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Abstract

Background

Intestinal metaplasia (IM) is a precursor lesion that precedes gastric cancer (GC). There are

two IM histological subtypes, complete (CIM) and incomplete (IIM), the latter having higher

progression rates to GC. This study was aimed at analysing gene expression and molecular

processes involved in the progression from normal mucosa to IM, and also from IM subtypes

to GC.

Methodology

We used expression data to compare the transcriptome of healthy gastric mucosa to that of

IM not progressing to GC, and the transcriptome of IM subtypes that had progressed to GC

to those that did not progress. Some deregulated genes were validated and pathway analy-

ses were performed.

Results

Comparison of IM subtypes that had progressed to GC with those that did not progress

showed smaller differences in the expression profiles than the comparison of IM that did not

progress with healthy mucosa. New transcripts identified in IM not progressing to GC

included TRIM, TMEM, homeobox and transporter genes and SNORD116. Comparison to

normal mucosa identified non tumoral Warburg effect and melatonin degradation as
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previously unreported processes involved in IM. Overexpressed antigen processing is com-

mon to both IM-subtypes progressing to GC, but IIM showed more over-expressed onco-

genic genes and molecular processes than CIM.

Conclusions

There are greater differences in gene expression and molecular processes involved in the

progression from normal healthy mucosa to IM than from IM to gastric cancer. While antigen

processing is common in both IM-subtypes progressing to GC, more oncogenic processes

are observed in the progression of IIM.

Introduction

Gastric carcinogenesis proceeds through a series of precursor lesions in the gastric mucosa

named the Correa´s cascade, constituted by multi-atrophic gastritis, intestinal metaplasia (IM)

and dysplasia conducting to gastric cancer (GC) [1]. In this process, IM is a crucial lesion, due

to its high progression rate to GC (3.77/1000 person-years, in the province of Soria, Spain) [2].

IM is a trans-differentiation process of the gastric epithelium to an intestinal type, mostly

induced by H.pylori infection and expression of the homeobox genes CDX1 and CDX2. It is a

protective response against inflammation but it also increases the risk of neoplastic transfor-

mation [3].

Intestinal metaplasia has been histologically divided in two types. The complete (CIM, type

I, small intestine) is characterized by goblet, absorptive enterocytes and Paneth cells. The

incomplete (IIM, types II and III, colonic) is characterized by the presence of goblet and hybrid

columnar intermediate cells, absence of enterocytes and rare presence of Paneth cells [2]. Fol-

low-up epidemiologic studies show a higher progression rate to GC of incomplete compared

to the complete type of IM [4]. Clinical management guidelines recommend gastroscopy every

3 years when extensive IM is present [5]. However, only a minority of patients with this lesion

develop GC [4] and the genes and pathways responsible for this progression are unknown.

Therefore, the identification of deregulated genes and molecular processes responsible for this

transition is relevant because it could reveal driver genes for tumor progression as well as

potential new biomarkers and therapeutic targets.

Gene expression profiling of IM has identified an up-regulation of intestinal differentiation

[6,7] and lipid metabolism [6,7,8] genes. However, to our knowledge, there are no published

studies comparing samples of IM that progress to gastric cancer along time with those that do

not progress. Our hypothesis is that some genes and molecular processes are deregulated in

complete and incomplete IM that progress to gastric cancer (CIM-GC and IIM-GC). To test

this, we performed expression profiling to compare mRNA from histological subtypes of IM

that after a follow-up study had progressed to GC (CIM-GC and IIM-GC) with the mRNA

from those IM subtypes that did not progress to GC (CIM-NoGC, IIM-NoGC). Normal gastric

mucosa was also compared to IM subtypes that did not progress to GC (IM-NoGC).

Materials and methods

Patients and samples

Samples were obtained from two Spanish follow-up studies of gastric carcinogenesis. One was

performed in the province of Soria [2] and the other was a multicenter study including 9

Intestinal metaplasia progression to gastric cancer
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Biomèdica de Bellvitge (IDIBELL), http://www.

idibell.cat/en, PhD scholarship to OC. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0176043
http://agaur.gencat.cat/en/inici/index.html
http://agaur.gencat.cat/en/inici/index.html
http://www.idibell.cat/en
http://www.idibell.cat/en


Spanish hospitals [9]. Furthermore, samples from the Gregorio Marañón´s hospital, in

Madrid, were also included. Patients diagnosed at recruitment with CIM and IIM were sub-

jected to a new gastroscopy after a mean follow-up of 12 ±3.4 years.

As previously published, formalin-fixed paraffin-embedded (FFPE) samples at recruitment

and at the end of follow-up were diagnosed by histology [2,9]. Briefly, 3–4 biopsies from the

antrum, incisura or corpus, were stained with hematoxylin–eosin, Alcian blue–periodic acid

Shiff (AB-PAS, pH 2.5) and Giemsa. Additionally, for some IIM samples, some sections were

stained with high-iron diamine–Alcian blue to detect sulfated mucins [2]. Complete IM was

classified by the presence of brush border cells and goblet cells, but without non-goblet and

hybrid columnar ‘‘intermediate” cells. Incomplete IM, which also contains goblet cells, was diag-

nosed by the presence of its predominant cell type, the hybrid ‘‘intermediate” non-goblet

mucous columnar cells. This hybrid mucous cell is easily identified because they show, with the

mucino histochemical AB-PAS, a mixed gastric and intestinal phenotype pattern: red for neutral

gastric mucins and blue for a combination of intestinal mucins [2].Two pathologists (MLP and

JMSA) reviewed the biopsies of all the included cases. Furthermore, when FFPE blocks were cut

for RNA extraction (see below) additional hematoxylin-eosin staining was performed at initial

and final cuts to confirm that the tissue in between was from the corresponding IM subtype.

All samples used in this study were obtained from projects approved by the Ethics commit-

tee of the Biomedical Research Institute of Bellvitge (CEIC HUB-ICO-IDIBELL), as well as

those of the hospitals involved in the projects FIS Exp PI030077 (Hospital de Soria), FIS

ExpPI10/01089, PI10/01031 and PI10/01203 and the Gregorio Marañón hospital.

RNA extraction and microarray analysis

Total RNA was extracted from FFPE cuts of gastric biopsies at recruitment. An initial and a

final slide for Hematoxylin-Eosin (HE) staining was obtained and evaluated before RNA

extraction in order to further confirm the lesion-type and to select those samples that con-

tained at least 50% of IM in all cuts. RNA was obtained from 8 CIM-GC, 6 IIM-GC, 9 CIM--

NoGC, 7 IIM-NoGC, and 15 normal gastric mucosae. We selected FFPE blocks of IM (IIM or

CIM)-GC patients of similar sex and age as IM (IIM or CIM)-NoCG patients. The characteris-

tics of the patients’ samples are shown in S1 Table.

Total RNA was extracted with Recover All Nucleic Acid for FFPE kit (Ambion, USA). RNA

quality was evaluated using NanoDrop 2000 (Thermo Scientific, USA) for quantification and

purity check, and using the Bioanalyzer 2100 (Agilent Technologies, USA) for RNA integrity

analysis. For microarray analysis, 100ng of input RNA from each sample was processed using

the SensationPlus FFPE Amplification and 3’IVT Labeling Kit (Affymetrix, USA) and hybrid-

ized to the Almac Xcel array (Affymetrix, USA), specifically optimized for use with degraded

FFPE samples.

Quality control, statistical and bioinformatics analyses

After quality assessment, data normalization was performed by the Robust Multichip Analysis

method (Affymetrix1 Expression Console™ Software) [10] to correct background, apply quan-

tile normalization and summarize all the probes of a transcript in logarithmic base 2. Batch

effect was corrected by method Combat [11]. Of the initial 81.804 probe sets, we selected

57.263 above the 30 percentile to eliminate noise produced by probes that do not express

enough intensity/signal. A dendrogram representation of the sample hierarchical clustering

was constructed using the Euclidean distance and method Complete.

Differentially expressed genes were obtained by moderated t test for microarray data

(Limma) [12] and adjusted by False Discovery Rate (FDR) [13]. Three types of comparisons

Intestinal metaplasia progression to gastric cancer
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were performed: IIM-GC vs IIM-NoGC, CIM-GC vs CIM-NoGC and IM-NoGC vs Healthy

mucosa. In order to exclude potential tumoral processes, in the comparison of IM with healthy

mucosa we did not include IM samples that had progressed to GC. Genes were considered dif-

ferentially expressed if the t-test p-value was <0.05 and the fold change (FC)�2 (up-regulated)

or�0.5 (down-regulated). Differences between the analyzed groups in clinical and morpho-

logical variables of the study patients (age, sex, H.pylori infection status and anatomical loca-

tion of the lesion in the stomach) were analyzed by means of the t-test for continuous variables

and the Fisher exact test for categorical variables. Significant differences (p<0.05) were only

obtained for age between IM-NoGC group and healthy mucosa. In agreement with the age

and sex matched selection of FFPE blocks from IM-GC and IM-NoGC patients, no age differ-

ences were observed between the different groups of intestinal metaplasia (IIM or CIM)

patients. There were also no differences between groups for any of the other variables analyzed.

Thereafter, p-values for moderated t test were only age adjusted in the comparisons IIM-GC

vs Healthy, IIM-NoGC vs Healthy, CIM-GC vs Healthy, CIM-NoGC vs Healthy, IM-NoGC vs

Healthy and IM-GC vs Healthy. Analyses were performed with R (v3.1.1) and Bioconductor

[14] packages. Data are accessible in GEO (GSE78523).

We constructed Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/) to

identify the Differentially Expressed Genes (DEGs) that were unique or common to the differ-

ent IIM and CIM analysis groups (IIM-GC vs IIM-NoGC, IM-GC vs Healthy mucosa and

IM-NoGC vs Healthy mucosa; and the same for CIM) and to select DEGs specific for IIM-GC

vs IIM-NoGC and IIM-GC vs Healthy comparisons, but absent in IIM-NoGC vs Healthy.

We used the GEO2R tool of Gene expression Omnibus (https://www.ncbi.nlm.nih.gov/

geo/) to analyze the deposited GEO data from a similar study (GSE69146) [15] and to compare

with our results.

Gene Set Enrichment Analysis, GSEA

Normalized expression values were loaded to GSEA [16] and the gene set collections c2.all.

v5.0 and c3.tft.v5.0 of MSigDB v5.0 [16] were interrogated. c2.all.v5.0 includes gene sets from

signaling pathways and genetic or chemical perturbations, while c3.tft.v5.0 contains genes that

share a transcription factor binding site in TRANSFAC v7.4. The default parameters were

applied with the exception of IIM-GC vs IIM-NoGC where permutations were performed on

Gene set following methodology recommendations [17]. A gene set was considered significant

if the p-value was<0.05 and q-value was <0.25 for CIM-GC vs CIM-NoGC and IM-NoGC vs

Healthy. However, for IIM-GC vs IIM-NoGC a gene set was considered significant if the nom-

inal p-value was<0.01 and the q-value was<0.05 to avoid the higher rate of false positives typ-

ically encountered when gene sets are used for permutation [18].

We categorized gene sets to molecular processes according to their functions (e.g. COL-

LER_MYC_TARGETS_UP (oncogenes)). Furthermore, we looked at the intersections

between: A) gene sets with enrichment scores (ES) higher than cutoffs (IIM-GC: ES>0.5,

IM-NoGC: ES>0.65), B) extreme values of “Rank at max” parameter and C) leading edge

genes that are also DEGs [17].

An expression dataset of IM and healthy gastric mucosa [19] deposited in Gene Expression

Omnibus (GSE47797) was downloaded and analyzed by GSEA following the previous

methodology.

Ingenuity Pathway Analysis (IPA)

The default Core Analysis of IPA [20] was used to identify biological processes, functions,

canonical pathways and molecular networks from differentially expressed genes in the three

Intestinal metaplasia progression to gastric cancer
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specified comparisons. This software compares DEGs from an experiment against genes col-

lected in the Ingenuity1 Knowledge base. In this way, canonical pathways and molecular net-

works are identified, providing insight of how DEGs interact [20]. Results with p-value<0.05

were considered significant.

Validation by RT-qPCR of differentially expressed genes

Validation of 19 DEGs from the microarray was performed by RT-qPCR using the dynamic

expression arrays Biomark HD 96x96 (Fluidigm, USA) and UPL probes (Roche, Switzerland).

The RT-qPCR protocols (PN 68000116 B3, PN-100-6472 A1, PN 100–5876 B1 and PN

68000130 E1) of Fluidigm were followed. We selected some top up and down-regulated signifi-

cant genes of interest from Tables 1–3 (S2 Table) and performed duplicated qPCR in CIM-GC

(N = 24), CIM-NoGC (N = 33), IIM-GC (N = 11), IIM-NoGC (N = 8) and Healthy (N = 16)

Table 1. Differentially expressed genes with oncogenic functions in the IIM progressing to GC (IIM-GC).

Gene Symbola Function Fold Change Nominal p-value Associated with gastric carcinogenesisb

IK Antigen Processing 0.384 0.002 New

HLA-A 2.059 0.029 Yes [23]

HLA-DQB1 2.17 0.001 Yes [24]

CD24 2.249 0.008 Yes [25]

HLA-DRB4 2.25 0.024 Yes [24]

HLA-DQA1 3.182 0.024 Yes [24]

HLA-DRB1/3/5 3.368 0.048 Yes [24]

HLA-C 4.417 0.011 Yes [26]

CXCL14 Inflammation 2.007 0.028 Yes, GC prognosis [27]

IL1R2 2.31 0.019 New

BPIFB1 2.866 0.009 New

C1R Complement system 2.048 0.005 New

C1QBP 2.076 0.002 New

C3 2.193 0.020 New

PPIA Chaperones 0.393 0.027 Yes [28]

CCT6A 2.053 0.002 New

CANX 2.117 0.027 New

HSP90AA1 2.412 0.0001 Yes, GC prognosis [29]

HSP90AB1 2.479 0.003 Yes, GC prognosis [29]

RBBP7 Tumor suppression 0.449 0.001 New

EIF5B 2.059 0.004 New

CAV1 2.144 0.0005 YES, GC metastasis [30]

EIF3D 2.211 0.003 New

CDKL3 Cell cycle regulator 0.403 0.0001 New

CP Metabolism of iron 0.412 0.040 Yes, decreased in GC [31]

MYOF Angiogenesis 2.035 0.006 New

ANP32B Anti-apoptotic factor 2.155 0.006 New

NHP2 Telomerase 2.187 0.002 Yes, GC prognosis [32]

GNL3 Stem cell proliferation 2.218 0.0003 New

RAN Oncogene 2.41 0.004 Yes, SNPs associated [33]

a Genes are ordered increasingly according to Fold Changes inside the functional groups.
b It refers to genes previously associated with gastric carcinogenesis by genetic association, expression, proteomic or functional studies. IIM, Incomplete

Intestinal Metaplasia. GC, Gastric cancer

https://doi.org/10.1371/journal.pone.0176043.t001
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samples. Some of these samples were the same as those used for the microarray analysis (S1

Table); the remaining samples were from an independent series (S3 Table).

ACTB, GAPDH, G6PD, RPL29 and B2M genes were considered as potential reference genes

due to their lack of significance in the microarray analysis. The selected reference gene was

ACTB, which was the one that exhibited the lowest significance by ANOVA (p-value = 0.395),

when comparing Ct values of IM-GC vs IM-Not CG vs Healthy controls, using the software

GraphPad Prism v5.01 [21]. The expression levels of the target genes and their statistical signif-

icance were calculated by use of the Bootsratio software [22] after introduction of 2-ΔCt values

for cases and controls, where ΔCt = Ct mean(target gene)-Ct mean (ACTB). In all cases a p-

value<0.05 was considered significant.

Results

Hierarchical clustering and principal component analysis of the analysed samples based on the

gene expression profiles obtained after microarray analysis showed a clear separation between

healthy controls and all the IM samples; however, little differences between IM samples that

had progressed to GC with respect to those that did not progress were observed (Fig 1). A simi-

lar representation of the data was observed in the heatmaps of the compared groups (Fig 2).

Differentially expressed genes were observed from the three comparisons, but the differences

between IM (either IIM or CIM)-GC and (IIM or CIM)-NoGC were not significant after

applying the FDR test.

IIM-GC vs IIM-NoGC: 106 genes were identified as differentially expressed, of which

75.4% were over-expressed and 24.6% under-expressed in the IIM-GC (S4 Table).

CIM-GC vs CIM-NoGC: 19 genes were differentially expressed, being the majority

(N = 11) under-expressed in the CIM-GC (S5 Table).

To select tumour progression genes specific for the IMs-GC, we compared the DEG of IM

(IIM and CIM) that progressed to GC versus those that did not progress with the DEG in the

IMs that did not progress versus healthy mucosa and those in the IMs that progressed to GC

versus healthy mucosa (Fig 3). Among the genes specific of IIM or CIM progression to GC,

there were more deregulated transcripts with oncogenic functions in the IIM-GC (Table 1)

than in the CIM-GC (Table 2).

IIM vs CIM: Comparison of IIM-GC vs CIM-GC revealed 17 DEGs (p-val<0.05), of which

15 were upregulated and 2 were downregulated (S6 Table), but as in the comparisons of

Table 2. Differentially expressed genes with oncogenic functions in the CIM progressing to GC (CIM-GC).

Gene Symbola Function Fold Change Nominal p-value Association with gastric carcinogenesisb

IGHG1/IGHM/ IGHV4-31 Antigen Processing 0.493 0.014 YES

HLA-DRB4 2.049 0.022 YES [24]

HLA-DRB1/3/5 3.475 0.021 YES [24]

ANAPC5 Mitotic factor 0.461 0.031 New

IL1R2 Inflammation 0.475 0.017 New

PRSS1 Protein degradation 0.495 0.033 New

GP2 Innate immunity response 2.063 0.018 New

HOXA13 Intestinal differentiation 2.076 0.028 YES [34]

IGFBP5 Cellular proliferation 2.127 0.004 New

OLFM4 Antiapoptotic factor 3.332 0.0002 YES [35]

a Genes are ordered increasingly according to Fold Changes inside the functional groups.
b It refers to genes previously associated with gastric carcinogenesis by genetic association, expression, proteomic or functional studies. CIM, Complete

Intestinal Metaplasia. GC, Gastric cancer

https://doi.org/10.1371/journal.pone.0176043.t002
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IIM-GC vs IIM-NoGC and CIM-GC vs CIM-NoGC, none of them was significant after FDR

adjustment for multiple comparisons (FDR). Nevertheless, it is to note the increased expres-

sion in IIM-GC of immunoglobulin and inflammatory gene products, indicating an increased

active immunoinflammatory response in IIM-GC. There was also an increased expression in

IIM-GC of some key molecules in the gastric function such as pepsinogen, H+/K+ channel

generator of the H+ ion for HCl synthesis and gastric intrinsic factor.

Comparison of IIM-NoGC vs CIM-NoGC revealed 16 DEGs (p-val<0.05), of which four

DEGs were upregulated and 11 were downregulated (S7 Table); again, none of them was

Table 3. Differentially expressed genes representative of molecular processes in the IM not progressing to GC (IM-NoGC).

Gene Symbola Functionb Fold Change p-value Adj p-value

CDX2 Intestinal differentiation 3.133 4.050E-11 2.343E-08

CDX1 4.147 3.523E-09 1.187E-06

HOXB13 Intestinal differentiation (New DEGs) 2.099 2.508E-04 1.187E-02

HOXB6 2.884 2.313E-07 4.386E-05

HOXA13 3.294 7.134E-05 4.632E-03

MUC3A Mucins 13.277 1.677E-16 6.001E-13

MUC12 16.382 4.336E-09 1.395E-06

MUC17 15.579 1.550E-15 3.773E-12

MUC2 24.748 5.216E-25 1.857E-20

APOA1 Lipid Metabolism 7.146 4.060E-07 6.902E-05

APOA4 7.331 2.059E-08 5.385E-06

MTTP 23.334 1.176E-14 1.871E-11

APOB 35.139 5.209E-15 9.479E-12

FABP1 67.381 7.752E-25 1.857E-20

CYP3A4 Xenobiotic Metabolism 7.304 4.204E-08 1.003E-05

UGT2A3 2.741 9.798E-06 9.690E-04

GSTA1 3.285 2.794E-04 1.287E-02

GAST Hipoclorhidria 6.249 4.603E-10 2.075E-07

SST 0.183 1.815E-08 4.789E-06

SLC46A3 Transporters (New process) 5.553 1.458E-10 7.258E-08

SLC7A9 6.007 7.421E-11 4.047E-08

SLC17A4 7.240 3.905E-12 3.105E-09

SLC5A1 8.238 2.024E-09 7.492E-07

SLC13A2 8.412 2.326E-14 3.330E-11

SLC6A19 9.009 1.581E-15 3.773E-12

SLC26A3 16.877 3.539E-11 2.136E-08

TRIM15 NFKB activation(New DEGs) 2.256 4.063E-07 6.902E-05

TRIM31 2.372 8.101E-06 8.298E-04

TRIM36 2.548 3.530E-07 6.125E-05

TRIM40 2.677 1.287E-04 7.379E-03

SNORD116s Expression regulators (New process) 0.443 1.378E-04 7.675E-03

TMEM25 TMEM function (New process) 2.768 1.617E-04 8.622E-03

TMEM139 3.386 2.229E-10 1.064E-07

TMEM45B 2.709 1.380E-09 5.450E-07

DMBT1 Tumor suppressor 71.951 9.727E-25 1.857E-20

a Genes are ordered increasingly according to Fold Changes inside the functional groups.
b New means that novel DEGs or molecular processes were found. IIM, Incomplete Intestinal Metaplasia. GC, Gastric cancer

https://doi.org/10.1371/journal.pone.0176043.t003
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Fig 1. Dendrogram and principal component analysis of the analysed samples. A) Dendrogram

showing the hierarchical clustering of the analysed samples. Clustering was based on the overall gene

expression values of the studied groups. B) Principal Components Analysis.

https://doi.org/10.1371/journal.pone.0176043.g001

Fig 2. Heat maps of the analyzed groups. A) IIM-GC vs IIM-NoGC, B) CIM-GC vs CIM-NoGC, C) IM-NoGC vs Healthy.

https://doi.org/10.1371/journal.pone.0176043.g002

Fig 3. Venn diagrams of the differentially expressed genes in three different comparisons. A,

Incomplete intestinal metaplasia. B, Complete intestinal metaplasia. IIM-GC or CIM-GC, incomplete or

complete intestinal metaplasia progressing to gastric cancer. IIM-NoGC or CIM-NoGC, incomplete or

complete intestinal metaplasia not progressing to gastric cancer. Healthy, healthy gastric mucosa.

https://doi.org/10.1371/journal.pone.0176043.g003
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significant after FDR adjustment. Five of these DEGs were the same as in IIM-GC vs CIM-GC

but four of them (CXCL17, PGC and two corresponding to IGH genes) were upregulated in

IIM-GC and downregulated in IIM-NoGC, while EBF1was downregulated in both comparisons.

IM-NoGC vs Healthy: We identified 482 DEGs (394 upregulated and 88 downregulated),

all of which significant after FDR test. With respect to previous comparisons it is relevant to

note the higher number of both DEGs and expression levels (FC>4 N = 92) and that they are

all significant after FDR (S8 Table). DEGs contributing to molecular processes previously

reported in IM were confirmed and new genes contributing to these processes as well as to

new processes were also identified (Table 3).

Gene Set Enrichment Analysis (GSEA)

From the c2all.v5 gene set collection we obtained 144 gene sets significantly over-expressed

in the IIM-GC. From the c3tft.v5 collection we obtained 19 overexpressed gene sets, all com-

posed by E2F translation initiation factors. The S9 Table indicates the number of significant

gene sets per molecular process after categorization according to their function. To select the

most relevant molecular processes represented by these gene sets, cut-offs to Rank at max
and ES parameters were applied and up-regulated leading edge genes were identified (S11

and S12 Tables). Comparison of these results with those of the gene sets with enrichment

scores above 0.5 indicated that activation of cell cycle and cell proliferation, oncogenes,

tumor suppressors and insulin regulated genes were important processes in the progression

of IIM to GC (Fig 4A).

For the CIM-GC group we only obtained two significant gene sets (GAZDA_DIAMOND_-

BLACKFAN_ANEMIA_ERYTHROID_UP, REACTOME NETRIN1_SIGNALING) without

any apparent relationship with gastric carcinogenesis.

When both IM subtypes that do no progress to GC were grouped and compared with

healthy mucosa, 120 gene sets grouped in different molecular processes were over-expressed

in IM-NoGC (S10 Table). There were 12 over-expressed gene sets from the c3.tft.v5.0 cata-

logue composed by transcription factors HNF1/4 and GATA1/6, which cooperate to induce

intestinal genes [3].

When we compared the relevant molecular processes in IM-NoGC, following identical

methodology as indicated for IIM-GC (S13 and S14 Tables), the most important processes

were found to be Warburg effect, lipid metabolism, intestinal differentiation, aberrant glyco-

sylation, antigen processing, inflammation and apoptosis (Fig 4B).

Ingenuity Pathway Analysis (IPA)

The IPA analysis showed that, unlike to the GSEA, there were several up-regulated pathways

common to the IIM-GC and CIM-GC such as antigen presentation, signaling by TNFRSF4,

Fig 4. Venn´s diagram to select the most relevant molecular processes after GSEA analyses. A,

Incomplete intestinal metaplasia progressing to gastric cancer (IIM-GC). B, Both types of intestinal metaplasia

not progressing to gastric cancer (IM-NoGC).

https://doi.org/10.1371/journal.pone.0176043.g004

Intestinal metaplasia progression to gastric cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0176043 April 25, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0176043.g004
https://doi.org/10.1371/journal.pone.0176043


communication between innate and adaptive cells, maturation of dendritic cells and the possi-

ble role of other homeobox genes such as HOXC11 in the development of the intestinal differ-

entiation. Due to the small number of differentially expressed genes in CIM-GC (Table 2),

pathways over-expressed in this group were composed by a small number of genes and of

lower statistical significance, when compared with the IIM-GC group (Table 4). Regarding

IM-NoGC, IPA confirmed the GSEA results for metabolism of lipids and xenobiotics and a

previously observed deregulation of the thyroid hormone metabolism. A new process of mela-

tonin degradation was also identified (Table 4).

The molecular network with highest score in the IIM-GC was found to be composed of

effectors of the immune response such as HLA class I (HLA-A, HLA-C) and II (DQB1, DRB1)

molecules, the cytokine receptor IL1R2, immunoglobulins, and oncogenic molecules such as

the chaperones CANX and HSP90AA1 and the tumor suppressor CAV1 (S1 Fig). There was

not a high score molecular network in CIM-GC. The molecular network with the highest

score in the IM-NoGC includes the processes of lipid metabolism, molecular transport and

biochemistry of small molecules (S2 Fig).

Validation of DEGS from microarray results by RT-qPCR

RT-qPCR was used to validate selected DEGs obtained in the IIM-GC (N = 7), CIM-GC

(N = 4) and IM-NoGC (N = 11) groups (S2 Table). Only 51% of reactions passed the quality

control defined by the Fluidigm software, probably reflecting RNA degradation. Of the 19

DEGs selected from the microarray, 9 were also differentially expressed in the qPCR, but only

Table 4. Over-expressed canonical pathways and other information from Ingenuity Pathway Analysis.

Group Canonical pathway p-value Upstream

Regulators

Diseases Cellular and molecular functions

IIM-GC Antigen presentation 3.15E-10 HOXC11

RAD21

EBI3

NLRC5

SMC3

-Immunological

-Connective Tissue

-Inflammatory

-Muscular and

Skeletal

-Development

-Cell proliferation

-Cell death and survival

-Cellular movement

-Cellular development

-Cell-cell interaction and signaling

IIM-GC TNFRSF4 (OX40) signaling 3.27E-09

IIM-GC Thyroid autoimmune disease 1.66E-08

IIM-GC Development of B cells 1.51E-07

IIM-GC Maturation of dendritic cells 1.26E-06

IIM-GC Phagosome maturation 1.59E-06

IIM-GC Communication between innate and

adaptive cells

1.62E-06

CIM-GC Communication between innate and

adaptive cells

3.14E-05 LGALS3

LHCGR

MYBL2

mir-296

CHI3L1

-Endocrine

-Gastrointestinal

-Immunological

-Inflammatory

-Development

-Cell-cell interaction and signaling

-Cellular movement

-Cell death and survival

-Cell cycle

- Cellular assembly and organization

CIM-GC Maturation of dendritic cells 3.22E-04

CIM-GC Antigen presentation 3.98E-04

CIM-GC TNFRSF4 (OX40) signaling 7.49E-04

IM-NoGC Activation of FXR/RXRG 1.42E-08 HNF4A

HNRNPA2B1

HNF1A

CTNBB1

SREBF1

-Endocrine

-Metabolism

-Gastrointestinal

-Hepatic

-Cardiovascular

-Cellular movement

-Death and cell survival

-Lipid metabolism

-Molecular transport

-Biochemistry of small molecules, drugs and

amino acids

IM-NoGC Activation of PXR/RXRG 1.34E-07

IM-NoGC Inhibition of RXRG by LPS/IL1 2.24E-05

IM-NoGC Development of B cells 7.76E-05

IM-NoGC Degradation of sucrose 4,30E-05

IM-NoGC Metabolism of thyroid hormone 0.0004

IM-NoGC Hematopoiesis of stem cells 0.0005

IM-NoGC Activation of LXR/RXR 0.0006

IM-NoGC Degradation of melatonin (New) 0.0013

IM-NoGC Glycolysis I 0.0039

IM-NoGC Xenobiotic Metabolism Signaling 0.0052

https://doi.org/10.1371/journal.pone.0176043.t004
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in 7 of them (36.84% of total DEGs) the difference in expression had the same direction (Fig

5). One of the validated genes both in CIM-GC and IMM-GC is HLA-DRB4, which is in agree-

ment with the fact that antigen presentation is a molecular process common to the progression

of both IM subtypes in the GSEA and IPA analyses. Also, the highest up-regulated gene in

CIM-GC, OLFM4, was validated.

Discussion

As far as we know, this is the first study on differential gene expression between IM subtypes

that have progressed to gastric cancer and those who have not progressed, after a several years

follow-up period. Our results from gene expression and pathway analysis indicate that

IM-NoGC is very different from healthy gastric mucosa but the differences between IM sub-

types that progress to GC and those that do not progress are smaller and of lower magnitude.

Despite this general finding, we have identified DEGs and molecular processes involved in the

progression from IM subtypes to gastric cancer. Furthermore, we have confirmed previously

reported molecular processes that distinguish IM from healthy gastric mucosa and have identi-

fied new transcripts contributing to these processes.

Fig 5. Validation by RT-qPCR of some differentially expressed genes obtained in the microarray analysis. Comparison of the expression level

(fold change) by microarray analysis and by RT-qPCR of significant differentially expressed genes in the IIM-CG versus IIM-NoGC, CIM-GC versus

CIM-NoGC and IM-NoGC versus healthy gastric mucosa.

https://doi.org/10.1371/journal.pone.0176043.g005
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Although expression differences were not found significant after multiple corrections when

IIM-GC was compared to IIM-NoGC, some of the DEGs have been previously associated with

gastric carcinogenesis. There are several up-regulated transcripts reflecting the inflammatory

process induced by H. pylori infection, such as HLA-A, HLA-C [26], HLA-DRB1/3/5,

HLA-DQA1/DQB1 [24, 36]. It is interesting to note that HLA-DRB is up-regulated in both

IIM-GC and CIM-GC, that HLA-DRB4 overexpression was confirmed by RT-qPCR and that

antigen presentation also is a common pathway in both IM-subtypes progressing to GC, alto-

gether being in agreement with the immune response as an important process in the progression

of precursor lesions to GC [37]. There are several up-regulated inflammatory transcripts

(CXCL14, IL1R2, BPIFB1) and also from the complement system (C1R,C1QBP, C3) which

increase inflammation and phagocytosis of bacteria, respectively. Regarding this, other comple-

ment components such as C1S,C1QR1 and CD55 have been found over-expressed in GC [38].

Several chaperones responsible for proper oncoproteins folding were found overexpressed, such

as CCT6A,CANX,HSP90AA1 and HSP90AB1. Interestingly, over-expression of HSP90AA1 and

HSP90AB1 has been associated with poor prognosis in GC [29]. The regulators of the tumor

suppressor RB1, EIF3D and EIF5Bwere also found over-expressed, as well as NHP2, a telome-

rase whose high expression in GC is correlated with poor clinical prognosis [32]. A member of

RAS oncogenes called RAN, with genetic polymorphisms associated with of GC risk [33], was

also found overexpressed. Novel over-expressed genes not previously associated with gastric car-

cinogenesis are MYOF, an angiogenesis regulator [39], and GNL3, that interacts with TP53 and

may be involved in carcinogenesis because of its role in cancer and stem cells proliferation [40].

Apart from the above mentioned overexpression of HLA-DRB, in the CIM-GC group there

were fewer significant transcripts than in IIM-GC. Furthermore, it is to note the increased

expression in IIM-GC of immunoglobulin (IGHG, IGHM) and inflammatory (CXCL17) gene

products, indicating an increased active immunoinflammatory response in IIM-GC when com-

pared to CIM-GC. All these results are in agreement with the increased progression risk to GC of

IIM compared with CIM [4]. It is likely that oncogenic pathways only become activated after

CIM progresses to IIM along the Correa´s cascade. Among the over-expressed genes with onco-

genic functions in CIM-GC there are OLFM4 (olfactomedin 4), whose overexpression was vali-

dated by RT-qPCR, and IGFBP5, an anti-apoptotic and a cell proliferation factor, respectively.

OLFM4 is increased in early stages of gastric carcinogenesis and a prognostic marker for

advanced GC [35]. OLFM4 has also been found to promote tumor growth in pancreatic cancer

[41], altogether suggesting that it could be an early factor of gastric tumor progression from CIM.

Confirmation of our main gene expression results through immunohistochemistry would

be the best proof of their validity. Unfortunately, we had no more FFPE sections for further

immunohistochemical staining. Therefore, to further validate our results by comparison with

other available datasets from similar studies, we have searched PubMed and the Gene Expres-

sion Omnibus (GEO) databases for microarray studies exploring the same or similar progres-

sion phenotype. We found a recent study (GEO accession: GSE69144) that used microarray

analysis to determine gene expression changes in the progression along the gastric precancer-

ous cascade of gastric lesions, in H.pylori infected subjects followed for a period of 6 years [15].

However, comparison of this study with ours is difficult because of clear differences in study

design and microarray platform used. While this study was designed for the identification of

changes in gene expression after lesion progression or regression, our study was designed for

the identification of biomarkers of progression to GC at baseline samples. Furthermore, in our

study we analyzed a high-density transcriptome based microarray containing 97,000 tran-

scripts, while Garay et al. used a Cancer Panel Array restricted to 502 genes. Therefore, only

two of the differentially expressed genes of interest in IM progressing to GC in our study

(Tables 1 and 2) were also present in the GSE69144 dataset: CAV1 and IGFBP5. Comparison
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with the GEO2R tool of those baseline samples of the Garay study that had progressed with

those that did not change revealed that IGFBP5 is found similarly overexpressed as in the com-

parison of CIM-GC vs CIM-NoGC in our study. This gene has also been reported to be up-

regulated in gastric cancer [42]. CAV1 was not significant in Garay’s study.

To characterize the transcriptional profile of IM in comparison to healthy gastric mucosa,

we analyzed samples of both histological subtypes that do not progress to GC because these are

more common and also to exclude tumorigenic processes from the analysis. Unlike previous

comparisons, DEGs in IM were significant after multiple comparisons and exhibited greater

expression differences. There are many DEGs previously found up-regulated in IM, such as

CDX2, KRT20, MUC13,OLFM4, REG4 [43], FABP1, MEP1B, SI, SLC6A19 [44], CDX1, MTTP,

CEACAM6 [6], APOA1,APOA4,APOB, CDH17, CLDN3,HNF4A,VIL1 [7]. Their functions

show that intestinal differentiation, metabolism of lipids and xenobiotics, and hypoclorhidria,

characterize the IM. New DEGs identified in the IM-NoGC group reveal the role of other

homeobox genes (HOXA13/B6/C) in the intestinal differentiation, transporters of the solute

carrier family (SLC), NFKB activators (TRIM), small nucleolar RNAs (SNORD116) and

TMEM proteins of unknown function. The highest over-expressed gene is DMBT1 (S6 Table),

a GC tumor suppressor and immunohistochemical marker of IM [45]. It may be speculated

that its high expression could be an early defense mechanism against a potential oncogenic

deregulation along time.

The results from GSEA also showed a difference between IIM-GC and CIM-GC; in the first

group there were many over-expressed gene sets with oncogenic functions, while none was

identified in the CIM-GC. The most relevant molecular processes in IIM-GC are antigen pro-

cessing, inflammation, activation of cell cycle and cell proliferation, oncogenes and tumor sup-

pressors. Other published molecular processes support these differences between the IM

subtypes, indicating that IIM is a more advanced state than CIM along the Correa´s cascade

[1]. Thus, when compared to CIM, IIM has decreased expression of CDX2 [46], less activation

of Sonic Hedgehog pathway [47], higher microsatellite instability [48], increased telomerase

activity [49] and increased intracellular localization of H.pylori [50].

Regarding the IM-NoGC group, among the most relevant processes we found the War-

burg effect, which consists that in tumoral processes glycolysis is increased with respect to

oxidative phosphorylation [51] [52]. In IM-NoGC there is an over-expression of glucose

transporters SLC2A5, SLC5A9, the glycolytic enzyme hexokinase and glucagon, a promoter

of gluconeogenesis. The final product of glycolysis, lactate, activates the hypoxia inducible

factors HIF1A and HIF2A, which induce glycolytic genes [52], and in this regard there are

two over-expressed HIF1A gene sets. Warburg effect is universal in normal cells under active

proliferation to protect them from genomic damage [52], and this could be its role in

IM-NoGC. As already indicated by the DEGs analysis, other relevant processes in IM-NoGC

were found to be lipid metabolism and the O-glycosylation of mucins. During active cell pro-

liferation, biological membranes with high lipid contents, are synthesized for new cells [53].

Besides, since lipids are used as a gluconeogenic energy source, increased lipid metabolism

could be at least in part a consequence of Warburg effect. Mucins are major components of

gastric mucus, with high O-glycosylation contributing to mucosa protection from bacterial

infections. H.pylori modulates glycosylation to create a micro-environment favorable to

infection. In the IM, aberrant glycosylation of MUC5AC and MUC6 increase their hydroso-

lubility [54], maybe allowing penetration of H.pylori in the gastric mucosa and hence increas-

ing inflammation [50].

The consistency of our results is also indicated by the general agreement obtained when we

compared by GSEA the expression profile of IM-NoGC with the raw data of a microarray

expression dataset of IM and healthy gastric mucosa performed by Hanada et al [19] and
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deposited in GEO. As in our study, major biological processes over-expressed in that study

were non tumoral Warburg effect, lipid metabolism, intestinal differentiation, transcription

factors HNF1A/4A, inflammation, aberrant protein glycosylation, apoptosis, xenobiotic

metabolism and response to genomic damage.

The results from IPA confirmed the findings of previous works and from GSEA about an

up-regulation of antigen presentation in both IM subtypes that progress to GC, as well as

metabolism of lipids, xenobiotics and dysregulation of thyroid hormone [55] in IM not pro-

gressing to GC. New results from this analysis indicate that other transcriptional factors differ-

ent from CDX1/CDX2, such as HOXC11, could induce intestinal differentiation. HOXC11 is

an upstream regulator and other members of this family such asHOXA13, HOXB6/7/13 are

over-expressed in IM. Other new up-regulated molecular process in IM not progressing to GC

obtained from IPA is melatonin degradation.

The novelties of this study are that we analyzed both metaplasia histological subtypes that

progress or not to GC, with a high extension of the lesion (above 75% in most samples) and

performed a functional enrichment analysis based on GSEA and IPA. However, the small sam-

ple size, particularly in the CIM-GC and IIM-GC groups, is the main limitation of our study

since it reduces its power to obtain significant results after correction for multiple compari-

sons. Small sample size, together with the fact that most (75%) of the samples were reported to

be negative for H.pylori infection, was also the main reason for not performing a stratified

analysis by H.pylori infection. It is nevertheless to note that obtaining appropriate samples for

expression analysis of IM subtypes whose progression or not to GC is known from follow-up

studies is not an easy task. The results of this study are therefore a starting point for the design

of new and larger studies aimed at their validation.

To conclude, our results are the first to indicate that the transcriptional profile of IM sub-

types that progress to GC shows small differences in the gene expression levels in comparison

with those IM subtypes that do not progress. Antigen presentation and inflammation are upre-

gulated processes common to both IM histological subtypes that progress to GC but the IIM

subtype shows a higher number of up-regulated oncogenic DEGs and molecular processes

than CIM, which is in agreement with its higher risk of progression to GC.

In agreement with previous reports, the transcriptional profile of IM-NoGC with respect to

healthy mucosa evidences a drastic difference in gene expression. Apart from already reported

processes such as intestinal differentiation, metabolism of lipids and xenobiotics, new molecu-

lar processes observed in this study are non tumoral Warburg effect and melatonin degrada-

tion. Newly identified transcripts include TRIM, TMEM, homeobox genes from HOX family,

transporter genes and the small nucleolar RNAs, SNORDs116.
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