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Abstract
Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survival

of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrilla-

tors (AED). AED algorithms for VF-detection are customarily assessed using Holter record-

ings from public electrocardiogram (ECG) databases, which may be different from the ECG

seen during OHCA events. This study evaluates VF-detection using data from both OHCA

patients and public Holter recordings. ECG-segments of 4-s and 8-s duration were ana-

lyzed. For each segment 30 features were computed and fed to state of the art machine

learning (ML) algorithms. ML-algorithms with built-in feature selection capabilities were

used to determine the optimal feature subsets for both databases. Patient-wise bootstrap

techniques were used to evaluate algorithm performance in terms of sensitivity (Se), speci-

ficity (Sp) and balanced error rate (BER). Performance was significantly better for public

data with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of

94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times more

features than the data from public databases for an accurate detection (6 vs 3). No signifi-

cant differences in performance were found for different segment lengths, the BER differ-

ences were below 0.5-points in all cases. Our results show that VF-detection is more

challenging for OHCA data than for data from public databases, and that accurate VF-

detection is possible with segments as short as 4-s.

Introduction
Out-of-hospital cardiac arrest (OHCA) is a leading cause of death in the industrialized world,
with an estimated annual incidence that varies between 52.5 (in Asia) and 111.9 (in Australia)
per 100,000 person-years [1]. Lethal ventricular arrhythmias are one of the most frequent
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causes of OHCA. A defibrillation shock is the only effective way to treat lethal ventricular
arrhythmias, and early defibrillation is one of the key factors in survival from OHCA [2]. In an
out-of-hospital setting defibrillation shocks may be administered by lay-people before the
arrival of the ambulance, using an automated external defibrillator (AED). AEDs include a
shock advise algorithm (SAA) that analyzes the surface electrocardiogram (ECG), and delivers
an electric shock if either rapid ventricular tachycardia (VT) or ventricular fibrillation (VF) are
detected by the SAA.

The American Heart Association (AHA) defined the framework to test SAAs in AEDs [3].
The AHA recommends a sensitivity (Se) higher that 90% for shockable (Sh) rhythms, and a
specificity (Sp) higher than 95% for nonshockable (NSh) rhythms, and above 99% in the case
of normal sinus rhythms (NSR). The ECG segments used to test the SAA must be artefact-free
and contain a single rhythm. During the last decades, a large number of features, methods and
algorithms have been proposed to detect Sh rhythms within the AED setting [4–17]. Most of
these studies are based on data from public databases, such as the MIT-BIH Arrhythmia Data-
base (MITDB) [18], the MIT-BIH Malignant Ventricular Arrhythmia database (VFDB) [19],
the Creighton University Ventricular Tachycardia database (CUDB) [20], and/or the AHA
database (AHADB). Public databases contain a selection of long-term Holter ECG recordings.
Thus, in general the onset of Sh events is clearly identified. VF records present a coarse ampli-
tude and a high fibrillation frequency. NSh rhythms often correspond to NSR with narrow
QRS complexes and normal rates. These data may be very different from the ECG recorded
during OHCA, as shown in Fig 1. During OHCA, ECG signals are recorded by defibrillators
normally 5–10 minutes after the onset of the cardiac arrest event. VF then presents smaller
amplitudes and fibrillation frequencies [21], and the most frequent NSh rhythms are asystole
(AS) and pulseless electrical activity (PEA). PEA often presents a bradyarrhythmic ECG with
aberrant QRS complexes.

Within the AHA framework, this study explores the differences in the detection of Sh
rhythms when public or OHCA data are used to optimize the algorithms. Following a machine
learning approach as in [16, 17], we used a combination of 30 previously defined ECG features
[4–17]. We then fed the values of the features to five state-of-the-art machine learning classifi-
ers. The classifiers were selected to allow ranking of the features, which ultimately leads to a
better insight into the relation between features and classification outcomes. All the routines,
feature values, results and public data used for this study are available at http://www.tsc.urjc.es/
*felipe.alonso/ohca_vs_public_dbs.html.

The paper is organized as follows. Materials and Methods presents the methodology includ-
ing the ECG databases, the ECG features, the classifiers, and the feature selection procedure.
Results analyzes the performance of the proposed algorithms. Finally discussion and conclu-
sions are drawn in Discussion.

Materials and Methods

Overview of the procedure
This section provides an overview of the procedures described in the materials and methods,
which are visually summarized in Fig 2. The process was done independently for public and
OHCA data. First, ECG signals were preprocessed, labelled and divided into consecutive non-
overlapping segments. For each segment thirty features were computed. Then data was split in
training and test sets randomly, by allocating 80/20% of the patients to the training and test
sets, respectively. Three steps were followed using the data in the training subset: (i) tuning the
parameters of the classification algorithms (free parameters); (ii) feature selection using boot-
strap resampling; and (iii) training the algorithms. Two different methods were used for feature
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Fig 1. Examples of ECG found in public (top) and OHCA (bottom) data. The top-left segment corresponds to a VF from CUDB (record, cu05) right
after VF onset, and presents large amplitude and a fibrillation frequency of 4.5 Hz. The bottom-left segments were recorded during OHCA 5–10 minutes
after VF onset, and have smaller amplitudes and fibrillation frequencies (3.5 Hz and 2.5 Hz). The top-right segment corresponds to a NSR from cu05 right
before VF onset. The bottom-right segments are examples of PEA in OHCA patients. Both cases show aberrant QRS complexes and low heart rates. The
bottom example presents an extremely low heart-rate of 15 beats per minute.

doi:10.1371/journal.pone.0159654.g001

Fig 2. Overview of the test procedure. Blue boxes specify the figures and tables where the results corresponding to each
procedure can be found in the manuscript.

doi:10.1371/journal.pone.0159654.g002
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selection (BSTsel and L1-LRsel). Finally, the selected features and the optimized algorithms
were used on the test set to report the final results, and to compare feature selection against
using all features.

ECG collection
We used two databases of ECG recordings: a database of rhythms covered in the AHA recom-
mendations built from public repositories, and a database of OHCA rhythms.

Public database. We included the complete set of records of the VFDB and the CUDB,
and ten episodes of the AHADB series 1 (8201–8210). The VFDB contains 22 30-min long
Holter record files with two channels per file. The CUDB contains 35 8-min long records from
patients who experienced sustained episodes of lethal ventricular arrhythmias. Finally, the
AHADB records are 35-min long with two channels, and contain annotated rhythms with
lethal ventricular arrhythmias. In VFDB and AHADB only the first channel was included
to avoid redundancy in the algorithms’ learning process. The sample rate of all databases was
250 Hz.

The original rhythm annotations of CUDB and VFDB were revised by consensus among
two experienced biomedical engineers. Re-annotation comprised the relabelling of noise and
device saturation intervals, the labelling of low peak-to-peak amplitude VF (under 200 μV)
as fine VF [3], and of intervals with low rates (below 12 bpm) and/or very low peak-to-peak
amplitudes (< 100 μV) as AS. Fine VF and AS labels were introduced to annotate the data in
accordance with the AHA framework and the standard criteria used to annotate cardiac arrest
rhythms [3, 22, 23].

OHCA database. The OHCA database was obtained from a multicentre cardiac arrest
study conducted to evaluate cardiopulmonary resuscitation quality [24, 25]. Rhythm annota-
tions on the data were done by clinical experts using five classes: VF, VT, PEA, pulse generating
rhythms (PR) and AS [24]. Artifact-free ECG segments of 10-s duration and with a unique
rhythm were extracted. The surface ECG was acquired using a modified Laerdal HeartStart
4000 defibrillator, at a sampling rate of 500 Hz and 16 bits for a resolution of 1.031 μV per least
significant bit. The ECG was resampled for this study to 250 Hz.

Preprocessing. ECG signals from all databases were preprocessed using the filtering pro-
cess proposed in [11]: 1) mean subtraction; 2) five-order moving average filter; 3) high-pass fil-
ter with fc = 1 Hz (drift suppression); and 4) low-pass Butterworth filter with fc = 30 Hz. The
1–30 Hz is a typical monitor bandwidth used in AEDs [22, 26].

Data labelling. The final datasets were constructed and labelled following the AHA frame-
work. Data segments in which the ECG did not conform to the specifications of the AHA
framework, and to the standard practices used in VF-detection algorithms were excluded from
the analyses [13, 17]. First, noise and low-quality ECG segments (artifacts) were excluded [3].
Then, ECG signals were divided into non-overlapping segments of 4-s and 8-s duration, and
segments with rhythm transitions were excluded [3]. Intermediate rhythms such as slow VT
(rate under 150 bpm) and fine VF were excluded [3, 13]. The benefits of defibrillation are
unclear for these rhythms [3], and therefore they cannot be unequivocally classified as Sh or
NSh. Finally, following standard practice in VF-detection algorithms rhythms with minimal
electrical activity, such as AS, were also excluded [13, 17]. In SAAs asystole is customarily iden-
tified before the Sh/NSh decision using simple algorithms based on the amplitude/power of the
ECG segment [27, 28].

The final segment datasets grouped by databases are shown in Table 1. Based on the original
annotations, segments were labelled as Sh or NSh. Sh rhythms include VF, VT and ventricular
flutter. NSh rhythms include NSR and arrhythmias like supraventricular tachycardia, atrial
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fibrillation, heart blocks or ectopic ventricular activity from public databases; and the PEA/PR
rhythms from the OHCA database.

ECG features
For each segment a set of 30 VF-detection features was computed. A detailed description of the
features can be found in the original papers [4–17]. In brief, these features quantify a distinctive
VF characteristic and can be grossly grouped into (the nomenclature of the features follows
that of the original papers):

• Temporal features to characterize the amplitude, slope, sample distribution or heart rate of the
rhythm. The features include: threshold crossing interval (TCI) [7]; threshold crossing sample
count (TCSC) [15]; standard exponential (Exp) [11]; modified exponential (Expmod) [11];
mean absolute value (MAV) [14]; count1, count2 and count3 [10]; x1, and x2 [23]; bCP [27].

• Spectral features to quantify spectral concentration, normalized spectral moments or the rela-
tive power content in different frequency bands. The features include: VF filter (vFleak) [4];
M, A1, A2, and A3 [6]; x3, x4, and x5 [23]; bWT [27].

• Time-frequency features. The Li feature [29] based on the wavelet analysis of the ECG.

• Complexity features. The most representative measures of the complexity of the ECG, includ-
ing: complexity measure (CM) [9]; covariance (CVbin), area (abin), frequency (Frqbin), and
Kurtosis (Kurt) of a binary signal extracted from the ECG [13]; and the phase space recon-
struction (PSR) [12]; Hilbert transform (HILB) [12]; Sample entropy (SamEn) [30].

Features count1, count2 and count3 were normalized to the window size, and Kurt, M,
A1, x1, x3, x5 and count3, were transformed using nonlinear operations to avoid skewed
histograms.

Dataset for classification. The parametrization of the ECG signal segments resulted in a

dataset of binary labeled data Z = {(x1, y1), . . ., (xN, yN)}, where xi 2 R
K , K = 30 (number of fea-

tures), N = 20047/9769 (number of 4/8-s segments), and labels yi 2 {Sh: +1, NSh: –1}. During
the classification process, features were standardized to zero mean and unit variance using the
data in the training set.

Classification algorithms
This section presents an abridged description of the five classifiers selected for this study, for
further details consult [31].

Table 1. Description of the datasets used for classification.

4-s segments 8-s segments

Database patients Sh NSh Sh NSh

Public 67 3578 14495 1696 7086

vfdb 22 1586 7761 746 3780

cudb 35 716 2986 323 1446

ahadb 10 1276 3748 627 1860

OHCA 260 680 1294 340 647

The Sh category includes VF, VT and ventricular flutter. The NSh category includes: NSR, supraventricular tachycardia, sinus bradycardia, atrial fibrillation,

ventricular bigeminy, ectopic ventricular activity, blocks, ventricular escapes, nodal and paced rhythms from public databases, and PEA/PR from the OHCA

database.

doi:10.1371/journal.pone.0159654.t001
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L1 regularized logistic regression (L1-LR). This is an extension of the classical logistic
regression. In L1-LR the wT = [w1, w2, . . ., wK] regression coefficients are obtained as follows:

max
w0 ;w

XN
i¼1

ð1� yiÞðw0 þ wTxiÞ½ � þ ln 1þ e�ðw0þwT xiÞ
� �

� l
XK
k¼1

jwkj
( )

: ð1Þ

The L1-LR method yields a sparse vector w (few nonzero coefficients), that can be used as a fea-
ture selection method. The sparsity of w is controlled by the regularization parameter λ. High
values of λ would force all coefficients to be zero, while low values of λ result in coefficient val-
ues greater than zero.

To minimize classification errors λ is set a priori as a balance between algorithm complexity
and accuracy. We used a 10-fold cross validation to determine λ.

Ensemble methods. These are general procedures to combine outcomes of a set of classifi-
ers (classification trees) to improve prediction performance. Three approaches are explored in
this study:

• Bagging (BAG) and Random Forests (RF). Bagging (BAG) constructs B decision trees from B
bootstrap samples of the training database. The final decision is the majority vote of those B
trees. Although B has to be set a priori, its value is not critical, sufficiently large values lead to
good performance without overfitting [31]. Random Forest (RF) is a particular implementa-
tion of bagging for decision trees, in which only a random subset of p< K features are used
in each of the B trees. This generates uncorrelated trees, reducing the variance of the classifier

and improving its performance. The value of p is normally set to p ¼ ffiffiffiffi
K

p
. Besides B, in BAG

and RF the complexity of the trees has to be set a priori. For this purpose, we analyzed the
out-of-bag missclassification error [31].

• Boosting (BST) combines many weak classifiers to improve accuracy. ForM boosting itera-
tions a sequence of fm(x) weak classifiers is constructed. At iterationm the observations mis-
classified by fm−1(x) have their weights increased, and those correctly classified have their
weights decreased. So at the next iteration, fm(x) is forced to focus on samples that were diffi-
cult to classify in the previous iteration. The final classification is obtained by a weighted vote
of the classifiers:

y ¼ sign
XM
m¼1

amfmðxÞ
 !

: ð2Þ

Choosing fm(x) to be decision trees three elements have to be set a priori: (i) the complexity
of the trees; (ii) the reweighting strategy and the aggregation weights αm; and (iii) the number
of iterationsM. These three parameters were analyzed using 10-fold cross validation.

Support Vector Machine (SVM). SVMs have been frequently used as binary classifiers
[32]. In the dual formulation the SVM solves the following optimization problem:

max
ai

XN
i¼1

ai �
1

2

XN
i;j¼1

aiajyiyiKðxi; xjÞ
( )

; s:t: 0 � ai � C and
X

i

aiyi ¼ 0; 8i; ð3Þ

where the coefficients αi are non-zero only for Ns support vectors, K(xi, xj) is the kernel func-
tion and C the soft margin parameter. For this work we used gaussian kernel, K(xi, xj) = exp
(−γ||xi − xj||

2). Once the support vectors are determined (optimal αi) the classifier output y for

Machine Learning for Detection of Shockable Rhythms in Automated External Defibrillators

PLOS ONE | DOI:10.1371/journal.pone.0159654 July 21, 2016 6 / 17



an input sample x is:

y ¼ sgn
XNs

i¼1

aiyiKðxi; xÞ þ b

 !
; ð4Þ

where b, the intercept term, has a closed from expression in terms of αi, yi and xi.
Model selection for this SVM involves estimating C, a tradeoff between training errors and

complexity, and γ, the flexibility of the decision boundary. We used 10-fold cross validation to
select C and γ.

Performance metrics
The algorithms were assessed using performance metrics for binary diagnostic tests. In the
paper we only report sensitivity and specificity, as specified by the AHA framework, and the
Balanced Error Rate (BER):

BER ¼ 1� 1

2
� ðSeþ SpÞ: ð5Þ

The BER is a balanced metric that equally weights errors in shockable (Se) and nonshockable
(Sp) rhythm detection.

The statistical distribution of a given performance metric (θ) was estimated using patient-
wise bootstrap resampling on the test set [31]. In total B = 500 resamples were used. Each
resample was obtained by randomnly selecting N patients with replacement from the N
patients in the set, which on average results in 2/3 of the patients being selected. In this way an
empirical estimation of the distribution of the performance metrics was obtained [31]. To com-
pare the performance of two algorithms paired bootstrap resampling was used, and the distri-
bution of the difference in the metric (Δθ) was estimated. No statistically significant differences
in performance were assumed when the 95% confidence interval of Δθ included the zero value.

Finally to avoid biases in the estimation of the performance metrics the bootstrap scheme
was applied patient-wise so that patients included in the training bootstrap samples were not
present in the test samples.

Feature selection
One of the objectives of this work was to rank the ECG features in terms of detection perfor-
mance, and to analyze the differences when data from public and OHCA databases were used.
Selecting small feature subsets that preserve the overall accuracy of the Sh/NSh algorithms is
very important in AED technology. AEDs are low-cost devices equipped with low-end micro-
processors in a real-time application, therefore computational demands must be kept to a mini-
mum by making the Sh/NSh algorithm as simple as possible. Moreover reducing the number
of features will help to avoid overfitting. Two of the classification algorithms, BST and L1-LR,
have an intrinsic feature selection capability since features can be ranked in the training phase
in terms of importance (BST) [31], or in terms of the magnitude of the regression coefficients
|wk| (L1-LR). In what follows feature selection based on these algorithms are denoted by BSTsel
and L1-LRsel, respectively.

A patient-wise bootstrap procedure was run with B = 500 resamples. In each iteration, the
resample is built by sampling with replacement the patients in the training subset. BST (for
BSTsel) or L1-LR (for L1-LRsel) were trained with the selected samples and features were
ranked as previously explained, and the least important feature was iteratively eliminated. For
each feature subset size (K = 1, . . ., 30) the remaining samples were classified and the BER was
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computed. Then, using all bootstrap iterations, we selected the smallest number of features (Ks)
for which the mean BER was within one standard error of the lowest BER (subset selection
threshold) [31]. Finally, we assigned a score to each feature according to the number of times
the feature was selected through the bootstrap process, and the best Ks features were chosen as
the optimal feature subset.

Results

Performance of individual parameters
The detection performance of each individual feature is reported in Table 2, ranked from top-
left (best) to bottom-right (worse). The Se/Sp values for each feature and database were com-
puted using a maximum likelihood classifier [31]. Hence, for the i-th feature with values xi, the
optimal threshold is set to xi: f(xi|Sh) = f(xi|NSh). Performance varies substantially across fea-
tures, and no individual feature met AHA standards on all datasets. However, six features
(bCP, x1, HILB, SamEn, bWT and PSR) had Se>90% and Sp>85% in all datasets, while other
features (TCSC, MAV or VFleak) showed excellent performance only on public databases.
Detection performance was better in public databases, with a median increase in Se/Sp with
respect to the OHCA database of 3.7/5.4-points for 4-s segments, and 2.8/6.7-points for 8-s
segments. Longer segment durations slightly increased the Se by 1.3-points, but only for the
OHCA database.

Performance of classification algorithms
Fig 3 shows the box-plots of the performance metrics of the five classification algorithms when
all features were included. The distributions of the metrics were obtained using patient-wise
bootstrap (B = 500). In public databases, all algorithms met AHA performance recommenda-
tions with mean Se/Sp above 90%/95%, respectively. In the OHCA database the Sp of some
was slightly below the 95% recommendation, with Se above 90% in all cases. All algorithms

Table 2. Performance analysis of single features for all datasets.

Public (4-s and 8-s) OHCA (4-s and 8-s) Public (4-s and 8-s) OHCA (4-s and 8-s)

Feature Se/Sp Se/Sp Se/Sp Se/Sp Feature Se/Sp Se/Sp Se/Sp Se/Sp

bCP [27] 94.8/97.8 96.0/98.7 95.3/90.0 94.4/91.2 A2 [6, 11] 85.5/91.8 85.8/93.1 71.2/83.1 76.2/81.6

x1 [23] 95.6/96.3 95.8/96.5 93.8/91.1 94.7/89.5 TCI [7, 11] 86.8/74.9 86.5/80.7 87.5/73.2 90.0/79.3

HILB [12, 33] 96.5/93.3 95.8/93.7 93.8/88.7 92.4/87.3 x4 [23] 77.7/93.7 79.2/93.2 66.3/89.5 72.4/85.9

SamEn [30] 94.9/91.6 96.6/92.1 91.3/89.9 91.5/91.2 Li [29] 82.3/77.6 94.9/86.2 74.3/69.6 85.3/81.6

bWT [27] 96.1/90.8 95.9/93.6 91.3/87.9 95.6/86.7 bW [27] 90.6/88.5 93.5/88.9 80.1/60.1 86.2/55.8

PSR [12, 33] 96.3/91.3 95.6/92.5 90.9/88.1 91.2/86.9 A3 [6, 11] 79.0/85.9 85.2/83.7 77.8/68.0 70.9/79.0

Count2 [10] 93.2/88.1 93.9/96.1 90.4/87.1 89.1/94.3 CM [9, 11] 84.5/63.3 83.7/67.9 80.7/79.4 87.4/78.2

x2 [23] 95.0/95.0 92.8/96.0 90.4/87.1 87.9/85.6 M [6, 11] 82.2/81.3 80.7/86.6 76.6/68.4 72.9/73.1

TCSC [15] 95.3/91.0 97.1/92.4 91.5/81.4 92.4/83.0 Frqbin [13, 17] 81.4/66.2 82.1/67.3 89.9/69.7 90.0/73.7

MAV [14] 95.8/90.4 97.1/92.4 91.5/81.4 92.4/83.0 x5 [23] 86.6/78.9 89.5/78.9 87.4/41.3 88.2/40.3

Count3 [10] 90.3/85.5 94.6/90.6 86.5/84.1 92.1/87.6 CVbin [13, 17] 91.8/47.2 89.0/48.8 88.7/55.3 90.9/56.0

vFleak [4, 11] 94.4/93.1 96.2/92.7 78.7/87.4 83.2/85.2 abin [13, 17] 92.3/46.6 90.6/47.1 89.0/54.9 90.9/56.0

Kurt [13, 17] 96.3/87.4 96.9/87.8 91.2/76.3 87.6/80.1 x3 [23] 83.8/55.4 80.1/60.4 79.6/52.2 79.4/53.8

Count1 [10] 82.6/82.9 90.3/89.4 86.9/72.2 90.0/82.5 Exp [11] 58.7/66.5 84.0/66.2 47.1/34.2 83.8/62.1

Expmod [11] 86.5/78.1 90.0/77.9 87.1/83.7 90.6/81.9 A1 [6, 11] 14.1/92.9 14.2/93.6 15.4/79.0 14.4/77.7

Features are ranked (best on top-left, worst bottom-right) by average BER across all four datasets.

doi:10.1371/journal.pone.0159654.t002
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performed better for public databases than for OHCA databases, with a mean BER improve-
ment above 4-points. There were no significant differences in performance within databases
when different segment lengths were used (BER differences below 0.5-points). The best classifi-
ers in terms of BER were SVM and BST, although L1-LR showed a similar performance for the
OHCA data.

Feature selection
Through feature selection we determined which features were important and which irrelevant
for the Sh/NSh discrimination. The feature selection procedure is illustrated in Fig 4, for 4-s
(left) and 8-s (right) segments and the BSTsel algorithm. The figure shows BER values (mean
and standard-errors) for each subset size, and for both databases. The BER is smaller and
changes less in public databases as more features are added, resulting in smaller optimal feature
subsets.

Table 3 shows the features selected for the four datasets and the two feature selection meth-
ods. The results are consistent for a given dataset, but differ for public and OHCA databases. A
specific set of features are selected in many cases, so they can be considered as robust features.
These features were bCP and SamEn (selected in 6/8 cases), Li and vFleak (5/8 cases), bWT
and x4 (4/8 cases). Table 4 shows the processor times required to compute the features when

Fig 3. Box plots of the performance metrics for the five algorithms for the public databases (a) and the OHCA database (b). All features were
included in the algorithms.

doi:10.1371/journal.pone.0159654.g003
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all features and optimal feature subsets are used. Processing times may vary depending on
how feature calculation is implemented and on the processor used to compute the features. In
our data, selecting optimal feature subsets reduced processing times to 1.3–22% of the time
required to compute all features.

Fig 4. Feature selection with BSTsel (top) and the L1-LRsel (bottom) approaches. The results are shown for 4-s (left) and 8-s (right) segments for
both public and OHCA databases. The mean BER is shown (with errorbars) for each subset size, and the horizontal line represents the subset selection
threshold for the public (red) and OHCA (green) databases. The triangle and dot marks and their corresponding numbers represent the selected subset
and the minimum BER subset, respectively.

doi:10.1371/journal.pone.0159654.g004

Table 3. Features selected with BSTsel and L1-LRsel ordered by decreasing relevance.

Method Public-4s Public-8s OHCA-4s OHCA-8s

BSTsel bCP, vFleak, SamEn bCP, vFleak bCP, SamEn, bWT, x4, x1, Li, vFleak bCP, Li, SamEn, x4, bWT,

L1-LRsel vFleak, x2, Li, SamEn vFleak, x2, bCP bCP, x4, SamEn, bWT, Li, x1 Li, SamEn, x4, bWT, x1, A2

doi:10.1371/journal.pone.0159654.t003
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Finally, Table 5 shows the effect of feature selection on performance for 8-s segments in
public and OHCA databases. The comparison is done in pairs for three cases: (i) all features
(ALL); (ii) features selected with L1-LRsel; and (iii) features selected with BSTsel. No statisti-
cally significant differences were observed except in 6 of the 30 comparisons, in which the BER
slightly increased when feature selection was applied.

ECG analysis
The misclassified ECG samples vary for the different features and algorithms. However, certain
samples presented some salient characteristics that made them specially difficult to classify for
any combination of features/algorithms. Some of those illustrative examples are shown in Fig
5, drawn both from the public and the OHCA databases.

One common source of misclassification errors in VF is the appearance of isolated QRS
complexes, as shown in Fig 5 for the VF segment from the public databases. These QRS com-
plexes have large slope values and/or important high frequency content that may result in fea-
ture values similar to those obtained for NSh rhythms. In the OHCA database VF frequently
presents low amplitude and low fibrillation frequencies (below 2 Hz in the example), and may
occasionally have isolated QRS complexes. Lower amplitudes and frequencies are more fre-
quent in prolonged untreated VF, and these VF samples may be confused with low rate non-
shockable ventricular rhythms. The Se for public databases is in average 5-points larger than
for the OHCA database, so the prevalence of these VF in the OHCA database is much larger
than in the public databases.

Fig 5 also shows examples of misclassified NSh rhythms from both databases. In the public
databases the most frequent errors occur with fast supraventricular rhythms and rhythms with
aberrant QRS complexes (conduction problems). In the OHCA cases most errors correspond
to slower ventricular rhythms and rhythms with aberrant QRS complexes appearing during
PEA. The Sp value is above 99% for public databases and around 97% for the OHCA database

Table 4. Processing times (ms) to compute the features when all features and optimal feature subsets are computed.

Feature set Public 4-s Public 8-s OHCA-4s OHCA-8s

All features 3.73 (0.33) 5.38 (0.45) 3.81 (0.39) 5.77 (0.57)

Optimal, BSTsel 0.06 (0.01) 0.07 (0.01) 0.85 (0.08) 1.10 (0.08)

Optimal, L1-LRsel 0.46 (0.03) 0.24 (0.02) 0.83 (0.07) 1.58 (0.12)

Values are shown as mean and standard deviation in parenthesis. Calculations were made on a dedicated 2.8 GHz Intel Core i7 processor with 16 Gb of

memory.

doi:10.1371/journal.pone.0159654.t004

Table 5. Decline in BER for the features selected using the L1-LR or BST algorithms.

Public 8-s OHCA 8-s

Algorithm ALL–BSTsel ALL–L1-LRsel BSTsel–L1-LRsel ALL–BSTsel ALL–L1-LRsel BSTsel–L1-LRsel

L1—LR -0.4 (-1.3, 0.3) -0.3 (-0.9, 0.1) 0.1 (-0.8, 0.7) -1.4 (-4.0, 0.2) -1.4 (-4.3, 0.3) 0.0 (-2.2, 1.6)

RF -0.2 (-1.1, 0.5) 0.1 (-0.5, 0.6) 0.4 (-0.3, 0.8) -2.4 (-5.5, -0.1)* -2.1 (-5.1, -0.3) 0.3 (-2.4, 2.4)

BAG -0.6 (-1.4, -0.1)* -0.6 (-1.5, -0.2)* -0.1 (-0.2, 0.0) -2.1 (-4.5, -0.7)* -1.5 (-4.2, 0.5) 0.6 (-2.1, 2.7)

BST -1.1 (-2.1, -0.5)* -0.3 (-1.2, 0.3) 0.8 (0.1, 1.4) -0.7 (-2.8, 0.7) -2.1 (-5.3, 0.0) -1.5 (-3.2, -0.3)*

SVM 0.4 (-0.4, 1.0) 0.3 (-0.4, 0.8) -0.1 (-0.2, 0.0) -0.7 (-2.7, 0.9) -0.3 (-2.3, 1.2) 0.4 (-2.1, 2.0)

Values are shown as mean and 95% CI, and comparisons are made using a paired bootstrap procedure. Statistically significant differences are marked with

an asterisk.

doi:10.1371/journal.pone.0159654.t005
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(see Fig 3), which indicates that borderline VF-PEA (or VF-NSh) cases are more frequent in
OHCA than in the public databases.

Discussion
This work is a comprehensive analysis of the detection of shockable rhythms based on the sur-
face ECG, i.e. for use in AEDs and monitor-defibrillators. We used data from patients who
suffered an OHCA, and were therefore untreated for minutes or only treated by chest compres-
sions of variable quality, an scenario that reflects the real life AED use. The study includes a
large set of 30 of the best known features described in the specialized literature [4–17], which
were combined using state of the art machine learning algorithms. The past fifteen years have
seen formidable advances in the field of shockable rhythm detection including: the develop-
ment of new ECG features [10, 12, 15, 27], the introduction of comparative studies on feature
performance [11, 15, 34, 35], and the recent systematic use of machine learning methods to
efficiently combine ECG features [16, 17]. Most of these advances were based either on propri-
etary data [9, 27, 35, 36] or in partially described subsets of data from public ECG databases
[11, 15–17, 34], which hinders the reproducibility of the results and further verifiable progress.
Furthermore, only a few of these studies used data from OHCA patients [37–39]. So, for most
of the features/algorithms performance on rhythms seen by an AED in the field has not been
thoroughly assessed. This study advances the field by making all the code, feature values, results
and public data available to serve as baseline for future developments and to allow complete

Fig 5. Examples of misclassified 8-s ECG samples from the public (left) and OHCA (right) databases. A VF is shown on top and two nonshockable
rhythms below for both databases.

doi:10.1371/journal.pone.0159654.g005
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reproducibility of the results (http://www.tsc.urjc.es/*felipe.alonso/ohca_vs_public_dbs.
html). Moreover, the study analyzes and compares feature/algorithm performance for OHCA
and ECGs from public databases.

In this study most features showed acceptable performance for public datasets. These data-
sets are ambulatory recordings (Holter records) from patients who only in some cases suffered
cardiac arrest [19, 20]. In those cases, malignant ventricular arrhythmias were recorded at the
onset of the cardiac event. Our good results for these datasets are coherent with previous com-
parative assessments conducted on fewer features [11, 34, 35], and are a natural consequence
of the data originally used to develop the features, which in most studies either came from pub-
lic databases [12, 13, 15] or from controlled clinical procedures [7, 9]. For OHCA rhythms the
median BER per feature degraded significantly, with an increase of over 4.5-points. OHCA
patients experience the arrest 5–8 min before the medical services arrive on scene [40]. As ref-
erence, in our data the mean response time was 7.3 min (SD 3.7 min). By then, the ECG
rhythm may have deteriorated to rhythms very different from those observed at the onset of
the arrest, or during induced clinical procedures. For instance, VF may transition from its ini-
tial electrical phase (0–4 min) into the circulatory (4–10 min) and sometimes into its metabolic
phase (>10 min) [41]. Over time VF waveform amplitude and frequency decreases [42], and
its complexity increases [43]. Organized nonshockable rhythms normally correspond to pulse-
less patients (PEA) [44] and are frequently narrow QRS tachycardias (pseudo-PEA) or brady-
cardic rhythms with conduction problems and aberrant QRS complexes (true-PEA) [45].
Borderline VF-PEA rhythms and rapid supraventricular rhythms are not rare in OHCA, but
seldom occur in the public databases customarily used to develop VF-detection features.
Therefore, ECG records from OHCA databases should be used to design new VF detection fea-
tures and new SAAs for use in defibrillators. This could result in improved VF detection fea-
tures and an increase in the sensitivity and specificity of SAAs.

Meeting AHA recommendations on OHCA data implies the efficient combination of fea-
tures through machine learning techniques. Previous works on VF detection have introduced
techniques like k-NN [46], linear discriminant analysis [47], decision trees [48], neural net-
works [49] or SVMs [16, 17], but applied to limited sets of 5–15 features and using data from
public databases. By using a comprehensive set of ECG features combined in machine learning
algorithms with built in feature selection capabilities, we were able to rank the features and
identify the optimal feature subsets for the public and OHCA datasets. This is an intrinsic
advantage of BST or L1-LR classifiers over SVMs, and leads to a better insight into the relation
between features and classification outcomes. Our analysis shows that optimal feature subsets
of 4–7 features are sufficient to preserve the accuracy of the Sh/NSh algorithms. Identifying
these smaller feature subsets is very important in SAA design for AEDs, because of the limita-
tions in computational power of the low-end microprocessors used in AED technology. In all
our approaches, OHCA data required larger feature subsets and produced worse Se/Sp results,
again stressing the inherent difficulties in OHCA rhythm classification. Our optimal feature
subsets reveal the importance of a multi-domain approach that may include the analysis of the
ECG’s: slope (bCP), time-domain baseline content (bWT), spectral characteristics (vFLeak,
x4), time-frequency features (Li), and waveform complexity (SamEn).

Another salient feature of VF detection addressed in this study is the duration of the analysis
segment. We found that the optimal feature subsets and the Se/Sp results were similar for 8-s
and 4-s segments in both public and OHCA data. Most previous comparative assessments
were done using 8 s segments [11, 15, 16, 34], although segment length varies across studies in
ranges from 4 to 10 s [13, 17, 48, 50]. Shortening the duration of the AED’s rhythm analysis
may contribute to the survival of the patient. The AED’s analysis interval is part of the pause in
chest compressions before defibrillation (pre-shock pause), and an increase of 5-s in the pre-
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shock pause may decrease the chances of survival by as much as 18% [51]. Currently, AED
analyses require segments longer than 6 s [52]. Our results confirm that it could be safely short-
ened to 4 s, in line with some recently published data [38, 39, 53].

In summary, this study provides a comprehensive review of VF-detection applied to defi-
brillators, introduces new machine learning algorithms with feature detection capabilities and
identifies optimal feature subsets for Sh/NSh classification in both public and OHCA data. By
making available all the code, feature values, results and public data to allow full reproducibility
we hope to encourage and speed further developments in the field.
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