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Abstract: Artificial Intelligence techniques have shown outstanding results for solving many tasks
in a wide variety of research areas. Its excellent capabilities for the purpose of robust pattern
recognition which make them suitable for many complex renewable energy systems. In this
context, the Simulation of Tidal Turbine in a Digital Environment seeks to make the tidal turbines
competitive by driving up the extracted power associated with an adequate control. An increment
in power extraction can only be archived by improved understanding of the behaviors of key
components of the turbine power-train (blades, pitch-control, bearings, seals, gearboxes, generators
and power-electronics). Whilst many of these components are used in wind turbines, the loading
regime for a tidal turbine is quite different. This article presents a novel hybrid Neural Fuzzy design
to control turbine power-trains with the objective of accurately deriving and improving the generated
power. In addition, the proposed control scheme constitutes a basis for optimizing the turbine control
approaches to maximize the output power production. Two study cases based on two realistic tidal
sites are presented to test these control strategies. The simulation results prove the effectiveness of
the investigated schemes, which present an improved power extraction capability and an effective
reference tracking against disturbance.

Keywords: fuzzy logic control; artificial neural networks control; tidal stream generator; swell effect
disturbance; doubly fed induction generator; maximum power point tracking

1. Introduction

Renewable energy technologies are being increasingly exploited worldwide. Countries around
the world are resorting to integrating renewable energy resources into their energy policy to reduce
fossil fuel usage and carbon emissions [1–4]. Electricity demand is growing rapidly as countries
develop, with increased use of electricity to meet a range of needs. According to the projections of the
International Energy Agency (IEA), the global energy need has increased by about 40% since 1990,
and a 53% increase is expected by 2030 [5]. This fast-rising energy demand will require some US $45
trillion in new infrastructure investment by 2030 [6]. The renewable energy technologies can improve
energy security and decrease dependence on fossil fuels. The International Energy Outlook (IEO2016)
confirms that these systems are related to a growing renewable energy converters. Renewable energy
consumption increases by an average of 2.6% per year between 2012 and 2040 [7]. The technical
potential for renewable energy is far greater than current human energy use, and studies suggest
it could supply 95% of global energy demand by 2050, and double its current share by 2030, at a
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relatively low net cost [8,9]. Marine renewable energy has become the focus of national research and
development because of its abundant, renewable, and non-polluting characteristics [10–12]. Tidal
energy represents an important energy source as the tidal energy potential is estimated to be around
450 TWh/year, with about 24 TWh/year on the European coasts [13].

Among marine renewable energy converters, Tidal Stream Generator (TSG) promises to be an
environmentally friendly way to generate renewable electric energy with no emission of greenhouse
gases during normal operation [14,15]. The horizontal axis tidal stream turbine has apparent similarities
with the wind turbine. Nevertheless, they have different operational behaviors. In normal conditions,
the fluid is over eight hundred times (1025/1.225 = 837) denser than the air [16]. This is due to
the huge kinetic energy density of the water. Therefore, at equal power, the tidal turbine will be
more compact than a wind turbine. This will lead to a significant difference in the rotor size [17].
Consequently, the advantages of these opposing views will appear in construction, transportation,
and charge of installation. In addition, the differences are mainly in the load design, size, and the
inertia of the rotor. These characteristics are figured in different operating conditions. In effect, studies
demonstrate that variations of the rotational speed for a TST are higher than for a windmill system,
despite the perturbation in the wind speed is much higher than that of marine current [16]. Concerning
the tidal stream converters, the swell effect is supposed to be the most disturbing phenomenon for the
tidal current speed input [18]. This fluctuation will affect the harnessed output power.

In this area of research, control strategies have a valuable role to enhance the dynamic behavior
of the TSG plant. In this context, several control approaches have been used. The Maximum Power
Point Tracking (MPPT) strategy is employed to search the maximum harvested power from tides
and tracking the Optimal Regimes Characteristic (ORC) operation [19]. Other research focused on
the control of the active and reactive powers through the Doubly Fed Induction Generator (DFIG)
by the use of the Rotor Side Converter (RSC) and the Grid Side Converter (GSC). The RSC control is
used to keep the generator speed at its reference signal and the GSC control is dedicated to ensuring
that the DC-link voltage remains constant [20,21]. In the literature, the PI controller has been used to
control the operation of the marine current turbine through the back-to-back power converter aiming
to maximize the captured energy [22]. One can envisage two designs: the torque and rotational speed
control loops. However, the torque control loop is sensitive to the parametric variations and the
turbulent tidal resource [23]. In addition, advanced control approaches can be employed to provide
better performance especially to ensure the robustness under the modeling uncertainties [24,25].
In this framework, the sliding mode control approach is a suitable method for nonlinear systems [26].
It has been used in the field of marine energy conversion [27]. Its robustness to the disturbances
and parametric uncertainties renders unnecessary a precise knowledge of the system. However, the
main drawback of this method is the chattering phenomenon which is the high-frequency oscillations.
This can negatively affect the generator because of discontinuous control. Many approaches were
proposed to deal with this drawback as presented in [28]. Furthermore, the artificial intelligence
techniques are capable of handling nonlinear problems in various signal processing applications, from
pattern recognition and extended to renewable energy converters [29]. An artificial neural network is
considered a technique which is well accepted for nonlinear statistical adjustment applications [30].
As discussed in [31], the Artificial Neural Networks (ANN) technique is used to more accurately
determine the wind speed distribution law of a site, enabling the better assessment of wind energy
potential and wind generator performances. The approach enables wind speed prediction with less
errors. An application of using neural networks in wave energy systems is detailed in [32], where
the assessment of the wave energy potential in near shore coastal areas is investigated by means of
ANNs. The ANN model developed forecast wave energy potential with great accuracy. The Fuzzy
Gain Scheduling (FGS) technique has been used as well for renewable energy converters. The MPPT
controller for photovoltaic systems using an FGS strategy has been studied in [33]. This approach
creates an adaptive MPPT controller and achieves better overall system performance. Furthermore,
the proposed technique detailed in [34] is applied to design FGS-PID (Proportional Integral Derivative)
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controllers of superconducting magnetic energy storage for power system stabilization. The study
confirms that the controller provides high robustness under various operating conditions and large
disturbances. From the benefits of both advanced approaches, which are the ANN and FGS, this
study focuses on the power output improvement of the TSG system by implementing a hybrid neural
fuzzy design.

The main application of the proposed control is affected by the change in velocities that are not
predictable by astronomical tide—in particular, the swell effect phenomenon. For that reason, the
robustness of the investigated control strategies has been compared by acquiring data from realistic
tidal site in order to show how much energy will be saved. In particular, the novel hybrid Neural
Fuzzy design is investigated to reach the power output improvement extraction by varying the
rotational speed. The Artificial Neural Networks (ANN) based-MPPT approach has the advantage to
approximate and interpolate multi-variate data that require huge databases. Furthermore, the fuzzy
gain scheduling based control eliminates the fixed gains during operation. Therefore, the proposed
fuzzy block will provide the adaptive change of controller gains which adequately vary according the
variable tidal speed. In the operation in variable speed, the FGS-PI-based control is applied to the RSC.
This enables the TSG to track the MPPT strategy. The MPPT approach uses a multilayer feed-forward
ANN that enhances a fuzzy rotational speed controller. The aim of this command is to control the
TSG plant, which, at each tidal velocity, must follow the optimal rotational speed where the maximum
generated power is satisfied. The analysis of the investigated control approaches has been tested in the
case of an irregular tidal resource and the occurrence of a disturbance during normal operation.

The rest of this article is structured as follows. In Section 2, the TSG system is described and
modeled. Section 3 is devoted to the control design of the MPPT-based ANN and the FGS-based
rotational speed control. In Section 4, the control robustness and disturbance rejection are investigated.
Two study cases are presented and discussed using numerical input and real measured input. Finally,
concluding discussions are drawn in Section 5.

2. Model Statement

The hydrodynamic turbine design is complex due to the changes in the non-constant current tidal
and the direction, and the effect of the fluid depth. Therefore, the modeling assumptions are related to
tidal turbine hydrodynamics, considering a constant thrust loading at the disk. In addition, the current
speed at the disk is the average of the upstream and downstream currents [15,35]. The topology
of the TSG system is shown in Figure 1. It consists of a DFIG based on a Tidal Stream Turbine
(TST). The configuration of the DFIG allows variable speed operation on a specific operation range.
The connection to the grid is done through the stator of the DFIG via a transformer, while the DFIG is
connected to the grid through the power electronic converters.

Figure 1. Tidal stream generator global scheme.
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2.1. Tidal Turbine Model

The power harnessed from the tidal current speed V, can be expressed as follows [36]:

Pt =
1
2

Cp(λ, β)ρπR2V3, (1)

where Pt denotes the harnessed power from the tidal speed in (W), and R is the radius of the rotor
blades expressed in (m).

However, the power captured from the tides cannot be used totally by the turbine because of Betz
limit. The power coefficient Cp is defined as a function of the blade pitch angle β expressed in (deg)
and the tip-speed ratio λ, given as the following equation [37,38]:

λ =
ωtR
V

, (2)

where ωt is the rotor speed of the tidal turbine defined in (rad/s).
The generated torque of the tidal turbine, in (Nm), is expressed as follows:

Ttst =
Pt

ωt
. (3)

2.2. Shaft Model

The torque produced by the tidal turbine is transmitted to the generator using the drive train,
which ensures the connection between the rotor and the generator via a flexible shaft. The model of
the drive train shaft used is the two-mass model which is developed using the stiffness coefficient Ksh
in (Nm/rad) and the damping coefficient Dsh in (Nms/rad). The expressions of the developed model
are expressed as [39]:

Ttst − Tt = 2Ht
dωt

dt
, (4)

Tt = Dsh(ωt −ωg) + Ksh

∫
(ωt −ωg)dt, (5)

Tt − Tem = 2Hg
dωg

dt
, (6)

where Tt is the produced torque by the rotor shaft given in (Nm), Tem is the electromagnetic torque of
the generator in (Nm), ωg is the generator speed expressed in (rad/s), and Ht and Hg are the turbine
and the generator inertia constants defined in s.

2.3. DFIG Model

The functioning in variable speed mode of the tidal turbine based on a DFIG has proven robustness
due to the ability to achieve a higher power quality, reduced cost, and improved system efficiency.
In addition, the DFIG with a four-quadrant operation enables a decoupled control of the active and
reactive powers of the generator [40–42]. The dynamical model of the DFIG is defined using the Park’s
transformation in d− q as explained in [43]. The equations of the stator voltages and flux, expressed in
(V) and in (Wb) are given as: {

Usd = Rs Isd +
dϕsd

dt −ωs ϕsq,

Usq = Rs Isq +
dϕsq

dt −ωs ϕsd,
(7)

{
ϕsd = Ls Isd + Lm Ird,
ϕsq = Ls Isq + Lm Irq.

(8)
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The voltages and flux of the rotor are given as follows:{
Urd = Rr Ird +

dϕrd
dt −ωr ϕrq,

Urq = Rr Irq +
dϕrq

dt −ωr ϕrd,
(9)

{
ϕrd = Lr Ird + Lm Isd,
ϕrq = Lr Irq + Lm Isq.

(10)

The generator electromagnetic torque is defined in d− q by Equation (11):

Tem =
3
2

pLm
(

Isq Ird − Isd Irq
)

, (11)

where Isd, Isq are the currents of the stator, Ird, Irq are the currents of the rotor given in d− q in (A),
Rs and Rr are the resistances of the stator and rotor given in (Ω), ωs and ωr are the pulsations of the
stator and rotor expressed in (rad/s), Ls and Lr are the inductances of the stator and rotor given in
(H), Lm is the magnetizing inductance defined in (H) and p is the number of the pole pair.

2.4. Back-to-Back Converter Model

The configuration of the DFIG-based TST with the back-to-back power converters allows for
decoupling the control for both GSC and RSC components [44,45]. In this subsection, a model of the
power converters is presented. The power converters that consist of the RSC and GSC coupled by
means of the DC-link as shown in Figure 1. The GSC is controlled thanks to the vector control scheme
in order to adjust the voltage of the DC-link—in addition to controlling the flow of the reactive power
to ensure the DC voltage adjustments [46]. The control of RSC is proposed to regulate the system in
order to achieve the maximum output power production. For that reason, the rotational speed control
is investigated using the vector control strategy [43].

The active and reactive powers of the plant, which are defined in (W) and (VAR), are expressed as:

Pg =
3
2

(
Udg Idg −Uqg Iqg

)
, (12)

Qg =
3
2

(
Uqg Idg −Udg Iqg

)
, (13)

where Udg, Uqg in (V) and Idg, Iqg in (A) are the voltages and currents of the grid expressed in the d− q.
The voltages of the d-axis and the grid are aligned, i.e., Udg = Ug and Uqg = 0, to reach the voltage

oriented control. Thus, the expressions of the active and reactive powers can be given as follows:

Pg =
3
2

Ug Idg, (14)

Qg = −3
2

Ug Iqg. (15)

The expression that links the power saved in the DC-link and the power transmitted to the grid is
given as follows:

Pg =
3
2

Ug Idg = Udc Idc, (16)

where Udc is the voltage of the DC-link given in (V) and Idc is the current flowing in the DC-link
in (A).

3. Control Statement

Tidal current speed may vary in two ways; on a large time scale by means of the gravitational
effort of the sun and the moon. In this case, the current speed profile is composed of spring and neap
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tides and the period occurs each 12 h and 25 min. On a small time scale, these currents are affected
by climate disturbance as the case of swell effect phenomenon which can occur during a period of
few seconds. Both time scales should be taken into consideration when implementing the control
scheme to drive the TSG in the variable speed mode. The investigated control block for the tidal stream
converter system is depicted in Figure 2.

Tidal current
TST

Full power converter

Transformer GridDFIG

RSC GSC
DC link

Drive train

MPPT for TST

V refω
Rota!onal

speed control

GSC controldcU

*
abcU

_abc SU

_abc SI
*
abc

U

current

Choke

pK iK

Fuzzy supervisor

e

e∆

Figure 2. Control strategies scheme description for TSG.

In order to perform the output power’s improvement under different input conditions, a novel
hybrid rotational speed control is investigated. The MPPT-based ANN approach is designed to
provide the suitable rotor speed according to the change of the tidal input. The reference rotational
speed is adjusted using a multilayer feed-forward neural network. Then, the proposed fuzzy gain
scheduled PI controller is used to regulate the rotational speed. Such a proposed fuzzy supervisor
adequately modifies the controller gains providing the control a novel adaptative mechanism to the
input parameter changes.

3.1. ANN-Based Maximum Power Point Tracking Approach

The MPPT approach has been strongly used to optimize the efficiency of renewable energy
plants [47,48]. However, this strategy must be adapted to the tidal energy environment according
to the control requirements in the TSG system. The MPPT algorithm used in this study is based
on an ANN-based approach. The aim of this control strategy is to control the TSG system on the
way to follow the optimal rotational speed, which corresponds to the maximum generated power.
Figure 3 shows the variation of the generated power as a function of the rotational speed and the tidal
current speed.

The system under study consists of a DFIG-based tidal turbine for which the maximum harnessed
power is Pn = 1.5 MW. In order to harness the maximum power from the tides, the power coefficient
and thus the tip-speed ratio should be maintained at their maximum values as Cp max = 0.44 and
λopt = 6.34, respectively [49]. The structure of the proposed feed-forward neural network is depicted
in Figure 4.
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Figure 3. Harnessed output power as a function of the rotor speed for given velocities.
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Figure 4. Layout of feed-forward neural network.

The model of a common neuron is given by the following expression:

yi =
N
∑

j=1
wij xj + Th

i ,

zi = f (l)i (yi),
(17)

where zi is the output of the ith neuron in the lth hidden layer, wij are the synaptic weights linking the
jth neurons to ith neurons, f l

i (.) is the activation function of the ith neuron of layer l, i is the number of
the input neurons, xj are the input neurons, and Th

i are the threshold terms of the hidden layer.
The resulting MPPT block adequately adapts the rotational speed reference at each tidal velocity

input, so as to maximize the power extracted from the system. Once the network is created and
configured, the weights are randomly set at first. The used training method is a Levenberg–Marquardt
algorithm [50,51]. The used learning algorithm is conceived to adjust the weights to minimize the error
for each calculated output and the solution given by the ANN for the adequate input.

The used method is trial-and-error based on a forward strategy process. This begins with an
undersized number of neurons in the hidden layer until the training and testing results are ameliorated.
This rule uses a statistical analysis to prove the best performance criteria reached. Several tests have
been investigated to choose the suitable number of neurons in the hidden layer. The criterion was
set according to the smallest Mean Squared Error (MSE) determined. Figure 5 depicts the variation



Sustainability 2018, 10, 3746 8 of 26

of the result of the MPPT block versus the tidal current speed for a various value of neurons in the
hidden layer.
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Figure 5. Control performances: (a) tidal speed input; (b) response of the reference rotational speed for
different number of neurons; (c) zoom into the reference rotational speed variation for 0.07 s.

The range of variation of V is from 0 to 5 m/s, which represents a high tidal velocity that can be
recorded at the high energetic sites [52]. As it may be seen that, for all tidal velocities less than 3.2 m/s,
the response is regulated to follow the reference. When the tidal velocity is superior to the threshold
limit of the rotor speed, it is kept at its maximum value, that is, 2.53 rad/s. The number of neurons
in the hidden layer will be chosen to be hi = 50 as a trade-off between a low number and a transient
with small oscillations.

It may be seen in Figure 6 the iteration for which the validation performance is minimal. The best
validation performance is 1.407× 10−7 at epoch 1000. This character displays that the training data
admit a good fit.
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Figure 6. Training performance of the ANN block.
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3.2. FGS-PI Based-Rotational Speed Control

The developed block control which is conceived to the RSC is shown in Figure 7. The adequate
rotational speed ωre f is acquired from the developed ANN based MPPT approach. The control loop of
the rotational speed is conceived by means of a fuzzy gain scheduling approach since it is considered
as a robust control strategy against uncertainties [53]. Thus, the principle of FGS-PI based control is to
refine the parameters of the tuned PI controller to satisfy the required performance [33,54,55].

GridTransformer
DFIG

RSC

+
−

*
dri

dri

PI
−

+

slip r qrL iω σ

V refω
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−
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*
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+

)slip m ms r drL i L iω ( +σ

abc

dqdri

)s r(θ − θ
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abc
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crU

*
drU

*
qrU

Drive train

TSTTidal current

current

+
−

1

z

e

e∆

e

pK iK
MPPT-based ANN 

Fuzzy gain scheduling

Figure 7. Control scheme of the RSC component.

The discrete-time expression of the PI control law is expressed by the following equation:

u(k) = Kp∆e(k) + Ki Ts e(k) + u(k− 1), (18)

where e(k) is the error from the adequate rotational speed acquired from the ANN-based MPPT
strategy and the actual rotor speed, ∆e(k) = e(k)− e(k− 1) is the variation of the error, Kp and Ki are
the PI controller parameters and Ts is the sampling time.

In effect, the fuzzy logic controller acquires the inputs and outputs which should be actual
numbers to satisfy the actuators conditions. Thus, the fuzzification and defuzzification process for the
input and outputs variables is essential. The aim of the fuzzification is to convert the crisp values to
fuzzy linguistic terms in order to apply the fuzzy inferences using the rules. For that reason, the inputs
and outputs are normalized in the universe of discourse [56,57].

The fuzzy supervisor includes e(k) and ∆e(k) the two inputs and two outputs Kp and Ki as
the proportional and integral gains, respectively. These gains are normalized using the linear
transformation as follows [53]:{

K′p = (Kp − Kp min)/ (Kp max − Kp min),
K′i = (Ki − Ki min)/ (Ki max − Ki min),

(19)

where
[
Kp min , Kp max

]
and [Ki min , Ki max] are the tolerable range of the parameters of the controller.
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The gain scheduling of the PI block is obtained adopting the fuzzy rules described by the
following equation:

i f e(k) is Ai and ∆e(k) is Bi,
then K′p is Ci and K′i is Di,

(20)

where Ai, Bi, Ci and Di are the fuzzy sets on the corresponding supporting sets, which i = 1, 2, ..., m.
The types of membership functions considered in this study are triangular and trapezoidal, which

are uniformly distributed and symmetrical in the universe of discourse. The used linguistic levels
are Negative Big (NB), Negative (N), Zero (Z), Positive (P) and Positive Big (PB). The corresponding
membership functions related to the inputs e and ∆e of Ai and Bi fuzzy sets and to the outputs K′p and
K′i of Ci and Di fuzzy sets are illustrated in Figures 8 and 9.
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-1 -0.5 0 0.5 1

D
e

g
re

e
 o

f 
m

e
m

b
e

rs
h

ip

0

0.2

0.4

0.6

0.8

1
PBPZNNB

Figure 8. Membership functions for inputs e and ∆e.
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Figure 9. Membership functions for outputs K′p and K′i .

The grade of the membership functions µAi and µBi are defined as:
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µNB(X) =

{
(−2X− 1) i f X ∈ (−1, −1/2)
0 i f X ≥ −1/2,

µN(X) =


2(X + 1) i f X ∈ (−1, −1/2

]
−2X i f X ∈ (−1/2, 0)
0 i f X ≥ 0,

µZ(X) =


0 i f X ≤ −1/2
(2X + 1) i f X ∈ (−1/2, 0]
(1− 2X) i f X ∈ (0, 1/2)
0 i f X ≥ 1/2,

µP(X) =


0 i f X ≤ 0

2X i f X ∈ (0, 1/2
]

2(1− X) i f X ∈ (1/2, 1),

µPB(X) =

{
0 i f X ≤ 1/2
(2X− 1) i f X ∈ (1/2, 1] ,

(21)

where X represents e or ∆e.
In addition, the grade of the membership functions µCi and µDi are defined as follows:

µNB(Z) =


1 i f Z ∈

[
−1, −4/5

]
(−1− 5Z/2) i f Z ∈

[
−4/5, −2/5

]
0 i f Z > −2/5,

µN(Z) =


0 i f Z ≤ −4/5
(5Z/2 + 2) i f Z ∈ (−4/5, −2/5

]
−5Z/2 i f Z ∈ (−2/5, 0)
0 i f Z ≥ 0,

µZ(Z) =


0 i f Z ≤ −2/5
(5Z/2 + 1) i f Z ∈ (−2/5, 0]
(1− 5Z/2) i f Z ∈ (0, 2/5)
0 i f Z ≥ 2/5,

µP(Z) =


0 i f Z ≤ 0
5Z/2 i f Z ∈ (0, 2/5

]
(2− 5Z/2) i f Z ∈ (2/5, 4/5)
0 i f Z ≥ 4/5,

µPB(Z) =


0 i f Z ≤ 2/5
(5Z/2− 1) i f Z ∈

(
2/5, 4/5

]
1 i f Z ∈

(
4/5, 1

]
,

(22)

where Z represents K′p or K′i .



Sustainability 2018, 10, 3746 12 of 26

The set of fuzzy rules considered is given in Tables 1 and 2. The proposed rules are gathered
in order to adjust the behaviour of the PI controller in accordance with the error e(k) and the error
change ∆e(k).

Table 1. Fuzzy rules for Kp parameter.

e(k)/∆e(k) NB N Z P PB

NB NB NB NB N Z
N NB N N N Z
Z NB N Z P PB
P Z P P P PB

PB Z P PB PB PB

Table 2. Fuzzy rules for Ki parameter.

e(k)/∆e(k) NB N Z P PB

NB PB PB PB N NB
N PB P P Z NB
Z P P Z N NB
P Z P N N NB

PB Z N NB NB NB

The truth value of the ith rule is obtained by the product of the truth value of the components of
the antecedent clauses as:

µi = µAi (e(k)). µBi (∆e(k)). (23)

By using the membership functions, we obtain:

m

∑
i=1

µi = 1, (24)

thus the defuzzification scheme is defined as:
K′p =

m
∑

i=1
µiµCi ,

K′i =
m
∑

i=1
µiµDi .

(25)

The decision-making output is acquired using a Max-Min fuzzy inference where the crisp outputs
are obtained using the method of defuzzification and the center of gravity given as follows:{

Kp = Kp min + (Kp max − Kp min)K′p,
Ki = Ki min + (Ki max − Ki min)K′i .

(26)

By implementing the fuzzy block using the set of fuzzy rules, the fuzzy surfaces for the outputs
Kp and Ki parameters are illustrated in Figures 10 and 11.
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Figure 10. Fuzzy surface for Kp gain.
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Figure 11. Fuzzy surface for Ki gain.

The inner current loops find the rotor voltage reference in d− q frame. The equations that rely on
the rotor voltages and currents defined in (V) and in (A) are expressed by Equation (27) as detailed
in [43]: {

Udr = Rridr + σLr
didr
dt ,

Uqr = Rriqr + σLr
diqr
dt ,

(27)

where σ is the leakage factor.
In addition, the terms of decoupling are joined to the expressions of U∗dr and U∗qr in order

to enhance the transient response of the plant [58]. Thus, the reference voltages of the rotor are
expressed by: {

U∗dr = −ωslipσLriqr + (KPied + KIi
∫

ed dt),
U∗qr = ωslip(Lmim + σLridr) + (KPied + KIi

∫
ed dt),

(28)

where ωslip is the angular frequency of slip given in (rad/s) and im is the stator magnetizing current
supposed as constant. KPi and KIi are the parameters of the controllers.

The method of tuning of the PI controllers is the well-known Ziegler–Nichols method [59].
After that, another refinement of the tuned controller parameters is conceived by means of the robust
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response time algorithm [60]. The voltage references of the rotor are converted to the abc frame which
will be affected to the RSC through the Pulse Width Modulation (PWM) block.

3.3. GSC Control

The control of the GSC is developed using the voltage oriented control strategy as shown in
Figure 12. This approach admits two PI current controllers and one outer PI voltage controller [36].
The developed block diagram regulates the DC-link voltage Udc and the reactive power Qg. The use of
the Phase Locked Loop (PLL) block is to save the input signal phase which denotes θg. The currents
and voltages expressed in dq frame are achieved using the Park’s transformation.

Grid
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Figure 12. Block control scheme for the GSC component.

The voltages of the grid are expressed using a dq frame as:{
Ugd = idsRg + Lg

dids
dt −ωsLgiqs + Ugd1,

Ugq = iqsRg + Lg
diqs
dt −ωsLgids + Ugq1,

(29)

where Rg and Lg are the coupling resistance and inductance of the grid, and Ugd1 and Ugq1 are the
terminal voltages of the converter in the dq frame.

The active and reactive powers are regulated through the dq axis currents. The current loops are
similar and provide the voltage references of the grid U∗ds and U∗qs as defined by Equation (30). Thus,
as to improve the transient response of the plant, the terms of compensator and feedforward voltages
are joined to the command signals:{

U∗gd = Ugd + ΩgLgiq − (KPied + KIi
∫

ed dt),
U∗gq = Ugq −ΩgLgid − (KPieq + KIi

∫
eq dt).

(30)

The voltage control loop is intended to regulate the voltage of the DC-link so as to keep it constant
around its reference. The current control loops adjust the currents ids and iqs in dq frame. The current iqs

aims to control the reactive power and the current reference in the q-axis is assumed zero. Likewise, the
RSC control and the PI controller gains are determined using the empirical Ziegler–Nichols method [61].
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After that, the voltage references are converted to the abc stationary frame, which will acquire the
PWM signals for the GSC.

4. Validation Tests and Discussion

In this part, based on realistic tidal sites, two study cases are given to test the robustness of
the developed control schemes. The demonstrative studies are set to enhance the harnessed power
under irregular tidal current speed input. In addition, the fuzzy gain scheduling supervisor was
analyzed to favor disturbance rejection. The simulation results have been executed using the TSG
system parameters given in Table 3.

Table 3. TSG system parameters.

Turbine Drive-train DFIG Converter

ρ = 1027 kg/m3 Ht = 3 s Pn = 1.5 MW Vdc = 1150 V
R = 8 m Hg = 0.5 s Urms = 690 V C = 0.01 F

Cp max = 0.44 Ksh = 2× 106 Nm/rad freq = 50 Hz
λopt = 6.96 Dsh = 3.5 × 105 Nms/rad Rs = 2.63 mΩ

Vn = 3.2 m/s Rr = 2.63 mΩ Choke
Ls = 0.168 mH Rg = 0.595 mΩ
Lr = 0.133 mH Lg = 0.157 mH
Lm = 5.474 mH

p = 2

4.1. Control Robustness against Irregular Tidal Speed with Numerical Input

So as to examine the robustness of the developed control approaches, a first study case based on
the characteristics of a sea state in the winter of the western coast of Europe is investigated. The data
of the velocities are based on a mathematical model of the swell disturbance [62]. The swell model is
calculated using the first-order Stokes model [52,63]. The average height of the highest one-third waves
is 3 m and the average period of these one-third waves is 13.2 s. The sea depth is 30 m. The average
tidal current Vavr = 2 m/s is chosen in a small time scale. Figure 13 illustrates the tidal velocity profile
with a lower speed of 0.6 m/s and an upper speed of 3.1 m/s.
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Figure 13. Study case 1: Tidal current speed input.

Figure 14 shows the power coefficient response. In this experiment, it is obvious that the system
has good behavior, thus the power coefficient is maintained around its optimum value Cp = 0.4373.
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The 5% settling time is reached at 0.01 s; it is obvious that the controlled system is able to track fast the
desired value in the steady-state regime.
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Figure 14. Study case 1: Power coefficient response.

Figure 15 depicts the response of the rotor speed and the adequate signal acquired from the
implemented ANN-based MPPT approach. The controller displays a good tracking performance of
the adequate rotor speed. This indicates that the FGS-PI controller has a decreased steady-state error
because the integral action is adequately changing in accordance to the changes of the input.
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Figure 15. Study case 1: Rotor speed curve and its reference.

The output torque and power variations are shown in Figures 16 and 17. An uncontrolled study
case is set to compare the output power. The resulting torque and power change according to the
variation of the tidal velocity. The average values of the extracted power are 425 kW and 549 kW
corresponding to the uncontrolled case and the hybrid neural fuzzy control, respectively. It can be seen
that using the developed FGS control provides a good speed tracking performance, which leads to a
power generation improvement with a 29.18%. Therefore, the TSG system is capable of augmenting
the recuperated output power in case of the swell effect.
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Figure 16. Study case 1: Response of the hydrodynamic torque.
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Figure 17. Study case 1: Generated turbine’s power curve.

4.2. Control Robustness against Irregular Tidal Speed with Real Measured Input

A second realistic tidal site is considered to test the developed control strategies. The station
under study is named Middle Ground Shoal which is located in Cook Inlet, USA. According to the
National Oceanic and Atmospheric Administration (NOAA), this tidal site can reach important tidal
velocities up to 2.3 m/s as mentioned in the Cook Inlet 2012 Current Survey as described in [64].
The used data from this tidal site is recorded from 25 June 2012 at 00:00:00 to 26 June 2012 at 23:59:00.

These data are extracted using an Acoustic Doppler Current Profiler [65] with an approximated
water depth of 31.15 m within an interval of 6 min. Figure 18 illustrates the real instantaneous measured
tidal currents over two days. Each semidiurnal tide related to spring and neap tides is corresponding
to an approximately period of 7 h. It is obviously clear that the oscillation in the current speed profile
is important with respect to the average tidal speed which is 1.038 m/s.
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1 

 

 
Figure 18. Study case 2: Measured tidal current speed in Cook Inlet from 25 June 2012 at 00:00:00 to
26 June 2012 at 23:59:00.

In the comparative study between the uncontrolled case and the proposed control approaches,
the realistic tidal current velocity over the period 00 h:00 min to 07 h:00 min of 25 June 2012 is chosen
as the input to the implemented model. The response of the power coefficient is depicted in Figure 19.
The power coefficient is maintained constant and in the steady state regime reaches a value of 0.4382
at 0.01 s.
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Figure 19. Study case 2: Power coefficient response.

Figure 20 shows the rotational speed curve changing according to the tidal current speed.
This result proves that the controller successfully manages to follow the optimal reference provided by
the MPPT strategy.
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Figure 20. Study case 2: Rotational speed response and its reference.

The response of the hydrodynamic torque is depicted in Figure 21. The torque increases according
to the tidal current speed input variation. Figure 22 shows the generated power in the uncontrolled case
and the controlled case using the neural fuzzy techniques. The output generated power is improved
in terms of average values with 22.4%, which leads to maximizing the energy harnessed by the tidal
velocity even in the case of high disturbance.
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Figure 21. Study case 2: Response of the hydrodynamic torque.
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Figure 22. Study case 2: Generated turbine power curve.

4.3. Disturbance Rejection

To test the robustness of the proposed control, a disturbance rejection experiment was carried out.
The disturbance is injected into the measured signal, which is the rotational speed. The tidal speed
input versus time considered starts from 1.5 m/s and steps to 3.2 m/s at t = 5 s as shown in Figure 23.
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Figure 23. Step tidal speed input.

The measured rotational speed increases according to the tidal current speed from 1.18 rad/s
to 2.53 rad/s as illustrated in Figure 24. The curve shows an effective tracking performance of the
rotational speed.
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Figure 24. Response of the rotational speed.

The occurrence of the disturbance is injected at t = 6s with a 10% of the average rotational
speed as depicted in Figure 25a. In fact, when zooming in on the curve, it can be clearly seen that
the controller is able to reject the disturbance in 0.015 s and allows the system to be stable in the
steady-state operation as depicted in Figure 25b. The resulting power coefficient adequately adapts to
the disturbance condition and it is noted that the response is closer to the optimum value with 0.4379.
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Figure 25. Disturbance rejection at t = 6 s. (a) disturbance occurrence; (b) zoom-in rotational speed
versus time; (c) zoom-in power coefficient response.

The generated output power is depicted in Figure 26. The TSG system is is capable of enhancing
the output power of 1.48 MW according to a tidal speed of 3.2 m/s. The implemented control
enhances the generated power with a decreased error of approximately 2% compared to the tolerable
supported power by the system. It can be noted that the developed control approaches lead to a power
improvement against disturbances.
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Figure 26. Generated power curve.

5. Conclusions

In this article, a tidal stream generator system has been designed and controlled. A hybrid neural
fuzzy design has been developed to deal with the power disturbances due to the swell effect.

The hybrid design consists of an ANN-based MPPT approach which adequately generates the
reference rotational speed in order to drive coupled with a fuzzy gain schedule that drives the system
in the maximum power. The ANN design adaptively changes its weights to provide the suitable
trajectory for each marine velocity. The block design is the fuzzy gain scheduling which controls the
rotational speed control loop. The fuzzy controller adaptively changes its gains using the designed
fuzzy supervisors.

To test the effectiveness of the novel hybrid FGS PI-controller, two realistic tidal sites were
investigated. The first scenario is proposed with a variable spring and neap marine velocity provoking
swell effect disturbances on the Western coast of Europe. The results found prove that approaches
successfully deal with these perturbations that enable the TSG plant to harness the maximum output
power. A second scenario based on the realistic data from the Cook Inlet, USA was considered.
Comparing with the uncontrolled case, the hybrid neural fuzzy controller shows the power generation
improvement offered by the developed control schemes.

Another case of study was considered to assess the robustness of the implemented control
strategies under disturbances with an excellent reference tracking. The proposed hybrid FGS-PI control
that has been enhanced with an ANN provides very good output power performance improvement
from the tidal stream generator system.

This study consists of enhancing the operation of the tidal stream generator system for several
study cases by varying the input profile. In effect, the plant is controlled in a way to maximize the
harnessed power. The work proves that regulating the tidal turbine in variable speed functioning lead
to a high energy yield by operating with a maximum power coefficient.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
DFIG Doubly Fed Induction Generator
GSC Grid Side Converter
IEA International Energy Agency
FGS Fuzzy Gain Scheduling
IEO International Energy Outlook
MPPT Maximum Power Point Tracking
MSE Mean Square Error
NOAA National Oceanic and Atmospheric Administration
ORC Optimal Regime Characteristic
PI Proportional Integral
PLL Phase Locked Loop
PTO Power Take Off
PWM Pulse Width Modulation
RSC Rotor Side Converter
TSG Tidal Stream Generator
TST Tidal Stream Turbine
NB Negative Big
N Negative
Z Zero
P Positive
PB Positive Big

Notations

Pt,g,n Turbine, generator and nominal powers (W).
Cp, Cpmax Power coefficient and its maximum.
λ, λopt Optimal speed ratio and its optimal value.
β, ρ, R Blade pitch angle (deg), fluid density (kg/m3) and blade radius (m).
V, Vn Tidal current speed and its nominal value (m/s).
ωt,g, ωs,r Rotational speed of turbine and generator, pulsations of the stator and rotor (rad/s).
ωre f Reference rotational speed (rad/s).
Ttst, Tt, Tem Turbine, rotor shaft and electromagnetic torques (Nm).
Ht,g, Ts Turbine and generator inertia constants, sampling time (s).
Dsh, Ksh, p, σ Stiffness coefficient (Nm/rad), damping coefficient (Nms/rad), leakage factor.
ωslip, p Angular frequency of slip (rad/s), pole pair numbers.
Usd,sq, Urd,rq Stator and rotor voltages in d− q frame (V).
Isd,sq, Ird,rq, im Stator and rotor currents in d− q frame, stator magnetizing current (A).
ϕsd,sq, ϕrd,rq Stator and rotor flux in d− q frame (Wb).
Ls,r, Lm, Lg Stator and rotor inductances, magnetizing inductance, grid coupling inductance (H).
Rs,r, Rg Stator and rotor resistances, grid coupling resistance (Ω).
Ugd,gq, Ugd1,gq1 Grid voltages and terminal voltages of the converter in d− q frame (V).
Igd,gq, Idc Grid currents in d− q and DC-link current (A).
Udc, c DC-link voltage (V), DC-link capacitor (F).
zi, xi, Ti Output neurons, input neurons, threshold terms of the hidden layer.
ωi,j, hi synaptic weights, number of neurons in the hidden layer.
uk Fuzzy control law.
e(k), ∆e(k) The error and the error change.
Kp, Ki Fuzzy PI gains.
K′p, K′i Normalized fuzzy PI gains.
µAi,Bi,Ci,Di Grades of the membership functions.



Sustainability 2018, 10, 3746 24 of 26

References

1. Segura, E.; Morales, R.; Somolinos, J.A.; Lopez, A. Techno-economic challenges of tidal energy conversion
systems: Current status and trends. Renew. Sustain. Energy Rev. 2017, 77, 536–550. [CrossRef]

2. World Energy Council. World Energy Resource Marine Energy 2016; Technical Report; World Energy Council:
London, UK, 2016; pp. 1–76.

3. Zhang, Y.L.; Lin, Z.; Liu, Q.L. Marine renewable energy in China: Current status and perspectives.
Water Sci. Eng. 2014, 7, 288-305.

4. Grabbe, M.; Lalander, E.; Lundin, S.; Leijon, M. A review of the tidal current energy resource in Norway.
Renew. Sustain. Energy Rev. 2009, 13, 1898–1909. [CrossRef]

5. Kadiri, M.; Ahmadian, R.; Bockelmann-Evans, B.; Rauen, W.; Falconer, R. A review of the potential water
quality impacts of tidal renewable energy systems. Renew. Sustain. Energy Rev. 2012, 16, 329–341. [CrossRef]

6. Stern, N.; Calderon, F. Better Growth, Better Climate: The New Climate Economy Report; The Global Commission
on the Economy and Climate: New York, NY, USA, 2014. Available online: http://newclimateeconomy.
report/ (accessed on 12 October 2018).

7. EIA, U. International Energy Outlook 2016 with Projections to 2040; Energy Department, Energy Information
Administration, Office of Energy Analysis: Washington, DC, USA, 2016.

8. International Energy Agency OECD/IEA. World Energy Outlook 2013, Chapter 6: Renewable Energy Outlook;
International Energy Agency OECD/IEA: Paris, France, 2013.

9. IRENA. REmap 2030: A Renewable Energy Roadmap; IRENA: Dhabi, United Arab Emirates, 2014.
Available online: www.irena.org/remap (accessed on 12 October 2018).

10. Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond
technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [CrossRef]

11. Borthwick, A.G. Marine renewable energy seascape. Engineering 2016, 2, 69–78. [CrossRef]
12. Garrido, A.J.; Garrido, I.; Otaola, E.; Lekube, J.; MZoughi, F.; Ghefiri, K.; Mundackamattam, D.G.; Oleagordia, I.

Capture chamber modelling and validation in OWC on-shore devices. In Proceedings of the Region 10
Conference (TENCON), Singapore, 22–25 November 2016; pp. 1682–1685.

13. El Tawil, T.; Charpentier, J.F.; Benbouzid, M. Tidal energy site characterization for marine turbine optimal
installation: Case of the Ouessant Island in France. Int. J. Mar. Energy 2017, 18, 57–64. [CrossRef]

14. Bryden, I.G.; Couch, S.J. ME1-marine energy extraction: Tidal resource analysis. Renew. Energy
2006, 31, 133–139. [CrossRef]

15. Myers, L.; Bahaj, A.S. Simulated electrical power potential harnessed by marine current turbine arrays in the
Alderney Race. Renew. Energy 2005, 30, 1713–1731. [CrossRef]

16. Winter, A.I. Differences in fundamental design drivers for wind and tidal turbines. In Proceedings of the
2011 IEEE-Spain OCEANS, Santander, Spain, 6–9 June 2011; pp. 1–10.

17. Whitby, B.; Ugalde-Loo, C.E. Performance of pitch and stall regulated tidal stream turbines. IEEE Trans.
Sustain. Energy 2014, 5, 64–72. [CrossRef]

18. Hammons, T.J. Tidal power. Proc. IEEE 1993, 81, 419–433. [CrossRef]
19. Choi, J.S.; Jeong, R.G.; Shin, J.H.; Kim, C.K.; Kim, Y.S. New Control Method of Maximum Power Point

Tracking for Tidal Energy Generation System. In Proceedings of the International Conference on Electrical
Machines and Systems, Seoul, Korea, 8–11 October 2007; pp. 165-168.

20. Rahman, M.L.; Oka, S.; Shirai, Y. Hybrid power generation system using offshore-wind turbine and tidal
turbine for power fluctuation compensation (HOT-PC). IEEE Trans. Sustain. Energy 2010, 1, 92–98. [CrossRef]

21. Xiang, D.; Ran, L.; Tavner, P.J.; Yang, S. Control of a doubly fed induction generator in a wind turbine during
grid fault ride-through. IEEE Trans. Energy Convers. 2006, 21, 652–662. [CrossRef]

22. Sousounis, M.C.; Shek, J.K.H.; Mueller, M.A. Modelling and control of tidal energy conversion systems
with long distance converters. In Proceedings of the 7th IET International Conference on Power Electronics,
Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April 2014; pp. 1–6.

23. Munteanu, I.; Bratcu, A.L.; Cutululis, N.A.; Ceanga, E. Optimal Control of Wind Energy Systems: Towards a
Global Approach; Springer: Berlin, Germany, 2008.

24. Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.M.; Lightbody, G. Smart
transactive energy framework in grid-connected multiple home microgrids under independent and coalition
operations. Renew. Energy 2018, 126, 95–106. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2017.04.054
http://dx.doi.org/10.1016/j.rser.2009.01.026
http://dx.doi.org/10.1016/j.rser.2011.07.160
http://newclimateeconomy. report/
http://newclimateeconomy. report/
www.irena.org/remap
http://dx.doi.org/10.1016/j.rser.2015.12.284
http://dx.doi.org/10.1016/J.ENG.2016.01.011
http://dx.doi.org/10.1016/j.ijome.2017.03.004
http://dx.doi.org/10.1016/j.renene.2005.08.012
http://dx.doi.org/10.1016/j.renene.2005.02.008
http://dx.doi.org/10.1109/TSTE.2013.2272653
http://dx.doi.org/10.1109/5.241486
http://dx.doi.org/10.1109/TSTE.2010.2050347
http://dx.doi.org/10.1109/TEC.2006.875783
http://dx.doi.org/10.1016/j.renene.2018.03.021


Sustainability 2018, 10, 3746 25 of 26

25. Tavakoli, M.; Shokridehaki, F.; Marzband, M.; Godina, R.; Pouresmaeil, E. A Two Stage Hierarchical Control
Approach for the Optimal Energy Management in Commercial Building Microgrids Based on Local Wind
Power and PEVs. Sustain. Cities Soc. 2018, 41, 332–340. [CrossRef]

26. Utkin, V.I. Sliding Modes in Control and Optimization; Springer: Berlin, Germany, 1992.
27. Elghali, S.E.B.; Benbouzid, M.E.H.; Charpentier, J.F.; Ahmed-Ali, T.; Munteanu, I. Experimental Validation of

a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based
System Second-Order Sliding Mode Control. IEEE Trans. Ind. Electron. 2011, 58, 118–126.

28. Feng, Y.; Han, F.; Yu, X. Chattering free full-order sliding-mode control. Automatica 2014, 50, 1310–1314.
[CrossRef]

29. Kalogirou, S.A. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain.
Energy Rev. 2001, 5, 373–401. [CrossRef]

30. Morgan, N.; Bourlard, H.A. Neural networks for statistical recognition of continuous speech. Proc. IEEE
1995, 83, 742–772. [CrossRef]

31. Bilgili, M.; Sahin, B.; Yasar, A. Application of artificial neural networks for the wind speed prediction of
target station using reference stations data. Renew. Energy 2007, 32, 2350–2360. [CrossRef]

32. Castro, A.; Carballo, R.; Iglesias, G.; Rabunal, J.R. Performance of artificial neural networks in nearshore
wave power prediction. Appl. Soft Comput. 2014, 23, 194–201. [CrossRef]

33. Dounis, A.I.; Kofinas, P.; Alafodimos, C.; Tseles, D. Adaptive fuzzy gain scheduling PID controller for
maximum power point tracking of photovoltaic system. Renew. Energy 2013, 60, 202–214. [CrossRef]

34. Chaiyatham, T.; Ngamroo, I. Optimal fuzzy gain scheduling of PID controller of superconducting magnetic
energy storage for power system stabilization. Int. J. Innov. Comput. Inf. Control 2013, 9, 651–666.

35. Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J. Power and thrust measurements of marine current
turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy
2007, 32, 407–426. [CrossRef]

36. Ghefiri, K.; Bouallègue, S.; Garrido, I.; Garrido, A.J.; Haggège, J. Complementary Power Control for Doubly
Fed Induction Generator-Based Tidal Stream Turbine Generation Plants. Energies 2017, 10, 862. [CrossRef]

37. Ghefiri, K.; Bouallègue, S.; Haggège, J. Modeling and SIL simulation of a Tidal Stream device for marine
energy conversion. In Proceedings of the 2015 6th International Renewable Energy Congress (IREC),
Sousse, Tunisia, 24–26 March 2015; pp. 1–6.

38. Muljadi, E.; Gevorgian, V.; Wright, A.; Donegan, J.; Marnagh, C.; McEntee, J. Turbine Control of a Tidal
and River Power Generator: Preprint (No. NREL/CP-5D00-66867); National Renewable Energy Lab.(NREL):
Golden, CO, USA, 2016.

39. Fernandez, L.M.; Jurado, F.; Saenz, J.R. Aggregated dynamic model for wind farms with doubly fed induction
generator wind turbines. Renew. Energy 2008, 33, 129–140. [CrossRef]

40. Benelghali, S.; Benbouzid, M.E.H.; Charpentier, J.F. Generator systems for marine current turbine
applications: A comparative study. IEEE J. Ocean. Eng. 2012, 37, 554–563. [CrossRef]

41. Amundarain, M.; Alberdi, M.; Garrido, A.J.; Garrido, I. Modeling and simulation of wave energy generation
plants: Output power control. IEEE Trans. Ind. Electron. 2011, 58, 105–117. [CrossRef]

42. Fan, L.; Kavasseri, R.; Miao, Z.L.; Zhu, C. Modeling of DFIG-based wind farms for SSR analysis. IEEE Trans.
Power Deliv. 2010, 25, 2073–2082. [CrossRef]

43. Pena, R.; Clare, J.C.; Asher, G.M. Doubly fed induction generator using back-to-back PWM converters and
its application to variable-speed wind-energy generation. IEE Proc.-Electr. Power Appl. 1996, 143, 231–241.
[CrossRef]

44. Zhou, D.; Blaabjerg, F.; Lau, M.; Tonnes, M. Optimized reactive power flow of DFIG power converters
for better reliability performance considering grid codes. IEEE Trans. Ind. Electron. 2015, 62, 1552–1562.
[CrossRef]

45. Muller, S.; Deicke, M.; De Doncker, R.W. Doubly fed induction generator systems for wind turbines. IEEE Ind.
Appl. Mag. 2002, 8, 26–33. [CrossRef]

46. Alberdi, M.; Amundarain, M.; Garrido, A.J.; Garrido, I.; Casquero, O.; De la Sen, M. Complementary control
of oscillating water column-based wave energy conversion plants to improve the instantaneous power
output. IEEE Trans. Energy Convers. 2011, 26, 1021–1032. [CrossRef]

47. Rizzo, S.A.; Scelba, G. ANN based MPPT method for rapidly variable shading conditions. Appl. Energy
2015, 145, 124–132. [CrossRef]

http://dx.doi.org/10.1016/j.scs.2018.05.035
http://dx.doi.org/10.1016/j.automatica.2014.01.004
http://dx.doi.org/10.1016/S1364-0321(01)00006-5
http://dx.doi.org/10.1109/5.381844
http://dx.doi.org/10.1016/j.renene.2006.12.001
http://dx.doi.org/10.1016/j.asoc.2014.06.031
http://dx.doi.org/10.1016/j.renene.2013.04.014
http://dx.doi.org/10.1016/j.renene.2006.01.012
http://dx.doi.org/10.3390/en10070862
http://dx.doi.org/10.1016/j.renene.2007.01.010
http://dx.doi.org/10.1109/JOE.2012.2196346
http://dx.doi.org/10.1109/TIE.2010.2047827
http://dx.doi.org/10.1109/TPWRD.2010.2050912
http://dx.doi.org/10.1049/ip-epa:19960288
http://dx.doi.org/10.1109/TIE.2014.2359911
http://dx.doi.org/10.1109/2943.999610
http://dx.doi.org/10.1109/TEC.2011.2167332
http://dx.doi.org/10.1016/j.apenergy.2015.01.077


Sustainability 2018, 10, 3746 26 of 26

48. Makarynskyy, O.; Makarynska, D.; Rusu, E.; Gavrilov, A. Filling gaps in wave records with artificial neural
networks. Marit. Transp. Exploit. Ocean Coast. Resour. 2005, 2, 1085–1091.

49. Ghefiri, K.; Bouallègue, S.; Garrido, I.; Garrido, A.J.; Haggège, J. Modeling and MPPT control of a Tidal
Stream Generator. In Proceedings of the 2017 4th International Conference on Control, Decision and
Information Technologies (CoDIT’17), Barcelona, Spain, 5–7 April 2017; pp. 1003–1008.

50. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans.
Neural Netw. 1994, 5, 989–993. [CrossRef] [PubMed]

51. Wilamowski, B.M.; Yu, H. Improved computation for Levenberg-Marquardt training. IEEE Trans. Neural Netw.
2010, 21, 930–937. [CrossRef] [PubMed]

52. Lewis, M.J.; Neill, S.P.; Hashemi, M.R.; Reza, M. Realistic wave conditions and their influence on quantifying
the tidal stream energy resource. Appl. Energy 2014, 136, 495–508. [CrossRef]

53. Zhao, Z.Y.; Tomizuka, M.; Isaka, S. Fuzzy gain scheduling of PID controllers. IEEE Trans. Syst. Man Cybern.
1993, 23, 1392–1398. [CrossRef]

54. Tursini, M.; Parasiliti, F.; Zhang, D. Real-time gain tuning of PI controllers for high-performance PMSM
drives. IEEE Trans. Ind. Appl. 2002, 38, 1018–1026. [CrossRef]

55. Bouallègue, S.; Haggège, J.; Ayadi, M.; Benrejeb, M. PID-type fuzzy logic controller tuning based on particle
swarm optimization. Eng. Appl. Artif. Intell. 2012, 25, 484–493. [CrossRef]

56. Chen, Y.Y.; Perng, C.F. Input scaling factors in fuzzy control systems. In Proceedings of the 1994 3rd
International Fuzzy Systems Conference, Orlando, FL, USA, 26–29 June 1994; pp. 1666–1670.

57. Bedoud, K.; Ali-rachedi, M.; Bahi, T.; Lakel, R. Adaptive fuzzy gain scheduling of PI controller for control of
the wind energy conversion systems. Energy Procedia 2015, 74, 211–225. [CrossRef]

58. Qu, L.; Qiao, W. Constant power control of DFIG wind turbines with supercapacitor energy storage.
IEEE Trans. Ind. Appl. 2011, 47, 359–367. [CrossRef]

59. Astrom, K.J.; Hagglund, T. Advanced Pid Control; ISA-The Instrumentation, Systems, and Automation Society:
Research Triangle Park, NC, USA, 2006.

60. Vilanova, R.; Visioli, A. PID Control in the Third Millennium; Springer: London, UK, 2012.
61. Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for

distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [CrossRef]
62. Zhou, Z.; Benbouzid, M.; Charpentier, J.F.; Scuiller, F.; Tang, T. A review of energy storage technologies for

marine current energy systems. Renew. Sustain. Energy Rev. 2013, 18, 390–400. [CrossRef]
63. Alves, J.H.G. Numerical modeling of ocean swell contributions to the global wind-wave climate. Ocean Model.

2006, 11, 98–122. [CrossRef]
64. National Oceanic and Atmospheric Administration (NOAA). Available online: https://tidesandcurrents.

noaa.gov/ (accessed on 30 March 2018).
65. Kostaschuk, R.; Best, J.; Villard, P.; Peakall, J.; Franklin, M. Measuring flow velocity and sediment transport

with an acoustic Doppler current profiler. Geomorphology 2005, 68, 25–37. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/72.329697
http://www.ncbi.nlm.nih.gov/pubmed/18267874
http://dx.doi.org/10.1109/TNN.2010.2045657
http://www.ncbi.nlm.nih.gov/pubmed/20409991
http://dx.doi.org/10.1016/j.apenergy.2014.09.061
http://dx.doi.org/10.1109/21.260670
http://dx.doi.org/10.1109/TIA.2002.800564
http://dx.doi.org/10.1016/j.engappai.2011.09.018
http://dx.doi.org/10.1016/j.egypro.2015.07.580
http://dx.doi.org/10.1109/TIA.2010.2090932
http://dx.doi.org/10.1109/TIE.2006.881997
http://dx.doi.org/10.1016/j.rser.2012.10.006
http://dx.doi.org/10.1016/j.ocemod.2004.11.007
https://tidesandcurrents.noaa.gov/
https://tidesandcurrents.noaa.gov/
http://dx.doi.org/10.1016/j.geomorph.2004.07.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model Statement
	Tidal Turbine Model
	Shaft Model
	DFIG Model
	Back-to-Back Converter Model

	Control Statement
	ANN-Based Maximum Power Point Tracking Approach
	FGS-PI Based-Rotational Speed Control
	GSC Control

	Validation Tests and Discussion
	Control Robustness against Irregular Tidal Speed with Numerical Input
	Control Robustness against Irregular Tidal Speed with Real Measured Input
	Disturbance Rejection

	Conclusions
	References

