3D printer
(another invaluable tool for robot maintenance!).A smaller Getich monitor has been
placed on the back side of the body. Fortunately, the source code of the drivers
was available and only small modifications were needed to compile that code and
make the necessary libraries under Linux. Albeit the time spent in code surfing, it
was rather straightforward to implement the necessary ROS drivers to get it back
running? (Fig. 5).

3 Working Areas of RSAIT Research Group

Navigation is a fundamental skill that mobile robots need in order to be autonomous.
The navigation task has been approached in different ways by the main paradigms
of control architectures. RSAIT has focused its navigation methodology within the

Thanks to Marco Beesk from Neobotix for agreeing to make public our Kbot-IROS nodes.
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Fig. 5 Kbot-I and its URDF model. a Renewed Kbot-I, b Kbot-I visualized in Rviz

behavior-based philosophy (see for instance [9]) that focuses on biology to inspire
its navigation strategies ([12]). But probabilistic approaches seem to increase adepts
and some techniques are being distributed within the ROS community for mapping,
localization and planning. No definitive solution exists nowadays but clearly, ROS
navigation stack makes possible to compare different approaches. Therefore, it is
worth to setup this stack for our robots.

Besides, in our research group we are working on different applications for natural
human-robot interaction. On the one hand, we have developed two different ROS
packages to enrich the teleoperation of robots: speech-based teleoperation in Basque
Language (Euskara) and gesture-based teleoperation using the Kinect [18].

On the other hand, we have developed a system, called Bertsobot, which is able
to construct improvised verses in Basque (named bertsoak) according to given con-
straints on rhyme and meter, and to perform them in public (see [1]). NAO is the
robot that gives shape to the Bertsobot system. It is capable of understanding some
“orders”, composing and playing traditional Basque impromptu verses, also repli-
cating the movements made by the impromptu verses singers. This project allowed
us to combine diverse research areas such as body gesture expressiveness, oral com-
munication and human-robot interaction in a single project.

Table 1 summarizes the developed ROS packages. The experiments described
in the following sections will explain how these skills have been integrated in the
different robots, according to their sensorial capabilities.
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4 Case Study 1: Setup of the Navigation Stack

Navigation refers to the way a robot finds its way in the environment [ 13]. Facing this
is essential for its survival. Without such a basic ability the robot would not be able
to avoid dangerous obstacles, reach energy sources or return home after exploring
its environment. Navigation is therefore a basic competence that all mobile robots
must be equipped with. Hybrid architectures tackle the problem of navigation in
three steps: mapping, localisation and planning. These are old problems from the
perspective of manipulation robotics and are nowadays treated in a probabilistic
manner. Hence the name of the field probabilistic robotics [26], that makes explicit the
uncertainty in sensor measurements and robot motion by using probabilistic methods.
ROS offers several stacks that use probabilistic navigation techniques and allow to
empirically use, test and evaluate the adaptability of those techniques to different
robot/environment systems. So for, and taking as starting point the navigation stack
available for the P2OS robots, it has been setup in Kbot-1.

Since Kbot-1 is now ready again for human-robot interaction, an interactive user
interface has been developed using rqt (kbot_guide_qgt) to retake the original
task Kbot-Iwas designed for: be a guide within our faculty. The most frequently
demanded sites of our faculty are located at the first floor. Hence, in this attempt
a map of the first floor has been created with ROS mapping utilities and that map
is being used as the floor plan of the developed GUI. This floor plan has been
populated with several interaction buttons corresponding to the important locations
people might be interested in, such as the administration, the dean’s office, the lift,
several labs and so on. Information about actual and destination locations is also
displayed on the interface. Figure 6 shows what the GUI looks like.

The robot morphology makes door crossing insecure and thus, for the time being
the GUI limits the robot guiding task to the front of the door that gives access to the
desired location.

Fig. 6 Kbot navigation interaction window and costmap
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System evaluation: Regarding the setup of the navigation stack, it is not a friendly
process. Although the documentation has been improved, many parameters have to
be set empirically, without any explicit methodology. The ROS navigation stack is
based on probabilistic navigation techniques and it is known that they don’t adapt
well to dynamic environments. The system fails when there are severe mismatches
between the current sensor readings and the stored map. Therefore, crowds should be
avoided in front of the robot during the tours and all people must be advised to stay
on the back of the robot so that the map remains reliable and the planner could find a
way to the goal. Moreover, the application needs to know the robot’s initial position
in order to be able to plan routes to the goal. Hence, it is not able to face the global
localization problem. It will be a great improvement to enhance the navigation stack
with global localization capabilities to overcome this problem and to make it more
robust and general to use.

But more important is to mention that, after ROSifying the robot, we got a naviga-
tion application running, working and prepared to be used in public in just a couple
of weeks, but without the need of reimplementing the whole system. The application
has been used for the first time in an open door event at our faculty on March 12
(2015). About 100 candidate students came to visit the faculty and they were divided
on 6 small groups of 15-20 students. They were supposed to visit different labs and
sites on different floors of the building. The robot was located on the first floor and
guided the teams over the different places they should arrive to. Basque TV (EiTB)
came to record the event and broadcasted it at the news (Fig. 7).

Fig. 7 Kbot making guided tours in the faculty
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Still we can improve the system integrating door crossing abilities. Also, the
system should be complemented with the maps of the second and third floors. Our
plan is to set Tartalo in the second floor and MariSorgin in the third one, so that
connection among floors will be done via the lift. Robots will not entry the lift but
will communicate to be aware that they need to welcome “tourists” sent from other
locations.

S Case Study 2: Kinect Based Teleoperation

The term teleoperation is used in research and technical communities for referring
to operation at a distance. Teleoperated robots are used in many sectors of society.
Although those robots are not autonomous they are very useful e.g. in medicine for
surgery [4, 5], for space exploration [3] or for inspection in nuclear power plants
[16].

Different devices can be used for teleoperating a robot (joystick, smart phone,
wii-mote) but gesture based teleoperation is increasing adepts ([6, 15, 25]) specially
due to availability of cheap 3D cameras such as Microsoft’s Kinect sensor. Real-
time teleoperation of humanoid robots by detecting and tracking human motion is
an active research area. This type of teleoperation can be considered as a particular
way of interaction between a person and a robot, because it is a natural way to
interact with robots. It is an interesting research topic and related work is abundant.
For instance, Setapen et al. [21] use motion capture to teleoperate a NAO humanoid
robot, using inverse kinematic calculations for finding the mapping between motion
capture data and robot actuator commands. Matsui et al. [14] use motion capture
to measure the motion of both, a humanoid robot and a human, and then adjust the
robot motion to minimise the differences, with the aim of creating more naturalistic
movements on the robot. Song et al. [22] use a custom-built wearable motion capture
system, consisting of flex sensors and photo detectors. To convert motion capture
data to joint angles, an approximation model is developed by curve fitting of 3rd
order polynomials. Koenemann and Bennewitz [10] present a system that enables
a humanoid robot to imitate complex whole-body motions of humans in real time,
ensuring static stability when the motions are executed and capturing the human data
with an Xsens MVN motion capture system consisting of inertial sensors attached
to the body.

The above mentioned methods are limited in the sense that the human needs
to wear different types of sensors in order to interact with the robot. This can be
avoided with the Kinect sensor, moreover, the cost of the equipment is declined.
That is why researchers have become more interested in Kinect. Song et al. [23]
propose a teleoperation humanoid robot control system using a Kinect sensor to
capture human motion and control the actions of remote robot in real-time. Suay and
Chernova [24] present a new humanoid robot control and interaction interface that
uses depth images and skeletal tracking software to control the navigation, gaze and
arm gestures of a humanoid robot.
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e gty

Fig. 8 Robotino and its teleoperation interface. a Robotino, b The teleoperation interface

ROS offers drivers for the Kinect together with a package that extracts and tracks
the human skeleton from sensor data. Thus, taking as base tool these two packages
(openni_launch and openni_tracker), a gesture-based teleoperation system has been
developed for a holonomic wheeled robot and, afterwards, enriched to teleoperate a
humanoid robot.

5.1 The robotino_teleop gesture Package

The development of a gesture based teleoperation system requires first to identify
the degrees of freedom that are going to be controlled and define the set of gestures
that will control the robot. Robotino-s are holonomic wheeled robots and thus, can
be moved along the plane in any direction without changing the robot heading.
Also, a rotational velocity can be assigned. The defined gesture set is based on arm
movements although internally is implemented through hand positioning (see Fig. 8).
The gesture set consists of:

e Moving right arm tilt controls forward/backward movements (lineal velocity in X)
e Right arm pan movement controls side movements (linear velocity in y)

e Left arm yaw movement controls left/right rotation (rotational velocity)

e Lowering both arms at the same time stops the robot.

The developed teleoperation system has two sides: the user detection process and
the robot motion control process. On the one hand, the user detection step is based
on the openni_tracker package, but several changes have been introduced to
produce an skeleton_tracker:
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1. The node that tracks the skeleton now publishes the joint position information of
the skeleton in the skeleton topic.

2. A new node makes available the Kinect image that includes the graphical repre-
sentation of the skeleton links on it.

On the other hand, the robotino_teleop_gesture node contains a sub-
scriber that receives messages published by skeleton_tracker in the
skeleton topic. When a message is received, the operator’s position is analyzed.
And according to that position the robot executes the corresponding motion. Although
each arm movement controls a velocity value, different gestures can be combined,
i.e. move forward while turning.

System evaluation: The skeleton tracker performs properly when the only moving
element of the scene is the teleoperator and so, the background needs to be static.
Moreover, the system setup is designed for a single person sat on a chair in front
of the kinect. But when the application is used with children, they must stand up so
that size does not affect the calibration process. The application is fully operational
for real indoor environments and is being used as a game/demo in several yearly
events like the week of sciences (2013-2014), meetings with undergraduate students
(2012-2015), robotics day (2013). Since its early development, it has been adapted
for several ROS distros and OpenRobotinoAPI versions. Up to now, it is catkinized
for Indigo and OpenRobotinoAPI version 0.9.13.

5.2 The nao_teleop_gesture Package

The gesture-based teleoperation system developed for the Robotino-s has been
adapted and extended to be used with NAO. The skeleton tracking system is exactly
the same, the only difference is that more degrees of freedom are to be controlled
and, thus, the gesture set needs to be redefined and extended.

NAO’s human like morphology allows not only the motion of the robot in the
plane but also the movement of the arms. Thus, it is not adequate to use the operator
arms to control the velocities of the robot. In this case, the selected gesture set is the
following:

e If the operator steps forward/backward the robot walks forward/backwards.
The lateral steps of the operator cause the side movements of the robot.
Raising the left shoulder and lowering the right one causes clockwise rotation.
Raising the right shoulder and lowering the left one causes ccw rotation.
Left/right arm movements are used to control robot’s left/right arm.

Head pan and tilt movements are used to control NAO’s head.

The new package, named nao_teleop_gesture contains three nodes:
1.-nao_motion_control: basically, this node has the same functionality as
the node developed for the Robotino-s. It has to perform the following two main
tasks:
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e Receive messages published by the skeleton_tracker package.
e Publish NAO’s walking velocities.

The nao_motion_control node has a publisher that publishes the omnidi-
rectional velocity (x, y, and theta) in the cmd_vel topic for the walking engine. The
velocity with which the robot moves has been set to a constant value. If the walking
velocity is too high the robot starts to swing. Thus, the linear velocity and the angular
velocities have been assigned low values.
2.-nao_arm_control: This node is in charge of sending to the robot the neces-
sary motion commands to replicate the operator’s arms motion. The node performs
tasks by:

e Receiving the messages published by the skeleton_tracker package.
e Publishing NAO’s joint angles with speed.

Therefore, nao_arm control is subscribed to the skeleton topic in order
to receive the operator’s skeleton messages published by skeleton_tracker.

On the other hand, the nao_arm_control node has a publisher that publishes
the joint angles with speed in the joint_angles topic, which allows the commu-
nication with the nao_controller node. The NAO’s joints motion speed is set
to a constant value appropriate for the robot to mimic the operator arms motion in
“real” time.
3.-nao_head_control: This node is responsible of moving the robot’s head.
Similar to the way that nao_arm_control gets the arm joint angles, this
node calculates the head joint pitch and yaw angles, and publishes them into the
joint_angles topic.

The robot imitates human actions in real-time with a slight delay of less than
30ms. This delay is approximately the time the system needs to capture the operator’s
arms/head motion, calculate the angles that make up the operator’s arms/head joints
(see [18]), and send motion commands to the robot via WiFi.

Only walking action movements (forward, backward, left, right) with rotational
motions can be combined. No arm movement is allowed while walking so that the
stability of the robot is not affected. Moreover, when the robot holds something on
its arms the center of gravity (COG) of the walking robot needs to be lowered and
backwarded, so that the COG is maintained within the support polygon (see Fig.9).
Thus the walking behavior has been modified for those cases in order to increase the
stability.

A GUI has been created (this time with existing rgt plugins) in order to help the
operator to know the system state. The GUI is divided into two main parts (Fig. 10).
The top side is composed by the Topic Monitor and the Rviz interface. The Topic
Monitor shows all the topics and messages sent by the nodes that are in execution.
Rviz shows the NAO 3D model moving in real-time. The bottom side shows visual
information from the cameras; Image View shows the image received from NAQO’s
top camera and the right window shows the image captured by the Kinect together
with the skeleton of the tracked body.
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Fig. 9 Modified walking position. a Original. b Modified
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The system starts with NAO in crouching position and when the operator enters
the Kinect’s view, the calibration process starts. NAO tells the operator that the
calibration ended successfully saying “Kinect control enabled” and then, the operator
can control the robot with his/her body.
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System evaluation: Imitation is an important way of skill transfer in biological agents.
Many animals imitate their parents in order to learn how to survive. It is also a way
of social interaction. A sociable robot must have the capability to imitate the agents
around it. In a human society, people generally teach new skills to other people
by demonstration. We do not learn to dance by programming, instead we see other
dancers and try to imitate them. Hence, our artificial partners should be able to learn
from us by watching what we do. That idea pushed us to evaluate our application
based on the imitation ability of the robot.

Two experiments were defined to evaluate the system. Those experiments involved
several people that should give qualitative measures of the system performance by
means of a questionnaire that participants completed after carrying out each exper-
iment. Experiments were performed until each participant achieved the aim of the
experiment at least once (see [ 18]). The experiments revealed three aspects that might
be improved:

e The lack of side view makes more difficult the guidance of the robot. This problem
is now alleviated with the addition of the head motion control.

e Although the selection of gestures is correct (natural) and the movements are quite
precise, a short period of training is needed by the operator to get used to distances.

e The robot can loose balance when walking with the arms raised.

6 Case Study 3: Speech Based Teleoperation in Basque

Human-robot interaction (HRI) is the study of interactions between humans and
robots. HRI is a multidisciplinary field with contributions from human-computer
interaction, Artificial Intelligence, robotics, natural language understanding, design,
and social sciences. A requirement for natural HRI is to endow the robot with the
ability to capture, process and understand human requests accurately and robustly.
Therefore it is important to analyse the natural ways by which a human can interact
and communicate with a robot.

Verbal communication should be a natural way of human-robot interaction. It is
a type of communication that allows the exchange of information with the robot.

To serve a human being, it is necessary to develop an active auditory perception
system for the robot that can execute various tasks in everyday environments obeying
spoken orders given by a human and answering accordingly. Several systems have
been recently developed that permit natural-language human-robot interaction. Fos-
ter et al. [7] propose a human-robot dialogue system for the robot JAST, where the
user and the robot work together to assemble wooden construction toys on a common
workspace, coordinating their actions through speech, gestures, and facial displays.

A speech based teleoperation interface should provide the user the possibility
to teleoperate the robot giving predefined orders [28]. The system also should give
feedback to the operator when an instruction is not understood and this feedback
should also be verbal. Three elements are identified in an architecture for speech-
based teleoperation:
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1. The automatic speech recognition system (ASR)
2. The text to speech (TTS) system
3. The robot control system

The first two elements are robot independent and, thus, have been integrated
in a single package named speech_eus. This package contains two nodes, one
responsible of the speech recognition step and the second one, responsible of the
text to speech translation. Let’s describe the nodes that compose the speech_eus
package.

l.gspeech_eus node: Our robots are supposed to interact in Euskara (Basque,
a minority language spoken in the Basque Country) and thus, a tool adapted to this
requirement was needed. ROS gspeech package gives ASR capabilities to the robot
and can be configured for many languages, including Basque. But this package needs
some modifications in order to be useful in a real-time teleoperation scenario. These
are the introduced changes:

e When the native gspeech runs the Google Speech Service, it is executed only
once, i.e. when the user starts speaking, the audio is captured and sent to Google.
There it is analysed and the text “corresponding” to the received audio is returned
with a confidence level; then, the program ends. It could be tedious for the user to
run the speech recognition node each time she/he wants to order something to the
robot, or each time she/he receives an error message. Hence, the new node now
runs iteratively avoiding the problem of having to launch the node each time the
user wants to talk.

e When the Google Speech Service does not recognize the spoken words, it returns
an error message and then the node is forced to quit. Now, error messages received
from Google Speech Service are specially treated. If an error message is received,
gspeech_eus publishes a Repeat message in the google_speech topic to
advertise the user that his/her spoken words are not being recognized.

e The original gspeech node only prints the response received, it does not publish
any messages or services, so it can not communicate with other nodes. After the
modifications, the confidence level of the hypothesis received from Google Speech
is processed and, if it is lower than a predefined threshold (0.15 for the performed
experiments), the response is declined and treated as an error message.

2.tts_eus node: This is the node in charge of converting the text into speech using
the AhoTTS tool [11]. That system, developed by the Aholab group in the University
of the Basque Country, is a modular text to speech synthesis system with multithread
and multilingual architecture. It has been developed for both, Euskara and Spanish
languages. The TTS is structured into two main blocks: the linguistic processing
module and the synthesis engine. The first one generates a list of sounds, according
to the Basque SAMPA code [20], which consists of the phonetic transcription of
the expanded text, together with prosodic information for each sound. The synthesis
engine gets this information to produce the appropriate sounds, by selecting units and
then concatenating them and post-processing the result to reduce the distortion that
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)4 NED)

Google Speech service

Fig. 11 Setup for the experiments

appears due to the concatenation process. This tool is required for communicating
in Basque Language, but it would not be required for English interlocution.

tts_eus hasasubscriber that receives messages from the text_speech topic.
When a text message is received, this node converts it into speech (an audio file) and
plays the audio over robot’s speakers.

6.1 Speech-Based Teleoperation in MariSorgin

Again, this teleoperation system has two sides: the instruction interpretation process
and the motion controller. Regarding to the instruction interpretation part, and as
mentioned before, our robots are supposed to interact in Euskara. The oral com-
mands are captured by a microphone and sent to the Google Speech Service by the
gspeech_eus node. Once the answer is received, the text is matched with our
dictionary.

On the other hand, the robot control system must be defined, i.e. the meaning of
the voice orders must be translated to actions. MariSorgin is a synchro-drive robot
and as such, two degrees of freedom can be controlled: linear velocity and angular
velocity. Thus, the orders that can be given are limited to moving forward/backward,
rotating left/right, stopping and accelerating/decelerating. Figure 11 shows how the
system is distributed and communicated over the net.

Although in a first attempt linear and angular velocities could be set independently,
thatis, setting the linear velocity wouldn’t affect the current angular velocity (and vice
versa), we found that controlling the robot in that manner was rather complicated
and that a high level of expertise was needed. Thus, in the final propotype linear
and angular velocities are not independently assigned. Modifications of the angular
velocity imply that linear velocity is set to zero, and vice versa.

A Qt interface has been developed using rqgt that shows the state of the speech
recognition process and the velocity values at each time step. The interface includes
minimum distances to obstacles at front, left and right sides, obtained from the laser
readings, and the image captured by the robot so that the operator can see what the
robot is facing to. Figure 12 shows what this simple interface looks like.
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Fig. 12 MariSorgin teleoperation window
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Fig. 13 Experimental setup

System evaluation: In order to measure the suitability of the system a experiment
has been designed and performed in which 5 persons (3 males and 2 females), all
but one not directly involved in the development of the system, were told to give
the robot the oral instructions necessary to make the robot reach a predetermined
goal from a starting position (see Fig. 13), and results can be seen in Table2. The
theoretical minimum number of instructions refers to the number of steps required
by the designed trajectory (forward, left, forward, right, forward and stop). Besides,
the empirical min number of instructions refers to the real minimum number of steps
done by one of the volunteers.
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Table 2 Results Theoretical min number of instructions needed |6

Empirical min number of instructions 6

Mean num. of instructions per trip 9.2

Percentage of correctly understood instructions |79 %

Mean time needed to reach the goal 2min 30s

Minimum time required to reach the goal 1 min 38s

The results of the experiment are not quite significant. The only meaningful thing
that can be said is that after a period of training the robot can be operated properly
in a real environment. But MariSorgin’s laser location is not adequate for obstacle
avoidance. The robot will require hard structural changes to get the laser located in
an optimal position. This problem is reflected in the teleoperation system, because
the obstacle information that the operator can reach does not provide information
about table and chair legs, for instance. This could be overcome setting the laser
on the old pan-tilt unit and using the laser_assembler package to reconstruct the
obstacles laying on the floor and offering the teleoperator the resulting pointcloud.
But the main drawback is the delay between the speech identification and the robot
action (about 2 s) that makes the system a bit dangerous specially when the robot is
speeded up too much, or when the operator does not anticipate enough the order.

Note that it is straightforward to use this package in any of the wheeled robots.

6.2 The nao_teleop speech_eus Package

MariSorgin is rather limited in its body expressiveness. It is not very appropriate for
body language communication. NAO’s morphology is much more suitable for HRI
and has a huge potential for body language communication and, thus, for exploiting
dialogues with humans.

Within the available ROS packages for NAO, the nao_speech node® provides
the necessary tools for making NAO understand and speak in English. But this node
is of no use when another language is required, as it is the case.

Again, the robot control system must be defined, i.e. the meaning of the voice
orders must be translated to actions.

A new package named nao_teleop_speech_eus) has been developed.
Within this package, the nao_teleop_speech node allows the user to control
NAOQO’s movements using several voice commands. The operator, situated in the tele-
operation cab (the place where the remote PC is located), gives orders to the robot
using a microphone. The robot is able to perform these movements: Stand up, Sit
down, Move forward, Move backward, Move left, Move right, Turn left, Turn right
and Stop.

3Developed by M. Sarabia, at the Imperial College London, 2012-2013.
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As we previously said, commands are given in Euskara. With the intention to
communicate with the robot in a more natural way, the user has more than one
choice for each possible command. That is, if the operator wants the robot to stand
up, he can say: “Altxatu”, “Tente jarri”, “Zutik jarri”, etc. Therefore a dictionary
of some predefined words has been created, including several synonymous for each
command. When the user gives a voice command (it can be a long sentence), the
voice is converted to text, and processed afterwards. The system tries to find matches
between the dictionary and the text received from Google Speech Service. If a match
is found, the robot performs the movement corresponding to the received command,
otherwise the robot says that it could not understand the order and asks the user to
repeat it.

Thus, nao_teleop_speech is in charge of receiving messages from
gspeech_eus, finding any matches in the predefined commands dictionary and
deciding which is the action that NAO must perform. It has a subscriber to receive
messages that gspeech_eus publishes on the google_speech topic, and two
publishers; one to set NAO’s walking velocity according to the given command, and
another one to publish the text messages that NAO has to say.

In order to test the speech capabilities in a HRI context, we integrated the ASR and
TTS modules in our Bertsobot project [1]. The Bertsobot project was showed to the
general public in a live performance entitled “Minstrel robot: science or fiction™* in
wich NAO robot showed his verse-improvisation and speech-based communication
capabilities. ZientziaClub or Club of Sciences is an initiative that aims to disclose
science and technologies to the society. RSAIT showed some advances in human-
robot interaction by presenting a monologue with NAO: https://www.youtube.com/
watch?v=NEiDw\discretionary-JBERIM.

We are now working on improving NAO’s body language while speaking in
order to show a more human-like behavior and to be more emphatical. For the same
reason, NAQO’s verbal communication capabilities should be improved so that it could
give the same semantical answer using sentences of different gramatical structures,
and of course, to perceive feedback from the public or the interlocutor and express
accordingly.

7 Conclusions

In this paper, some ROS packages have been described and some of the applications
given to those nodes were more deeply explained as case studies in concrete robot
platforms. Of course, all the developed applications are setup for the rest of the robots.
Some videos of life shows can be seen in RSAIT’s youtube video channel (https://
www.youtube.com/channel/UCT1s60S21d8fxFeugxCrjnQ) and in our website.

“http://www.badubada.com/badubadatzen/es/robot-bertsolaria-zientzia-ala-fikzioa/.
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ROS has provided us a tool to standardize this society of robots, different in
nature and with different hardware, and has given us the opportunity to set up the
same programming and control environment for all the robots. The decision to setup
all our robots with ROS allows us to more easily understand, use and maintain them.

It has been hard to reach the actual state. It took time to setup all the robots, to
develop the missing drivers and to establish a uniform configuration for all of them.
ROS versioning has been a drawback. But it has been worth. Now, it is rather easy to
adapt a behavior/application to a different robot. New lab members/students adapt
rather quick to ROS basics and can work with any of the platforms. No need to
learn several APIs and software environments, neither to know hardware differences
among the robots further than movement restrictions and sensor nature.

Thus, rather than a programming tool, ROS has became a methodology for
research in robotics. We are willing for ROS 2.0 to have a network of robots com-
municating to each other and performing operational work inside the faculty.
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Introduction

Robots are moving from industries to other locations
to be part of our daily lives, helping us performing
different tasks. With the advance of robotics technologies,
researchers have started to explore the applications of
service and social robots. Service robots — defined as
robots that perform useful tasks for humans International
Federation of Robotics ([accesed January 24, 2017])— have
many and diverse applications, such as assisting humans
in transportation (self-driving cars), vacuum cleaners
used in home environments Forlizzi and DiSalvo (2006)
(iRobot’s Roomba) or for commercial use (Sealed Air’s
Intellibots Sealed Air — Diversey Care ([accesed January
26, 2017])), drones for photographing and transportation,
nursing robots (Pearl Pineau et al. (2003) and RIBA -
the friendly robot nurse Riken-Tri ([accesed January 24,
2017]) Mukai et al. (2010)), care assistants for the elderly
at home Fischinger et al. (2016) or robots acting as shopping
assistants Kanda et al. (2009).

A different scope of application that also relies on
heavy autonomous navigation capabilities is that of tour-
guide robots. The research presented here focuses on a
heterogeneous robot navigation system that enables robot
communication for cooperative guiding tasks in different
floors, and allows individual navigation in each floor at the
same time. In this particular case, we use four mobile robots
available in our robotics research group Albeit the system
has been set up to solve the multi-floor navigation problem
of the Faculty of Informatics in San Sebastian, the system can
be adapted to a different building and robot configuration.

The paper is structured as follows. Section reviews the
literature and emphasizes the advantages of a distributed
robot collection for tour guiding in multi-floor environments.
Next, Section summarizes the basic navigation capability
that a robot acting as a guide needs and the GUI designed
for interacting with the user. This system is extended in
Section in order to develop a distributed heterogeneous
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guide-robot system. Features such as the system design, the
expansion of the GUI and the information exchange among
the involved robots are described, together with the system
setup in a ROS based software architecture.

The designed system has been tested in a
robot/environment configuration described in Section and
results are shown in Section . The paper ends as corresponds
with Section dedicated to conclusions and the description
of the future work.

Tour guide robots

The literature review reveals several instances of robots
acting as tour guides. Minerva Thrun et al. (1999) is
very likely the first robot that acted as such in the
Smithsonian’s National Museum of American History in
Washington, and by far the most cited one. In Rosenthal
et al. (2010) the navigation capabilities of CoBot are
evaluated while acting as a guide through a cooperation
between the visitor and the robot, helping each other
to fulfill the task. More recently, a robot that performs
guided tours was designed, built and set up at the Eureka
Science Museum of San Sebastian Susperregi et al. (2012).
Some authors emphasize the need for social interaction
in such platforms. Robovie assisted visitors at the Osaka
Science Museum Exhibit Shiomi et al. (2007), and the
humanoid robot Robotinho Faber et al. (2009), mounted on
a wheeled platform to reduce mobility constraints, showed
such capabilities while acting as a guide in the Deustches
Museum of Bonn.

Trahanias et al. Trahanias et al. (2010) present a
different approach in which robots are teleoperated over
the internet and act as interactive agents in populated
environments as museums and exhibitions. In addition,
Hristoskova et al. Hristoskova et al. (2012) propose a
distributed collaboration between two robots acting as
guides. Robots share profiles and tour information with the
aim of automatically exchanging the group members in order
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to optimize the amount of interesting content each time
robots are in the neighborhood.

Looking forward in a near future, one crucial challenge
to be considered is the usefulness of those robots —initially
intended to be used in single floor buildings— in public places
with multiple floors. A possible solution to the multi-floor
navigation problem is the use of a single robot that can
navigate through different floors using lifts, as the robot
Charlie Troniak et al. (2013) is able to do. A similar work
extended to multiple robots, also using elevators, is proposed
in the GuideBot tour guide Lopez et al. (2013a) and BellBot
hotel assistant Lopez et al. (2013b) systems. But entering
lifts may be dangerous for robots, depending on the security
measures, the gap on the floor, the robot’s geometry, and
specially, the drive system. Also, robots that get into lifts are
supposed to have the necessary abilities to interact with the
lift interface, inside and outside, to execute precise actions.
The lack of proper actuators can be overcome by interacting
with humans as CoBot does Rosenthal et al. (2010) Veloso
et al. (2012). This symbiotic collaboration approach has been
further expanded to a homogeneous team of up to 4 robots
that are also able to perform delivery tasks Veloso et al.
(2015). An alternative is to use multiple robots, limiting the
work scope of each robot to a single floor and avoiding the
robots using the elevators. Although several platforms are
needed, robot navigation is more secure (robot paths don’t
collide) and several tours can be run concurrently. In this
way, the lift remains available for people involved or not
in the guided tour and for people with reduced mobility. Of
course, robust robot communication must be guaranteed in
order to achieve a successful system.

Single robot guide system

This section briefly describes the features of the ROS based
tour-guide robot system developed for a single robot and in
which the multirobot guide system is based on.

Robot navigation setup

A robust guide system mainly relies on robust navigation
capabilities. For any service robot it is fundamental to be
able to safely and accurately navigate in its environment,
and so it is for guide robots. Robot navigation implies
that the robot is able to determine its own position and
plan a path towards some goal location, avoiding dangerous
situations, such as collisions with surrounding objects in
the environment. Al techniques make use of probability
distributions to represent and maintain uncertainty in robot
localization and feature identification over time in order
to determine the path the robot must follow to fulfill a
task Thrun et al. (2005). These probabilistic approaches
have shown to perform well in semi-static environments,
and thus, are being widely used in multiple robotic systems.
ROS* provides a navigation stack initially developed for the
PR2 robot by Willow Garage Marder-Eppstein et al. (2010)
that has been adapted for many robots’. This navigation
stack offers tools for constructing a global map of the
robot’s environment by means of SLAM (Self Localization
and Mapping) techniques. Besides, robot localization during
navigation is maintained using particle filter based AMCL
(Augmented Monte Carlo Localization) algorithm. Together
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with the map and a robot localization mechanism, the
navigation stack needs a planner to find and select the
path to be followed by the robot. ROS allows the user to
configure the stack by choosing among several planners the
one that better fits to the robot/environment system. The
default navigation function makes use of Dijkstra’s algorithm
for planning purposes.

Robotic platform

Kbot is a differential drive robot supplied with a Sick S3000
laser scanner built by Neobotix Neobotix ([accesed January
24, 2017]) in 2004 for acting as a tour guide at the Eureka
Museum of Science in San Sebastian. It has been recently
renewed, with a new PC, a Kinect sensor and a smaller touch
screen mounted on it. This robot is now ROS operative,
since the necessary ROS drivers have been developed for
it Rodriguez et al. (2016).

Graphical User Interface

Tour-guiding robots need to interact with humans. The
simplest way of interaction requires a graphical user
interface (GUI) so that tasks and goals can be input by
the user and information can be feedbacked to him/her in
a practical though not human-like manner. Such interface
has been developed using Qt. Fig. 1 shows how the initial
GUI looked like. The most frequently demanded sites of
our faculty are located at the first floor. Hence, in this
attempt a map of the first floor has been created with
ROS mapping utilities and that map is being used as the
floor plan of the developed GUI This floor plan has been
populated with several interaction buttons corresponding to
the important locations people might be interested in, such
as the secretary’s office, the Dean’s office, the lift, several
labs and so on. The robot morphology makes door crossing
insecure and thus, for the time being the GUI limits the robot
guiding task to the front of the door that gives access to the
desired location. Information about current and destination
locations is also displayed on the interface. Specifying the
robot’s initial pose for the ROS navigation stack is RVIZ?
dependent, so the system operator is needed to perform this
task.

This interface together with the underlying navigation
system were tested in Kbot (Fig. 2) with different visitors
and bachelor student groups that came to the faculty for the
first time Rodriguez et al. (2016).

Gidabot: multirobot guide system

The single robot navigation setup explained before has been
used as a base for developing the interfloor multirobot guide
system described herein. The developed guide robot was
limited to a single floor, so the next goal was to extend the
guide system to be able to allow tours all along the different
floors of the building.

In order to satisfy users’ requirements (move to a goal or
follow a goal sequence) the system has to provide different

*http://www.ros.org
Thttp://wiki.ros.org/navigation/RobotsUsingNavStack
Thttp://wiki.ros.org/rviz
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Figure 2. Snapshot of a guided tour with bachelor student
visitors

operation modes. Moreover, the content of the information
shared among robots, and the way it is transmitted have to
be correctly defined, ensuring a robust and efficient robot
communication.

System design

The multirobot system has been designed to allow two
operation modes:

Single target mode In single target mode the user can only
select a single target from all available locations. The robots
must cope with different situations:

1. The user and the desired goal are on the same floor. In
this situation, only one robot will guide the user from
the beginning to the end of the navigation. Therefore,
the only action the robot must perform is to reach the
goal.

2. The user and the desired goal are on different floors.
In this case two robots are involved in guiding tasks;
one is located in the floor where the trip starts and the
other one in the floor where the navigation ends.

(a) In the floor where the navigation starts, the robot
will guide the user from the starting location to
the lift or staircase (the user is free to choose) and
it will indicate what floor to go. Another robot
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will be waiting for the user in the goal floor’s
meeting point to solve the remaining path to the
goal location.

(b) In the floor where the navigation ends, the robot
needs to meet the user before guiding him/her,
so it has to move to the previously chosen lift or
staircase (the meeting point). Afterwards, when
the user arrives, he/she will notify the robot to go
on. Then, the robot will guide him/her to the goal
and the navigation will finish.

3. The robot is not involved in the navigation task. If the
robot is not in the initial floor neither in the goal floor,
it does not have to do anything; just wait to receive the
next goal where it is involved.

If a robot receives more than one request, these are queued
in order of arrival and managed using a First-In-First-Out
(FIFO) queue. Thus, pending goals (with initial or final point
in the robot’s floor) are processed in the same order they are
requested. Once a robot has finished processing a request, if
its queue is not empty, it will start navigating to the next goal
(the first in the queue).

Tour mode

Often, it can be interesting to follow a predefined goal
sequence, for instance, to show the surroundings. This means
that robots will conduct guided tours. For this purpose, the
system allows to create tours as a collection of location goals
in the desired sequence. Tours are saved in a local directory
and can be edited. New and edited tours are automatically
shared among all the available robots involved in the tour.

Of course, the Tour mode relies on the Single Target
mode and can face the same situations at each target of the
sequence.

Expanding the GUI

The previously developed GUI was designed for a single
robot navigation, and limited for a single floor. Extending the
system to allow guided tours among different floors requires
improvements in usability and intuitiveness of the GUI to
satisfy the users’ needs. Fig. 3 shows the renewed aspect of
the interface.

The graphical interface is available in Basque, English and
Spanish languages, and offers the user the option to select
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Figure 3. Main view of the renewed GUI

between the single target and tour modes by clicking the
upper right button with a path with waypoints.

The main window comprises a tab per floor, showing
buttons of the most interesting locations and the current
position of the robot on the floor’s blueprint, which replaces
the original map created with ROS tools. Three more tabs
(Offices, Guided Tour and Information) together with the
current navigation information complete the interface. The
Offices tab shows information about the available destination
points per floor, in order to help the user find the desired
target locations. The Guided Tour tab allows the user to select
and follow a predefined goal sequence. And the Information
tab offers information about operative robots and detailed
info about velocities and battery level of the current robot.

In single target operation mode, after selecting the tab
corresponding to the floor of interest, the user has to click on
the destination button, accept the confirmation message and
choose the way to move between floors (if there is a floor
change). Then, the robot will start moving and the GUI will
show its location on the floor’s map during the whole trip.
Each time the user wants to send a goal, the GUI informs
him/her about the number of pending requests of the goal
robot. Therefore, if he/she thinks it will take long to wait,
can choose to cancel the task. Moreover, the Information tab
also shows the number of pending requests of each operative
robot.

The Guided Tour tab (Fig. 4) offers the user the option to
select and follow an already predefined tour. In tour mode,
the user can start a tour by clicking Start again button,
and when he/she reaches a goal and is ready to go on, the
Continue button must be clicked on. In case the user wants
to skip any goal, the next desired one must be selected from
the tour site list.
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In both operation modes, if the user wants to finish the
navigation on the way to the goal, the “Cancel” button must
be clicked. The robot will stop and it will immediately
become ready to process a new goal. In case the navigation
comprises several floors, the rest of the affected robots’
navigation will also finish. Besides, if a goal is unreachable,
for instance, when every possible path is closed, the robots
involved in the navigation will be informed and the user will
be told that the robot can not help him/her.

Besides, the system always keeps the user informed about
the trip and the actions needed to perform, via text pop-ups
and verbal messages. For instance, the robot notifies the user
when the target point is reached, or in case of a floor change,
it informs about the floor he/she has to move to in order to
continue with the trip.

To address the inconvenience of setting manually the
initial pose of the robot with RVIZ, now the graphical
interface provides the option to indicate the robot’s position
and orientation in a simple manner, using the current floor’s
map in the GUI (see Fig. 5). This involves calculating and
modifying the current location and updating the information
text boxes, considering the map’s scale and consequent
precision loss.

Information exchange

The multirobot guide system proposed here is mainly
designed to work with several robots interconnected carrying
out collaborative navigation tasks, but single navigation
is also supported. When multiple robots are involved
information exchange among the robots is required.

No matter how many choices the system offers, if the
system is to be robust and efficient, then it is mandatory to
ensure a proper and reliable communication among robots.
In order to make the system work as desired, each robot has
to inform the others, on the one hand, about user’s requests
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Figure 5. Setting up the initial pose. The green arrow on the left is drawn with the mouse after clicking the “Set Location” button.
The figure’s right side shows how the interface updates the robot’s position

and, on the other hand, about its state — current location and
navigation state. This communication must be fluent over
time.

Context exchange among robots relies on different type of
messages explained below.

Goal descriptions A goal comprises the information related
to the start and end points of the navigation. Note that one or
several robots can be involved in guiding tasks:

e Number of the initial floor, where the visit starts.
e Coordinates of the initial robot location.

e Number of the goal floor, where the visit ends.

e Coordinates of the goal location.
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e Way to be taken, chosen by the user. When the initial
and goal locations are in different floors the user must
select either the lift or the staircases, so that the robots
responsible for the navigation leave and meet the user
at the correct location.

e Start point identifier.

e Goal point identifier.

e Language to be used for (verbal and text) communica-
tion.

Tour description Tours comprise a predefined goal sequence
and are defined as local text files in a two column format with
the following content: floor, room identification. Optionally,
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a comment can be added preceded by a # character. Here an
example of a tour definition text file:
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When several robots are involved in a new tour, the tour
is shared among the platforms involved, which mean each
robot has to update the list of available tours and show it
in the corresponding tab of its GUI. The tour information is
shared via a message containing the following fields:

e Robot id: robot where the tour was created.

e Tour name: the name given to the tour.

e Tour file name: the name of the file where the tour is
saved.

e Tour information: contains the goal sequence informa-
tion, in string format.

Robots’ pose As the GUI shows every available robot’s
localization in the map, it needs to update each robot’s
current position in the corresponding tab. Thus, robots
continuously interchange their location provided by the
AMCL algorithm:

e X: the X coordinate of the robot.
e Y: the Y coordinate of the robot.
e Orientation: the robot orientation in quaternion form.

Pending requests As mentioned before, when a user needs
to be guided to a destination, she/he is informed about the
pending requests of the other robot involved in the task, so
that she/he can decide to abort the task or to go on. This type
of messages are defined as:

e The number of pending requests.
e The list of pending goals.

ROS setup

The main part of the interfloor multirobot guide system is
based on a single ROS node named multirobot_navigation,
which receives navigation goals, processes this information
and then sends the robot to the pertinent place. The
multirobot_navigation node is executed in each robot, and
depending on the information of the received goal messages,
it responds in a way or another, as explained in section .
Messages (multirobot goals, tours, navigation poses and
pending requests) are broadcast to all the available robots
and each one decides whether the received information is
relevant or it can be ignored. ROS is not designed for
multiple robot systems where information must be shared
among all the entities, although there are two packages
that facilitate a solution. Our first attempt was to use the
multimaster_fkie package, which allows to establish and
manage a multimaster network using multicast protocol,
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but our faculty’s network firewall does not allow many-to-
many distribution. For that reason, our system was developed
using the multimaster package, which — though deprecated
— enables communication between two ROS masters. What
it does, exactly, is to register topics or offer a service at a
different ROS master, and/or subscribe to topics or call to
services of the same master. In this manner, topics/services
managed by different masters are selected to be shared.

In the developed system, each robot has its own ROS
master and all robots are interconnected on a complete graph
network, resulting in a low latency messaging platform. In
order to share information using the multimaster node, it is
enough to execute this node in just one of the two masters we
want to connect. This means we need % multimasters,
where n is the number of robots. Before running the node,
the foreign master must be specified, together with the local
publications we wish to share and the foreign publications to
be received.

Fig. 6 shows
Its configuration

the system architecture for 4 robots.
will be described in Section . Notice
the multimasters on the bottom row. M;; denotes that
the multimaster communicates masters ¢ and j, i.e.
robots ¢ and j. For the experimental setup used in this
work, 6 multimasters are needed in order to have full
intercommunication among the 4 robots.

Table 1 shows the context exchange in terms of ROS
messages.

Table 1. Messages description

Message Type Data type Name
Goal float32 initial_floor
geometry_msgs/Point initial_pose (x, y)
float32 goal_floor
geometry_msgs/Pose goal_pose (X, Y, 6)
string way
string start_id
string goal.id
string language
Tour float32 floor
string tour_name
string file_name
string[] tour_goals_info
Pose geometry_msgs/Pose nav_pose (X, Y, )
Pending requests uint8 num
Goall] goals

Experimental setup

The developed guide system has been tested with four
different robots moving through the floors of the Faculty of
Informatics. The experimental setup is described below.

Robotic platforms and environment description

As mentioned in Section , Kbot, a differential drive robot
supplied with a Sick S3000 laser scanner, was the first
platform to setup and the base for adapting and configuring
the other available mobile platforms.

MariSorgin is our heirloom robot, a synchro-drive robot
that dates from 1996. It is a B21 model from Real World
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Figure 6. Multirobot system architecture

Interface provided with a ring of ultrasound, infrared and
tactile sensors for obstacle avoidance. In addition, a Hokuyo
URG-30 laser, a Kinect sensor and a Heimann thermopile
have been placed on top of the enclosure.

Galtxagorri and Tartalo are two differential drive
robots, a Pioneer-3DX and PeopleBot models from Omron
Adept MobileRobots Omron Adept MobileRobots ([accesed
January 24, 2017]) respectively. Both are provided with
ultrasounds and a Cannon VCCS5 camera, the former has a
Leuze RS4 mounted on its top and the later a Sick LMS200
laser sensor on its base.

Summarizing, all the robots have a laser sensor for safe
navigation and localization, a touch screen for accepting user
requests and speakers to be able to reproduce audio. This
brief description gives a hint of the diversity of sensors being
used and the dissimilar morphology and sizes, in summary
the heterogeneity of the robot team.

Regarding the environment, the Faculty of Informatics of
the University of the Basque Country (UPV/EHU) is located
in San Sebastian. It is a five floor building equipped with two
side staircases and a single lift that enable people to move
between these floors.

The main entrance is in the zeroth and lowest floor, where
a few lecture rooms and laboratories are placed, just like
in the mezzanine. The mezzanine floor is peculiar in the
sense that it has no public lift access. The Dean’s Office,
Secretary’s Office and Auditorium can be found in the first
floor, together with more lecture rooms and laboratories,
whereas most professors’ offices are located in the second
and third floors. Research laboratories are also in this upper
floor.

Wireless communication

In order to be able to communicate over time, either robots
are in the same LAN or they have a known public IP address

Prepared using sagej.cls

externally accessible. The Faculty of Informatics is a public
building of the University and thus, wireless communication
options are preset and not all possibilities are authorized. The
following alternatives have been considered:

o LAN: requires antennas. Not
available/authorized.

o eduroam (education roaming)’: although there are
several antennas distributed all over the building,
in its current state the connection suffers multiple
interruptions and is not reliable at all.

e 3G Mobile Wi-Fi with prepaid SIM cards: occasional
communication interrupts may occur, but they are rare.
Hence, this is the final choice we made. Each robot

now uses a 3G Modem that connects to the Internet.

multiple

With this setup, considering that the robots share
information among each other, they need to have an
accessible IP address assigned so that messages can be
received properly. This IP address should not be changed
while the system is operating, and preferably, neither after
each session.

However, the used SIM cards do not allow static IPs; IPs
can change at any time, and even more, those IPs are not
externally accessible. So after discarding the choice of hiring
a static IP Internet connection with a telephone provider,
we decided to set up a Virtual Private Network (VPN) that
enables assigning static IPs to the robots.

As the final solution, we managed to get four static IP
addresses from our university’s VPN service, creating an
LDAPY account for each robot and using it when connecting
to VPN. This way, an accessible static IP address, in which

Shttp://www.eduroam.org
9 Lightweight Directory Access Protocol
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the ROS master will be running, is set every time the robots
initialize.

Configuration and setup

The developed system is easily adaptable to different robot
placements. Each robot has its own launch file, containing
several parameters that must be set up before executing the
system, and the initialization of the required modules (Fig.
6).

Among these parameters, the global configuration of the
system must be set up. Each robot needs to know the floor
it will be working on, and for the other robots participating
in the task, their name, IP address and the floor they will
be working on. It is also possible to have a floor without
any robot, which means that the user will have to find
the destination by himself/herself. In our case, all of our
robots are prepared to navigate in any floor of the Faculty
of Informatics of San Sebastian, so changing their location
can be easily carried out.

Regarding robot communication, the robots where the
multimaster nodes will be running can also be configured
within the launch files.

Experimental Results

This section describes the different experiments per-
formed to evaluate the robustness of the GidaBot. Exper-
iments have been performed in both, simulated and real
robot/environment systems.

GidaBot in simulation
The goal of the simulated experiment is twofold:

1. Evaluate the soundness of the application without
suffering from issues like battery life and Wi-Fi
communication.

2. Offer a tool to other researches/developers to test the
application.

With that aim, each floor of the Faculty of Informatics
and each robot has been modelled using Blender! and,
afterwards, these models have been integrated in five
different Gazebo™* worlds. As a result a complete simulation
environment is available together with the GidaBot system.
Fig. 7 shows screenshots of each simulated floor/robot pair.

A long tour of 15 randomly selected goals covering the
whole faculty was defined and again, the goal sequence was
randomly chosen (see Table 4).

Four standard PCs (i5 with 4GB RAM) availabe at the
lab where used. Instead of the individual 3G modems, all
the PCs were connected to the same Wi-Fi router that gave
internet access. Two people were responding to the interface
queries during the experiment that last 1 hour approximately.
No errors occurred during the tour.

Fig. 8 shows the paths followed by each robot on each
floor during the guided tour. Table 3 summarizes the number
of goal messages exchanged among the robots in the course
of the tour, only the number of messages received and
processed of each robot have been considered. Note that
when floor change is required two robots are involved in the
task, therefore some goal messages are processed by more
than one robot.
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Table 2. Long duration tour

# Floor Place

1 0 Student Council

2 3 IXA Lab

3 2 C. Rodriguez’s Office

4 1 Dean’s Office

5 2 J. Abascal’s Office

6 3 B. Sierra’s Office

7 0 Computer Technicians 1
8 1 Ada Lovelace Auditorium
9 2 Seminar Room 2.3

10 0 WiFi Room

11 1 Laboratory 1.3

12 3 RSAIT Lab

13 2 O. Arbelaitz’s Office

14 1 Secretary’s Office

15 0 Copy Shop

Figure 8. Path followed by each robot on each floor during the
guided tour

Table 3. Exchanged goal messages among the robots during
the guided tour

Robot Received Processed
Tartalo 15 7
Kbot 15 8
Galtxagorri 15 8
MariSorgin 15 6

A video of the simulated system running a tour is also
available at RSAIT’s YouTube channel .

I hetps://www.blender.org/
**http://gazebosim.org/
Tt https://www.youtube.com/channel/UCT 156052 1d8fxFeugxCrjnQ
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Figure 7. Screenshots of the simulated robot/environment pairs

GidaBot in the real world

In order to analyze the system performance in the real world,
a randomly selected guided tour of eight randomly chosen
goals that covers the main four floors of the Faculty of
Informatics has been defined:

Table 4. Real world tour
# Floor

Place

Technicians’ Lab
Caretakers’ Office
Secretary’s Office

Ada Lovelace Auditorium
M. Larrea’s Office

K. Sarasola’s Office

I Irigoien’s Office

RSAIT Lab

0N O WN =
WwMNhN = —+0O0

The guided tour has been performed by an untrained user
on a typical working day. Information about the required
time and the traveled distance to successfully complete
the tour have been collected during the whole process
(Table 5). The mean linear velocity varies depending on the
characteristics of the environment, navigational capabilities
and configuration parameters of each robot. Note that the
time and distance have only been taken into consideration
when the user was with the robot.

Table 5. Collected data

Robot time (s) dist. (m) mean vel. (m/s)
Tartalo 353 86 0.24

Kbot 81 32.2 0.4
Galtxagorri 172 60 0.35
MariSorgin 132 35.8 0.27

Tour 738 215 0.29

In addition, a video available at RSAIT’s YouTube channel
shows the whole tour recorded during the guided tour. The
main frame is divided into four subwindows, one per floor
and robot. The upper left subwindow corresponds to the
zeroth floor and Tartalo. The upper right one to the first
floor and Kbot. The lower left corner to the second floor
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and Galtxagorri. And the lower right subwindow to the third
floor and MariSorgin. Fig. 9 shows a snapshot of the video.

The video also shows the pop-up windows displayed to
the user at the different steps of the tour, in order to measure
the kind of interaction the user has with the robots. As the
user chooses to reach upper floors by the stairs, it can be
appreciated how the next robot in each phase moves to the
stairs when it receives the message from the currently acting
robot, in order to meet the user and continue with the tour.

As mentioned before, the configuration of the system can
be adapted to a different setup. The code will be available at
RSAIT’s GitHub**.

Conclusions and further work

The GidaBot system described in this paper is an application
to setup and run multiple robots in tour guiding tasks
over multi-floor environments. The developed guide system
makes use of a robust inter-robot communication among
different mobile platforms and allows them to carry out
guiding tasks along the different floors of the building. The
application also includes a Graphical User Interface that
helps the user interact with the robot in an intuitive manner.

It is important to emphasize the heterogeneity of the robot
team where the application is being tested. But also the fact
that an standard software framework is being used. These
two features make possible to conclude that it is not a tour-
guide system developed just for a specific robot/environment
system, but that it is applicable (with some adjusts) to
other instances. This would require some work such as
adapting the maps shown on the tabs of the interface and
the coordinates of the interesting locations of the new
environment.

The system relies on the ROS navigation stack that
needs to be tuned on each robot. The performance of the
navigation stack varies depending on the hardware. Some
parameters could be better tuned in some cases to avoid
bizarre behavior such as giving several turns on the spot
when localization fails. Also, bothering the robot, blocking

Hhttps://github.com/rsait
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Galtxagorri

Figure 9. Snapshot of the real system during a guided tour

its way and preventing robust localization can entail a failure.
Further versions of this ROS package may overcome this
problem. Meanwhile, users must be warned about it. Visitors
also must be advised to keep at the back of the robot
to minimize sensor uncertainty and overcome localization
problems.

Regarding robot communication, for the application to be
run, each robot must have a known static IP and all the robots
must share the network. Though the used network resources
are irrelevant for the application itself, if the system is going
to be used in a public building as it is the case, in a near
future, it would be desirable to avoid the use of prepaid SIM
cards and make the system run with eduroam.

A relevant issue concerns the multimaster package used
for context sharing among robots. ROS was designed for
single robot systems, and the multimaster package is a
side solution. ROS 2.0 is being designed to overcome
this problem offering the possibility of building multirobot
systems. But ROS 2.0 version is still in a beta stage and the
migration from ROS 1.0 to 2.0 promises to be anything but
trivial with many incompatibilities among packages.

As further work, the system can be tuned in several
aspects. In larger environments two or more robots could
share a floor and then, robot availability should also be
managed. But depending on the field of application — and
it is the case of tour-guide robots — service robots should be
able to interact with users in a human like manner and show
social skills. Currently, we are integrating a face recognition
system so that single visitors are recognized while sharing
a goal among robots. User images must be shared among
robots, but first, the degree of acceptability by the potential
users must be measured. Besides, we intend to extend the
system so that the robots respond to spoken orders.
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Abstract— The work presented here proposes two different
ROS packages to enrich the teleoperation of the robot NAO:
speech-based teleoperation (in Basque) and gesture-based tele-
operation together with arm control. These packages have been
used and evaluated in a human mimicking experiment. The
tools offered can serve as a base for many applications.

I. INTRODUCTION

Human-robot interaction (HRI) is the study of interactions
between humans and robots. HRI is a multidisciplinary field
with contributions from human-computer interaction, artifi-
cial intelligence, robotics, natural language understanding,
design, and social sciences.

A requirement for natural HRI is to endow the robot with
the ability to capture, process and accurately and robustly
understand human requests. Therefore it is important to
analyse the natural ways by which a human can interact and
communicate with a robot. A considerable number of robotic
systems have been developed in the last decade showing HRI
capabilities [S][7].

In recent years, the robotics field has seen the emergence
of sophisticated humanoid robots, including Honda Asimo
and NAO. Due to their human-like morphologhy, humanoids
are well-suited to operate in shared environments with hu-
mans. Therefore, they are used by many researchers to in-
vestigate fields like navigation in unstructured environments,
full body motions and human-robot interaction.

Real-time teleoperation of humanoid robots by detecting
and tracking human motion is an active research area. This
type of teleoperation can be considered as a particular way
of interaction between a person and a robot, allowing an
intuitive teleoperational control due to similarities in embod-
iment between the human master and the robot slave. It is
an interesting research topic, the related work is abundant.
To mention some, Setapen et al. [15] use motion capture to
teleoperate a NAO humanoid robot, using inverse kinematic
calculations for finding the mapping between motion capture
data and robot actuator commands. Matsui et al. [12] use
motion capture to measure the motion of both, a humanoid
robot and a human, and then adjust the robot’s motions
to minimise the differences, with the aim of creating more
naturalistic movements on the robot. Song et al. [17] use a
custom-built wearable motion capture system, consisting of
flex sensors and photo detectors. To convert motion capture

*This work was supported by the Basque Government Research Team
Grant (IT313-10), SAIOTEK Project SA- 2013/00334 and the University
of the Basque Country UPV/EHU (Grant UFI11/45 (BAILab))

1 Authors are with Faculty of Informatics, Computer Science and Arti-
ficial Intelligence, University Basque Country (UPV/EHU), San Sebastian,
igor.rodriguez@ehu.es

978-1-4799-7174-9/14/$31.00 ©2014 |IEEE
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data to joint angles, an approximation model is developed
by curve fitting of 3rd order polynomials. Koenemann et
al. [10] present a system that enables a humanoid robot
to imitate complex whole-body motions of humans in real
time, ensuring static stability when the motions are executed
and capturing the human data with an Xsens MVN motion
capture system consisting of inertial sensors attached to the
body.

The above mentioned methods are limited in the sense
that the human needs to wear different type of sensors in
order to interact with the robot. This can be avoided with
the Kinect sensor. Moreover, the cost of the equipment is
declined. Song et al. [18] propose a new approach for robot
control in order to give autonomy to the robot and people’s
subjective initiative. Suay et al. [20] present a new humanoid
robot control and interaction interface that uses depth images
and skeletal tracking software to control the navigation, gaze
and arm gestures of a humanoid robot. The work described
here follows these criteria and develops a Kinect sensor-
based gesture teleoperation system.

This paper proposes two new software packages to enrich
the teleoperation of NAO. The software provides function-
ality to fully teleoperate the robot in real-time, allowing
speech-based guidance, gesture-based teleoperation that in-
cludes arm motion control. With the mentioned modules, the
robot NAO is able to maintain speech-based communication
with the user, copy the motion of the arms and walk and
rotate in all directions. Experiments in the laboratory as well
as public performances have been conducted to evaluate the
usefulness of the proposed software modules.

II. THE ROBOT NAO, THE KINECT SENSOR AND SPEECH
RECOGNITION WITH ROS

A. ROS

ROS (Robot Operating System) [13] is a framework for
robot software development, and it also provides operating
system-like functionality on an heterogeneous computer clus-
ter. The aim of ROS is to be a system that combines some
useful elements. These elements are drivers and algorithms
(such as navigation algorithms, control algorithms for robotic
arms, etc.). The system is based on a modular concept. Mod-
ules are named nodes in ROS and nodes communicates via
topics or services following a publisher/subscriber protocol.

B. ROS for NAO

One of the robots for which ROS is available, although in
a rather limited way, is NAO. NAO’s human like shaped body
is about 58 cm tall and weights about 4,8 kg. It is built in
polycarbonate and abs (a common thermoplastic) materials



that allow better resistance against falls and it has a lithium
battery with which it can get an autonomy of 90 minutes
approximately. Its heart is composed by a 1.6 GHz Intel
Atom processor running Linux. 25 servos enable to control
the 25 degrees of freedom of the robot. Regarding to robot
motion, NAO can move in any direction (omnidirectional
walking), it uses a simple dynamic model (linear inverse
pendulum) and quadratic programming. It is stabilized using
feedback from joint sensors. This makes walking robust and
resistant to small disturbances, and torso oscillations in the
frontal and lateral planes are absorbed. It can walk on a
variety of floor surfaces, such as tiled and wooden floors,
and he can transition between these surfaces while walking.

nao_robot is the name of the metapackage used to
control the robot. It was developed by the University of
Freiburg and it is available on the ROS web. ROS can be
run on the robot, or remotely, sending appropriate actions
and reading information from NAO through a wifi. The last
option is the alternative used in this work.

C. Kinect and ROS OpenNI tracker

The Kinect sensor is a horizontal bar connected to a small
base with a motorized pivot, and is designed to be positioned
lengthwise above or below the video display. The Kinect
consists of three different sensors (a RGB camera, a depth
sensor and a multiarray microphone) that work together to
create the experience of a natural user interface [9].

ROS has several packages that allow to work with the
Kinect. The openni_tracker package detects when a
person gets into the scene captured by the Kinect and tracks
the position of his/her head and limbs afterwards. This
package makes use of the OpenNI (Open Natural Interaction
framework.

D. Speech recognition and ROS gspeech

Google Speech [19] is an automatic speech recognizer
(ASR), freely available, used in several Google applications
such as “Google Voice” or “Google Now”. It is a cloud
based service in which a user submits audio data using a
HTML POST request and receives as reply the ASR output
in the form of an n-best list. The user only can customize
the number of hypotheses returned by the ASR, specify the
language used and enable a filter to remove profanities from
the output text. The service returns only the final hypothesis
and their corresponding confidence level. Google’s speech
engine has the advantages of being speaker independent and
that no training is required.

ROS provides a package based on the Google Speech tool
and dependant on SOX', named gspeech. It has a single
node that is in charge of:

1) Sound capture: when the user starts speaking, the
sound captured from the microphone is recorded by
SOX and saved into an audio file.

A sound processing program that can convert various formats of audio,
apply various effects to those sound files, and also, can play and record
audio files on most platforms
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2) Speech to text conversion: the audio is sent to the
Google’s server, which in turn will process it and return
the speech content and the confidence value of the
recognition.

III. SPEECH BASED TELEOPERATION IN BASQUE

Verbal communication should be a natural way of human-
robot interaction. It is a type of communication that allows
the exchange of information with the robot.

To serve a human being, it is necessary to develop an
active auditory perception system for the robot that can exe-
cute various tasks in everyday environments obeying spoken
orders given by a human and answering accordingly. Several
systems have been recently developed that permit natural-
language human-robot interaction. Foster et al. [6] propose
a human-robot dialogue system for the robot JAST, where
the user and the robot work together to assemble wooden
construction toys on a common workspace, coordinating
their actions through speech, gestures, and facial displays.
Wang et al. [22] introduce a human-robot speech system for
teleoperating a humanoid mobile robot.

A speech based teleoperation interface should provide the
user the possibility to teleoperate NAO giving predefined
orders. The system also should give feedback to the operator
when an instruction is not understood and this feedback
should also be verbal. Three elements are identified in an
architecture for speech-based teleoperation:

1) The speech recognition system (SR)

2) The text to speech (TTS) system

3) The robot control system

Within the available ROS packages for NAO, the
nao_speech package provides the necessary tools for mak-
ing NAO understand and speak in English. But this package is
of no use when another language is required, as it is the case.
Our NAO robot is supposed to interact in Euskara (Basque,
a minority language spoken in the Basque Country) and thus,
a tool adapted to this requirement was needed.

A. Implementation: The

package

nao_teleop_speech_eus

A new package (nao_teleop_speech_eus) has been
developed with three different nodes, one for each of the
identified elements:

a) nao_gspeech: As mentioned before, ROS
gspeech package gives ASR capabilities to the robot and
can be configured for many languages, including Basque.
But this package needs some modifications in order to be
useful in a real-time teleoperation scenario. These are the
introduced changes:

1) When the native gspeech runs the Google’s speech
service, it is executed only once, i.e, when the user
starts speaking, the audio is captured and sent to
Google. There it is analysed and the text “correspond-
ing” to the received audio is returned with a confidence
level; then, the program ends. It could be tedious for
the user to run the speech recognition node each time
she/he wants to order something to the robot, or each



time she/he receives an error message. Hence, the new
node now runs iteratively avoiding the problem of
having to launch the node each time the user wants
to talk.
When the Google’s speech service does not recog-
nize the spoken words, it returns an error message
and then the node is forced to quit. Now, error
messages received from Google’s speech service are
specially treated. If an error message is received,
nao_gspeech publishes a Repeat message in the
google_speech topic to advertise the user that his
spoken words are not being recognized.
The original gspeech node only prints the response
received, it does not publish any messages or services,
so it can not communicate with other nodes. After the
modifications, the confidence level of the hypothesis
received from Google Speech is processed and, if it
is lower than a predefined threshold (0.15 for the
performed experiments), the response is declined and
treated as an error message.
b) nao_tts_eus: This is the node in charge of con-
verting the text into speech using the AhoTTS tool [11]. That
system, developed by the Aholab group in the University of
the Basque Country, is a modular text to speech synthesis
system with multithread and multilingual architecture. It has
been developed for both, Euskara and Spanish languages.
The TTS is structured into two main blocks: the linguistic
processing module and the synthesis engine. The first one
generates a list of sounds, according to the Basque SAMPA
code [14], which consists of the phonetic transcription of
the expanded text, together with prosodic information for
each sound. The synthesis engine gets this information to
produce the appropriate sounds, by selecting units and then
concatenating them and post-processing the result to reduce
the distortion that appears due to the concatenation process.
This tool is required for communicating in Basque Language,
but it would not be required for English interlocution.
nao_tts_eus has a subscriber that receives mes-
sages from nao_teleop_speech (see bellow) in the
text_speech topic. When a text message is received, this
node converts it into speech (an audio file) and plays the
audio over NAO’s speakers.
¢) nao_teleop_speech: This node allows the user
to control NAO’s movements using several voice commands.
The operator, situated in the teleoperation cab (the place
where the remote PC is located), gives orders to the robot
using a microphone. The robot is able to perform these move-
ments: Stand up, Sit down, Move forward, Move backward,
Move left, Move right, Turn left, Turn right and Stop
As we previously said, commands are given in Euskara.
With the intention to communicate with the robot in a more
natural way, the user has more than one choice for each
possible command. That is, if the operator wants the robot
to stand up, he can say: “Altxatu”, “Tente jarri”, ‘“Zutik
jarri”, etc. Therefore a dictionary of some predefined words
has been created, including several synonymous for each
command. When the user gives a voice command (it can be a

2)

3)
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long sentence), the voice is converted to text, and processed
afterwards. The system tries to find matches between the
dictionary and the text received from Google’s speech ser-
vice. If a match is found, the robot performs the movement
corresponding to the received command, otherwise the robot
says that it could not understand the order and asks the user
to repeat it.

nao_-teleop_speech is the node in charge of receiv-
ing messages from nao_gspeech, finding any matches
in the predefined commands dictionary and deciding what
is the action that NAO must perform. It has a subscriber
to receive messages that nao_gspeech publishes on the
google_speech topic, and two publishers; one to set
NAO’s walking velocity according to the given command,
and another one to publish the text messages that NAO has
to say.

In order to test the speech capabilities in a HRI context,
we integrated the ASR and TTS modules in our Bertsobot
project [1]. The Bertsobot project was showed to the gen-
eral public in a live performance entitled "Minstrel robot:
science or fiction” 2, in wich NAO robot showed his verse-
improvisation and speech-based communication capabilities.

It must be said that the system, and as a consequence, the
speech based teleoperation works when the google’s voice
server gives the correct answer. The drawback is that Google
can disable the service without notice.

IV. GESTURE BASED TELEOPERATION AND ARM
MOVEMENT

We want to control the robot’s walking motion and also
manipulate his arms based on the movements the operator
makes. Hence, the gesture teleoperation proposed in this
work uses all body gestures. Arm movements are used to
control the robot arms, i.e. NAO replicates the operator’s
arm movements. Besides, the operator’s position (of her/his
body) defines the action she/he wants to perform, like move
forward or turn left.

A. Gesture-based teleoperation

The NAO teleoperation process has two stages; the oper-
ator’s calibration stage and the robot control stage. First of
all, the operator must perform the calibration pose in front
of the Kinect view, this is a necessary step because it verifies
that the Kinect is seeing a person. The calibration process is
done by openni_tracker. When the calibration process is
successful, the system is ready to receive gesture commands.

The commands that the robot understands are: Stand up,
Crouch, Stop, Move forward/backward, Move left/right and
Turn left/right. Figure 1 shows the gestures required to the
user in order to command the robot.

Those gestures must be performed from a particular posi-
tion, since the system is configured for specific user positions
and distances (see the black marks on the floor in figure 1).
The teleoperation process starts with the operator in crouch

Zhttp://www.alhondigabilbao.com/web/guest/detalle-evento/-
/journal_content/56_INSTANCE_aJV5/10140/4092781?1ast-
page=/programacion/badu-bada



(a) Crouch (b) Stand up

(c) Turn left (d) Turn right

(e) Move left

(f) Move right

‘-_

(h) Stop (i) Move backward

(g) Move forward

Fig. 1. Gesture teleoperation commands

position, because this is the position NAO rests when it is
not being operated. When the operator stands up, the robot
stands up too and it is ready to receive moving orders.

B. Arm control

The goal of this process is to give the operator the option
to move the robot arms remotely. This can be very useful if
the robot is involved in a task where it must carry objects.
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Human arms have 7 degrees of freedom (DOG): three at
the shoulder and wrist, and one at the elbow (yaw). On the
contrary, NAO’s arms have five DOGs, two at the shoulder
(pitch and yaw) and elbow (yaw and roll), and one at the
wrist (yaw) (figure 2). Thereby, the movement configurations
of human and robot arms differ. For sake of simplicity, we
will limit the robot arm movement to raise and extend the
arms, imitating the operator’s arm motions.

Imitation starts with the perception of the demonstrator;
the operator must perform the calibration pose and when
it succeeds, the system is ready to perform the imitation
process.

For the purpose of imitation, first human movement data
have to be acquired, then data are suitably transformed to
NAO’s coordinate space, and finally, the gesture is executed
by NAO. We will name this problem as the correspondence
problem. This is the main problem of this task.

In order to solve the correspondence problem, the arm
is modelled as a stick. The data are acquired by us-
ing openni_tracker and provide Cartesian coordinates
of twenty joints on the human body. The joints tracked
by openni_tracker are: Head, Neck, Torso, LeftShoul-
der, LeftElbow, LeftHand, RightShoulder, RightElbow, Right-
Hand, LeftHip, LeftKnee, LeftFoot, RightHip, RightKnee and
RightFoot. The Kinect treats itself as the origin when provid-
ing the Cartesian coordinates, but NAO has its own reference
system with a different origin. For this reason, Kinect’s joint
information must be translated.

To transform the Cartesian coordinates obtained from the
Kinect into NAO’s coordinate space a joint control approach
was employed. In this approach, we calculate the human
joint angles at shoulders and elbows from Cartesian coor-
dinates using inverse kinematics (as described bellow), and
command the robot to set the arms’ position at the calculated
angles.

Transformation from Kinect’s coordinate space to NAO’s
space: We will focus the explanation on the left arm. The
analysis of the right arm is similar and it will be omitted
here.

NAO’s left arm has four joints (see figure 2): LShoul-
derRoll, LShoulderPitch, LEIbowRoll, LElbowYaw and
LWristYaw. LEIbowYaw and LWristYaw joints have not been
taken into consideration for the joint control proposed in
this work, because the openni_tracker package can not
detect the operator’s arms yaw motion.

A
LShoulderPitch
19,500

Fig. 2. Left arm motion



In order to calculate the LShoulderRoll motion angle
(aShoulderRot1) We use the dot product between LRShoulder
and LShoulderElbow vectors, where LRShoulder is the vector
between the right and left shoulder joints, and LShoulderEl-
bow 1is the vector between the left elbow and left shoulder
joints.

Since LRShoulder and LShoulderElbow vectors are
known, we can obtain the angle between these two vectors
using the dot product.Note that before applying the equation,
LRShoulder and LShoulderElbow vectors must be normal-
ized. The agpnoulderroti angle can be calculated as follows:

QShoulderRoll = arccos(LRShoulder - LElbowShoulder)
(D

The ashouiderroir angle is calculated in the Kinect’s
coordinate space, therefore, it must be transformed into
NAO’s coordinate space by rotating it =" radians. Figure 3
shows both coordinate frames and the transformation needed.

=702

T2

2 o

Kinect's space NAO's space

Fig. 3. Left shoulder roll motion in Kinect and NAO spaces

LEIbowRoll motion angle is calculated in the same way
as LShoulderRoll motion angle. But now, to calculate the
QEbowRoll angle the vectors we need to consider are LShoul-
derElbow and LHandElbow, where LShoulderElbow 1is the
vector between the left shoulder joint and the elbow and
LHandElbow is the vector between the left hand joint and
the elbow.

Again, agpowren angle must be transformed to NAO’s
space, in this case by rotating it —7 radians.

And finally, the LShoulderPitch motion angle, which is
calculated taking into account only the height the LShoul-
derElbow vector takes with respect to z axis. When the arm
is extended making an angle of 90 degrees with the torso,
it is considered on the z=0 axis. Therefore, if you raise the
arm from this position the angle will be positive, and if you
lower it, negative (see figure 4).

After normalizing the LShoulderElbow vector, the
QShoulderPitch angle for LShoulderPitch motion can be
defined as:

; 1Al Al
houlder Pitch) = =— (2
sin(Qshoutder Pitch) ||LShoulder Elbow|| 1 )
[All = 2L8houtderEibow  (by  definition) 3)
QA ShoulderPitch = aTCSin(ZLShoulde'rElbow) (4)

1

183

42

LShoulderElbow
-

-
1
|
| A
1

Fig. 4. Left shoulder pitch motion in the Kinect space

where  zpShoulderElbow 1S the Z  coordinate of
LShoulderElbow, represented as LSE.z in figure 4. To
transform the asnouiderpitch angle to NAO’s space it must
be rotated 27 — ashoulder Pitch Tadians.

C. Implementation: The nao_teleop_gesture pack-
age

A new package named nao_teleop_gesture has been
developed in order to achieve the gesture-based teleoperation
system. This new package contains two nodes:

e naomotion_control: it has to perform the follow-
ing two main tasks:

1) Receive messages published the
openni_tracker package.

2) Publish NAO’s walking velocities.

So for, the naomotion_control node contains
a subscriber that receives messages published by
openni_tracker in the skeleton topic. When a
message is received, the operator’s position is analyzed.
And according to that position the robot performs the
corresponding walking motion. For example, if the mes-
sage received indicates that the user took a step forward,
the robot starts walking forward. Although each gesture
indicates a movement order, different gestures can be
combined. i.e. combining move forward and turn left
gestures the robot can move forward rotating to the
left at the same time. Only walking action movements
(forward, backward, left, right) with rotational motions
can be combined.

On the other hand, the nao_motion_control node
has a publisher that publishes the omnidirectional ve-
locity (X, y, and theta) for the walking engine. The
velocity with which the robot moves has been set to
a constant value. If the walking velocity is too high
the robot starts to swing. Thus, the linear velocity and
the angular velocities have been assigned low values.
The walking velocity of the robot is published in the
cmd_vel topic.

nao_arm_control: This node is in charge of sending
to the robot the necessary motion commands to replicate
the operator’s arms motion. The node performs tasks by:

1) Receiving the messages published by the
openni_tracker package.

by



2) Publishing NAO’s joint angles with speed.

Therefore, nao_arm_control is subscribed to the
skeleton topic in order to receive the operator’s
skeleton messages published by openni_tracker.
On the other hand, the nao_arm_control node has a
publisher that publishes the joint angles with speed in
the joint_angles topic, which allows the commu-
nication with the nao_controller node. The NAO’s
joints motion speed is set to a constant value appropriate
for the robot to mimic the operator arms motion in
“real” time.
The robot imitates human actions in real-time with a
slight delay of less than 30 milliseconds. This delay is
approximately the time the system needs to capture the
operator’s arms motion, calculate the angles that make
up the operator’s arm joints, and send motion commands
to the robot via Wi-Fi.

It must be mentioned that the native nao_robot package
has been enriched to provide ultrasound information from
NAO’s chest and nao_teleop_gesture now can use that
information, to alert the user when NAO gets too close to
obstacles in front.

V. SYSTEM EVALUATION: MIMICKING BEHAVIOR

Imitation is an important way of skill transfer in biological
agents. Many animals imitate their parents in order to learn
how to survive. It is also a way of social interaction. A
sociable robot must have the capability to imitate the agents
around it. In a human society, people generally teach new
skills to other people by demonstration. We do not learn to
dance by programming, instead we see other dancers and try
to imitate them. Hence, our artificial partners should be able
to learn from us by watching what we do.

In order to evaluate the developed system we propose
a set of experiments based on imitation. The speech-based
teleoperation was not included in the experiments due to
some problems during the transition to version 2 of the
Google Speech Server.

The mimicking behavior consists of the arm control be-
havior together with the teleoperation behavior. The walking
behavior of the robot has been modified for those cases
when the robot has something on its arms. The center of
gravity (COG) of the walking robot has been lowered and
backwarded so that the COG is maintained within the support
polygon (see figure5).

The process runs as follows. NAO starts in crouching
position and when the operator enters the Kinect’s view,
the calibration process starts. NAO tells the operator that
the calibration ended successfully saying “Kinect control
enabled” in Basque and then, the operator can control the
robot with his/her body.

A GUI has been created (with existing rgt plugins) in
order to help the operator to know the system state. It can
be divided into two main parts (figure 6). The top side is
composed by the Topic Monitorand the Rviz interface. The
Topic Monitor shows all the topics and messages sent by
the nodes that are in execution. Rviz shows the NAO 3D
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(a) Original (b) Modified

Fig. 5. Modified walking position

model moving in real-time. The bottom side shows visual
information from the cameras; Image View shows the image
received from NAO’s top camera and the right window shows
the image captured by the Kinect together with the skeleton
of the tracked body.

JaTopic Manitor DEQ - Ox “Rvirl]

1 0C@ - ox|
Fle Panels Help

Topic
> 01 fblink/feedback

> 01 fblinkfresult

> [ flinkfstatus

> [ /body_pose/cancel
> 01 /body_poseffeedback
> 11 /body_posefgoal

> [ /body_posefresult
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» (] fcamera/debayer/parameter_updates
> (] fcamera/depth_rectify_depth/parameter_ desc -

Reset
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Fig. 6. Teleoperation display

Two experiments were defined. Those experiments in-
volved several people that should give qualitative measures
of the system performance by means of a questionnaire
that participants completed after carrying out each exper-
iment. Experiments were performed until each participant
achieved the aim of the experiment at least once. To
run the experiments a package named nao_imitation
has been created with just a launch file that run
both nodes in the nao_teleop_gesture package and
the rgt GUI interface. All the code is available at
github.com/rsait/NAO_ROS.

Experiment #1: In this first experiment, the operator has to
drive the robot in the circuit formed by a series of obstacles
using a predefined sequence of movements that included all
the movements available in the system: walking, lateral dis-
placement and rotations. Figure 7 shows the circuit proposed,
together with the movements that must be performed.



Walk forward

Lateral displacement

Turn

Obstacle

Fig. 7. Test environment for experiment #1

The aim of this experiment was to test if the control of
the robot could be carried out with accuracy in reduced
spaces, and the adequateness of the robot’s view about the
environment for the operator to properly teleoperate the
robot. It must be emphasized that during the experiments
users were not in the same environment as the robot, but
in a different lab with a monitor where the GUI displayed
the scene view of the robot. Moreover, the only knowledge
about the scenario given to the user was the schema shown
in figure 7.

Table I shows the results of questionnaires completed by
the participants.

Goal Precision of

User reached Attempts movements Difficulty

1 Yes 2 3 4

2 Yes 2 3 3

3 Yes 2 4 4

4 Yes 3 5 3

5 Yes 1 5 2
Total { 5/5 { 2 { 4/5 { 3.2/5

TABLE 1

RESULTS OF THE FIRST EXPERIMENT

As shown in table I, all participants successfully reached
the goal. Most participants needed more than one attempt to
complete the experiment. Some of them failed in the first
attempt because the perception of the environment was not
good and they were not able to avoid all the obstacles. More
specifically, the lack of side view difficults the guidance of
the robot.

On the other hand, despite the difficulty of the experiment,
most participants believed that the selection of gestures is
correct (natural) and the movements are quite precise. We can
conclude that the system requires a short period of training
for the operator to get used to the distances.

Experiment #2: In the second experiment, the operator must
operate the robot to transport an object from one place to
another. To do it, the operator must drive the robot towards
the person who will give it the object that has to take in
its arms. Once the robot has taken the object, the operator
must send the robot towards the other person who will
collect the object. The aim of the experiment was to test
the movements of the robot arms while performing a simple
task in cooperation with humans. Figure 8 shows the test
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environment of this experiment.

Fig. 8. Test environment for experiment #2

Table II shows the results of the second experiment
obtained in the questionnaire completed by the participants.

Goal Precision of | Precision

User | reached | Attempts | movements of arms Difficulty

1 Yes 2 5 5 2

2 Yes 4 5 2 3

3 Yes 2 4 5 2

4 Yes 1 5 5 1

5 Yes 1 4 5 1
Towl | 55 | 2 | 465 | 445 | 185

TABLE 1T

RESULTS OF THE SECOND EXPERIMENT

Even though according to table II all participants success-
fully reached the goal, some needed more than one attempt
to complete the aim of the experiment; two of them failed at
least once because the robot lost balance when walking with
the arms raised, and the other one failed because the Kinect
did not detect well (for unknown reasons) the participant’s
left arm movements.

VI. CONCLUSIONS AND FURTHER WORK

The main contribution of this paper is a set of freely
available ROS packages that serve for teleoperating a hu-
manoid robot. A speech based teleoperation package has
been developed for Basque, but it can be easily available to
other languages as long as Google Speech Service provides
speech recognition for it. Right now it supports about 35
languages®. A new node has been created taking as reference
the native gspeech ROS package that allows to command
the robot verbally repeatedly in spite of network errors or
misunderstood commands. Even though the used TTS is not
as general as the ASR system, the node can be adapted by
changing the code to use a different TTS system’s APL

On the other hand, the gesture teleoperation system to-
gether with the user interface allows the robot to imitate
arm movements and act accordingly to predefined body
movements made by the operator at the same time. We are
now working on some improvements such as letting the
operator to dynamically adjust the velocity of the walking
commands (till now, the velocities were constant and fixed

3http://en.wikipedia.org/wiki/Google_Voice_Search



experimentally). New movements are also being studied such
as that of the head. Allowing the user to control the head
position would give the user the chance to take lateral
views without moving the robot, relieving the effect of the
narrow view of the camera (video of the ongoing progress
at http://www.sc.ehu.es/ccwrobot).

Something that remains to be done in the arm control is the
yaw movement of NAO’s elbows and hands. NAO can rotate
its arms from the elbows, also its hands from the wrists.
A future solution to this problem could be based on the
work done by Cole, Grimmes and Rao [3]. They propose
a system able to learn full-body motions from monocular
vision. In order to detect body motions they use different
colors to identify different body parts. Considering the idea
of identifying body parts with different colors, the top and
bottom sides of the arms and hands could be marked with
different colors, enabling to distinguish the palm and the
back of the hands.

With respect to the usefulness of the system, we are
offering a tool that can have many applications beyond
pure teleoperation. Within the area of socially assistive
robotics, i.e. robots that assist through social interaction [4],
many authors agree that humanoid robots can help assisting
patients with disabilities[16], or in pediatric therapy [8][2]
because children tend to accept robots in a more natural
way than adults. In [21] authors present an experience using
the Nao humanoid robot in a role of a physiotherapist
for rehabilitation and prevention of scoliosis in children.
Children are motivated to replicate robots’ movements as
a therapy. The developed software could help the therapists
without programming skills to record the exercises on the
robot. Our next step will be to provide a tool for recording or
learning sequences of poses from the mimicked movements.
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NAO Robot as Rehabilitation Assistant
in a Kinect Controlled System

I. Rodriguez, A. Aguado, O. Parra, E. Lazkano and B. Sierra

Abstract In this paper NAO robot is presented as a Home Rehabilitation assistant;
Machine Learning is used to classify the data provided by a Kinect RGB-D sen-
sor in order to obtain a Home Exercise Monitoring System which aims at helping
physicians controlling patient at home rehabilitation.

1 Introduction

Rehabilitation robotics is a field of research dedicated to understanding and augment-
ing rehabilitation through the application of robotic devices, and includes develop-
ment of robotic devices tailored for assisting different sensorimotor functions (e.g.
arm, hand, leg, ankle); here, robots are used mainly as therapy aids instead of assis-
tive devices.

Human position estimation is an important fact which needs to be considered
when rehabilitation applications are developed. In this paper a new approach is pre-
sented, which combines, on the one hand, the Kinect sensor provided data, and on the
other, different paradigms of the Machine Learning area, both supervised and unsu-
pervised, to achieve a good classification of the perceived human position. Once the
positions are defined, a rehabilitation system which aims at achieving good starting
and ending positions to several movements is developed.

2 Materials and Methods

The rehabilitation system proposed in this paper, which aims at maintaining the peo-
ple adherence when rehabilitation exercises are to be done at home; to do that, on
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the one side, we use a NAO robot to teach the patient the rehabilitation activities to
be performed, and on the other side, we use an RGB-D sensor to perceive the human
body positions and classify them using Machine Learning classifiers. Movements are
monitored automatically, and the system evaluates the movement quality. Improve-
ments from one day to other can also be automatically detected. The rehabilitation
system has been developed using ROS (Robot Operating System) framework.

2.1 NAO

NAO is an autonomous programmable humanoid robot developed by Aldebaran
Robotics [3]. The main goal of this robot was to provide a hardware and software
platform that will allow progress in that research area at a reasonable cost.

NAOQO’s human-like shaped body is about 58 cm tall, weights about 4.8 kg and
it can get an autonomy of 90 min approximately (see Fig. 1). 25 servos enable to
control the 25 degrees of freedom of the robot and it can move in any direction
(omnidirectional walking).

Many different applications have been developed for NAO since its birth: it can
play football, it is able to recognize objects, faces or voices, collaborate with other
NAO robots to load objects, obey orders, write, perform group choreography, play a
xylophone, help in the kitchen, and many other things.

2.2 Kinect Sensor

The Kinect sensor [2], created by Microsoft to control and interact with their con-
sole/computer using gestures and spoken commands, consists of an RGB camera, a
depth sensor (IR laser projector combined with a monochrome CMOS sensor) and
a multiarray microphone running proprietary software which provide full-body 3D
motion capture (as shown in Fig. 2), facial recognition and voice recognition capa-
bilities.

Fig. 1 NAO doing exercise
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Fig.2 Depth image
provided by Kinect

2.3 ROS and OpenNI

ROS (Robot Operating System) [4] is a framework for robot software development;
the aim of ROS is to be a system that combines some useful drivers and algorithms
(such as navigation algorithms, control algorithms for robotic arms, etc.). The system
is based on a modular concept, which means that we can have different modules
performing different tasks, and also can communicate each other.

ROS has several packages that allow to work with the Kinect. The openni_tracker
package detects when a person gets into the scene captured by the Kinect and tracks
the position of his/her head and limbs afterwards. Figure 3 shows the users’ head and
limbs detection

Fig. 3 Users’s body
tracking using OpenNI
framework
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To perform the pose classification several Machine Learning Standard classifiers
have been used; the best result has been obtained by Random Forest paradigm [1].

2.4 Used Data

Different human poses were defined for classification tasks. The total number of
defined poses is 16: these are divided into three different groups. The first group
(poses 1-11) are arm related poses. The second group (12—15) are global poses,
related to the whole skeleton. The last pose (16) is any other pose which will not be
recognized. In our Machine Learning approach, we will train a classification model
for each group of poses.

(1) psi (7) left-arm-up (13) sit
(2) arms-wide (8) right-arm-right (14) bend
(3) arms-front (9) right-arm-front (15) lie
(4) arms-up (10) right-arm-up (16) none
(5) left-arm-left (11) hello

(6) left-arm-front (12) stand

The features for the classification models are obtained from the skeleton infor-
mation provided by the OpenNI library, while OpenNI processes the Kinect sensor
data. OpenNI tracks and provides 15 skeleton points.

3 Results

Experiments have been made with a different data set for each group of poses. The
raw dataset has at least 200 known instances for each pose. The first final dataset
(arms) has 2666 instances and 18 features, and the second dataset (global poses) has
2551 instances and 42 features. Tenfold cross-validation has been used for all the test
results. Table 1 shows the classification results of arms and body poses performed in
the experiments.

Table 1 Arm and body pose classification results

Classifier Arm pose Global pose
% Correctly classified % Correctly classified
IB1 99.66 97.96
Naive Bayes 99.62 82.24
C4.5 99.62 97.41
Random Forest 99.85 99.41
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4 Discussion

The presented system uses Machine Learning paradigms to classify human poses;
NAO robot is used to motivate the users to perform the rehabilitation exercises at
home, and a Kinect sensor to measure the quality of the movements. A report of the
daily and weekly exercises performed by the patients can be automatically obtained
and sent to the physicians. In this way, the patients adherence—medical term to indi-
cate patients perform properly the given homework—can be monitored and there-
fore, its usefulness increases.

5 Conclusions

The presented system aims to monitor home rehabilitation exercises. NAO is used
as exercise guide, and the Kinect is used to track the movement and to calibrate the
quality of the positions.

Obtained results are very promising; nevertheless, as future work, the system
needs to be extended in order to be able to perform a better calibration process in an
automatic way, to adapt the classification to the patient’s characteristics. New classi-
fiers are to be tested to deal with the data provided by Kinect, aiming at obtaining a
better accuracy in a more exhaustive scenario where more positions are considered.

Automatic reports of the daily and weekly exercise performed at home are very
interesting to the doctors following the rehabilitation, and this is the next step to be
done in the system as further work.
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Abstract— Bertsolaritza, Basque improvised contest poetry,
offers another sphere to develop robot body language and robot
communication capabilities, that shares some similarities with
theatrical performances. It is also a new area to work on social
robotics. The work presented in this paper makes some steps
forward in designing and implementing the set of behaviors
the robots need to show in the stage to increase, on the one
hand robot autonomy and on the other hand, credibility and
sociability.

I. INTRODUCTION

Basque, euskara, is the language of the inhabitants of the
Basque Country. And bertsolaritza, Basque improvised con-
test poetry, is one of the manifestations of traditional Basque
culture that is still very much alive (see Fig. 1). Events and
competitions are very common in which improvised verses,
bertso-s, are composed. In such performances, one or more
verse-makers, named bertsolari-s, produce impromptu com-
positions about topics or prompts which are given to them by
an MC (theme-prompter). Then, the verse-maker takes a few
seconds, usually less than one minute, to compose and sing
a poem along the pattern of a prescribed verse-form that also
involves a rhyme scheme. Melodies are chosen from among
hundreds of tunes. Xabier Amuriza, a famous verse-maker
that modernized and contributed to the spread out of the
bertsolaritza culture, defined bertsolaritza in a verse as:

Neurriz eta errimaz
kantatzea hitza

horra hor zer kirol
mota den bertsolaritza.

Through meter and rhyme
to sing the word

that is what kind of sport
bertsolaritza is.

Fig. 1.

2009 national championship

Computer-based poetry has been paid attention to in the
research community for the last years (see [8] and [21]

! Department of Computer Science and Artificial Intelligence, Faculty of
Informatics, University of Basque Country (UPV/EHU), 20018 Donostia
igor.rodriguez@ehu.eus

?Department of Computer Architecture and Technology, Faculty of
Informatics, University of Basque Country (UPV/EHU), 20018 Donostia
txelo.ruiz@ehu.eus

978-1-4673-8026-3/16/$31.00 ©2016 IEEE

for a review), but among the several differences that exist
between poetry and bertsolaritza, mainly the later belongs
to the oral genre, and the public performance is extremely
important. Therefore, it is not enough the development of an
automatic verse generation system, the created poem has to
be part of a performance. Thus, a real body that interacts
with the public and sings the improvised verse with a proper
melody is needed. The interaction with the robot should
be speech-based; thus, on the one hand the system should
be able to receive the verse requirements to generate the
most appropriate verse according to the given instructions
and to sing it with the proper melody. On the other hand,
the robot must show the same degree of expressiveness
Basque troubadours, bertsolari-s, do. And all those tasks
must be accomplished concurrently in an extemporaneous
performance.

We believe that the BertsoBot project provides a huge
opportunity to join together the capabilities of autonomous
robots to sense their environment and interact with it, and
the natural language processing tools devoted to automatic
verse generation.

II. RELATED WORK

Human-robot interaction (HRI) is the study of interactions
between humans and robots. HRI is a multidisciplinary field
with contributions from human-computer interaction, artifi-
cial intelligence, robotics, natural language understanding,
design, and social sciences. A considerable number of robotic
systems has been developed in the last decade showing HRI
capabilities [6][9].

But social robots are beyond HRI. According to Breazeal
[3], sociable robots are socially intelligent robots in a human
like way, and interaction with them is like interacting with
persons.

Verbal communication is a natural way of interaction
among humans. However, non-verbal expression is key to
understand sociability [14]. A bunch of work focuses on
facial expressiveness [10][13]. Breazeal’s Kismet robotic
head represents itself a milestone as how the human voice
affects expressiveness. Besides, the advent of humanoid
robots has launched researchers to investigate and develop
body language expression in robots. Aldebaran’s Pepper [22]
is surely the commercial robot with the highest bodily
expression capabilities right now. It has no legs, but it uses its
waist and arms to show human like expression while talking.

Robot performances have shown to be a window display
for disclosing the state of the art of social robots to the
general public, and as such, to measure social acceptance of
robots. Although everything is rehearsed beforehand, theater
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offers an invaluable sphere to research and develop social
behaviors in robots, to work and extent the expression of
emotions and the natural communication among humans and
robots [18][5]. No need to mention that the term Robot
was first used in a play entitled RUR (Rossum’s Universal
Robots) [4]. A review of robot performances can be found
in [20]. Little by little robots are bursting into theaters
motivated by researchers as a means, but also by artists [17].

However, social robots require to be autonomous. Syn-
thetic replicates are mostly teleoperated or preprogrammed
robots; the degree of autonomy shown by performer robots
is still far from showing human like behavior (see [19] for a
categorization and classification of robots acting in theaters).
In our opinion, Bertsolaritza offers another sphere to develop
robot body language and robot communication capabilities,
that shares some similarities with theatrical performances,
but also a new area to work on social robotics.

Joxerra Gartzia [7] enumerates the communication act
in 5 steps: “Inventio (create the message), dispositio (give
the message the correct form, think how to transmit that
message), elocutio (how to say the previously prepared
message, manage space and time), memoria (keep in mind
previous work) and actio (the action itself)”. Acting needs
elocutio, memoria and actio. However, bertsolaritza needs
to go through the five steps, inventio and dispositio are
mandatory. We’ll try to enumerate the main differences
between theatrical performances and Bertsolaritza:

o Theater plays have predefined scripts, and thus, the
improvisation required is very little. The acting person
might occasionally change the structure of a sentence
but not the meaning. On the other hand, the singed
verses must be created in just a moment, according
to the requirements imposed by the emcee. There is a
strong link to the required form (rhythm, rhymes). As a
consequence, a performance is never repeated, it never
happens twice the same.

« Plays require dialogues, actors talk to each other or to
the public. Bertsolari-s mainly sing, but they also need
to maintain dialogues with the emcee. Even more, they
can interchange messages in form of bertso-s with other
contestants.

o The scene on the stage changes with the play, but in a
verse impromptu performance the verse maker will al-
ways find some reference elements like the microphone
or the resting chair.

o During a theater play, the public does not participate
further than showing the degree of satisfaction with the
played stage. On the contrary, in bertsolaritza the public
can condition the response of the improviser at each
moment.

Thus, from the point of view of developing social behav-
iors in robots, both theater and bertsolaritza offer a rich
scenario to develop robot expressiveness. The former may
require more demanding body language, and the later is
better suited to develop human-robot conversation systems.
But singing minstrel robots entail social behaviors, robots

must react to perceptions and show to be autonomous. The
messages (the verses) need to be created on the spot, based
on current perceptions, and the robot needs to adapt to the
current situation, to respond to the happening events. But to
respond in a natural, human-like manner.

The contribution of this paper relies in designing and
implementing the set of behaviors the robots need to show
in the stage to increase, in one hand robot autonomy and in
the other hand, credibility and sociability.

ITI. VERSE GENERATION

When constructing an improvised verse (bertso) a number
of formal requirements must be taken into account. Rhyme
and meter are inseparable elements in improvised verse
singing. A person able to construct and sing a bertso with
the chosen meter and rhyme is considered as having the
minimum skills required to be a bertsolari. But the true
quality of the bertso does not only rely on those demanding
technical requirements. The real value of the bertso resides
on its dialectical, rhetorical and poetical value. Thus, a
bertsolari must be able to express a variety of ideas and
thoughts in an original way while dealing with the mentioned
technical constraints. In this balance lies the magic of a
bertso.

A. Generating the bertso

Bertso-s can be composed in a variety of settings and
manners. For instance, Zortziko Txikia (see Fig. 2) is a
composition of eight lines in which odd lines have seven
syllables and even ones have six. The union of each odd
line with the next even line, form a strophe. Each strophe
has 13 syllables with a caesura after the 7th syllable (7 + 6)
and must rhyme with the others. In the basic scenario (the
one we’ll focus on), the four rhymes to compose a bertso
are received as input, and the verse generator module should
give as output a novel and technically correct verse, and
(hopefully) with coherent content. There are other modes
but are out of the scope of this paper.

(7 syllables)

(6 syllables)

Strophe

(7s)

rhyme2 (6s)

(7s)
—_— shyme3  (6s)

(7s)

Lhyme4 (GS)
Fig. 2. Structure of a verse in the Zortziko txikia meter (8 lines, 4 strophes)

According to Laborde [16], human verse makers have
three main tools for improvising verses:
1) Learned improvising techniques and rules, mandatory
for generating verses metrically correct.
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2) Memory to store and classify previously listened
verses, visual and lexical information.

3) The sensorial stimuli that are input in the instants prior
to the generation of the verses.

BertsoBot has only available the first two tools, the im-
provisation process is then the result of a set of rules that,
given a metric, produce a technically sound verse. And a
huge memory, a stored corpus of ordered Basque sentences
extracted from a Basque newspaper. Complete sentences
need to be stored because they are basic structures that ensure
a minimal coherence.

The verse generation process then consists of the following
steps:

1) Receive as input the four rhymes to compose the verse

2) Find sentences in the corpus that thyme with the input

words and have the correct number of syllables

3) Generate the verse with the highest textual coherence

See [1] for a more detailed explanation.

B. Audio processing and singing

In order to generate the verse, the robot needs to identify
the proposed exercise and the given rhymes first. The audio
is captured via SOX! and afterwards, the Google Speech
service is used (hopefully available for Basque Language) as
ASR to convert the audio to text. Once the text is received,
it is analyzed to verify whether the words are available in
a local dictionary (list of words with synonyms). If, as a
consequence of the analysis no word is recognized, then the
robot tells the emcee that it has not understood the sentence
and asks to repeat the exercise.

To be able to communicate with the emcee, the robot
makes use of AhoTTS, a speech synthesizer for Basque
Language developed by AhoLab [11].

But, besides of talking, the robot must sing. The generated
verse must be translated to a song in an audio file that will
afterwards be reproduced by the robot. To get such audio,
first the utilized metric is analyzed and, then, a melody is
randomly chosen from an available database and, using a
modified version of the AhoTTS that changes the duration
and intonation of the syllables, among other features, pro-
duces the audio file with the singed verse.

IV. FIRST PUBLIC PERFORMANCE

At the very beginning of this project we were invited to
make a public demonstration: a duel between robots and
human bertsolari-s. It was a big challenge at the state of the
art, and it was an invaluable opportunity not only to make
a didactic demonstration of what a real robot could do in
bertso composition, but also to see how the real bertsolari-
s, and the illustrated audience will behave and react when
faced with synthetic replicates. Fig. 3 shows a snapshot of
the event.

The performance aroused great interest, and almost every
local newspaper, radio and television covered the event (see

'Sound eXchange, a cross-platform command line utility to process audio
files

Fig. 3. Verse-duel between one bertsolari and two robots

[23], [24]). However, that first performance was a little bit
daring, the system development was naive. The verses were
improvised, with more or less meaning depending on luck,
but the rest of the show, i.e. the robot movements and actions
were mostly preprogrammed or teleoperated with a joystick.

Several lessons were extracted from that event. The em-
ployed robots, a Pioneer 3DX and a PeopleBot both from
MobileRobots, were not very suitable for body language,
due to their limited expressiveness. The PTZ unit was used
mainly for simulating changes in gaze direction, and small
oscillations were implemented to emulate dancing move-
ments while singing.

Beyond the robot morphology, that first performance
showed us that a bunch of work was needed before con-
fronting again with human bertsolari-s. On the one hand,
regarding the verse creation, methods for enhancing verse
coherence were needed. On the other hand, the autonomy
level of the robots in the stage should be increased and, more
important, the way the robots behave on the stage should be
humanized. If the robots are meant to participate in such
contests, they must show a higher level of expression, much
more like human actors do. Next sections show the steps
forward being made to improve those behavioral aspects.

V. BODY LANGUAGE DEVELOPMENT

The BertsoBot requires certain capabilities to sing impro-
vised verses to the public, dramatizing the eloquence (gesture
repertoire) that a human bertsolari shows at the stage. Thus,
it should be capable of communicating in a natural way with
the emcee and the other contestants, but also to identify some
key elements on the stage.

The first decision we made was to change the robotic
platforms used. Well, the shape might be not so important
but a higher number of degrees of freedom clearly helps.
Now, NAO humanoid robots from Aldebaran Robotics are
being used.

The verbal and gesture communication capabilities with
the new platforms were tested in an initiative named Zientzi-
aClub or Club of Sciences that aims to disclose science and
technologies to the society. A dialogue with NAO of approx.
10 minutes was presented (Fig. 4). The robot was required
to give some explanations about itself, and to produce a
verse given the rhymes. The robot was teleoperated by
human gestures captured by a Kinect sensor (see [27]); NAO
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gesticulated while chatting, and moved around the stage
according to the teleoperator commands (video available
at [25]).

Fig. 4. Dialogue at ZientziaClub. The teleoperator is placed on the same
stage, visible to the public

Next subsections explain the modules developed to remove
the teleoperation to improve robot autonomy and to supply
it with a decent expressiveness. The underlying software
architecture is depicted in Fig. 5.

Chatting modules

Audio
> [speech analysis | —X—
< fudio | [Speech synthesis| =Xt o‘ )
Camera Key object Mic, chair, Sy,
Tmages identificator

Bertsolari \& \r
MC = |
- Movement T!Ee pf gesture "
e e s h
q g, |—
Microphone generator talking, singing) '!l’
Chair Verse generation ?
L

QR code Automatic verse X
—

generator

Exercise o
Rhymes, therfie,

metric

Corpus

singed bertso ['Singing module

Fig. 5.  Software architecture. The modules work in parallel and are
activated by different stimuli.

A. Behavior repertoire

Based on the usual flow of a contest, the robot should be
able to:

1) Await its turn to sing, until the emcee calls it.

2) Approach the microphone and listen to the exercise
being proposed to it by the emcee.

3) Generate the verse and sing it.

4) Observe the public reaction that will allow to feed
future verses

5) Reach back its chair, or attend to the next exercise
according to the emcee’s decision

The robot pays attention to different elements at different
states. The mic location is a reference point for the robot, and
also is the chair. For the time being, those elements, as well
as being adapted to the robot morphology, they have labels
to make it easier the identification processes. They all have
color tags that make them distinguishable; chairs have been
painted with different colors and, similarly, the microphone
has a blue tag on its base. No location information in form
of odometry or frame of reference is used because the
location of those elements with respect to the robots varies
depending on the scenario. Thus, a color tracking procedure

enhanced with a Kalman Filter is used to produce a more
robust behavior against illumination conditions and the robot
balancing while walking.

For the microphone tracking, both cameras on the robot
head are used. The top camera is used to locate the mic
and approach to it. Once the lower camera reaches the view
of the microphone, the robot stops forwarding and uses its
visual information to correct its position with respect to the
microphone.

Besides, for the chair tracking, only the top camera is
used to approach it until breast sonars detection alerts that
the chair is close enough. Then, the robot turns and uses a
yellow line on the floor to center its position with respect to
the chair so that it can execute the sitting exercise.

Although most of the time the bertsolari-s act individually,
sometimes they need to react to other contestant actions. For
instance, after one contestant is sent to its chair, and the
next one is called, they cannot collide on their trajectories.
Humans will naturally do it waiting for the robot or human
or letting them pass. But as the system must contemplate the
situation with more than a single bertsolari robot in a show,
the robots need to coordinate among them. At the current
state, this coordination is hard coded, there are prefixed
timing values set that allow robots to act without pouring
into trajectories.

B. Gesture repertoire

Five different gesture sets have been identified and imple-
mented, using Choregraphe®, or by modifying some of the
movements available within the robot’s libraries:

o Thinking gestures: those gestures that, unconsciously,
we make while standing up in front of the microphone
and thinking the verse. They are movements to unstress,
to relax tension like put one’s hands back, swing the hip,
scratch one’s head, ... There is one gesture extremely
important while thinking: reach and maintain a neutral
pose. The robot needs to move, needs to reproduce some
gestures but it cannot be continuously gesturing like
a puppet; improvising a verse is a very hard mental
process that requires extreme concentration and that is
reflected in the body language of the imprompters.

« Talking gestures: humans don’t stay still while talking,
we naturally gesticulate moving the hands or nodding.

« Singing preamble gestures: just after the improvisation
process finishes and before the bertsolari starts singing,
he/she needs to accommodate the body and/or clear the
throat, look around and probably stare off into space,
above the public.

« Singing pose: oddly, and probably due to the extreme
concentration effort that must be maintained, the bertso-
lari stands still while singing. Of course, not everyone
maintains the same pose, sometimes they keep the hands
on their pockets, or on their back, or just have their arms
down, but that pose does not vary significantly from one
bertsolari to the other.

2 A multi-platform desktop application created by Aldebaran for monitor-
ing and controlling NAO humanoid robots
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« Sitting gestures: humans are not designed to be mo-
tionless while being awake, and so, it is not appropriate
to have a robot sat inert in the stage. Humans stretch
or cross their legs, drink water or move the head to
change the gaze while being sat. No need to said that our
robots’ movements are very limited in that position, and
that most of the mentioned moves cannot be replicated.
But they can change their arms’ position and make
movements with their heads. Again, the neutral pose
is often required to be maintained.

As Guy Hoffman underlines in [12], when you want to
arose emotions, it does not matter so much how something
looks like, it is all in the motion, in the timing of how
the thing moves. If public attention and interest are to be
maintained, gestures cannot be predictable. Even for the
robotic enthusiastics, it becomes extremely boring to see
the robot doing exactly the same thing once and again.
Thus, after identifying the main different states of the global
behavior and generating the gesture libraries for each state,
we chose to randomly select all, the number of gestures
(between a delimited interval), the gesture set and the order
in which they must be reproduced, at each state as the
performance progresses. The neutral positions while thinking
and being sat have a higher probability to be selected due
to their importance, and the time to maintain that pose also
varies randomly (again within a hard coded time interval).

Regarding the talking and singing states, the duration
of the audio file can be measured in advance. Hence, the
duration of the associated movement set is adapted to the
duration of the audio file.

This solution may seem a little naive, but it has shown to
be effective to increase the spontaneity of the robot, from
the perspective of the observer and thus, the empathy with
the robot.

VI. DEMOS

We have not had the opportunity to make a public demon-
stration with the evolved system in a real scenario yet, but
the performance of the system can be appreciated in several
videos that can be found on our YouTube channel [26]:

a) Gesture repertoire: this video reflects different
scenes of a play. On the one hand, sitting gestures are demon-
strated by two robots that remain sat while gesticulating with
different timings and in a different manner. On the other
hand, thinking gestures show how the robot behaves while
thinking the verse, while talking. Lastly, the singing preamble
gestures somehow warn the public it is going to sing.

b) Behavior repertoire: this video shows how the robot
moves around the stage, when the MC calls it or sends it back
to rest.

¢) Chatting and singing behaviors: the video shows the
kind of dialog the robot maintains with the MC in different
cases, for instance when it has not been able to understand
what the MC has said or how it asks the MC for the rhymes
again when it misunderstands them. Besides, the video shows
the robot humming when it is not able to compose a strophe
with a given rhyme.

d) Global behavior: in a rehearsal recorded at the lab,
two NAO act as troubadors and the roll of the MC is
performed by a third robot, a Pioneer 3DX. The robotic MC
then establishes the rules of the duel: who starts, the exercises
and the flux of the performance. QR codes are used by the
emcee to distinguish the two NAO robots (Fig. 6). Verse-
maker robots communicate among them sharing messages
and each one acts when demanded.

Fig. 6. BertsoBot demo

VII. SHORTAGES AND FURTHER WORK

It is not easy to objectively evaluate the performance of
the proposed system. However, the ontology of robot theater
proposed by Lu [19] shall be used to measure the state of
the BertsoBot. Lu’s ontology is based on the automation level
and the required control the robots depend on (see figure 7).
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Fig. 7. Ontology of robot theater proposed by David Lu

Analyzing the evolution of the BertsoBot, the first proto-
type utilized in our first performance could be categorized
as a Category 1 Class II robot, an open-loop with a hybrid
control, hybrid in the sense that behavior was partially
specified by the human, but there were also algorithmicaly
specified behaviors. The second approach, settled with the
new platforms and the gesture-based teleoperation could be
classified as Category 2 Class IV, a closed-loop system with
human input where the performance changes according to
some conditions on the stage but not arbitrarily.

The current state of the project locates the BertsoBot at
Class VIII, behavior produced algorithmicaly in a closed-
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loop control. The robot generates its behavior via compu-
tation, without explicit human intervention further than the
oral instructions given by the (robot or human) emcee. But
the behavior depends on its own perceptions.

Regarding the behavior of the BertsoBot as a single unit,
besides improving the verse coherence (some steps forward
have been made in [2]), many aspects need to be developed
and integrated:

« No many robots show self-awareness of the mistakes
they have done (see [28]) and the BertsoBot is not an
exception. Up to now, if for any reason the robot cannot
generate a strophe, the robot hums during that piece of
the verse. But the failure is not reflected on the behavior
nor in the body expression. We must give the human the
sense that the robot knows what it is doing reflecting the
errors or the poor actuation sensation on its behavior.

o If the BertsoBot is to be trustworthy, public reaction
must feedback the robot somehow. For example, in
[15] the public is invited to participate showing colored
paddles that hints the robot with the kind of jokes the
audience (dis)likes.

There is another aspect that affects the coordination of
several BertsoBot-s acting together that should be improved.
Regularly, when it is a human actor that interacts with a
robot, she/he tends to adapt to robot timing, filling pauses
with her utterances, and helping to conceal delays and robot
limitations. But for instance when it is a robot the one
that acts as the emcee, the delays (produced by the internet
access and the computational units used, but also because
of the hard coded timings fixed on the programs) remain.
Communication among robots must be extended and more
basic behaviors must be integrated.

Summing up, we’re still far from having autonomous free
robotic bertsolari-s (Class IX in Lu’s ontology) but we are
little by little making steps forward.

APPENDIX: COMMUNICATION AMONG ROBOTS

The BertsoBot project is being fully developed using
ROS (www.ros.org), that offers a modular structure.
Related packages are available at RSAIT’s GitHub
(github.com/rsait/rsait_public_packages).
Including a third robot as the MC required to distribute
the computation processes and thus, the communication
among them. To solve that issue we chose to use
multimaster_fkie, available in the ROS wiki that
allows stabilizing the communication among two or more
machines that are running their own roscore.
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Abstract— Currently humanoid robots become technically
more capable of executing complex movements, showing
human-like gestures, sometimes even facial expressions, and
acting in general. While this lays the basis to make robot
theater/enactments more and more interesting for the audience,
another key-component is flexibility in the flow of an event to
move on from simple pre-scripting. Here a sophisticated method
is introduced relying on audio processing, clustering and
machine learning techniques to evaluate audience’s applauses,
allowing the robot to infer self-evaluation about its actions. In
a second step we use this information and a humanoid robot’s
body language to alter the flow of the event and display a
reaction for the audience.

I. INTRODUCTION

Basque, euskara, is the language of the inhabitants of the
Basque Country. And bertsolaritza, Basque improvised sung
poetry, is one of the manifestations of traditional Basque
culture that is still very much alive. Bertso-saio events,
contests in which verse-makers compete, typically feature
a number of poets (bertsolari-s) that first await a set of
words (i.e rhymes), which then should be incorporated in
a spontaneously made up poem. The poems are presented
to the audience and may make use of one out of various
melodies. Bertsolaritza offers another sphere to develop
robot body language and robot communication capabilities,
and thus, to increase robot autonomy and sociability. The
Bertsobot project [1] aims to develop troubadour robots, and
allows for a robot-style enactment. In its current version
it features basic poetry creation and follows the different
phases of an event, from finding a microphone to presenting
a poem. Body language is used to make the robot’s actions
more lively. A more detailed description of the state of the
Bertsobot system can be found in [13].

The events usually consist of a rather formal flow of
poetry recitations, reasonable appreciation from the audience,
mostly by clapping and calming down to silence for the
next poet’s turn. This situation has been modelled well in
Bertsobot, but so far the robot had no possibility to show
empathy to the audience. If the troubadour performance is
to be perceived credible, lively and creative, public reaction
must be perceived by the robot somehow and its behaviour

*This work has been partially supported by the Basque Government
(IT900-16) and the Spanish Ministry of Economy and Competitiveness
MINECO (TIN2015-64395-R)

LAuthor is with Department of Computer Science, University of
Freiburg, Germany, kraemerf@informatik.uni-freiburg.de. 2Authors
are with Faculty of Informatics, Computer Science and Artificial Intel-
ligence, University of the Basque Country (UPV/EHU), San Sebastian,
igor.rodriguez@ehu.eus. SAuthor is with Faculty of Informatics, Com-
puter Architecture and Technology, University of the Basque Country
(UPV/EHU), San Sebastian.

978-1-5090-4718-5/16/$31.00 ©2016 IEEE

160

must reflect the noticed sensations, either showing a proper
body language or, like real troubadours do, integrating them
in the next sung verse.

Despite the thrilled state of the audience, the need for
concentration of human poets is very much respected by
them, and thus, the crowd waits until the actor finishes to
show how pleasant the verses have been, usually clapping as
well as laughing when they have found it amusing.

There are several poetry disciplines around the world
similar to bertsolaritza, the Italian bards, Argentine payadors
or Catalan glossators to mention some. But the closest
example is the American poetry slam [14] in which poets
read or recite poems and are usually judged by selected
members of the audience or by a panel of judges. The winner
is chosen according to the intensity and duration of the
audience’s applauses.

The goal of this work is to move on to a closed-loop
form of the robot performance where the robot perceives
audience’s feedback measuring the clapping intensity after
it has sung, and then reacting through subtle gestures like it
would be expected from a human poet.

II. RELATED WORK

Developing an approach to react to the audience’s feed-
back covers multiple fields, such as applause detection,
classification and selection of the robot’s appropriate reaction
in the context of the performance.

The problem of content-based audio classification and
segmentation has been studied intensively outside the field of
robotics and some work has specifically focused on applause.
Cai et al. [5] have successfully used Mel-Frequency Cepstral
Coefficients (MFCC) and a set of low-level features such
as sub-band energies to find significant audience reactions
including applause and laughter.

Few work has been done when it comes to observ-
ing robot induced audience expressions. Knight et al. [9]
have developed a stand-up comedian robot that varies joke
selection depending on pre-communicated visual feedback
and noise level. Another performance robot by Katevas et
al. [8] similarly features joke-telling. It incorporates visual
emotion recognition and detecting the noise levels to delay
the performing of the comedy script. Audience feedback is
partly elicited by the robot itself leaving the spectators in a
natural comedy setup without human interference.

Several authors have observed the effect of machines
on humans. Nass et al. [12] found that adult humans do
not credit anthropomorphic characteristics to computers, al-
though people would still accept questions directly pointing
at this and interpret machines in a humanised way. How



humanoid robots’ actions can be designed in order to produce
well understandable body language and social cues has been
investigated in [2], [6] and [11].

III. PROPOSED APPROACH

The presented work can generally be split up into a
straight-forward workflow. In the initial step, audio process-
ing and machine learning techniques prepare the input audio
stream by first chunking it, and then classifying each chunk
as being applause or not. Next, the incoming stream of
classified chunks is segmented into sections of consecutive
applauses, leading to a small descriptor for every evaluated
applause. Based on all previous applauses of the event, the
most recent one can subsequently be classified, and therefore,
a corresponding robot gesture is selected. Fig. 1 summarizes
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Fig. 1: Approach workflow
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Audio chunk classification (section IV) and applause seg-
mentation (section V) are described and evaluated separately.
Then, section VI describes how the applause detection is
integrated into a live event and the robot behaviour is
adjusted to react to the received applauses. It also features
elaborated evaluation of the fully developed system in a
real event. Finally, we conclude discussing the results and
pinpointing future improvements.

IV. AUDIO CHUNK CLASSIFICATION

Applause detection can be described as a binary classi-
fication problem based on the live audio received from the
audience. First, a preprocessing step chunks the audio stream
into overlapping slices of about 0.1 seconds length using a
Hamming-window. Next, the slice is transformed into the
frequency domain using a Fast Fourier Transform (FFT)
algorithm. And then, the dominant frequency band and Mel
Frequency Cepstral Coeffcients (MFCC) are extracted using
the Essentia [4] library.

Some experiments were performed in WEKA [7] to find a
suitable approach for the audio classification problem. Sev-
eral supervised classification algorithms were trained with a
database of 5642 audio entries (1169 labelled as applauses
and 4473 as non applauses) from heterogeneous bertso-
saio events: A Support Vector Machine (polynomial kernel,
epsilon=1.0E12, complexity 1), Naive Bayes, Bayesian Net-
work (max. 3 parents), 1-Nearest Neighbour and J48 decision
tree (conf. factor = 0.25, pruned). 10-fold cross-validation
results can be seen in Table 1.

SVM NB BN K-NN J48
Performance | 96.56 9535 9553 9828  97.07
ROC 0.93 0.97 0.97 0.97 0.95

TABLE I: Audio classification comparison
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The results show no significant differences among the
tested classifiers. K-NN stands out a bit but it is not very well
suited for real-time problems. Alternatively, decision trees
(J48) are easy to implement and computationally balanced
[3]. It must be taken into account that around 20 chunks
need to be classified in a second, thus, the classifier needs to
give an answer in less than 50 ms. Hence, the J48 decision
tree was selected as the final audio classifier. The acoustic
energy calculated according to equation 1 and a binary value
showing the belonging to the applause class or not for every
audio chunk, will be the input for the next step.

E=>Y ()
0

T stands for the chunk duration and xz(t) represents the
signal value.

e))

Fig. 2 illustrates the audio chunk classification process.
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Fig. 2: Audio chunk classification
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A. Evaluation

The J48 based audio classifier was tested with the follow-

ing three different collections of audio recordings:

o Cheering and singing from a stadium (labelled as Sta-
dium).

e A combination with equally numbered samples from
unheard human bertso-saio events, event cheers, music
and whistle cheers (labelled as Pos+Neg).

e« A combination of applauses from unheard human
bertso-saio events superposed with stadium noise (la-
belled as BertsoStadium).

Table II summarizes the results obtained for these test

cases.

Stadium Pos+Neg BertsoStadium
Class NO NO YES | NO YES
Precision 1.0 0.85 0.76 | 0.27 0.81
Recall 0.63 0.71 0.85 | 0.35 0.76
F-Meas. 0.77 0.77 0.80 | 0.31 0.79

TABLE II: Audio classifier results for test cases

The cheering sounds from the Stadium dataset do not
contain any applause and are classified with a sufficiently
high recall rate. This can be seen as a hard test case since
these sounds are unlikely to be heard in a bertso-saio event.
The Pos+Neg dataset shows the quality of the classifier in the
event context. The good precision rate proves that it is highly
applicable to the problem even for unseen data. Finally, the



superposed audio in BertsoStadium shows the limit of the
classifier with poor NO-class detection for highly noisy data.

V. APPLAUSE SEGMENTATION

Once the classification of the chunks has been computed,
the next step is to segment the stream of classified chunks
and find the portions of applause.

Over the stream of positively or negatively classified audio
chunks a sliding window is applied. If the number of positive
applause classifications exceeds a certain threshold, the first
positive chunk’s start time marks the start of an applause.
In case the previous segment was also an applause, a
continuation of the applause has been detected. The applause
is identified to go on until the percentage of positive applause
chunks falls below the threshold. Then, the last positive
chunk of the segment marks the end time of the applause.
In few occasions applauses can nearly die away and flare
up again on the initiative of few individuals. In those cases
segments of applauses with little temporal distance (e.g.
smaller than 0.5s) are merged into one. Finally, the energy
of each segment is accumulated leading to a 2-dimensional
descriptor consisting of an applause’s duration and acoustic
energy.

At this point more complex descriptors would be viable,
e.g. incorporating more information about applause dynamics
like the time-energy relation or dominant frequency bands.
Generally, the basic descriptor proved to be sufficient as we
are dealing with a rather homogeneous type of applauses. It
can then be used to imitate the evaluation strategy commonly
used in poetry slams, allowing to judge the performance with
an “applause norm”.

A. Evaluation

To judge the applause segmentation implementation,
N = 20 applauses were taken from bertso-saio event videos
and the detected start and end times were compared to the
manually distinguished ones. That is, we considered the ob-
served differences between the true and the program-detected
times for applause starting (Dg ;) as well as for applause
ending (Dg ;). For each type of differences (Dj, j € {S,E}),
the mean (Dj;), Mean Squared Error (MSE) and Mean
Absolute Deviation (MAD) statistics have been calculated
as follows:

_ 1 X
D; = N;Dm )
1 N
_ .. 1.2
MSE - N;(DJ,I DJ) (3)
1< _
MAD = N;mj,i—pﬂ )

Table III shows that both means are close to zero, showing
almost no bias to the true values. The end detection errors are
more spread as can be seen by its higher MSE/MAD. This
is due to fading out applauses with no hard end bounds.

As a better intuitive measure also the MAD was calculated,
which shows that the mean detection error can be expected
to be 0.2s to 0.3s for start and end bounds. While these
deviation errors can practically add up, they still range low
enough for the purposes of this approach, when compared
to applause durations usually ranging between 4 s and 10s.

Start Detection Error (s)  End Detection Error (s)

Mean -0.09 0.03
MSE 0.04 0.22
MAD 0.18 0.33

TABLE III: Applause segmentation errors

VI. LIVE EVENT

The goal of this work is to make the robot behave
accordingly to the audience’s applauses. This is a rather
subjective task, first because the high variety of applauses
is perceived differently even by humans. And secondly,
appropriate reaction gestures must be defined, which need
to be well understood by a broad audience.

Subsections VI-A, VI-B and VI-C describe our way to
first introduce an objective classification method, and then,
choose and execute a suited reaction. Finally, different exper-
iments were performed in real-time in a live event to evaluate
the overall robotic system and audience’s acceptance of the
robotic performance. In addition, a video of some verses sung
by the robot and its reaction to audience’s applauses can be
seen at RSAIT’s YouTube channel'.

A. Applause Classification

The applauses are coarsely categorized as belonging to
one of the following classes:

« NEGATIVE

« NEUTRAL

« POSITIVE

e VERY_POSITIVE

The NEGATIVE class is because of the social obligation
of also applauding even for poor performance. These “ap-
plauses due to politeness” would actually imply a negative
feedback for the robot. On the other extreme, very extensive
applauses, as they occur at least at the end of an event, also
call for an extra class, the VERY_POSITIVE one.

The applause segmentation step gave us a 2D descriptor
containing the duration and energy of the applause. Using
this descriptor, now the applause must be classified as
belonging to one of the mentioned classes. In general the
classification must be done in an online learning fashion.
This holds to a greater extent due to the enormous variety
in audience sizes, audience knowledge of the robot system,
acoustic perception and emotional state of the audience,
making distinct events difficult to be compared. Thus, un-
supervised online learning techniques fit better to the given
problem.

IRSAIT’s  YouTube channel. https://www.youtube.com/
channel/UCT1s60S21d8fxFeugxCrjnQ
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We chose to use the k-means [10] algorithm in a non-
standard way, as it is one of the simplest algorithms which
uses unsupervised learning methods to solve known clus-
tering issues. Instead of fixing the k value beforehand, and
training the algorithm with a database, the algorithm starts
with an empty database and new data is incorporated to
the training set after each applause session. Subsequently,
as new applauses are being perceived, the clustering is
executed again, and steadily, the number of available classes
is adjusted. The first applause will always be evaluated
NEUTRAL. We consider that this first applause means a
welcome to the actors and that the show needs a warm up
before showing emotional feedback. For the second one two
classes are allowed, NEUTRAL or POSITIVE, as audience
and robot are getting to know each other and this is the
most uncertain learning phase. Afterwards, NEGATIVE,
NEUTRAL and POSITIVE classes are offered, until after six
feedback rounds sufficient knowledge has been accumulated
to also make use of VERY_POSITIVE class.

As a preprocessing step to k-means both data dimensions
are being normalised first, which might be handled differ-
ently depending on the event.

Fig. 3 shows an example of the classification of 41
consecutive applauses analysed from a real bertso-saio event.
There is not a clear separation among classes during the
initial steps of the algorithm due to the small amount of
data the algorithm is fed with. This is reflected in the online
classification results (3a). While the event progresses more
data is available and the k-means is able to separate clusters
belonging to the four classes (3b).

B. Gesture Selection

For every feedback class a set of 3 predefined gestures
has been prepared, giving a total amount of 12 different
gestures. Each gesture consists of several movements that
must be show some fluency. After the classification of a
feedback event, one gesture is randomly chosen out of the
corresponding set. To avoid obvious unauthentic behaviour
the last executed gesture of the selected class is excluded for
the next round, so that there will never be repetitions within
a short time period.

Examples are shown in Fig. 4. The first row corresponds
to a negative feedback gesture in which a sad emotion can be
clearly appreciated. The sequence relies on a slightly buckled
bearing, a shaking of the head and the eyes fixed on the
floor. The second row shows a neutral reaction; resting on
the body’s left side and moving a little its right arm the
robot shows indifference. The third row belongs to a positive
feedback; a happy reaction can be observed in which the
robot moves its hand from bottom to top as celebrating its
success. The classic bow shown in the last sequence reflects
one of the available very positive reactions.

All gestures usually take 3s to 5s of time and are
optionally accompanied with short sounds or Basque phrases.
These can range from a reserved “OK, thank you” to a
cheerful “Thank you”.

Two different behaviours were implemented:

1
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Fig. 3: Applause classification example

1) The diffident behaviour only makes use of the first
three classes, leaving out the VERY_POSITIVE reac-
tion.

The more exaggerated behaviour aims to clarify the
robot’s intentions, while it might neglect the typical
flow of the event. It makes use of all classes, including
the most expressive gestures. Additionally, the robot
puts its hand close to its ear claiming for more as soon
as it perceives applause sounds.

2)

The first one shows a more restrained or cautious charac-
ter, while the second one could be categorized as haughty.

C. Evaluation

Several experiments were conducted in an event to evalu-
ate the overall robotic system and human acceptance of the
robotic stage. The audio classification and applause segmen-
tation could be effectively proven to work well with objective
offline test input, due to their subjective characteristics.
However, the applause classification and gesture selection
required to be evaluated online in a live event.

This event was arranged similar to a human bertso-saio,
with the bertsolari robot in front of a seated audience.
17 participants (59% female) familiar with this type of
events, took part in listening to the verses and reacting with
applauses. After each of the robot’s counter-reactions, all
participants, lecturers and researchers aged between 25-55,
answered a set of questions (see Fig. 5).



(d) Very Positive

Fig. 4: Examples of robot reaction gestures

The question set was designed carefully to avoid sugges-
tive questions and to get the most honest opinions grading
from 1 to 7, 7 being the most positive.

Altogether, 12 bertso-s were presented, which were se-
lected from different sources. Four verses were automatically
generated by the “automatic bertso composer” system [13],
which in its current alpha state produces technically permis-
sible but sometimes meaningless poems. Another four were
created by non-professional bertsolari-s. And the rest were
verses composed and sung by professional bertsolari-s on
national contests. The set of verses was split up into two
subsets of 6 and presented to the audience. For the first one
only the more diffident behaviour was enacted, while during
the second subset the more exaggerated behaviour was used.

Analysing the questionnaires we could infer a lot about the
audience’s acceptance of the robotic system during the show.
Fig. 6 compares the averages of the different perceptions
about the event: how the individuals rated each verse, how
they rated the group response and how suitable the gesture

1

Part 1: Questions to be answered during the

show (rate from 1 to 7)
e Individual: How much did you like this
bertso?

Group: According to the applause, how
much did the group like it?
NAO: How well did NAO’s reaction fit to

the feedback applause?

Part 2: Questions to be answered after the
show (rate from 1 to 7)
e How well did NAO understand positive
feedback?
e How well did NAO understand negative
feedback?
e Was there fluency of motion in the
reaction?

How expressive were the reactions?

How would you rate variety of gestures?
How close is the robot behaviour to real
bertso-saio?
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Fig. 5: Summary of the questionnaire

shown by the robot was (Part 1). Text labels correspond to
the class of gesture made by the robot.
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Fig. 6: Audience evaluation of the gesture selection system
(answers to part 1 of Fig. 5)

POSITIVE and VERY_POSITIVE reactions are accepted
exceptionally well by the audience. The exception is verse
number 6, which was perceived better by the audience,
but only classified NEUTRAL. This is because the verse it
refers to was enacted at the sixth position, when only three
classes were allowed. The only verse (number 11) which
was followed by a NEGATIVE reaction, but evaluated quite
well by the audience can be explained by problems with the
system platform, which led to bad detection of this applause
in the first place.

After each subset of verses, some concluding questions
about the robot’s behaviour were asked (Part 2). The com-
parison between the two different behaviours (Table IV) led
to the following remarks: While both negative and positive



audience feedback were said to be well understood by the
robot, the positive feedback was increased from 5.2 to 6.1
out of 7 possible points with the exaggerated behaviour. The
second behaviour also increased the general expressiveness
score from 4.8 to 5.9 and the variety improved almost 0.5
to 4.9 points.

When asked about the closeness to a real bertso-saio event,
the audience rated the first set of NAO’s reactions higher (3.9
vs. 3.3), but both scores are below-average.

Question Diffident beh. =~ Exaggerated beh.
Positive feedback 5.19 £ 0.83 6.13 £ 0.72
Negative feedback 531 £ 1.40 5.14 £ 1.03
Fluency 475 £ 1.13 471 £ 0.99
Expressiveness 475 £ 1.29 5.87 £0.92
Variety 4.44 + 1.03 4.88 + 145
Closeness 394 £+ 1.12 331 £ 145

TABLE IV: Public response average values for the Part2 of
the questionnaire

In order to get more insight about the quality of the
gesture set, the audience was confronted to each gesture in a
random sequence while asked for a gesture tag. Fig. 7 shows
the measured classification rates. Only case 5 was wrongly
classified as being NEUTRAL for the big majority of the
audience, while the gesture was POSITIVE. Cases 2, 3, 6, 8
and 12 do not show a clear definition, as the results show a
tie between the right tag and a neighbour class.

| negative [ neutrat [ positive H very positive

&R & R Qo‘v & & & Qoe [ & Q°°“‘
1,
08F ]
0.6 |- N - -
2
<
K5 L
0.4 —
0.2 |- - L
0
1 2 3 4 5 6 7 8 9 10 11 12
Gesture

Fig. 7: Audience gesture classification rates for the 12 ges-
tures available. The execution order was randomly selected

VII. CONCLUSION AND OUTLOOK

Without questioning for additional information or unusual
behaviour of the audience, this work already allows robots to
react and alter their behaviour during an event according to a
specific audience’s natural feedback. We have found that the
audience felt better understood when the robot exaggerated
its behaviour. It is inconceivable for a bertsolari to show
any kind of arrogance in such a traditional cultural event
that requires extreme concentration. As a consequence, this
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result makes us think that we should detach the robot event
from its human counterpart. Moreover, it appears that instead
of imitating the original event in detail, a new identity should
be established for the robot.

The classification of the applauses could also be achieved
by a Gaussian Mixture Model allowing for a more sophis-
ticated classification using priors. A comparison with the
already implemented system should be carried out. Another
extension may be to deduce the number of needed gesture
classes from an error measure over the current classification.
Future work will also include investigation about audience-
sensitive planning and integration of further, but more subtle
human feedback, like emotions in general through facial
expressions or reservation through delayed reactions. Also
we will research more in the field of gesture selection
evaluating the possibility of movement styles combined with
probabilistic methods. The robot’s empathetic level would
be improved by applying sentiment analysis to the verses
sung by the opponents and combining the results with the
proposed gesture selection mechanism.
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Abstract

The objective of this article is to compile the work carried out by the RSAIT® research group on the Bertsobot project. The
Bertsobot project aims to develop an autonomous robot capable of composing and playing traditional Basque impromptu verses —
bertsoak. The developed system is able to construct novel verses according to given constraints on rhyme and metric that also show
semantical coherence, and to perform it in public. The Bertsobot project, at the intersection of Autonomous Robotics, Natural
Language Generation and Human Robot Interaction, works to model the human abilities that collaborate in the process of creating

and performing impromptu verses in front of an audience. This paper brings together the steps taken in the design and
implementation of robot's individual behaviors and the overall control architecture.Copyright © 2017 CEA.
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1. Introduction

Until recently, it was impossible to consider humans and
robots living together. But now, robots start to become
companions or co-workers of humans, opening an important
research domain to build robots that are able to intuitively
interact with humans. A considerable number of robotic
systems have been developed in the last decade showing
Human Robot Interaction (HRI) capabilities [Fong et al.,
2003][Goodrich and Schultz, 2007].

However, social robots are beyond HRI. According to
Breazeal [Breazeal, 2004], sociable robots are socially
intelligent robots in a human like way, and they need to show
the “human social” characteristics like the expression of
emotions, the ability to conduct high-level dialogue, to learn,
to develop personality, and to develop social competencies. In
consonance with FeilSeifer and Mataric [Feil-Seifer and
Mataric, 2011] social robots can be categorized as assistive
robots (AR), socially interactive robots (SIR) and socially
assistive robots (SAR). Regardless of the applications, in the

1 Aitzol Astigarraga.
2* Autor en correspondencia.

last years, research in the field of social robotics has grown.
Several robots have been designed in this area, to support
development of self-efficacy and emotional well-being in
diabetic children [Caflamero and Lewis, 2016], as interactive
teachers in a collaborative learning class with infants [Kanda
et al, 2012] and as shopping mall guide, designed for
customer navigation, information providing and enjoyment
[Chen et al., 2015], to mention some.

Entertainment is an area in which social robots can have
high impact. Public performances using robots have shown to
be a great setting for disclosing the state of the art of social
robots to the general public. Theatre, a live entertainment
activity, offers an invaluable field to research and develop
social skills in robots. Although everything is rehearsed
beforehand, theatre offers an invaluable sphere to research and
develop social behaviours in robots, to work and extent the
expression of emotions and the natural communication among
humans and robots [Lin et al.2009] [Fernandez and Bonarini,
2014]. A review of robot performances can be found in
[Murphy et al., 2011]. Little by little robots are bursting into
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igor.rodriguez@ehu.eus (I. Rodriguez),
txelo.ruiz @ehu.eus (T. Ruiz),
e.lazkano@ehu.eus (E. Lazkano)

URL: http://www.sc.ehu.es/ccwrobot/seccion/members-2/subseccion/aitzol-astigarraga-2 (A. Astigarraga)

3http://www.sc.ehu.es/ccwrobot/seccion/home/lang/en
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theatres motivated by researchers as a means, but also by
artists [Li].

The BertsoBot project described in this paper resumes the
work done by RSAIT in the last years. This project provides a
huge opportunity to develop social robot capabilities in the
context of bertsolaritza, a traditional Basque improvised
singed poetry manifestation. It aims to develop minstrel robots
that, beyond generating verses automatically, are able to sense
the environment and interact with it, and show proper body
language and robot communication skills, like real
troubadours do. Aldebaran’s NAO humanoid robotic platforms
are being used that, although faceless, allow for body language
development and have multisensory capabilities.

2. Bertsolaritza and Automatic Verse Generation

Basque, Euskara, is the language of the inhabitants of the
Basque Country. And bertsolaritza, Basque improvised contest
poetry, is one of the manifestations of traditional Basque
culture that is still very much alive.

Events and competitions are very common (see Figure 1),
which usually consist of a rather formal flow of poetry
recitations, bertso-s. In such performances, several verse-
makers, compete with each other singing improvised verses
about topics or prompts which are given to them by an emcee
(theme-prompter). They compose the verses on the fly,
normally in less than one minute, and sing a poem along the
pattern of a prescribed verse-form that also involves a rhyme
scheme. Melodies are chosen from among hundreds of tunes.
Xabier Amuriza, a famous verse-maker defined bertsolaritza
in a verse as:

Neurriz eta errimaz
kantatzea hitza

horra hor zer kirol
mota den bertsolaritza.

Through meter and rhyme
at singing a word

could bertsolaritza be

seen as sport.

Figure 1: 2015 National bertsolari’s championship.

Different poetry disciplines similar to bertsolaritza can be
found around the world, such as Catalan glossators, Argentine
payadors or Italian bards to mention some. However, the
closest example is the American poetry slam (Somers-Willett,
2009) in which poets read or recite poems and are sometimes
judged by selected members of the audience and sometimes,
like in bertso contests, by a panel of judges.

The art of composing improvised verses requires a number
of prerequisites that must be taken into account. We can say
that any person with the capabilities to construct and sing a
bertso with the chosen meter and rhyme has the minimum
skills to be a bertsolari. But the real value of the bertso goes
beyond composing a verse according to those demanding
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technical requirements. Its real value resides on its dialectical,
rhetorical and poetical value [Garzia et al. 2001]. Thus, a
bertsolari must be able to express a variety of ideas and
thoughts in an original way while dealing with the mentioned
technical constraints. In this balance lies the magic of a bertso.

Bertso-s can be composed in a variety of settings and
manners. For instance, Zortziko Txikia (see Figure 2) is a
composition of eight lines in which odd lines have seven
syllables and even ones have six. The union of each odd line
with the next even line form a strophe. Each verse has 13
syllables with a caesura after the 7th syllable (7 + 6) and must
rhyme with the others.

2 (7 syllables)
s
B ——— 0] (6 syllables)
(7s)
—ihymez  (65)
(7s)
—rhymed  (6s)
(7s)
—lhV0C4 (6s)

Figure 2: Structure of a verse in the Zortziko txikia meter.
2.1. Automatic Verse Generation

Computer-based poetry has been paid attention to in the
research community for the last years (see [Gervas, 2013] and

[Oliveira, 2009] for a review), but among the several
differences that exist between poetry and bertsolaritza, mainly
the later belongs to the oral genre, and the public performance
is extremely important.

According to Laborde [Laborde, 2005], human verse
makers have three main tools for improvising verses:

1. Learned techniques and rules for improvisation,
mandatory for generating verses metrically correct.

2. Memory to store and classify previously listened
verses, visual and lexical information.

3. The sensorial stimuli that are input in the instants

prior to the generation of the verses.

The improvisation process is then the result of a set of
rules that, given a metric, produce a technically sound verse
with content obtained from a huge memory.

We have developed two poem generation strategies that
respond to popular exercises in bertsolaritza:

® 4 rhymes given: four rhyming words are given and is
required to compose the bertso "around" these
rhyming words.
Theme given: a bertso must be composed on the
given subject.

In this work we will focus on the first strategy, and thus,
the automatic verse generation process consists of the
following steps:

1. Receive as input the four rhymes to compose the
verse.

2. Find sentences in the corpus that rhyme with the
input words and have the correct number of syllables.

3. Generate the verse with the highest textual
coherence.
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3. The BertsoBot Architecture

The aim of any bertsolari when she/he sings an improvised
verse is to convey a message, according to the requirements
imposed by the emcee, while entertaining the public. But the
interaction with the environment — stand in front of the
microphone, obtain rhymes given by the emcee, perceive
audience’s reaction — is as important as the composition of the
verse.

The BertsoBot system endows the robots with some of the
bertsolari-s’ capabilities that allows this social robots to take
part in a public performance. For that purpose, the system
must follow the dynamic of real events, bertso-saio-s, as
troubadours do.

1. Wait sitting for its turn.

2. When it is its turn, place itself in front of the
microphone and listen to the exercise proposed by
the emcee.

3. Compose and sing the verse to the public.

4. Observe and receive audience’s feedback and react
accordingly.

5. Go back to its sitting place.

All these tasks are accomplished and managed by a ROS*
based control architecture, composed by different behaviours
or modules that make the robot act in a consistent manner and
resemble to a real bertsolari. Figure 3 shows the global system
architecture.

Face and Sound Localization

0 image Face S Face and Sound
Xy, Soung Tracker | | Tracker positon
— Find key objects
@ T
= [ _mege Object Objoct =
o~ dentifier o Mation Controller  ———
(Mic, Chair, OR)
Chatting
Speech
sp,mhg Text Speech
o8 Synthesizer Talking
b ‘GB Sound
T [ speseh [Text [ oo gmm Performance Robot State
Analizer 0B State Controllar Controller
Verse Generation
Automatic Verse gww Gesture Controller
Exercise, Rhymes, Generator (talking, waiting, thinking, —————

Topic, Metric reaction, emotan, singing)

Verse fa Song
Converter

Feedback from the audience

Sound

-

Figure 3: ROS based control architecture
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Summarizing Figure 3, the “Performance State Controller”
is the module that brings the coherence necessary to the
system in order to follow the dynamic of a performance. The
“Face and Sound Localization” as well as the “Chatting”
behaviours allow the interaction with the emcee, while “Find
key objects” provides the robot with necessary skills to
interact with environmental key objects. These interactions,
usually executed as motion actions, are managed by the
“Motion Controller”. The action to be executed will depend on
robot current state, managed by “Robot State Controller”. The
verse is composed and sung by the “Verse Generation”
process, and audience applauses, which affect the robot’s
emotional state, are captured and classified by “Feedback from

4www.ros.org
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the audience” behaviour. The robot body expression is
managed by the “Gesture controller” which decides the
gestures to be applied from the appropriate gesture set at each
state according to the “Performance state”, the “Robot state”,
and the “Emotion selector”.

4. Behaviours

4.1. Chatting

In order to generate the verse, the robot needs to identify
the proposed exercise and the given rhymes first. The audio is
captured via SOX® and afterwards, the Google Speech service
is used as speech recognizer to convert the audio to text. Once
the text is received, it is analysed to verify whether the words
are available in a local dictionary (list of words with
synonyms). If, as a consequence of the analysis no word is
recognized, then the robot tells the emcee that it has not
understood the sentence and asks to repeat the exercise.

To be able to communicate with the emcee, the robot
makes use of AhoTTS tool, a speech synthesizer for Basque
Language developed by AhoLab [Hernaez et al., 2001].

4.2. Verse Generation and Singing

In the basic scenario, the four rhymes to compose a bertso
are received as input, and the verse generator module then
should give as output a novel and technically correct verse,
and with coherent content. This process can be mainly split up
into two steps; first, find the sentences in the corpus that
rhyme with the input words and have the correct number of
syllables, and then, generate the verse with coherence. See
[Astigarraga et al., 2013] [Astigarraga et al., 2014] for a more
detailed explanation.

For the first step, two tools have been developed: the
rhymes finder and the syllables counter. The rhymes finder
outputs the sentences obtained from a corpus that match with
the rhymes given by the emcee. The corpus is composed with
documents mined from the Basque newspaper Egunkaria®
(%85) alongside verses extracted from the work of well-
known bertsolari-s (%15). While the syllables counter filters
the sentences according to the given metric.

The next step is to obtain the verse with highest coherence
or meaningfulness. Latent Semantic Analysis (LSA) approach
has been used to compare the relationship between pairs of
sentences to choose the most semantically related ones for the
final verse. To do that, the sentence relation system computes,
for each pair of sentences, a score that evaluates how those
sentence are semantically related.

As final result, the output poem must be translated to a
song in an audio file that will afterwards be reproduced by the
robot. To get such audio, first the utilized metric is analysed
and, then, a melody is randomly chosen from an available
database and, using a modified version of the AhoTTS that
changes the duration and intonation of the syllables, among
other features, produces the audio file with the singed verse.

5Sound eXchange, a cross-platform command line utility to

process audio files
6https://en.wikipedia.org/wiki/Egunkaria
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4.3. Interaction with the environment

4.3.1. Face and Sound localization

A natural reaction when we want to interact with someone
is to direct our gaze towards the interested agent. The gaze
feeds the communication, and conveys interest or attention to
the interlocutor. It requires positioning the robot to make the
most out of its sensors and to let the human talker know what
the robot is actually paying attention to. Spontaneity during
verbal communication involves two main behaviours, face and
sound localization.

Face localization is done applying OpenCV’s Haar feature-
based cascade classifiers [Viola and Jones, 2001] to the images
taken by the upper camera on the NAO’s head. Once the face
is detected within an image, the center of the face in the image
is obtained, and the head joint angles to track the face, with
respect to the center of the image are calculated.

Sound localization allows a robot to identify the direction
of sound, and it is done wusing Aldebaran’s
“ALSoundDetection” algorithm based on TDOA (Time
Difference of Arrival) approach [Bensky, 2016]. The sound
wave emitted by a source is received at slightly different times
on each of the NAOs four microphones, from the closest to the
farthest. These differences are related to the current location of
the emitting source. By using this relationship, the robot is
able to retrieve the direction of the emitting source (azimuth
and elevation angles) from the TDOAs measured on the
different microphone pairs.

4.3.2. Find key objects

The robot pays attention to different elements at different
states. The robot can be requested to reach the microphone to
start its singing turn or it may need to go to rest to its chair.
For the time being, those elements, as well as being adapted to
the robot’s morphology, they have labels to make it easier the
identification and recognition processes. They all have colour
tags that make them distinguishable; chairs have been painted
with different colours and, similarly, the microphone has a
blue tag on its base. Every key object has a QR code to make it
recognizable. A colour tracking procedure enhanced with a
Kalman Filter is used to produce a more robust behaviour
against illumination conditions and balancing produced during
walking. No location information in form of odometry or
frame of reference is used because the location of those
elements with respect to the robots varies depending on the
scenario.

4.3.3. Feedback from the audience

Audience plays an important role in any type of
performances, specially in bertsolaritza. Despite the thrilled
state of the audience, the need for concentration of human
poets is very much respected by them, and thus, the crowd
waits until the actor finishes to show how pleasant the verses
have been, usually clapping as well as laughing when they
have found it amusing.

Perceiving and showing emotions is essential to convey
interaction. The Affective Loop is the interactive process
inwhich the user of the system first expresses her/his
emotionsthrough some physical interaction involving her
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body, and the system responds by generating affective
expression, which in turn affects the user making her/him
respond and step-by-step feel more and more involved with
the system [Hook, 2009][Paiva et al., 2015].

Developing an approach to react to the audience’s feedback
covers multiple fields, such as applause detection,
classification and selection of the robots appropriate reaction
in the context of the performance.

The presented approach uses audience applause as
feedback to the robot system [Kraemer et al., 2016]. Applauses
are captured and translated into a response from the public by
means of energy (E) and duration (d) of the applause. The
addressed strategy can be split up into a straight-forward
workflow (see Figure 4). In the initial step, audio processing
and machine learning techniques prepare the input audio
stream by first chunking it, and then classifying each chunk as
being applause or not. Next, the incoming stream of classified
chunks is segmented into sections of consecutive applauses,
leading to a small descriptor ([E, d]) for every evaluated
applause. Based on all previous applauses of the event, the
most recent one can subsequently be classified. The applauses
are coarsely categorized as belonging to one of the following
classes: Negative, Neutral, Positive and Very Positive.

Audio Chunk Applause W[Ed] ‘
Cl i i i, J ‘ Cl

Figure 4: Approach workflow

bpplause
d J class

Audio
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As all events are different, it is difficult to make a
comparison between them. Thus, in our approach we use
unsupervised online learning techniques. We use k-means to
do clustering with a variable number of classes. The first
applause is always classified as Neutral, after that, the number
of available classes is increased.

4.4. Motion and Gestures controller

4.4.1. Robot State

“Robot State Controller” provides information about the
posture in which the robot is, and whether the robot is moving
or not. The posture classification is made by a C4.5 decision
tree [21] that classifies robot posture as being sat on floor, sat
on chair, crouched (rest position) and standing up. Postures
were represented using 150 variables obtained from the TF’
tree of each robot joint (X, y, z, roll, pitch, yaw) values of the
25 DoF). To train the C4.5 classifier a total of 240 data entries
were collect, 60 entries of each class. In order to determine if
the robot is moving or not a comparison of all joints is done in
two different times.

4.4.2. Motion

There are several behaviours that output a motion action.
For instance, when the emcee’s face or a sound is detected the
robot must direct its gaze and body to her/him, when it is its
singing turn it must walk to the microphone, or when receiving

7http://wiki.ros.org/tf
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a specific order in the context of the performance. All these
motion actions are managed by a robot motion controller
which makes the robot react accordingly to the current
situation, and which is also conditioned by the robot actual
state.

4.4.3. Gestures

If our robots are meant to participate in such verse
contests, beyond singing capabilities, they must show the same
degree of expressiveness Basque troubadours do. Improvising
a verse is a very hard mental process that requires extreme
concentration and that is reflected in the body language of the
imprompters. When the bertsolari-s are on the stage they are
continuously ~ conveying  information, through facial
expressions, body postures, movements or gestures,
intentionally or not, about their emotional state.

The robot needs to move, needs to reproduce some
gestures but it cannot be continuously gesturing like a puppet.
After identifying the main different states of the global
behaviour, a gesture library composed by five different gesture
sets have been defined to mimic troubadours’ emotional
behaviour on the stage [Rodriguez et al. 2016]. At each state of
the performance appropriate gesture set is selected, and in
order to avoid to see the robot doing exactly the same thing
once and again, the gesture to be reproduced, the interval
between gestures, the execution order and the number of
gestures are always randomly selected. The five gesture sets
are:

e Thinking  gestures:  Those  gestures that,
unconsciously, humans make while standing up in
front of the microphone and thinking the verse. They
are movements to unstress, to relax tension like put
one’s hands back, swing the hip, scratch one’s head,
etc. There is one gesture extremely important while
thinking: reach and maintain a neutral pose.

* Talking gestures: Humans do not stay still while
talking, we naturally gesticulate moving the hands or
nodding. NAO accompanies its speech moving its
arms too. In this case, the number of gestures to
perform varies according to the duration of the
speech. The robot also nods to make visible that it
has understood something. It does not mean that it
knows what has been said, but it makes the
interlocutor realize that the robot has successfully
processed the captured audio.

e Singing preamble gestures: Just after the
improvisation process finishes and before the
bertsolari  starts singing, he/she needs to

accommodate the body and/or clear the throat, look
around and probably stare off into space, above the
public. Oddly, and probably due to the extreme
concentration effort that must be maintained, the
troubadours stands still while singing. Of course, not
everyone maintains the same pose, sometimes they
keep the hands on their pockets, or on their back, or
just have their arms down, but that pose does not
vary significantly from one bertsolari to the other.
Thus, no gesture is reproduced while singing.

*  Waiting gestures: Humans are not designed to be
motionless while being awake, and so, it is not
appropriate to have a robot sat inert or stand up
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paralyzed in the stage. Humans stretch or cross their
legs, drink water or move the head to change the
gaze while being sat. No need to say that our robots’
movements are very limited in that position, and that
most of the mentioned moves cannot be replicated.
But they can change their arms’ position and make
movements with their heads. Again, the neutral pose
is often required to be maintained.

*  Emotional reaction gestures: After the bertsolari
sings a verse the audience responds applauding to
express their opinion, and this reaction is reflected in
the robot as emotion gesture. Each applause feedback
class has been represented with an emotion; in the
next order Sad, Calm, Joy and Excited emotions
correspond to Negative, Neutral, Positive and Very
Positive applause classes. Two different behaviours
were implemented. The diffident behaviour only
makes use of the first three classes. The more
exaggerated behaviour makes use of all classes.

Public Performances

The robots’ performance capabilities have been
demonstrated in different events in a 4 years period. These
public performances show the evolution of the BertsoBot
project since its start up, when no humanoid platform was
available and up to now.

e  2012/04 - First public appearance: Inauguration of

the speaker’s corner of our Campus. Paradoxically
the most audacious one, due to the importance of the
event and the preliminary state of the project.
Tartalo and Galtxagorri PeopleBot  and
Pioneer2DX platforms — were brought out and acted
outdoor. No significant body language was shown,
neither chatting was possible. Robots were mainly
teleoperated and control software was Player/Stage.
Only the automatic verse generation system was
embedded in wheeled robots. Video available®.

e 2013/05 - Robots against bachelor students: An
event hold in the Faculty of Informatics where robots
competed against some bertso-amateur students.
Tartalo was accompanied by NAO for the first time.
Primary gestures were shown by NAO, that acted as
the emcee semi-autonomously. NAO was controlled
using Choregraphe. Video available®.

e 2014/03 - Women’s day at the Faculty: The

UPV/EHU annually celebrates the women’s
international day in a different center and in 2014 it
was held at our Faculty. The program included a
bertso event where two big professionals and two
robots (NAO and Tartalo) took part.
NAO showed improved chatting abilities, but still
“unROSified”. Primary gestures in NAO were
shown, which guided the event but semi-
autonomously™.

8https://www.youtube.com/watch?v=0pQBVmkzRWg

9http://www.eitb.eus/eu/kultura/bertsolaritza/osoa/1350970
/robotbertsolariak-ixa-taldea-eta-ehuko-robotika-saila/
10http://ehutb.ehu.es/es/video/index/uuid/531ec65f964be.
html
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e 2014/11 - ScienceClub: Club of Sciences events aim
to disclose science and technologies to the society. A
dialogue with NAO entitled “Chatting with NAO” of
approximately 10 minutes was presented. NAO acted
alone and it was its first performance after being
“ROSified”. However, it still acted semi-
autonomously.

e 2015/11 - ScienceClub: Next year the title of the
event was “NAO, an empathetic or just amusing
robot?”. Body gestures were integrated and chatting
abilities were shown. The key object recognition was
tested together with the face and sound localization
behaviours. Video available'.

e 2016/02 - Discrete event at the Faculty: A discrete
event was organized at the Faculty in order to be able
to evaluate the applause classification and emotional
state gesture reproduction modules.

Thinking and singing preamble gestures were used.
Video available™.

* 2016/09 - Closing of a Summer University Course:
BertsoBot was invited to the closing of a course
entitled “Educational assessment: unresolved matter”
(organized by the University of Basque Country). It
was not a bertso-saio event but it covered all aspects
of the interaction. It was a short exhibition in which
NAO sang only one verse and thus, the applause
feedback only allowed to reflect a Calm state.
Unfortunately, we have no media of the event.

e Lab demonstration: A rehearsal without audience
recorded at our laboratory” exhibits the global
behaviour of the BertsoBot system in a performance
similar to bertsolari-s events, in which two NAQOs
act as troubadours and the roll of the emcee is
performed by Galtxagorri. The robotic emcee
establishes the rules of the duel: who starts, the
exercises and the flux of the performance.

6.  Further Work

The work carried out during this project has revealed many
promising areas of further research, such as in computer-based
poetry and social robotics fields.

Regarding to the further research in computer-based poetry,
we are working to improve the verse generation module by
generating impromptu verses using Markov chains, and
applying sentiment analysis to build higher quality poems.

On the other hand, we are considering to dynamically
adapting the different DoFs to express emotions instead of
precompiled gestures.
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Abstract—Just as humans show conscious of their body, social
robots, in the way to be truly autonomous, they should also
be able to recognize its own configuration. Our research group
is working on a project named BertsoBot which aims to develop
social minstrel robots for entertainment. The work presented here
focuses on the automatic recognition of robot self body postures.
Only proprioceptive information is being used and several super-
vised classifiers are compared to make the approrpiate choice that
fulfills the task requirements. A ROS module that performs the
online classification has been implemented for endowing the robot
with self awareness capabilities. The developed implementation
allows our NAO minstrel robot to make decisions based on its
body posture and state instead of just relying on a blind finite
state automaton. A demo is provided in a link to a video.

I. INTRODUCTION

According to Lagercrantz et al. [13] a simple definition
of consciousness is the sensory awareness of the body, the
self, and the world. The first thing the child perceives is
his own body, which serves as a means of interaction with
others and the environment. Thanks to her/his body, the child
experiences different sensations, mobilizes and learns [11].
Recognizing oneself, although it seems easy, at least requires
to be conscious of ones body and ones actions.

The five senses (sight, hearing, smell, touch and taste) are
the traditionally recognized methods of perception responsible
for our interaction with the external world. Additionally,
we have several senses that are responsible for our internal
functioning. One of the most important internal senses is called
proprioception, which provides feedback about the status of
the body internally [12]. Thanks to muscle spindles, which
detects changes in the muscle and signal the angle of related
joints, we got information about limb positions, and we realize
our body’s position.

Just as humans show conscious of their body, social robots,
in the way to be truly autonomous, should also be able to
recognize its configuration. Several robotic systems can be
considered as self-aware systems, able to recognize themselves
in the mirror [10], able to be aware of their motion [14], or
able to change their own models of their physical embodiment
[4], to mention some.

We are working on a project named BertsoBot which aims to
develop social minstrel robots for entertainment [2] [18]. Our
NAO humanoid robot, as a minstrel, is able to interact with the
public and sing improvised verses showing the expressiveness

of Basque troubadours at the stage to a certain extent. The
work presented here focuses on the automatic recognition of
robot self body postures. Taking into account only internal
sensory receptors the posture recognition system developed
endows the robot with the ability to know its body posture
and distinguish whether it is moving or not without the aid
of visual information. According to the posture detected, the
robot knows what type of movements or actions it can perform.

The rest of the paper is structured as follows: Section II
summarizes the related work. Section III describes the devel-
opment state of the minstrel robots we are working on. Next,
Section IV explains how the posture classifier system has been
developed, choosing among several supervised approaches and
applying variable selection in order to learn a model that better
fits our needs. Section V describes how the classifier has been
integrated in the robot control architecture. Finally, section VI
gives some conclusions and pinpoints future work.

II. RELATED WORK

Human postures recognition is the closest example we have
found related to the work presented here. A bunch of work can
be found related to this problem, specially since the emergence
of cheap 3D depth sensors like Microsoft’s Kinect. On the
one hand, there are depth images based approaches; Biswas
and Basu [3] recognize gestures by extracting the variation of
the body in depth images between each pair of consecutive
frames and using a multiclass SVM to train the system. In
[19] Shotton et al. propose a new method to predict the 3D
positions of body joints using object recognition strategies
and randomized decision forests. And Wang et al. [20] use
features extracted from the ratio of the upper and lower human
body and a LVQ neural network to recognize five human
postures. On the other hand, among the skeleton information
based approaches, Patsadu et al. [15] use a set of vectors
of twenty body joint positions to recognize human gesture
using various data mining classification methods, and then,
they compare the performance of each method to find the
optimal classifier. Reddy and Chattopadhyay [17] propose
a method for human activity recognition based on skeleton
joints and uses PCA and Statistical approaches for features
extraction and SVM for activity classification. And Cicirelli
et al. [6] use the quaternion features of the right shoulder and

978-1-5090-6536-3/17 $31.00 © 2017 IEEE
DOI 10.1109/ICCAIRO.2017.23

69

174



elbow joints and uses different NNs to construct the models
of 10 different gestures.

III. PROBLEM CONTEXTUALIZATION

Bertsolaritza is a traditional Basque improvised singed
poetry manifestation of the Basque Country that is still
very much alive. From the point of view of social robotics,
bertsolaritza offers a good scenario to develop new social
behaviours. The BertsoBot project aims to develop troubadour
robots. Beyond the automatic verse generation system, the goal
is to join together the capabilities of autonomous robots to
sense the environment and interact with it.

The BertsoBot system endows the robots with bertsolari-s’
abilities, thus the system must follow the dynamic of a real
bertsolari-s performance as troubadours do.

b

2)

Await its turn sat on its chair.

Place itself in front of the microphone when required
and listen to the exercise proposed by the emcee.
Compose and sing the verse to the public.

Observe and receive audience’s feedback and react ac-
cordingly.

Go back to its resting location.

3)
4)

5)

All these tasks are accomplished and managed by a ROS!
based control architecture, composed by different behaviors or
modules that makes the robot act in a consistent manner and
resemble to a real bertsolari. Fig. 1 shows the global system
architecture.

Currently, the “Robot State Controller” module —highlighted
in the above figure with a red circle — works blindly, it assumes
that the robot is in the correct state that enables it to fulfil the
next possible action/movement/gesture set. The robot state is
labelled according to the last action executed. That makes the
system fragile in the sense that it is not able to recover from an
unsuccessful movement or from an unknown initial state. Any
self-aware robot, should be able to automatically recognize its
body configuration.

The posture classifier system described in the next section
aims to overcome this limitation taking into account that an
important requirement is that the developed system should be
able to give an accurate answer on the fly.

IV. POSTURE CLASSIFIER SYSTEM

When the robot receives any order given by the emcee, it
should be aware of its body posture. According to the flow of a
performance two are the principal postures the robot can show:
sit on a chair and stand up. But the robot often initializes in a
typical comfort pose like crouched or sit on the floor. Thereby,
four different body postures (shown in Figure 2) have been
defined as states to be recognized.

We pretend the robot to be able to be self aware of
its body position and thus, a skeleton based approach that
uses proprioceptive sensors seemed more appropriate for the
goal. We chose NAO’s joint positions and rotation angles
obtained from the robot’s TF [8] (tree of coordinate frames),

'www.ros.org
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Fig. 2. Robot postures classes

which provides a standard way to keep track of coordinate
frames and transforms data between different frames. Using
this information we train our database and carried out the
experimentation with different classifiers in order to get an
appropriate model for the problem stated.

A. Posture Data set

NAO has 25 joints (see Figure 3), so there are 26 coordinate
frames: one for each joint plus the root frame, named base
link. As mentioned before, in our approach the features for
the classification models are obtained from NAO’s TF. In this
transform tree the relationship between two coordinate frames
is represented by 6 DOF composed by a point in the coordinate
system, P(x, y, z), and a quaternion, Q(roll, pitch, yaw) for the
orientation.

In order to collect the data, the robot has been manually
set in each corresponding posture (standing up, sat on a chair,
sat down and crouched) and afterwards softly moved with the
stiffness off to get varying data. A feature vector of 150 (6x25)
elements has been obtained from the transformation between
the base link and each joint for each data entry. The data set
contains 60 examples of each of four classes, hence 240 cases
in total.

B. Classification Methods Used

This section gives a short introduction about the different
classification methods considered in this work to build a model
for posture recognition. Some of them are more efficient in the
model generation process, while others are more effective in
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the classification. In our case, the algorithm must be faster
in the classification process, because the goal is to obtain the
posture and detect if the robot is moving or not in “real-time”.
All the used classifiers have been trained and tested using
WEKA [9], a well-known open source data mining tool.

a) Decision trees: A decision tree is a flowchart-like
structure in which each internal node represents a “test” on an
attribute (e.g. whether a coin flip comes up heads or tails), each
branch represents the outcome of the test, and each leaf node
represents a class label (decision taken after computing all
attributes). The paths from root to leaf represent classification
rules. Several algorithms to generate such optimal trees have
been devised, such as C4.5 [16] and CART (Classification and
Regression Tree) [5].

J48 is the WEKA implementation of the wellknown C4.5
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decision tree and the one used in the experiments.

b) Naive Bayes algorithm: A Naive Bayes (NB) classi-
fier [21] is a simple probabilistic classifier based on applying
Bayes’ theorem (from Bayesian statistics) with strong (naive)
independence assumptions. In simple terms, a naive Bayes
classifier assumes that the presence (or absence) of a particular
feature of a class is unrelated to the presence (or absence) of
any other feature. An advantage of the Naive Bayes classifier
is that it only requires a small amount of training data to
estimate the parameters (means and variances of the variables)
necessary for classification.

WEKA’s NB version of the algorithm has been used with
the default parameter values. It must be noted that NB’s
underlying assumption of feature independence is not met in
this case study.

c) K-Nearest neighbours: K-Nearest neighbours [1], is a
distance based classification algorithm that stores all available
cases and classifies new cases based on a similarity measure.
This classifier is of lazy type, meaning that all the compu-
tational load resides in the classification of the instances, no
training phase is applied. The classifier works directly on the
data set, or training set. This implies that the entire data set
has to be loaded into memory during each run of the classifier.

IBk is the implementation in WEKA of K-Nearest Neigh-
bour algorithm, where K is the number of closest training
examples. £k = 1 and £ = 3 have been tested during the
experiments.

d) Support Vector Machines: A “Support Vector Ma-
chine” (SVM) [7] is a supervised machine learning algorithm
which can be used for both classification or regression chal-
lenges. An SVM model is a representation of the examples as



points in space, mapped so that the examples of the separate
categories are divided by a hyper plane that is as wide as
possible. New examples are then mapped into that same space
and predicted to belong to a category based on which side of
the gap they fall. It supports a number of different kernels
(hyper tangent, polynomial, and radial basis functions). The
SVM learner supports multiple-class problems as well by
computing the hyper plane between each class and the rest.
WEKA offers SMO, an implementation of SVM and it has
been used with a polynomial kernel and default parameter set.

C. Classification Results

Table I shows several performance measures for the clas-
sifiers previously described. Looking to the F-measure or F1
score, a measure of a test’s accuracy that consider the precision
(P) and the recall (R) of the test to compute the score (2% }ff; ),
J48 and IB3 classifiers give the best values. As mentioned
before, a main requirement for the system being developed
is the time needed to give a response. Taking into account
the non-lazy nature of the classification tree it seems to better

adjust to this requirement than the NN algorithm.

TABLE 1
EXPERIMENTS RESULTS WITH THE RAW DATA SET

\ F-measure  Precision  Recall
J48 0.971 0.972 0.971
Naive Bayes | 0.959 0.961 0.958
1B1 0.967 0.967 0.967
1B3 0.971 0.971 0.971
SMO 0.959 0.961 0.958

D. Feature Subset Selection

The performance of the system in terms of accuracy largely
depends on the set of features used. A high dimensionality can
be a problem not only in terms of classification performance,
it can also affect the time needed to give a response.

Feature Subset Selection (FSS) is the process of selecting
the relevant subset of variables to construct the classifier.
FSS algorithms can be broken up into Wrappers, Filters and
Embedded. Filter methods, are based only on general features
like the correlation with the variable to predict. Wrappers use
a search algorithm to search through the space of possible
features and evaluate each subset by running a model on the
subset. Embedded methods combine the advantages of both
previous methods.

Wrapper methods have the ability to take into account fea-
ture dependencies. Thus we decided to try to reduce the feature
vector dimensionality by applying a wrapper attribute selector
to those outstanding classifiers identified in the previous step:
J48 and IB3. We selected a greedy strategy as a search
mechanism for feature subset selection and the assessment of
each subset has been evaluated by 5-fold cross validation using
the classification paradigm being evaluated in each case, i.e.,
J48 and IB3.

Looking at the results in table II IB3 slightly out stands J48’s
performance with respect to the F-measure, but the decision

177

72

tree is a much faster estimator than the nearest neighbour
algorithm.

TABLE I
EXPERIMENTS RESULTS WITH WRAPPER

‘ F-Measure  Precision  Recall ~ Num. Attributes
J48 | 0.988 0.988 0.988 3
IB3 | 0.996 0.996 0.996 6

The J48 decision tree needs only three features out of
the initial 150 to classify a pose: RThigh_yaw, RTibia_roll
and RAnklePitch_x). Moreover, it is step wise to export the
model to NAO’s control architecture. Just a minimal set of
if-then-else rules need to be implemented. Those and the non-
lazyness nature of the decision tree are compelling reasons for
opting for the J48 model as the final posture classifier for the
BertsoBot system. Figure 4 shows the obtained tree.

LAnklePitch_z

<=-0.2555

standing
up

<=0.7887

RThigh_yaw

>0,0025
saton a
chair

Fig. 4. Robot posture classification model defined as decision tree

crouched

V. ROBOT SELF AWARENESS SYSTEM

Figure 5 shows the structure of the “Robot State Controller”
after integrating the developed posture recognition system.

Notice that the posture classifier must be fed when the robot
is stationary. To discriminate moving values, joint values at
time ¢ are subtracted from those at time ¢—1 and any difference
in any joint values implies that the robot is moving.

A ROS module has been implemented which endows the
robot with self awareness capabilities that will help it to make
a decision based on its body posture and state (moving or
motionless). nao_body_info is the name of this package
and it has two main purposes: predict the current posture of
the robot and determine if it is moving or not.

nao_body_info package has been successfully inte-
grated in the BertsoBot global system architecture. It outputs
the current body information (posture and state) of the robot
which serves as input of the gesture manager module. The
current robot body information serves:
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Current joint
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data

model

Fig. 5. Architecture of activity recognition system

1) as input to the gesture management module responsible
of choosing the set of gestures the robot must show at
each state (see [18] for more detailed information).

2) for ensuring that the robot is in the proper pose before
performing an action such as reaching the micro or that
the action has finished adequately — it is sat on the chair.

A short video? available at the RSAIT’s youtube channel®
demonstrates how the robot responds with a different action
(movement) to the “stand up” order given verbally by the
operator. NAO is able to recognise its initial pose — sat on a
chair or sat on the floor, crouched or standing up— and decides
the movements necessary to fulfil the goal accordingly. It nods
to confirm it has understood the verbal command and tells the
operator when it reaches the standing up position.

VI. CONCLUSIONS AND FURTHER WORK

Throughout the paper we have described the process of
developing a posture recognition system that endows the robot
with a self awareness of its posture while acting as a minstrel
robot. The system relies only on proprioceptive sensors (joint
positions obtained from the servos). Several classifiers have
been tested and the one that better fit the system requirements
— the J48 decision tree— was selected and succesfuly integrated
in the global robot control architecture.

Although the self awareness system is being used for enter-
tainment purposes, it could also be helpful for any application
which requires action planning that depends on the actor’s
body pose, for instance, to recover last body position when the

Zhttps://www.youtube.com/watch?v=x88fK8IuY Mc&t=4s
3https://www.youtube.com/channel/UCT1s60S21d8fxFeugxCrjnQ
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robot falls, or to determine which was the last safe position
before falling.

It remains as future work to extend the system to be able to
recognize moving actions such as walking, sitting and so on.
Increasing the self awareness would improve robot autonomy
and thus, the robot behavior at the stage.
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On how self-body awareness improves autonomy in social robots

I. Rodriguez!, J. M. Martinez-Otzeta!, E. Lazkano', T. Ruiz? and B. Sierra’

Abstract— Just as humans show consciousness of their body,
social robots, in the way to be truly autonomous need to
be aware of their body posture. Feasible gestures, moves
and actions depend on the current body posture. The work
developed in this paper aims to empirically show how self
configuration recognition augments the degree of autonomy of a
robot in the context of entertainment robotics. The integration
of a classification tree for body posture identification based
on data acquired from proprioceptive sensors of a NAO robot
allows to interact with the robot in a more flexible and
persistent manner. As a result, the robot shows a more sound
behavior and greater degree of autonomy. Moreover, even if
the body-awareness has been developed for minstrel robots, its
application can be generalized to other contexts.

I. INTRODUCTION

According to the Merriam-Webster dictionary, autonomy
is the quality or state of being self-governing. However, the
concept of autonomy in robots goes further and comprises
many qualities such as long term functioning, adaptability,
learning capabilities, operation with little human interven-
tion, self detection of errors, etc.

There is agreement in the robotics community that auton-
omy is not a yes or not property; the degree of autonomy of
a robot is a characteristic that ranges from no autonomy to
high autonomy. In that vein, Patrick Rau et al. [18] define
autonomy as the degree to what a robot can act on its
own accord. Moreover, the definition of a robot’s autonomy
level depends on the task and environment of the robot. The
autonomy of robots that operate in isolation or that of rescue
robots for instance differs from that of social robots.

We found few attempts to define a taxonomy for the
autonomy degree in robots. Most noteworthy, the guideline
for categorizing the autonomy level of a robot (LORA)
proposed in [2] in the context of HRI and focusing on service
robots. The autonomy level is usually associated with the
need for human intervention and thus, robots that need to
be operated by humans to perform well have low autonomy
and robots able to sense-plan-act with minimal human input
are categorized as highly autonomous. As Patrick Rau et
al. underline in [18], this autonomy level classification does
not suit social robots because the robot performance is
directly linked to the adequate interaction with humans. Most
socially interactive robots do not have yet the ability to work
unattended for extended periods of time. In fact, most of

1. Rodriguez, J. M. Martinez-Otzeta, E. Lazkano and B. Sierra are
with Faculty of Informatics, Computer Sciences and Artificial Intelli-
gence, University of the Basque Country (UPV/EHU), 20018 Donostia
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them are either remotely operated or follow a very specific
set of rules [7].

This paper contributes to show that body self aware-
ness improves autonomy in social robots. As mentioned
before, the autonomy level is directly linked to the
robot/environment system. We focus on entertainment robots
that must act as minstrels. Experimental results show that the
interaction with the emcee is highly enriched if robots are
aware of their body postures.

The rest of the paper is organized as follows: Section II
reviews robot self awareness. Next, Section III describes the
context in which the robot should actuate because autonomy
is directly linked to the robot and the task. Section IV
explains how the body posture awareness system has been
implemented and the changes introduced in the robot control
architecture are detailed in Section V. The overall system is
evaluated in Section VI and the last Section gives conclusions
and points to further work.

II. SELF AWARENESS

According to Lagercrantz et al. [13] a simple definition
of consciousness is the sensory awareness of the body, the
self, and the world. The first thing children perceive is their
own body, which serves as a means of interaction with
others and the environment. Thanks to her/his body, the child
experiences different sensations, mobilizes and learns [10].
Recognizing oneself, although it seems easy, at least requires
to be conscious of one’s body and one’s actions. The five
senses (sight, hearing, smell, touch and taste) are the tradi-
tionally recognized methods of perception responsible for our
interaction with the external world. But additionally to the
exteroceptive sensors, we have senses that are responsible for
our internal functioning. That fundamental internal sensory
system, called proprioception, provides feedback about the
status of the body internally [11]. Thanks to muscle spindles,
which detect changes in the muscle and signal the angle of
related joints, we get information about limb positions, and
we realize our body’s position.

Just as humans show consciousness of their body, social
robots, in the way to be truly autonomous, should also be
able to recognize their own configuration. Various social
robotic projects and researchers address the problem of user
awareness. For instance. Anki’s Cozmo' is a tiny robot with
impressive body expression that incorporates face recogni-
tion capabilities for owner identification purposes. Bergner et
al. [3] are working in an artificial skin with multiple sensors
to cover the whole body of a robot with the aim of acquiring

Uhttp://www.anki.com/en-us/cozmo/cozmo-tech



human awareness and enhancing HRI. Besides, Lanillos
et al. [14] address the problem of self-perception using a
hierarchical Bayesian computational model that integrates
proprioceptive and tactile cues with visual cues to allow the
robot distinguish between in-body and out-body elements in
the scene.

Several robotic systems can be considered as self-aware
systems to some degree, being able to recognize themselves
in the mirror [9], or being aware of their motion [16]. In [15]
H. Lipson shows how a walking robot can learn the walking
patterns of the legs by interacting with the environment.
Finally, Bongard et al. [S] propose a system able to change
their own models of their physical embodiment.

Social robots with humanoid bodies need to be aware
of their body posture. Feasible gestures, moves and actions
depend on the current body posture. Multiple works can
be found related to human posture recognition: approaches
based on depth images [4][22][23] or approaches that rely
on skeleton information [17] [19] [6], to mention some.
We tackled the problem in a rather different way. Taking
into account only internal sensory receptors, the posture
recognition system developed endows the robot NAO with
the ability to know its body posture without the aid of
visual information. The posture recognizer relies only in
proprioceptive information and a supervised classification ap-
proach is used to acquire the model. It is a more engineering
approach to develop body awareness, but it is indeed a way
to increase the self awareness of the robot. According to the
posture detected, the robot knows what type of movements
or actions can perform and thus, the interaction capability is
enriched due to an increase of the autonomy level.

III. BERTSOBOT

As mentioned before, we focus on minstrel robots that
sing improvised poetry in Basque, Euskara, the language of
the inhabitants of the Basque Country. Bertsolaritza, Basque
improvised contest poetry, is one of the manifestations of
traditional Basque culture that is still very much alive.

Events and competitions are very common in the Basque
Country, which usually consist of a rather formal flow of
poetry recitations, bertso-s. In such performances, several
verse-makers, named bertsolari-s, compete with each other
singing improvised verses about topics or prompts which are
given to them by an emcee (theme-prompter). They compose
the verses on the fly, normally in less than one minute, and
sing a poem along the pattern of a prescribed verse-form that
also involves a rhyme scheme. Melodies are chosen from
among hundreds of tunes.

The aim of any bertsolari when she/he sings an improvised
verse is to convey a message, according to the requirements
imposed by the emcee, while entertaining the public. But
the interaction with the environment — stand in front of the
microphone, obtain rhymes given by the emcee, perceive
audience’s reaction — is as important as the composition of
the verse.

We are working on a project named BertsoBot which aims
to develop social minstrel robots for entertainment [1] [20].
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The BertsoBot system endows the robots with some of the
bertsolari-s’ capabilities that allow these social robots to take
part in a bertsolari-s performance.

For that purpose, the system must follow the dynamic of
real events, bertso-saio-s, as troubadours do:

1) Wait for its turn, sat on a chair or stood up beside other
troubadours.

2) When its turn arrives, place itself in front of the
microphone and listen to the exercise proposed by the
emcee.

3) Compose and sing the verse to the public.

4) Observe and receive audience’s feedback and react
accordingly.

5) When finished, go back to its sitting place.

These five steps summarize the basic flow of an event.
Each bertsolari is called several times by the emcee, either
alone or together with one or more fellows, and each time
they can be mandated to sing several verses, i.e. steps 2 to
4 are looped.

All these tasks are accomplished and managed by a ROS?
based control architecture, composed by different behaviors
or modules, that makes the robot act in a consistent manner
and resemble to a real bertsolari. Fig. 1 shows the initial
control architecture developed and used in the public per-
formances made up to September 2016. See some of these
performances videos at RSAIT’s youtube channel®.
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Fig. 1. Original system architecture

The verse is composed and sung by the “Verse Generation”
process, the “Chatting” behaviors allow the interaction with
the emcee, while “Find key objects” provides the robot with
necessary skills to interact with environmental key objects,
such as the microphone and its resting place. These inter-
actions, usually executed as walking actions, are managed
by the “Walk Controller”. The robot body expression is
managed by the “Gesture controller” which decides the
gestures to be applied from the appropriate gesture set at
each state according to the “Performance State Controller”.
The gesture sequence is randomly selected at each time so
that the robot doesn’t show the same body behavior one and
again (see [20] more more details).

2WWW.I'OS.OI'g

3https://www.youtube.com/channel/UCT1560S21d8fxFeugxCrjinQ



A. System Limitations

The performance was totally driven by the verbal com-
mands given by the emcee that acted as a sequencer. These
commands were translated into signals by the “Chatting”
module and given as input to the ‘“Performance State Con-
troller”. These signals are associated to different orders, such
as wake up, rest, sit down on chair, sit down on the floor,
find micro, get exercise, sing a verse, find chair and so on.

Thus the flow of an event completely relied on the
“Performance State Controller”, a finite state automaton that
operated in an open-loop. The initial setup of the system
should always be the same (the robot started sat on the chair).
Any discordance between the real state and the sequence
of actions to be executed produced an undesirable global
behavior and required the intervention of the operator and
the interruption of the performance.

IV. BODY POSTURE AWARENESS

According to the flow of a performance two are the
principal postures the robot can show: sat on a chair and
stood up (see Section III). But the robot often initializes
in a typical comfort pose like crouched or sat on the floor.
Thereby, four different body postures (sat down on the floor,
sat on a chair, stood up and crouched) have been defined as
body states to be recognized (see Fig. 2).

(d) crouched

(c) stood up

Fig. 2. Posture classes

The taken approach relies on a skeleton based approach
that uses proprioceptive sensors. Given that NAO has 25
joints and each joint is characterized by six values, 150
values suffice to define the posture of the robot. P(z,y, z)
positions and Q(roll, pitch, yaw) Euler angles are obtained
and transformed to the robot’s base_link frame using TF
library [8], which provides a standard way to keep track
of coordinate frames and transforms data between different
frames.

We can think of every posture of the robot as associated to
a vector of those 150 values, and the problem of recognizing
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the posture is one of classification: different postures are
associated to different vectors and given a vector, the robot
position has to be inferred.

This problem lies in the field of supervised learning, where
from a training set of known instances a model is built to
predict the correct class of new presented instances. The
first step, then, is to get some known instances to which
apply machine learning methods. This has been achieved
recording the joint positions and Euler angles of the NAO
robot while in several different variants of the robot postures.
This gave us a total of 3332 training instances distributed
as shown in Fig. 3. Currently, we are using a J48 decision
tree machine learning paradigm because we are interested in
the easy implementability and explicability of the generated
model though other approaches have been tested with no
better results [21]. 10-fold crossvalidation results are shown
in Table I. The obtained accuracy is close to 100%.
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Fig. 3. Data distribution for training

TABLE 1
RESULTS OF 10-FOLD CV FOR THE J48 DECISION TREE

mean std

accuracy 0.9997  0.0009
jaccard similarity ~ 0.9997  0.0009
zero one loss 0.0003  0.0009

The learned tree structure can be seen in Fig. 4. Only
5 from 150 features turned out to be relevant for the
classification process: right tibia pitch and yaw, right thigh
yaw, left thigh pitch and left elbow yaw.

It is also not difficult to interpret the generated tree. In a
first look it is seen that the values associated to the joints at
the tibia, thigh and elbow are used to discriminate between
postures. This is not contradictory with which a person could
think of.

Once the model is built, the posture recognition process
is quite simple. It can be summarized into two main steps
as shown in Fig. 5. In the initial step, required features are
obtained from the robot’s TF. And then, the decision tree
learned before is applied to the extracted data, which returns
as output the predicted posture of the robot.
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V. MODIFICATIONS IN THE CONTROL ARCHITECTURE

Fig. 6 shows the schema of the new system architecture.
Several new modules have been added to enrich the so-
ciability of the robot. On the one side, “Face and Sound
Localization” allows the robot to track the emcee’s face
and redirect its body towards the sound source to give
the audience the illusion that the robot pays attention to
what the emcee is saying. On the other side, the audience
applause, captured and classified by the “Feedback from
the audience” behavior, affect the robot’s emotional state.
Besides, the “Emotional Behavior” module pretends to adapt
the body language expression to the response received from
the audience (see [12]).

The signals come from the “Chatting” module and feed
the goal of the “Performance State Controller” as before.
But the main concern of the work described here resides
on the “Body awareness” module (red colored rectangle in
Fig. 6) and its coordination with the existing behaviors. This
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“Body Awareness” module decomposes the given order into
an action or sequence of actions selected according to the
current posture of the robot and verifies whether the order has
been successfully completed or not. The module is composed
by two new nodes:

e The “Body Posture Recognizer”: implements the de-
cision tree previously shown in Fig.4. It outputs the
current body posture taking the robot joint information
as input.

o The “Action Decomposer”: receives the order and trans-
lates it into an action or sequence of actions to per-
form according to the current posture of the robot.
Each action emerges in a gesture or a movement, and
must end in a specific posture. After the execution of
the action, it verifies that the gesture/movement ends
successfully and it checks whether the actual posture
of the robot corresponds to the expected one. It also
controls the postures in which walking is possible. For
instance, if the robot needs to reach the microphone,
it needs to stand up before it starts to walk. This be-
havior verifies this condition and commands the proper
movements (depending upon the current posture) to the
“Gesture/Movement Controller” to achieve the desired
posture.

Again, the robot body expression is managed by the
“Gesture/Movement Controller”, which decides the gestures
to be applied from the appropriate posture/gesture set at each
state. But now, the correct gesture set is chosen depending on
the information provided by the “Body Awareness” and thus,
only gestures feasible at the real body posture are executed.

VI. SYSTEM EVALUATION

We intend to show that robot posture self awareness
helps to increase the autonomy level and at the same time,
facilitates the interaction with the robot, showing a better
behavior performance in the context of singing minstrel
robots, i.e. bertsolari robots. As mentioned in the intro-
duction, autonomy is a gradual property not easy to be
measured neither quantitatively nor qualitatively. Thus, we
decided to empirically show the improvements introduced in
the system by incorporating the “Body Awareness” module.
Two experiments have been performed and recorded:

1) Experiment 1: the robot receives a “stand up” order
from every different pose. The video* shows how the
robot adjusts the movement to be executed depending
on its current body posture to obey the order given
by the human. NAO nods to confirm it has understood
the command and when it reaches the desirable final
posture it says so.

2) Experiment 2: the bertsolari-s are not always called to
approach the microphone directly while sitting on the
chair, they can be required to first stand up and listen
to the exercise, before they approach the microphone
to sing. In this second video® the robot is told to reach

“https://www.youtube.com/watch?v=x88fK8IuYMc&t=25s
Shttps://www.youtube.com/watch?v=0uax6qilK30
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the microphone, again from different initial postures.
The complexity of this order (as that of sitting on the
chair) is higher because the reference element does not
need to be in the robot’s current field of view.

VII. CONCLUSIONS AND FURTHER WORK

This work describes how robot body posture self aware-
ness improves the autonomy of the system in the context
of entertainment robots. The obtained posture classification
system is provided and thus, the module can be replicated in
different NAO robots. Moreover, even if the body-awareness
has been developed for minstrel robots, its application can
be generalized to other contexts.

The improvements introduced in the overall system are
three-fold:

1) The robot gestures always match the gestures allowed
by its current body position and thus, no weird behav-
ior occurs. The differences between the two versions
of the architectures can be appreciated in this short
video®.

There is no need to execute the same sequence of
actions during the performance. The emcee is free to
change the flow in real time and the initial setup is
unnecessary. The robot adapts the actions to perform
according to its current state independently of the
initial posture.

More complex actions can be defined that comprise
several subgoals. The emcee does not need to worry

2)

3)

Shttps://www.youtube.com/watch?v=ZiDaSRIoMWg

about each next step anymore.

Despite the difficulty of measuring the autonomy level
of a social robot, we believe that these improvements in-
crease the degree of autonomy of the system. The “Body
Awareness” module permits to derive robot’s action algorith-
mically instead of being prescribed by a human, adapting
those actions/gestures to whatever its body posture is. As
a consequence, it allows for a more flexible and persistent
interaction and improves the overall behavior of the robot. In
the context we are working on, these two features, flexibility
to modify the flow of the performance in real time and
persistent and robust interaction contribute to autonomy.

In the particular setting presented the ‘“Body Posture
Recognizer” has to distinguish only four postures and thus, it
could be argued that some of them have very different knee
joint positions and that they could be classified in an ad-hoc
manner. However, the aim is to develop a method that will
serve us for other postures as well, i.e, to enrich the posture
recognizer with more poses. It remains as immediate further
work to do the integration of fall detection and fall recovery.
Adding this new pose to the set of postures will allow to
recover from badly performed moving actions and increase
one step further the global autonomy.
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Abstract. Emotion expression is one of the characteristics that make
us social beings. It is one of the main forms, along with oral and written
language, that gives us a glimpse into the inner mental state of another
individual. One of the aims of social robotics is the effortless communica-
tion between humans and robots. To achieve this goal, robotic emotional
expression is a key ability, as it offers a more natural way to interact
in a human-robot environment. In this paper a system to express the
emotional content of a spoken text is presented. Head and arms move-
ments, along with eye LED lighting and voice intonation are combined
to make a humanoid robot express the sadness-happiness emotion con-
tinuum. The robot is able to express the emotional meaning of texts in
English, Spanish and Basque languages.

Keywords: Emotion expression - Humanoid robot - Sentiment analy-
sis -+ Body language

1 Introduction

Until recently it was unthinkable that someday humans and robots would be able
to live together sharing the same space. But nowadays, robots start to become
companions or co-workers of humans, opening an important research domain to
build social robots that are able to naturally interact with us. Verbal commu-
nication is the most natural communication way that humans use for social
interaction, but it is non-verbal communication what really helps us to under-
stand sociability [1]. Body language is an important mean of communication; the
gestures, postures and movements of the body and face are used to convey infor-
mation about the emotions and thoughts of the sender while supporting verbal
communication. In other words, body language is the key to express emotions.

Social robots must be expressive in a human-like way in order to be socially
accepted. Robots that show high facial and body expressiveness have already
been successfully developed. For instance, Nexi [2], developed by MIT Media
© Springer International Publishing AG 2017

A. Kheddar et al. (Eds.): ICSR 2017, LNAI 10652, pp. 666-675, 2017.
https://doi.org/10.1007/978-3-319-70022-9_66
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Lab, shows a wide assortment of facial expressions to communicate with people
in human-centric terms. Kismet [3] is another robotic head that represents itself
a milestone as how the human voice and facial features affect expressiveness.
However, the advent of humanoid robots has prompted researchers to investigate
and develop body language expression in robots. Softbank’s NAO and Pepper!
are two platforms that fit for that purpose thanks to their human-like shape and
high expression capabilities.

The goal of this work is to endow robots with the ability to adapt their
way to express different emotions according to the sentiment of the speech. The
adaptive emotional system that we propose combines head position, arms gestic-
ulation, eye LED lighting and voice intonation, making a humanoid robot able to
express an emotion in the sadness-happiness continuum. An experiment has been
designed where people is faced to a NAO robot with different body language,
facial expressions and voice intonations according to a predefined inner emo-
tional state. They have been asked about their opinion relating to the different
options displayed for each type of communication way.

2 Related Work

In the Virtual Agent community a lot of research on emotional behavior gen-
eration has been conducted over the last 20 years. Although this is not directly
transferable to robots with their reduced expressive means, there are great sim-
ilarities in the overall architectures [4—6].

According to Breazeal [7], sociable robots are socially intelligent robots in a
human-like way, and interaction with them is like interacting with people. As
social and companion robots come to the market, the need to develop robotic
systems with more complex behaviors is increasing. In recent years a lot of
effort has been put in trying to make those behaviors convey sentiment. Several
work can be found related to robots showing emotions through facial expression.
Johnson et al. [8] investigate how LED patterns around the eyes of Softbank’s
NAO robot can be used to imitate human emotions. Some more recent work
like Paradeda’s [9] shows that the level of trust that a human being displays
during an interaction with a robot is highest when the robot starts with small
talk and expresses facial expression in the same direction of the storytelling
expected emotion. In [10] a research is shown about the capabilities of a low-
resolution RGB-LED display in the context of artificial emotions. They focus on
four human emotions: happiness, anger, sadness and fear, and work with colors
and dynamic light patterns which are supposed to evoke various associations.

Relevant work can also be found related to the body expression. Beck
et al. [11] investigate the creation of an Affect Space (Valence, Arousal and
Dominance (VAD)) for the generation of emotional body language to be dis-
played by robots; they assessed the effect of varying a robot’s head position
on the interpretation of predefined emotional key poses. Later, these authors

! https://www.ald.softbankrobotics.com/en/robots.
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made a similar study [12] in which they tested children’s ability to recog-
nize the emotional body language displayed by a humanoid robot. Tielman
et al. [13] define a model for a expressive behavior of the NAO robot in which
Valence and Arousal values are influenced by the emotional state of its inter-
action partner and emotional occurrences while interacting with its environ-
ment. NAO expresses these emotions through its voice, eye color, and prede-
fined posture and gestures. McColl et al. [14] have developed emotional body
language for Brian 2.0 robot using a variety of body postures and movements
identified in human emotion research. In another approach, Bretan et al. [15]
explore the affective expression capabilities of Shimi robot, which has a small
number of degrees of freedom, non-humanoid design and no face. Through sev-
eral experiments they show that this kind of robots can also be emotionally
expressive.

3 Emotion Expression Behavior

In order to make the robots able to express the emotional content of a spoken
text, two main tasks are required: extract the emotion from the text and translate
it to a robot expression. This process can be summarized into three main steps:

1. Text sentiment analyzer assesses the sentiment of the text and outputs
a descriptor with information about the polarity of the sentiment (neg-
ative/neutral/positive) and a numerical value of the emotion in Valence-
Arousal-Dominance space.

2. Emotion selector analyses the incoming descriptor and according to the polar-
ity and VAD values it outputs the assessed emotion of the speech. In our
approach only happiness and sadness emotions have been considered.

3. Emotion translator displays the emotion selected in the previous step by
means of body expression, facial expression, and voice expression.

3.1 Text Sentiment Analyzer

Sentiment analysis is the research field related to the analysis of people’s opin-
ions, sentiments, evaluations, attitudes, and emotions from written language.
The theory of basic emotions states that emotions can be divided into discrete
and independent categories [16]. On the other side, dimensional affective models
regard affective experiences as a continuum of highly interrelated and ambigu-
ous states. Emotions are described as linear combinations of Valence-Arousal-
Dominance (VAD). Valence defines how positive or negative the stimulus is,
Arousal specifies the level of energy and Dominance (also referred to as Stance)
defines how approachable the stimulus is. The basic purpose of sentiment analy-
sis is to extract the polarity (negative/neutral/positive) of a given text, but more
advanced sentiment analyzers appraise the emotional content from the text as
emotional state (happiness, anger, sadness, etc.).

The main task of the sentiment analyzer module is to carry out the emo-
tion extraction process. It must provide the polarity of a text according to the
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negative-neutral-positive category system, and also a numerical value of the emo-
tion in the Valence-Arousal-Dominance space. Although our primary interest is
a working tool in Basque language, we also want the system work with texts in
Spanish and English.

The developed module combines two open-source tools in order to obtain the
polarity and the emotion from the text: EliXa [17] and MixedEmotions toolbox?.
EliXa is an aspect based sentiment analysis platform for text in English, Spanish
and Basque. It assesses the polarity of a text according to a three category
classification model: negative, neutral and positive. It returns one of these classes
but without any confidence level. On the other hand, MixedEmotions platform
is a Big Data Toolbox for multilingual and multimodal emotion extraction and
analysis. It follows the Valence-Arousal-Dominance model and it is available in
English and Spanish. A confidence level for each of six basic emotions (surprise,
anger, disgust, fear, sadness and happiness) in a scale from 0 to 10 is also provided
by the system. MixedEmotions tools are not available for Basque, but keeping in
mind that the text to be said is known beforehand, the translation from Basque
to English can be performed in advance.

As a result this module outputs a descriptor that combines the information
obtained from these two tools. The descriptor is composed by the polarity label
(negative, neutral or positive) extracted from the text by using EliXa and the
VAD numbers (each one in [0,10] range) obtained with MixedEmotions tools.

3.2 How Is the Emotion Selected?

From the two pieces of information returned by the text sentiment analyzer we
want to assess the emotion of a text in the sadness-happiness continuum, com-
puting its numerical value. We have decided this numerical value to fall in the
[0,10] scale, where 0 corresponds to the maximum sadness and 10 to the max-
imum happiness. The Valence value could roughly be translated to this scale,
but it is not always the case that high values in valence as returned by MixedE-
motions translate to positive polarity returned by EliXa. As we are specially
interested in Basque language, and EliXa can handle it, we give more weight to
EliXa’s assessment.

The [0,10] emotion scale has been divided into three parts, where the interval
[0,4.5) corresponds to negative polarity, [4.5,6.5] to neutral polarity and (6.5,10]
to positive polarity. This division of the scale comes from the observation of the
Valence values returned by MixedEmotions in a set of sentences. The aim is to
directly translate the Valence into the sadness-neutral-happiness scale with a
few caveats. Our approach is the following one: first we analyze the polarity of
the text according to EliXa, and if the Valence according to MixedEmotions lies
in the interval corresponding to the polarity, then the Valence value is used as
it is. Otherwise, the limit value of the closest interval is chosen.

2 http://mixedemotions.insight-centre.org/.
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3.3 How Is the Emotion Displayed?

Once the analysis of the emotion is done, the translation from Valence-Arousal-
Dominance space to a facial expression, voice intonation, and body expression
must be done. Each way of expression has an associated module which makes
that translation. Facial expression is displayed by the Eyes Lightning Controller,
voice intonation variation is made by the speech synthesizer of the Chatting
behavior, and body expression is showed by the Gesture Controller.

Eyes Lightning Controller

Inspired by human eyes, the eyes of NAO are composed by two rings of LEDs
(8 LED per eye) with a black pupil inside. Each LED can be individually con-
trolled for different color, intensity and duration. Johnson et al. [8] demonstrate
that NAQO'’s eyes can be used to express emotions. The LED lighting configura-
tion (color selection) used in our approach is based in the color-emotion study
they carried out. Our contribution over their work is that in our approach the
color and the intensity of the color changes depending on the Valence value of the
emotion, and in their approach the emotion intensity is not taken into account.
Sadness is displayed by a dark blue-greenish color that varies from RGB(0, 0,
255) to RGB(0, 255, 255), neutral is displayed by a light blue-white color from
RGB(127, 255, 255) to RGB(255, 255, 255) and happiness is displayed by a
yellow color from RGB(76, 76, 0) to RGB(255, 255, 0).

Moreover we have defined two sets of eye LED patterns in order to show
emotions in two different ways. The LED Pattern 1 makes use of the whole eye,
whilst the LED Pattern 2 uses only half of the eye. The second one was inspired
by facial expressions displayed in cartoons (see Fig. 1). The experiments carried
out (see Sect.4) show us that the emotions are better understood through the
second pattern.

(a) Sad (b) Neutral (c) Happy
@ @ o o o @
(d) Sad (e) Neutral (f) Happy

Fig. 1. Eye LED patterns. LED Pattern 1: a, b, c. LED Pattern 2: d, e, f

Chatting Behavior

Previously we developed [18] a “Chatting” behavior that provides robots
with the necessary skills for natural interaction with the interlocutor. It makes
use of different tools that make robots able to speak in Basque, Spanish, and
English. For Basque language, AhoTTS [19] text-to-speech tool is used, which
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has its own speech synthesizer. For Spanish and English, NAO’s TTS tool is
used instead, which employs ACAPELA? speech synthesizer.

The influence of the voice intonation in emotional expression is clearly argued
in [20]. Their study shows that some emotions, such as fear, happiness and anger,
are portrayed in a higher speech rate and also at a higher pitch than emotions
such as sadness. AhoTTS offers different types of voice intonation for Basque,
one for each of six basic emotions and another one for neutral emotion. We
have used the happiness, neutral and sadness intonations to portray the three
emotions available in our system. Unfortunately NAQ’s speech synthesizer does
not offer direct voice intonation selection as AhoTTS does. But it provides the
option to setup some voice parameters such as pitch and speech rate, which
can be tuned to obtain a different voice intonation than the standard provided.
Pitch and speech rate parameter values have been experimentally defined for our
system.

Our approach lies in selecting a different voice intonation relative to the
emotion obtained after the emotion selection process. As mentioned before, till
now our system only differentiates among sad, neutral and happy emotions so
the voice intonation can only correspond to one of these three emotions.

Gesture Controller

The way an emotion is reflected in the different parts of the body is well
explained in [21]. For instance, the position of the head conveys sadness if it is
tilted down, or happiness if it is tilted up. On the other hand, usually humans
do not stay still while talking, we naturally gesticulate moving the hands. This
action strengthens the message to be conveyed. According to Amaya et al. [22]
the difference between the emotional and neutral movements lies in two para-
meters, speed and spatial amplitude.

The robot body expression is managed by the Gesture Controller. It controls
the head tilt, and the arm gestures to be reproduced (the set of the talking
gestures used is the one proposed in [18]). For the head tilt of the robot, the
Valence obtained is directly translated from VAD space to head pitch physical
range ([0.35, —0.41] radian angle interval). However, for the arm gestures the
approach is quite different. In a previous version of the system (see [18]), the
sequence of the predefined gestures to be executed was randomly selected and
the number of gestures was chosen according to the speech duration. Now the
process is similar, but first the gestures are modified by increasing or decreasing
the execution tempo in a 30% proportion of the Valence.

3.4 Global Control Architecture

The contribution of this work is a robotic emotion expression behavior, composed
by several subsystems (Emotion Appraisal, Eyes Lightning Controller, Chatting
and Gesture Controller) that make the robots being able to express emotions
according to the sentiment of the speech, and make them more sociable. All

3 http://www.acapela-group.com/.
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Fig. 2. The global control architecture composed by several social behaviors

these subsystems have been implemented as ROS* modules. The aim of the
system is to assess the emotional content of a written text and translate it to
the body language and verbal expression of a humanoid robot. Figure 2 describes
the architecture that brings together all the component behaviors.

4 Experimental Assessment

As previously stated, the robot is able to convey emotions through different parts
of its body. An experiment has been designed to measure the meaningfulness of
the eyes patterns and the impact of the arm movement. In order to evaluate
these two features in a sounder manner we decided to leave the voice intonation
aside. We considered that the voice intonation could disturb the perception of
the relevant characteristics that are meant to be evaluated.

In this experiment people is faced to a NAO robot with different body language
according to a predefined inner emotional state. This body language has been
designed to express a happy, sad or neutral emotion. The goal of the experiment
is to assess if the participants agree among themselves and with the researchers
about the meaning of the robot body language.

As subjects of our experiment are 26 nine-years-old children attending a
primary school class. It was hypothesized that the head position was the clearest
indication of the robot emotional state and that the children would be able to
recognize that a head looking up means the robot is happy and that the head
looking down means the robot is sad. All the children recognized this as an
obvious sign. Likewise, the LED lighting configuration as stated in the work
described in [8] was also recognized in the same terms as desired. These surveys
were made with all the children speaking at the same time, in an unstructured
way to make the experiment more enjoyable to the children.

* http://www.ros.org.
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Another two aspects of body language were evaluated through individual
questionnaires: arm movement and eyes lighting. In the experiment involving
arm movement the children were presented with the robot showing movement
of its head meaning to be happy, neutral or sad, as previously recognized by
the children. For each head position, the robot moved its arms with three dif-
ferent speeds, from faster to slower. We hypothesized that faster arm movement
conveys happiness whilst slower movement expresses sadness. The children were
asked to evaluate how they perceived the different speeds to convey a happy, neu-
tral or sad emotion. Figure 3 shows the result of this experiment. As it can be
seen, the children mainly agree with the supposition that faster arm movements
correspond to a happier emotional state.

[ Faster g Normal Jjjj Slower
20
18
16
14

E I..I HII llil

Happy Neutral Sad

N A o

Fig. 3. Arm movement evaluation

In the experiment involving eye LED lighting, the goal is to assess if the
children appreciate some difference in the strength of a emotion depending on
whether all the LEDs in the eyes are switched on or only half of them. Figure 4
shows how the children see that activation of half of the eye is best suited to
neutral and sad emotions, although happiness is best shown with all the LEDs
switched on.

Full-Eye |l Half-Eye
30

25
2 = 22
15
10
ia
0

Happy Neutral Sad

Fig. 4. Eye LED evaluation
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5 Conclusions and Further Work

The emotional behavior presented in this work endows the robots with the ability
to adapt their way to express different emotions according to the sentiment of the
speech, and it makes the robots interact in a more social way in a human-robot
environment. The approach of the system consists of assessing the emotional
content of a written text and translate this content to the body language and
verbal expression of a humanoid robot in the sadness-happiness continuum. The
adaptive emotional system that we have developed combines different subsystems
that makes a humanoid robot able to express emotions by adapting the head
pitch, arm movement tempo of predefined gestures, eye LED lighting and voice
intonation. The system is available in English, Spanish and Basque languages.

The body language implemented in the robot has been recognized as intended
by a group of nine-years-old children. The children mainly agree with the suppo-
sition that faster arm movements correspond to a happier emotional state, and
slower movements to a sadder emotional state. Regarding to the eyes lighting,
questionnaires results show that the emotions are better understood through
partial eyes lighting, except in the case of happiness.

There are several research lines that we will explore in future work. Regarding
to the body expression, we will investigate the effect of moving the different parts
of the body in the same way we have done with the head. It can be analyzed how
the trunk and arms inclination affects in the emotion displayed. Furthermore,
we have in mind to add to the system the possibility of showing more emotions,
such as surprise, anger, disgust and fear. Experiments involving more children
and adults are planned, in order to draw statistically sound results.
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Abstract

This paper presents a talking gesture generation system based on Generative
Adversarial Networks, along with an evaluation of its adequateness. The talking
gesture generation system produces a sequence of joint positions of the robot’s
upper body which keeps in step with an uttered sentence. The suitability of
the approach is demonstrated with a real robot. Besides, the motion genera-
tion method is compared with other (non-deep) generative approaches. A two-
step comparison is made. On the one hand, a statistical analysis is performed
over movements generated by each approach by means of Principal Coordinate
Analysis. On the other hand, the robot motion adequateness is measured by
calculating the end effectors’ jerk, path lengths and 3D space coverage.
Keywords: Social robotics, generative learning models, motion generation,
principal coordinate analysis, body language expression, generative adversarial

networks

1. Introduction

Social robotics [1] aims to provide robots with artificial social intelligence
to improve human-machine interaction and to introduce them in complex hu-

man contexts. The demand for sophisticated robot behaviors requires to model

*Corresponding author
Email address: igor.rodriguez@ehu.eus (Igor Rodriguez)
URL: www.sc.ehu.eus/ccwrobot (Igor Rodriguez)

Preprint submitted to Journal of Robotics and Autonomous Systems June 18, 2018
198



20

25

30

35

and implement human-like capabilities to sense, to process, and to act/interact
naturally by taking into account emotions, intentions, motivations, and other
related cognitive functions.

Naturally, speech plays a relevant role to convey emotions, and human voice
can be shaped in very complex ways. Some works show [2] that the level of
trust of the human with respect to the robot is higher when the robot’s gaze
is in the direction of the interlocutor. Besides, talking involves spontaneous
gesticulation; postures and movements are relevant for social interactions even
if they are subjective and culture dependent. Gestures (head, hands and arms
movements) are used both to reinforce the meaning of the words and to express
feelings through non-verbal signs. The impressive realistic character animations
developed within the fields of computer graphics and virtual agents reflect the
importance of synchronizing synthesized speech with non-verbal behavior [3][4].

No doubt, body language can disclose as much information as words. And
a high expression capability can be achieved with a low number of degrees of
freedom (DoF). For instance, Anki’s Cozmo [5] a tiny robot designed to interact
with by playing, shows an impressive body expression. A kind of shovel that it
uses for manipulation purposes adds arm-level expression in a wheeled platform.
Shimi [6], a smart-phone enabled robotic musical companion far from human
morphology, expresses emotion rather differently, using a faceless body. But the
advent of anthropomorphic robots has launched researchers to investigate and
develop human-like body language expression in robots. Building natural robot
behaviors enhances the expressiveness of robots and improves sociability.

L’hommet and Marsella [7] discuss body expression in terms of postures,
movements and gestures. Gestures, defined as movements that convey informa-
tion intentionally or not, are categorized as emblems, illustrators and adaptors.
Emblems are gestures deliberately performed by the speaker that convey mean-
ing by themselves and are again culture dependent. Illustrators are gestures
accompanying speech, that may (pointing to an object) or may not (beats) be
related to the semantics of the speech. Lastly, adaptors or manipulators belong

to the gesture class that does not aid in understanding what is being said, such
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as tics or restless movements.

The goal of this paper is to develop a talking gesticulation behavior that
resembles humans in terms of naturalness and expressiveness. Within the work
context of this paper, no semantic meaning is being extracted from the spoken
text and, thus, the gesture repertoire of the robot is limited to body adaptors
applied to talking behavior.

In [8] the authors randomly selected gestures from a set of movements pre-
viously compiled, but that approach is prone to produce repetitive movements
and can result in unnatural jerky expression. A generative approach should
allow to create novel movements while retaining their nature, overcoming the
limitations of a predefined set of gestures. In conclusion, a generative approach
should allow for a more spontaneous behavior.

Generative Adversarial Networks (GANs) [9] are deep generative models
capable to implicitly acquire the probability density function in the training
data, as deep learning methods are able to automatically discover the internal
structure of datasets, by learning multiple levels of abstraction [10]. They can
overcome some problems associated with other generative models, as the need
for explicitly searching in the space of a given family of probability distribu-
tions, like for instance in Gaussian Mixture Models. GANSs are also subjectively
regarded as producing better samples than other methods [11], and therefore
are chosen for the task at hands.

The rest of the paper is structured as follows: Section 2 summarizes the
related work found in the literature. Next, Section 3 describes how GANs work.
In Section 4 the experimental setup is described, while the obtained results from
the point of view of the robot’s behavior are presented in Section 5. The perfor-
mance analysis of the applied method is shown in Section 6. There, the motion
generation method is compared with other (non-deep) generative approaches.
A two step comparison is made. On the one hand, a statistical analysis is
performed over movements generated by each approach by means of Principal
Coordinate Analysis. On the other hand, the robot motion adequateness is

measured by calculating the end effectors’ jerk, path lengths and the 3D space
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coverage. Finally, conclusions are presented in Section 7.

2. Related Work

Generative models are probabilistic models capable of generating all the val-
ues for a phenomenon. Unlike discriminative models, they are able to generate
not only the target variables but also the observable ones [12]. They are used
in machine learning to (implicitly or explicitly) learn the distribution of the
data for generating new samples. There are many types of generative models.
Bayesian Networks (BNs) [13], Gaussian Mixture Models (GMMs) [14] and Hid-
den Markov Models (HMMs) [15] are well known probability density estimators.
Deep learning techniques have been applied to generative models, giving rise to
deep generative models. A taxonomy of such models can be found in [11].

Applications of generative models range from photo-realistic single image
super-resolution [16] and text-to-image synthesis [17] to handwriting sequences
generation [18] using recurrent neural networks (RNN) or speech synthesis [19]
based on WaveNet [20], an autoregressive deep generative model. In [21] the
authors propose Deep Generative Spacial Models (DGSM), the first application
of Sum-Product Networks to the domain of robotics. A generative model is
able to learn a single, universal model of the robot’s spatial environment. In
astronomy GANs are becoming popular for improving images [22].

Generative models are also being used for motion generation. In [23] the
authors propose the combination of Principal Component Analysis (PCA) [24]
and HMMs for encoding different movement primitives to generate humanoid
motion. A. K. Tanwani [12] uses HSMM (Hidden Semi-Markov Models) for
learning robot manipulation skills from humans. Focusing on social robotics,
some generative approaches are being applied with different means. In [25]
Manfre et al. use HMMs for dance creation and in a later work they try vari-
ational auto-encoders again for the same purpose [26]. Regarding the use of
adversarial networks, Gupta et al. [27] extend the use of GANs to generate

socially acceptable motion trajectories in crowded scenes in the scope of self-
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driving cars.

3. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [9] are semi-supervised emerging
models that basically learn how to generate synthetic data from the given train-
ing data. A GAN network is composed by two different interconnected networks.
The Generator (G) network generates possible candidates so that they are as
similar as possible to the training set. The second network, known as Discrim-
inator (D), judges the output of the first network to discriminate whether its
input data are “real”, namely equal to the input data set, or if they are “fake”,
that is generated to trick with false data. The general architecture of a GAN
with the G and the D networks is shown in Figure 1. The generator is typically

a deconvolutional neural network, while the discriminator is a convolutional one.

Real
Samples

&

Latent
Space
H —>0\f‘._. IsD

‘. Correct?

Generated
Fake
y Samples

Fine Tune Training

Figure 1: Description of GAN architecture

In the first step, D takes as input both, real data and fake data, and returns

for each sample its probability to come from real data. In the second step, the

G network is trained. While the parameters of D are fixed, in each epoch, the
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weights of the G network are updated to let the discriminator results on the
sample generated by G as near as possible to 1. That is, this second step is
aimed to modify the G network in order to be able to generate samples that
can trick the D network.

The G network is never exposed to real data, the only manner to enhance its
generation capability is through the interaction with D by means of the output.
Instead, D has access to both, real data and fake data, and produces as output
the ground truth to know if the data came from the generator or the dataset.
The discriminator’s output value is exploited by the generator to enhance the
quality of the forgery data.

Back-propagation is applied in both networks to enhance the accuracy of
the generator to produce valid movements; on the other side, the discriminator

becomes more skilled to flag false data.

4. Experimental Setup for Talking Gesture Creation

4.1. Robotic Platform and Framework

The robotic platform employed in the performed experiments is a Pepper
robot developed by Softbank Robotics !. Pepper is a human-like torso that it is
fitted onto a holonomous wheeled platform. It is equipped with full-color RGB
LEDs (placed in eyes, ears and shoulders), three cameras, and several sensors
located in different parts of its body that allow for perceiving the surrounding
environment with high precision. It heights 120 cm and has 20 DoF's.

NAOQOqi 2 is the name of the SDK (Software Development Kit) provided by
Aldebaran, that runs on the robot and controls it. NAOqi is designed so that
modules can be run independently across multiple machines and robots. Each
module has an external API (i.e., functions and parameters) that other modules

can call. Currently, our robot is controlled using the naogi_driver driver that

Ihttps://www.ald.softbankrobotics.com/en/robots/pepper
2http://doc.aldebaran.com/2-5/naoqi/index.html
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wraps the needed parts of NAOgqi API and makes it available in ROS 3.

4.2. Talking Movement Definition

The fixed picture of the position and orientation of the joints of the robot
is called pose. In our work, it is composed by 14 float numbers. A pose is
thus represented by a set of 14 joint values, comprising robot’s head, hands
and arms (Table 1). Pelvis, knee and wheeled base information were ignored
because those elements are not involved in talking adaptors. As we are in-
terested in generating movements, i.e., a sequence of poses, the input to the
learning process to any generative model has to take into account the tempo-
ral sequence of poses. We have defined the unit of movement as a sequence of
four consecutive poses. This unit of movement, a vector of 56 float numbers
(14 from each pose and four poses concatenated) will be the desired output of
the generative model (see Table 2). The training set of such model is thus a
set of units of movement. This training set is generated taking four consecu-
tive poses from a database of poses, ordered according to their appearance in
a movement. For example, if a movement consists of the following temporally
consecutive poses (Py, Py, P3, Py, Ps, Ps, Pr, Pg), there are five possible units of
movement: (Py, Py, P3, Py), (P2, P3, Py, Ps), (Ps, Py, Ps, Ps), (P4, Ps, Ps, P7) and
(Ps, Ps, P7, Pg). Our database consists of non-overlapping units of movement,
so only (Py, Pa, P3, P;) and (Ps, Ps, Pr, Pg) would be taken into account.

At the end, when a whole movement is required, in order to be executed by
the robot, a number of units of movement are asked to the generative model, one
after another. How many of these units of movement form a whole movement
will depend on the desired temporal length of the movement, which, at its time,
will depend of the temporal length of the audio intended to be pronounced by
the robot.

3WVVVV.I‘OS.OI‘g
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Head H (1) | Hs(J)
Right Shoulder | RSg(J3) | RS (J4)
Right Elbow | REs(Js) | RE-(Js)
Right Wrist RW.,(J7)
Right Hand RH(Js)
Left Shoulder | LSg(Js) | LSa(J10)
Left Elbow | LEs(J11) | LE,(J12)

Left Wrist LW, (J13)
Left Hand LH(J14)

Table 1: Format of a robot pose. «a: roll, B: pitch, v: yaw angles. Hands can be opened
or closed. A movement is thus composed of 4 consecutive poses. In parenthesis, a more

convenient notation for formal use.

4.83. Training Database

The training dataset given to the D network to learn the distribution space
s of the data is created from gestures obtained from the default animations of the
NAOqi API. We have chosen a subset of those gestures that can be used for
accompanying the speech, and can be performed individually or in composition

to constitute complex sequences of gestures.
In order to collect data, we sampled the poses during the selected NAOqi
o animations with a frequency of 4 Hz. About 1200 units of movement were

collected for training.

Jl(t) oo J14(t), Jl(t+ At) <o J14(t + At), Jl(t -+ QAt) <o J14(t -+ 2At), Jl(t + 3At) s J14(t -+ 3At)

Table 2: Characterization of a unit of movement. At depends of the data sampling frequency

4.4. GAN Setup

The discriminator network is thus trained using the previously mentioned

data to learn the distribution space of the data. On the other hand, the gener-
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ator is seeded through a random input with a uniform distribution in the range
[—1,1] and with a dimension of 100. The Generator intends to produce as out-
put gestures that belong to the real data distribution and that the Discriminator
network would not be able to correctly pick out as generated.

Regarding GAN’s hyper-parameters, after several experiments, we setup a
batch size of 16, a learning rate of 0.0002, Adam [28] as the optimization method,
and 87 = 0.5 and B> = 0.999 as its parameters. We trained the network for
2000 epochs.

5. Results

The obtained robot performance is shown in the following two videos:

1. Video* shows the evolution of the robot behavior during different steps
of the training process. The final number of epochs has been empirically
defined, observing the behavior of the robot.

2. Video® qualitatively demonstrates the adequateness of the approach by
showing how the robot behaves while talking.

—— Discriminitive loss

——— Generative loss

Loss

Hu,uh IJN"JLI\I.II'HH' wH

o 250 soo 7s0 1000 1250 1s00 1750 2000
Epoch

Figure 2: Loss functions evolution over 2000 epochs

4https://www.youtube.com/watch?v=AW3BmfS7DIY
Shttps://www.youtube.com/watch?v=KVyTbFEMcHE
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6. Performance Analysis

In order to quantitatively measure the appropriateness of the obtained mo-
tion generation system, it has been compared with other generative approaches

have been used:

1. Randomly generated movements (RND): the simplest way of generating
new movements is to concatenate random poses from the already existing
set.

2. Gaussian Mixture Models: those attempt to find a mixture of multi-
dimensional Gaussian probability distributions that best model any input
dataset.

3. Hidden Markov Models: HMMs can be considered a generalization of
mixture models where the hidden variables (or latent variables), which
control the mixture component to be selected for each observation, are

related through a Markov process rather than independent of each other.

The random movements have been produced choosing a random pose from the
already existing set and concatenating it with the three following ones. Referring
to the previously mentioned possible movement (P, Ps, P, Py, Ps, Ps, Pr, Py),
a possible random unit of movement not present in the training set would be
(P3, Py, Ps, Pg). The GMM and HMM models were learned using the same
database utilized for training the GAN. Bayesian Information Criterion (BIC)
[29] optimization was used for GMM model selection and the best model used
tied covariance matrix (the same covariance matrix is shared by all Gaussians)
and 24 components. Regarding the HMM, the chosen model was a Gaussian
HMM with 10 hidden units and full covariance matrix.

A two step comparison has been made along the different approaches: Prin-

cipal Coordinate Analysis and robot motion analysis.

6.1. Principal Coordinate Analysis

1000 units of movement were sampled for the different models. This gives a

1000 x 56 data matrix for each method where columns represent the positions of

10
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the joints along the unit of movement (J;(t + kAt),i =1,...,14, k=10,...3)
(see Tables 1 and 2). The structure underlying the units of movement was
analyzed considering the relationship between the joints. First, correlation dis-
tances [30] between joints for the NAOqi original units of movement, RND,
GAN, GMM, and HMM were calculated. In order to get comparable results
the distance matrices were scaled so that their geometric variability were equal
to 1. Then, a Principal Coordinates Analysis [31] was carried out on each dis-
tance matrix. In Figure 3 the variability decompositions corresponding to the
distance matrices are shown. This decomposition shows the essence of the struc-
ture that lies between joint poses for each type of motion generation method.
For instance, the joints behavior for NAOqi and GAN units of movement are
embedded, broadly, in a 15-dimensional euclidean space where the first two
contain remarkably the most variability. For HMM units of movement too, the
first two dimensions are remarkably the most important ones but more than 40
dimensions are needed to embed the joints behavior. For RND and GMM units
of movement, the underlying structure defined by the joints are very different
from the aforementioned ones.

The representations of the joints on the corresponding two axes also show
that there are different underlying structures of the joints for the different type
of units of movement generations (see Figure 4). For joints related the original
NAOqi units of movement a smoothness in the sequence of poses is appreciated
since the sequence of joint units of movement J;(t), ..., J;(t+3At) are clustered
tightly, for all joints 1 to 14. For the GAN units of movement, a similar pattern
of smoothness is present but the clustering of sequential poses is more loose.
On the contrary, for the rest type of units of movement this smoothness pattern
is lost. Moreover, it is interesting to notice that in general head joints poses
are located in the center of the plane and that for RND and GMM generated
movement there is a an overall ordering of the ‘Left’ and ‘Right’ joints poses on

the plane.

11
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6.2. Robot Motion Analysis

For quantitatively measuring the quality of the generated movements three

measures are presented:

e Norm of Jerk: as mentioned in the introduction, the goal is to gener-

ate spontaneous smooth movements. The norm of Jerk is a smoothness
measure based on root mean square (RMS) jerk quantification [32]. It is

calculated according to Equation 1.

T
. 1 .
jerk = T ; |laccely| (1)

3D space coverage: small jerk values capture the absence of sudden ac-
celeration changes and are thus, desirable. But it must also be taken into
account the surface reached by the end effectors. The more 3D space
covered, the more different the generated patterns are allowed to be. A
natural measure would be the volume of the convex hull defined by the
positions in time, but as only the points in the surface of the hull take part
in the volume computation, another measure taking into account also the
inner points would be more convenient. We have chosen the dispersion
measure given by the mean distance of the points to their centroid, and

have called it as disp. It is calculated according to Equation 2.

1 & 1 &
disp = — Z,— =Sz 9
isp = = ;:1 ||z Tglxkll (2)

Length of the generated paths: the length of the path (Ipath) described by
the positions of the hands during time is also another interesting measure.
Lower jerk values would lead to lower [path values, as the movements

would be smoother. The measure (Ipath) is computed as Equation 3.

T
Ipath =Y " ||T — Ty || (3)
t=2

14
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In order to obtain those measures, 10 sentences have been selected (of ap-
proximately 25 seconds of duration) and executed, and the 3D coordinates of
the end effectors (i.e left and right hands) with respect to the pelvis have been
calculated while talking. Results are shown in Table 3. GAN trajectories have
smaller jerk values, together with smaller path lengths but, at the same time,

the corresponding dispersion measure value is the highest for both hands.

RND GAN GMM HMM
Ejer | 0.022  0.017  0.027  0.030
Ojerte | 0.002  0.003  0.003  0.002
Egisp | 0.066  0.080 0.059  0.058

Lhand
Odisp 0.010 0.018 0.005 0.008
Eipatn | 2.079  1.5755  2.136  2.2598
Olpath | 0.2443  0.1776 0.2358  0.149
Ejeri 0.030 0.026 0.056 0.046
Ojerk 0.003 0.007 0.010 0.006
Egisp 0.083 0.086 0.082 0.074

Rhand

ogisp | 0.009  0.016 0.011  0.006
Epan | 31742 2.058  4.245  3.6974
Olpath | 0.292 04744  0.549  0.3509

Table 3: Mean and deviation values for each measure

Figure 5 reflects these results. GAN and HMM paths of both hands for one
talking session are reproduced, together with that of the original NAOqi’s ones.
Clearly, GAN produces trajectories more similar in shape to the non generative
(and thus, repetitive) original gesture set.

Note that left and right hand movements are quite different. This charac-
teristic, inherent in the recorded training database (NAQqi), is inherited by the

generative methods.
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7. Conclusions and further work

In this work a talking gesture generation system has been developed us-
ing GANs. The suitability of the approach is demonstrated with the real robot.
Moreover, in order to quantitatively measure the goodness of the method, it has
been compared with other (non-deep) generative approaches in terms of Princi-
pal Coordinate Analysis and robot motion analysis. Results suggest that GANs
are a suitable method for generating robot movements that capture the essence
of the predefined API gestures, while allowing more variability and, overall, giv-
ing a subjective impression of naturalness. In this research this impression is
reinforced by the quantitative measures aforementioned.

As further work, we intend to substitute the NAOqi animation set used as
training database by a richer gesture set by recording talking humans with a

3D camera. The approach can also be extended to other kind of gestures.
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Talking with Sentiment: Adaptive Expression Generation Behavior for
Social Robots
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Abstract— This paper presents a neural-based approach for
generating natural gesticulation movements for a humanoid
robot enriched with other relevant social signals depending on
sentiment processing. In particular, we take into account some
simple head postures, voice parameters, and eyes colors as
expressiveness enhancing elements. A Generative Adversarial
Network (GAN) allows the proposed system to extend the
variability of basic gesticulation movements while avoiding
repetitive and monotonous behavior. Using sentiment analysis
on the text that will be pronounced by the robot, we derive a
value for emotion valence and coherently choose suitable pa-
rameters for the expressive elements. In this way, the robot has
an adaptive expression generation during talking. Experiments
validate the proposed approach by analyzing the contribution
of all the factors to understand the naturalness perception of
the robot behavior.

I. INTRODUCTION

Social robots represent a great research challenge, aiming
to an effective introduction in human everyday life of intel-
ligent embodied machines. Robot social capabilities require
both a deep understanding of human behavior and acting
with naturalness during the interaction with humans [10].
Naturalness means that a human user could have similar
perceptive inputs while interacting with other people consid-
ering both verbal and non-verbal signals, social and cultural
context, subjectiveness and psychological effect as empathy,
emotional impact, and so on.

The gestures, postures, and movements of the body and
face expressions are used to convey information about the
emotions and thoughts of the sender while supporting verbal
communication. Body language represents the key to express
feelings and helps the people to understand sociability [13].
McNeill [15] distinguishes four major types of gestures by
their relationship to the speech: deictic, iconic, metaphoric,
and beats. Unlike the others types, beats are not associated
with particular meanings, and they occur with the rhythm of
the speech. Such kind of gestures have been considered in
this work. While speaking, the robot has to generate credible
body language that should shape and convey the information
content. It can be derived and learned from humans so
that it is consistent with socio-cultural expectation of the
interlocutor. Moreover, the robot has to own an emotive
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model to dynamically drive the interaction and to establish
a relevant emotional link with the interlocutor.

The main contribution of this work is the development
of a robot behavior that endows humanoid robots with the
ability to generate natural gesticulation movements enriched
with several social signals depending on the sentiment of
the speech. A Generative Adversarial Network (GAN) allows
the proposed system to extend the variability of some basic
gesticulation movements avoiding repetitive and monotonous
behavior. Furthermore, we take into account some simple
head postures, voice parameters and eye LEDs colors to
enhance the expressiveness of humanoid robots. Two dif-
ferent experiments have been performed with people in
front of a SoftBank’s Pepper robot showing our adaptive
expression generation behavior. Experiments validate the
proposed approach by analyzing the contribution of each of
the factors to understand the naturalness perception of the
robot behavior.

II. RELATED WORK

Social robotics [4] aims to provide robots with artificial
social intelligence to improve human-machine interaction
and to introduce them in complex human contexts. The
demand for robot’s sophisticate behaviors requires to model
and implement human-like capabilities to sense, to process,
and to act/interact naturally by taking into account emotions,
intentions, motivations, and other related cognitive functions.
In recent years a lot of effort has been put in trying to make
those behaviors convey sentiment. Several works propose
facial expressions as principal mechanism to show emotions,
but there are also other possibles communicative channels
that can be easily understood by a human. For example,
colors can be dynamically associated with emotions by suit-
able cognitive models [2][11]. Low-resolution RGB-LEDs
can evoke associations to basic emotions (happiness, anger,
sadness, and fear), by using suitable colors and dynamic light
patterns [7]. Johnson et al. [12] investigate how LED patterns
around the eyes of Softbanks NAO robot can be used to
imitate human emotions.

As a matter of fact, postures and movements are relevant
for social interactions even if they are subjective and culture
dependent. During verbal communication, the level of trust
of the human with respect to the robot is higher when the
robot’s gaze is in the direction of the interlocutor [18]. In
[1], authors propose a multimodal robot behavior, expressed
through speech and gestures, in which the robot adapts its
behavior to the interacting human’s personality, and they
explore the perception of the interacting human comparing



the multimodal behavior with the single-modal behavior,
expressed only through speech.

In the field of computer graphics and virtual agents,
the results obtained on realistic animation of humans are
impressive and allow designers to animate characters with
movements by synchronizing nonverbal behavior with syn-
thesized speech [16] [5]. Naturally, speech plays a relevant
role to convey emotions, and human voice can be shaped in a
very complex way. In the context of human-robot interaction,
Crumpton and Bethel explain the importance of using vocal
prosody in robots to convey emotions [6].

With respect to the aim of the present work, to the best of
our knowledge, the literature does not provide an approach
that tries to combine all the previous aspects in a social robot.
In the following, we introduce our approach to generate an
adaptive expression behavior for social robots.

III. SYSTEM ARCHITECTURE

In this section, the architecture of the expression gen-
eration behavior, which we have named “Adaptive Talking
Behavior”, is described. The expression generation process
can be summarized in three main steps:

1) Extract the sentiment from the text. A sentiment an-
alyzer assesses the sentiment of the text and gives as
output a descriptor with information about the polarity
of the sentiment (positive/negative/neutral).

2) Sentiment to emotion conversion. In this step, the sen-
timent polarity is encoded into emotion. Only sadness,
happiness and neutral emotions have been considered
in this work.

3) Generate the appropriate expression. The translation
from emotion into expression is performed in this
stage. The robot shows an emotional expression by
means of body expression (talking gestures), facial
expression (eyes lighting), and voice intonation (pitch
and speed variation).

Those three steps are further detailed in sections IV, V, and
VI, respectively.

This “Adaptive Talking Behavior” is composed by several
ROS (Robot Operating System)' modules, as illustrated in
figure 1. The “Sentiment Analyzer” analyzes the sentiment
of the text, the “Emotion Selector” converts the sentiment
into an emotion the “Eyes Lighting Controller” manages the
eyes color the “Speech Synthesizer” tunes voice parameters,
and the “Gestures Generator” generates the body expression
including arms, hands and head.

IV. TEXT SENTIMENT EXTRACTION

Sentiment analysis is the research field related to the
analysis of people’s opinions, sentiments, evaluations, atti-
tudes, and emotions from written language [17]. The main
purpose of sentiment analysis is to extract the polarity
(positive/negative/neutral) of a given text.

In order to extract the sentiment from the text we use
the VADER sentiment analyzer [9], a lexicon and rule-based

"http://wiki.ros.org/
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sentiment analysis library that analyzes the polarity and the
intensity of sentiments expressed in social media contexts,
also generally applicable in other domains. VADER, which
is based on dimensional affective models, gives an output
composed by: (1) the score ratios for proportions of text that
fall in each category, and (2) a compound score, obtained
by summing the Valence scores of each word in the lexicon
(see section V for a deeper explanation about dimensional
affective models).

For the phase described above, we have developed a
ROS module, named “Sentiment Analyzer”, which takes as
input what the robot is going to say (a text) and gives as
output the sentiment polarity (negative/neutral/positive) and
the compound score obtained by using the VADER sentiment
analyzer.

V. SENTIMENT TO EMOTION CONVERSION

Dimensional affective models represent affective experi-
ences according a set of interrelated and ambiguous states
[19]. Emotions are described as linear combinations of
Valence-Arousal-Dominance (VAD). Valence defines how
positive or negative the stimulus is, Arousal specifies the
level of energy and Dominance defines how approachable
the stimulus is.

The Valence deals with the positive or negative character
of the emotion, which scales from sadness to happiness.
Taking into account that the compound score provided by
the VADER sentiment analyzer is obtained from the Valence
scores of the words and then normalized between —1 to
+1 (from most negative to most positive), we compute
a conversion from sentiment to emotion through a direct
translation of the compound score into the sadness-happiness
continuum in the Valence axis (Happiness: compound score
> 0.5, Neutral: compound score > —0.5 and compound
score < (0.5, Sadness: compound score < —0.5).

The conversion from sentiment to emotion is done by the
“Emotion Selector” ROS module, which takes as input the
result obtained from the “Sentiment Analyzer”. For the time
being, the emotion appraisal is done as a direct translation
from the sentiment value into emotion in sadness-happiness
continuum. It is worth mentioning that more inputs and more
emotions should be considered for the emotion appraisal in
the future.

VI. EXPRESSION GENERATION

Emotion expression is one of the characteristics that make
us social beings. It allows us to communicate our emotional
state and, at the same time, it gives us a glimpse into the inner
mental state of other individuals. Emotional expressions can
occur with or without self-awareness during both verbal and
nonverbal communication, and can be manifested in different
ways, such as facial movements, body postures, gestures, etc.

Our approach to appropriately express the emotion ob-
tained from the sentiment processing of the text consists of:
mapping the emotion into expression that combines natural
body gestures, enriched with facial expressions and voice
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Fig. 1. Description of the Adaptive Talking Behavior architecture

intonation. Several video examples about Pepper talking with
sentiment are available in RSAIT’s YouTube channel?.

A. Gestures Generation

Typically, humans use gestures (head, hands and arms
movements) to communicate with others; gestures are used
both to reinforce the meaning of the words and to express
feelings through non-verbal signs. How an emotion is re-
flected in the different parts of the body is well explained
in [14]. Humanoid robotics platforms, like Pepper, help us
to explore body language expression approaches. Thanks
to their high expression capabilities we can build natural
robot behaviors that enhance the expressiveness of robots.
In a previous work [20], Rodriguez et al. propose a robot
behavior that makes a NAO robot able to talk and gesticu-
late showing some emotions. The robot executes randomly
selected predefined gestures adapting the execution tempo of
the movements according to the sentiment of the text.

The short set of gestures (default animations in the NAOqi
APP) that Pepper and NAO have for gesticulating while
speaking make their expression ability limited and repetitive.
In order to overcome this limitation, our approach based on
Generative Adversarial Networks (GAN) enables humanoid
robots to dynamically generate synthetic gestures (composed
by arm, hand and head movements) during verbal commu-
nication at run-time.

Generative Adversarial Networks [8] are semi-supervised
emerging models that basically learn how to generate syn-
thetic data from the given training data. A GAN network
is composed by two different interconnected networks. The
Generator (G) network generates possible candidates so that
they are as similar as possible to the training set. The second
network, known as Discriminator (D), judges the output of
the first network to discriminate whether its input data are
“real”, namely equal to the input data set, or if they are
“fake”, that is generated to trick with false data. The general
architecture of a GAN with G and the D networks is shown
in Figure 2.

’https://www.youtube.com/channel/
UCT1ls60S21d8fxFeugxCrjnQ
3http://doc.aldebaran.com/2-5/ref/python-api.html
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Fig. 2. Description of GAN architecture

In the first step, the D takes as input both, real data
and fake data, and returns for each sample its probability
to be real or not. In the second step, the G network
is trained. While the parameters of D are fixed, in each
epoch, the weights of the G network are updated to let the
discrimination results on the sample generated by G as near
as possible to 1. That is, this second step is aimed to modify
the G network in order to be able to generate samples that
can trick the D network.

The G network is never exposed to the real data, the only
manner to enhance its generation capability is through the
interaction with D by means of the output. Instead, D has
access to both, real data and fake data, and produces as output
the ground truth to know if the data came from the generator
or the dataset. The discriminator’s output value is exploited
by the generator to enhance the quality of the forgeries data.

Back-propagation is applied in both networks to enhance
the accuracy of the generator to produce valid movements;
on the other side, the discriminator becomes more skilled to
false flag data. In this work we use a batch size of 16 and
we trained the GAN network for 2000 epochs.

The training dataset given to the D network to learn the
distribution space of the data is composed by the gestures
obtained from the default animations of the NAOqi API. We
have chosen a subset of those gestures that can be used
for accompanying the speech, and can be performed indi-
vidually or in composition to constitute complex sequences
of gestures. On the other hand, the Generator is seeded
through a random input with a uniform distribution in the
range [—1, 1]. The Generator produces as output gestures that
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belong to the real data distribution and that the D network
is not able to evaluate as generated or real.

In order to extend the variability of the gestures, we
sampled the default NAOqi animations with a frequency
of 4 Hz, obtaining a set of 1500 robot poses. A pose is
represented by a set of 14 joint values, comprising robot’s
head, hands and arms. The composition of four consecutive
poses is a gesture (movement segment) that is one instance of
the training set. The GAN network could have been trained
using poses instead of movement segments, but then, the
outputs would be single poses that should be afterwards
concatenated to generate talking movements. However, this
approach would produce less smooth gestures.

The talking gestures generation is done by the “Gestures
Generator” ROS module. that takes as input the emotion
value obtained from the “Emotion Selector” and produces
a number of gestures that are well suited to be executed
with the right velocity according to the speech duration. The
execution velocity is influenced by the recognized emotion
in order to express better the feeling, i.e. if the emotion to
be shown is “happy” the gesture will be executed at a faster
pace than whether to gestures to be performed is bound to
the emotion “sad”.

Also the head tilt is influenced by the emotion. If the
emotion is neutral, the robot will look forward. However, if
the emotion is happy the robot will tilt the head upwards, or
downwards if it is sad. The emotion Valence obtained by the
emotion appraisal is normalized between the maximum and
minimum values for the head tilt. Figure 3 shows an example
of gestures generated using GAN for sadness, neutral and
happiness emotions.

(a) Sadness (b) Neutral

(c) Happiness

Fig. 3. Some examples of generated gestures with emotion

B. Facial Expression

The design of humanoid robots’ eyes is usually inspired by
human face, trying to exactly reproduce human eyes’ shape
and movements. However, SoftBank’s robots have some
limitations due to the structure of their eyes. In particular,
Pepper robots’ eyes are composed by two rings of LEDs
with a black pupil inside. The LEDs can be controlled to
show different hues, change color intensity and can be turned
on/off for different time duration.
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Johnson et al. [12] demonstrate in their work that NAO’s
eyes can be used to express emotions. Taking inspiration
from their color-emotion study, in our approach we adopt
the same color configuration, and in addition we use the
emotion Valence to change the intensity of the color.

The “Eyes Lighting Controller” is employed to convert
emotion into facial expression, specifying the color and the
intensity of each eye LEDs (see figure 4). The controller
exploits the emotion Valence value to codify it into RGB
space to be displayed in the robot.

s 8 o o e o

(a) Sadness (b) Neutral (c) Happiness

Fig. 4. Sadness: blue-greenish color from RGB(0, 0, 255) to RGB(0, 255,
255). Neutral: no color from last RGB to RGB(0, 0, 0). Happiness: yellow
color from RGB(76, 76, 0) to RGB(255, 255, 0).

C. Voice Intonation

In ordinary life humans use different voice intonation
depending on the context in which they are and also to
emphasize the message being conveyed. The voice intonation
has a key role to understand the mood of the speaker. The
influence of the voice intonation in emotional expression is
clearly argued in [3]. The authors prove that some emotions,
such as fear, happiness and anger, are portrayed in a higher
speech rate and also at a higher pitch than emotions such as
sadness.

We have used the happiness, neutral and sadness intona-
tions to portray the three emotions available in our system.
Unfortunately, Pepper’s speech synthesizer does not offer
direct voice intonation selection, but it provides the option to
setup voice parameters such as pitch and speech rate, which
can be tuned to obtain a different voice intonation than the
standard provided. Our approach consists of changing the
pitch and speed rate parameter values according to the emo-
tion Valence value, i.e. the emotion’s Valence obtained from
the emotion appraisal is normalized between the maximum
and minimum values for the voice pitch and speed rate.
Maximum and minimum values have been experimentally
defined for our system.

VII. EXPERIMENTAL SETUP

In this section we introduce the robotic platform used
in the experiments, the hypotheses we want to validate
through the experiments, and an overview for the conducted
experiments.

A. Robotic Platform

The robotic platform employed in the performed experi-
ments is a Pepper robot developed by Softbank Robotics*.
Pepper has a height of 120cm and 20 degrees of freedom
human-like torso that is fitted onto a wheeled platform,
equipped with full-color RGB LEDs (placed in eyes, ears

4nhttps://www.ald.softbankrobotics.com/en/robots/
pepper



and shoulders), three cameras , and several sensors located
in different parts of its body that allow for perceiving the
surrounding environment with high precision and stability.

B. Hypothesis

The presented research aims to test and validate the
following hypotheses:

o HI: Generative Adversarial Networks can be used to
generate gesticulation movements and the gestures gen-
erated will be considered as natural by the user.

o H2: The robot expression displayed through generated
body gestures adapted and combined with eyes’ colors
and voice intonation are perceived as more expressive
by the user than expressing only through talking arm
gestures.

C. Experimental design

In order to test and validate those two hypothesis (H1
and H2), we have defined two different experiments (E1 and
E2) in which participants must judge the robot behavior by
filling a questionnaire designed to analyze their perception
about the system.

o El1: The robot reports short news to the participants.
It repeats three times the same piece of news using
a different type of gesticulation in each session: using
Random mode of Softbank’s Animated Speech module,
which launches some neutral animations executed one
after another; using Contextual mode of Softbank’s An-
imated Speech module, which launches some specific
animations each time a keyword is detected, and when
no contextual animations is found, it randomly launches
a new animation; using gestures generated by GAN.

o E2: The robot tells different tweets to the participants.
It repeats three times the tweets, but adding a new
feature to the robot expression each session. First,
talking gestures are generated adding head tilt and arms
movement speed features (S1). In the next session (S2),
the color of the eyes is added together with the features
added in S1. Finally, in the last session (S3), the tone
of the voice is added together with the features added
in S1 and S2.

VIII. EXPERIMENTAL RESULTS

For the evaluation of the system, 57 voluntaries have been
recruited at [CAR-CNR in Palermo, Italy and the University
of the Basque Country (UPV/EHU) in Donostia, Spain, to
judge the behavior of Pepper during a talk. The participants
grouped into three or four, entered in the experiment room
without any information about the experiments and were
seated in front of the robot.

In the first experiment (E1), participants evaluated the
talking gestures performed by the robot. The order of the
type of gestures performed by the robot was randomized
in order to avoid possible bias of people always choosing
the last remembered as best behavior. After seeing each
session participants filled a questionnaire based on five-point
Likert scale rating the following aspects: the naturalness (A)
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of the gestures, the fluency (B), the appropriateness of the
gestures for accompanying the speech (C), the variability of
gestures perceived (D), the synchronization (E) between the
speech and the gestures, and how much they liked (F) the
gestures performed by the robot. Additionally, after seeing
all sessions, they chose their preferred one.

Random  Contextual GAN
(A) Naturalness 34 34 3.2
(B) Fluency 3.5 3.6 33
(C) Appropriateness 32 3.2 32
(D) Variability 3.1 3.1 3.0
(E) Synchronization 33 3.3 33
(F) Liking 34 34 33

TABLE 1

MEAN VALUES FOR EACH GESTICULATION TYPE.

Results in table I show that the GAN approach allows the
system to produce credible movements during the speech
even if no contextual information is used. The mean scores
for each gesticulation type are very similar. Nevertheless,
when asking about preferred session GAN based approach
obtained 41%, while Random and Contextual obtained 30%
and 29% respectively. The main advantage of the GAN
approach is that the robot can use different datasets of simple
movements depending on cultural context, social practices,
or individual preferences.

In the second experiment (E2) the potentiality of the
generated robotic gesticulation (by using GAN) is evaluated
considering the possibility to convey also emotions depend-
ing on the pronounced speech, and enriching the interaction
with other relevant factors such as the head movements and
arms movement speed, the tone of the voice, and the color
of the eyes. Participants must judge the gestures in the same
way as in the first experiment (questions A-F), but they also
must identify in which part of the body they appreciated
the emotion (G), and how much they liked the overall robot
capability to perform expressions (H).

Results in figures 5, 6, and 7 show that robot’s expressive-
ness improves significantly by adding more features as eyes
LEDs colors and voice tone. In particular, results of table
IT show the influence of each relevant part in the different
sessions: participants clearly appreciate the effect of head
tilt when expressing emotions, and they also perceived the
influence of changing the arms movement speed according to
the emotion; the introduction of the eye LEDs colors during
S2 has a great impact in expressiveness perception; also the
modulation of the voice tone is well perceived in S3.

(G) Relevant part S1 S2 S3

Head 9%  64% T1%

Arms 43% 36% 46%

Eyes 2% 80%  70%

Voice 16% 14% 57%
TABLE 11

INFLUENCE OF EACH RELEVANT PART IN THE DIFFERENT SESSIONS.
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IX. CONCLUSIONS AND FURTHER WORK

A suitable generator of rhythmic gesticulation movements
with few others expressive features (the head posture, the arm
movements velocity, the variation of voice tone, the change
of color of eyes) dependent from sentiment detected on
sentences, could be a simple system to have high appreciation
rates during a human-robot conversation. On the basis of the
obtained results, the further work could focus the following
interesting directions. The dataset of basic movements used
by the GAN approach could be derived from the direct
observation of the human by using an RGBD device. In
this way, a robot can use with a given person a set of
movements that are familiar to him/her. Furthermore, we
plan to introduce the detection of the six basic emotions
to have a more complex expressive behavior and to consider
also some gestures with metaphoric or iconic meaning. We
will perform similar experiments exploiting the two different
cultural contexts (Italian and Spanish) aiming to investigate
for instance the effects of the cultural influences. Moreover,
we should investigate to find also evaluation methods to
measure the goodness of the gestures generated by the GAN
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network.
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This article is an attempt to characterize the cognitive skills involved in the development of socially interacting
robots. We argue that performative arts, such as oral improvised poetry, can serve as a useful testbed for the
development and evaluation of robots that interact with humans. The paper presents a speech-based humanoid
poet-performer that can (1) listen to human commands and generate poems on demand; (2) perceive audience’s

feedback and react displaying the corresponding emotional response; and (3) generate natural gesticulation
movements enriched with social signals depending on sentiment processing. We discuss each of the involved
abilities, present working implementations and show how they are combined in an embodied cognitive archi-
tecture to achieve the fluent coordination and joint-action timing needed in live events.

Introduction

Social robotics (Breazeal, 2004) aims to provide robots with artifi-
cial social intelligence to improve human-machine interaction and to
introduce them in complex human contexts. The demand for robot’s
sophisticate behaviors requires to model and implement human-like
capabilities to sense, to process, and to act/interact naturally by taking
into account emotions, intentions, motivations, and other related cog-
nitive functions. And, of course, the ability to communicate through
natural language and non-verbal signs is in the front line of research.

Nowadays, the development of control architectures for robots
while taking into account the complexity of social human-robot inter-
action is a real challenge. It requires various cognitive features to be
present: emotions, attention allocation, creativity and reactive and
deliberative levels of perception and action.

Ever since the pioneering research on cognitive architectures
(Newell, 1994), several architectures can be found in literature: SOAR
(Laird, Kinkade, Mohan, & Xu, 2012), ACT-R (Anderson, 2005),
CLARION (Sun, 2006), iCub (Vernon, Metta, & Sandini, 2007a) and
ICARUS (Choi & Langley, 2018), among others. A good review of the
literature can be found in (Vernon, Metta, & Sandini, 2007b; Thérisson
& Helgasson, 2012; Langley, Laird, & Rogers, 2009). But, in spite of the
numerous contributions in the field of cognitive architectures, robots
that can listen to human speech, understand it, interact according to the
conveyed meaning and respond still represent major research and
technological challenges. Therefore, a research on different approaches
to build control architectures oriented for interaction able to deal with

* Corresponding author.
E-mail address: igor.rodriguez@ehu.eus (I. Rodriguez).

https://doi.org/10.1016/j.bica.2018.07.014

cognitive capabilities such as emotion and social aspects of human-
robot interaction (HRI) is highly useful.

In the last years research in the field of social robotics with con-
versational capabilities has grown up, and several robots have been
designed and developed in this area. Such applications, most of them
not concerned about being a faithful model of cognition, comprise
several cognitive abilities and provide robust adaptive behaviour for
human-robot interaction. Relevant works include: industrial and man-
ufacturing robots (Cherubini, Passama, Crosnier, Lasnier, & Fraisse,
2016; Heyer, 2010); assistive robots and robots focused on aiding users
with special needs (Bemelmans, Gelderblom, Jonker, & De Witte, 2012;
Fasola & Mataric, 2012; Gémez Esteban et al., 2016; Kachouie,
Sedighadeli, Khosla, & Chu, 2014; Luria, Hoffman, Megidish,
Zuckerman, & Park, 2016; Tapus, Tapus, & Mataric, 2009); interactive
teachers and educational assistants (Fridin & Belokopytov, 2014;
Kanda, Shimada, & Koizumi, 2012); lab or household robotic assistants
(Dautenhahn et al., 2005; Wisspeintner, Van Der Zant, locchi, &
Schiffer, 2009); shopping mall guides (Chen et al., 2015); persuasive
robots (Chidambaram, Chiang, & Mutlu, 2012; Lee & Liang, 2016);
museum robots (Kanda, Arai, Suzuki, Kobayashi, & Kuno, 2014;
Rashed, Suzuki, Lam, Kobayashi, & Kuno, 2015) and tour guides (Kanda
et al., 2014); companion robots (Moyle et al., 2013); and robots more
oriented to the entertainment area, such as robotic theater actors
(Fernandez & Bonarini, 2013; Hoffman, 2011), musicians, storyteller
robots (Bruce, Knight, Listopad, Magerko, & Nourbakhsh, 2000; Bae
et al., 2012; Costa, Brunete, Bae, & Mavridis, 2016; Wu, Wang, Tay, &
Wong, 2017) and dancers (Kosuge, Hayashi, Hirata, & Tobiyama,
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2003). We could denominate this last group as performance robots, that
is, robots close to performative arts that execute their task on a stage.
An approach that brings the gap between cognitive models and social
robotics is presented in Augello, Infantino, Pilato, Rizzo, and Vella
(2015) and Augello et al. (2016). In those works authors propose a
cognitive architecture for computational creativity, making a humanoid
robot able to dance.

We believe that stage performance is valuable both as an im-
plementation platform and as a testing ground for interaction-oriented
cognitive architecture research. On the one hand, the event setting is
constrained to some degree, limiting thus the perception and actuation
possibilities of the robotic system. On the other hand, it provides a
unique environment in which humans and robots collaborate in-
corporating dialog, sensory processing, action selection and behavior
coordination.

Our robotic system, called Bertsobot, should be framed within
performance robots: an autonomous robot that participates on live
events, improvising poems under given constraints and performing
them on stage. Thus, Bertsobot brings together capabilities and char-
acteristics from many of the previously mentioned performance robots:
theatrical staging, verbal and non-verbal communication, people de-
tection and key stage elements perception, affect detection and emo-
tional response, timing and coordination, etc.

In this article we present working implementations of the involved
cognitive skills and show how they are combined to achieve the fluent
coordination and joint-action timing needed in live events.

We do not claim to address here the issue as a whole. This article
attempts however to organize it into a coherent challenge for social
robotics, and to explain and illustrate some of the paths that we have
investigated on our robots, which result in a robot architecture de-
signed for human-robot interaction that implements cognitive skills.

Improvised poetry and Bertsolaritza

Writing poetry requires both creativity to construct a meaningful
message and lyrical skills to produce rhyme patterns and follow me-
trical constraints. Furthermore, oral poetry, poetry constructed without
the aid of writing (Lord, Mitchell, & Nagy, 2000), implies that a work
has to be composed and performed at the moment, with no prior pre-
paration. Nowadays many improvisational oral practices exists around
the world, such as Serbo-Croatian guslars (Lord et al., 2000), freestyle
rap (Pihel, 1996) and Basque bertsolaritza (Garzia, Sarasua, & Egana,
2001).

Bertsolaritza, the art of improvising verses in Euskara (the language
of the inhabitants of the Basque Country) is one of the manifestations of
traditional Basque culture that is still very much alive. Events and
competitions in which the verse-makers, bertsolari-s, have to produce
impromptu compositions about topics or prompts are very common. A
typical scenario involves an emcee suggesting a topic to the bertsolari,
who must then, within the space of less than a minute, come up with a
verse on that topic that must obey certain rules; in other words, it must
fit in with a prescribed verse-form that also involves a rhyme scheme
and a melody (chosen from among hundreds of tunes). And of course
perform that verse, before an audience and without any musical ac-
companiment (see Fig. 1).

The Bertsobot cognitive architecture

The Bertsobot system endows the robots with some of the bertsolari-
s’ capabilities that allow to take part in public performances. Therefore,
our Bertsobot system is able to perceive the feedback and emotions of
the audience through their applause and react accordingly, as human
oral improvisers do, modifying in real time the sentiment of the poem
and its corporal expression accordingly. We focused on creating a
practical cognitive architecture that follows the dynamics of real
events, as verse-makers do:
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Fig. 1. Typical scenario.

1. Wait sitting for its turn.

2. When demanded, place itself in front of the microphone and listen to
the exercise proposed by the emcee.

3. Compose and sing the verse to the public.

. Observe and receive audience’s feedback and react accordingly.

5. Go back to its sitting place.

N

A robot capable of performing the aforementioned tasks involves
the development of several cognitive capabilities. Although Bertsobot’s
main task is to compose verses, which requires a high cognition level,
there are other important capabilities that at lower-level manage per-
ceptions and representations of the environment. Specifically, it re-
quires certain abilities to understand verbal instructions, move around
the stage, recognize the different key elements of the scenario, interact
with other agents and the audience, and show the same degree of ex-
pressiveness that bertsolari-s show on stage.

The cognitive architecture is the framework that facilitates us the
development of cognitive functions, providing a structure within which
to embed the mechanisms for perception and action, motivation and
social interaction (Vernon, von Hofsten, & Fadiga, 2016). The cognitive
description of our robotic system has been inspired by Augello et al.
(2018). The framework is suitable to model aspects such as motivation
and emotions that are integrated with perceptual and reasoning pro-
cesses. Fig. 2 shows an overview of the proposed framework for Bert-
sobot.

In our framework, The Long Term Memory (LTM) stores all the
knowledge required by the robot to accomplish the task. It contains the
postures model with which the robot will be aware of its body config-
uration, the rules and corpora to generate extemporary poems, a set of
melodies for singing composed verses, a gesture repertoire related to
the expression capabilities of the robot, and a linguistic dictionary. On
the other hand, the Short Term Memory (STM) or working memory
stores temporal information about robot’s and audience’s emotional
state. Drives comprises all the basic behaviors to interact with the en-
vironment and extract information from it. Finally, the Social
Interaction module guides the human-robot interaction through verbal
communication and body expression.

Our cognitive framework has been designed as the basis for the
development of an adaptive robot for human-robot interaction, in-
tegrating a wide range of components in a scalable ROS' based control
architecture. It is composed by different behaviours or modules that
make the robot act in a consistent manner and resemble a real bertsolari.

In the following sections, we introduce in detail the main cognitive
capabilities used in our robot performer.

1 http://www.ros.org/.
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Fig. 2. Bertsobot’s cognitive architecture.

Verbal communication

Verbal communication is essential if we intend fluid HRI. Speech-
based interaction is accomplished in two ways in our Bertsobot system:
on the one hand, the system is able to maintain a dialogue with its
interlocutor to receive instructions about the stage performance: when
to start and when to finish, the theme and the metric to compose the
poem and so on. Moreover, speech acts should be coordinated with the
robot physical movement in space (whether that movement is func-
tional or expressive). On the other hand, oral communication is ac-
complished when the robot creates, under the given instructions, a new
piece of poem and sings it with a proper melody.

Fig. 3 shows the architecture of our dialogue system that in-
corporates an Automatic Speech Recognizer (ASR), Language Inter-
preter, Dialogue Manager, Response Selector, Text Generator, Speech
Synthesizer (TTS) and the Singing Synthesizer (TTSKantari).

The Automated Speech Recognition (ASR) component converts the
raw audio input into a sequence of words. Google Speech service is used
as an ASR system. This is forwarded to a Language Interpreter module
to extract the semantics of the utterance. The Language Interpreter
module parses the input text and makes use of a database of keywords
to identify user’s query. Then, the Dialog Manager (DM) decides upon
the action to take according to the employed dialog strategy. In our
system, the DM is implemented as a finite state automaton. Thus, the
system guides the conversation with the user, asking a series of

Language Dialogue
FER e Interpreter Manager
A
| — TS
Response Text | !
Selector Generation LS .
Kantari

Fig. 3. Description of the Bertsobot dialogue system.
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questions and chatting or singing a poem depending on what the user
commands. The Response Selector selects the proper text output for the
actual state. The output can be a predefined response according to the
dialogue’s state (a set of utterances to receive information about the
stage performance), or a command to compose a novel poem under the
given constraints. The Text Generator module receives the input and
generates the poem when it is commanded. Finally, the last step con-
verts the text into audio. When the text output is an utterance it is
passed to the text-to-speech engine (TTS) component to be synthesized.
AhoTTS tool, a speech synthesizer for Basque Language developed by
AhoLab (Hernaez, Navas, Murugarren, & Etxebarria, 2001) is used for
that purpose. And, when the output is a poem text, the last step consists
of translating from text to a song that will be immediately performed by
the robot. To do so, poem’s metric is analysed and a melody according
to the sentiment of the text is chosen from an available database. The
poem and the melody are sent to the TTSkantari singing synthesizer
(Agirrezabal, Alegria, Arrieta, & Hulden, 2012) which produces the
audio file with the sung poem.

Automatic poetry generation

The core element of the Text Generation module is the Automatic
Poetry Generation (Gervés, 2013; Lamb, Brown, & Clarke, 2016;
Oliveira, 2017) system. Its goal is to use improvised poems to convey a
message and transmit emotions to the public. Our approach implements
the same strategy used by bertsolari-s for the creation of impromptu
verses, and in a few seconds — less than a minute — assembles a new
poem along the prescribed verse-form. Although our work focuses on
bertsolaritza, it can be generalized as automatic poem generation.

The proposed system receives as input the topic of the poem and the
affective state (positive, neutral or negative) and tries to give as output
a novel poem that: (1) satisfies formal constraints of rhyme and metric,
(2) shows coherent content related to the given topic, and (3) expresses
them through the predetermined mood. Thus, the system can be asked
to view a topic (eg. spring) from a particular affective stance (eg. ne-
gative). In doing so, the goal is to not only to convey a message in the
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form of a poem but also to respond to an affective target and/or to
create an affective response in the audience. That is, creating a poem in
an intentional way.

Our poetry generation strategy is a corpus-based method
(Astigarraga, Martinez-Otzeta, Rodriguez, Sierra, & Lazkano, 2017) and
the overall semantic relationship has been implemented with an LSA
model (Astigarraga, Jauregi, Lazkano, & Agirrezabal, 2014; Deerwester,
Dumais, Furnas, Landauer, & Harshman, 1990). The verse generation
procedure relies in the extraction of sentences from corpora and com-
bining them (under rhyme and metric constraints) to form the final
poem. The LSA model assures the internal coherence between poem
lines and the overall coherence with respect to a theme.

The two text generation methods are:

o Sentence retrieval: The basics of this method is to extract from the
corpus sentences which meet rhyme and metric constraints.

e N-gram probabilistic model: Starting from the rhyming word, the
verse is built backwards using the selected N-gram model; extending
at each step the sequence of words with new ones that have a non-
zero probability of appearing after the last word.

The overall architecture, depicted in Fig. 4, is modular and provides
a high level of customization, depending on the needs of the user.

It must be noted that the sentiment input is intended to receive
audience’s feedback. Next section (see Section “Affective perception”)
explains how audience reactions are processed and coded. This feed-
back is used to respond accordingly, maintaining the affective response
when the audience reaction is positive, and changing the sentiment
target when it is not.

In Table 1 we show two poems generated by the poetry generator
system. We also provide an approximate English translation, even
though part of its aesthetic value is lost in translation.

Objective evaluation of poetry is difficult, if not impossible, to assess
in an automatic way. As Gervas (2015) and Cardoso, Veale, and
Wiggins (2009) stated, human evaluators are needed to assess the de-
gree of creativity of a computational creation. Thereby, we contacted
with 5 people close to bertsolaritza and they participated in the eva-
luation, explicitly telling them that such poems were the product of an
automated system. Each of them analyzed twenty poems, ten from each
text generation method. They have been asked to give their overall
impression about the overall quality, emotional affect, similarity with
the theme, internal coherence and style. General conclusions they ex-
tracted:

o The emotional affect of the poems can be clearly appreciated.

e The generated poems are related to the subject. This relationship is
not only appreciated through the repetition of the key word or
theme, but also through the inclusion in the poem of words se-
mantically similar to the theme.

e Sentence-retrieval method ensures the internal coherence of the
sentences (since it extracts entire phrases from the corpus) but, on

=)
W Thfme Senltiment

N-gram model

Sentence retrieval

WordT lNexl Word
Rhyme Poem
Sentence Poem 0@
Generator Generator
Sentence
,,,,,,,,,,,,,,, TextUtilites L |
Syllables Rhymes Semantic Sentiment
! Util Util Util Util

Fig. 4. Poetry generation architecture.
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Table 1

Two poems created by the system given theme “music”. The upper one using
sentence-retrieval method and with negative sentiment, and the bottom one
using the n-gram method and with positive sentiment.

Basque Gutxien ezagutzen zen musikaria
hak bertsotan aurkeztu zuen jaialdia
haiengandik aldendu hori nire nahia

Bolibarko Txikito puntista ohia

The least known of the musicians

he introduced the festival improvising verses
get away from them, that’s my goal

Txikito de Bolivar, ex pelotari

English

Zaintzen nahiko lan daukat emanaldiekin
eta libre izan nahi dut entzuleekin
zorion gehiago gaur ez gaude ezberdin
nere musika ez al duzu zuk atsegin

Basque

English I've enough taking care of myself in concerts
and I want to be free with the listeners
more happiness, today we are not different

Don’t you like my music?

the other hand, creates more rigid poems.

o The N-gram method is more flexible, malleable, and seems to get
closer to the given topic. But, the toll to be paid is that flexibility is
sometimes translated into unintelligible phrases.

The final objective of the evaluation was none other than comparing
the proposed text-generation methods and measuring the consistency
(both internal and external with respect to the given topic). Once the
method is implemented in the real robot, the improvised verses will be
judged by the public using audience’s applause as feedback, as in the
events of human improvisers.

Affective perception

Audience plays an important role in any type of performances,
specially in bertsolaritza. The crowd shows how pleasant the verses have
been, usually clapping as well as laughing when they have found it
amusing. Perceiving and showing emotions is essential to convey in-
teraction. Developing an approach to react to the audience’s feedback
covers multiple fields, such as applause detection and classification, and
selection of the robots appropriate reaction in the context of the per-
formance. The presented approach uses audience applause as feedback
to the robot system (Kraemer, Rodriguez, Parra, Ruiz, & Lazkano,
2016). Applauses are captured and translated into a response from the
public by means of energy (E) and duration (d) of the applause. The
addressed strategy can be split up into a straight-forward work-flow
(see Fig. 5). In the initial step, audio processing and machine learning
techniques prepare the input audio stream by first chunking it, and then
classifying each chunk as being applause or not. Next, the incoming
stream of classified chunks is segmented into sections of consecutive
applauses, leading to a small descriptor ([E, d]) for every evaluated
applause. Based on all previous applauses of the event, the most recent
one can subsequently be classified. The applauses are coarsely cate-
gorized as belonging to one of the following classes: Negative, Neutral,
Positive and Very Positive.

Therefore, the system detects audience’s feelings and can choose the
proper emotional response to display at a cognitive level. Each applause
feedback class has been represented with an emotion: Sad, Calm, Joy
and Excited emotions correspond to Negative, Neutral, Positive and

Audio Chunk A I[E» d] | A | Applause
Classification Segmentation l l Classification I class

Audio

Fig. 5. Approach work-flow for applause classification.
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Very Positive applause classes (see Section “Gestures” for emotional
portrayal details). Right now the robots only maintain a basic persistent
emotional state, which endows them to be aware of their current
emotions when receiving audience’s feedback, and thus being able to
adapt their verse style accordingly.

Interaction with the environment

Embodied cognition establishes that cognition depends upon ex-
periences that come from having a body and thus, feedback between
agents and the world is essential to develop cognitive capabilities
(Wainer, Feil-Seifer, Shell, & Mataric, 2007).

People perception

A natural reaction when we want to interact with someone is to
direct our gaze towards the interested agent. The gaze feeds the com-
munication, and conveys interest or attention to the interlocutor. It
requires positioning the robot to make the most out of its sensors and to
let the human talker know what the robot is actually paying attention
to. Spontaneity during verbal communication involves two main be-
haviours, face and sound localization. Face localization is done ap-
plying OpenCV’s Haar feature-based cascade classifiers (Viola & Jones,
2001) to the images taken by the robot’s camera.

Sound source localization allows a robot to identify the direction of
sound, and it is accomplished using microphone arrays, an algorithm
based on TDOA (Time Difference of Arrival) approach (Bensky, 2016).
The sound wave emitted by a source is received at slightly different
times on each of the robots microphones, from the closest to the
farthest. These differences are related to the current location of the
emitting source. By using this relationship, the robot is able to retrieve
the direction of the emitting source (azimuth and elevation angles)
from the TDOAs measured on the different microphone pairs.

Key objects perception

The robot pays attention to different elements at different moments.
The robot can be requested to reach the microphone to start its singing
turn or it may need to go to rest to its chair. A colour tracking procedure
enhanced with a Kalman Filter (Kalman, 1960) is used to produce a
more robust behaviour against illumination conditions and balancing
produced during walking. No location information in form of odometry
or frame of reference is used because the location of those elements
with respect to the robots varies depending on the scenario.

Non-verbal communication

Body language represents the key to express feelings and helps
people to understand sociability (Knight, 2011). While speaking or
singing the poem, the robot has to generate credible body language that
should shape and convey the information content.

Gestures

When the bertsolari-s are on the stage they are continuously con-
veying information, through facial expressions, body postures, move-
ments or gestures, intentionally or not, about their emotional state.
After identifying the main different states of the global behaviour, a
gesture library composed by five different gesture sets have been de-
fined to mimic verse-maker’s emotional behaviour on the stage
(Rodriguez, Astigarraga, Ruiz, & Lazkano, 2016). At each state of the
performance appropriate gesture set is selected. Three of the gesture
sets represent states of the performance in which the robot does not
receive any input from the environment (user or public).

e Thinking gestures: gestures that try to mimic human behavior while
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Fig. 7. Example of a singing gesture.

thinking (see Fig. 6).

Singing gestures: those movements that verse-makers perform just
after the improvisation process finishes and before they start singing
(see Fig. 7).

Waiting gestures: gestures that try to imitate human behavior while
standing, such as change arms’ position and make movements with
its head (see Fig. 8).

In the remaining two gesture sets robot’s expression dynamically
generated and adapted based on the sentiment of the text to be re-
presented or the people’s reaction through applause feedback.
Talking gestures: those movements that endow our humanoid robots
with the ability to generate natural gesticulation movements en-
riched with other relevant social signals depending on sentiment
processing. Head and arms movements, along with eye LED lighting
and voice intonation are combined to make a humanoid robot ex-
press the sadness-happiness emotion continuum. Using sentiment
analysis (Vicente, Saralegi, & Agerri, 2017) on the text that will be
pronounced by the robot, we derive a value for emotion valence and
coherently choose suitable parameters for the expressive elements.
In this way, the robot has an adaptive expression generation during
talking as it is shown in (Rodriguez, Martinez-Otzeta, Lazkano, &
Ruiz, 2017). Fig. 9 shows some examples of generated gestures with
emotion.

Emotional reaction gestures: After the bertsolari sings a verse the
audience responds applauding to express their opinion, and this
reaction is reflected in the robot as an emotion gesture. As stated
before, each applause feedback class has been represented with an
emotion; in the next order Sad, Calm, Joy and Excited emotions
correspond to Negative, Neutral, Positive and Very Positive ap-
plause classes (see Fig. 10).

Fig. 8. Example of a waiting gesture.
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(a) Sad

(c) Happy

Fig. 9. Three basic emotions with their respective expressions.

(c) Joy

Fig. 10. Some examples of emotional reaction gestures.

(d) Excited

Evolution of the system through public performances

The robot’s performance capabilities have been demonstrated in
different events in a 5years period. These public performances show
the evolution of the Bertsobot project since its start up, when no hu-
manoid platform was available, and up to now.

The objective of the live performances was not other than to bring
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social robotics to the general public and, along with that, to receive
audience’s feedback about human-robot interaction.

First experiments were carried out by Tartalo and Galtxagorri,
PeopleBot and Pioneer2DX mobile platforms from Omron Adepts
MobileRobots.” Later on, we move to humanoids robots. We employed
NAO and Pepper robots developed by Softbank Robotics.*

Table 2 shows the first and last version of the Bertsobot system, and
their degree of implementation of the main cognitive functions. Fig. 11
depicts a functional description and inter-module communication of the
final Bertsobot software architecture.

The “Performance Manager” is the behaviour that brings the co-
herence necessary to the system in order to follow the dynamic of a
performance. It decides the action/actions the robot has to perform
depending on the current state of the performance and the current body
posture of the robot. The latter information is provided by the “Body
Posture Awareness” module. The “People Perception” as well as the
“Speech-Based Dialogue” behaviours allow the interaction with the
emcee, while “Environmental Key Objects Perception” provides the
robot with necessary skills to interact with environmental key objects.
These interactions, usually executed as motion actions, are managed by
the “Motion Control” behaviour. The verse is composed and sung by the
“Verse Generation” process, and audience applauses, which affect the
robot’s emotional state, are captured and classified by “Feedback From
the Audience” behaviour. The robot’s emotional state is managed by the
“Emotional Behaviour” module, which decides the emotional state that
the robot must show considering both the feedback obtained from the
audience and the emotion extracted from the text to be said by the
robot. The robot body expression is managed by the “Adaptive Body
Expression” behaviour, which generates appropriate gestures when
talking, and chooses the predefined gestures to be applied from the
appropriate gesture set at each state according to the state of the per-
formance, the robot posture, and the emotional state of the robot.

e 2012/04: First public appearance: Inauguration of the speaker’s
corner of our Campus. Paradoxically the most audacious one, due to
the importance of the event and the preliminary state of the project.
Tartalo and Galtxagorri were brought out and acted outdoor. No
significant body language was shown, neither chatting was possible.
Robots were mainly teleoperated and control software was Player/
Stage.? Only the automatic verse generation system was embedded
in wheeled robots. Video available.”

2013/05: Robots against bachelor students: The robots took part
in an event hold in the our faculty where they competed against
some bertso-amateur students

Tartalo was accompanied by NAO for the first time. Primary ges-
tures were shown by NAO, that acted as the emcee semi-autono-
mously. NAO was controlled using Choregraphe, its native con-
troller. Video available.®

2014/03: Women’s day at the Faculty: Our university annually
celebrates the women'’s international day in a different center and in
2014 it was held at our Faculty. The program included a bertso event
where two big professionals and two robots (NAO and Tartalo) took
part.

NAO showed improved chatting abilities, but still “unROSified”.
Primary gestures in NAO, that guided the event but semi-autono-
mously.”

e 2014/11: ScienceClub: Club of Sciences events aim to disclose

2 http://www.adept.com/products/mobile-robots.

3 https://www.ald.softbankrobotics.com/en/robots.

4 http://playerstage.sourceforge.net/.

S https://www.youtube.com/watch?v = OpQBVmkzRWg.

© http://www.eitb.eus/eu/kultura/bertsolaritza/osoa/1350970/robot-
bertsolariak-ixa-taldea-eta-ehuko-robotika-saila/.

7 http://ehutb.ehu.es/es/video/index/uuid /531 ec65f964be.html.
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Table 2
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Comparative table showing the cognitive abilities of the first (2012) and last (2017) version of the Bertsobot system.

Galtxagorri/Tartalo (2012)

NAO/Pepper (2017)

Dialogue
Poetry Generation

Precompiled text

retrieval method
Affective Perception No
Interaction with the Mainly teleoperated robots
environment

Body expression Basic movements

Only one exercise, rhymes given: the system is given the four
rhyming words and it is required to compose the bertso. Sentence-

Basic chatting capabilities

Two different exercises: rhymes given and topic given. Sentence-retrieval
and n-gram generation methods. Affective state integrated in the creation
process

Audience applause as feedback

Key object recognition integrated, fully autonomous robot

Gesture sets to represent state of the performance. Automatically generated
gesture sets based on the sentiment of the poem and people’s reaction

» Image : Face and Sound position
\@, 0 ﬁ» People Perception P
Motion Control
r Image Environmental Key Object position i _
& Objetcs Perception i i Motion
VAN Action h
(Walk or Gaze) i
| Sound | ] f Signal | Performance | Pose | Body Posture Expression.
————»| Speech-Based Dialogue H
] Manager ‘ Awareness
Text Exercise,[Rhymes, Action Speech
Topic, Metric (Gestures)
Emotional Emotion [ Verse Adaptive Expression Sung
Behaviour l Generation Generation

—= 5
i Verse

|

User's affective
state

Feedback From the
Audience

Lo

Sound |

Fig. 11. Bertsobot’s actual software framework.

science and technologies to the society. A dialogue with NAO en-

titled “Chatting with NAO” of approximately 10 min was presented.

NAO acted alone and it was its first performance after being

“ROSified”. However, it still acted semi-autonomously.

2015/11: ScienceClub: Next year the title of the event was “NAO,

an empathetic or just amusing robot?”

Body gestures were integrated and chatting abilities were shown.

The key object recognition was tested together with the face and

sound localization behaviors. Video available.®

2016/02: Event at the Faculty: A local event was organized at the

Faculty in order to be able to evaluate the applause classification

and emotional state gesture reproduction modules.

Thinking and singing preamble gestures were used but there was no

emcee neither environmental key objects to be easier for the audi-

ence to concentrate in the aspects that needed evaluation. Video

available.”

® 2016/09: Closing of a Summer University Course: Our university
annually organizes several summer courses. Bertsobot was invited to
the closing of a course entitled “Educational assessment: unresolved
matter”. It was not a bertso-saio event but it covered all aspects of the
interaction.

e Lab demonstration A rehearsal without audience recorded at our
laboratory'” exhibits the global behavior of the Bertsobot system in
a performance similar to bertsolari-s events, in which two NAO act as
verse-maker and the roll of the emcee is performed by Galtxagorri.
The robotic emcee establishes the rules of the duel: who starts, the
exercises and the flux of the performance.

e 2017-12: Lab demonstration A local event realized in our la-
boratory in which Pepper robot acted alone as a verse-maker with a

8 https://www.youtube.com/watch?v=IMMXHWB2mZA.
< https://www.youtube.com/watch?v = SdxNgmV3CzA.
10 https://www.youtube.com/watch?v = UNhvd2qbuay.
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human emcee guiding the event. Pepper composed poems on the fly
and reacted according to the feedback received from the audience.

Conclusions and further work

We have presented in this paper an implementation of a software
architecture designed for socially interacting robots. Although most of
the implemented cognitive skills have been previously presented in
other publications, this paper shows for the first time an overall in-
tegration of these components into a coherent and coordinated system
for speech-based social HRI.

Specifically, we argue that oral improvised poetry can serve as a
useful testbed for the development and evaluation of robots that in-
teract with humans. The paper presents a speech-based humanoid poet-
performer that can (1) listen to human commands and generate poems
on demand; (2) perceive audiences feedback and react displaying the
corresponding emotional response; and (3) generate natural gesticula-
tion movements enriched with social signals depending on sentiment
processing. We discuss each of the involved cognitive abilities, present
working implementations and show how they are combined to achieve
the fluent coordination and joint-action timing needed in live events.

This paper describes a dialogue system that combines basic chatting
capabilities with a more elaborate oral poetry generation system. The
proposed method not only generates novel poems, but also creates them
conveying a certain attitude or state of mind. The system receives as an
input the topic of the poem and the affective state (positive, neutral or
negative) and tries to give as output a novel poem that satisfies formal
constraints of rhyme and metric, shows coherent content related to the
given topic and expresses them through the predetermined mood.

This work already allows robots to react and alter their behaviour
during an event according to a specific audience’s natural feedback.
Note that the developed system is not just a reactive system. The im-
plemented on-line learning system allows the emotional system to ad-
just to the different audiences and, at the same time, to dynamically
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adapt to the overall state of the audience while the event progresses.
Moreover, audience’s feedback feeds the emotional reaction of the
robot and also affects the poem generation system, adapting the text-
sentiment to the perceived reaction. The adequateness of the overall
system has been demonstrated through several real live performances.

Nevertheless, the proposed architecture has not achieved its final
state and many improvements are under way. For instance, we are
improving the dialogue capabilities of the robot, allowing an active
learning for common ground knowledge acquisition, and translating
our system to other experimental scenarios involving social interaction.
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