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Summary 
 

The research included in this work is focused on the preparation and characterization 

of flexible polyurethane foams and on the modification and introduction of different 

eco-friendly fillers into polyurethane formulations.  

The increase of the sustainability of polymeric materials is nowadays of especial 

interest owing to the increased environmental concern and the imminent depletion of 

fossil resources. In this work, the sustainability of the prepared materials is enhanced 

by using a renewable sourced polyol and selecting environmentally-friendly additives 

such as anionic clays (layered double hydroxides) and an industrial byproduct such as 

lignin, giving in this way added value to this abundant residue from pulp and paper 

industry.  

These eco-friendly fillers were selected not only because of their sustainable nature, 

but also because of their chemical structure and morphology that makes them of 

special interest in another topic with increasing concern: the improvement of the fire 

behavior of polymeric materials.  

In the last decades, the increased use of polymers has boosted the dangers related to 

the development of violent fire scenarios, forcing industries to improve the flame 

retardancy of polymeric materials by using different types of additives, such as 

halogenated compounds. These compounds reduce the flammability of polymeric 

materials with the drawback of increased toxicity and thus, increased death hazard 

while contributing also to the depletion of the ozone layer owing to the highly toxic 

halogenated fumes released during polymer and additive combustion.  

For this reason, this work not only analyzes the effect on the properties of different 

eco-friendly additives in the properties of flexible polyurethane foams, but also 

explores their potential to be used as flame retardant agents.  
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“What is the most resilient 

parasite? A bacteria? A 

virus? An intestinal worm? An 

idea.   

Resilient, highly contagious. 

Once an idea has taken hold 

of the brain it's almost 

impossible to eradicate. An 

idea that is fully formed, fully 

understood. That sticks; right 

in there somewhere.”  

 

K. Sakura, Y. Taki, E. Thomas. T. Tull (Producers) and C. Nolan (Director). 

Inception. United States and United Kingdom: Warner Bros Pictures, 2010. 
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1.1. Motivation 

  The use of polymers in daily life applications evolves increasingly each year as a 

consequence of their light weight, easy processing and tailorable properties. 

Nevertheless, their organic carbon and hydrogen based molecular structure makes 

most of polymeric materials intrinsically flammable (Arao, 2015), increasing with their 

use the hazard of violent fires in household scenarios and with this, the cases of 

deceased human have also increased in the recent years. According to United State’s 

National Fire Protection Association (NFPA), 1320000 fires were reported in this 

country in 2016, taking with them 3390 human lives and leaving 14650 injured people 

(National Fire Protection Association, 2017a). 

  The main approach of improving the flame retardancy of polymers is the 

addition of flame retardant compounds to the formulation, which role is to interfere 

with the chemistry and/or the physics of the combustion process (Kiliaris and 

Papaspyrides, 2014). In the last decades, the use of halogen-based flame retardants 

was highly extended owing to their versatility and effectiveness in different types of 

polymeric matrices. However, several studies not only demonstrated the contribution 

of halogenated compounds to the destruction of the ozone layer, but also unmasked 

their toxicity towards human health, evidencing that most of the deaths during fires 

occurred as a consequence of the fatal side effects of poisoning through smoke 

inhalation rather than as a consequence of burning injuries (National Fire Protection 

Association, 2017b). 

  Therefore, the increasing environmental concern and the rising of more 

restrictive normative towards improving the fatal statistics, have forced the scientific 

community to find more safe and eco-friendly alternatives in order to replace the 

highly efficient halogen-based flame retardants. The replacement of such effective 

products is not straightforward, and it has resulted in a deeper understanding of the 

mechanism of action of the different types of flame retardant compounds, deriving 

also in the exploration of flame retardant systems with synergetic properties while 

detecting and avoiding antagonist combinations in different polymeric matrices 

(Lewin, 2001).  
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 Polyurethanes constitute a broad part of the polymer market due to their 

versatility, low cost and customizable properties. Flexible polyurethane foams in 

particular are present not only in almost every home in form of mattresses and 

upholstered furniture, but also in automotive applications such as seating. Therefore, 

the improvement of their fire behavior is crucial towards decreasing fire deaths and to 

improve the safety in a society where the polymers are planned to be more and more 

present, expecting a growth of 4.8% in the polyurethane foam market by 2020 

(Markets and Markets, 2016).  

  Hence, flexible polyurethane foams have been prepared and different eco-

friendly alternatives to halogen-based flame retardants have been explored in this 

work, including additive compounds such as anionic clays (layered double hydroxides) 

and lignin as an industrial by-product, and also a phosphorus containing oligomeric diol 

as reactive compound. 

 

1.2. Polyurethane generalities 

  Constituted by the Ancient Greek prefix poly- (πολύς, polús, which means 

many/much) and the word urethane which refers to a functional group in organic 

chemistry, the word polyurethane (PU) comprises a broad family of polymers formed 

by two main building blocks: isocyanate and alcohol. The addition reaction of a 

hydroxyl and isocyanate functional group (Figure 1.1) gives place to the formation of a 

urethane group. When their functionalities are above 1, a polyaddition reaction takes 

place resulting in the formation of several urethane groups, forming thus 

polyurethane.  

  Although no small molecules are lost in polyurethane formation, in the case of 

PUs this reaction can be considered a condensation polymerization owing to the 

rearrangement of the atoms constituting the functional groups of each monomer (one 

containing isocyanate and the other hydroxyl groups, usually alcohols or polyols with 

functionality f > 1) which react successively forming a growing chain of dimer, trimer, 

tetramer, etc. until a high conversion is reached.  
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Figure 1.1. Addition reaction between isocyanate and hydroxyl group. 

 

  Since these building blocks can be of very different nature, the synthesis 

possibilities are endless depending on the selected raw materials. Their functionality, 

chemical structure, molecular weight and the use of additives among other 

parameters, determine the properties of the final material.  

 

1.2.1. Isocyanate chemistry 

  Isocyanates constitute an important part of the polyurethane industry, 

including aliphatic, cyclic, aromatic and heterocyclic isocyanates. The most used 

commercially available isocyanates are the aliphatic hexamethylene diisocyanate 

(HDI), and the aromatic methylene diphenyl diisocyanate (MDI) and toluene 

diisocyanate (TDI), which are selected depending on the desired properties of the final 

material. Particularly, TDI is the most used in polyurethane foam industry due to its 

high reactivity and liquid form, which makes it easy to handle in the fast foaming 

reactions.  

  Isocyanates are characterized to react with hydrogen-active containing 

compounds (e.g. aldehyde, amine, hydroxyl groups, etc.) to form different functional 

groups, apart from the mentioned above urethane shown in Figure 1.1.  

  An important reaction in polyurethane foam industry involving H-active 

compounds is the reaction between isocyanate and water to form carbon dioxide 

(responsible to form foams’ characteristic porous structure) and disubstituted urea. 

For the formation of a urea group, an unstable carbamic acid intermediate is formed in 

first place, decomposing readily into amine and carbon dioxide (Figure 1.2a).  

 
 

R N C O + R' OH R
N

C

O

O
R'

H

urethane
isocyanate alcohol
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Figure 1.2. Reaction of isocyanate with water (a) and with amine (b). 

 

  This amine reacts with additional isocyanate forming finally disubstituted urea 

(Figure 1.2b). Therefore, the isocyanate not only reacts with hydroxyl groups and 

water, but also quickly reacts with amine to produce disubstituted urea.  

  Additionally, if added in excess, isocyanates can also react with urea containing 

active hydrogen (from N-H) capable of reacting with further isocyanate to produce 

biuret groups (Figure 1.3a). The same behavior is followed in presence of urethane 

groups, which active hydrogen can react with additional isocyanate forming 

allophanate groups (Figure 1.3b). Nevertheless, these reactions are less common since 

they need high temperatures or the presence of catalysts to take place (Szycher, 2013).  

 

 

 

 

 

 

 

 
Figure 1.3. Reaction of isocyanate with urea (a) and urethane (b) groups. 

 

  Starting from either aliphatic or aromatic isocyanates, the induction of 

isocyanate trimerization (Figure 1.4) is common in polyisocyanurate foam preparation, 
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aiming to obtain materials with higher thermal stability and superior fire performance 

(Chattopadhyay and Webster, 2009). Slow dimerization is a reversible process that 

usually happens to isocyanates (both aliphatic and aromatic) that have been stored for 

a long time. On the other hand, trimerization is more usual in aromatic isocyanates, 

which formation is promoted by using tertiary amines or alkali salts of carboxylic acid 

as catalysts. 

 

 

 

 

 

 
 
 
 
 
 

Figure 1.4. Dimerization and trimerization of isocyanate. 

 

1.2.2. Types of polyurethanes 

  As mentioned above, only two reactants are needed to prepare polyurethanes: 

diisocyanate and polyol. However, polyurethanes encompass a large part of the 

polymeric materials owing to the wide variety of their raw materials available in the 

market. Many characteristics of the selected raw materials will have an impact on the 

final properties of the polyurethane. 

  Their functionality will determine the linearity or crosslinking degree of the 

material. From linear thermoplastic polyurethanes when bifunctional isocyanates and 

macrodiols are used, through elastomeric polyurethanes when using polyols with 

functionalities between 2 and 3 with a Tg below room temperature, to rigid thermoset 

materials with high crosslink density network when the functionalities of the 

isocyanate or polyol (or both) are above 3.  

  The crosslink density will also be affected by the molecular weight of the 

polyol. The lower the molecular weight, the closer will be located the crosslinking 

R N C O
N

O

N
R O

R

isocyanate dimer

2

+
R N C O

isocyanate

catalyst

ON

N

O

O

N

R
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points of the network, resulting in more compact and rigid materials, increasing 

properties such as modulus, tensile strength and glass transition temperature among 

many other features. It is common to include low molecular weight polyols in the 

formulation in order to tailor the crosslink density. Low molecular weight diols or 

diamines (f = 2) will act as chain extenders decreasing the crosslink density, whereas 

low molecular weight polyols (f ≥ 3) will act as crosslinking agents increasing the 

compactness of the network.  

  Also, the aromatic or aliphatic nature of the selected isocyanate will have an 

effect on the properties. Aromatic compounds will hinder the mobility of the polymer 

chains resulting thus in stiffer and more brittle materials but with higher glass 

transition temperature. In case of the polyol, the presence of flexible groups in their 

structure such as ether will have the contrary effect increasing the flexibility and 

decreasing the glass transition temperature of the final material.   

  The polymer chains form primary structures that can be linear, branched or 

crosslinked. In case of polyurethanes, these chains are formed by covalent bonded 

hard segments (HS) constituted by the highly polar isocyanate groups and chain 

extenders, and by soft segments (SS) formed by the low polarity polyol chain. 

Urethane groups in the HS might form secondary structures owing to the 

intermolecular forces occurring as a consequence of the different polarity of the 

generated dipoles, deriving in weaker interactions such as hydrogen bonding and van 

der Waals forces. Thermodynamic incompatibilities in linear and low crosslink density 

polyurethanes can yield to HS and SS phase separation. The former contributes to 

increase the modulus and strength, whereas the latter provides flexibility to the 

material. These interactions act as physical crosslinks providing mechanical stability to 

the polymer network and can be broken by means of temperature or using an 

adequate solvent (Berezkin and Urick, 2013). The phase separation phenomenon is 

related to the structure of the material, which can yield to form amorphous disordered 

regions together with ordered crystalline regions when using low functionality polyols. 

This effect is more common in linear and low crosslink density polyurethanes, although 

it can also be found in highly crosslinked polyurethanes depending on the properties of 

the selected raw materials.  
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1.2.2.a. Thermoplastic polyurethanes 

  Thermoplastic polyurethanes (TPU) are block copolymers formed by three main 

precursors: diisocyanate, macrodiol and chain extender. Their versatility is attributed 

to their linear segmented structure, constituted by HS and SS. The former presents 

excellent mechanical properties and act as a reinforcement of the elastic SS. The later, 

in turn can be hardened by induced crystallization by the application of tensile or shear 

stress. The ratio between segments can be calculated according to Equation 1.1: 

 S       
wtdiis c  wtce
wt ac  di l

     Eq. 1.1. 

where HS (%) is the weight percent of hard segment, wtdiisoc is the diisocyanate weight 

(g), wtce the chain extender weight (g) and wtmacrodiol the macrodiol weight (g).  

  TPU synthesis can be carried out in one or two steps. In one step synthesis, all 

the components of the formulation are added simultaneously, resulting to be an 

economic method to produce TPU but with the disadvantage that the structure of the 

polyurethane cannot be controlled during the synthesis. In two step synthesis (Figure 

1.5), a prepolymerization takes place firstly through the condensation reaction of the 

macrodiol and the diisocyanate, adding the chain extender in a second step to obtain 

the final polyurethane. In this way, a narrower molecular weight distribution and 

higher control over the structure of the final polymer can be achieved.  

  TPU behave like crosslinked elastomers at room temperature, with the benefit 

that they can be melted and conformed by means of different processing techniques 

such as injection, extrusion or compression molding. Their characteristic properties are 

high toughness, high tensile and tear strength, high resistance to abrasion and to 

oxidizing atmospheres, high flexibility at low temperatures and even recyclability. 

Additionally, they can be sterilized and welded. These properties make TPU attractive 

for applications such as biomedical devices, coatings for electrical cables, textile fibers, 

textile coatings, furnishing, sports equipment, machinery joints and bearings, etc. 
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 Figure 1.5. Two step condensation reaction: prepolymerization and polymerization. 

 

1.2.2.b. Thermoset polyurethanes 

  Thermoset polyurethanes (TSPU) are obtained when the functionality of the 

used isocyanate and/or polyol is above 2, so that crosslinking points can be generated 

in the condensation reaction resulting in the synthesis of a three-dimensional network. 

This type of structure is covalently bonded, decomposing without melting, so TSPU 

cannot be thermally conformed and thus, they cannot be recycled and have to be 

shaped before curing. Their main advantage over TPU is that TSPU present higher 

durability, higher abrasion and chemical resistance and increased thermal stability.  

  A wide variety of TSPU can be obtained for different applications: solid pieces 

for automotive or aeronautic industry, coatings or varnishing in flooring applications, 

rigid, semi-rigid or flexible foams for insulation applications in construction, comfort 

and furnishing, respectively. These different products can be prepared depending on 

the selected raw materials (isocyanate and/or polyol with f > 2), being the foams those 

with a more extended use in the industry. Depending on the specifications and 

requirements of the final application, other components need to be added into the 
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formulation in order to achieve the desired properties, such as catalysts, stabilizers, 

colorants, flame retardants, etc.  

 

1.3. Polyurethane foams 

Polyurethane foams (PUF) consist on biphasic structures formed by the 

generation of gas cells in a polyurethane matrix. Two different processes take place in 

the foam reaction in order to obtain this kind of structure: the polycondensation 

reaction (or gelling reaction) between the polyol and the isocyanate, and the blowing 

reaction where bubbles are formed and grow by the reaction between water and 

isocyanate or by using low boiling point liquids that lead to a porous structure. The 

achievement of a sophisticated balance between these two processes will be decisive 

to prepare quality polyurethane foams.  

Depending on whether the cells are closed (i.e. the gas is trapped) or not, the 

foam will be endowed with totally different features despite their similar appearance. 

This characteristic is commonly known as the open cell content of the foam and can 

vary from nearly 0 to almost 100%. 

Polyurethane foams are among thermoset polyurethanes, those with the 

highest industrial output. From flexible (FPUF) to rigid foams (RPUF), their properties 

can be tailored by controlling their crosslinking density. Their versatility, easy 

production, low density and low cost make polyurethane foams present in many daily 

life applications.  

The FPUFs are produced by selecting polyols with low functionalities whereas 

RPUF can be prepared by using high functionality polyols and/or isocyanates. 

Notwithstanding, the chemical structure of the raw materials, the use of additives and 

so on, will also have an effect on their final properties. Water blown polyurethane 

foams, similarly to TPU and TSPUs, can also present phase segregation between hard 

and soft segments owing to the urea linkages present in the HS as a product of the 

blowing reaction. Therefore, PUF are not exclusively formed by urethane bonding but 
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also by urea linkages: the SS (rich in polyol) and the HS (rich in urea) are covalently 

bonded by urethane linkages. These urea linkages are responsible of strong 

intermolecular interactions that give place also to HS and SS phase separation, a 

decisive process in the cell opening stage.    

Flexible polyurethane foams present an irregular cellular structure with 

interconnected cells (Figure 1.6b), so that the air inside the material can flow along the 

pores when the material is subjected to deformation. Flexible foams with nearly 100% 

open cells are known as reticulated foams (Figure 1.6a) and despite not having load 

resistance capability, they can act as dust barriers. This ability to circulate fluid (gas or 

sometimes liquid too) along the polyurethane pores is responsible of bad acoustic or 

thermal insulation and can be adjusted by the use of different surfactants and catalysts 

that enhance or impede the wall opening process. Nevertheless, the low resistance to 

compression and the viscoelastic properties due to their low crosslinking density 

makes them ideal for comfort applications such as bedding, furnishing, upholstery, 

seat padding, etc. In these applications the resilience (energy storage per volume unit 

when they are elastically deformed under compressive stress) is one of the most 

significant properties, and its value will limit their final application.  

 
Figure 1.6. Representation of the cell morphology with decreasing open cell content: reticulated (a), flexible (b) and 

rigid (c) foams. 

 

On the other side, the structure of rigid polyurethane foams present individual 

and isolated cells with homogeneous size (Figure 1.6c) that cover completely the gas 

bubble preventing thus its circulation through the cell walls. This characteristic 

provides the RPUF with low thermal conductivity, low water and vapor absorption 
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that prevents the growth of mold and mildew in the material. Additionally, the highly 

crosslinked molecular chains endow RPUF with high resistance to compression. This 

type of foams is therefore widely used in acoustic and thermal insulation applications 

in construction, as well as sandwich core panels in refrigeration equipment. During 

RPUF preparation the viscosity of the reactive mixture increases in such a way that 

allows the adhesion of the foam to a wide variety of surfaces.  

Between flexible and rigid, semi-rigid polyurethane foams can also be 

prepared. Their properties are near to those from FPUF, but they provide higher 

modulus and elasticity resulting in improved impact absorption properties.  

  

1.3.1. Chemistry of polyurethane foams 

Apart from the polyol and the isocyanate, polyurethane foams require the use 

of other compounds in order to achieve the desired cellular structure. Usually, these 

additives are previously mixed with the polyol (also known as the part B of the 

formulation) and then the isocyanate (part A) is added to this mixture. Few seconds 

after adding the isocyanate while mixing vigorously, the mixture begins to grow thanks 

to the increasing size of the bubbles and the cellular structure sets as a result of the 

condensation reaction between the polyol and the isocyanate. This foam preparation 

method is known as one shot method, where all the reactants are mixed together to 

produce the foam, although other methods such as prepolymer preparation methods 

are also typical. As mentioned before, in this process two main reactions take place 

during polyurethane foam formation: blowing and gelling reaction.  

In water blown foams the blowing reaction takes place when the isocyanate 

reacts with water (Figure 1.2a) resulting in the formation of amine and carbon dioxide 

bubbles. The formed amine will further react with isocyanate forming urea linkages 

(Figure 1.2b). Simultaneously, the gelling reaction i.e. the condensation reaction 

between the polyol and the isocyanate, takes place (Figure 1.1) releasing heat and 

increasing the viscosity of the reactive mixture as a consequence of the increased 

polymerization conversion while bubble growth takes place. This conjunction of 
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processes gives place to the achievement of a gel point where the cellular structure is 

finally set until complete conversion is achieved.  

These two reactions should be in delicate balance for setting the cellular 

structure in the right moment in order to avoid the formation of defects in the 

structure, especially in flexible polyurethane foams. If the blowing takes place faster 

than the gelling reaction, the viscosity of the reactive mixture will be too low and the 

liquid will be drained resulting in the formation of splits in the foam or in the worst 

case it will result in the collapse of the porous structure. On the other hand, if gelling 

reaction takes place faster than blowing, the polymer will have gelled too early and 

the cell struts will not be capable to break the walls by draining due to the high 

viscosity of the mixture. This effect will result in a high proportion of closed cells with 

warm gas trapped inside, which volume will decrease while cooling, resulting in the 

shrinkage of the cellular structure (Defonseka, 2013).  

Different stages take place in the formation of FPUF, which monitoring is critical 

in order to obtain reproducible foams at industrial scale.  

 Creaming: when mixing the raw materials, bubbles are mechanically formed due to 

the vigorous stirring and the nucleating effect of the surfactant. These bubbles act 

as nucleation sites for the gas produced in the blowing reaction that will increase 

their size. The time between the incorporation of the part A to the formulation and 

the beginning of the bubble growth due to gas generation is known as the cream 

time. It is easily detectable because the reactive mixture changes from translucent 

to white color and usually happens between the first 6 and 15 seconds after mixing 

part A and B.  

 Growth: with the continuous production of blowing agent, the foam keeps growing 

while the viscosity increases in the liquid phase. The time between mixing part A 

and B and the moment when the expansion of the foam stops is known as rise 

time and usually takes between 100 and 200 seconds to finish.  

 Gelling and curing: the viscosity of the reactive mixture increases while foam 

grows due to increased crosslinking density. When the surface of the foam changes 
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from a low viscosity liquid to a string forming liquid, the gel time has been reached. 

Then, when the foam evolves from a high viscosity liquid and stops to be sticky, the 

tack-free time has been reached. Nonetheless, this tack-free time does not 

guarantee the complete cure of the foam, so the foams are usually left curing for 

24 hours.  

A wide range of catalysts and surfactants are used in the formulation of FPUF in 

order to achieve the perfect balance between these reactions and will affect the timing 

of these stages in order to obtain good flexible foams where the open cells 

predominate over closed ones.  

 

1.3.2. Reactants used in polyurethane foam preparation 

  The main raw materials to produce polyurethanes are isocyanates and polyols. 

Regarding the production of polyurethane foams, other raw materials are needed such 

as blowing agents, catalysts and surfactants.  

1.3.2.a. Isocyanates 

  An indispensable requirement in the preparation of polyurethane foams is the 

selection of raw materials with high reactivity. For this reason, aromatic isocyanates 

are mainly used in the preparation of polyurethane foams due to their high reactivity. 

Among these, the most popular are toluene diisocyanate (TDI) and polymeric 

methylene diphenyl diisocyanate (pMDI).  

  TDI is commercialized as a mixture of 2,4- and 2,6- isomers in 80/20 and 65/35 

weight ratios (Figure 1.7a), being the first the most used for flexible polyurethane 

foam preparation. In this work, all the flexible polyurethane foams were formulated 

with 80/20 TDI.  

  Methylene diphenyl diisocyanate (MDI, Figure 1.7b) is widely used in the 

synthesis of thermoplastic and elastomeric polyurethanes. However, as regards to 

polyurethane foams, it is its polymeric form (pMDI, Figure 1.7c) which is used in the 

preparation of rigid foams as a consequence of its higher viscosity and functionality.   
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Figure 1.7. Chemical structures of the most used aromatic isocyanates in polyurethane production. 

 

  The isocyanate index (I.I.) is an important parameter in polyurethane foam 

formulation, which determines the isocyanate excess, expressed as a percentage, used 

in the formulation with respect to the required stoichiometric equivalent ratio. 

Increasing I.I. will favor side reactions producing biuret, allophanate and isocyanurate 

groups, providing in this way higher reactivity to the system. 

1.3.2.b. Polyols 

  Polyols are usually liquid oligomers or macromolecules with at least two 

hydroxyl groups. The other functional groups contained in their structure will 

determine the type of polyol and will have an influence in the final properties of the 

polyurethane, being polyester and polyether type polyols the most used in 

polyurethane industry. Although the first polyurethane foams were prepared with 

polyester polyols, nowadays polyether polyols are the most used in foam industry 

(between 80 and 90% of the polyurethane foam market) due to several advantages 

over polyesters, such as lower viscosity, low cost, higher resistance and durability but 

with the disadvantage of being more susceptible to oxidation (Ashida, 2007).  

  The selection of polyols with low functionality (f = 2-3) and high molecular 

weight (between 2000-10000 g mol-1) will result in the production of flexible 

polyurethane whereas the use of polyols with higher functionality (f = 3-8) and with 

molecular weights below 1000 g mol-1 will result in the formation of highly crosslinked 



Introduction 

- 19 - 

polyurethanes. Polyols are also characterized by their hydroxyl number (IOH), which 

determines the number of reactive hydroxyl groups per gram of polyol.  

  Recently, the increasing environmental concern has focused the scientific 

attention on using vegetable oil derived polyols, thus reducing the exploitation of fossil 

resources. However, these vegetable oils require several purification and 

transformation stages until obtaining a polyol with similar characteristics to those 

derived from fossil ones. Vegetable oils are constituted by triglycerides that are 

obtained from the condensation of glycerol and three fatty acids (Figure 1.8a), which 

che ical st uctu e R’, R’’ and R’’’ will be dete  ined by the type  f  il. Among the 

increasing variety of vegetable oil derived polyols, castor oil (Figure 1.8c) is a polyester 

based polyol derived from ricinoleic acid (Figure 1.8b) containing secondary OH 

groups. The castor oil based renewable polyol Lupranol Balance® 50 (LB50, Figure 

1.8d) has been used in Chapters 3, 4 and 5 in the production of foams as a 

replacement of fossil polyether polyol. 

O

O

O

O

R'
O

R''
O

R'''

OH

O

CH3

OH

O

O

O

O

O

O

CH3
OH

CH3
OH

CH3
OH

               a. Triglyceride                                                                  b. Ricinoleic acid

              c. Triglyceride of ricinoleic acid

              d. Castor oil based polyol (LB50)

O PPO/PEO OH

O PPO/PEO OH

O

O

O

O

O

O

CH3

CH3

CH3
O PPO/PEO OH

 

Figure 1.8. Chemical structures of a general triglyceride (a), ricinoleic acid (b), triglyceride derived from ricinoleic 

acid (c) and a castor oil based polyol (d).   
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1.3.2.c. Blowing agents 

  Blowing agents are essential in the production of polyurethane foams, since are 

responsible of the gas generation that will produce the characteristic cellular structure 

of the foam. There are chemical and physical blowing agents depending on whether 

the gas is formed by chemical reaction or by physical state change. These two types of 

blowing agents can be used all alone or in combination depending on the desired final 

properties of the material. 

  Water is the most commonly used chemical blowing agent, being the most 

popular in flexible polyurethane foam production (water blown foams), and the one 

that has been selected to prepare FPUF in this work. It reacts with isocyanate (Figure 

1.2a) producing carbon dioxide and disubstituted urea. However, the use of water 

together with high isocyanate index (I.I.) values has to be carefully handled due to high 

exothermic reaction with potential risk of fire.  

  Among physical blowing agents low boiling organic liquids are commonly used. 

They are mixed in the formulation as liquids and change to gas phase as a consequence 

of the increasing temperature owing to the exothermic polymeric reaction between 

polyol and isocyanate. When used in combination with water, they are also known as 

auxiliary blowing agents. These low boiling point compounds are commonly 

halogenated and are selected in order to decrease the thermal conductivity in rigid 

foams, but they are on the spotlight due to their contribution to ozone layer depletion, 

with increasing use restrictions. Liquid carbon dioxide is an alternative for halogenated 

physical blowing agents but it does not contribute to decrease the thermal 

conductivity.  

1.3.2.d. Catalysts 

In order to achieve the delicate balance between the blowing and the gelling 

reaction, different catalysts are often used in polyurethane foam formulation, being 

the amine and the organometallic type catalysts those with the highest industrial 

output.  
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Amine catalysts affect mainly the reactivity of the blowing reaction, but 

depending on their chemical structure will also have an effect on the gelling reaction 

(Figure 1.9). In flexible polyurethane foams in particular, the most used amine catalyst 

are tertiary amines (such as triethylenediamine), but there also exist delayed action 

amines for applications such as molded foams where the blowing reaction needs to be 

delayed in order to have enough time to fill the mold with the reactive mixture. These 

delayed action amines are amines reacted with a carboxylic acid forming amine salts. 

These amine salts have no catalytic effect and are mixed with amine excess. This 

excess of amine will give rise to the beginning of blowing reaction slowly, resulting in 

heat generation that will dissociate the salt forming amine that will accelerate the 

blowing reaction. 

In relation to organometallic catalysts, they participate in the polymerization 

between polyol and isocyanate (Figure 1.9), reason why they are also known as gelling 

catalysts. They are constituted mainly by metal carboxylates which are susceptible to 

hydrolization, so special care has to be taken when formulating with water as blowing 

agent, because it will decrease the activity of the organometallic catalyst. Organotin 

compounds are the most used in the production of flexible polyurethane foams due to 

their low cost, being Sn(II) less stable in presence of water than Sn(IV). Stannous 

octoate is the most popular among flexible polyurethane foams whereas dibutyltin 

dilaurate is mostly used in rigid foam formulations.  
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Figure 1.9. Chemical reactions of amine-based and organometallic catalysts during polyurethane foam formation.   
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1.3.2.e. Surfactants 

Surfactans are usually polysiloxane based block copolymers that modify the 

compatibility between the urea aggregates and reactive mixture, controlling thus the 

beginning of the phase separation during the foaming process and therefore, 

controlling also the cell-opening stage. In flexible polyurethane foams, the surfactant 

decrease the compatibility of the urea aggregate and the medium, promoting the cell 

opening to an early stage of the polymerization resulting in the formation of flexible 

foams with high open cell content.   

Surfactants also promote the emulsification of raw materials, the nucleation of 

bubbles avoiding their coalescence and also contribute to stabilize the growth of the 

foamed structure. They also improve the uniformity of cell size, as well as the visual 

appearance of the foam while facilitate the adjustment of the density of the foam.  

1.3.2.f. Other additives 

In the formulation of flexible polyurethane foams other additives such as 

colorants for improving their visual appearance, mold release agents to avoid the 

adhesion of the foam piece to the mold or fillers that provide specific properties such 

as increased density, mechanical strength, hardness or chemical resistance, are widely 

used in industry. However, the additives that provide the polyurethane foams with 

flame retardant characteristics are of high importance. Flame retardants (FRs) 

contribute to decrease different characteristics such as ignitability, flame propagation 

or heat release during the combustion of the material decreasing thus the hazard in 

case of fire.    

But, how important is it to improve the flame retardant performance of 

polyurethane foams? The organic nature and low density of polyurethane foams 

make them easily flammable, what in conjunction with their widespread use in daily 

life applications and the increasingly restrictive standards make the improvement of 

their fire behavior a necessity of special interest. 
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1.4. Flame retardancy of polyurethanes 

  Every year several lives are lost as a consequence of domestic fires, not only 

because of burning injuries, but in most of the cases owing to smoke inhalation. 

Polyurethane foams constitute an important fire hazard in domestic scenarios due to 

their widespread use and their organic nature. Their rapid ignition can be the cause of 

violent domestic or industrial fires because of their own combustion and also as a 

consequence of the flame propagation to adjacent objects that are located close to the 

burning polyurethane.  

  In order to achieve a better understanding of the fire behavior of 

polyurethanes, it is also necessary to take a glance at their thermal degradation 

mechanism. 

 

1.4.1. Thermal degradation of polyurethanes 

  Thermal degradation of PU is a complex process that takes place in different 

stages. The covalent bonds present in PU structure break by radical or small molecule 

formation when subjected to thermal excitation, releasing volatile compounds 

especially in the early stages of decomposition. This process is known as 

depolymerization or chain scission. Upon degradation under inert atmosphere, this 

depolymerization occurs in two differentiated stages: firstly, the cleavage of the 

weakest bond (urea and urethane, contained in the HS) takes place resulting in the 

formation of isocyanate, amines and alcohols, followed by the slower degradation of 

the SS producing volatile fragments. The decomposition ends with the formation of 

carbonaceous residue (char) and/or inorganic residue if heteroatoms are present in 

the polyurethane formulation (Chattopadhyay and Webster, 2009). Under oxidative 

atmosphere, these processes are usually merged and shifted to lower temperatures 

(Krämer et al., 2010). However, the temperatures at which these processes take place 

will not only depend on the atmosphere, but also on the chemical structure of the 

polyurethane and the additives if they have been introduced in the formulation.  

  The decomposition stages can take place following three different routes or by 
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a combination of them: random chain scission, chain end scission, chain disassemble 

and crosslinking (Beyler and Hirschler, 2002), which will depend on the characteristics 

of the selected raw materials.  

  Different parameters affect the decomposition of PUs, such as the HS and SS 

structure and molar ratio, the interactions between hard domains, the oxygen content 

in the polymer structure, molecular weight of the polyol and the crosslinking degree of 

the material.    

 

1.4.2. Flammability of polymers 

  The combustion of polyurethane foams is not only related to a violent process 

and rapid flame propagation due to their low density and big volume, but it is also 

related to the release of toxic fumes that can be fatal when inhaled.  

  The polyurethane decomposes quickly upon exposure to heat producing 

volatile molecules and radicals that diffuse into the polymer-air interface forming a 

flammable mixture with oxygen in the flame zone when mixed with air. In this point, it 

is worth noting that the surface of the substrate suffers a thermo-oxidative 

decomposition as a consequence of the oxygen present in air, while the material 

underneath present a pyrolytic decomposition process due to the absence of oxygen 

inside the bulk material (Cullis, 1987). 

  When the concentration of the volatiles produced during decomposition and 

the temperature crosses the flammability limit, ignition occurs (i.e. the material starts 

to burn) releasing heat and more volatiles that fuel the flame. The heat produced 

during burning feds back the pyrolysis process in the condensed phase increasing the 

decomposition of the substrate, sustaining in this way the combustion of the material.  

  Therefore, three basic elements are needed to develop a fire (also known as 

the combustion triangle): fuel, oxygen and heat (Figure 1.10). The fuel refers to the 

burning material, which as mentioned before, produces volatile and flammable 

compounds. Also, a heat source is needed (not necessarily a flame) that irradiates high 

enough heat that triggers the ignition of the flammable volatiles.   
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  Finally, oxygen is also essential to sustain combustion. Air is composed by 21% 

of oxygen by volume whereas most of the fires need just a concentration of 16% to be 

supported (Zlochower and Green, 2009), and acts as an oxidizing agent in the surface 

of the substrate reacting with the burning volatiles.   

 

 

 

 

 

Figure 1.10. Combustion triangle showing the main elements needed to ignite a fire: fuel, heat and oxygen. 

 

  In order to improve the flame retardancy of flexible polyurethane foams, these 

elements have to be evaluated in each situation to determine the most suitable 

approach to improve the flame retardant behavior. Different types of flame retardant 

additives exist, acting in different ways depending on their chemical structure.  

 

1.4.3. Classical flame retardants  

The aim of adding flame retardants (FRs) in polymer formulations is to decrease 

their combustibility. FRs can be classified depending on whether they are attached or 

not into the chemical structure of the polymer. Therefore, if the FR has been 

covalently bonded to the polymeric matrix they are known as reactive FRs, and if they 

are just physically mixed in the matrix, they are known as additive FRs. Up to now, the 

most used type of flame retardants have been halogenated compounds. Their high 

efficiency in improving the fire behavior of different polymers and their low cost have 

made them widely used in the industry. However, increasing environmental concern in 

relation to the ozone layer depletion due to the use of this kind of compounds, and the 

demonstrated toxicity of the produced fumes (Darnerud, 2003) containing hydrogen 

halides that can be fatal when inhaled, are the main reasons of their restricted use.  
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Pentabromodiphenyl ether (pBDE) was widely used in the FPUF industry until 

2004, however due to suspects of its hazards towards human health and environment 

its use was restricted. These suspects and increasing research in the toxicity of 

halogenated compounds put also the most commonly used halogenated flame 

retardants in flexible polyurethane industry in the spotlight. These flame retardants 

included brominated and chlorinated compounds such as 2-ethylhexyl-2,3,4,5-

tetrabromobenzoate (TBB),  bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate  (TBPH),  

tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloro-1-methylethyl) phosphate 

(TCPP) among others (United States Environmental Protection Agency, 2015). Several 

governmental and industrial bodies like United States Environmental Protection 

Agency have developed intensive research in the field of hazard detection towards 

finding safer and eco-friendly flame retardants.  

The mechanism of action of such FRs is based on the radical production in the 

gas phase during combustion by free radical mechanism (Figure 1.11).  

a. Free radical formation during polymer combustion

H· + O2 OH· + O·

·O· + H2 OH· H·+

b. Halogenated FR (RX) cleavage

RX R· + X·

c. Hydrogen halide (HX) formation by reaction with polymer chain (RH)

d. H· and OH· radical removal in the gas phase

X· + RH R· + HX

HX + H· H2 + X·

HX + OH· H2O + X·

 

Figure 1.11. Free radical mechanism taking place in the gas phase during combustion (Hull et al., 2014). 

 

During combustion, the cleavage of the polymeric chain gives place to the 

formation of H· and OH· radicals (Figure 1.11a). When halogenated FRs are present in 
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the formulation, they interfere with radical production in the gas phase, removing the 

high energy OH· and H· radicals that trigger ignition at high concentrations. This 

interference takes place owing to the breakage of the halogenated FR (Figure 1.11b) 

that forms halogen radicals, which react with the polymeric chain producing hydrogen 

halides (HX) (Figure 1.11c) that will further  contribute to H· and OH· removal (Figure 

1.11d). Nevertheless, the reduction of H· and OH· radicals increases the production of 

harmful products of incomplete combustion such as carbon monoxide or hydrogen 

cyanide (Hull et al., 2014).  

 

1.4.4. Alternatives to halogenated flame retardants 

  Different approaches to improve the flame retardancy of polyurethanes have 

been explored in the last years in order to find an effective replacement for 

halogenated compounds.  Some of the alternative FRs are effective by their own, but 

in many cases they have to be combined with other FR compounds in order to get a 

significant improvement of the flame retardant properties. Nevertheless, the FR 

combinations must be carefully selected and their effect thoroughly studied since 

some of them might have antagonist effect depending on the chemical nature of the 

substrate.   

  The main alternatives to halogenated flame retardants in FPUF are phosphorus 

and/or nitrogen containing compounds, metal hydroxides, layered silicates, 

intumescent systems and recently nanofillers have grabbed the attention of the 

scientific community.  

1.4.4.a. Phosphorus and/or nitrogen containing compounds 

  Phosphorus is a well known environmentally friendly alternative for 

halogenated FRs owing to their low toxic fume and low smoke production during 

combustion. Phosphorus containing compounds exist in inorganic and organic form, 

and act mainly in the condensed phase contributing to increase the char formation 

through dehydration of the polymeric chain owing to the acid nature of phosphorus. 
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However, they also affect the gas phase due to PO· and/or PO2· radical formation 

(Livermore, 2000).  

  Ammonium polyphosphate (APP) is an effective FR inorganic salt for 

polyurethanes, but high loads are needed to get a significant improvement in FR 

properties with the consequent decrease in mechanical performance. In order to avoid 

this deterioration, the encapsulation of APP with melamine derivatives became 

popular due the increased FR response while improving the compatibility with the 

polyurethane matrix (Allan et al., 2014; Jin et al., 2014). Organophosphorus 

compounds such as phosphine derivatives (Zhang et al., 2018), phosphonium salts 

(Sivriev et al., 1982), phosphonates (Jimenez et al., 2015), phosphites and phosphates 

(Yang et al., 2015) are the most used alternatives for halogenated compounds in FPUF 

(Chattopadhyay and Webster, 2009) with better compatibility than APP since they can 

be chemically attached to the polymer backbone. In this sense, phosphorus containing 

low molecular weight polyols can be incorporated as reactive compounds into the 

chemical structure of polyurethanes. 

  Nitrogen containing flame retardants are also known for their environmentally 

friendly character and for their low toxicity (Horacek and Grabner, 1996). They are also 

available in form of organic and inorganic compounds and act in both the condensed 

and gas phase by the formation of crosslinked structures that promote char in the first 

case, and acting as flammable gas dilutor by releasing ammonia. The most common 

nitrogen containing flame retardants used in polyurethane market are melamine 

derivatives such as melamine polyphosphate (Liu et al., 2017) which demonstrate that 

the combination of both nitrogen and phosphorus provide a synergetic flame 

retardant effect in both condensed and gas phase.   

1.4.4.b. Metal hydroxides 

  Metal hydroxides, particularly aluminium hydroxide (Al(OH)3, also known as 

alumina trihydrate, ATH) and magnesium hydroxide (Mg(OH)2) are the most used 

flame retardants in industry owing to their low cost and low toxicity (Brown, 1998). 

Nevertheless, for a good flame retardant performance high loads are needed in 

polymers (up to 60% by weight) assuming a significant loss in mechanical properties. 
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Their flame retardant mechanism relies on their endothermic decomposition at high 

temperatures (200 °C in case of ATH, and 300 °C in case of Mg(OH)2), releasing water 

that cool down the flame zone and dilute volatile gases (Figure 1.12). Depending on 

the processing temperature of the polymer ATH or Mg(OH)2 will be selected, relegating 

the use of Mg(OH)2 to polymers with higher processing temperatures. 

 

 

 

 

Figure 1.12. Decomposition of aluminium and magnesium hydroxides. 

 

1.4.4.c. Intumescent systems 

  Intumescent flame retardants produce upon exposure to flame thermally stable 

foamed char, which is accumulated in the surface and acts as a heat and oxygen shield 

for the underlying substrate. Therefore, in the condensed phase they limit the 

pyrolysis of the polymer decreasing also the release of volatile moieties to the gas 

phase. Additionally the foam shield prevents the molten polymer from dripping, 

decreasing the hazard of flame propagation to adjacent objects (Camino, 1998).  

  This family of FRs is widely used as coating in a broad range of materials, not 

only in polymers but also in wood and even in steel. They are known as intumescent 

systems because three different agents are needed in order to obtain the 

characteristic intumescent expanding effect: an acid source (or dehydrating agent), a 

charring agent and a blowing agent. The acid will act as a catalyst of the charring 

agent, producing a shield of char that will be expanded as a consequence of the 

release of gases of the blowing agent. The most common intumescent FRs used in 

polyurethanes include the mixture of melamine polyphosphate (acting the melamine 

as blowing agent and the phosphate as an acid source) and pentaerythritol as char 

forming agent (Sun et al., 2013). 

 

 

2 Al(OH)3 +3 H2O Al2O3

Mg(OH)2 H2O + MgO
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1.4.4.d. Nanoparticles  

  Nanoparticles can increase the thermal stability of polymeric materials while 

enhancing the mechanical properties due to their small size and interactions with the 

matrix, such as van der Waals, electrostatic interactions, etc. Nevertheless, 

nanoparticles do not provide a good flame retardant performance neither self-

extinguishing properties on their own. They need to be combined with effective flame 

retardants in order to enhance its performance on the material (Arao, 2015).   

  Nanoclays are layered silicates at nanoscale size, existing in a broad range of 

types depending on their chemical composition and stacked structure. 

Montmorillonite (Ubowska, 2014), bentonite (Franchini et al., 2008), sepiolite 

(Pappalardo et al., 2016) and layered double hydroxides are among layered clays the 

most used ones in polymeric formulations and demonstrated to increase tensile 

strength and thermal stability in a variety of polymeric matrices (Hapuarachchi and 

Peijs, 2010). Their dispersion in the matrix is crucial in order to obtain the best 

properties: depending on the dispersion technique, their interaction with the matrix 

and so on, the layered silicates can be in exfoliated, intercalated or stacked form in the 

polymers. Their layered structure, delay the release of volatiles to the flame zone 

(Chattopadhyay and Webster, 2009), being also of special interest their use in 

intumescent systems since they contribute to reinforce the char residue (Wu et al., 

2014). In addition, they offer the possibility of replacing the interlayer ions 

contributing to improve their dispersion or even the flame retardant behavior of the 

polymeric matrix.  

  Other nanoentities such as single and multiwalled carbon nanotubes, graphene 

and graphene oxide are also used in the same way than nanoclays, aiming to improve 

thermal stability and mechanical properties while enhancing the flame retardant effect 

of other flame retardant additives. However, in most of the cases these carbonaceous 

nanoentities need to be functionalized in order to improve their compatibility with the 

polymeric matrix and thus achieve a good dispersion, being sometimes functionalized 

with phosphorus containing molecules pursuing to enhance the charring of the 

polymer when exposed to fire (Ma et al., 2008).  
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1.4.5. Proposed eco-friendly alternatives 

  In this work, different eco-friendly fillers have been proposed in order to study 

their effect on the properties of flexible polyurethane foams. Aiming to improve 

thermal stability and their potential as flame retardant agents, layered double 

hydroxides and lignin have been selected for being based on natural resources in both 

cases, and also to give added value to an industrial byproduct like lignin. 

1.4.5.a. Layered double hydroxides 

  Layered double hydroxides (LDH) belong to the group of anionic clays, also 

known as hydrotalcite-like compounds, which can be natural or synthetic. Their 

structure consists on Mg(OH)2 octahedra (namely brucite) that share their edges to 

form sheets stacked through hydrogen bonding. The stacking can follow hexagonal or 

rhombohedral symmetry, being the latter the stacking configuration of the natural 

hydrotalcite, which consists on a hydroxycarbonate of magnesium and aluminium. Its 

first formula, Mg6Al2(OH)16CO3·4H2O was given by Manasse (Manasse, 1915). The 

general formula of hydrotalcite-like compounds is [M2+
(1−x)M

3+
x(OH)2]x+(An-

x/n)x-·mH2O, 

which is constituted by the mixture of divalent (Ca2+, Mg2+, Mn2+, Fe2+, Zn2+, etc.) and 

trivalent (Al3+, Fe3+, Ni3+, etc.) metal ions with similar sizes with values of x ranging 0.20 

< x < 0.33 (Evans and Slade, 2006). The water content (m) can be varied over a wide 

range of values. The trivalent cation is present in the structure as a partial substitution 

of the divalent one in the brucite-like structure, causing an imbalance on the charge 

neutrality of the clay, thus leaving the hydroxide sheets positively charged. This 

positive surcharge is compensated by the presence of anions in the interlayer space, 

usually CO3
2−, OH−, Cl− or NO3

−, being the carbonate the most common and the one 

with higher affinity among the clay sheets. These negative ions are exchangeable for a 

broad range of inorganic and organic anions, providing to these clays the flexibility of 

being used in several applications, such as catalyst or as catalyst support (Eshaq and 

Elmetwally, 2016), adsorbent in wastewater (Abou-El-Sherbini et al., 2015), drug 

carrier in medicine (R.R. Cunha et al., 2016), and even as flame retardant (Elbasuney, 

2015) among other uses (Li and Duan, 2006). 
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  LDH can have a flame retarding effect due to the coexistence along the 

interlayer space of anions, water of crystallization and OH− from the sheets, acting as 

combustible compound diluters due to the generation of non-combustible gases 

(usually CO2 and H2O) (Cavani et al., 1991) and through the local cooling of the flaming 

material by the release of hydroxyl groups and interlayer water (Kiliaris and 

Papaspyrides, 2010).  

  Hydrotalcite-like compounds can be synthesized from different routes such as 

co-precipitation, urea hydrolysis, hydrothermal treatment, ion exchange or calcination-

rehydration process. After calcination, a mixture of the corresponding metal oxides is 

obtained allowing the regeneration of the brucite-like structure in contact with water 

due to their memory effect properties. If the desirable intercalating anion is diluted in 

this water under the adequate conditions of pH and temperature, the reconstruction 

can be performed together with the intercalation of the selected anion. Thus, the 

addition of phosphorus containing anions in the rehydration process of LDH can 

contribute to the reduction of the flame spread through the catalytic effect of the 

phosphorus in the oxidation of polymeric chains, leading to the formation of a 

protective carbonaceous layer which can prevent the feeding of the flame (Lu and 

Hamerton, 2002). 

1.4.5.b. Lignin  

  Wood is mainly composed by cellulose, hemicellulose and lignin, apart from 

extractives and other inorganic compounds. Lignin acts as a binder of the cellulose 

fibers in the cell walls of vascular plants, providing structural stability as well as 

performing a protective function as an antimicrobial agent (Barakat et al., 2010). Its 

aromatic and heterogeneous structure gives place to an amorphous macromolecule 

that is considered the second most abundant biopolymer on earth only after cellulose, 

being the main source of aromatic compounds. Lignin structure is composed by the 

bonding of three main monomers (Figure 1.13).  
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Figure 1.13. Main structural units of lignin structure: p-hydroxyphenyl, guaiacyl and syringyl units. 

 

  These monomers are known as monolignols and consist on phenylpropane 

units with different substitutions (p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) 

units) derived from coumaryl, coniferyl and sinapyl alcohol, respectively (Gosselink et 

al., 2004). The prevalence of one unit or another will depend on the vegetable species 

of origin; for instance, G units are predominant in softwood lignin, a mixture of G and S 

units in hardwood and finally H units are more abundant in lignin derived from annual 

plants. These monomers are connected by different C-C and ether linkages, such as β-

β, β-1, 4-O-5 and β-O-4, being the latter the most common, especially in softwood 

lignin (Laurichesse and Avérous, 2014). 

  These linkages hamper the isolation of lignin without its fractionation. 

Nowadays different processes are used for the extraction of lignin, such as enzymatic 

acidolysis, ionic liquid pretreatment, organosolv, kraft and lignosulfonate processes, 

being the last two the most used and developed at industrial scale (Li et al., 2015).  

  The kraft pulping method is used for the conversion of wood (both softwood 

and hardwood) into pulp for the further production of paper. In this process, the wood 

is cooked in digesters where a great part of the lignin contained in wood is degraded 

into different molecular weight fragments. These fragments are dissolved in an 

aqueous solution of sodium hydroxide and sodium sulfide together with carbohydrates 

obtained from hemicelluloses and inorganic salts, forming the so called black liquor. An 

appropriate treatment and purification of this black liquor gives rise to the isolation of 

kraft lignin. The integration of wood-related industrial processes with biorefineries, 

would provide added value to byproducts such as lignin and would provide a great 

source of renewable materials and energy.  
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  Nevertheless, the heterogeneous composition makes difficult to obtain large 

lignin batches with a homogeneous quality for chemical and materials production. For 

this reason, softwood kraft lignin, which is characterized for being more reactive and 

for having a more homogeneous structure than hardwood lignin (Gellerstedt, 2015), is 

the perfect candidate for large scale production. Even though most of this lignin is 

commonly burned as internal production of energy for the pulping process, nowadays 

more and more quantities are commercialized for its use as additive, dispersant or dye 

(Holladay et al., 2007).  

  Research is nowadays focused on taking advantage of lignin in high added value 

applications such as the obtaining of fine chemicals (Bouxin et al., 2015), carbon fiber 

production (Kadla et al., 2002) and materials containing lignin not only as an additive 

(Morandim-Giannetti et al., 2012), but also as a part of the formulation (Zhang et al., 

2013). The use of lignin in polyurethane chemistry is promising since lignin provides 

the hydroxyl groups needed for urethane linkage formation. In this way, several 

approaches have been developed in order to obtain polyurethanes containing lignin as 

an additive or as a replacement of the main reactive materials by using oxypropylated 

or liquefied lignin as a promising eco-friendly alternative for fossil sourced polyols 

(Cateto et al., 2009). Lignin modification with functional groups containing phosphorus 

and/or nitrogen has also been considered an effective way to its incorporation into 

polyurethane formulations. In addition, the functionalization with isocyanate groups 

can also contribute to increase its reactivity in order to achieve a better dispersion of 

lignin in the polyurethane. 

 

1.5. Bench scale characterization techniques and standards 

  Different techniques can be used in order to characterize the flame retardancy 

of polymeric materials. Nevertheless, it is worth noting that these techniques are 

intended for laboratory-scale purposes and that the obtained results cannot be 

extrapolated to real life cases, since many different and sometimes unexpected 

parameters are involved in a real fire scenario that cannot be taken into account in 

laboratory tests.  



Introduction 

- 35 - 

1.5.1. Thermogravimetric analysis 

  Thermogravimetric analysis (TGA) is a powerful tool to characterize the thermal 

stability of materials by their mass loss at a controlled temperature program under 

different atmospheres. Different types of analysis can be performed, such as dynamic 

analysis by using a ramp of temperature (usually up to high temperatures, between 

800 and 1000 °C) or isothermal analysis at constant temperature. Each mass loss 

corresponds to one or various overlapped decomposition processes. It is a useful and 

quick method to detect the presence of additives and contaminants in materials by 

selective decomposition.  

  In case of polymers, in general at low temperatures the loss of low boiling 

volatile compounds takes place. Increasing the temperature low molecular weight 

fractions and trapped water between the polymeric chains are released and at higher 

temperatures, the thermal or thermo-oxidative decomposition of the polymer takes 

place, depending whether the essay is performed under inert (nitrogen or argon) or 

oxidative (air or pure oxygen) atmosphere. When performed under inert atmosphere, 

the pyrolysis of the sample occurs, leaving char or inorganic residue. If oxidative 

decomposition takes place, the remaining residue will be constituted by oxides. 

  A more thorough analysis can be performed if TGA is combined with techniques 

such as mass spectrometry (TGA-MS) or Fourier transform infrared spectroscopy (TGA-

FTIR) in order to characterize the volatile gases released during decomposition. 

 

1.5.2.  Limiting oxygen index  

  The limiting oxygen index (LOI) is a simple method used to determine and 

compare the ignitability and the burning behavior of materials. This technique gives a 

measure of the minimum oxygen concentration in mixture with nitrogen needed to 

initiate and support combustion. The LOI index is given as a percentage in Equation 

1.2, being [O2] the minimum oxygen concentration needed for self-sustained burning 

and [N2] the nitrogen concentration during the essay. When LOI index of a material is 

below 21 (below the 21% concentration of oxygen in air), the material will support 
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sustained combustion. Increasing LOI index indicates that the material will not sustain 

combustion under air atmosphere, i.e. it can take fire but the material will cease the 

flame once the pilot flame has been removed. The results obtained in this test are 

merely comparative and are influenced by sample geometry, size and orientation, as 

well as temperature of the chamber, viscosity and dripping of the molten polymer, 

formation of char shield during combustion, etc. The LOI value of neat polyurethane 

foams is below 21, meaning that they are easily ignitable in an open-air situation (air 

atmosphere) (Mark et al., 1975). 

             )  
    

         
                                     Eq. 1.2. 

  The standard ISO 4589-2 (2006) gathers the conditions needed to perform this 

test to plastic materials. A candle like sample is supported in a vertical glass chamber 

with an oxygen/nitrogen atmosphere with a certain oxygen concentration. The gas 

ratio is varied in order to record the minimum concentration of oxygen that will 

support combustion.  

 
 
1.5.3. UL 94 horizontal burning test 

  The UL 94 (Test for flammability of plastic materials for parts in devices and 

appliances) is a test method developed by Underwriter Laboratories, Inc in order to 

study the burning behavior at bench scale of plastic materials for parts in devices and 

appliances. In the particular case of flexible polyurethane foams, the ISO 9772 (2012) 

standard covers the determination of horizontal burning of small specimens and can 

be followed in order to perform comparative tests.  

  In this standard, the conditions for measuring the flame spread along the length 

of a rectangular foam sample are collected, such as the orientation of the burner, the 

height of the flame, the distance from the flame to the sample, the heat capacity of 

the flame and the distance from the sample to a cotton gauze placed below in order to 

study the dripping of the polymer, among many other parameters. It is important to 

have timing devices for measuring the flame spread along specified distances (at 25, 60 

and 125 mm measured from one side) previously marked on the sample.  
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1.5.4. Cone calorimetry 

  Cone calorimetry test is a useful tool to determine the heat and the smoke 

released by a material subjected to well-defined flaming conditions, such as a 

determined external heat flux. This heat flux can be varied up to 100 kW m-2, but 

usually this test is performed under 35 or 50 kW m-2 (being 50 kW m-2 the closest to 

developing fire conditions). The higher the applied heat flux, the higher the 

reproducibility of the test and the closest to real fire conditions (Schartel and Hull, 

2007).  

  The ISO 5660-1 (2015) specifies a method for determining the heat release rate 

of a specimen in horizontal orientation to determined levels of radiant heat flux and 

ignited with an external pilot flame. The heat release rate is determined by the 

measurement of the oxygen consumption during combustion and the flow rate in the 

gas phase.  

  The cone calorimetric test can be of special interest under vertical orientation 

since the dripping characteristics of the materials cannot be taken into account in 

horizontal. Vertical orientation enhances the dripping effect and the heat feedback 

from the pool of burning melt, since the high velocity layer of melting decomposition 

products are immediately removed from the burning sample forming a pool fire, 

overlapping in this way the foam collapse stage with the fire pool stage. 

  Combustion of flexible polyurethane foams is affected by their physical 

behavior and governed by their low density. For these reasons, these materials present 

practically immediate time to ignition and immediate fire growth (Krämer et al., 2010), 

and burn practically completely leaving almost no char. 
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1.6. General objectives 

The general objectives of this work are: 

 Incorporate layered double hydroxides to flexible polyurethane foams. For this 

purpose, the layered double hydroxides have been modified with different 

phosphorus containing molecules.  

 Substitute part of the polyol of the flexible polyurethane foam formulation with a 

phosphorus containing oligomeric diol. Also, study the effect on the properties of 

the foam due to the combination of phosphorus containing oligomeric diol and 

layered double hydroxides.  

 Introduce kraft lignin and functionalized kraft lignin in flexible polyurethane foam 

formulations.  

 Study the effect in the fire behavior of the combined use of layered double 

hydroxides, lignin and phosphorus containing oligomeric diol in flexible 

polyurethane foams by means of standardized techniques.  
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2.1. Introduction 

  This chapter describes the reactants that will be used in the following chapters 

for the modification of layered double hydroxides, functionalization of lignin and for 

the preparation of polyurethane foams, in addition to the experimental techniques 

that will be used to characterize the prepared materials.  

 

2.2. Materials 

  The preparation of flexible polyurethane foams (FPUF) in this work was carried 

out using different polyether polyols. In Chapter 3, 4 and 5, the foams were prepared 

using a castor oil based polyether polyol, Lupranol Balance® 50, LB50 (BASF) with a 

functionality of 2.7. In Chapter 6, due to the lack of commercial availability of LB50, the 

foams were prepared using a trifunctional fossil derived polyether type polyol Alcupol® 

F-4811, ALC (Repsol). Additionally, in Chapters 4 and 6, an oligomeric phosphonate diol 

(Exolit® OP 560, E560, Clariant) was used as a reactive flame retardant replacing 

partially the polyether polyol in order to improve the fire behavior of the foams. The 

phosphorus content of E560 (13.91%) was determined by inductively coupled plasma 

optical emission spectrometry (ICP-OES).  

  The main characteristics of the polyols are shown in Table 2.1. The hydroxyl 

index (IOH) was determined by titration following the acetylation procedure (test A) 

from ASTM E1755-01 (2015) standard, the equivalent weight (Eq wt) was calculated 

according to Equation 2.1, where 56.1 is the molecular weight of potassium hydroxide 

(KOH, g mol-1), IOH the hydroxyl index (mg KOH g-1) and the acid number (mg KOH g-1) is 

the residual acidic material in the polyol.  

           -   
         

                
  Eq. 2.1 

  The viscosity at 25 °C was determined by rheological measurements and the 

functionality and the acid number values were provided by the manufacturers. The 

weight average molecular weight (  w) referred to polystyrene standards and 
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polydispersity index (PD) of the LB50 and ALC polyols were determined by gel 

permeation chromatography (GPC). 

Table 2.1. Main characteristics of the polyols used in the preparation of flexible polyurethane foams. 

Polyol f 
IOH 

(mg KOH g
-1

) 
Acid number 
(mg KOH g

-1
) 

Eq wt 
(g eq

-1
) 

Viscosity at 
25 °C 

(mPa s) 

  w 
(g mol

-1
) 

PD 

LB50 2.7 50.3 ≤      1113.9 837 4636 1.1 
ALC 3.0 49.7 ≤      1126.5 603 4915 1.0 

E560 2.0 489.0 ≤ 2    114.3 302 - - 

 

  The preparation of flexible polyurethane foams was carried out using a highly 

reactive isocyanate, i.e. toluene diisocyanate, TDI (Desmodur T 80 from Covestro) 

constituted by a mixture of 2,4- and 2,6-toluene diisocyanate isomers in a 80/20 ratio 

and containing a 48.2% NCO. TDI was selected due to its high reactivity, low price and 

its suitability for slabstock foam manufacture at industrial scale compared to other 

commodity isocyanates. The isocyanate index was maintained at 110 and 120 

depending on the prepared system and the used fillers. This parameter will be 

specified in each chapter. Increasing isocyanate index provides higher reactivity to the 

system together with higher stiffness and greater support to the cellular structure.  

  Different additives were used in order to enhance the foaming process. 

Tegoamin® B 75 (Evonik) was selected as amine-type catalyst, which consisted of a 

mixture of triethylenediamine and bis(2-dimethylaminoethyl) ether that boosted both 

blowing and gelling reactions. On the other hand, Kosmos® 29 (Evonik), constituted by 

stannous octoate, was selected as organometallic catalyst to enhance the gelling 

reaction. Aiming to improve the mixture and provide more stability to the cellular 

structure during the foaming process, a silicone based surfactant was used, Tegostab® 

B 4900 (Evonik).  

  Synthetic hydrotalcite, (Mg6Al2(OH)16·4H2O, LDH-CO3) from Sigma-Aldrich, a 

synthetic carbonate intercalated anionic clay (layered double hydroxide), was selected 

for its modification with phosphorus containing anions and their further introduction 

in flexible polyurethane foams. An inorganic phosphorus containing compound 

(potassium phosphate monobasic, KH2PO4, ≥99%) and a organophosphorus compound 

(bis(2-ethylhexyl) hydrogen phosphate, HDEHP, ≥97%) were used as intercalation 
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agents and were purchased from Sigma-Aldrich. Ammonia (NH3, 30% v/v) and sodium 

hydroxide (NaOH, 1M), also from Sigma-Aldrich, were used in order to adjust the pH of 

the rehydration media for the intercalation of KH2PO4 and HDEHP, respectively. The 

obtained modified LDHs were labeled as LDH-HPO4 and LDH-DEHP.  

  Southern pine kraft lignin, k-lignin (Do    ’s B oCho   TM from UPM 

Biochemicals) was selected as a potential charring agent for flexible polyurethane 

foams. In order to characterize this lignin by GPC and carbon-13 nuclear magnetic 

resonance (13C NMR), it had to be derivatized (i.e. acetylated, ac-lignin) using acetic 

anhydride (Panreac) and pyridine (Panreac). Ethanol (Panreac), high permeation liquid 

chromatography (HPLC) grade chloroform (Lab-Scan Analytical Sciences) and diethyl 

ether (Panreac) were used for washing the ac-lignin after the acetylation process, 

which is described in detail in Chapter 5. Furtherly, k-lignin was functionalized with 

isocyanate groups (k-IPDI) aiming to increase its reactivity towards the polyurethane 

matrix. This procedure was carried out using isophorone diisocyanate, IPDI 

(Desmodur®I, Covestro) with a NCO content of 37.8%. HPLC grade tetrahydrofuran, 

THF (Macron Fine Chemicals) was used as reaction medium for the NCO 

functionalization and dibutyltin dilaurate, DBTDL (Sigma-Aldrich) was used as selective 

catalyst to enhance reaction of the hydroxyl groups from k-lignin with the secondary 

NCO groups of IPDI. Finally, HPLC grade toluene (Lab-Scan Analytical Sciences) was 

used to wash the functionalized lignin. 

 

2.3. Physico-chemical characterization 

2.3.1. Fourier transform infrared spectroscopy 

  Fourier transform infrared spectroscopy (FTIR) is a technique that provides 

molecular structural information. The technique consists on the irradiation of a sample 

with an infrared beam. Part of this radiation is absorbed and the other is transmitted 

through the sample giving place to the formation of a signal in the IR detector. This 

signal is transformed to an interpretable patron, which is considered to be the 

fingerprint of each sample.  
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  Infrared spectra of layered double hydroxides, lignin and flexible polyurethane 

foams were obtained by using a Nicolet Nexus equipment. In case of powder samples 

(LDHs and lignin), KBr platelets were prepared by grinding in a mortar 0.5% by weight 

of sample with KBr and drying the mixture under an infrared light lamp in order to 

avoid interferences with moisture. In case of FPUFs and liquid raw materials such as 

polyols, an attenuated total reflectance accessory was used (ATR Golden Gate). When 

using KBr platelets, the spectra were recorded from 4000 to 400 cm-1 performing 32 

scans and when using the ATR accessory, the spectra were recorded from 4000 to 600 

cm-1, with an accumulation of 64 scans. In both cases, the scans were recorder with 4 

cm-1 resolution.  

 

2.3.2. Ultraviolet-visible spectroscopy  

  Part of the characterization of lignin consisted on the determination of acid 

soluble lignin (ASL), which was quantified by ultraviolet-visible (UV-vis) spectroscopy 

(Dence, 1992). This technique is a kind of photon emission spectroscopy where 

electromagnetic radiation from the visible, near ultraviolet and near infrared region is 

used. This radiation is absorbed by the molecules resulting in electronic transitions 

that can be quantified. Functional groups that absorb this kind of radiation e.g. double 

bonds (C=C, C=O, N=N, etc.) or aromatic rings among others, are known as 

chromophores.  

  Owing to the abundant presence of double bonds in lignin, ASL was determined 

in a UV-3600/3100 equipment from Shimadzu at 25 °C by placing a sample of soluble 

lignin in a quartz absorption cell with a 10 mm light path. The absorbance was 

measured at 205 nm using a 3% H2SO4 solution as a blank and the sample was diluted 

with the H2SO4 solution until obtaining absorbance values ranging between 0.2 and 

  7  B   ’s L     s  s      o      o   l  l     h       sol  l  l       o      (Equation 

2.2), where b = 1 cm; a = 110 L g-1 cm-1, VD was the volume of the diluted sample and 

VO the volume of the original sample.  

  L (  L-   
  (  so       

  l  h     h           so         L  -    -  
  D
  

 Eq. 2.2 
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2.3.3. Gel permeation chromatography 

  GPC is a type of size exclusion chromatography (SEC), where the molecules are 

separated in accordance to their hydrodynamic volume as a consequence of the 

different pore sizes present in the columns of the equipment, without interacting 

physically or chemically with the sample molecules. The lower the size of the 

molecules, the higher the amount of pores they will be able to pass through. This 

means that the small molecules spend more time in going across the columns, taking 

more time to reach the detector. The large molecules will not be retained in the pores, 

reaching the detector in less time. 

  The average molecular weight (   ) and polydispersity (PD) of the polyols and 

derivatized (acetylated) lignin were calculated by means of GPC, using a Thermo 

Scientific UltiMate 3000 equipped with four Phenogel GPC columns from Phenomenex 

(      l  s z  of   μ       o os    of   5, 103, 100 and 50 Å) and a RefractoMax 521 

refractive index detector.  

  The analyses were carried out at 30 °C with a flow rate of 1 mL min−1 using THF 

as mobile phase. A THF solution with a concentration of 1% by weight of sample was 

                ol    of 2  μL   s   j        f    f l        h  sol   o     h   2  μ  

pore sized nylon filters. The     values were referred to monodisperse polystyrene 

standards. 

 

2.3.4. High performance liquid chromatography 

  High performance liquid chromatography (HPLC) is a type of column 

chromatography that separates the components of a mixture by means of the 

interactions of the components of the mobile phase with the column (stationary 

phase). The analytes are retained in the column according to their chemical nature and 

depending on their interactions (physical or chemical) with the stationary phase. The 

time for an analyte to pass through the column is known as retention time and it is 

characteristic for a compound in a given determined mobile and stationary phase.   
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  The presence of sugar impurities in lignin was determined by HPLC using a Jasco 

LC Net II/ADC with a ROA Organic Acid column from Phenomenex, equipped with a 

refractive index detector and a photodiode array detector. 0.005 N H2SO4 was used as 

mobile phase, performing the assay with a flow rate of 0.35 mL min-1 at 40 °C. High 

purity standards of d-(+)-glucose, d-(+)-xylose, and d-(-)-arabinose (Fluka) were used 

for calibration (Gordobil et al., 2014). The analysis was performed twice. 

 

2.3.5. Atomic absorption spectroscopy 

  The detection and quantification of different chemical elements in LDH and 

lignin was performed by elemental analysis. The atomic absorption spectroscopy (AAS) 

is an elemental analysis technique that provides quantitative information about the 

concentration of different elements in a sample, using specific wavelengths of light 

that are absorbed by each element, corresponding to the energy needed to move 

electrons to a higher energy level. For this purpose, the sample is atomized or 

aerosolized (converted into desolvated atoms in vapor state) with a flame or in a 

graphite furnace, and irradiated with different electromagnetic beams originated from 

different element lamps. The light absorbed by the sample will determine the amount 

of different elements present in the sample.  

  In this case, the carbon, hydrogen and nitrogen elemental content in pristine 

and modified layered double hydroxides, as well as sulfur in unmodified and 

functionalized lignin, was determined using a Eurovector EA 3000 atomic absorption 

spectrometer heated up to 980 °C with a constant flow of helium stream.  

 

2.3.6. Inductively coupled plasma optical emission spectrometry  

  Inductively coupled plasma optical emission spectrometry (ICP-OES) is a 

technique derived from AAS in which the different atoms present in a sample are 

excited by plasma energy. When the excited atoms return to their low energy state, 

they release radiation that corresponds to different photon wavelengths. The photon 

ray wavelength will determine the type of element present in the sample, and its 
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intensity will determine its amount. This technique offers the possibility to analyze a 

greater variety of elements than AAS.  

  This technique was used in order to determine the content of aluminum, 

magnesium and phosphorus in LDH and the content of sodium in lignin. For this 

purpose, a Mettler Toledo Optima 8300 equipment was used, dissolving the samples in 

concentrated nitric acid and then diluting them with deionized water, adapting the 

dilution protocol proposed by Song et al. (2013). 

 

2.3.7. Nuclear magnetic resonance  

  Nuclear magnetic resonance (NMR) spectroscopy consists on the application of 

an electromagnetic field to a sample in order to orientate the atomic nuclei giving 

place to local magnetic fields in their surroundings. In this work, proton, carbon and 

phosphorus NMR were performed in order to characterize the chemical structure of 

lignin. The frequencies at which resonance occur in these nuclei will change depending 

on their surrounding chemical environment, making these fields highly characteristic of 

each compound.  

  The determination of aromatic and aliphatic hydroxyl groups in lignin was 

performed by proton-1 NMR (1H NMR), performing the test to acetylated lignin (ac-

lignin). The 1H NMR spectra were recorded using the zg from Bruker library at 500.13 

MHz. A time domain of 64 k, and a spectral width of 10000 Hz were used. The 

interpulse delay was set to 2 s, the acquisition time to 1.5 s and the number of scans to 

32. 

  The results obtained by 1H NMR were confirmed by 13C NMR. This technique 

was used to distinguish between primary, secondary and phenolic OH groups (OH(I), 

OH(II) and OH(Φ), respectively). The liquid 13C NMR spectra were recorder on a Bruker 

Advance 500 spectrometer, equipped with a BBO probe with gradient in Z axis. A 

decoupled sequence zgdg from Bruker library was used at 125.77 MHz. A time domain 

of 64 k, and a spectral width of 31000 Hz were used. The interpulse delay was set to 2 s 

and the acquisition time to 1.5 s. For each spectrum 32000 scans were accumulated. 
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Additionally, k-IPDI was qualitatively characterized by solid state 13C cross-polarization 

magic angle spinning (CP/MAS) NMR, performing directly the test over dried k-lignin 

and k-IPDI. The spectra were recorded on a Bruker 400 AVANCE III WB spectrometer 

9.40T, using a 4 mm DVT-MAS probe at a spinning rate of 10 kHz. The standard cross-

polarization pulse sequence (100.6 MHz), a time domain of 2 k, a spectral width of 29 

kHz, a contact time of 1.5 ms and an interpulse delay of 5 s were used. 

  In order to perform a more thorough characterization of the type of hydroxyl 

groups present in lignin, phosphorus-31 NMR (31P NMR) was performed by 

phosphytilation of lignin. 31P NMR presents the advantage of discerning the aliphatic 

and the different kinds of phenolic OH units such as condensed phenolic, guaiacyl, 

syringyl and p-hydroxyphenil units. The 31P NMR spectrum was also recorded in a 

Bruker 500 spectrometer using the zgdc from Bruker library at 202.46 MHz. A time 

domain of 16 k and a spectral width of 50000 Hz with an interpulse delay of 2 s, an 

adquistion time of 1.5 s and 64 scans were performed.  

 

2.3.8. Rheological measurements 

  Rheology studies the flow and deformation of fluids under the application of 

shear stress. The viscosity gives a measure of the internal resistance of a fluid 

subjected to external stress. In this work, the viscosity of the mixtures of polyol and 

additives was measured in flow mode, recording the viscosity values at 25 °C within a 

shear rate range from 10 to 100 s−1 using a Thermo Haake Viscotester iQ equipped 

with P35/Ti plate-plate geometry. 

 

2.4. Morphological characterization 

2.4.1. X-ray diffraction 

  The effective intercalation of the different anions along the LDH clay sheets and 

the microstructure of the LDH nanocomposite foam samples were studied by X-ray 

diffraction (XRD). This technique allows the study of the crystallographic nature of a 
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sample at atomic or molecular level, allowing the measurement of the orientation of a 

single crystal, the average spacing between layers or rows of atoms that form the 

crystalline structure and the shape and size of small crystalline regions in a sample. 

This technique relies on the diffraction of X-rays into different specific directions by 

crystalline ordered atom regions. 

  The basal spacing of the LDHs and the microstructure of the nanocomposite 

foam samples were studied by XRD using a Philips X-Pert automatic diffractometer 

o            4  k      4        h C Kα        o  (λ = 1.5418 Å). Data were collected 

at room temperature from 2θ values ranging from 2 to 70° in steps of 0.026° and time 

per step of 67.32 s. The basal space of the LDH samples and the interlayer space inside 

the polyurethane matrix was determined from the (003) reflection position following 

B    ’s l   (Bragg, 1929) (Equation 2.3), where d is the interplanar spacing between 

planes (Å), θ is the X-ray diffraction angle (°), n is an integer number and λ is the 

wavelength of the X-rays (Å). Additionally, the crystallite size was calculated by the 

Scherrer equation (Jenkins and De Vries, 1970) (Equation 2.4), where D is the mean 

size of the ordered domains (Å), K is the Scherrer constant or shape factor, λ is the 

wavelength of the X-rays (Å)  β is the peak width at half maximum intensity of the 

diffraction peak of the sample (rad) and θ is the X-ray diffraction angle (°). 

  2   s   θ     λ      Eq. 2.3 

   D   K λ
β  osθ

                 Eq. 2.4 

 

2.4.2. Optical microscopy 

  Optical microscopy (OM) is a traditional tool that allows the observation of a 

sample by magnifying the image by means of a lens and visible light. OM was used in 

order to determine the average size of the cells constituting the structure of the 

foams, using a Nikon optical microscope Eclipse E600, measuring on the surface 

perpendicular to foam growth the average cell diameter of at least 50 cells for each 

sample. The average strut width of the foams was measured following the same 

procedure.  



Chapter 2 

- 58 - 

2.4.3. Scanning electron microscopy 

  The scanning electron microscope (SEM) is a type of microscope that produces 

magnified images of the surface of a sample by scanning it with a beam of focused 

electrons. The electron beam interacts with the atoms of the surface producing signals 

that provide information about the topography of the surface and also about its 

composition when coupled with energy dispersive X-ray spectroscopy (SEM-EDX).  

  In this work, the surface morphology of clays, lignin particles and the structure 

of flexible polyurethane foams were characterized by SEM images, which were 

obtained with a JEOL JSM-7000F microscope operating at 10 kV and a surrounding 

beam current of 10 pA. Secondary electron images were taken. Samples, stored in a 

desiccator, were placed over a double sided carbon based conductive tape and were 

then coated with a 10 nm chromium layer. 

 

2.4.4. Transmission electron microscopy 

Transmission electron microscopy (TEM) is based on the same principles than 

OM, with the advantage of a higher image resolution provided by using a beam of 

accelerated electrons instead of visible light. This electron beam is irradiated over a 

thin sample and transmitted through it, obtaining an image of the sample according to 

the transmitted and dispersed electrons.  

The dispersion of the clays through the flexible polyurethane foam 

nanocomposite matrix was analyzed by TEM. The images were obtained on a TECNAI 

G2 20 TWIN transmission electron microscope operating at an accelerating voltage of 

200 keV in a bright field image mode. The foam samples were filled and embedded in 

epoxy resin and were allowed to cure at room temperature for 48 h. Thin sections of 

samples (100 nm) were cut using a Diatome diamond knife at -90 °C on a Leica EMUC6 

ultramicrotome equipped with a FC6 cryochamber and then were placed in 300 mesh 

copper grids. 
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2.4.5. Open cell content 

  The open cell content of the foams was measured by using a porosity tester 

(MicroFlo, IES). The test was carried out at 20 °C measuring the air passing through the 

cellular structure of the foam, parallel to grow direction. Four specimens were tested 

for each sample, and the average open cell content was reported. 

 

2.5. Mechanical characterization 

2.5.1. Resilience 

  Resilience (R) measures the capacity of foam to absorb elastic energy and to 

recover its original shape after being deformed. Therefore, this parameter gives an 

insight into the support of the foams which unique structure, made of flexible struts, 

membranes and voids, allow them to support large deformations and recover their 

original shape once the stress has been removed with different recovery rates 

depending on the characteristics of the material. 

  The resilience of the prepared foams was calculated following the ASTM D 3574 

(2011) test H standard, using a Qualitest Ball Rebound Tester in the operating mode 3. 

The average value of 9 measurements was reported for each sample in the foam rise 

direction. 

 

2.5.2. Compression 

  The specific elastic modulus, compressive stress at 10% of deformation and the 

energy storage of the foams were determined from the stress-strain curves using a 

MTS equipment with a 10 kN load cell and equipped with compression plates. Four 

specimens of each foam sample with 50 × 50 × 25 mm3 dimensions were tested at a 

crosshead rate of 5 mm min−1 until a deformation of 70%. The elastic modulus was 

calculated as the slope of the initial linear behavior and the energy storage as the area 

below the stress-strain curves until 50% of strain. 
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2.5.3. Compression force deflection 

The compression force deflection (CFD) value of the foams gives a measure of 

their firmness and support, being one of the most important parameters of flexible 

foams. CFD was measured in the foam rise direction according to the ASTM D 3574 

(2011) test C standard, using a MTS equipment with a load cell of 10 kN equipped with 

compression plates. At least four specimens per sample with dimensions of 50 × 50 × 

25 mm3 were tested, covering the entire sample surface area with the compression 

plates. Two fast pre-compressions were previously performed until a deformation of 

75% at a crosshead rate of 250 mm min−1. After 5 min of resting without contact with 

the upper compression plate, the measurement of CFD was conducted at 50 mm min−1 

until 50% of deformation, recording the stress value after 60 s of compression. 

 

2.5.4. Compression set 

Compression set test was carried out according to the ASTM D 3574 (2011) Test 

D standard. The specimens (with dimensions of 50 x 50 x 25 mm3) were compressed to 

a constant deflection of 50% for 22 h at 70 °C. After this process, the samples were left 

recovering for 30 min at 25 °C and then the final thickness was measured. Three 

specimens per sample were tested. The compression set value as a percentage of the 

original thickness, Ct was given according to the Equation 2.5, where t0 is the original 

thickness of the specimen and tf is the thickness of the specimen after recovery.   

C    
 o- f
 o

         Eq. 2.5 

 

2.6. Thermal characterization 

2.6.1. Differential scanning calorimetry 

  Differential scanning calorimetry (DSC) is a technique that allows the study of 

thermal transitions of materials by measuring the heat required to maintain both 

sample and reference at the same temperature. These transitions can be solid-solid 
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(such as glass transition temperature, Tg), solid-liquid (melting temperature, Tm and 

  l        h l    Δ m) and other different phase transitions as well as polymerization 

reactions and degradations. 

  The glass transition temperature of raw lignin (k-lignin) and isocyanate 

modified lignin (k-IPDI) was determined using a Mettler Toledo DSC 822e equipment. 

Around 5 mg of previously dried lignin (24 h at 50 °C) were weighed and a scan from 

−60 to 200 °C was performed at a heating rate of 10 °C min−1, with a nitrogen flow of 

10 mL min−1. In case of polyurethane foams, the DSC analyses were conducted in a 

    l   Tol  o D C3+            f o  − 2   o 2 0 
°C at a heating rate of 30 °C min−1 

under a nitrogen flow of 10 mL min−1. Two scans were performed in samples of 

approximately 5 mg in order to remove the thermal history of the samples. 

 

2.6.2. Dynamic mechanical analysis 

Dynamic mechanical analysis (DMA) studies the rheological behavior of solid 

materials under sinusoidal stress or deformation. In this way, the viscoelastic behavior 

of polymers can be studied as a function of temperature measuring the delay (phase 

difference) between the applied stress or strain and the response of the material. The 

s o      o  l s ( ’       h  loss  o  l s ( ’’            s      s   ll  s  he loss 

factor (the tangent of phase angle). The maximum of the loss factor as a function of 

temperature was associated to the Tg of the material (Saba et al., 2016). 

Dynamic thermomechanical behavior of flexible polyurethane foams was 

studied by this technique using an Eplexor 100 N equipment from Gabo. The assays 

were carried out under compression with a static strain of 0.03% and operating 

frequency of 1 Hz          −         2   °C and a heating rate of 2 °C min−1.  

 

2.6.3. Thermogravimetric analysis 

The thermal degradation of LDH, lignin and flexible polyurethane foams was 

studied by thermogravimetric analysis (TGA) in a Mettler Toledo equipment 
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(TGA/SDTA 851) performing the test under nitrogen atmosphere with a flowing rate of 

10 mL min-1, from 25 to 700 °C at a heating rate of 10 °C min-1. Samples with weight 

ranging between 8 and 10 mg were tested. 

In case of the flexible polyurethane foams prepared in Chapter 6, the thermal 

degradation was studied using a TGA Q500 (TA Instruments) in a temperature range 

from 25 to 800 °C at a heating rate of 10 °C min-1 under nitrogen atmosphere (30 mL 

min-1). The sample weight was also around 10 mg.  

 

2.6.4. Pyrolysis combustion flow calorimetry 

Pyrolysis combustion flow calorimetry (PCFC) measures the heat of combustion 

of pyrolysis products of a sample, by subjecting it to a controlled pyrolysis under 

nitrogen stream and oxidizing at high temperature the volatiles produced in the 

pyrolysis. These volatiles are mixed with excess oxygen and oxidized at high 

temperature measuring the heat of combustion by oxygen consumption calorimetry. 

The advantage of PCFC over other techniques that measure fire-related properties is 

its ability to operate with milligram scale samples. Nevertheless, this tool does not 

recreate the conditions of real fire scenarios, so its use is limited to be a preliminary 

assess.     

The heat release rate of the samples at microscale was studied by this 

technique using a Fire Testing Technology FAA Microcalorimeter, from a load 

temperature of 100 °C to a maximum temperature of 750 °C, at a heating rate of  

1 °C s-1, a combustor temperature of 900 °C and a nitrogen/oxygen ratio of 80/20. 

Three measurements per sample were carried out. After sample testing, micrographs 

of the remaining residue of some samples were taken using a Leitz Aristomet optical 

microscope (Leica Microsystems) with 200x magnification. 
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2.6.5. Limiting oxygen index 

As described in Section 1.5.2., the limiting oxygen index (LOI) allows comparing 

the ignitability and the burning behavior of materials. LOI measurements were 

performed using a FTA Flammability Unit (Stanton Redcroft), according to ISO 4589-2 

(2006) standard. The specimen size was 150 x 10 x 10 mm3 and they were previously 

conditioned in a climatic chamber for at least 48 h at 23 °C and a relative humidity of 

50%. 

 

2.6.6. UL 94 horizontal burning test 

UL 94 horizontal burning test (UL 94-HB) was carried out in order to determine 

the propagation rate of the flame in the foam samples according to ISO 9772 (2012) 

standard. Briefly, prior to testing the samples were conditioned in a climatic chamber 

at 23 °C and 50% relative humidity during 48 h. Ten specimens per sample were 

prepared with 150 x 50 x 13 mm3 size, they were marked along their length at 25, 60 

and 125 mm and placed horizontally on a metallic grid. The samples were burnt during 

60 s with a methane burner coupled to a winged top, whose methane flow and oxygen 

input were calibrated until obtaining a blue flame with a height of 38 mm. The burner 

was placed 13 mm below the corner of the sample closest to the 25 mm mark. A 

cotton indicator (also conditioned) was placed 175 mm below the grid in order to 

determine the dripping behavior of the foams, and the flame spread rate was 

measured over a 100 mm span using a stopwatch.  

 

2.6.7. Cone calorimetry 

Cone calorimetry (CC) tests were carried out using a Fire Testing Technology 

cone calorimeter according to ISO 5660-1 (2015) standard. Two specimens were tested 

for each sample in horizontal and in vertical orientation, obtaining results reproducible 

to within 5 and 10%, respectively. In case of vertical testing, the samples were hold in a 

wire cage and were ignited applying a pilot methane flame to the bottom corner 

closest to the cone. The specimens were cut with 100 x 100 x 50 mm3 size and were 
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conditioned in a climatic chamber for 48 h at 23 °C and a relative humidity of 50%. 

During the test, the specimens were exposed to an external heat flux of 50 kW m-2 at a 

distance of 25 mm from the cone. 60 s of baseline was recorded prior to sample 

testing.  

In order to determine the layer thickness and viscosity of the liquid pyrolysis 

products during burning, 100 x 100 x 50 mm3 foam samples were ignited in horizontal 

position under the cone with a heat flux of 50 kW m-2, and were quenched by using 

liquid nitrogen 20 s after ignition. Aiming to facilitate the flame extinction and liquid 

nitrogen handling, a distance of 60 mm was left between the cone and the sample.  

The viscosity of the molten polymer in the surface of the quenched samples 

was determined with a Thermo Haake Viscotester iQ using a P35/Ti parallel plate 

geometry with shear rate values ranging from 10 to 100 s-1 at room temperature. The 

melt thickness of the molten polymer layer was determined by optical microscopy 

using a Nikon Eclipse E600 performing 20 measurements of the layer thickness and the 

average value was reported.  
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3.1. Introduction 

  The aim of this chapter is to functionalize a carbonate intercalated layered 

double hydroxide (synthetic hydrotalcite) with organic and inorganic phosphorus 

containing compounds for introducing them in the formulation of flexible 

polyurethane foams. Thus, the effect of the different intercalating compounds on the 

dispersion degree through the matrix and their impact on the properties of flexible 

polyurethane foams is studied.  

A commercial carbonate intercalated Mg/Al LDH with a 3R (3 layer polytype 

with rhombohedral symmetry) stacking, is calcined for subsequent rehydration and 

reconstruction of the LDH structure with inorganic and organic phosphorus containing 

anions (hydrogen phosphate, HPO4
-2 and bis(2-ethylhexyl) phosphate, DEHP-) in order 

to determine their effect when incorporated into flexible polyurethane foams. The 

dispersion of different amount of unmodified and modified LDHs (1, 3 and 5 parts per 

hundred of polyol, pphp) is carried out into a castor oil based polyether polyol (LB50), 

prior to the preparation of different flexible polyurethane foam nanocomposite 

systems.  

The effect of the addition of LDH on the properties of the FPUF matrix is 

analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, density and 

average cell size measurements, compression and ball rebound tests and scanning and 

transmission electron microscopy. The impact on thermal behavior is also studied by 

means of thermogravimetric analysis and pyrolysis flow combustion calorimetry. The 

characterization is carried out following the protocols described in Chapter 2.  

 

3.2. Experimental procedure 

3.2.1. Materials  

The modification of synthetic hydrotalcite (LDH-CO3) was carried out with 

phosphorus containing inorganic and organic reagents (KH2PO4 and HDEHP, 

respectively). The flexible polyurethane foam samples with different unmodified and 
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modified LDH content were synthesized using the materials described also in Chapter 

2 (Section 2.2), using as A-side formulation toluene diisocyanate, TDI (Desmodur T 80, 

Covestro). The B-side formulation was constituted by LB50 and the foaming additives 

detailed in Chapter 2 (Section 2.2) such as deionized water, Tegoamin® B 75, Kosmos® 

29 and Tegostab® B 4900. 

 

3.2.2. Intercalation of LDH 

The modification of LDH-CO3 was accomplished following the rehydration 

process (Miyata, 1980), in basic medium for both organic and inorganic phosphate 

based intercalation agents. The procedure was performed as follows: firstly, the LDH-

CO3 was calcined in a muffle furnace at 500 °C for 5 h in order to remove the water, 

hydroxyl groups and carbonate anions accommodated between the hydrotalcite 

layers. In this calcination process, the layered structure is destroyed achieving a 

mixture of aluminium and magnesium oxides (cLDH-CO3) which in contact with water 

restores the original brucite-like layer arrangement due to its structural memory effect 

(He et al., 2006). The rehydration media were prepared dissolving the intercalation 

agents (KH2PO4 and HDEHP) in deionized water to obtain a 250 mL solution for each 

one, considering their purity and adding an excess of 50% for the ionic reconstruction 

regarding the synthetic hydrotalcite formula, ensuring in this way the presence of a 

divalent anion for two aluminium atoms when using HPO4
-2, and an intercalated 

monovalent anion for each aluminium atom when DEHP- was used. The pH of the 

corresponding solutions was adjusted to 9 with ammonia in case of KH2PO4 in order to 

enhance the dissociation of phosphorus as a divalent anion, HPO4
-2 (O’Neil, 2001) and 

to 10 in case of HDEHP with NaOH, forming a sodium salt in presence of the DEHP- 

monovalent anion (Wang et al., 2009). These solutions were decarbonated with 

nitrogen during 20 min for minimizing the contamination with atmospheric CO2 before 

adding the calcined LDH. The time for the regeneration process was selected 

depending on the size of the intercalating anion, obtaining after the rehydration 

process LDH-HPO4 and LDH-DEHP. 
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LDH-HPO4 was obtained refluxing cLDH-CO3 for 24 h at 80 °C under nitrogen 

with vigorous stirring (600 rpm). In case of LDH-DEHP, cLDH-CO3 was refluxed in the 

same conditions but for 48 h, allowing the bigger organic molecules more time to 

accommodate between the interlayer galleries. Figure 3.1 shows a brief scheme of the 

regeneration procedure.  

 
Figure 3.1. Schematic representation of calcination-rehydration process intercalating different anions 

such as hydrogen phosphate HPO4
-2

 and bis(2-ethylhexyl) phosphate (DEHP
-
). 

 

In both cases, the slurry was then centrifuged at 4500 rpm for 5 min and 

washed with deionized water. This procedure was repeated four times to remove the 

excess of intercalation agent. Finally, the filtrate was dried under vacuum at 60 °C 

during 48 h and the resulting powder was ground in a mortar, sieved with a 0.5 mm 

mesh and stored in a desiccator into polyethylene containers. 

 

3.2.3. Preparation of flexible polyurethane foam nanocomposites 

The preparation of polyurethane foam nanocomposites was carried out by in 

situ polymerization process, drying firstly pristine and modified layered double 

hydroxides in an oven at 110 °C overnight for moisture removal and dispersing them 

afterwards into the polyol. Different quantities of LDH (1, 3 and 5 pphp) were 

incorporated into LB50 and were mixed at 12000 rpm in a rotor-stator mixer 

(Polytron® PT 2500 E from Kinematika) during 2 min. Thereafter the mixture was 

sonicated with a Bioblock Scientific ultrasonic probe (VibraCell® 75043) in pulses of 4 s 

during 15 min at 20 kHz and amplitude of 20%. The polyurethane foam 

nanocomposites were synthesized following the formulation specified in Table 3.1 and 

the procedure depicted in Figure 3.2 with an isocyanate index of 120. Briefly, the 
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water, the amine and the surfactant were incorporated to the LDH-polyol mixture after 

the dispersion was achieved and mixed at 2000 rpm during 60 s and then the 

organometallic catalyst was added and homogenized for 30 s. 

Table 3.1. Flexible polyurethane foam formulation.  

Component LB50 
Deionized 

water 
Tegoamin® B 

75 
Kosmos® 

29 
Tegostab® 

4900 
TDI (I.I.) 

wt (pphp) 100 0.5 0.3 0.4 1.1 120 

 

Subsequently the A-side, i.e. the isocyanate, was added to the mixture and 

after stirring during few seconds the mixture was poured into a 150 × 135 × 90 mm3 

open mold and polymerized under free rise conditions, allowing them to cure at room 

temperature for 48 h. Reference sample was also synthesized and denoted as PUF-REF 

and nanocomposite foams were named PUF-LCO31, PUF-LCO33 and PUF-LCO35 (with 1, 

3 and 5 pphp of LDH-CO3); PUF-LHPO41, PUF-LHPO43 and PUF-LHPO45 (with 1, 3 and 5 

pphp of LDH-HPO4) and finally PUF-LDEHP1, PUF-LDEHP3 and PUF-LDEHP5 (with 1, 3 

and 5 pphp of LDH-DEHP). Foams with 5 pphp of LDH presented lower growth than 

reference and foam nanocomposites filled with 1 and 3 pphp. This effect was 

attributed to the higher LDH content, which led to a higher viscosity of the reactive 

mixture and larger number of nucleation sites, thus giving place to foams with higher 

density. 

Figure 3.2. Followed procedure for flexible polyurethane foam preparation. 
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3.3. Results and discussion 

3.3.1. Characterization of LDH 

3.3.1.a. Fourier transform infrared spectroscopy 

  Modified and unmodified LDH samples were characterized by FTIR for 

determining the presence of the intercalating anions. Figure 3.3 shows the spectra of 

LDH-CO3, cLDH-CO3, LDH-HPO4 and LDH-DEHP. Peaks at 1371, 874 and 672 cm-1, 

characteristic of carbonate intercalated layered double hydroxides, were attributed to 

the asymmetric stretching (ν3 mode), non-planar bending (ν2 mode) and angular 

bending (ν4 mode) vibrations of carbonate anions, respectively (Hernandez-Moreno et 

al., 1985; Cavani et al., 1991). These peaks appeared with lower intensity in all the 

modified LDH samples and its presence was attributed to the contamination with 

atmospheric CO2 during rehydration, filtration or drying process of the anionic clays. 

Nevertheless, the intensity of all three modes of vibration of CO3
-2 anion in cLDH-CO3, 

especially the intensity of the peak centered at 1371 cm-1, decreased drastically after 

calcination confirming thus the withdrawal of a great part of carbonate anions.  

 

 

 

 

 

 

 

 

Figure 3.3. FTIR spectra of (a) LDH-CO3, (b) cLDH-CO3, (c) LDH-HPO4 and (d) LDH-DEHP. 

 

  The broad peak around 3500 cm-1 corresponded to the –OH stretching vibration 

of both metal hydroxide sheets and interlayer water, which also presented a peak at 

1612 cm-1 associated to H2O bending vibration. In case of both modified LDH, the peak 

4000 3500 3000 2500 2000 1500 1000 500

 (P-O)

13
71

(d)

(c)
(b)

 

 

Wavenumber (cm-1)

Tr
an

sm
itt

an
ce

 (a
.u

.)

(a)

 (O-H)  (O-H)
 (P=O)

 (P-O-C)

 (P-O-C)

97
9

10
31

44
510

62

12
12

16
1230

70

54
5

10
94

67
2

87
1

78
9

16
35

34
83



Chapter 3 
 

- 76 - 

corresponding to –OH bending of water was shifted to 1635 cm-1 since this vibration 

was affected by the interlayer water surrounding anions (Kloprogge and Frost, 2001). 

The shoulder appearing at 3070 cm-1 in the spectrum of LDH-CO3 was attributable to 

the formation of hydrogen bonds between water and carbonate anions inside the 

layers (Cavani et al., 1991). Peaks appearing below 800 cm-1 (at 789, 545 and 445 cm-1) 

corresponded to metal hydroxide sheet (M–OH) lattice vibrations, which disappeared 

in cLDH-CO3 verifying the reconstruction of the brucite-like layered structure after the 

rehydration process. The characteristic peak of P–O stretching was shown in LDH-HPO4 

spectrum at 1062 cm-1, which confirmed the presence of HPO4
-2.  

The LDH modified with organic phosphorus showed narrow peaks below 3000 

cm-1 corresponding to CH3– and –CH2– symmetric and asymmetric stretching 

vibrations, evidencing the presence of a hydrocarbonaceous compound. The absence 

of a shoulder between 3000 and 3100 cm-1 denoted the lack of interaction between 

water and CO3
-2 suggesting that the hydrocarbon tail had filled the interlayer space 

(Costa et al., 2008). The presence of phosphorus was confirmed in LDH-DEHP by strong 

peaks at 1212 cm-1 (P=O stretching) and between 1094 and 979 cm-1 (P–O–C 

asymmetric stretching) and less intense peak at 871 cm-1 (P–O–C symmetric 

stretching). 

3.3.1.b. X-ray diffraction 

  One of the most substantial approaches for characterizing the hydrotalcite-like 

compounds is the X-ray diffraction technique, which allows determining if a given 

anion has been successfully intercalated or whether they are just adsorbed on the 

surface of the clay. These compounds are characterized for having several orders of 

diffraction in the XRD patterns which intensity is related to the crystallinity of the 

sample and where the most intense reflection, i.e. the (003) reflection, is taken as 

reference since it corresponds to the basal space between adjacent layers (Evans and 

Slade, 2006). 

  Figure 3.4 shows the diffraction patterns of the pristine and modified LDH, as 

well as that of the calcined LDH. The d-values of (003) and (110) reflections are 

provided in Table 3.2, which allowed to calculate c and a cell lattice parameters, 
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respectively assuming a hexagonal unit cell structure (Millange et al., 2000). The 

former is defined as c = 3·d003 and its value corresponds to three times the distance 

from the centre of one layer to the adjacent one, being highly dependent of the nature 

of the metal cations and also of the interlayer anions. The latter corresponds to the 

distance between two adjacent metal ions by means of the calculation of the a cell 

lattice parameter, defined as a = 2·d110.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.4. XRD patterns of (a) LDH-CO3, (b) cLDH-CO3, (c) LDH-HPO4, and (d) LDH-DEHP. 
 
 

  The pristine LDH showed a pattern with narrow and intense reflections 

evidencing its crystallinity, which decreased in the calcined and the two modified LDH. 

The XRD pattern of cLDH-CO3 confirmed the FTIR results, suggesting that not all the 

LDH-CO3 structure was destroyed during calcination, thus still remained some 

crystalline LDH structure with CO3
-2 intercalated within the layers. The two modified 

LDH showed a decrease in crystallinity evidenced by the intensity diminution and 

broadening of the reflections, which might be influenced by the regeneration process 

in basic pH that induced the formation of more amorphous LDH (He et al., 2006). 

  Additionally, LDH-HPO4 and LDH-DEHP exhibited a shift of (003) reflections to 

lower 2ϑ angles (from 11.77 to 8.80 and 3.82° respectively), attributed to an increase 

in the basal space between the layers (10.04 Å for LDH-HPO4 and 23.12 Å for LDH-

DEHP with respect to 7.51 Å of LDH-CO3), hence confirming the intercalation of the 
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phosphate containing anions in accordance to the values obtained elsewhere (Wang et 

al., 2009). 

Table 3.2. 2ϑ values of (003) and (110) reflections and their corresponding basal spacing (d003) and adjacent cation 

distance (d110) as well as a and c lattice cell parameters for neat and modified LDH.  

Sample 
2ϑ003 

(°) 
2ϑ110 

(°) 
d003

a
 

(Å) 
d110

a
 

(Å) 
a

b
 

(Å) 
c

b
 

(Å) 
Crystallite size

c
 

(nm) 

LDH-CO3 11.77 60.89 7.51 1.52 3.04 22.54  80 
LDH-HPO4 8.80 61.03 10.04 1.52 3.04 30.13  5 
LDH-DEHP 3.82 61.10 23.12 1.52 3.03 69.37  10 

a
Basal spacing calculated with Bragg’s law.   

b
Cell lattice parameters calculated by a = 2·d(110) and c = 3·d(003). 

c
Crystallite size in c direction, calculated from the (003) reflection using the Debye-Scherrer equation. 

 

  Nevertheless, still prevailed in the same 2ϑ values, those (003) reflections 

corresponding to the original LDH at 11.77°, denoting thereby the coexistence 

between carbonate-intercalated LDH and phosphate containing anions. The distance 

between adjacent cations, a, remained constant in all samples (around 3 Å) being 

consistent with those values found by Cavani et al. (1991) and Zhao et al. (2002) and 

which are characteristic from Mg-based LDH. The crystallite size in the stacking 

direction (c direction) was estimated by the Debye-Scherrer equation measuring the 

full width at half-maximum of the (003) reflection, showing that modified LDH by 

calcination rehydration process presented a smaller average crystallite size than the 

original LDH, corresponding to their loss of crystallinity. Therefore, LDH-CO3 resulted to 

be the most crystalline sample, while the less crystalline structure corresponded to 

LDH-HPO4. 

3.3.1.c. Chemical composition 

  Table 3.3 shows the chemical composition of LDH. The Mg/Al molar ratio of the 

pristine LDH is 2.16. The molecular formula given by Sigma-Aldrich is that of the 

natural hydrotalcite Mg6Al2(OH)16(CO3)·4H2O. Theoretically the molecular formula of 

hydrotalcite is given as Mg(1−x)Alx(OH)2(CO3)x/2·mH2O where x is comprised between 

0.20 and 0.33 (Li and Duan, 2006), which are the limiting values for avoiding the 

formation of single hydroxides and therefore for ensuring the brucite-like structure. 

Regarding the results obtained by elemental analysis (Table 3.3), the approximate 

formula for the unmodified LDH would be (1).  
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 g0    l0  2 O  2  O    1  0    2O   (1) 

  The Mg/Al molar ratio increased from nearly 2.16 in case of pristine LDH to 

nearly 2.39 and 2.57 for LDH-HPO4 and LDH-DEHP respectively, due to the strong 

dependence on pH of the reconstruction process (Xu and Lu, 2005). The more atoms of 

aluminium are available for each magnesium atom, the higher charge density is going 

to be available in the hydroxide layer and thus, more anions will be needed to be 

intercalated to keep the electroneutrality. The presence of a monovalent anion for 

each aluminium atom or a divalent anion for every two aluminium atoms preserves 

the charge equilibrium in the clay, balancing the positive charges of the metal 

hydroxide layers with the intercalating anions. The P/Al molar ratio was lower than 0.5 

in LDH-HPO4 and much lower than 1 in LDH-DEHP implying, as confirmed by FTIR and 

XRD, the coexistence of phosphate-containing molecules with other anions, such as 

CO3
-2.  

Table 3.3. Chemical compositions
a
 of pristine and modified LDH.  

Composition 
(wt. %) 

Sample 

LDH-CO3 LDH-HPO4 LDH-DEHP 

Mg 20.78 20.05 14.75 
Al 10.69 9.33 6.37 
P - 3.30 1.08 
C 5.33 1.15 25.26 
H 3.90 3.76 3.62 
N 0.07 0.08 0.07 

Mg/Al (molar ratio) 2.16 2.39 2.57 
P/Al (molar ratio) - 0.31 0.15 

a
Al, Mg and P content determined by ICP-OES, C, H and N  by elemental analysis.  

 

  The low ratio in LDH-DEHP denoted that low quantities of the 

organophosphorus compound were intercalated probably due to its higher size. Also, a 

smaller Mg/Al ratio could accelerate the rate of stacking of layers (Zhao et al., 2002) in 

accordance to the average crystallite size obtained by XRD, which happened to be 

higher as Mg/Al ratio decreased. In case of modified LDH, the approximate chemical 

formula would be, for LDH-HPO4 (2) and LDH-DEHP (3) respectively: 

 g0  0 l0  0 O  2   O  0 0   O  0 0  0    2O   (2) 

 g0  2 l0 2  O  2      0 02  O  0 1  0    2O   (3) 
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3.3.1.d. Morphology  

  The hydrotalcite-like compounds are characterized by being constituted by 

hexagonal-shaped particles with dimensions within 100 nm and few microns (Xu and 

Lu, 2005) that form aggregates with dimensions ranging from 2 to 20 μm (Wypych and 

Satyanarayana, 2004) due to their strong electrostatic attraction between layers. 

Figure 3.5 shows that the hexagonal shape was not lost in modified LDH, but the 

surface appeared to be more irregular, especially in the case of LDH-HPO4, which also 

featured particle aggregation. This stacking was a consequence of the high surface 

energy of the modified clay (Jiang, 2010). Additionally, Zhou et al. (2012) found that 

when the LDH layers had low crystallinity, the interlayer anions were accumulated in 

the borders of the crystal domains causing high charge density and thus, higher 

particle agglomeration.  

 

 

 

 

 

 

 

 

 

Figure 3.5. SEM images of (a) LDH-CO3, (b) LDH-HPO4 and (c) LDH-DEHP. Magnification ×10000 (left) and ×100000 

(right). 

 

  The superficial irregularities also corresponded to the loss of crystallinity 

associated with the decrease in the intensity of XRD reflections. Their lateral 

dimensions between 200 and 300 nm resulted to be smaller, thus having a higher 

aspect ratio than those found in the literature with DEHP- as intercalating anion (Costa 
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et al., 2008), but the three LDH samples showed quite similar aggregate morphology 

and size than those found in different works obtained by other procedures such as 

hydrothermal precipitation (Chubar et al., 2013). SEM micrograph of LDH-DEHP 

showed particles with softer edges than LDH-HPO4, which presented flake-like 

morphology probably due to the higher size of the organic anion.  

3.3.1.e. Thermogravimetric analysis  

  The degradation of LDH took place in several stages, as it can be seen in the 

thermograms displayed in Figure 3.6. LDH-HPO4 and LDH-DEHP registered a gradual 

mass loss around 100 and 200 °C, corresponding to surface and interlayer water 

respectively, while LDH-CO3 did not lose significant mass until 200 °C, suggesting that 

most of its water content was located in the interlayer space.  
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Figure 3.6. Mass loss and first derivative (DTG) curves of pristine and modified LDHs. 

 

  The mass loss from 250 to 500 °C corresponded to the release and/or the 

degradation of interlayer anions together with different steps of dehydroxylation of 

the metal hydroxide sheet layers, with the consequent brucite-like structure 

destruction and metal oxide formation (Taviot-Guého and Leroux, 2006). 
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  The amount of residue collected at 700 °C was around 55, 62 and 49% of the 

initial mass of LDH-CO3, LDH-HPO4 and LDH-DEHP, respectively 

 

3.3.2. Characterization of flexible polyurethane foam nanocomposites 

3.3.2.a. Fourier transform infrared spectroscopy 

  Nanocomposite foams were characterized by FTIR in order to determine 

possible interactions between the fillers and the polyurethane matrix. Figure 3.7 

shows the spectra of the reference foam and those ones filled with 3 pphp of pristine 

and modified LDH. Urethane and urea characteristic bands appeared in the 3400-3200 

cm-1 region, related to the N–H stretching vibration, and in the carbonyl (amide I) 

region, between 1750 and 1625 cm-1. In the carbonyl region, besides the C=O 

stretching vibrations corresponding to the free urethane (1730 cm-1) and urea (1715 

cm-1) and associated urea (1640 cm-1), the characteristic C=O stretching vibration of 

the ester group from the polyol at 1742 cm-1 was also observed as a slight widening of 

the peak. The band appearing at 1532 cm-1 corresponded to the N–H bending and C–N 

stretching vibrations of the urethane and urea groups (amide II). The bands belonging 

to C–O–C asymmetric and symmetric stretching vibrations were observed at 1222 and 

1090 cm-1, respectively.  

  Besides the characteristic polyurethane absorption bands, it was observed in all 

foam samples the distinctive band of unreacted isocyanate groups at 2276 cm-1, 

indicating that there still remained some isocyanate in the synthesized foams due to 

the used 20% excess for ensuring the reaction with the blowing agent. This remaining 

isocyanate is likely to react with ambient moisture and/or crosslink along the time 

(Lamba et al., 1997). Comparing the spectra of LDH containing foams with the 

spectrum of the reference foam, no relevant changes were observed suggesting no 

remarkable interactions between the filler and the polymeric matrix. 
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Figure 3.7. FTIR spectra of the reference foam, PUF-REF (a) and of those ones filled with 3 pphp of pristine and 

modified LDH, PUF-LCO33 (b), PUF-LHPO43 (c) and PUF-LDEHP3 (d). 

 

3.3.2.b. Cell structure and morphology 

  The microstructure of the polyurethane foams was analyzed by X-ray diffraction 

to determine whether the layered double hydroxides were dispersed in the matrix 

unaltered as a microcomposite, or intercalated or exfoliated as a nanocomposite. 

Figure 3.8 shows the diffraction patterns of the neat foam and nanocomposites filled 

with 1, 3 and 5 pphp of LDH-CO3, LDH-HPO4 and LDH-DEHP. The broad reflection 

around 20° corresponded to the crystalline fraction of the polyurethane. The presence 

of the (003) reflection in PUF-LCO3 series at practically the same reflection angle of 

that observed in the LDH-CO3 (11.77°) denoted that unmodified LDH was dispersed in 

the polymeric matrix maintaining its stacked structure practically unaltered, probably 

as a consequence of its high crystallinity. On the other hand, the increase in the basal 

distance from 23.12 in LDH-DEHP to 24.14 Å in PUF-LDEHP denoted that during 

polymerization the diffusion of polymeric chains among clay layers occurred, reaching 

an intercalated distribution of LDH-DEHP through the polyurethane matrix. Finally, the 

absence of the basal reflection in PUF-LHPO4 foams suggested that polymer chains 

were introduced into the clay during the polymerization due to its low crystallinity as 

observed by XRD, moving away the layers of the LDH resulting in an exfoliated polymer 
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nanocomposite, therefore achieving a greater contact area between the clay layers 

and the polymeric matrix.  

 

 

 

 

 

 

 

 

 

Figure 3.8. XRD patterns of the synthesized reference and nanocomposite foams filled with different amount of 

LDH-CO3, LDH-HPO4 and LDH-DEHP. 

 

  Thus, the modification of the pristine LDH enhanced the intercalation and 

exfoliation of the clay layers as a consequence of the loss of crystallinity during the 

rehydration process (He et al., 2006).  

  Figure 3.9 shows the SEM micrographs of the polyurethane nanocomposite 

foam surfaces, taken perpendicular to foam growth. Foam cells presented polyhedral 

shape consisting most of them in open cells. PUF-REF showed evidence of collapse of 

some cells that could be attributed to the low viscosity of the polyol. This resulted in a 

fast growing of the liquid mixture not crosslinked enough to avoid cell wall draining 

with the consequent bubble coalescence (Sharma et al., 2014). Nanocomposite foams 

showed an uneven cell size distribution, but cell structure did not appear collapsed or 

damaged probably due to an increase in the reactive mixture viscosity (avoiding in this 

way cell wall draining) along with the hindered bubble growth caused by the presence 

of LDH, thus favoring the formation of a heterogeneous structure (Javni et al., 2011).  
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Figure 3.9. SEM micrographs with different magnifications (×25 on the left, ×100 on the right) of the polyurethane 

foam PUF-REF (a) and PUF nanocomposites PUF-LCO33 (b), PUF-LHPO43 (c) and PUF-LDEHP3 (d). 

 

  The microstructure and dispersion degree of the different LDH throughout the 

nanocomposite foam matrix was also analyzed by TEM in 3 pphp LDH containing 

samples. It was observed that the LDH were homogeneously dispersed within the 

polyurethane matrix (Figure 3.10), but clear differences were found in the morphology 

of the clays. Large stacks of clay were recognized in PUF-LCO33 (Figure 3.10a), whereas 

smaller and looser layer piles were observed in PUF-LDEHP3 (Figure 3.10c). Also, 

individual LDH layers distributed within PUF-LHPO43 (Figure 3.10b) were observed, 

confirming the exfoliated structure that was previously suggested by XRD. 
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Figure 3.10. TEM micrographs of polyurethane foam nanocomposites, PUF-LCO33 (a), PUF-LHPO43 (b) and PUF-

LDEHP3 (c). 

 

  Density is an important parameter of foam performance regarding comfort, 

support and durability of the flexible foams, consisting on the contribution of the 

weight and volume of the polymeric structure and also of the gases trapped in cells. 

The values of density and average cell size of the synthesized foams are listed in Table 

3.4. 

Table 3.4. Density and average cell diameter of the reference and LDH-containing polyurethane foams. 

 

  According to the literature, the presence of nanoparticles enhances the 

nucleation through an increase in the number of bubble sites thus achieving a reduced 

cell size (Javni et al., 2011; Madaleno et al., 2013). This was reflected in the increased 

density, and it was verified by the obtained cell size values, showing that when 

unmodified or modified LDH were incorporated into the polymeric matrix, lower 

Sample 
Density 
(kg m

-3
) 

Average cell diameter 
(μm) 

PUF-REF 37.3 ± 0.8 362.3 ± 73.5 

PUF-LCO31 43.5 ± 1.1 363.1 ± 94.3 
PUF-LCO33 44.5 ± 0.5 319.3 ± 76.0 
PUF-LCO35 46.5 ± 1.5 259.8 ± 70.7 

PUF-LHPO41 51.9 ± 1.5 317.0 ± 90.9 
PUF-LHPO43 44.1 ± 0.3 339.3 ± 96.7 
PUF-LHPO45 52.8 ± 1.2 293.9 ± 92.3 

PUF-LDEHP1 43.3 ± 0.4 286.1 ± 90.9 
PUF-LDEHP3 44.3 ± 0.7 291.4 ± 92.0 
PUF-LDEHP5 42.4 ± 1.5 306.9 ± 91.2 
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average cell diameter values were obtained. The nucleating effect of the clay 

depended on its dispersion degree and thus, on the number of dispersed nanoentities 

which acted as nucleating centers. The decrease of the cell diameter was also 

attributed to the hindered cell growth as a consequence of the increased viscosity of 

the reactive mixture caused by the addition of fillers. Therefore, denser foams were 

obtained with the addition of LDH. 

 Exfoliated samples, i.e. PUF-LHPO4 foam series, presented the highest density 

reaching an increase of nearly 40% in case of PUF-LHPO41 with respect to reference 

foam. The presence of more individual clay layers promoted as mentioned before, the 

formation of more nucleation sites resulting in smaller cell diameter and higher 

density. PUF-LCO3 and PUF-LDEHP foam series presented also an increase in density 

values but not as pronounced as PUF-LHPO4 foams, reaching an increase of around 

25% in both PUF-LCO3 and PUF-LDEHP series.  

  The consideration of XRD results, which showed an exfoliated microstructure in 

the system with LDH-HPO4, suggested that the smaller the filler size, the higher the 

density. The out of trend density value of the sample PUF-LHPO43 was attributed to 

the opposing effects of the nanoclay on nucleation and cell growth (Madaleno et al., 

2013). At lower exfoliated clay content, more nucleation sites were formed due to the 

high amount of dispersed clay sheets until the percolation limit, where agglomerates 

could be formed reducing nucleation sites and viscosity, giving place to bigger cells as 

it was observed by SEM before. 

3.3.2.c. Mechanical properties 

  Compression force deflection (CFD) values are given in Figure 3.11 as a function 

of the filler content. In all cases, the firmness of the nanocomposite foams was higher 

than that of reference due to the reinforcing effect of the filler. The studied polymer 

nanocomposite series presented different behavior with increasing LDH content. In 

case of the PUF-LCO3 system, the CFD value increased with filler content, being in 

concordance with the results obtained by Javni et al. (2011), reaching an increase of 

43% in case of the sample containing 5 pphp of LDH-CO3 comparing with the reference 

foam. The different behavior observed between the modified LDH could be related to 
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the size, crystallinity or degree of exfoliation/intercalation of the clay in the foam. The 

firmest foam of PUF-LHPO4 series was the sample PUF-LHPO41, which showed an 

increase of 68% with respect to the unfilled foam. High reinforcement was achieved 

with low clay content as a consequence of the large contact area between the polymer 

and the exfoliated filler, with a decrease in the firmness at 3 pphp corresponding also 

to the observed out of trend density value of this sample. However, in case of LDH-

DEHP containing samples, the higher CFD value was obtained at 3 pphp due to its 

intercalated structure, with an increase of nearly 100% with respect to the reference 

foam. These results suggested that the finer was dispersed the LDH in the matrix, the 

lower was the quantity required to act as reinforcement. Regarding the crystallite size 

between the incorporated structures, lower LDH content was required for the 

improvement of CFD as the crystallite size was reduced.  

 

 

 

 

 

 

 

 
 

Figure 3.11. Compression force deflection values for polyurethane nanocomposite samples with different LDH 

content. 

 

  Elastic modulus and compressive stress at 10% of deformation were obtained 

from the stress-strain curves. These properties depend highly on density; hence in 

order to avoid the density effects, specific values are listed in Table 3.5. PUF-LCO3 

foam series showed an increase of specific compressive strength with increasing LDH-

CO3 content, following the same trend observed in CFD. In case of PUF-LHPO4 and PUF-
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LDEHP systems, the highest specific compressive strength values were obtained with 1 

and 3 pphp of LDH, respectively, varying also as CFD did. In general, the compressive 

stress was higher for the LDH containing samples and was related to the reinforcing 

effect of the fillers. Regarding the specific elastic modulus, a slight decrease was 

observed with the LDH content in the PUF-LCO3 series. The most pronounced decrease 

observed in PUF-LHPO4 foams was attributed to the good dispersion of the clay 

throughout the polymeric matrix that might hinder the formation of hydrogen bonds 

between the urethane-urea hard domains of the polyurethane (Cao et al., 2005). 

However, the high specific elastic modulus observed in PUF-LDEHP series at 1 and 3 

pphp clay content could be associated to the diffusion of the polyurethane chains 

between the organic intercalating anions, hindering the mobility of the polymeric 

chains thus resulting in stiffer foams. 

Table 3.5. Specific compressive stress at 10% of deformation and specific elastic modulus of the reference and filled 

polyurethane foams. 

 

  The obtained resilience values for the different polyurethane foam systems are 

represented in Figure 3.12 as rebound percentage. It was observed that the rebound 

values did not show a pronounced change. PUF-LCO3 and PUF-LDEHP series showed 

similar resilience at low LDH contents (1 and 3 pphp) with respect to the reference 

foam, while exfoliated PUF-LHPO4 foams (1 and 3 pphp) showed the lowest rebound 

values. Since resilience is a measure of the elasticity of the foam, the same trend 

observed in specific elastic modulus was followed in resilience values, obtaining the 

highest rebound in samples with the highest specific elastic modulus. Nevertheless, 

Sample 
Specific compressive stress 

(kPa kg
-1

 m
3
) 

Specific elastic modulus 
(kPa kg

-1
 m

3
) 

PUF-REF 0.45 1.16 

PUF-LCO31 0.43 1.15 
PUF-LCO33 0.48 1.13 
PUF-LCO35 0.60 1.08 

PUF-LHPO41 0.60 0.80 
PUF-LHPO43 0.59 0.85 
PUF-LHPO45 0.58 0.59 

PUF-LDEHP1 0.60 1.19 
PUF-LDEHP3 0.89 1.22 
PUF-LDEHP5 0.63 0.55 
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foams containing 5 pphp of modified LDH showed an increase of rebound despite their 

lower elastic modulus. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12. Resilience evolution for prepared polyurethane reference and nanocomposite foams with different 

filler content. 

 

3.3.2.d. Thermal properties 

  The effect of the addition of the clays on the thermal behavior of the 

polyurethane foams was studied by thermogravimetric analysis (TGA) and pyrolysis 

combustion flow calorimetry (PCFC). Samples with intermediate filler content (3 pphp) 

were analyzed. Figure 3.13 shows the TGA thermograms of the reference and the 

nanocomposite foams. The addition of LDH did not affect the degradation mechanism 

of PUF which occurred in two stages. The first mass loss (around 300 °C) corresponded 

to the decomposition of the hard domain, taking place the release of isocyanate, 

primary and secondary amines and alcohols.  
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Figure 3.13. Mass loss and first derivative (DTG) curves of the reference foam and corresponding nanocomposites 

filled with 3 pphp of the different LDH. An amplification of the region between 500 and 700 °C is shown in the inset. 

 

  The onset (temperature at 5% mass loss, Tonset) and maximum degradation 

temperatures are shown in Table 3.6. Foam containing LDH-CO3 presented a Tonset 

similar to reference, while in case of foams containing phosphorus modified LDH, PUF-

LHPO43 and PUF-LDEHP3, the Tonset increased 2 and 4 °C respectively, which was 

attributed to a combined effect between phosphorus and the higher intercalation or 

exfoliation degree of modified LDH.  

Table 3.6. Thermal degradation temperatures and residue content at 700 °C of the reference foam and the 

nanocomposites containing 3 pphp of LDH. 

Tonset: Temperature at 5% mass loss. 

Tmax1 and Tmax2: Maximum degradation rate temperature, corresponding to first and second step.  

 

  Regarding the first maximum degradation rate temperature (Tmax1) of 

phosphorus modified LDH containing foams, PUF-LHPO43 increased slightly in opposite 

to PUF-LDEHP3, whose Tmax1 decreased 2 °C. This decrease could be due to the 

Sample 
Tonset 

(°C) 
Tmax1 
(°C) 

Tmax2 
(°C) 

Residue 
(wt. %) 

PUF-REF 263 300 394 2.44 

PUF-LCO33 262 302 400 3.96 

PUF-LHPO43 265 303 397 3.59 

PUF-LDEHP3 267 298 398 2.65 
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contribution of the hydrocarbon tail degradation as observed in Figure 3.6. Maximum 

degradation rate temperature of the second stage (Tmax2) increased slightly in 

nanocomposites as a consequence of the barrier effect induced by the dispersed LDH, 

hindering the release of volatile compounds (Kotal et al., 2009). Concerning the 

obtained residue quantities, the LDH-CO3 and LDH-HPO4 containing nanocomposites 

presented higher residue amount than the reference foam at 700 °C, while the residue 

of the sample containing LDH-DEHP remained close to the reference, as a consequence 

of the lower hydroxide layer content owing to the dilution effect of the higher organic 

content of the DEHP- intercalating anion. 

  Pyrolysis combustion flow calorimetry provides a preliminary assess of the 

combustibility of samples through their pyrolysis under nitrogen atmosphere and the 

oxidation at high temperatures of the generated volatile compounds. Figure 3.14 

displays the heat release rate (HRR) curves of the reference foam and the 

nanocomposite foams containing 3 pphp of LDH.  

 

 

 

 

 

 

 

 

 

Figure 3.14. Heat release rate (HRR) curves of polyurethane reference foam and nanocomposites containing 3 pphp 

of the different LDH. 

 

  Correspondingly to the thermogravimetric analysis, the thermal decomposition 

of the samples took place in two differentiated stages. The first one was related to the 
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degradation of urethane-urea linkages of the hard domain, releasing low calorific 

capacity products (Ravey and Pearce, 1997).  

  Table 3.7 displays the most characteristic parameter obtained by PCFC. It was 

observed that although the temperature of the maximum heat release (TPHRR1) was 

maintained nearly constant in this stage, the presence of LDH contributed to decrease 

of the peak heat release rate (PHRR1). The second stage of decomposition 

corresponded to the degradation of polyol derived products which have higher 

calorific capacity than those derived from the isocyanate, releasing high quantity of 

gases in this stage. 

Table 3.7. Pyrolysis combustion flow calorimetry results of the reference foam and the nanocomposites containing 

3 pphp LDH. 

PHRR1, TPHRR1: Peak Heat Release Rate and Temperature of Peak Heat Release Rate in the first stage of 

decomposition.   

PHRR2, TPHRR2: Peak Heat Release Rate and Temperature of Peak Heat Release Rate in the second stage of thermal 

decomposition.   

THR: Total Heat Released (first and second stages). 

HRC: Heat Release Capacity of the volatile compounds produced during pyrolysis.  

TTI: Time to Ignition. 

 

  The decrease of PHRR2 was more pronounced, achieving a reduction of 13, 14 

and 19% in PUF-LCO33, PUF-LHPO43 and PUF-LDEHP3 respectively. The heat release 

capacity (HRC) is a parameter related to the fire hazard of the material and was 

calculated by the specific heat release and the heating rate. HRC value decreased with 

the addition of fillers, especially in those containing phosphorus. Therefore, the fillers 

might act diluting the flame and volatile compounds release by generating water and 

noncombustible gases, arising on a lower heat release. It was also observed that the 

fillers decreased the time to ignition of foams. This behavior suggested that 

phosphorus modified clays can be considered as good flame retardant candidates. 

 

 

Sample 
PHRR1 
(W g

-1
) 

TPHRR1 
(°C) 

PHRR2 
(W g

-1
) 

TPHRR2 
(°C) 

THR 
(kJ g

-1
) 

HRC 
(J g

-1
 K

-1
) 

TTI 
(s) 

PUF-REF 144.7 ± 6.5 290.6 ± 1.7 382.2 ± 6.8 405.4 ± 3.1 28.2 ± 0.6 420.3 ± 22.5 157.4  

PUF-LCO33 136.4 ± 5.5 287.8 ± 2.9 333.5 ± 10.9 404.5 ± 3.7 26.9 ± 0.4 371.7 ± 11.2 138.6 

PUF-LHPO43 138.4 ± 6.5 290.1 ± 0.5 327.2 ± 2.2 407.2 ± 1.5 26.5 ± 0.2 345.7 ± 2.1 169.8 

PUF-LDEHP3 133.2 ± 11.0 288.8 ± 0.4 309.9 ± 2.3 404.6 ± 3.5 27.4 ± 0.8 334.5 ± 0.7 142.2 
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3.4. Conclusions 

  Starting from a synthetic hydrotalcite, LDH-CO3, and following the calcination 

rehydration process, two phosphorus containing anions (HPO4
-2 and DEHP-) were 

successfully intercalated into the Mg/Al hydroxide layers. The XRD analyses of the LDH 

showed that they presented different crystallinity degree and crystallite size, resulting 

the pristine LDH-CO3 to be the most crystalline, followed by LDH-DEHP and LDH-HPO4, 

being the latter the most amorphous one. The unmodified and modified LDH were 

added in different quantities (1, 3 and 5 pphp) to a flexible polyurethane foam matrix 

prepared with a castor oil based polyether polyol.  

  The XRD analyses of the nanocomposites showed that LDH-CO3 did not lose its 

staked structure, while PUF-LDEHP series resulted in intercalated nanocomposites and 

PUF-LHPO4 series reached an exfoliated dispersion as a consequence of the easy clay 

layer separation due to its less crystalline nature. TEM analysis revealed large stacks of 

clay in PUF-LCO33, smaller and looser layer piles in PUF-LDEHP3 and individual LDH 

layers within PUF-LHPO43. The addition of LDH and their dispersion degree throughout 

the polyurethane matrix influenced the properties of the foams. The density increased 

with the addition of fillers due to its nucleating effect and due to the increased 

viscosity of the reactive mixture. The dispersion degree of the LDH also affected the 

reinforcement of the foams, achieving the highest CFD values at 5, 3 and 1 pphp in 

PUF-LCO3, PUF-LDEHP and PUF-LHPO4, respectively, due to their crystallite size and 

intercalated or exfoliated distribution.  

  The evolution of resilience values corresponded to the behavior of the obtained 

elastic modulus for each foam series, increasing the bounce for modified LDH 

containing foams and decreasing for LDH-CO3 containing nanocomposites. The thermal 

stability of the nanocomposites increased, especially in the second stage of 

degradation. Nanocomposite foams presented higher residue content due to the 

presence of metal oxides coming from the decomposition of the LDH.  

  Additionally, the LDH contributed to decrease the HRC of the foams and the 

PHRR on the second stage of decomposition. In general, PUF-LDEHP was the system 
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which decreased most the HRR acting as mentioned before in the second stage of 

decomposition. 

  These results showed that phosphorus modified LDH have the potential to be 

used as flame retardant additives. 
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4.1. Introduction 

In regard of the contribution of the phosphorus modified LDH to decrease the 

HRR of flexible polyurethane foams in Chapter 3, this chapter reports the effect of 

incorporating different amounts of a phosphorus containing oligomeric diol (E560) to 

flexible polyurethane foams prepared with LB50 and containing the layered double 

hydroxides used before (LDH-CO3, LDH-HPO4 and LDH-DEHP).  

Modified clays and oligomeric diol mixture is expected to improve the flame 

retardant behavior of the foams owing to the presence of phosphorus in both 

modified LDHs and E560. The performed characterization in this chapter is parallel to 

the study carried out in Chapter 3, but with an intermediate LDH loading (3 pphp). 

 

4.2. Experimental procedure 

4.2.1. Materials  

The PUF nanocomposites were prepared using toluene diisocianate, TDI 

(Desmodur T 80, Covestro) as A-side formulation and it was used without further 

purification. The B-side was constituted by Lupranol Balance® 50 (LB50), the castor oil 

based polyether polyol used in Chapter 3, which was blended with 5 and 10 parts per 

hundred of  Exolit® OP 560 (E560), a reactive type flame retardant oligomeric 

phosphonate diol from Clariant. The general structural unit of a phosphonate diol is 

shown in Figure 4.1. Prior to their use, both polyol and oligomeric diol were dried in a 

rotary evaporator at 70 °C for 6 h.  

 

Figure 4.1. Structural unit of an oligomeric phosphonate diol. 
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The additives used for polyurethane foam synthesis and the preparation 

procedure of the different LDHs used (LDH-CO3, LDH-HPO4 and LDH-DEHP) were 

already detailed in Chapter 2 (Section 2.2) and Chapter 3 (Section 3.2.2.), respectively. 

 

4.2.2. Preparation of flexible polyurethane foam nanocomposites 

The preparation of the polyurethane nanocomposite foams containing 3 pphp 

LDH (1.89 wt% of the total foam weight) was carried out by in situ polymerization 

process mixing the E560 diol with LB50 polyol prior to the addition of the foaming 

additives, as detailed in Chapter 3 (Section 3.2.3).  

A reference sample with LB50 as the unique polyol, denoted as PUF-REF, and 

foams with 5 and 10 pphp E560 (PUF-5E and PUF-10E respectively) were synthesized. 

The series of nanocomposites with 3 pphp of different type of LDH were denoted as 

follows. The foams synthesized with 100 pphp LB50 were named PUF-LCO3, PUF-LHPO4 

and PUF-LDEHP; the foams containing 5 pphp E560 were denoted as PUF-5E/LCO3, 

PUF-5E/LHPO4 and PUF-5E/LDEHP and the foams with 10 pphp E560 PUF-10E/LCO3, 

PUF-10E/LHPO4 and PUF-10E/LDEHP. Table 4.1 shows the LB50/E560 weight ratio and 

amount of TDI used for each sample, in order to balance the hydroxyl groups provided 

by the addition of E560. The same water, catalyst and surfactant content as in Chapter 

3 were used.  

Table 4.1. Sample designation, used LB50/E560 ratio and TDI weight of each prepared polyurethane foam.  

Sample  LB50/E560 weight ratio 
TDI 
(g) 

PUF-REF 100/0 32.3 
PUF-5E 95/5 34.0 

PUF-10E 90/10 35.7 

PUF-LCO3 100/0 32.3 
PUF-5E/LCO3 95/5 34.0 

PUF-10E/LCO3 90/10 35.7 

PUF-LHPO4 100/0 32.3 
PUF-5E/LHPO4 95/5 34.0 

PUF-10E/LHPO4 90/10 35.7 

PUF-LDEHP 100/0 32.3 
PUF-5E/LDEHP 95/5 34.0 

PUF-10E/LDEHP 90/10 35.7 
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Prior to their morphological, mechanical and thermal characterization, the 

samples were stored at room temperature for one month until the complete cure of 

the foam, when the final properties were achieved. 

 

4.3. Results and discussion 

4.3.1. Fourier transformed infrared spectroscopy 

Figure 4.2a shows the infrared spectra of LB50 and E560, as well as reference 

foam and foams containing 5 and 10 pphp E560. Apart from the broad band 

corresponding to O-H stretching appearing at 3490 and 3374 cm-1 in LB50 and E560 

respectively, the characteristic N-H stretching vibration of urethane bond from the 

foams was observed at 3290 cm-1. It was noteworthy that the intensity of the O-H 

stretching band from LB50 was very low due to the high molecular weight of the 

polyol. It was also observed a peak at 2276 cm-1 corresponding to unreacted 

isocyanate groups due to the excess of isocyanate used in the formulation, which 48 h 

after polymerization still remained visible. Isocyanate in excess reacts within time until 

the complete cure of the foam.  

Figure 4.2b shows the spectra of LB50 and E560 and the foams in the interval 

between 2000 and 700 cm-1. The stretching vibration band from the triglyceride ester 

carbonyl (C=O) appeared at 1742 cm-1 and the C-O-C symmetric stretching at 1094 cm-1 

in LB50. The distinctive bands of E560 were attributed to the P=O stretching at 1221 

cm-1 and P-O-C asymmetric (1021 and 955 cm-1) and symmetric (808 cm-1) stretching 

vibrations, respectively. The characteristic carbonyl stretching vibrations of urethane 

and urea bonds appear in the amide I (carbonyl) region, between 1750 and 1625 cm-1. 

In this region, free urethane and urea absorption bands appeared at 1730 and 1715 

cm-1, respectively, in addition to associated urea (bidentate) stretching vibration at 

1640  

cm-1. LB50 characteristic C=O vibration was also observed as a slight widening around 

1740 cm-1. The band corresponding to the N-H bending and C-N stretching vibrations 

of the urethane and urea groups (amide II) appeared at 1532 cm-1. Additionally, the 
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band corresponding to asymmetric C-O-C stretching vibration was observed at 1221 

cm-1, which overlapped with the P=O stretching vibration, as can be observed from the 

increase in the intensity of this band with increasing amount of E560. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Infrared spectra of LB50 and E560, reference foam and foams containing 5 and 10 pphp E560 between 

4000 and 700 cm
-1

 (a) and between 2000 and 700 cm
-1

 (b). 

 

No significant changes were observed in the nanocomposite foams with respect 

to PUF-5E and PUF-10E samples, as shown in Figure 4.3. The absence of bands related 

to the metal-OH Iattice vibrations in the nanocomposites could be attributed to the 

low LDH content, which corresponds to a 1.89 wt% LDH in the total weight of the 

foam. These peaks were observed elsewhere (Kotal et al., 2009) corresponding to 

nanocomposites containing 3 wt% LDH. 
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Figure 4.3. Infrared spectra of foams and nanocomposites with 5 (a) and 10 (b) pphp E560 from 1800 to 700 cm
-1

. 

 

4.3.2. Morphology and cell size 

The diffraction patterns of the reference foams containing different amount of 

E560 and nanocomposites with 3 pphp LDH are displayed in Figure 4.4. The 

characteristic (003) reflection of clays, which determines the basal space between the 

layers of the clay, appeared at 11.77° (7.51 Å), 8.80° (10.04 Å) and 3.82° (23.12 Å) in 

LDH-CO3, LDH-HPO4 and LDH-DEHP respectively, as shown in Chapter 3 (section 3.3.1). 

This reflection is related to the different size and arrangement of the intercalating 

anions. The intensity of the diffraction patterns and the crystallite size were also 

reported in Chapter 3. The pristine LDH was the most crystalline sample, while the 

phosphate intercalated LDH lost the original crystallinity during the rehydration 

process, resulting LDH-HPO4 to be the less crystalline clay. Aside from the broad 

diffraction peak around 20° characteristic of the polyurethane, the appearance of a 

diffraction peak at 3.66° (24.14 Å) in case of LDH-DEHP containing nanocomposites was 

observed. The shift to lower angles of the (003) reflection indicated that polymeric 

chains had diffused between the clay layers leading to a higher basal spacing and thus, 

to an intercalated nanocomposite morphology. Those nanocomposites containing 

LDH-CO3 presented a peak at 11.57° (7.65 Å), denoting that the clay was dispersed in 
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the polyurethane matrix maintaining practically unaltered its stacked structure 

probably as a consequence of its high crystallinity. In case of LDH-HPO4 containing 

foams, no diffraction appeared around 8.80° suggesting that as a result of its low 

crystallinity, the layers of the clay were exfoliated during polymerization. The same 

behavior was observed in Chapter 3 in foams containing 100 pphp LB50 and different 

LDH content.  
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Figure 4.4. XRD patterns of the synthesized foams: references (PUF-REF, PUF-5E and PUF-10E) and nanocomposites 

filled with 3 pphp LDH. 

 

Density and average cell size values of the synthesized foams are shown in 

Table 4.2. The density is an important parameter regarding foam comfort and support, 

which depends mainly on the used amount of blowing agent (Gao et al., 2014) and on 

the addition of additives such as fillers, which normally contribute to increase the 

density (Liang and Shi, 2011), (Widya and Macosko, 2005). It was observed in Table 4.2 

that the addition of E560 to the foam contributed to increase the density, resulting in a 

reduction of the average cell diameter. This effect could be attributed to the decrease 

of the chain length between crosslinking points when the low molecular weight E560 

was incorporated (IOH = 489 mg KOH g-1 and functionality of 2), thus increasing the 

crosslink density that resulted in a more compact disposition of the polymer chains. 

The addition of LDH promoted the bubble nucleation through an increase in the 
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number of bubble sites (Wee et al., 2004). The nucleating effect of the clay depends on 

its dispersion degree and hence on the number of dispersed nanoentities which act as 

nucleating centers. However, the addition of nanoclays also contributed to increase 

the viscosity of the reactive mixture, which is a critical parameter in polyurethane 

foaming process (Pan and Saddler, 2013).  

Table 4.2. Density and average cell diameter of each unfilled and filled polyurethane foam samples.  

Sample  
Density  
(kg m

-3
) 

Average cell diameter 
 (μm) 

PUF-REF 37.3 ± 0.8 362.3 ± 73.5 
PUF-5E 41.7 ± 0.7 286.9 ± 100.4 

PUF-10E 47.9 ± 0.7 280.2 ± 83.4 

PUF-LCO3 44.5 ± 0.5 319.3 ± 76.0 
PUF-5E/LCO3 38.0 ± 0.5 333.6 ± 105.1 

PUF-10E/LCO3 38.7 ±0.5 355.6 ± 126.7 

PUF-LHPO4 44.1 ± 0.3 339.3 ± 96.7 
PUF-5E/LHPO4 46.2 ± 0.5 334.3 ± 81.0 

PUF-10E/LHPO4 44.2 ± 0.3 359.6 ± 99.1 

PUF-LDEHP 44.3 ± 0.7 291.4 ± 92.0 
PUF-5E/LDEHP 37.4 ± 0.5 344.0 ± 105.7 

PUF-10E/LDEHP 35.0 ± 0.3 358.1 ± 111.7 

 

Consequently, the blowing efficiency was conditioned by nucleation and 

viscosity, both of which affected the density of the foam. In case of LDH-HPO4 

containing foams, the values of density and cell size are quite similar independently of 

the E560 content. This effect could be attributable to the exfoliated dispersion of the 

LDH-HPO4 clay layers, which increased the viscosity of the reactive mixture resulting in 

a hindered growth of the bubbles and leading to foams with thicker cell walls (Fan et 

al., 2012; Eaves, 2004). In foams with LDH-CO3 and LDH-DEHP, the addition of LDH 

increased the density in foams fully synthesized with LB50 but decreased with the 

addition of E560, in contrast to those foams without fillers (PUF-REF, PUF-5E and PUF-

10E). This sustained that these aforementioned LDH were less finely dispersed in the 

matrix than LDH-HPO4, increasing the permeability to the blowing agent. In this way, 

their contribution to bubble nucleation together with the decrease in viscosity 

provided by E560 resulted in higher cell growth. 
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4.3.3. Mechanical properties 

The firmness and support of the foams was measured by compression force 

deflection (CFD), one of the most indicative properties of flexible foams. The obtained 

CFD values for all the synthesized foams are shown in Figure 4.5a. It was observed that 

the CFD value of the unfilled foams increased nearly a 20% with the addition of E560.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

This occurred together with an increase of the density with higher E560 

content, due to the higher material quantity available for load bearing when mass per 
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Figure 4.5. CFD (a) and resilience (b) evolution with E560 content of unfilled foams and nanocomposite foams 

with different LDH. 
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unit volume increases. The addition of LDH increased CFD for those foams synthesized 

with 100 pphp LB50 (PUF-LCO3, PUF-LHPO4 and PUF-LDEHP) with respect to PUF-REF, 

following the same behavior than density did. The addition of LDH-HPO4 to foams 

containing E560 led to increase the CFD as a result of its fine dispersion through the 

matrix, but in contrast the presence of LDH-CO3 and LDH-DEHP conferred lower CFD 

values than their respective unfilled foams.  

The intercalated LDH-CO3 and LDH-DEHP fillers did not contribute to increase 

the stiffness of the foam as they were more locally arranged in the cellular structure 

than the exfoliated LDH-HPO4. CFD in sample PUF-10E/LDEHP decreased a 31% with 

respect to unfilled PUF-10E, probably due to the better compatibility between the 

organophosphorus intercalated LDH and the phosphonate oligomer, which provided a 

higher affinity with the polymeric chains leading to softer foam.  

The recovery rate of the foams was measured as resilience (R) or bounce. In 

contrast to viscoelastic foams, high resilience foams (from R = 55%) are characterized 

for having a rapid recovery, bouncing back into its original shape immediately after 

compression. Figure 4.5b shows the evolution of the resilience with E560 content. It 

can be observed that the addition of 10 pphp E560 increased the bounce a 12% in case 

of unfilled foams. This could be attributed to the lower molecular weight of the 

phosphorus containing oligomeric diol, which contributed to increase the crosslinking 

density, and the additional aromatic molecules provided by the higher amount of used 

TDI for balancing the OH introduced by E560 (Table 4.1), leading to less viscoelastic 

foams (Ge et al., 2000). The addition of LDH to the PUF-REF foam did not vary notably 

the resilience value, but the differences in resilience were more evident with the 

increase of E560. LDH-CO3 maintained the bounce nearly constant with E560, while 

LDH-HPO4 and LDH-DEHP decreased the resilience value with respect to unfilled foams, 

being more pronounced in foams containing LDH-HPO4. This behavior was attributed 

to the different dispersion degree of the LDH, since R decreased as the dispersion 

degree was higher. As it was mentioned before, the stacked structure of LDH-CO3 was 

distributed along the polymeric matrix nearly unaltered due to its high crystallinity, 
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whereas the predominating amorphous character of LDH-HPO4 allowed the exfoliation 

of the clay layers in the matrix.  

In case of LDH-DEHP, its intermediate crystallinity between LDH-CO3 and LDH-

HPO4 allowed partial intercalation of the matrix chains between the clay sheets as 

observed by XRD. In this way, it was found by Javni et al. (2011) that the addition of 

micro-sized fillers to polyurethane foam did not affect the rebound value, and also that 

the addition of a nanoclay with optimized polarity (which facilitates the intercalation 

or exfoliation) decreased strongly the resilience of the foam around a 30% for 3 wt% 

clay content. Hence, the presence of LDH and its dispersion through the polyurethane 

matrix counteracted the resilient contribution of E560 yielding to foams with more 

viscoelastic behavior. 

 

4.3.4. Thermal properties 

  Thermal stability of the polyurethane foams was analyzed by TGA. Figure 4.6 

displays the thermograms of the synthesized foams. The degradation mechanism of 

the polyurethane did not change with the presence of E560 and LDH, which took place 

in two differentiated stages. The first one corresponded to the cleavage of the 

urethane-urea linkages and the second degradation step to the degradation of the 

polyol, as previously mentioned. Figure 4.6a and Table 4.3 show that the phosphorus 

from E560 catalyzed the degradation of urethane-urea linkages shifting the Tonset and 

Tmax1 to lower values (13 and 14 °C, respectively, in PUF-10E), while helped to stabilize 

the second stage of degradation. This could be attributed to the formation of a char 

layer unstable at high temperatures, as can be observed by the lower residue content 

that remained in foams containing E560 in contrast with PUF-REF (Gaan et al., 2015). 
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Figure 4.6. Mass loss (top) and first derivative (bottom) curves of the unfilled foams (a), nanocomposites without 

E560 (b) and with 5 pphp E560 (c) and 10 pphp E560 (d). 

   

  Figure 4.6b-d shows that in general, the addition of LDH helped to increase the 

thermal stability of foams delaying the Tonset and Tmax of the first and second 

degradation stages, which could be attributed to the barrier effect caused by the 

layered structure of the LDH, leading to delay these temperatures by hindering the 

release of volatile compounds and the heat transmission into the polymeric matrix 

(Kotal et al., 2009; Guo et al., 2011). In the case of PUF-LDEHP, the Tmax1 value was 

shifted to lower temperatures attributed to the decomposition of the organic molecule 

intercalated between the clay layers. It was noteworthy that the LDH also contributed 

to the formation of a larger residue quantity, since the clays decompose from their 

metal hydroxide stacking structure to a mixture of metal oxides stable at high 

temperatures. Regarding the remaining residue, the phosphorus containing LDH led to 

the formation of a large amount of residue, especially LDH-DEHP which together with 5 

and 10 pphp E560 were the combinations that most increase the thermal stability from 

all of the synthesized foams, yielding also to the formation of the higher residue 
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quantity at 700 °C, obtaining a 125, 178 and 234% more residue than unfilled PUF-REF, 

PUF-5E and PUF-10E respectively. 

Table 4.3. Thermal degradation temperatures and residue content at 700 °C of the prepared foams. 

Sample 
Tonset 

(°C) 
Tmax1 

(°C) 
Tmax2 

(°C) 

Residue 
(wt. %) 

PUF-REF 263 300 394 2.44 
PUF-LCO3 262 302 400 3.96 

PUF-LHPO4 265 303 397 3.59 
PUF-LDEHP 267 298 398 2.65 

PUF-5E 257 298 399 1.98 
PUF-5E/LCO3 262 304 400 4.14 

PUF-5E/LHPO4 265 302 398 3.56 
PUF-5E/LDEHP 266 306 399 5.50 

PUF-10E 250 286 392 1.65 
PUF-10E/LCO3 252 299 400 4.08 

PUF-10E/LHPO4 256 302 400 5.09 
PUF-10E/LDEHP 255 301 399 5.51 

Tonset: Temperature at 5% mass loss. 

Tmax1 and Tmax2: Maximum degradation rate temperature, corresponding to first and second step.  

 

  Pyrolysis combustion flow calorimetry provides a preliminary fire behavior 

insight with the advantage of using milligram scale samples. Figure 4.7a shows the 

obtained heat release curves of the unfilled foams, which evidenced that the addition 

of E560 to the polyurethane foam had a catalyzing effect over the degradation of 

urethane-urea linkages, i.e. the first degradation stage, lowering the temperature of 

the peak release rate (TPHRR1), as shown in Table 4.4. 

  Nevertheless, E560 contributed to decrease the THR and HRC of the whole 

process by means of reducing the PHRR1 and PHRR2, especially in PUF-10E decreasing 

both values around a 21% comparing with PUF-REF. The incorporation of LDH to the 

polyurethane foam matrix also contributed to reduce the THR and the HRC of the 

whole degradation process. It can be observed in Figure 4.7b that the addition of LDH 

to PUF-REF led to a decrease in the PHRR2 of around a 13, 15 and 19% in case of LDH-

CO3, LDH-HPO4 and LDH-DEHP respectively. This reduction could be due to the 

endothermic decomposition of the anionic clay and the contribution of the release of 

the interlayer water during this process, which confers a local cooling of the sample. 

Therefore, the addition of 10 pphp E560 to the unfilled foam decreased in higher 

extent the heat release of PUF-REF.  
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Figure 4.7. Heat release rate (HRR) curves of the unfilled foams with different amount of E560 (a) and 

nanocomposites without E560 (b), with 5 pphp E560 (c) and with 10 pphp E560 (d). 

 

Table 4.4. Pyrolysis combustion flow calorimetry results obtained for unfilled foams and nanocomposite foams with 

different amount of E560 and with 3 pphp of the different LDH. 

Sample 
PHRR1 
(W g

-1
) 

TPHRR1
 
 

(
o
C) 

PHRR2
 
 

(W g
-1

) 

TPHRR2
 
 

(
o
C) 

THR 
(kJ g

-1
) 

HRC
 

(J g
-1

 K
-1

) 
PUF-REF 144.7 ± 6.5 290.6 ± 1.7 382.2 ± 6.8 405.4 ± 3.1 28.2 ± 0.6 420.3 ± 22.5 

PUF-LCO3 136.4 ± 5.5 287.8 ± 2.9 333.5 ± 10.9 404.5 ± 3.7 26.9 ± 0.4 371.7 ± 11.2 
PUF-LHPO4 138.4 ± 6.5 290.1 ± 0.5 327.2 ± 2.2 407.2 ± 1.5 26.5 ± 0.2 345.7 ± 2.1 
PUF-LDEHP 133.2 ± 11.0 288.8 ± 0.4 309.9 ± 2.3 404.6 ± 3.5 27.4 ± 0.8 334.5 ± 0.7 

PUF-5E 137.7 ± 5.1 279.7 ± 0.5 376.4 ± 3.1 404.7 ± 1.2 26.5 ± 0.4 414.2 ± 4.4 
PUF-5E/LCO3 132.7 ± 6.5 287.9 ± 0.4 388.7 ± 6.2 403.7 ± 0.3 26.1 ± 0.5 423.9 ± 3.9  

PUF-5E/LHPO4 136.0 ± 5.5 292.3 ± 0.5 336.1 ± 3.4 398.8 ± 0.4 26.2 ± 0.2 414.1 ± 6.6 
PUF-5E/LDEHP 121.4 ± 6.0 287.1 ± 0.6 344.2 ± 5.2 406.0 ± 0.7 26.2 ± 0.5 378.2 ± 3.5 

PUF-10E 114.0 ± 6.2 278.4 ± 0.7 300.9 ± 2.0 407.8 ± 0.8 26.1 ± 0.6 333.0 ± 6.2 
PUF-10E/LCO3 114.7 ± 7.3 287.5 ± 1.1 321.6 ± 4.7 407.9 ± 1.1 25.9 ± 0.2 356.0 ± 4.6 

PUF-10E/LHPO4 138.8 ± 6.2 282.7 ± 0.8 338.0 ± 2.1 403.5 ± 0.6 25.6 ± 0.5 368.0 ± 2.2 
PUF-10E/LDEHP 131.0 ± 7.4 283.7 ± 0.3 339.8 ± 2.5 402.3 ± 0.5 25.9 ± 0.3 376.0 ± 4.4 

PHRR1, TPHRR1: Peak Heat Release Rate and Temperature of Peak Heat Release Rate in the first stage of 

decomposition.   

PHRR2, TPHRR2: Peak Heat Release Rate and Temperature of Peak Heat Release Rate in the second stage of thermal 

decomposition.   

THR: Total Heat Released (first and second stages). 

HRC: Heat Release Capacity of the volatile compounds produced during pyrolysis.  
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  On the other hand, the addition of LDH seemed to be more effective than the 

addition of 5 pphp E560 on the improvement of the thermal properties of PUF-REF. As 

a consequence, a synergistic effect on the combustion properties could be expected by 

the combination of both E560 and LDH, which led to correct the catalyzing effect of 

E560 over the first stage delaying the TPHRR1 (Figure 4.7c-d). 

  Their combination also contributed to reduce the THR and HRC of the foams, 

but in contrast contributed to increase the PHRR2 in foams containing E560. This effect 

could be explained due to the contribution of the catalyzing effect of the phosphorus 

in E560 together with the barrier effect of the LDH, that might led to the generation of 

superheated conditions inside the polymeric matrix (Corcione and Frigione, 2012), 

causing a further release of heat and other generated volatile species. In regard to the 

most efficient LDH, phosphorus containing LDH were the clays that lowest PHRR values 

showed in 5 pphp E560 containing foams, and LDH-CO3 was the clay that showed the 

lowest PHRR values in case of 10 pphp E560 containing foams. 

  Figure 4.8 shows the micrographs of the remaining residue of the 

nanocomposite foams with 3 pphp LDH synthesized with 100 pphp LB50 and with 

LB50/E560 (90/10 ratio) after PCFC testing. It can be observed that the presence of 

E560 changes the morphology of the char, leaving a higher amount of it and a 

continuous residue layer. As recorded by TGA, the presence of LDH increased the 

amount of char formed after pyrolysis, but forming discontinuous clusters of char in 

case of foams with 100 pphp LB50 as it can be observed in the figure. The combination 

of E560 with LDH also left a larger quantity of char, but the clay seemed to break the 

cohesion of the residue observed in PUF-10E. This could be related to the increase in 

the PHRR2 registered by PCFC as a consequence of the release of heat after breaking 

the barrier formed by the clays along the matrix. 
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Figure 4.8. OM micrographs (x200 magnification) of the remaining residue at 750 °C after PCFC essay of 

nanocomposite foams with 3 pphp LDH fully synthesized with LB50 (left) and foams with 90/10 LB50/E560 (right). 

 
 
 

 
 

4.4. Conclusions 

  Flexible polyurethane foams containing a commercial reactive phosphorus 

containing oligomeric diol (E560) and its combination with 3 pphp of a synthetic 

hydrotalcite (LDH-CO3) and phosphorus intercalated LDH (LDH-HPO4 and LDH-DEHP) 

were prepared aiming to study the effect of the addition of the reactive phosphorus 

containing compound and its combination with the different LDHs on the properties of 

the foams.  
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  The density of the foams increased as E560 content was higher, whereas the 

effect of LDH in density depended on their dispersion degree. In this way, LDH-HPO4 

maintained the density nearly constant due to its exfoliated distribution meanwhile 

density values decreased in case of LDH-CO3 and LDH-DEHP containing foams due to 

their lower dispersion degree. CFD values increased in unfilled foams with increasing 

E560 content as a consequence of the higher density of these samples. The addition of 

the different LDH led to a variable behavior, since the addition of LDH to PUF-REF 

contributed to increase the CFD but in combination with E560, LDH-HPO4 was the only 

clay that increased the CFD as a consequence of its exfoliated dispersion, in contrast 

with LDH-CO3 and LDH-DEHP which decreased CFD. Moreover, the presence of LDH did 

not affect strongly the resilience of the foams, but the differences were more evident 

with increasing E560 content, where the resilience decreased as the dispersion degree 

of the LDH was finer. 

  Regarding the thermal properties of the nanocomposite foams, E560 

contributed to decrease the thermal stability in the first stage of degradation. 

However, the presence of LDH counteracted the catalyzing effect of E560 maintaining 

the initial degradation temperature and the first maximum degradation rate 

temperature constant while delaying the second stage degradation acting as a barrier 

against volatile compounds release. Additionally, the presence of LDH, especially those 

modified with phosphorus, led to the formation of a higher amount of residue. In PCFC 

studies, the catalyzing effect of E560 in the first stage was confirmed but in contrast, 

E560 contributed to decrease the PHRR and therefore the THR and HRC. Foams with 

100 pphp LB50 and filled with LDH, particularly those modified with phosphorus, also 

contributed to decrease the PHRR of both degradation stages due to the barrier effect 

of the anionic clays, while the combination of E560 and LDH decreased the THR and 

HRC with respect to unfilled foams. 
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5.1. Introduction 

This chapter explores the functionalization of a commercial kraft lignin (k-lignin) 

by means of its reaction of an isocyanate group (NCO) from isophorone diisocyanate 

(IPDI) with the hydroxyl groups present in lignin (k-IPDI), in order to improve its 

reactivity for its further incorporation in a flexible polyurethane foam (PUF) 

formulation. The functionalization is monitorized by Fourier transformed infrared 

spectroscopy, OH group determinantion and by 13C, 1H and 31P nuclear magnetic 

resonance. 

The effect of the incorporation of k-lignin and k-IPDI in the final properties of 

flexible polyurethane foams is analyzed as well as their effect in the polymerization 

process. The density, cell size and lignin attachment to the foam is also studied by 

gravimetric measurements, optical microscopy and by an extraction process in 

dioxane, respectively. Additionally, glass transition temperature and the thermal 

stability measurements of the prepared PUFs are performed by differential scanning 

calorimetry and themogravimetric analysis and finally, the effect of the unmodified 

and functionalized lignin in the compressive properties of PUF is studied.  

 

5.2. Experimental procedure 

5.2.1. Materials  

  Southern pine kraft lignin, k-lignin (Domtar’s BioChoiceTM) was kindly provided 

by UPM Biochemicals (Finland). K-lignin was acetylated for its further characterization 

by GPC and 13C NMR, using acetic anhydride (98%, Panreac) and pyridine (99%, 

Panreac). Ethanol (>99.8%, Panreac), HPLC grade chloroform (>99.8%, Lab-Scan 

Analytical Sciences) and diethyl ether (99.7%, Panreac) were used in the process of 

washing the derivatized lignin (ac-lignin).  

  Additionally, lignin was phosphytilated for 31P NMR analysis. Chromium (III) 

acetylacetonate (99.9%, Sigma-Aldrich) was used as relaxation agent and cyclohexanol 
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(Sigma-Aldrich) as reference compound. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxa- 

phospholane (>95%, Sigma-Aldrich) was used as phosphytilation agent. 

  The functionalization of k-lignin with isocyanate groups was carried out using 

isophorone diisocyanate, IPDI (>99.5%, Desmodur® I, Covestro), with a NCO content of 

37.8%. HPLC grade tetrahydrofuran, THF (>99.8%, Macron Fine Chemicals) was used as 

reaction medium and dibutyltin dilaurate, DBTDL (>95%, Sigma Aldrich) as selective 

catalyst for the reaction of hydroxyl groups from lignin with the secondary NCO groups 

of IPDI (Ono et al., 1985). HPLC grade toluene (>99.8%, Lab-Scan Analytical Sciences) 

was used to wash the functionalized lignin.  

  Flexible polyurethane foams were prepared according to the materials and 

procedure detailed in Chapter 2 (Section 2.2) and Chapter 3 (Section 3.2.3), 

respectively.  

 

5.2.2. Lignin characterization procedures and techniques 

5.2.2.a. Lignin content determination and characterization 

  The moisture content of the raw lignin was analyzed by TGA (TGA/SDTA 851, 

Mettler Toledo) in nitrogen atmosphere heating the sample from 25 to 200 °C at a 

heating rate of 10 °C min-1. This value was confirmed gravimetrically drying the lignin in 

an oven at 50 °C for 24 h, so as to determine whether this temperature was enough to 

get a dried lignin at that time. Since the obtained values were similar, the average 

value of both was reported.  

  Acid insoluble lignin (AIL) was determined following TAPPI T 249 cm-85 (2009) 

and TAPPI T 222 om-02 (2011) methods. Briefly, 3.75 mL of ice-cooled 12 M sulfuric 

acid were added to 0.375 g of dried lignin (Gosselink et al., 2004a) and kept at 30 °C 

during 1 h. Demineralized water was then added and the mixture was kept boiling at 

100 °C for 3 h. The suspension was cooled, filtered with a G4 glass filter and washed 

with hot water. The resulting solid was weighed after being dried at 105 °C and the 

filtrate was kept for measuring the acid soluble lignin (ASL) content. ASL was 
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determined by UV–vis spectroscopy (Dence, 1992) according to the procedure 

described in Chapter 2 (Section 2.3.2).  

  The ash content of the kraft lignin was determined following the ASTM E1755-

01 (2015) standard. Firstly, the lignin was oven-dried at 105 °C during 24 h. Two 

samples of approximately 1 g were treated in a muffle furnace at 525 °C during 5 h and 

the weight of the remaining residue was recorded as the ash content, given relative to 

the weight of dried lignin. This ash was thereafter used to calculate the acid insoluble 

ash (AI ash) content for correcting the AIL value following the TAPPI T 245 om-94 

standard, adding firstly 20 mL of 65% (w/w) nitric acid to the ash, heating it up and 

keeping it boiling until having a residual volume of around 10 mL. Then, 4 mL of 96% 

(w/w) sulfuric acid were added and heated again until white fumes were evolved. The 

mixture was cooled down to room temperature and finally 50 mL of demineralised 

water were added and boiled for 5 min. After filtrating, washing and drying, the 

remaining solid was weighed for correcting the acid insoluble lignin content.  

  The presence of sugar impurities was evaluated by HPLC as detailed in Chapter 

2 (Section 2.3.4). Finally, the approximate hydroxyl number of both k-lignin and k-IPDI 

was determined following the ISO 14900 (2001) E standard for polyols with steric 

hindrance, carrying out the acetylation of the sample with a mixture of acetic 

anhydride and pyridine using imidazole as catalyst. After the acetylation, a back 

titration was performed with 0.5 N NaOH.  

5.2.2.b. Lignin acetylation  

  The acetylation of lignin was performed following a method proposed by 

Lundquist (1992) in order to determine its molecular weight by GPC and also to 

quantify the hydroxyl content by quantitative 1H and 13C NMR. Briefly, 20 mg of k-

lignin were dissolved in a 1/1 (v/v) acetic anhydride-pyridine mixture and were kept 

stirring 24 h at room temperature. The washing process was conducted as follows: 

absolute ethanol was added to the mixture, stirred during 30 min and then removed 

with a rotary evaporator, repeating this step for seven cycles using the ethanol to drag 

the pyridine and the acetic acid from the sample. Thereafter the ac-lignin was 



Chapter 5 
 

- 128 - 

dissolved in chloroform and added dropwise to diethyl ether, washed three times by 

centrifugation and dried under vacuum at 50 °C for 24 h. 

5.2.2.c. NMR sample preparation 

  The hydroxyl number of k-lignin was confirmed by quantitative 1H NMR, 13C 

NMR and 31P NMR, and the success of the functionalization of k-IPDI was qualitatively 

confirmed by solid state 13C cross-polarization magic angle spinning (CP/MAS) NMR.  

  The 1H NMR analysis was performed dissolving 22 mg of dried ac-lignin in 1 mL 

deuterated chloroform (CDCl3, 99.96% atom D, Sigma-Aldrich) and 0.00659 g of 

2,3,4,5,6-pentafluoroaldehyde (PFB, 98%, Sigma-Aldrich) were added as reference 

compound. The signals appearing between 1.6 and 2.2 ppm (aliphatic acetate, related 

to aliphatic OH) and between 2.2 and 2.6 ppm (aromatic acetate, related to aromatic 

OH) were integrated with respect to the signal associated to PFB between 10.2 and 

10.4 ppm. 

  The samples for quantitative 13C NMR analysis were prepared as follows. Dried 

k-lignin and ac-lignin samples were solved in deuterated dimethyl sulfoxide (DMSO-d6, 

99.9% atom D, Sigma Aldrich), weighing 10 mg of solid in 1 mL of solvent. The signals 

present in ac-lignin at 170.6, 169.9 and 169.1 ppm (corresponding to OH(I), OH(II) and 

OH(Φ), respectively) were integrated with respect to the aromatic region of lignin 

assuming the presence of six carbons between 100 and 160 ppm. 

  31P NMR was performed by phosphytilation of lignin. The sample was prepared 

according to the procedure proposed by Granata and Argyropoulos (1995). Initially, a 

solvent mixture of dried pyridine and CDCl3 in a 1.6/1 (v/v) ratio was prepared. A 

chromium (III) acetylacetonate relaxation agent solution (5 mg mL-1) was prepared 

using the former solvent mixture. Cyclohexanol was used as a reference for the 

calculations of the 31P nuclei present in the phosphytilated lignin since it reacts 

quantitatively with the phosphytilation agent. A solution (10.85 mg mL-1) of 

cyclohexanol in the solvent mixture was also prepared. Then, the phosphytilated lignin 

was prepared. Briefly, 0.5 mL of the solvent mixture were added to a flask and 30 mg 

of dried lignin were added.  Afterwards, 50 μL of the phosphytilation agent (2-chloro-
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4,4,5,5-tetramethyl-1,3,2-dioxaphospholane) were added and subsequently, 100 μL of 

both relaxation agent and reference solutions were added. Finally, solvent mixture was 

added until 1 mL. For calculation purposes it was essential to calculate accurately the 

amount of lignin and cyclohexanol added. Thus, the integrals of the 31P NMR spectrum 

were calculated as a function of the intense peak appearing at 145.5 ppm, 

corresponding to the phosphytilated OH group from cyclohexanol (Argyropoulos, 

1994). The values related to aliphatic and phenolic OH contents were compared with 

those obtained by 1H and 13C NMR spectroscopy.  

 

5.2.3. Preparation of isocyanate functionalized lignin 

  Kraft lignin was grounded in a mortar and dried at 50 °C for 24 h prior to its 

functionalization with IPDI. Once dried, k-lignin (20 g) was dissolved in 100 mL of THF 

using a magnetic stirrer. Afterwards IPDI was weighed into a round bottom flask in a 

3/1 NCO/OH molar ratio and heated up to 60 °C under nitrogen atmosphere. Then, 

DBTDL (0.1% of the total weight) was added to the IPDI and stirred (at 600 rpm) during 

few minutes, followed by the addition of the lignin solution to the flask using a 

dropping funnel while maintaining the vigorous stirring in the flask. The reaction was 

kept at 60 °C for 24 h. Thereafter, the formed solid was separated by centrifugation, 

washed with toluene and centrifuged repeatedly (at least three times) at 4500 rpm 

during 5 min, replacing the used toluene for fresh one after each centrifugation in 

order to remove the remaining unreacted IPDI. Finally, the slurry was dried in a 

vacuum oven at 75 °C for 24 h and then the vacuum was kept at room temperature for 

the following 48 h. The obtained k-IPDI was grounded and sieved in order to obtain a 

homogeneous particle size. 

 

5.2.4. Preparation of flexible polyurethane foams 

Two series of flexible polyurethane foams containing the same amount of lignin 

regardless the isocyanate content of the k-IPDI (which was taken into account to 

maintain the NCO/OH ratio) were produced, in addition to a reference foam without 
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lignin (PUF-REF). The lignin content of the foams was set at 3, 5 and 10% (by weight) 

for both k-lignin (PUF-3%kl, PUF-5%kl and PUF-10%kl) and k-IPDI containing foams 

(PUF-3%kIPDI, PUF-5%kIPDI, PUF-10%kIPDI). PUF with k-lignin were prepared 

dissolving previously dried lignin in 50 mL THF. Then, the k-lignin solution was added 

slowly to the polyol and stirred vigorously during 1 h at room temperature. The THF 

was then removed using a rotary evaporator until constant mass was achieved. The k-

lignin precipitated during THF removal, forming a stable and fine dispersion of the 

solids in the polyol. Once the k-lignin/LB50 mixture was prepared, the polyurethane 

foams were manufactured according to the same procedure reported in Chapter 3  

(Section 3.2.3) by one shot open mold polymerization, plus a postcuring process at 150 

°C for 24 h. After this thermal treatment, the disappearance of free NCO groups was 

confirmed by FTIR in different regions of the foams. In case of k-IPDI containing 

samples, the functionalized lignin was introduced directly into the polyol and 

homogenized by rotor-stator mixing at 12000 rpm during few minutes. All the foams 

were formulated with the same amount of blowing agent and surfactant than in 

Chapters 3 and 4, but with an excess of 10% of isocyanate (corresponding to an 

isocyanate index of 110) without taking into account the OH content of the lignin in 

the formulation owing to its low reactivity.  

Nevertheless, the catalyst formulation had to be increased in case of k-lignin 

containing samples, since the presence of lignin affected the reactivity in the 

polymerization process hampering the formation of acceptable foams. Thus, amine 

and organometallic catalyst were adjusted (increasing their amount to 0.5 and 0.6 

pphp, respectively, with respect to PUF-REF and k-IPDI containing foams) in order to 

yield the gelling time quickly enough to avoid the collapse of the foam (Szycher, 2013). 

Thermal, morphological and mechanical characterization of the foams was performed 

to postcured samples. 

 

5.2.5. Lignin extraction from the foam 

  Polyurethane foams containing lignin were subjected to extraction with a 

mixture of 1,4-dioxane/water (90/10, v/v) to determine to what extent was the lignin 
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chemically attached to the polymeric matrix. Briefly, around 0.7 g of foam were cut 

into cubes of approximately 5 x 5 x 5 mm3 and were placed inside a cellulose cartridge, 

performing thereafter the extraction with the dioxane/water mixture using a Soxhlet 

extraction kit during 24 h. The mass of the foams was weighed before and after the 

extraction process. The procedure was performed once per sample, as a preliminary 

study of the chemical attachment of the lignins to the matrix. The mass loss related to 

polyurethane, which was registered in PUF-REF, was corrected in lignin containing 

foams in order to consider solely the lignin mass loss. 

 

 

5.3. Results and discussion 

5.3.1. Lignin characterization 

5.3.1.a. Lignin content determination 

  The determination of total lignin content was carried out in order to confirm 

the purity of the k- lignin. The lignin was characterized without further purification 

than drying in an oven (24 h at 50 °C) owing to its high moisture content (28.43%). 

Table 5.1 shows the composition of the k-lignin on a dry basis, reflecting that it was a 

high purity lignin, reaching nearly a 90% of total lignin content even though having 

detected a small amount of sodium and sulfur due to its kraft origin, as shown in Table 

5.2.  

Table 5.1. Composition of k-lignin. 

  k-lignin  

 Total lignin content (wt.%) 89.38  
 AIL  88.27  
 ASL  1.11  

 Ash (wt.%) 1.28  
 AI ash (wt.%) ND  
 Sugars (wt.%) 0.79  

 Arabinose ND  
 Glucose ND  
 Xylose 0.79  
 Mannose ND  

    (g mol
-1

) 3696  

    (g mol
-1

) 7780  

 PD 2.10  
ND: Not detected 
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Not only was low the sugar impurity content (0.79%), perceiving only the 

presence of xylose, but also the inorganic impurities (ash content, 1.28%), as it is 

common in kraft lignins due to the precipitation method from the black liquor. 

  These values are in agreement with those reported in the literature for other 

industrial kraft lignins (Gosselink et al., 2004b; Passoni et al., 2016). Regarding the 

average molecular weight determination of the k-lignin by GPC, it was derivatized to 

ac-lignin in order to get increased solubility in the mobile phase (THF) (Gellerstedt, 

1992). The average molecular weight resulted to be relatively low (7780 g mol-1), 

whereas the PD of the sample indicated a narrower weight distribution than that 

usually found in commercial industrial lignin (Sarkanen et al., 1984).  

  Regarding the functionalization of the k-lignin sample, it was mandatory to 

quantify the amount of hydroxyl groups in its structure by means of OH number 

determination by ISO 14900 (2001) E standard. Table 5.2 shows that the hydroxyl 

content of the k-lignin was in accordance to those values from other commercial kraft 

lignins (Cateto et al., 2008). A distinct decrease in the hydroxyl content was registered 

in k-IPDI as a consequence of the reaction between some of the hydroxyl groups of the 

lignin with the IPDI, evidencing the different reactivity of the hydroxyls of the lignin 

depending of their chemical environment. Therefore, the difference between the OH 

number of k-lignin and k-IPDI showed up that 3.81 mmol OH g-1 reacted with 

isocyanate. The conversion of this OH consumption into nitrogen percentage (5.33%) 

was in accordance with the nitrogen content obtained by elemental analysis in k-IPDI 

(5.29%), included in Table 5.2. 

Table 5.2. Chemical composition and hydroxyl number of k-lignin and k-IPDI. 

 k-lignin k-IPDI 

Elemental analysis  
(wt.%) 

  

C 64.1 63.37 
H 5.80 6.81 
N 0.25 5.29 
O 29.13 21.22 
S 1.78 1.84 
Na 0.68 0.01 

Total OH content (mmol g
-1

)  
according to 
ISO14900:2001(E) 

7.33 3.52 
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5.3.1.b. Structural characterization 

  FTIR allows distinguishing the most relevant units composing the lignin 

structure. Figure 5.1 and Table 5.3 show the most representative functional group 

vibrations in the infrared spectrum. The bands appearing at 1269, 1146, 853 and 814 

cm-1 in k-lignin are the characteristic vibrations of the guaiacyl units (G), common in 

softwood lignin.  

 

 

 

 

 

 

 

 

 

Figure 5.1. Infrared spectra of k-lignin, ac-lignin, k-IPDI and IPDI. 

 

  The broad peak corresponding to O-H stretching vibration at 3391 cm-1 in k-

lignin decreased drastically in ac-lignin corroborating the consumption of hydroxyl 

groups during its chemical treatment. The broad O-H peak appearing as an average of 

the hydrogen bonded and free hydroxyl groups in the unmodified lignin, was replaced 

by two low intensity peaks at around 3644 and 3527 cm-1, reflecting non-hydrogen 

bonded aliphatic and phenolic OH groups (Stuart, 2004). Moreover, the appearance of 

an intense peak at 1766 cm-1 with a shoulder at 1740 cm-1 corresponding to aliphatic 

and aromatic C=O stretching vibration respectively, and a broad signal around 

1200 cm-1 related to C-O-C and C-C stretching vibrations in esters, confirmed the 

successful acetylation of k-lignin. 
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Table 5.3. k-lignin, ac-lignin and k-IPDI functional groups and their respective wavenumber. 

Functional group 
k-lignin 

Wavenumber 
(cm

-1
) 

ac-lignin 
Wavenumber 

(cm
-1

) 

k-IPDI 
Wavenumber 

(cm
-1

)
 

Free aliphatic and aromatic O-H str - 3644, 3527 3644, 3536* 
O-H str 3391 - 3391 
N-H str - - 3391 
C-H str in methylene (-CH2-) 2934 2934 2951 
C-H str in methyl (CH3-) 2841 2841 2848 
NCO str - - 2266 
C=O str (aliphatic)  - 1766 - 
C=O str (aromatic) - 1740 - 
C=O str of fatty esters, unconjugated 
ketones, carbonyls and ester groups 

1708 - 1712 

Urethane C=O str - - 1712 
C-H aromatic ring skeletal vibration and  
C=O str  

1597 1597 1597 

C-H aromatic ring skeletal vibration  1513 1513 1513 
C-H asymmetrical deformation in -CH2- 
and CH3- 

1463 1463 1463 

Aromatic ring skeletal vibrations, C-H in-
plane deformation 

1428 1428 1428 

Phenyl -OH, aliphatic str in -CH3 1375 1375 1375 
G ring breathing and C=O str 1269 1269 1269 
C-O-C and C-C str  1211 1200 1224 
Aromatic C-H in plane deformation (typical 
from G units) 

1146 1146 1146 

Aromatic C-H in plane deformation,  -OH 
deformation in primary alcohols and 
unconjugated C=O str  

1031 1031 1031 

C-H out of plane in 2, 5 and 6- positions of 
G units 

853, 814 853, 820 853, 814 

*Shoulder 

 

  The functional group content per lignin empirical C9 unit formula was estimated 

by means of NMR spectroscopy (Figure 5.2). This formula is an approximation 

calculated to give an idea of the functional groups available in the C9 structural unit of 

lignin. Quantitative 13C NMR spectroscopy, with a wider spectral width and better 

resolution than 1H NMR, allowed reporting the functional groups per aromatic ring in 

k-lignin, distinguishing primary, secondary and phenolic hydroxyl groups in acetylated 

lignin samples (Faix et al., 1994). The value of the signal integration can be considered 

as mol% and its conversion to mmol g-1 required the estimation of the empirical C9 unit 

formula of k-lignin in order to compare the NMR results with the OH number 

determined by titration following the ISO 14900 (2001) E standard. 
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  Therefore, the estimation of the empirical C9 unit formula, collected in Table 

5.4, was calculated according to the values obtained by elemental analysis and the 

methoxyl group (OCH3) content calculated by the integration of the signal at 56.6 ppm 

of the 13C spectrum of k-lignin.  

 

 

 

 

 

 

 

 

 

Figure 5.2. 
13

C NMR spectra of unmodified (k-lignin) and acetylated lignin (ac-lignin). 

  

 

  The value of the integrations of methoxyl, carbonyl and carboxyl groups 

calculated in k-lignin (number of carbon atoms per C9 unit) together with the values 

corresponding to the OH(I), OH(II) and OH(Φ) content calculated in the carbonyl region 

of ac-lignin, are shown in Table 5.5. 

  1H NMR spectrum of ac-lignin (Figure 5.3) was recorded aiming to confirm the 

aliphatic and phenolic hydroxyl content of k-lignin determined by 13C NMR (Figure 5.3). 

31P NMR was also performed (Figure 5.4) since it allows discerning the aliphatic and 

the different types of phenolic hydroxyl groups in lignin, such as condensed phenolic, 

Table 5.4. C9 empirical formula estimation by elemental analysis results and 
13

C NMR. 

 k-lignin k-IPDI 

C9 unit formula* C9H8.28S0.10O2.58(OCH3)0.74 C9H10.84S0.11O1.14(OCH3)0.77(NHCO)0.38(NCO)0.38 
C9 unit Mw (g mol

-1
) 184 193 

*C9 unit formula of k-IPDI was calculated assuming that the same amount of OCH3 in k-lignin, calculated by 
13

CNMR, was present in k-IPDI sample, and that only half of the nitrogen present reacted with the hydroxyl groups 
from lignin.  
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guaiacyl (G), syringyl (S) and p-hydroxyphenyl (H) units. The integrals of the peaks of 

the 31P NMR spectrum were calculated as mentioned before, as a function of the 

intense peak appearing at 145.5 ppm. The values related to total aliphatic and phenolic 

OH contents were in accordance with those obtained by 1H and 13C NMR spectroscopy, 

and additionally it was evidenced that guaiacyl hydroxyl groups were predominant in 

k-lignin due to its softwood origin. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. 
1
H NMR spectrum of acetylated lignin (ac-lignin). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. 
31

P NMR spectrum of phosphytilated lignin. 
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Table 5.5. k-lignin functional group content determination by quantitative 
13

C NMR, 
1
H NMR and 

31
P NMR. 

 
Functional group 

δ 
(ppm) 

C atoms per C9 
unit 

Amount in lignin 
(mmol g

-1
) 

13
C NMR 

COOH and CHO 160-200 0.01 0.054 

Total OH 168-178 1.28 6.957 

OH(φ) 168-169.9 0.46 2.500 

OH(aliphatic) 
OH(I) 
OH(II) 

169.9-172 
170.3-172 

169.9-170.3 

0.82 
0.59 
0.23 

4.456 
3.207 
1.250 

OCH3 55.4-58 0.74 4.022 

   Integral value  

1
H NMR 

OCH3 3.6-4.2 8.50 4.098 

Total OH 1.6-2.6 - 6.869 

OH(φ) 2.2-2.6 4.61 2.225 

OH(aliphatic) 1.6-2.2 9.62 4.644 

31
P NMR

 

COOH 134.0-136.0  ND ND 

Total OH - - 6.526 

OH(φ) 

OH(H) 138.0-139.0 0.35 0.125 

OH(G) 138.0-141.0 4.17 1.490 

OH(S) 142.5-143.5 ND ND 

OH(condensed) 141.0-142.5 2.11 0.754 

Total OH(φ) 138.0-145.0 6.63 2.37 

OH(aliphatic) 146.0-150.5 11.63 4.156 
ND: Not detected 

 

  The molecular weight value obtained per C9 unit (Table 5.4) was in accordance 

with the values reported for other softwood kraft lignins, which are usually around 

180 g mol-1 (Crestini, 2012). The total hydroxyl content calculated by 13C NMR 

(6.96 mmol g-1) approached the value obtained by titration (7.33 mmol g-1). These 

values were similar to those reported by Cateto et al. (2008) for another commercial 

kraft lignin, although in their case the phenolic OH content was higher (3.95 mmol g-1). 

The aliphatic OH content in k-lignin was nearly twice times the amount of phenolic OH 

(often referred as the reactive group of lignin) (Paulsson and Simonson, 2002), being 

primary OH more abundant than secondary ones.  

  The absence of signals corresponding to syringyl (S) units between 103 and 105 

ppm (C-2, C-6 from S), and between 152 and 153 ppm (C-3 and C-5 from 4-O-alkylated 

S group) confirmed the predominant presence of guaiacyl (G) units, as it was expected 

owing to the softwood origin of k-lignin. These characteristic signals from carbons 

related to G units appeared in the aromatic region of the 13C NMR spectrum (Figure 

5.2), between 100 and 160 ppm. The lignin functionalization with IPDI was confirmed 

qualitatively by 13C CP/MAS NMR spectroscopy (Figure 5.5 and Table 5.6).  
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Figure 5.5. 
13

C CP/MAS NMR spectra of k-lignin and k-IPDI. 

 

 

Table 5.6. 
13

C CP/MAS NMR spectra signal assignments. 

Sample δ (ppm) Assignment 

k-IPDI 

157.6 Secondary urethane linkage 

155.2 Primary urethane linkage 

146.9 Superposition C-3 and C-4 of G unit 

129.1 C-4 of G unit connected to -NHCOO- 

123.1 Free secondary -NCO 

122.4 Free primary -NCO 

56.6 Superposition aromatic -OCH3 in G + primary carbon (C-10) of 
unreacted -NCO from IPDI  

45.1 Carbon attached to secondary isocyanate (C-1) from IPDI  
C-1 from unreacted secondary -NCO 
C-10 from reacted primary -NCO  
C-2 and C-4 (-CH2) from IPDI 
C-1 and C-6 from reacted secondary -NCO  

36.2 -CH2- (C-6) from IPDI 

31.7 CH3- (C-7 and C-8) from IPDI 

27.6 CH3- (C-9) from reacted primary NCO 

23.1 CH3- (C-9) from unreacted primary NCO 

k-lignin 
 

147.0 Superposition of signals: 
C-4 in G etherified unit 
C-3 in G non-etherified unit 

55.1 Aromatic methoxyl (-OCH3) from G units 
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  The appearance of new signals between 20 and 70 ppm corresponded to 

hydrocarbons of the isocyanate structure, whereas the reaction between the 

isocyanate and the hydroxyl groups from lignin was evidenced by the appearance of 

new signals corresponding to urethane (-NHCOO-) linkages at 155.2 and 157.6 ppm 

(secondary and primary urethane linkages, respectively). The new signal appearing at 

129.1 ppm was attributed to C-4 from G unit connected to -NHCOO-.  

  The availability of free isocyanate groups for further reaction with the matrix 

was confirmed by the appearance of new signals at 122.4 and 123.1 ppm, 

corresponding to free primary and secondary NCO groups, respectively (Bialas et al., 

1990), superimposed with the signals corresponding to aromatic carbons in lignin. 

5.3.1.c. Morphology and particle size  

  As it can be observed in Figure 5.6, k-IPDI is perfectly discernible from k-lignin, 

as the former presents a yellowish color and looser texture. SEM images (Figure 5.6) 

revealed that k-IPDI presented lower particle size than the unmodified k-lignin, 

probably due to changes in surface energy as a consequence of the modification with 

isocyanate, as it was suggested by Chauhan et al. (2014).  

 

 

Figure 5.6. Images and SEM micrographs of dried k-lignin (left) and k-IPDI (right). SEM micrographs with x10000 

magnification. 
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  Nevertheless, the particle size of k-lignin was not relevant since it was added to 

the polyurethane formulation as a solution in THF, removing afterwards the solvent 

and keeping the k-lignin solved in the polyol. But in case of k-IPDI the particle size, 

ranging from 400 to 700 nm was significant as it was found to be insoluble in organic 

solvents and had to be added to the polyurethane formulation by direct mixing with 

the polyol. 

5.3.1.d. Thermal properties 

  The effect of isocyanate functionalization on the glass transition temperature 

(Tg) of lignin was analyzed by DSC. Figure 5.7 shows the DSC thermograms of IPDI, k-

lignin and k-IPDI. The Tg of k-lignin was found to be 151.2 °C, which was consistent with 

the reported values from other commercial kraft lignins (Gellerstedt, 2015; Lora, 

2008). 

 

 

 

 

 

 

 

 

Figure 5.7. DSC thermograms of IPDI, k-lignin and k-IPDI. 

 

  Nevertheless, it was observed that the Tg in k-IPDI was shifted 112 °C below the 

Tg of the unmodified lignin, resulting in a Tg of 39.2 °C. This was attributed to the 

introduction of the urethane linkages that increased the mobility of the lignin structure 

as a consequence of the lower hydroxyl content, which resulted in the reduction of 

hydrogen bonding. Other works suggested that derivatization of lignin decreased the 
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Tg value due to a plasticization effect of the derivatization process (Lisperguer et al., 

2009). 

Table 5.7. Glass transition, degradation temperatures, mass loss and residue at 800 °C of k-lignin and k-IPDI. 

 
Tg  

(
o
C) 

Tmax
 

(
o
C) 

Mass loss 
(wt%) 

Residue  
(wt%) 

k-lignin 151.2 386 60.15 39.87 
k-IPDI 39.2 333 74.83 25.04 

Tmax: temperature at maximum degradation rate.  

 

  Figure 5.8 shows the thermal degradation of lignin under inert atmosphere, 

which was broader than that of the IPDI that presented a sharp mass loss at 221 °C. 

This was attributed to the different groups and heterogeneous molecular weight 

moieties forming the complex lignin structure. Figure 5.8 and Table 5.7 show that the 

degradation of k-lignin occurred between 300 and 400 °C as a consequence of the 

cleavage of C-C and β-β linkages of lignin’s main structure (Ferry et al., 2015). The 

rearrangement of the lignin backbone occurred from 450 °C, giving place to high yields 

of char (39.87% in k-lignin). The maximum degradation temperature was shifted 53 °C 

towards lower temperatures in k-IPDI as a consequence of the combined degradation 

of the urethane linkages formed between the isocyanate and the lignin. Despite the 

previous drying of k-lignin and the organic modification of k-IPDI, some amount of 

moisture was lost between 65 and 105 °C (2 and 3%, respectively).  

 

 

 

 

 

 

 

 

Figure 5.8. Mass loss (up) and first derivative (down) curves of IPDI, k-lignin and k-IPDI. 
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  The lack of residue in the degradation of IPDI contributed to decrease the 

residue of k-IPDI by 37% with respect to k-lignin. Hence, the functionalization of lignin 

produced a decrease on its thermal stability. 

 

5.3.2. Characterization of flexible polyurethane foams 

5.3.2.a. Effect of lignin in polymerization 

  The effect of the presence of k-lignin and k-IPDI in the reactivity of the 

polyurethane foam formation was studied by FTIR (Figure 5.9), calculating the area of 

the remaining isocyanate stretching vibration at 2276 cm-1 24 h after the 

polymerization, and normalizing it with respect to the signal of a group that did not 

take part into the polymerization process, e.g. the C=C aromatic stretching vibration at 

1598 cm-1. The area of this band was deconvoluted and calculated in PUF-REF and was 

taken as a reference, since the lignin contributed also with C=C groups. Table 5.8 

shows NCO/C=C ratio and the timings of the different steps of the foaming process, as 

well as the maximum height of the final foams. 

 Figure 5.9. Infrared spectra of PUF-REF (a), deconvolution of the aromatic C=C band in PUF-REF (b), PUF-10%kl (c) 

and PUF-10%kIPDI (d). 
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  Table 5.8 evidenced that the timings of the different foaming stages increased 

when both unmodified and IPDI-modified lignin were added to the foam, suggesting 

that its complex structure hindered the reaction between the hydroxyl groups of the 

polyol and the isocyanate, as it was also appreciated in the increased NCO/C=C ratio. 

  Comparing the timings between k-lignin and k-IPDI containing foams, it was 

mandatory to take into consideration that the used catalyst quantity had to be 

increased in case of k-lignin containing foams to avoid the collapse of the structure, as 

a consequence of the decreased polymerization rate caused by the presence of lignin. 

The effect of this higher catalyst content was clearly observed in the lower cream, rise 

and gel time values as well as lower NCO/C=C ratios at low k-lignin content, since this 

accelerating effect was lost at 10% k-lignin content. 

Table 5.8. Reaction times of the different stages in the foaming process and NCO/C=C ratio. 

Sample 
Cream 
time 
(s) 

Rise time 
(s) 

Gel time 
(s) 

Tack-free 
time 
(h) 

Max. height 
(mm) 

Area 
ν(NCO/C=C) 

PUF-REF 7 83 160 2.00 98 0.315 

PUF-3%kl 11 88 167 3.00 88 0.709 
PUF-5%kl 15 124 260 4.50 84 0.869 

PUF-10%kl 23 225 859 6.00 73 0.976 

PUF-3%kIPDI 20 125 300 3.83 95 0.969 
PUF-5%kIPDI 24 163 310 4.25 87 0.973 

PUF-10%kIPDI 26 168 632 5.83 75 1.497 

 

  The use of this catalyst formulation in k-IPDI containing foams caused their 

shrinkage due to the exceeding catalyst content, so it was expected that if it could be 

possible to prepare foams with the same catalyst formulation, the timings of the k-

lignin containing ones would be much higher than those containing k-IPDI. 

5.3.2.b. Density, cell size and lignin attachment to the foam 

  Density is a key parameter in the final properties of the materials, since the 

mechanical properties depend directly apart from the nature of the material, on the 

amount of the material available and its distribution along the cellular structure. Table 

5.9 shows that despite all foams were prepared using the same blowing agent amount, 

meaning that the same amount of CO2 was generated during the foaming process, the 
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addition of either k-lignin or k-IPDI contributed to increase the density of the foams. As 

it was mentioned before, the addition of lignin increased the gelling time that could 

lead to the loss of CO2 during the polymerization, resulting in structures with smaller 

cells and thicker walls, yielding higher density values as it was reported by Mahmood 

et al. (2015). The lower size of the cells and the higher width of the struts were 

attributed to the increase in the viscosity of the polyol-lignin mixture, being the values 

in accordance with the density values, as they contained more material in the same 

volume. It was noteworthy that in general the density and the average cell size and 

strut width values evolved in the same extent regardless of the type of lignin, having 

slightly higher average cell size values in case of k-IPDI containing foams, probably due 

to its higher reactivity. 

Table 5.9. Density, average cell size, strut width, open cell content, viscosity of the polyol-lignin mixture and mass 

loss after extraction of the k-lignin and k-IPDI containing foams.  

Sample 
Density 
(kg m

-3
) 

Average cell 
size 

(μm) 

Average 
strut width 

(μm) 

Open cell 
content 

(%) 

Viscosity of 
the polyol-

lignin 
mixture 
(mPa s) 

Mass loss 
after 

extraction 
(wt.%) 

PUF-REF 32.4 ± 0.8 215.7 ± 58.3 39.7 ± 7.5 21.7 ± 0.6 837 - 

PUF-3%kl 32.3 ± 0.2 202.5 ± 65.6 59.5 ± 12.0 30.3 ± 1.5 1265 0.48 
PUF-5%kl 36.2 ± 0.3 197.1 ± 51.0 63.7 ± 11.7 32.7 ± 2.1 1458 3.31 

PUF-10%kl 42.2 ± 0.3 176.5 ± 59.3 89.4 ± 25.0 36.0 ± 4.3 1837 3.85 

PUF-3%kIPDI 34.5 ± 0.9 220.1 ± 59.3 55.9 ± 8.7 49.2 ± 2.5 1283 0.53 
PUF-5%kIPDI 36.9 ± 0.6 233.6 ± 62.1 66.7 ± 14.4 54.7 ± 4.2 1743 1.02 

PUF-10%kIPDI 41.8 ± 0.7 204.2 ± 53.2 88.0 ± 18.3 55.7 ± 1.5 3497 1.12 

 

  Figure 5.10 shows SEM images of foam sections perpendicular to the growth 

(Figure 5.10a) and also in growth direction (Figure 5.10b). It was observed that the 

cellular structure of the reference foam was formed by both small and large voids with 

thin struts. Also, the cells were slightly larger in the growth direction, denoting that the 

foam rise took place rapidly giving place to elongated cells. This oriented effect was 

hindered in foams containing lignin, where more homogeneous pores and wider struts 

were observed, which could be attributed to the higher viscosity of the part B reactant 

mixture. It shall be noted that the k-IPDI containing foams presented more voids in 

their walls suggesting the presence of more open cells. This higher open cell content 

was confirmed by measuring the air passing through the structure of the foam, as 



Flexible polyurethane foams with isocyanate functionalized lignin 
 

- 145 - 

shown in Table 5.9. Both k-lignin and k-IPDI containing foams presented higher open 

cell content than PUF-REF, since lignin particles acted as a breaking point of the cell 

walls. Notwithstanding, k-IPDI containing foams show more open cells than 

unmodified lignin containing ones. This could be owing to the fact that k-lignin was 

introduced in the formulation in solution with THF, resulting in a more homogeneous 

distribution of the lignin in the matrix, while k-IPDI was introduced by dispersing the 

solid into the polyol. The presence of these coarser distributed solid particles could 

enhance in a higher extent the breakage of the walls. 

 

Figure 5.10. SEM micrographs of the sections perpendicular (a) and parallel (b) to foam growth, of PUF-REF and 

foams containing k-lignin and k-IPDI. 

 

  The interaction between lignin and polyurethane matrix was determined 

extracting foams with a dioxane/water (9/1, v/v) mixture, which is a good medium for 

dissolving lignin. The PUF-REF mass loss after the extraction was registered in order to 

take into account only the lignin mass loss in the k-lignin and k-IPDI containing foams 
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as shown in Table 5.9. It was observed that in both k-lignin and k-IPDI, the extracted 

lignin content was lower than the added. This suggested that part of the k-lignin was 

also chemically linked to the polyurethane matrix, but in lesser extent than k-IPDI, as a 

consequence of the isocyanate groups anchored to k-IPDI. These results suggested that 

the presence of isocyanate groups in lignin increased its reactivity. Moreover, the 

chemical linkage of the lignin would prevent it from migration during its application. 

5.3.2.c. Thermal properties 

  The determination of the glass transition temperature was performed by DSC. 

Table 5.10 and Figure 5.11 thermograms show the Tg of the different polyurethane 

foams, which were in accordance with Tg values reported before for flexible PUF 

(Herrington and Hock, 1998).  
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Figure 5.11. DSC thermograms of PUF-REF and foams containing k-lignin and k-IPDI. 

 

  The presence of k-lignin yielded to slightly higher Tg values, in the same way as 

it was reported elsewhere (Wang et al., 2013; Yoshida et al., 1990). This effect was 

attributed to the fine dispersion of k-lignin in the polyurethane matrix as a 

consequence of its introduction in THF solution into the formulation. This finer 

dispersion, together with the higher Tg of k-lignin, could have caused the increase of 

the Tg of k-lignin containing foams as a result of the increased interaction between 
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lignin and the matrix. In contrast, the rougher dispersion of k-IPDI through the matrix 

and its lower Tg value, which was reflected in a slight decrease in the Tg of the k-IPDI 

containing foams.  

Table 5.10. Glass transition, degradation temperatures and residue at 800 °C of the prepared polyurethane foams.  

Sample 
Tg 

(°C) 
Tonset 
(°C) 

Tmax1
 

(°C) 

Tmax2 
(°C) 

Residue  
(wt.%) 

PUF-REF -53.0 266.7 296.6 396.6 0.00 

PUF-3%kl -52.6 269.1 298.6 392.5 1.97 
PUF-5%kl -51.6 269.9 299.5 395.3 3.73 

PUF-10%kl -50.8 262.2 294.8 396.1 5.52 

PUF-3%kIPDI -54.1 267.4 293.8 399.4 1.89 
PUF-5%kIPDI -54.2 268.6 296.9 400.8 3.23 

PUF-10%kIPDI -53.6 267.9 293.9 402.6 4.85 
Tonset: Temperature at 5% mass loss. 

Tmax1 and Tmax2: Maximum degradation rate temperature of first and second stages, respectively.  

 

  The thermal stability of the flexible polyurethane samples was analyzed by TGA 

(Figure 5.12) and the most characteristic values are included in Table 5.10. The 

addition of lignin did not change the thermal degradation mechanism, which took 

place in two stages regardless of the presence of both types of lignin. The first 

degradation step corresponded to the degradation of the isocyanate-urea related 

domains whereas the second step was attributed to the decomposition of the soft 

domains, which are related to the polyol. 

  Tonset shifted slightly towards higher temperatures in case of PUF containing k-

lignin at the lowest content, probably due to the stabilizing effect of the lignin 

distributed along the polyurethane matrix, whereas it remained practically unaltered 

in case of k-IPDI containing foams. In regard of the first stage maximum degradation 

temperature (Tmax1), it decreased in k-IPDI containing foams, as it was expected from 

the previous TGA analysis of k-IPDI, since it presented lower thermal stability than k-

lignin, which contributed to delay between 2 and 3 °C the first degradation of PUF. 

Moreover, it should be noted that the mass loss related to this step decreased in both 

kinds of lignin containing foams, being function of the lignin content.  
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Figure 5.12 Mass (top) and first derivative (bottom) curves of the reference and k-lignin and k-IPDI containing 

foams. 

 

  Despite the presence of k-IPDI did not contribute to improve the thermal 

stability of the first stage of degradation, the chemical attachment of the lignin with 

the polymeric matrix contributed to increase up to 6 °C the maximum mass loss rate in 

the second stage. In relation to the residue, more quantity was formed with increasing 

lignin content as it was expected; in greater extent in case of k-lignin (5.52% in case of 

PUF-10%kl) than k-IPDI(up to a 4.85% in case of PUF-10%kIPDI) owing to the low 

thermal stability of the urethane-urea linkages formed between the isocyanate 

modified lignin. 

5.3.2.d. Mechanical properties 

  The capacity of the foam to absorb elastic energy and to recover its original 

shape after being deformed was measured as resilience. The obtained resilience values 

are shown on Table 5.11 and demonstrated that the addition of k-lignin yielded to less 

resilient, i.e. more viscoelastic foams, and which needed more time to recover their 

original shape. Apart from other parameters, resilience could be related to the density 
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of the foam; therefore those with lower density would take less time to recover (Mills 

et al., 2009). This was fulfilled in case of k-lignin containing foams, which resilience 

decreased at higher density (and higher lignin content). In case of k-IPDI filled foams, 

the resilience decreased a 15% with respect to PUF-REF when adding a 3% k-IPDI and 

remained practically constant with increasing k-IPDI content, in spite of their higher 

density. This effect was also observed in Chapter 4 in foams containing LDH and E560, 

suggesting that reactive modifiers such as E560 or k-IPDI could affect the crosslink 

density, thus showing lower resilience values. 

  On the other hand, firmness of the foam was studied by CFD test, which 

together with the density is one of the most important characteristics of the flexible 

foams. Table 5.11 shows that the addition of lignin to the cellular polyurethane caused 

an increase in the CFD of the foams. Unmodified lignin containing foams resulted to be 

more rigid than those containing k-IPDI due to the rougher particle dispersion.  

Table 5.11. Mechanical properties of the prepared flexible polyurethane foams. Specific compressive stress is given 

at 10% strain and energy absorption per volume unit at 50% strain.  

 
Sample 

 
 

Resilience 
(%) 

CFD 
(kPa) 

Specific 
compressive 

stress  
(kPa kg

-1
 m

3
) 

Specific elastic 
modulus 

(kPa kg
-1

 m
3
) 

Energy 
absorption / 

volume  
(J m

-3
 10

-2
) 

PUF-REF 45.8 ± 1.1 4.46 ± 0.33 0.10 3.05 192.97 

PUF-3%kl 40.0 ± 0.8 6.06 ± 0.33 0.11 2.36 200.71 
PUF-5%kl 34.8 ± 0.9 6.81 ± 0.10 0.14 2.86 250.27 

PUF-10%kl 33.3 ± 0.3 9.51 ± 0.15 0.13 3.17 312.23 

PUF-3%kIPDI 39.1 ± 0.3 4.59 ± 0.41 0.11 2.29 172.09 
PUF-5%kIPDI 38.9 ± 0.8 5.21 ± 0.13 0.06 1.82 120.74 

PUF-10%kIPDI 38.7 ± 0.3 5.53 ± 0.29 0.03 1.58 103.33 

 

  The compressive stress-strain curves (Figure 5.13a) of the lignin containing 

foams evidenced that those containing k-lignin presented higher elastic modulus than 

PUF-REF, having the highest modulus at a k-lignin load of 10%. The opposite effect was 

observed in k-IPDI containing foams, presenting modulus below that of the PUF-REF, 

being especially low in case of 10% k-IPDI containing sample. Nevertheless, in order to 

avoid the effect of the density in the compressive characteristics of the foams, the 

specific compressive stress at 10% strain and the specific compressive modulus were 

calculated (Table 5.11). 
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Figure 5.13. Compressive stress-strain curves (a) and energy absorption capability according to density (b) of 

reference and foams containing k-lignin and k-IPDI. 

 

  The trend followed by the CFD values was confirmed with higher specific 

compressive stress values than PUF-REF in case of k-lignin containing foams. The 

specific modulus did not change much when using k-lignin with respect to PUF-REF, 

but did present a growing trend at higher k-lignin content, whereas more flexible 

foams were obtained using k-IPDI, presenting lower specific compressive stress at 10% 

strain and lower specific modulus than PUF-REF, which could be related to the lower 

crosslink density of k-IPDI containing foams. Additionally, the energy absorption per 

unit volume of foam (toughness) was calculated as the area below the stress-strain 

curves until 50% deformation. This parameter is critical in applications involving safety, 

such as seat cushioning in automotive industry, where the foam acts as a passive 

protective element for the dissipation of the energy absorbed during the impact. 

Figure 5.13b shows the different trend followed by foams containing k-lignin and k-

IPDI. 

  The higher stiffness of k-lignin containing foams provided with higher energy 

absorption capacity with increasing lignin content, while k-IPDI containing samples 

presented a lower area under the curve due to their higher flexibility, thus having a 

lower ability to absorb energy. This was because k-lignin acted as a filler, whereas k-

IPDI acted as a reactive filler that interfered with foam crosslinking.  
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5.4. Conclusions 

  A commercial softwood kraft lignin (k-lignin) was successfully functionalized 

with an aliphatic diisocyanate (IPDI) in order to increase its chemical attachment to a 

flexible polyurethane foam matrix. Approximately half of the hydroxyl groups present 

in lignin reacted with IPDI, as it was suggested by the OH consumption determined in 

k-IPDI by the ISO 14900:2001(E) standard, which was in agreement with the nitrogen 

content detected by elemental analysis. Its functionalization was also confirmed by 

FTIR and 13C CP/MAS NMR spectroscopy, through the appearance of new signals 

related to urethane groups and free isocyanate groups. Thermogravimetric analyses 

also showed that the degradation of k-IPDI occurred in one stage, having a maximum 

degradation temperature intermediate to that of k-lignin and neat IPDI.  

  Moreover, flexible polyurethane foams containing 3, 5 and 10% of lignin were 

successfully manufactured. It was observed that the presence of lignin hindered the 

foam formation increasing the times for each stage of the foaming process with higher 

lignin contents. This was more pronounced in case of k-lignin containing foams which 

needed more catalyst amount in order to avoid the foam collapse due to the slower 

polymerization caused by the presence of lignin. Density increased in both k-lignin and 

k-IPDI containing foams, regardless the type of lignin, owing to the higher viscosity of 

the reactive mixture. 

  More rigid foams were obtained with the addition of k-lignin to the 

polyurethane matrix, as it was observed by the higher CFD values obtained, suggesting 

that k-lignin acted as reinforcement in the polyurethane matrix. This reinforcing effect 

was also reflected in lower resilience values, meaning that k-lignin containing foams 

needed more time to recover their original shape. The lower resilience and CFD of 3% 

k-IPDI containing foams was a consequence of the less fine dispersion and to the lower 

crosslink density compared to foams containing k-lignin. 

  In terms of the strain-stress curves, it was observed that the modulus and the 

ability to absorb energy increased when k-lignin was used, whereas those containing k-

IPDI were softer (with lower elastic modulus) but with lower energy absorption 
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capacity. These properties will condition the application field of these foams. High 

energy absorption capacity would be needed in protective or safety-related 

applications, while comfort intended ones would be more focused on the flexibility of 

the foam. 
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6.1 Introduction 

Given the results obtained in the preceding chapters and with the objective of 

performing a more thorough study of fire behavior, different flexible polyurethane 

foams are prepared in this chapter containing the previously used eco-friendly fillers 

such as layered double hydroxides (LDH) and kraft lignin, in combination with the 

phosphorus containing oligomeric diol (E560). The combination of these two additive 

compounds and the reactive E560 is expected to improve the flame retardancy owing 

to the sum of the effects provided by each one.  

Lignin was selected to give added value to an industrial byproduct that can act 

as a potential charring agent owing to its aromatic structure. This particular 

unsaturated structure can yield high amounts of char in presence of an acid source. In 

this way, E560 was selected as acid source to promote the charring efficiency of lignin, 

due to the presence of phosphorus in its structure that upon degradation produce 

phosphorus containing acids which can enhance the dehydration and the degradation 

of lignin. This char has an important role as a heat and oxygen barrier of the burning 

polymer, delaying or even avoiding the penetration of flames in the material. 

Nevertheless, this char shield cannot be fully efficient if cracks are present on its 

surface. For this reason, LDH were selected not only due to the barrier effect provided 

by its lamellar structure that can also hinder the penetration of oxygen and heat 

through the burning polymeric substrate, but also because LDH can act as a char 

reinforcing filler avoiding the formation of cracks in a more advanced stage of burning.  

In this chapter, due to its higher availability carbonate interlayered LDH (LDH-

CO3) is selected whereas kraft lignin is chosen due to the superior mechanical 

properties observed in Chapter 5. Two series of foams are prepared containing 

separately lignin and LDH, and combining both of them: one of the series without E560 

(0E foam series) and the other with 5 parts per hundred of E560 polyol (5E series) in 

order to avoid a pronunciated increase of viscosity.  

In addition to Fourier transform infrared spectroscopy, thermogravimetric 

analysis and mechanical tests, different techniques for the evaluation of flame 
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response of the manufactured foam samples are employed, such as cone calorimetry, 

limiting oxygen index and UL94 horizontal burning test for foamed materials. Despite 

these techniques do not determine the real response of the materials under real fire 

conditions; they can be used as a preliminary assess of the effect on the flame 

retardancy of  these potential eco-friendly flame retardants.  

 

6.2 Experimental procedure 

6.2.1. Materials 

  In this chapter, FPUF were prepared with a fossil derived trifunctional polyether 

polyol (Alcupol® F4811). The isocyanate (TDI) and foaming additives, as well as the 

Exolit® OP 560 (E560) oligomeric diol which was used as reactive flame retardant, and 

the eco-friendly fillers carbonate interlayered LDH (Sigma-Aldrich) and kraft lignin 

(BioChoiceTM, UPM) are all described in Chapter 2 (Section 2.2).   

 

6.2.2. Flexible polyurethane foam preparation 

In the preceding chapters it has been observed that density plays an important 

role in the final properties of flexible polyurethane foams. For this reason, in this 

chapter foams with densities of 40 ± 2 kg m-3 were prepared. This condition 

necessitated varying the formulations (shown in Table 6.1) in relation to the additive 

or additive mixture used, in order to maintain constant density values, but the 

isocyanate index was held constant (110) in all cases. In general, the use of lignin and 

LDH contributed to increasing the viscosity of the reactive mixture, hindering the 

growth of the bubbles and yielding more compact foam. To counteract this effect, 

higher blowing agent content was needed in some formulations in order to maintain 

the density. The use of higher amounts of water had also an impact on the hard 

segment (HS) content of the foams, as shown in Table 6.1, which was calculated as the 

grams of water and isocyanate divided by the total weight of the foam (Sonnenschein 

et al., 2007). A series of foams with only polyether polyol (0E), with 5 wt% of lignin (0E-
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5%L), with 3 parts per hundred of polyol (pphp) of LDH (0E-3LDH), and combining 

5%wt lignin and 3 pphp LDH (0E-5%L/3LDH) was prepared. The same pattern was 

repeated to prepare foams containing a mixture of 95 pphp of polyether polyol and 5 

pphp of E560 (5E, 5E-5%L, 5E-3LDH and 5E-5%L/3LDH, respectively). The sample 

identification according to the additives used is also shown in Table 6.1.  

The foams were prepared following the procedure explained in Chapter 3 

(Section 3.2.3). Foams containing E560 were prepared by mixing both polyol and 

oligomeric diol for 30 s at 2000 rpm prior to addition of the additives and the eco-

friendly fillers. When the foams contained E560, lignin and/or LDH, the E560 was 

always mixed with the polyol first, and then the fillers were added according to the 

aforementioned procedure, incorporating and dispersing first the LDH and then the 

lignin, which were previously dried as explained in Chapter 3 (Section 3.2.3) and 

Chapter 5 (Section 5.2.2). Then, the amine catalyst, surfactant and blowing agent were 

added to the mixture and stirred with a radial turbine at 2000 rpm for 60 s. Afterwards 

the organometallic catalyst was added and mixed another 30 s, resulting in a ready-to-

use part B of the formulation. Finally the TDI (part A) was incorporated and stirred for 

a few seconds with a turbohelix-shaped stirrer at 2500 rpm in order to obtain a faster 

homogenization. Finally, the mixture was poured quickly into an open mold allowing 

free rise of the foam. The hydroxyl number of lignin was not taken into consideration 

in foam formulation. 

Table 6.1. Additives, isocyanate and hard segment (HS) content of the prepared flexible polyurethane foams.  

Sample  

Additive content 

HS 
(%) 

Exolit OP 
560®  

(pphp) 

Lignin 
(%*) 

LDH 
(pphp) 

Water 
(pphp) 

Isocyanate 
content 
I.I.= 110 

(%*) 

Organotin/amine 
catalyst ratio 

0E - - - 2.30 33.21 0.96 25.9 
0E-5%L - 5 - 2.40 34.18 1.67 26.5 

0E-3LDH - - 3 2.35 33.65 1.27 26.2 
0E-5%L/3LDH - 5 3 2.40 34.18 1.67 26.5 

5E 5 - - 2.40 38.02 0.25 28.5 
5E-5%L 5 5 - 2.40 38.07 0.20 28.5 

5E-3LDH 5 - 3 2.40 38.02 0.21 28.5 
5E-5%L/3LDH 5 5 3 3.00 44.53 1.00 31.8 

*Given as a percentage of the total foam weight. 
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6.3 Results and discussion 

6.3.1. Foam morphology and structural characterization 

Firstly, the viscosity of the reactive mixture was measured since it is a critical 

parameter affecting the foaming process. Increased viscosity hinders bubble growth, 

yielding foams with lower cell size. Figure 6.1 shows the viscosity of the part B 

precursors of the foams (corresponding to the polyol or polyol-diol mixture plus the 

additives and fillers used in each formulation), evidencing that the viscosity increased 

in the presence of fillers. The effect of this higher-viscosity formulation was 

counteracted by the addition of more blowing agent. 
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Figure 6.1 Viscosity of the part B precursors (polyol or polyol-diol mixture, 0E and 5E respectively, plus additives and 

fillers used in each series of foams: 0E series (a) and 5E series (b) 

 

Figure 6.2 shows the infrared spectra of the prepared foams, all of which 

confirmed the complete reaction of isocyanate groups with the polyol or polyol-diol 

mixture and the blowing agent due to the absence of the characteristic –NCO band at 

2276 cm-1. Foams belonging to the 0E series (using only polyether polyol) exhibited 

some differences owing to the formulation of the foams. The slightly higher hard 

segment content in the foams containing LDH and/or lignin was reflected in the 

increased intensity of the bands associated with urea bonds found in the 0E foams. 

This increased intensity was observed in the characteristic bands of hydrogen bonded 

N-H (3296 cm-1), the associated urea carbonyl stretching vibration band (1640 cm-1), 

and also in the N-H bending vibration band (1533 cm-1), which overlapped with C-N 
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stretching. The intensity of the C-O-C asymmetric (1222 cm-1) and symmetric (1088 cm-

1) stretching remained practically unaltered. In case of 5E foams, the band appearing at 

3296 cm-1 related to N-H stretching vibration, presented higher intensity than 0E series 

owing to their higher HS content.  

The 0E sample showed lower intensity in the bidentate urea band (1640 cm-1) 

due to its lower blowing agent content. Moreover, the higher intensity of this band in 

filled foams (0E-5%L, 0E-3LDH and 0E-5%L/3LDH) also reflected that urea microdomain 

separation was favored. With regard to the foams containing 5 pphp E560, the 

intensity of the bidentate urea band at 1640 cm-1 in 5E increased over that of 0E due to 

the higher water in the formulation, and thus the higher urea content in the 5E 

formulation. Nevertheless, the intensity of this band decreased in filled 5E foams due 

to the higher viscosity of the reactive mixture in the presence of either LDH or lignin, 

which hindered separation of the urea microphase (Das et al., 2009). On the other 

hand, the low LDH and lignin content in foams made it difficult to discern their 

characteristic bands due to their low relative intensity.  
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Figure 6.2. Infrared spectra of the 0E (top) and 5E (bottom) series of foams. 
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In terms of foam morphology, since the foams were formulated in order to 

achieve similar density values, the effect of this parameter was omitted within the 

characterization studies of the foams and focused on the outcome of the fillers used, 

or in combination with E560. Table 6.2 shows that the density values were maintained 

around 40 ± 2 kg m-3. These values were adjusted by varying the amount of blowing 

agent used.  

Table 6.2. Density, open cell content and average cell size of the foams.  

Sample  
Density 
(kg m

-3
) 

Open cell content 
(%) 

Average cell size 
(μm) 

0E 41.5 ± 0.2 30.5 ± 1.4 240.4 ± 75.2 
0E-5%L 38.8 ± 0.6 23.8 ± 1.5 242.6 ± 81.2 

0E-3LDH 41.3 ± 0.5 27.0 ± 1.6 240.9 ± 66.8 
0E-5%L/3LDH 39.5 ± 0.9 25.7 ± 1.9 241.9 ± 69.8 

5E 41.1 ± 0.8 22.4 ±1.5 239.7 ± 64.8 
5E-5%L 41.2 ± 0.7 29.5 ± 2.3 237.7 ± 72.8 

5E-3LDH 40.2 ± 0.9 35.4 ± 2.8 238.3 ± 77.0 
5E-5%L/3LDH 39.4 ± 1.2 34.7 ± 3.3 234.4 ± 68.6 

 

Figure 6.3 also shows that the cell heterogeneity of the foams was maintained 

regardless of whether they were filled or unfilled, and whether or not they contained 

E560. 

When comparing 0E to 5E foam series, similar average cell size values 

perpendicular to foam growth were obtained, as expected since the formulation was 

adjusted to have the same density. The only sample that presented a slightly lower 

average cell size was 5E-5%L/3LDH, probably as a consequence of the combined effect 

of the higher viscosity of the reactive mixture and also due to its higher catalyst and HS 

content.  

The porosity (or open cell content) of polyurethane foams is influenced by 

several factors (Szycher, 2013), including the viscosity of the reactive mixture (Turner 

et al., 1989), the isocyanate index, the type of surfactant used, the amount of 

organometallic catalyst used (which hinders wall breaking by favoring polymerization) 

(Mahmoud et al., 2017) and the presence of fillers in the matrix (Danowska et al., 

2013). In the case of 0E foams, the porosity decreased from 30.5% in 0E to 23.8% in 

0E-5%L, and to 27.0% for 0E-3LDH, owing to the higher viscosity that hindered wall 
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breakage. Nevertheless, while the addition of LDH decreased the open cell content 

(25.7%) in 0E-5%L/3LDH as compared with 0E due to increased viscosity, the filler 

amount in the matrix was saturated enough to contribute to facilitating wall breakage, 

in contrast to the open cell content of 0E-5%L (23.8%). In the case of foams containing 

E560, the open cell content in the 5E sample was lower than in the 0E samples, also as 

a consequence of the increased viscosity. Nevertheless, this effect was counteracted 

by the presence of fillers that facilitated wall breakage (Harikrishnan et al., 2006) and 

due to the lower organotin catalyst content (Mahmoud et al., 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. OM micrographs (x50) of the foams prepared with 100 pphp polyether polyol (left) and with 

95 pphp polyether polyol and 5 pphp E560 (right). 
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6.3.2. Thermal properties 

The thermal stability of the foam samples was analyzed by TGA, and the mass 

loss curves are shown in Figure 6.4. As it was previously observed, the decomposition 

of PUF occurred in two stages: the first corresponding to the degradation of the hard 

segment (urethane and urea linkages) at Tmax1, and the second to the degradation of 

the soft segment (polyol backbone) at Tmax2. In 0E foams, the presence of lignin and 

LDH decreased the Tonset slightly due to their intrinsic lower decomposition 

temperatures (Table 6.3). Regarding the maximum degradation rate temperatures 

Tmax1 and Tmax2, LDH decreased the Tmax1 slightly, but did not affect the Tmax2. When 

lignin and LDH were combined in the formulation, the LDH presented a stabilizing 

effect of Tmax1 and Tmax2, preventing the earlier degradation of PUF and lignin in both 

decomposition stages. This was attributed to the barrier effect of the lamellar 

geometry of LDH together with the charring effect of lignin, which contributed to delay 

the release of volatile products (Liu et al., 2015).   

 

Figure 6.4. Mass loss and derivative mass loss (DTG) curves of the foams prepared only with polyether polyol (a, b) 

and combining polyether polyol with E560 (c, d). 
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Table 6.3. Thermal degradation temperatures obtained from TGA and glass transition temperatures of the different 

foams obtained by DMA.  

Tonset: Temperature at 5% mass loss 

Tmax1,2: Temperature of maximum degradation rate in the first (1) and second (2) stage 

Tg: Glass transition temperature measured by DMA as the maximum of tan δ 

 

On the other hand, the use of E560 had a catalyzing effect on the Tonset, 

especially in the presence of lignin, as a consequence of the acid nature of the 

phosphorus contained in the polyol, which contributed to accelerating the dehydration 

of lignin (Fierro et al., 2005), decreasing the Tonset by up to 28 °C in 5E-5%L as compared 

with 5E. The combination of lignin and LDH contributed to delaying this dehydration by 

20 °C in 5E-5%L/3LDH as compared with 5E-5%L. While the presence of E560 increased 

the decomposition of the urethane/urea linkages slightly in the first stage, it certainly 

affected the second stage, showing two different mass losses when combined with 

lignin (5E-5%L and 5E-5%L/3LDH). These two different mass losses were attributed to 

the catalyzing effect of the phosphorus during the decomposition of the polyol 

backbone, during the second stage of which the degradation of the polyol (taking place 

at 372 °C and 376 °C in 5E-5%L and 5E-5%L/3LDH, respectively) could be differentiated 

from the degradation of the lignin (at 386 and 390 °C in 5E-5%L and 5E-5%L/3LDH, 

respectively). It was observed that the introduction of fillers yielded a slight increase in 

residue as a consequence of its low loading content. Nevertheless it was worth noting 

that samples containing lignin, due to the aromatic structure of this substance, 

exhibited the highest char yield, especially when combined with E560. The phosphorus 

contained in the polyol acted as an acid source, enhancing the char formation of lignin.  

Sample 
Tonset 
(°C) 

Tmax1
 

(°C) 
Tmax2

 

(°C) 
Tg

 

(°C) 

Lignin 196 386 - - 
LDH 207 231 318/429 - 

0E 247 277 380 -39 
0E-5%L 243 274 375 -40 

0E-3LDH 240 273 380 -39 
0E-5%L/3LDH 243 285 381 -38 

5E 238 271 381 -33 
5E-5%L 210 281 372/386 -35 

5E-3LDH 231 280 378 -37 
5E-5%L/3LDH 230 283 376/390 -32 
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Figure 6.5 shows the storage modulus, E´, and tan  curves as a function of 

temperature, obtained by DMA. The glass transition temperature was calculated as the 

maximum value of the loss factor (tan δ) (Table 6.3). The tan δ profiles remain similar 

regardless of the fillers used, and a single transition is observed in all foams, 

corresponding to the Tg of the polyol. The most relevant change observed was the 

broader transition and higher Tg value of the foams containing E560 with respect to 0E 

foams, as a consequence of the lower molecular weight of the phosphorous oligomeric 

diol and the increased crosslinking density (Zhang, 2008) due to the higher amount of 

isocyanate required to compensate for the OH introduced by E560. As regards the 

storage modulus (E’) of the 0E and 5E series, the latter presented a higher E’ value, 

owing to its increased crosslink density. Moreover, the addition of lignin to both series 

of foam resulted in foams with a lower E’ than their respective 0E and 5E counterparts, 

and this effect is attributed to the increased viscosity that hindered the crosslink 

formation during the foaming process.  
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Figure 6.5. Storage modulus (E’) and tan δ as a function of temperature of 0E (left) and 5E (right) series of 

polyurethane foams. 

 

6.3.3. Mechanical properties 

Resilience is a parameter related to the quality and durability of flexible open-

cell foams, which gives a notion of the support of the cellular material. Flexible foams 

can be divided into highly resilient or viscoelastic foams. Those classified in the former 

group have resilience values higher than 55% and are characterized by a high support 

factor, firmness, and fast recovery after compression, along with higher durability. 
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Those included in the second group, which are also known as memory foams, have 

resilience values below 20%, and are characterized by their softness, better pressure 

distribution and slower recovery than high resilient foams, which are desirable for 

motion isolation in bedding. Conventional slabstock foams have resilience values 

around 40%, which was the case of the present foams shown in Table 6.4. The addition 

of E560 to the formulation contributes to increase resilience of 5E foam, in accordance 

with Chapter 4 (section 4.3.3), which is related to the higher crosslink density of the 

foam due to the higher hydroxyl index of the E560, which requires more TDI and thus 

creates more crosslinking points and a tighter structure. 

 

Table 6.4. Mechanical properties of the prepared flexible polyurethane foams. Specific compressive stress is given 

at 10% strain and compression set and energy absorption per volume unit are both given at 50% strain.  

Sample 
Resilience 

(%) 
CFD 

(kPa) 

Compression 
set 
(%) 

Elastic 
Modulus 

(kPa) 

Compressive 
stress 
(kPa) 

Energy 
absorption/ 

volume  
(J m

-3
) 

0E 30.0 ± 2.7 3.97 ± 0.61 5.02 ± 1.46 56.1 ± 0.5 3.39 192.40 
0E-5%L 38.7 ± 3.6 4.61 ± 0.30 4.38 ± 2.40 118.8 ± 5.0 5.49 285.35 

0E-3LDH 39.2 ± 3.9 4.47 ± 0.19 3.51 ± 0.31 78.4 ± 1.1 4.02 212.12 
0E-5%L/3LDH 38.2 ± 3.2 4.37 ± 0.11 4.25 ± 0.31 79.7 ± 5.6 3.38 192.86 

5E 34.0 ± 2.3 3.71 ± 0.47 5.04 ± 1.16 64.1 ± 1.6 2.81 160.57 
5E-5%L 27.7 ± 1.6 4.12 ± 0.29 5.13 ± 0.69 76.6 ± 3.7 3.57 196.65 

5E-3LDH 32.0 ± 2.9 3.52 ± 0.18 4.96 ± 1.34 44.9 ± 2.8 2.28 130.17 
5E-5%L/3LDH 34.4 ± 2.0 4.69 ± 0.46 6.43 ± 1.12 81.4 ± 5.1 4.54 248.93 

 

In spite of this behavior, Table 6.4 shows that the addition of fillers had 

opposite effects in the two systems. In the case of 0E foams, the addition of lignin and 

LDH, alone or in combination, led to higher resilience values (up to 9% higher than 0E), 

thus resulting in foams with faster recovery after deformation, due to the urea 

segregation. The same effect was observed in Chapter 4 (section 4.3.3) when LDH 

were present in the formulation. Nevertheless, the behavior observed with lignin in  

Chapter 5 (section 5.3.2) which decreased resilience values, was only observed when 

lignin was combined with E560. This different behavior in lignin in presence or not of 

E560 could be attributed to the different polyol (ALC) used in this chapter. In the case 

of foams containing E560, as it was observed in Chapter 4 (section 4.3.3), the presence 

of fillers led to unchanged or even decreased resilience values, due to the viscosity of 
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the reactive mixture that hindered urea microphase separation as well as due to the 

increased crosslinking density.  

Another parameter related to the quality of flexible foams is compression force 

deflection (CFD), which is related to the firmness (or load-bearing capacity) of the 

foam. It gives a measure of the pressure needed to maintain compression of the foam 

to 50% of its original thickness. Table 6.4 reveals that the CFD values of the 0E system 

were generally higher than those of 5E samples, in contrast of what was observed in 

Chapter 4 (section 4.3.3) where CFD increased slightly with E560 content. These 

results indicate the reinforcing effect of the urea microdomain segregation in 0E, 

acting to reinforce the foam structure owing to the differences in the foam 

formulation to maintain the density constant. Moreover, CFD increased when using 

lignin, due to its aromatic and rigid structure as it was observed in Chapter 5 (section 

5.3.2), which effect was added to the reinforcing effect of the microdomains, thus 

increasing the compression strength of the foam. In the case of 5E foams, the presence 

of lignin also contributed to increase CFD values, with a more pronounced increase 

when in combination with LDH, but values generally remained below those of the 0E 

system, due to the lower microdomain separation of the foam.  

The compression set quantifies the permanent deformation after a material is 

compressed under constant deformation and temperature. This property is critical in 

the final application of flexible polyurethane foams, and is related to the relative flow 

of the hard segment to the soft domains of the polyurethane under thermal and 

compressive stress, forming to new interactions in the new deformed conformation 

(Sonnenschein et al., 2007).  

It was observed that in general the compression set of 0E foams was slightly 

lower as a consequence of their better segregation of hard segments, as established by 

Armistead et al. (1988). Nevertheless, the addition of lignin and/or LDH to 0E acts to 

hinder the relative flow between domains, with the effect of decreasing the 

permanent deformation compared to the unfilled 0E sample. On the other hand, the 

lower microphase separation of filled 5E foams resulted in slightly higher permanent 

deformation.  
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The values for elastic modulus, compressive stress at 10% and energy 

absorption up to 50% of deformation were obtained from the compressive stress-

strain curves of the foams (Figure 6.6). Comparing 0E and 5E foams, the higher 

crosslink density resulted in higher elastic moduli in 5E foams, while phase separation 

in 0E favored higher compression strength values. In both series the addition of lignin 

led to higher E and compressive strength values due to its complex and rigid structure.   

The elastic modulus and compressive stress values of the foams determined 

their energy absorption per volume unit, which is related to the density of the material 

and is a critical parameter in applications involving safety. In this case, since the 

density was constant for all the foams, urea microdomain separation was evident in 

the curves. In general, 0E series foams showed higher microphase separation, 

especially 0E-5%L, generally presenting higher energy absorption than 5E series foams, 

which were softer and, with the exception of 5E-5%L/3LDH foam, presented higher 

energy dissipation due to the reinforcing effect of lignin in combination with LDH.  As it 

was observed in Chapter 5 (section 5.3.2) the presence of lignin contributed to 

increase the energy absorption per unit volume of the foams.  
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Figure 6.6. Compressive stress-strain curves of the foams prepared with polyether polyol (a) and with 5 pphp E560 

(b). 

 

6.3.4. Flammability  

LOI defines the minimum oxygen concentration necessary to support the 

combustion of a specimen under a specified candle-like fire scenario, and thus it is a 
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method for classifying the flammability of a polymer. Increasing the LOI value of a 

material is indicative of reduced flammability. Polymeric materials with LOI values 

higher than 26–30 % are usually considered flame retardant (Schartel, 2010).  

While the LOI value (Table 6.5) increased somewhat when using the 

phosphorous oligomeric diol in the foam (from 18.2 to 20.0), it decreased in the 

presence of lignin. The same behavior was observed by Xing et al. (2013), who 

attributed this effect to lignin’s intrinsic flammability (Cheng et al., 2012). Considering 

the small amount of lignin used and that the intrinsic flammability of PU is even higher 

than that of lignin, this explanation was dismissed. The deterioration of LOI upon the 

addition of lignin or LDH, respectively, is proposed to be due to the increased viscosity 

of the pyrolyzing melt, which results in more fuel being allocated to the actual 

pyrolyzing zone. This effect has been described before for nanocomposites (Schartel et 

al., 2006; 2015).  Adding the flame retardant E560 to the samples with lignin and LDH 

appears to compensate for the effects, yielding unchanged LOI values (around 18.2) for 

the 0E series. The amount of additives used was far too small to improve LOI. 

 

Table 6.5. Limiting oxygen index values, melt polymer layer thickness after 20 s of combustion and burning rate (BR) 

obtained from UL 94 test.  

 

The viscosity of the molten pyrolyzing polymer in the pyrolysis zone can be 

critical in flame propagation. Lower viscosities enhance the dripping of combustible 

polymers, creating pool fires but also removing fuel from the flame. The thickness 

(Figure 6.7) and the viscosity (Figure 6.8) of the molten polymer layers were measured 

by quenching the burning sample in the cone calorimeter 20 s after ignition.  

Sample  LOI 
Melt layer thickness 

(mm) 
BR 

(mm min
-1

) 

0E 18.2 3.02 ± 0.34 59.7 ± 3.4 
0E-5%L 17.0 1.10 ± 0.29 50.9 ± 4.7 

0E-3LDH 17.1 2.60 ± 0.35 65.8 ± 3.4 
0E-5%L/3LDH 17.2 0.96 ± 0.31 51.8 ± 2.4 

5E 20.0 2.98 ± 0.56 45.4 ± 1.2 
5E-5%L 18.5 2.49 ± 0.45 42.4 ± 1.7 

5E-3LDH 18.2 1.54 ± 0.32 45.3 ± 2.8 
5E-5%L/3LDH 18.4 0.95 ± 0.20 43.9 ± 1.4 
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Figure 6.7. Images of the transversal cut of the molten polymer layer of the quenched foam samples after 20 s of 

ignition.  

 

Figure 6.8. Viscosity of the molten polymer layer remaining after 20 s of combustion. 0E (a) and 5E (b) samples. 

 

Cross sections of quenched foams showed that the liquid accumulated on the 

surface of the foam, as was reported by Krämer et al. (2010). Figure 6.8 displays the 

viscosity of the liquid pyrolysis products. Since pyrolysis products on the surface of 

burning items are not exposed to shear stress in fire scenarios, zero viscosity is a 

crucial factor when it comes to dripping. Figure 6.8 shows that the use of lignin and 

LDH, and especially their combination, yielded significantly higher viscosity at zero 

shear rates. It was observed that the increase in melt viscosity resulted in a decreased 

thickness of the melt layer in foams containing lignin and LDH. 

These results show that the mixture of the three compounds at such low 

contents did not enhance the flame retardancy of PUF, but provided increased 
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viscosity, which reduces melt flow and can prevent the polymer from dripping, and 

thus hinder the ignition of adjacent objects in a fire scenario. 

UL 94 is another preliminary test to assess the flammability of materials that is 

widely used in industry since it provides different rates depending on which test 

standard is performed to measure the behavior of the material. The UL 94 tests 

evaluate the behavior of materials under short-term fire exposure, determining their 

capacity for self-sustained flame propagation. For cellular materials such as 

polyurethane foams, the horizontal burning test is applied (UL 94-HB) according to ISO 

9772. Despite the fact that all of the foam samples tested in our study failed to achieve 

classification according to the UL 94 standard, the results were recorded in order to 

determine and compare the burning rates of the different samples. Analogous to LOI, 

adding small amounts of lignin and LDH, respectively, had hardly any relevant effect. 

Table 6.5 shows that the presence of E560 generally reduced the burning rate. When it 

was used alone, the burning rate was reduced by 24% as compared to 0E (14.3 mm 

min-1), and by 26% when it was used in combination with lignin and LDH. It was 

noteworthy that in accordance to the increased melt viscosity, lignin and its 

combination with LDH reduced the flame propagation speed, which would result in 

increased time to escape to the victims trapped in a hypothetical fire scenario.   

Cone calorimetry (CC) is a bench scale test designed to study the heat release 

of materials by simulating forced flaming fire conditions, which is generally performed 

in a horizontal orientation. The time to ignition (TTI) of polyurethane foams, due to 

their low density, is characterized by low thermal inertia, leading to a quick 

temperature rise on the surface once the specimen is exposed to an external heat flux 

(in this case 50 kW m-2, which is considered the heating intensity in a fully developed 

fire (Drysdale, 1986; Krämer et al., 2010; Tsai, 2009). Therefore, these materials 

present practically immediate time to ignition (in this case all the samples presented 

TTI values ranging between 1 and 2.5 s) and rapid fire growth, as described by Schartel 

and Hull (2007).  
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Figure 6.9. HRR, THR and CO production curves of unfilled and filled foams containing 0 (left) and 5 (right) pphp 

E560. 

 

Figure 6.9 shows the HRR curves of the horizontal CC measurements of the 

series of foams with 100 pphp of polyether polyol (Figure 6.9a) and foams containing 5 

pphp E560 (Figure 6.9b). The curves showed two distinct stages. According to 

Vanspeybroeck et al. (1993), the heat released in flexible polyurethane foams is 

proportional to the amount of mass burned, commencing with a fast melting of the 

samples to the bottom of the holder. This rapid advance of the pyrolysis front was 

reflected in the first decomposition stage, where the decomposition of the isocyanate 

took place, releasing a yellow smoke that decomposes into cyanhydric acid. 

Subsequently and as a consequence of the burning of the polyol (soft segment), the 

formation of a pool fire took place (Alongi and Carosio, 2017). The time to pool fire 

(tpool) was defined to quantify the time at which the second stage of decomposition 

started, which was observed in the burning process to coincide with the decrease in 

the heat release rate before the maximum HRR (pHRR) of the second stage.  

The pHRR is an important parameter since it is believed to indicate the moment 

when the fire is most likely to spread to adjacent objects (Schartel and Hull, 2007). The 
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pHRR for all tested samples occurred in the second stage as a consequence of the pool 

fire, as previously reported by Krämer et al. (2010). The flammable liquid resulted from 

the decomposition of the urethane and urea linkages, leading to the rupture of the 

crosslinked structure. Compared to the 0E samples, pHRR was reduced by 47% and tpool 

was delayed 30 s when lignin, LDH and E560 (5E-5%L/3LDH) were combined. LDH 

contributed to a protective layer because of its inert filler character and its high aspect 

ratio (Zammarano et al., 2005). Therefore, the time to pHRR (tpHRR) in the case of 0E-

3LDH was slightly delayed as compared with 0E. This protective effect was more 

evident in foams containing E560, where higher amounts of residue were formed 

(Table 6.6). In general, 0E foams containing lignin exhibited a higher heat release 

during the first stage of combustion, but a lower pHRR and delayed tpHRR. A similar 

behavior was observed for 5E foams. Differences between the materials were not as 

significant as within the group of 0E foams, which indicates that burning behavior was 

dominated by the phosphorus containing oligomeric diol.  

Figure 6.10 shows the images of the residues collected in the pan after cone 

calorimeter measurements. Differences were observed between the residue obtained 

from the 0E and 5E foam series due to the presence of E560, which slightly promoted 

char formation. However, after flameout all samples presented very low amounts of 

residue compared to charring materials such as rigid PUF (Lorenzetti et al., 2012). Since 

the pool fire stage is characterized by intense bubbling of the liquid pyrolysis products, 

and the char yield is very low, the formation of a protective char layer with a closed 

surface is hindered during combustion. Being very thin and cracked, the char layers 

formed by the tested foams under forced flaming conditions do not act as an efficient 

heat shield.  

Table 6.6 shows that in addition to decreasing the HRR, the presence of the 

fillers and E560 also delayed the tpool, thus delaying the second stage of decomposition 

in which the highest amount of heat was released. The total heat release (THR) gives 

insight into the fire load of the material. It was observed that the THR did not change 

significantly, because the samples burned completely. Nevertheless, THR decreased 

slightly (Figures 6.9c, d and Table 6.6) because of polyurethane weight replacement 

with fillers and increased residue. For the 0E and 5E foams, not only the THR, but also 
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the effective heat of combustion of the volatiles (EHC) were lower in the first stage 

than the THR and EHC in the second pool fire stage. When the samples contained 

lignin and/or LDH this behavior changed, increasing the heat released in the first stage, 

indicating that these change the pyrolysis front and contribute to a more gradual heat 

release. The incorporation of the phosphorous oligomeric diol contributed to a 

decrease in THR and EHC in both stages for the 5E foam series. In fact, THR decreased 

by up to 13.5% as compared with 0E when lignin, LDH and E560 were combined.  

 

Figure 6.10. Images of fire residues obtained in the cone calorimeter for 0E and 5E foam series after 

flameout and afterglow.



  

 

 

 

Table 6.6. Cone calorimetry test data of the prepared flexible polyurethane foams. 

pHRR: maximum heat release rate value (peak heat release rate). 

tpHRR: time to reach the pHRR. 

THR: total heat released in the whole process (THR) or in stages 1 or 2 (THR1,2). 

EHC: effective heat of combustion in the whole process (EHC) or in stages 1 or 2 (EHC1,2). 

tpool: time at which second stage of combustion (pool fire burning) begins.   

TSR: total smoke release. 

Residue: obtained gravimetrically after CC test. 
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0E 1209 78 15,5 16 21 54 40 31 56 52 326.80 0.00 
0E-5%L 902 84 10,7 29 24 72 22 31 51 55 296.78 1.40 

0E-3LDH 1214 81 15,0 17 22 57 36 30 53 52 292.13 0.00 
0E-5%L/3LDH 798 87 9,2 33 24 75 17 30 50 55 287.65 2.37 

5E 980 79.5 12,3 15 18 60 37 29 52 47 557.99 0.90 
5E-5%L 851 88.5 9,6 24 21 69 24 29 48 50 358.42 3.34 

5E-3LDH 852 91.5 9,3 24 21 72 25 31 49 52 427.41 1.61 
5E-5%L/3LDH 645 91.5 7,0 35 23 84 13 32 48 55 456.79 4.29 
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The effective heat of combustion (EHC) is defined as the heat release per unit 

mass, and was calculated as the total heat evolved (THE) divided by the total mass loss 

(TML). For all tested materials, the EHC of the first stage of decomposition (EHC1) was 

lower than the EHC of the second stage (EHC2). 0E foams containing lignin had a 

slightly increased EHC1, indicating a decomposition of the filler during the first stage.  

The quotient of pHRR/tpHRR gives an idea of the material’s propensity to 

combustion (Schartel and Hull, 2007). Table 6.6 displays that the unfilled 0E and 5E 

foams had significantly higher values than filled ones. Compared to 0E series, 

pHRR/tpHRR decreased from 15.5 kW m-2 s-1 to 9.2 kW m-2 s-1 for 0E-5%L/3LDH and to 

7.0 kW m-2 s-1 for the 5E foam containing lignin and LDH. This reduction is a result not 

only of the decreased pHRR, but also of the delayed tpHRR through the formation of a 

minor protective layer. This layer was formed mainly during the first stage of 

decomposition, when bubbling less intense than during the pool fire stage enabled its 

formation. 

Figures 6.9e and 6.9f display the CO production during combustion of the 

foams. It was observed that in the 0E series the CO production was constant 

throughout the measurement, but increased after flameout. This peak is indicative of a 

change from pyrolytic decomposition feeding the flame, to a thermo-oxidative 

decomposition of the residue called afterglow (Schartel and Hull, 2007).  

The peak of CO production was significantly higher for foams containing lignin, 

since their residue at flameout exceeded the residue of foams without lignin, as shown 

in Table 6.6. 5E foams exhibited a different behavior. The flame inhibition reducing the 

EHC in the gas phase was accompanied by increasing combustion products, typical for 

incomplete combustion in the flame. The CO yield during the first stage of 

decomposition was considerably increased, while it was similar to the 0E foams during 

the afterglowing of the char. Minor peaks occurred after flameout, indicating the 

afterglow. CO production for 5E foams containing LDH was significantly decreased 

during the first stage of decomposition as compared to 5E foams without LDH.  

Cone calorimeter investigations were performed in a vertical orientation as 

well, since the dripping characteristics of the materials are not taken into account in 
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the horizontal orientation. Vertical orientation enhances the dripping effect and the 

heat feedback from the pool of burning pyrolysis products, since foam collapse and 

pool fire do not overlap each other (Galaska et al., 2016; Schartel, 2010).  

Figure 6.11 shows the melt dripping 30 s after flame application. Most of the 

samples exhibited severe flaming from the pool fire in the catch pan underneath the 

sample holder after dripped off pyrolysis products were collected. Heat feedback from 

the flames of the pool fire accelerated the combustion of the specimen in the cage of 

the sample holder. Different burning behavior was observed for 0E-5%L/3LDH and 5E-

5%L/3LDH. Both foams filled with lignin and LDH showed increased viscosity of their 

pyrolysis products, which led to non-dripping decomposition in the vertical cone 

calorimeter measurement, so that no pool fire was formed. While smaller burning 

pieces falling off the specimen were observed for 0E-5%L/3LDH, no burning material 

was collected in the catch pan during the combustion of 5E-5%L/3LDH. 

 

 

Figure 6.11. Burning cone calorimeter samples (30 s after ignition) and residues. 
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It is worth noting that there was no residue left in the sample cage after the 

burning of most samples, except in the cases of 5E-5%L and 5E-5%L/3LDH, confirming 

the enhanced char formation by the combination of E560 and lignin. The dripping 

prevention with this low filler content is a promising way to improve PUF performance 

under fire conditions, since almost all of the existing fire retardants for PUF are 

designed not to prevent dripping, but to decrease HRR and reduce flame spread 

and/or delay ignition (Galaska et al., 2016). 

 

6.4. Conclusions 

Flexible polyurethane foams containing lignin, LDH and a phosphorous 

oligomeric diol as additives were successfully prepared with a density around 40 ± 2 kg 

m-3. The effect of these additives was to change the viscosity of the reactive mixture, 

which affected the urea microphase separation. This phase segregation was favored in 

0E foams, due to the lower viscosity of their reactive mixtures as compared with 5E 

foams. This urea segregation was especially reflected in foams’ mechanical properties, 

such as resilience, CFD, compression set, elastic modulus, compressive stress and 

energy absorption.  

Nevertheless, the presence of such low amounts of lignin by itself did not 

increase the flame retardancy of PUF, but the addition of E560 increased charring 

efficiency, while the addition of LDH contributed to reinforcing the char layer, yielding 

a more cohesive protective layer that decreased the pHRR in 47% (in 5E-5%L/3LDH) as 

compared with the unfilled foam 0E. Apart from a lower pHRR, a delayed tpHRR and 

time to pool fire were obtained, which suggests a delay in the most dangerous event 

during a fire: the flashover phenomenon.   

Additionally, the mixture of these three additives (E560, lignin and LDH) yielded 

an increased melt viscosity of the liquid degradation products of the PUF, preventing 

melt dripping during combustion. The mixture of E560 and lignin contributed to 

increasing char yield, while the addition of LDH reinforced the char layer.  
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It turned out that the amounts added were far too small to achieve interesting 

fire performance. Nevertheless, even these small amounts deliver significant insight 

into the complex flame retardant modes of action introduced by E560, LDH, and lignin. 

Not only did flame inhibition, charring, and a protective layer effect occur, but the 

crucial influence of viscosity was also demonstrated. These results could be considered 

a valuable preliminary approach to improve the flame retardancy of polyurethane 

foams, while giving added value to an industrial byproduct such as lignin and using 

eco-friendly alternatives like LDH towards a safer and more environmentally friendly 

future.  
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7.1. General conclusions 

  Different eco-friendly fillers have been successfully modified and introduced in 

flexible polyurethane foams formulated with a renewable sourced polyol, as potential 

halogen-free replacement for conventional flame retardants.  

  The replacement of carbonate anions by different inorganic and organic 

phosphorus containing molecules between the brucite-like layers of synthetic 

hydrotalcite clay (LDH) increased the interlayer spacing and determined the dispersion 

degree of the clay in the matrix. The dispersion degree and the chemical nature of the 

LDH intercalating anions affected directly the resilience and the compression force 

deflection values and the thermal stability of the foams, respectively. 

  The introduction of a phosphorus containing oligomeric diol in FPUF yielded to 

catalyze the polyurethane degradation owing to the presence of phosphorus, whereas 

the presence of the different LDHs contributed to counteract this effect owing to their 

laminar structure that resulted to act as a shield against heat. The presence of this 

phosphorus containing oligomeric diol did not affect the dispersion degree of the LDH, 

but affected the compression force deflection the resilience values of the foams, 

resulting in more viscoelastic materials.  

  On the other hand, the effect of kraft lignin as a potential charring agent into 

FPUF was studied. It was observed that lignin decreased the reactivity of the system, 

so its functionalization with isocyanate groups was performed. This functionalization 

apart of enhancing the reactivity of the system, anchored the lignin particles to the 

polyurethane matrix avoiding in this way particle migration during the end-use of the 

product. The presence of unmodified lignin resulted in more rigid foams with higher 

ability to absorb energy during deformation, whereas isocyanate functionalized lignin 

containing foams presented lower energy absorption capacity suggesting the presence 

of a less crosslinked structure.   

  Finally, the combination of the different eco-friendly fillers (LDH and lignin) 

with phosphorus oligomeric diol yielded to increase the char yield of the foams 

resulting in a decrease of the peak heat release rate of the foam. The different water 
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(blowing agent) content used to maintain the density of the foams constant, enhanced 

the urea microphase segregation especially in foams without phosphorus oligomeric 

diol. This phase segregation had an impact especially in mechanical properties such as 

resilience, compression force deflection, compression set, elastic modulus, 

compressive stress and energy absorption of the foams.  

  All these results were obtained with low filler content (3 pphp of LDH, 5% by 

weight of lignin) and low flame retardant polyol content (5 pphp E560), so it is 

expected that increasing the dosage of these additives could yield to a better 

improvement of the flame retardancy of the foams.  

 

7.2. Future work 

  This work could be yet furtherly developed and completed by the proposals 

mentioned below, focusing especially in lignin in order to give added value to such an 

important industrial byproduct: 

 Study the possibility of introducing higher amount of fillers in FPUF 

formulations, in order to allow them to get improved specific properties such 

as flame retardancy without affecting the cellular structure of the foams.   

 

 Analyze different approaches in order to functionalize lignin with phosphorus 

containing moieties owing to increase its charring effect during thermal 

decomposition. 

 

 Study possible combinations of phosphorus functionalized lignin and potential 

blowing agents such as melamine-containing compounds in order to achieve an 

intumescent effect during thermal decomposition that would increase 

considerably the volume of the formed char during decomposition acting as an 

effective heat and oxygen shield, protecting the underlying foam.  
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 Consider other ways of incorporating lignin into the foams different to its 

introduction as filler or in solution, such as layer-by-layer depositions that could 

yield to a higher lignin loading without affecting the foaming process of FPUF.  

 

 Also, as it has been researched in this work, the combination of phosphorus-

functionalized lignin with different combinations of LDH could also be 

performed, and a deeper study on the flame retardant properties could be 

carried out.  
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