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the usability of the obtained results.
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1. Introduction and Preliminaries

In 1977, Bernfeld et al. [1] introduced the concept of a fixed point for mappings that have
different domains and ranges, which is called PPF-dependent fixed point or the fixed point with PPF
dependence. Also, they introduced the notion of Banach type contraction and proved some important
results under this contraction. Recently, some authors have established existence and uniqueness
of PPF-dependent fixed point for different types of contraction mappings (see [2–6]), and others
interested in the applications can find PPF-dependent solutions of a periodic boundary value problem
and functional differential equations which may depend upon past, present and future considerations
(see [7–9]).

A new contraction, called F-contraction, was originally raised by Wardowski [10] in 2012.
He proved a fixed point theorem under this contraction and extended many fixed point results
in a different aspect. After that, a generalization of the notion of F-contraction to obtain certain fixed
point results was given by Abbas et al. [11]. Batra et al. [12,13] provided a remarkable generalization of
F-contraction on graphs and altered distances. Recently, some fixed point results for Hardy-Rogers-type
self mappings on abstract spaces have been discussed by Cosentino and Vetro [14].

A generalized multi-valued F-contraction mapping to discuss results of fixed point theory in a
complete metric space was announced by Acar et al. [15,16] . This idea seemed to be a very useful and
powerful method in the study of functional and integral equations (see [17]). We refer the reader to,
for example [18–24], and references therein for more information on different aspects of fixed point
theorems via F-contractions.
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Definition 1 ([10]). A nonlinear self-mapping T on a metric space (X, d) is said to be an F-contraction, if there
exist F ∈ Γ and τ ∈ (0,+∞) such that

d(Tx, Ty) > 0⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y)) ∀x, y ∈ X. (1)

where Γ is the set of functions F : (0,+∞)→ R such that the following axioms hold:
(F1) F is strictly increasing, i.e., for all a, b ∈ R+ such that a < b, F(a) < F(b);
(F2) for every sequence {an}n∈N of positive numbers limn→∞ an = 0 iff limn→∞ F(an) = −∞;
(F3) there exists λ ∈ (0, 1) such that lima→0+ aλ F(a) = 0.

The following functions Fi : (0,+∞) −→ R for i ∈ {1, 2, 3, 4}, are all the elements of Γ.
Furthermore, substituting in Condition (1) these functions, we obtain the following contractions
known in the literature, for all x, y ∈ X with α > 0 and Tx 6= Ty,

(i)F1(α) = ln(α), d(Tx, Ty) ≤ e−τd(x, y),
(ii)F2(α) = ln(α) + α, d(Tx,Ty)

d(x,y) ed(Tx,Ty)−d(x,y)+τ ≤ 1,

(iii)F3(α) =
−1√

α
, d(Tx,Ty)

d(x,y)

(
1 + τ

√
d(x, y)

)2
≤ 1,

(iv)F4(α) = ln(α2 + α), d(Tx,Ty)(1+d(Tx,Ty))
d(x,y)(1+d(x,y)) ≤ e−τ .

From the axiom (F1) and Condition (1), one can conclude that every F-contraction T is a contractive
mapping and hence automatically continuous.

Theorem 1 ([10]). Let T : X → X be an F-contraction on a complete metric space (X, d), then it has a unique
fixed point x∗. Moreover, for any x◦ ∈ X, the sequence {Tnx◦}n∈N converges to x∗.

2. Preliminaries

Let E be a real Banach space with the norm ‖.‖E; given a closed interval I = [a, b] in R we
consider a Banach space E◦ = C(I, E) of continuous E-valued functions defined on I, endowed with
the supremum norm ‖.‖E◦ defined by

‖φ‖E◦ = sup
t∈I
‖φ(t)‖E ,

for all φ ∈ E◦. For a fixed element c ∈ I, the Razumikhin or minimal class of functions in E◦ is
defined by

<c = {φ ∈ E◦ : ‖φ‖E◦ = ‖φ(c)‖E}.

It’s obvious that every constant function from I to E belongs to <c.

Definition 2. Let A be a subset of E. Then
(i) A is said to be topologically closed with respect to the norm topology if for each sequence {yn} in A with

yn → y as n→ ∞ implies y ∈ A.
(ii) A is said to be algebraically closed with respect to the difference if x− y ∈ A when x, y ∈ A.

Definition 3 ([1]). A mapping ξ ∈ E◦ is said to be a PPF-dependent fixed point or a fixed point with
PPF-dependentence of mapping T : E◦ → E if T(ξ) = ξ(c) for some c ∈ I.

Example 1 ([25]). Let T : C([0, 1],R)→ R be defined by

T(ξ) =
1
2

(
sup

t∈[0,1]
|ξ(t)|

)
for all ξ ∈ C([0, 1],R).
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Hence, T is a contraction with a constant 1
2 . Let ξ(t) = t2 + 1 for all t ∈ [0, 1].

Since T(ξ) = 1
2

(
supt∈[0,1] |ξ(t)|

)
= 1 = ξ(0), we have: ξ is a PPF fixed point with dependence of T.

Definition 4 ([1]). Let T, S : E◦ → E be two operators. A point ξ ∈ E◦ is called a PPF-dependent common
fixed point or a common fixed point with PPF-dependentence of T and S if T(ξ) = S(ξ) = ξ(c) for some c ∈ I.

Clearly, if we take T = S, then a PPF-dependent common fixed point of T and S collapses to a
PPF-dependent fixed point.

Definition 5 ([26]). Let P : E◦ → E and Q : E◦ → E◦. A point ξ ∈ E◦ is called a PPF-dependent coincidence
point or coincidence point with PPF-dependentence of P and Q if P(ξ) = Q(ξ)(c) for some c ∈ I.

Let CB(E) be a collection of all non-empty closed bounded subsets of E, and H be the Hausdorff
metric determined by ‖.‖E . Then, for all G, V ∈ CB(E),

HE(G, V) = max

{
sup
a∈G

d(a, V), sup
b∈V

d(b, G)

}
,

where d(a, V) = infb∈V ‖a− b‖ .
In 1989, Mizoguchi and Takahashi [27] extended Banach fixed point theorem in a complete

metric space. After that, Farajzadeh et al. [28] extended the above results by introducing the
following definitions:

Definition 6. Let T : E◦ → CB(E). A point ξ ∈ E◦ is called a PPF fixed point of T if ξ(c) ∈ T(ξ) for
some c ∈ I.

Please note that if S : E0 → E is a single-valued mapping, then a multivalued mapping T : E◦ →
CB(E) can be obtained by T(ξ) = {S(ξ)}, for all ξ ∈ E◦. Hence, the set of PPF-dependent fixed points
of S coincides with the set of PPF-dependent fixed point of T.

Definition 7. A point ξ ∈ E◦ is called a PPF-dependent coincidence point of g and T if gξ(c) ∈ T(ξ) for some
c ∈ I, where g : E◦ → E◦ is a single valued mapping and T : E◦ → CB(E) is a multi-valued mapping.

Notice that, the Definitions 6 and 7 are coincide if we take g equal to the identity mapping.

3. PPF-Dependent Fixed Point

In this section, we begin with introducing our new concept of a multi-valued generalized
F-contraction and some important results in the setting of Banach spaces are given by using it.

Definition 8. The mapping T : E◦ → CB(E) is called a multivalued generalized F-contraction if F ∈ Γ and
there exists τ > 0 such that

HE(Tζ, Tξ) > 0 implies τ + F(HE(Tζ, Tξ)) ≤ F(‖ζ − ξ‖E◦), (2)

for all ζ, ξ ∈ E◦.

The following example shows that a multivalued generalized F-contraction is not necessary in a
multivalued contraction.
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Example 2. Let E = {ζn = n(n+1)
2 , n = 0, 1, 2, ..} be a real Banach space with usual norm and let

E◦ = C([0, 1],R). Define the mapping T : E◦ → CB(E) by

Tζ =

{
{ζ0}, n = 0
{ζ1, ζ2, .., ζn}, n ≥ 1

.

We prove that T is a multi-valued generalized F-contraction with respect to F(α) = α + ln(α) with τ = 1.
It’s clear that for all k, l ∈ N∪ {0}, HE(Tζk, Tζl) > 0, we consider the following two cases:

Case 1. For k > 1 and l = 0, we have

HE(Tζk, Tζ1)

‖ζk − ζ1‖E◦
eHE(Tζk ,Tζ1)−‖ζk−ζ1‖E◦ =

ζk−1 − ζ1

ζk − ζ1
eζk−1−ζk =

k2 − k− 2
k2 + k− 2

e−k < e−k < e−1.

Case 2. For k > l > 0, we get

HE(Tζk, Tζl)

‖ζk − ζl‖E◦
eHE(Tζk ,Tζl)−‖ζk−ζl‖E◦ =

ζk−1 − ζl−1
ζk − ζl

eζk−1−ζl−1−ζk+ζl =
k + l − 1
k2 + l + 1

el−k < el−k < e−1.

This implies that T is a multi-valued generalized F-contraction.
On the other hand, since

lim
k→∞

HE(Tζk, Tζ1)

‖ζk − ζl‖E◦
= lim

k→∞

ζk−1 − 1
ζk − 1

= 1.

Then T is not a multi-valued contraction.

Now, we present our first theorem concerning with the existence of a PPF-dependent fixed point
for a multi-valued generalized F-contraction in a Banach space.

Theorem 2. Suppose that T : E◦ → CB(E) is a multivalued generalized F-contraction. Then, T has a
PPF-dependent fixed point in <c.

Proof. Let ζ◦ ∈ <c, since Tζ◦ ⊂ E and Tζ◦ is closed, there exists x1 ∈ E such that x1 ∈ Tζ◦.
Choose ζ1 ∈ <c such that

ζ1(c) = x1 ∈ Tζ◦.

If ζ1(c) ∈ Tζ1, then ζ1(c) is a PPF-dependent fixed point, so the proof is complete. Let ζ1(c) /∈ Tζ1,
then there exists ζ2(c) ∈ Tζ1 such that ‖ζ1(c)− Tζ1‖E > 0. On the other hand, from

‖ζ1(c)− Tζ1‖E ≤ HE(Tζ◦, Tζ1),

(F1) and Condition (1), we can write

F(‖ζ1(c)− Tζ1‖E) ≤ F(HE(Tζ◦, Tζ1)) ≤ F(‖ζ1 − ζ◦‖E◦)− τ. (3)

Also, since Tζ1 ⊂ E, there exists x2 ∈ Tζ1 such that

ζ2(c) = x2 ∈ Tζ1,

and
‖x1 − x2‖E = ‖ζ1 − Tζ1‖E .
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Then from Condition (2), we have

F(‖ζ1(c)− ζ2(c)‖E) ≤ F(HE(Tζ◦, Tζ1)) ≤ F(‖ζ1 − ζ◦‖E◦)− τ.

If we continue recursively, then we obtain a sequence {ζn} in <c ⊆ E such that

ζn+1(c) ∈ Tζn for all n ∈ N.

Since <c is algebraically closed with respect to the difference, we have

‖ζn−1 − ζn‖E◦ = ‖ζn−1(c)− ζn(c)‖E for all n ∈ N.

So, by Condition (2), one can write

F(‖ζn − ζn+1‖E◦) ≤ F(‖ζn − ζn−1‖E◦)− τ. (4)

If ζn◦ ∈ Tζn◦ , for all n◦ ∈ N, then ζn◦ is a PPF-dependent fixed point of T, so the proof is complete.
Thus, suppose that for every n ∈ N, ζn /∈ Tζn. Denote αn = ‖ζn − ζn+1‖E◦ for n = 0, 1, ... Then αn > 0,
using Inequality (4) we prove the following:

F(αn) ≤ F(αn−1)− τ ≤ F(αn−2)− 2τ ≤ .. ≤ F(α◦)− nτ. (5)

From Inequality (5), we have limn→∞ F(αn) = −∞. So by (F2), one can write limn→∞ αn = 0.
Applying (F3) there exists k ∈ (0, 1) such that limn→∞ αk

nF(α) = 0.
By Inequality (5), we get for all n ∈ N

αk
nF(α)− αk

nF(α◦) ≤ −αk
nnτ. (6)

Letting n→ ∞ in Inequality (6), we obtain that

lim
n→∞

nαk
n = 0. (7)

From Equation (7), we observe that nαk
n < 1 for all n > n1 ∈ N So, we have

αn ≤
1

n
1
k

. (8)

To prove that {ζn} is a Cauchy sequence in <c, consider m, n ∈ N such that m > n ≥ n1.
Using the triangular inequality and Formula Inequality (8), we have

‖ζn − ζm‖E◦ ≤ ‖ζn − ζn+1‖E◦ + ‖ζn+1 − ζn‖E◦ + ... + ‖ζm−1 − ζm‖E◦

= αn + αn+1 + .. + αm−1

=
m−1

∑
j=n

αj ≤
∞

∑
j=n

αj ≤
∞

∑
j=n

1

j
1
k

.

Since the series
∞
∑

j=1

1

j
1
k

is convergent, so the limit as n→ ∞, we get ‖ζn − ζm‖E◦ → 0. This yields

that {ζn} is a Cauchy sequence in <c ⊆ E◦. Completeness of <c yields that {ζn} converges to a point
ζ∗ ∈ <c, that is ζn → ζ∗.

From Condition (2), for all ζ, ξ ∈ E◦ with HE(Tζ, Tξ) > 0, we get

HE(Tζ, Tξ) < ‖ζ − ξ‖E◦ ,
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and so
HE(Tζ, Tξ) ≤ ‖ζ − ξ‖E◦ ,

for all ζ, ξ ∈ E◦. Then
‖ζn+1 − Tζ∗‖E ≤ HE(Tζn, Tζ∗) ≤ ‖ζn − ζ∗‖E◦ .

Passing to limit n→ ∞, we obtain that

‖ζ∗ − Tζ∗‖E◦ = ‖ζ
∗(c)− Tζ∗‖E = 0 for some c ∈ I,

that is ζ∗(c) = Tζ∗. Hence T has a PPF-dependent fixed point in <c.

Please note that Theorem 2, <c is algebraically closed, so Tζ is closed for all ζ ∈ E◦. If we choose
Tζ to be compact, thus, we can present the following problem: Let E◦ be the set of all continuous
E-valued functions and T : E◦ → CB(E) be a multi-valued generalized F-contraction. Does T has a
PPF-dependent fixed point in <c? By adding a condition of F, we can give a partial answer to this
problem as follows:

Theorem 3. Suppose that T : E◦ → CB(E) is a multi-valued generalized F-contraction. Assume that <c is
topologically closed and algebraically closed with respect to the difference. Assume also that F satisfies

(F4) F(inf B) = inf F(B) for all B ⊆ (0, ∞) with inf B > 0.
Then, T has a PPF-dependent fixed point in <c.

Proof. Let ζ◦ ∈ <c, since Tζ◦ ⊂ E and Tζ◦ is compact, there exists x1 ∈ E such that x1 ∈ Tζ◦.
Choose ζ1 ∈ <c such that

ζ1(c) ∈ Tζ◦.

If ζ1(c) ∈ Tζ1, then ζ1(c) is a PPF-dependent fixed point, so the proof is complete. Let ζ1(c) /∈ Tζ1,
then there exists ζ2(c) ∈ Tζ1 such that ‖ζ1(c)− Tζ1‖E > 0. On the other hand, from

‖ζ1(c)− Tζ1‖E ≤ HE(Tζ◦, Tζ1),

(F1) and Condition (1), we have Inequality (3). Applying (F4), we can write (note ‖ζ1(c)− Tζ1‖E > 0)

F(‖ζ1(c)− Tζ1‖E) = inf
ξ∈Tζ1⊆E

F(‖ζ1 − ξ‖E◦),

and so from Inequality (3), we have

inf
ξ∈Tζ1

F(‖ζ1 − ξ‖E◦) ≤ F(‖ζ1 − ξ◦‖E◦)− τ < F(‖ζ1 − ξ◦‖E◦)−
τ

2
. (9)

Then from Inequality (9) there exists ζ2(c) ∈ Tζ1 such that

F(‖ζ1(c)− ζ2(c)‖E) ≤ F(‖ζ1 − ζ◦‖E◦)−
τ

2
.

If ζ2(c) ∈ Tζ2, we are finished. Otherwise, by the same way we can find ζ3(c) ∈ Tζ2 such that

F(‖ζ2(c)− ζ3(c)‖E) ≤ F(‖ζ2 − ζ1‖E◦)−
τ

2
.

We continue recursively, then we obtain a sequence {ζn} in <c such that ζn+1(c) ∈ Tζn for some
c ∈ I and

F(‖ζn − ζn+1‖E◦) ≤ F(‖ζn − ζn−1‖E◦)−
τ

2
,

for all n = 1, 2, ... We can finish the proof by a similar technique of Theorem 2.
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We know that, F satisfies (F4) if it satisfies (F1) and is right-continuous.

4. PPF-Dependent Coincidence Point

In this section, we prove the existence of PPF-dependent coincidence points for a pair of mappings
(single and multivalued) under the Condition (2) by replacing the condition of <c is topologically
closed with equivalent conditions in a Banach space.

Theorem 4. Let f : <c → <c be a single valued mapping and T : E◦ → CB(E) be a multi-valued mapping
satisfying the following conditions:

(i) T(E◦) ⊆ f (<c),
(ii) f (<c) is complete,
(iii)

HE(Tζ, Tξ) > 0 implies τ + F(HE(Tζ, Tξ)) ≤ F(‖ f ζ − f ξ‖E◦), (10)

for all ζ, ξ ∈ E◦ and for some c ∈ I.
Assume that <c is algebraically closed with respect to the difference. Then T and f have a PPF-dependent

coincidence point in <c.

Proof. Let ζ◦ ∈ <c, since Tζ◦ ⊂ E and T(ζ◦) ⊆ f (<c), we can choose ζ1 ∈ <c such that

f ζ1(c) ∈ Tζ◦.

If f ζ1(c) ∈ Tζ1, then ζ1(c) is a PPF-dependent coincidence point of f and T, so let f ζ1(c) /∈ Tζ1,
then there exists f ζ2(c) ∈ Tζ1 such that ‖ f ζ1(c)− Tζ1‖E > 0. On the other hand, from

‖ f ζ1(c)− Tζ1‖E ≤ HE(Tζ◦(c), Tζ1),

and (F1), we have
F(‖ f ζ1(c)− Tζ1‖E) ≤ F(HE(Tζ◦, Tζ1)).

From Inequality (10), we can write

F(‖ f ζ1(c)− Tζ1‖E) ≤ F(HE(Tζ◦, Tζ1)) ≤ F(‖ f ζ1 − f ζ◦‖E◦)− τ. (11)

Also, since Tζ1 ⊆ f (<c)(c), there exists ζ2(c) ∈ Tζ1 such that by Inequality (11), we get

F(‖ f ζ1(c)− f ζ2(c)‖E) ≤ F(HE(Tζ◦, Tζ1)) ≤ F(‖ f ζ1 − f ζ◦‖E◦)− τ.

By the same above technique, we can get a sequence { f ζn(c)} such that f ζn(c) ∈ Tζn−1 in <c for
all n ∈ N. Since <c is algebraically closed with respect to the difference, it follows that

‖ f ζn−1(c)− f ζn(c)‖E = ‖ f ζn−1 − f ζn‖E◦ for all n ∈ N,

So by Inequality (10), we have

F(‖ f ζn − f ζn+1‖E◦) ≤ F(‖ f ζn − f ζn−1‖E◦)− τ.

As in the proof Theorem 2, by taking αn = ‖ f ζn − f ζn+1‖E◦ for all n = 0, 1, 2, .., we obtain
{ f ζn(c)} is a Cauchy sequence in <c ⊆ E◦. The completeness of f (<c) leads to { f ζn} is a convergent
sequence. Suppose that limn→∞ f ζn = ζ∗ for some ζ∗ ∈ f (<c). So, there exists ζ ∈ <c such that
ζ∗ = f ζ, that is limn→∞ f ζn = f ζ. Hence, for each n ∈ N and for all ζ, ξ ∈ E◦ with HE(Tζ, Tξ) > 0,
we get

‖ f ζn+1 − Tζ‖E◦ ≤ HE(Tζn, Tξ) ≤ ‖ f ζn − f ζ‖E◦ − τ.
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Taking the limit as n→ ∞, we have ζ∗(c) ∈ Tζ. Hence, the proof is completed.

In the following theorem, we prove the existence and uniqueness of a PPF-dependent common
fixed point for two multi-valued generalized F-contraction in Banach space.

Definition 9. Let (E◦, ‖.‖E) be a Banach space and S, T : E◦ → CB(E) be multi-valued mappings. The pair
(S, T) is called a pair of new multivalued generalized F-contractions if F ∈ Γ and there exists τ > 0 such that

HE(Tζ, Sξ) > 0 =⇒ τ + F(HE(Tζ, Sξ)) ≤ F(M(ζ, ξ)), (12)

where

M(ζ, ξ) = max

{
‖ζ − ξ‖E◦ ,

‖ζ − Tζ‖E . ‖ξ − Sξ‖E
1 + ‖ζ − ξ‖E◦

, ‖ζ − Tζ‖E , ‖ξ − Sξ‖E

}
,

for all ζ, ξ ∈ E◦ and for some c ∈ I.

Theorem 5. Let (E◦, ‖.‖E) be a Banach space and (S, T) be a pair of new multi-valued generalized
F-contractions (12). Assume that <c is algebraically closed with respect to the difference. Then T and S
have a PPF-dependent fixed point in <c. Moreover, if T or S is a single-valued mapping, then a fixed point with
PPF-dependentence is unique.

Proof. Let ζ◦ ∈ <c be arbitrary, since Sζ◦ ⊂ E is nonempty-closed, there exists x1 ∈ E such that
x1 ∈ Sζ◦. Choose ζ1 ∈ <c such that ζ1(c) = x1 ∈ Sζ◦ and

‖ζ1(c)− ζ◦(c)‖E = ‖ζ1 − ζ◦‖E◦ .

Again, taking Tζ1 ⊂ E, let x2 ∈ Tζ1. Choose ζ2 ∈ <c such that ζ2(c) = x2 ∈ Tζ1 and

‖x2 − x1‖E = ‖ζ2(c)− ζ1(c)‖E = ‖ζ2 − ζ1‖E◦ .

Continuing in this way, by induction, we obtain

Sζ2n+1 = ζ2n+2 and Tζ2n = ζ2n+1,

such that
‖ζn − ζn+1‖E◦ = ‖ζn(c)− ζn+1(c)‖E .

Then from Condition (1), with HE(ζ2n+1, ζ2n+2) = HE(Tζ2n, Sζ2n+1) > 0, we have

F(HE(ζ2n+1, ζ2n+2)) = F (HE(Tζ2n, Sζ2n+1)) ≤ F(M(ζ2n, ζ2n+1)),

for all n ∈ N∪ {0}, where

M(ζ2n, ζ2n+1) = max

{
‖ζ2n − ζ2n+1‖E◦ , ‖ζ2n−Tζ2n‖E .‖ζ2n+1−Sζ2n+1‖E

1+‖ζ2n−ζ2n+1‖E◦
,

‖ζ2n − Tζ2n‖E , ‖ζ2n+1 − Sζ2n+1‖E

}

= max

{
‖ζ2n − ζ2n+1‖E◦ , ‖ζ2n(c)−ζ2n+1(c)‖E .‖ζ2n+1(c)−ζ2n+2(c)‖E

1+‖ζ2n−ζ2n+1‖E◦
,

‖ζ2n(c)− ζ2n+1(c)‖E , ‖ζ2n+1(c)− ζ2n+2(c)‖E

}
= max

{
‖ζ2n − ζ2n+1‖E◦ , ‖ζ2n+1(c)− ζ2n+2(c)‖E

}
.

If M(ζ2n, ζ2n+1) = ‖ζ2n+1(c)− ζ2n+2(c)‖E , then

F(HE(ζ2n+1, ζ2n+2)) ≤ F(‖ζ2n+1(c)− ζ2n+2(c)‖E) ≤ F
(
‖ζ2n+1 − ζ2n+2‖E◦

)
− τ,
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which is a contradiction due to (F1). Therefore

F(‖ζ2n+1(c)− ζ2n+2(c)‖E) ≤ F
(
‖ζ2n − ζ2n+1‖E◦

)
− τ. (13)

Similarly, we have

F(‖ζ2n(c)− ζ2n+1(c)‖E) ≤ F
(
‖ζ2n−1 − ζ2n‖E◦

)
− τ. (14)

By using Inequalities (13) and (14), we get

F(‖ζ2n+1(c)− ζ2n+2(c)‖E) ≤ F
(
‖ζ2n−1 − ζ2n‖E◦

)
− 2τ.

Repeating these steps, we can write

F(‖ζ2n+1(c)− ζ2n+2(c)‖E) ≤ F
(
‖ζ◦ − ζ1‖E◦

)
− (2n + 1)τ. (15)

Similarly, we obtain that

F(‖ζ2n(c)− ζ2n+1(c)‖E) ≤ F
(
‖ζ◦ − ζ1‖E◦

)
− 2nτ. (16)

Inequalities (15) and (16) can jointly by written as

F(‖ζn(c)− ζn+1(c)‖E) ≤ F
(
‖ζ◦ − ζ1‖E◦

)
− nτ. (17)

Taking limits with n→ ∞, on both sides of Inequality (17), we have

lim
n→∞

F(‖ζn(c)− ζn+1(c)‖E) = −∞, (18)

since F ∈ Γ, then
lim

n→∞
‖ζn(c)− ζn+1(c)‖E = 0. (19)

By Inequality (17), for all n ∈ N, we obtain

(
‖ζn − ζn+1‖E◦

)k (
F(‖ζn(c)− ζn+1(c)‖E)− F(‖ζ◦(c)− ζ1(c)‖E◦)

)
≤ −

(
‖ζn − ζn+1‖E◦

)k
nτ ≤ 0. (20)

Considering Equalities (18) and (19) and letting n→ ∞ in Inequality (20), we get

lim
n→∞

n
(
‖ζn − ζn+1‖E◦

)k
= 0. (21)

Since Equality (21) holds, there exist n1 ∈ N, such that

n
(
‖ζn − ζn+1‖E◦

)k
≤ 1, for all n ≥ n1,

or,

‖ζn − ζn+1‖E◦ ≤
1

n
1
k

, for all n ≥ n1. (22)

From Inequality (22) we get that {ζn} is a Cauchy sequence in <c ⊆ E◦. Since <c is complete,
there exists ζ∗ ∈ <c such that

lim
n→∞

ζn = ζ∗. (23)
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By the Condition (12), for all ζ, ξ ∈ E◦ and for some c ∈ I with HE(ζ2n+1, Sζ∗) > 0,

τ + F(HE(ζ2n+1, Sζ∗)) ≤ F(M(ζ2n, ζ∗)),

where

M(ζ2n, ζ∗) = max

{
‖ζ2n − ζ∗‖E◦ ,

‖ζ2n − Tζ2n‖E . ‖ζ∗ − Sζ∗‖E
1 + ‖ζ2n − ζ∗‖E◦

, ‖ζ2n − Tζ2n‖E , ‖ζ∗ − Sζ∗‖E

}

= max

{
‖ζ2n − ζ∗‖E◦ ,

‖ζ2n − ζ2n+1‖E . ‖ζ∗ − Sζ∗‖E
1 + ‖ζ2n − ζ∗‖E◦

, ‖ζ2n − ζ2n+1‖E , ‖ζ∗ − Sζ∗‖E

}
.

Taking limit n→ ∞ and using Equality (23), we can write

lim
n→∞

M(ζ2n, ζ∗) = ‖ζ∗ − Sζ∗‖E . (24)

Since F is strictly increasing, Equality (24) implies

‖ζ2n+1 − Sζ∗‖E < M(ζ2n, ζ∗).

Taking limit n→ ∞ and using Equality (24), we have

‖ζ∗ − Sζ∗‖E < ‖ζ∗ − Sζ∗‖E

which is a contradiction, hence ‖ζ∗ − Sζ∗‖ = 0 or ζ∗(c) ∈ Sζ∗.
Similarly, using Equality (23) and the inequality

τ + F(‖ζ2n+2 − Tζ∗‖E) ≤ τ + F(HE(Sζ2n+1, Tζ∗)),

we can show that ‖ζ∗ − Tζ∗‖E = 0 or ζ∗ ∈ Tζ∗. Hence S and T have a PPF-dependent fixed point
in <c.

We next prove that if T is a single-valued mapping, the PPF-dependent fixed point of S and
T is a unique. Assume that α ∈ <c is another PPF-dependent fixed point of S and T. By using
Condition (12), we have

‖α− ζ‖E◦ = ‖α(c)− ζ(c)‖E ≤ HE({α(c)}, Sζ) = HE({Tα}, Sζ).

Hence,
τ + F(HE({α(c)}, Sζ)) ≤ F(M(α, ζ)),

where

M(α, ζ) = max

{
‖α− ζ‖E◦ ,

‖α− Tα‖E . ‖ζ − Sζ‖E
1 + ‖α− ζ‖E◦

, ‖α− Tα‖E , ‖ζ − Sζ‖E

}
= ‖α− ζ‖E◦ ,

this yields,
‖α− ζ‖E◦ ≤ τ + F(HE(α, ζ)) ≤ F(‖α− ζ‖E◦) < ‖α− ζ‖E◦ ,

which is a contradiction. Therefore ‖α− ζ‖E◦ = 0 or α(c) = ζ(c). This completes the proof.

In the following example, we justify requirements of Theorem 5.
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Example 3. Let E = R2 with respect to the norm ‖(ζ, ξ)‖E = |ζ|+ |ξ| and E◦ = C([0, 1],R2). Define the
multi-valued mappings S, T : E◦ → CB(E) as follows:

Tζ =

[
1
3

ζ(
1
4
),

2
3

ζ(
1
4
)

]
and Sζ =

[
1
5

ζ(
1
4
),

2
5

ζ(
1
4
)

]
for all ζ ∈ E◦, c =

1
4
∈ [0, 1].

Define the function F : R+ → R by F(α) = ln(α) for all α ∈ R+, τ > 0.
By Condition (12) with HE(Tζ, Sξ) > 0, we have

HE(Tζ, Sξ) = max

{
sup
λ∈Tζ

(‖λ− Sξ‖E), sup
µ∈Sξ

(‖Tζ − µ‖E)

}

= max

{
sup
λ∈Tζ

(∥∥∥∥λ−
[

1
5

ξ(
1
4
),

2
5

ξ(
1
4
)

]∥∥∥∥
E

)
, sup

µ∈Sξ

(∥∥∥∥[1
3

ζ(
1
4
),

2
3

ζ(
1
4
)

]
− µ

∥∥∥∥
E

)}

= max
{∥∥∥∥2ζ

3
− ξ

5

∥∥∥∥
E

,
∥∥∥∥ ζ

3
− 2ξ

5

∥∥∥∥
E

}
= max

{∣∣∣∣2ζ

3

∣∣∣∣+ ∣∣∣∣ ξ5
∣∣∣∣ ,
∣∣∣∣ ζ3
∣∣∣∣+ ∣∣∣∣2ξ

5

∣∣∣∣} for some
1
4
∈ [0, 1],

also,

M(ζ, ξ) = max

{
‖ζ − ξ‖E◦ ,

∥∥∥ζ−
[

ζ
3 , 2ζ

3

]∥∥∥
E

.
∥∥∥ξ−

[
ξ
5 , 2ξ

5

]∥∥∥
E

1+‖ζ−ξ‖E◦
,
∥∥∥ζ −

[
ζ
3 , 2ζ

3

]∥∥∥
E

,
∥∥∥ξ −

[
ξ
5 , 2ξ

5

]∥∥∥
E

}

= max

{
‖ζ − ξ‖E◦ ,

∥∥∥ζ− ζ
3

∥∥∥
E

.
∥∥∥ξ− ξ

5

∥∥∥
E

1+‖ζ−ξ‖E◦
,
∥∥∥ζ − ζ

3

∥∥∥
E

,
∥∥∥ξ − ξ

5

∥∥∥
E

}

=

{
|ζ|+ |ξ| ,

(|ζ|+
∣∣∣ ζ

3

∣∣∣)(|ξ|−∣∣∣ ξ
5

∣∣∣)
1+‖ζ−ξ‖E◦

, (|ζ|+
∣∣∣ ζ

3

∣∣∣), (|ξ| − ∣∣∣ ξ
5

∣∣∣)} = |ζ|+ |ξ| for some 1
4 ∈ [0, 1].

(25)

Now, we present two cases as follows:

Case 1. If max
{∣∣∣ 2ζ

3

∣∣∣+ ∣∣∣ ξ
5

∣∣∣ ,
∣∣∣ ζ

3

∣∣∣+ ∣∣∣ 2ξ
5

∣∣∣} =
∣∣∣ ζ

3

∣∣∣+ ∣∣∣ 2ξ
5

∣∣∣ and τ = ln( 6
5 ) > 0, then we get

|10ζ|+ |12ξ| ≤ |25ζ|+ |25ξ| ⇒ 6
5

(∣∣∣∣ ζ3
∣∣∣∣+ ∣∣∣∣2ξ

5

∣∣∣∣) ≤ |ζ|+ |ξ|
⇒ ln(

6
5
) + ln

(∣∣∣∣ ζ3
∣∣∣∣+ ∣∣∣∣2ξ

5

∣∣∣∣) ≤ ln(|ζ|+ |ξ|),

which implies that
τ + F(HE(Tζ, Sξ)) ≤ F(M(ζ, ξ)).

Case 2. Similarly if max
{∣∣∣ 2ζ

3

∣∣∣+ ∣∣∣ ξ
5

∣∣∣ ,
∣∣∣ ζ

3

∣∣∣+ ∣∣∣ 2ξ
5

∣∣∣} =
∣∣∣ 2ζ

3

∣∣∣+ ∣∣∣ ξ
5

∣∣∣ and τ = ln( 6
5 ) > 0, we have

|20ζ|+ |6ξ| ≤ |25ζ|+ |25ξ| ⇒ 6
5

(∣∣∣∣2ζ

3

∣∣∣∣+ ∣∣∣∣ ξ5
∣∣∣∣) ≤ |ζ|+ |ξ|

⇒ ln(
6
5
) + ln

(∣∣∣∣2ζ

3

∣∣∣∣+ ∣∣∣∣ ξ5
∣∣∣∣) ≤ ln(|ζ|+ |ξ|).

This yields
τ + F(HE(Tζ, Sξ)) ≤ F(M(ζ, ξ)).

Hence, all the axioms of Theorem 5 are satisfied, so (S, T) have a PPF-dependent fixed point.
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Please note that Theorem 5 remains valid if we substitute M(ζ, ξ) defined in Definition 9 by any
of the following formulas:

(i) M(ζ, ξ) = ‖ζ − ξ‖E◦ (ii) M(ζ, ξ) = ‖ζ − Tζ‖E

(iii) M(ζ, ξ) =
‖ζ−Tζ‖E .‖ξ−Sξ‖E

1+‖ζ−ξ‖E◦
(iv) M(ζ, ξ) = ‖ξ − Sξ‖E

(v) M(ζ, ξ) = max
{
‖ζ − ξ‖E◦ , ‖ζ − Tζ‖E

}
(vi) M(ζ, ξ) = max

{
‖ζ − ξ‖E◦ , ‖ξ − Sξ‖E

}
(vii) M(ζ, ξ) = max

{
‖ζ − ξ‖E◦ , ‖ζ−Tζ‖E .‖ξ−Sξ‖E

1+‖ζ−ξ‖E◦

}
(viii) M(ζ, ξ) = max

{
‖ξ − Sξ‖E , ‖ζ−Tζ‖E .‖ξ−Sξ‖E

1+‖ζ−ξ‖E◦

}
(ix) M(ζ, ξ) = max

{
‖ζ − Tζ‖E , ‖ζ−Tζ‖E .‖ξ−Sξ‖E

1+‖ζ−ξ‖E◦

}
(x) M(ζ, ξ) = max {‖ζ − Tζ‖E , ‖ξ − Sξ‖E}

(xi) M(ζ, ξ) = max


‖ζ − ξ‖E◦ ,

‖ζ−Tζ‖E .‖ξ−Sξ‖E
1+‖ζ−ξ‖E◦

,

‖ξ − Sξ‖E

 (xii) M(ζ, ξ) = max


‖ζ − ξ‖E◦ ,

‖ζ−Tζ‖E .‖ξ−Sξ‖E
1+‖ζ−ξ‖E◦

,

‖ζ − Tζ‖E


(xiii) M(ζ, ξ) = max

{
‖ζ − ξ‖E◦ , ‖ζ − Tζ‖E ,

‖ξ − Sξ‖E

}
.

5. Application to A System of Integral Equations

No one can deny that fixed point theory has become the most wide spread in functional
analysis because of its great applications, especially in differential and integral equations (see [29–31]).
Accordingly, we will apply the results we have obtained to find the existence and uniqueness of a
solution of nonlinear integral equations.

Let I◦ = [−t, 0] and I = [0, t] be two closed bounded intervals in R, for reals t > 0 and ℵ denote
the space of continuous real-valued functions defined on I◦. We define the supremum norm ‖.‖ℵ by

‖ξ‖ℵ = sup
t∈I◦
|ξ(t)| .

It is known that ℵ is a Banach space with this norm.
For fixed t ∈ R+ define a function t→ φt by

φt(a) = φ(t + a), a ∈ I◦,

where the argument a represents the delay in the argument solution.
Consider the following nonlinear integral equations:

φ1(t) =
t∫

0
G(t, s) f1(s, φ(s))ds

φ2(t) =
t∫

0
G(t, s) f2(s, φ(s))ds

, (26)

for all t ∈ I. Now, we prove the following theorem to ensure the existence of a common solution of our
problems (26).

Theorem 6. System (26) has only one common solution defined on I ∪ I◦ if the following conditions hold:

(a) supt∈I

(
t∫

0
G(t, s)eτsds

)
≤ 1

τ eτt,

(b) f1, f2 : I × C(I,R)→ R, G : I × I → R+,
(c) suppose that

‖φ1 + φ2‖τ = sup
t∈I
{|φ1(t) + φ2(t)| e−τt}, τ > 0,

for all φ1, φ2 ∈ C(I,R).
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Proof. Define the following set

∼
E = {

∼
φ = (φt)t∈I : φt ∈ ℵ, φ ∈ C(I,R)}.

We define a norm on
∼
E by ∥∥∥∼φ∥∥∥∼

E
= sup

t∈I
‖φt‖ℵ .

we obtain that,
∼
φ ∈ C(I,R). Next we show that

∼
E is a Banach space. Let {

∼
φn} be a Cauchy sequence

in
∼
E. It is easy to see that {(φn

t )t∈I} is a Cauchy sequence in ℵ. This implies that {φm
t (s)} is a Cauchy

sequence in R for each s ∈ I◦. Then {φm
t (s)} converges to φt(s) for each t ∈ I. Since {φn

t } is a sequence
of uniformly continuous functions for a fixed t ∈ I, φt(s) is also continuous in s ∈ I◦. So the sequence

{
∼
φn} converge to

∼
φ ∈

∼
E. Therefore

∼
E is complete, hence,

∼
E is a Banach space.

After that, we define the multi-functions T, S :
∼
E→ CB(R) by

T
∼
φ1(t) =

t∫
0

G(t, s) f1(s, φ1(s))ds

S
∼
φ2(t) =

t∫
0

G(t, s) f2(s, φ2(s))ds
, (27)

for all
∼
φ1,
∼
φ2 ∈

∼
E. Suppose there exist τ > 0 such that

| f1(t, φ1(t)) + f2(t, φ2(t))| ≤
τM(φ1, φ2)

(τ
√
‖M(φ1, φ2)‖τ + 1)2

,

for all t ∈ I and φ1, φ2 ∈ C(I,R), where

M(φ1, φ2) = max
{
|φ1(t) + φ2(t)| , |φ1(t)+Tφ1(t)|.|φ2(t)+Sφ2(t)|

1+|φ1(t)+φ2(t)|
, |φ1(t) + Tφ1(t)| , |φ2(t) + Sφ2(t)|

}
.

From the assumptions (a), (c) and Functions (27), we can write

∣∣∣T∼φ1(t) + S
∼
φ2(t)

∣∣∣ =

t∫
0

G(t, s) | f1(s, φ1(s)) + f2(s, φ2(s))| ds

≤
t∫

0

G(t, s)
τ

(τ
√
‖M(φ1, φ2)‖τ + 1)2

[
M(φ1, φ2)e−τs] eτsds

≤
t∫

0

G(t, s)
τ

(τ
√
‖M(φ1, φ2)‖τ + 1)2

‖M(φ1, φ2)‖τ eτsds

≤
τ ‖M(φ1, φ2)‖τ

(τ
√
‖M(φ1, φ2)‖τ + 1)2

t∫
0

G(t, s)eτsds

≤
τ ‖M(φ1, φ2)‖τ

(τ
√
‖M(φ1, φ2)‖τ + 1)2

sup
t∈I

 t∫
0

G(t, s)eτsds


≤ ‖M(φ1, φ2)‖τ

(τ
√
‖M(φ1, φ2)‖τ + 1)2

eτt.
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This implies that ∣∣∣T∼φ1(t) + S
∼
φ2(t)

∣∣∣ e−τt ≤ ‖M(φ1, φ2)‖τ

(τ
√
‖M(φ1, φ2)‖τ + 1)2

,

hence, ∥∥∥T
∼
φ1(t) + S

∼
φ2(t)

∥∥∥
τ
≤ ‖M(φ1, φ2)‖τ

(τ
√
‖M(φ1, φ2)‖τ + 1)2

,

this is equivalent to
τ
√
‖M(φ1, φ2)‖τ + 1√
‖M(φ1, φ2)‖τ

≤ 1√∥∥∥T
∼
φ1(t) + S

∼
φ2(t)

∥∥∥
τ

,

or
τ +

1√
‖M(φ1, φ2)‖τ

≤ 1√∥∥∥T
∼
φ1(t) + S

∼
φ2(t)

∥∥∥
τ

,

which further implies that

τ − 1√∥∥∥T
∼
φ1(t) + S

∼
φ2(t)

∥∥∥
τ

≤ −1√
‖M(φ1, φ2)‖τ

.

This implies that (S, T) is a pair of multi-valued generalized F-contraction for F(α) = −1√
α

, α > 0.
Moreover, the Razumikhin <0 is C(I,R) which is topologically closed and algebraically closed with
respect to difference. Now all hypotheses of Theorem 5 are automatically satisfied with c = 0.

Therefore, there exists a PPF-dependence coincidence point
∼
φ
∗

of T and S that is,
∼
φ
∗
(0) ∈ T

∼
φ
∗
= S

∼
φ
∗
.

Hence, the integral Equation (26) has a solution. This completes the proof.

Questions

(i) Are the results in Theorems 2 and 3 still true when the norm closedness for <c is replaced by
weak closedness or weak∗ closedness (for dual Banach spaces)?

(ii) Is there some way to improve the results of Theorems 4 and 5 to more than two or a family
of mappings?

Author Contributions: All authors contributed equally and significantly in writing this article. All authors read
and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express their deep thanks to anonymous referees for their
remarkable comments and suggestions to improve this paper.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Bernfeld, S.R.; Lakshmikantham, V.; Reddy, Y.M. Fixed point theorems of operators with PPF-dependentence
in Banach spaces. Appl. Anal. 1977, 6, 271–280. [CrossRef]

2. Agarwal, R.P.; Kumam, P.; Sintunavarat, W. PPF dependent fixed point theorems for an αc-admissible
non-self mapping in the Razumikhin class. Fixed Point Theory Appl. 2014. [CrossRef]

3. Ćirić, Lj.; Alsulami, S.M.; Salimi, P.; Vetro, P. PPF dependent fixed point results for traingular αc−admissible
mapping. Sci. World J. 2014. [CrossRef] [PubMed]

4. Hussain, N.; Khaleghizadeh, S.; Salimi, P.; Akbar, F. New fixed point results with PPF-dependentence in
Banach spaces endowed with a graph. Abstr. Appl. Anal. 2013, doi:10.1155/2013/827205. [CrossRef]

http://dx.doi.org/10.1080/00036817708839165
http://dx.doi.org/10.1186/1687-1812-2013-280
http://dx.doi.org/10.1155/2014/673647
http://www.ncbi.nlm.nih.gov/pubmed/24672352
http://dx.doi.org/10.1155/2013/827205


Mathematics 2019, 7, 52 15 of 16

5. Kaewcharoen, A. PPF depended common fixed point theorems for mappings in Banach spaces.
J. Inequal. Appl. 2013, doi:10.1186/1029-242X-2013-287. [CrossRef]

6. Kutbi, M.A.; Hussain, N.; Khaleghizadeh, S. New PPF-dependent fixed point theorems for Suzuki type
GF-contractions. J. Funct. Sp. 2015. [CrossRef]

7. Dhage, B.C. Fixed point theorems with PPF-dependentence and functional differential equations.
Fixed Point Theory 2012, 13, 439–452.

8. Dhage, B.C. Some basic random fixed point theorems with PPF-dependentence and functional random
differential equations. Differ. Equ. Appl. 2012, 4, 181–195. [CrossRef]

9. Parvaneh, V.; Hosseinzadeh, H.; Hussain, N.; Ćirić, L. PPF dependent fixed point results for hybrid rational
and Suzuki-Edelstein type contractions in Banach spaces. Filomat 2016, 30, 1339–1351. [CrossRef]

10. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point
Theory Appl. 2012. [CrossRef]

11. Abbas, M.; Ali, B.; Romaguera, S. Fixed and periodic points of generalized contractions in metric spaces.
Fixed Point Theory Appl. 2013, doi:10.1186/1687-1812-2013-243. [CrossRef]

12. Batra, R.; Vashistha, S. Fixed points of an F-contraction on metric spaces with a graph. Int. J. Comput. Math.
2014, 91, 1–8. [CrossRef]

13. Batra, R.; Vashistha, S.; Kumar, R.A. coincidence point theorem for F-contractions on metric spaces equipped
with an altered distance. J. Math. Comput. Sci. 2014, 4, 826–833.

14. Cosentino, M.; Vetro, P. Fixed point results for F-contractive mappings of Hardy-Rogers-type. Filomat 2014,
28, 715–722. [CrossRef]

15. Acar, Ö.; Altun, I. A fixed point theorem for multivalued mappings with delta-distance.
Abstr. Appl. Anal. 2014. [CrossRef]

16. Acar, Ö.; Durmaz, G.; Minak, G. Generalized multivalued F-contractions on complete metric spaces. Bull. Iran.
Math. Soc. 2014, 40, 1469–1478.

17. Sgroi, M.; Vetro, C. Multi-valued F-contractions and the solution of certain functional and integral equations.
Filomat 2013, 27, 1259–1268. [CrossRef]

18. Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New fixed point theorems for generalized F-contractions in complete
metric spaces. Fixed Point Theory Appl. 2015, doi:10.1186/s13663-015-0333-21-18. [CrossRef]

19. Arshad, M.; Khan, S.U.; Ahmad, J. Fixed point results for F-contractions involving some new rational
expressions. JP J. Fixed Point Theory Appl. 2016, 11, 79–97. [CrossRef]

20. Khan, S.U.; Arshad, M.; Hussain, A.; Nazam, M. Two new types of fixed point theorems for F-contraction.
J. Adv. Stud. Topol. 2016, 7, 251–260. [CrossRef]
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