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Abstract
This paper shows a research on the behaviour of the observa-
tion likelihoods generated by the central state of a silence HMM
(Hidden Markov Model) trained for Automatic Speech Recog-
nition (ASR) using cepstral mean and variance normalization
(CMVN). We have seen that observation likelihood shows a
stable behaviour under different recording conditions, and this
characteristic can be used to discriminate between speech and
silence frames. We present several experiments which prove
that the mere use of a decision threshold produces robust re-
sults for very different recording channels and noise conditions.
The results have also been compared with those obtained by two
standard VAD systems, showing promising prospects. All in all,
observation likelihood scores could be useful as the basis for the
development of future VAD systems, with further research and
analysis to refine the results.
Index Terms: VAD, observation likelihood, cepstral normal-
ization

1. Introduction
Voice activity detection (VAD) is an important issue in Auto-
matic Speech Recognition (ASR) or ASR-based systems. It al-
lows the systems to reduce the computation cost and, as a con-
sequence, the response time of the decoding process, by only
passing speech frames [1]. If the access to the system is in-
tended to be universal, the VAD has to cope with different noise
levels, with no —or little— loss in accuracy. Indeed, the great-
est challenge for the current ASR systems is to cope with back-
ground noise in the input speech signal [2].

A large number of speech features and combinations have
been proposed for VAD [3]. Gaussian Mixture Models (GMM)
and Hidden Markov Models (HMMs) have been tested in this
context [4][5]. Recently, the use of classifiers has been very
common: decision trees (DT) [6], Support Vector Machines
(SVM) [7] and hybrid SVM/HMM architectures [8]. More re-
cently, neural networks (NN) have appeared in the literature
outperforming the previous designs [9][10][11]. However, these
approaches are complex and do not work in real time.

Little research has been done using cepstral normalization
for VAD proposals, although it proved to be rather discrimi-
native already in [12]. Here, we introduce some research on
the use of observation likelihoods for VAD, applying Cepstral
Mean and Variance Normalization (CMVN). We analyse the be-
haviour of the observation likelihoods generated by the GMM
in the central state of the silence HMMs trained for ASR. Re-
sults show that it is a promising basis for future prospects.

The next section is a study of different aspects of the ob-
servation likelihood scores. Section 3 describes the databases
and metrics used for the experiments. Then, VAD some exper-
iments are shown in section 4. Finally, some conclusions and
future prospects are explained in section 5.

2. The observation likelihood
In speech recognition, audio segments corresponding to the
same recognition unit (word, phone, triphone etc., even silence
or non-speech) are gathered and processed, in order to extract
acoustic parameters from them —typically Mel-frequency cep-
stral coefficients (MFCC)— and train a different acoustic model
for each unit. A very popular acoustic model is the HMM, since
it not only models the likelihood of a new observation vector,
but also the sequentiality of the observations.

Usually, observation likelihoods are generated by the GMM
belonging to each HMM state j. For an observation vector ot,
the observation likelihood bj of a GMM is calculated as shown
in equation 1.

bj (ot) =
M∑

m=1

cjmN (ot;µjm,Σjm) (1)

where M is the number of mixture components, cjm is the
weight of the mth component and N(·;µ; Σ) is a multivariate
Gaussian with mean vector µ and covariance matrix Σ.

In this work, the observation likelihoods have been obtained
from the silence HMM trained using the Basque Speecon-like
database [13], specifically the close-talk channel.

2.1. The acoustic model for silence

The HMM topology chosen for silence frames has three states,
left-to-right, allowing the right-end state to connect back with
the left-end state. It was trained with 13 MFCCs and 13 first
and 13 second order derivatives as acoustic parameters, and 32-
mixtures GMMs. The frame length is 25 ms with a shift of 10
ms.

CMVN was applied to MFCCs, computing global means
and variances from each recording session. For N cepstral vec-
tors y = {y1, y2, ..., yN}, their mean µN and variance σ2

N vec-
tors are calculated as defined in equations 2 and 3, respectively.

µN (i) =
1

N

N∑

n=1

yn (i) (2)

σ2
N (i) =

1

N

N∑

n=1

(yn (i)− µN (i))2 (3)

where i is the ith component of the vector.
The cepstral features are then normalized using the calcu-

lated mean and variance vectors, as given in equation 4. Thus,
each normalized feature has zero mean and unit variance.

ŷn (i) =
yn (i)− µN (i)

σN (i)
(4)
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2.2. The impact of CMVN

The use of CMVN has a significant impact on the curves that
observation likelihoods form. When testing a sample signal and
computing frame by frame the observation likelihoods at each
state of the silence HMM, very different curves are obtained
depending on weather CMVN is applied or not. Figure 1 illus-
trates this difference. The middle and bottom diagrams show
the curves formed by the observation log-likelihoods generated
by each HMM state s0, s1 and s2, without and with normaliza-
tion respectively, through a utterance composed of four words.
In this case, the normalization has been performed using the
means and variances computed from the file.

Figure 1: Spectrogram (top) and observation log-likelihoods
along time (frames) generated by the left state (s0), central state
(s1) and right state (s2) of the silence HMM without CMVN
(middle) and applying CMVN (bottom).

The curves in the bottom diagram (with CMVN), compared
with the ones in the middle diagram (without CMVN), look
more abrupt. This fact can be used to better discern between
speech and non-speech.

2.3. The central state of the silence HMM

In any three-state HMM, the central state is a priori the most
stable state of the model, since the left and right states have
to cope with transitions between models. It makes sense that
the same will happen to the silence HMM, where left and right
states have to model transitions between silence and speech.

Looking back at Figure 1, we can see that, indeed, the
curves generated by the central state (s1) are, in both cases (with
and without cepstral normalization), much more discriminative
than the curves corresponding to the states at the ends, which
are more irregular.

2.4. Robustness against different SNR values

Another interest point to focus on in a VAD is its robustness
for different recording conditions. As an example, we have
chosen four signals from the Spanish SpeeCon database [14]
to illustrate the impact of the recording distance on the obser-
vation likelihood curves. These four signals correspond to the
same utterance, but were recorded by means of four different
microphones: a headset (channel C0), a lavalier (channel C1),
a medium-distance cardioid microphone (0.5-1 meter, channel
C2) and a far-distance omnidirectional microphone (channel
C3). Each of these channels represents a different SNR, C0

being the cleanest (around 20dB) and C3 the noisiest (0dB).
Figure 2 shows the observation log-likelihoods generated

by the central state of the silence HMM trained with the Basque
Speecon-like database. The utterance is the same as the one in
Figure 1 (note that the signal in Figure 1 corresponds to the C1

signal in Figure 2). The darkest curve corresponds to the C0

channel and the lightest one to the C3 channel.

Figure 2: Observation log-likelihoods along time obtained at
the central state (s1) of the silence HMM when processing dif-
ferent channels (C0, C1, C2, C3).

The curves show that, as expected, a degradation occurs
when the signals recorded at farther distances are processed,
but even so the curves remain rather discriminative. For C3

signals, the most adverse effect occurs at the initial and ending
phones, where, depending on the phone, likelihoods can be very
similar to those of the noisy silence. This happens mostly when
the initial phone is a noisy phone. However, the curves show
a good behaviour for C1 and C2, with likelihood profiles very
similar to those obtained for C0 signals.

3. Data preparation
To assess the stability of the observation likelihood curves gen-
erated by the central state of the silence HMM, a VAD accuracy
experiment has been carried out, setting different thresholds to
label frames as speech or silence.

3.1. The databases

Two databases have been chosen for the experiments: first, the
Noisy TIMIT spech database [15], to analyse weather a thresh-
old could be set for different SNR conditions. The second
database is the ECESS subset of the Spanish Speecon database
[16], which has been used to test the validity of that threshold.

1. Noisy TIMIT spech database: it contains approximately
322 hours of speech from the TIMIT database [17] mod-
ified with different additive noise levels. However, we
have chosen only babble and white noises, as the most
natural ones. Noise levels vary in 5 dB steps and rang-
ing from 50 to 5 dB. The database contains 630 different
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speakers, with 10 utterances per speaker: 6300 files for
each noise level. The total speech content in the database
is 86.57 % (not well balanced), and the label files are the
ones belonging to the classic TIMIT database. All audio
files are presented as single channel 16kHz 16-flac, but
have been converted to 16-bit PCM.

2. ECESS subset of the Spanish Speecon database: it was
used in the ECESS evaluation campaign of voice activ-
ity and voicing detection in 2008. It includes 1020 ut-
terances recorded in different environments (office, en-
tertainment, car and public place) distributed among the
C0, C1, C2 and C3 subsets (total number of files: 4080).
There are 60 different speakers each of which utters
17 sentences. The total speech content in the database
is 55.77 % (well balanced), and it contains reference
speech and silence labels specifically designed to assess
different VAD algorithms. The signals in the database
were recorded at 16 kHz and 16 bit per sample.

Each file’s features have been normalized off-line, with the
means and variances calculated from the file itself. The on-line
performance has been left for future research.

3.2. Error metrics

The VAD accuracy experiment consists in evaluating the abil-
ity of the system to discriminate between speech and silence
segments at different SNR levels, in terms of silence error-
rate (ER0) and speech error-rate (ER1). These two rates are
computed as the fractions of the silence frames and speech
frames that are incorrectly classified (N0,1 and N1,0, respec-
tively) among the number of real silence frames and speech
frames in the whole database (Nref

0 and Nref
1 , respectively),

as shown in equation 5. In addition, the TER (total error rate)
has also been computed as the average of the ER0 and ER1

(equation 6).

ER0 =
N0,1

Nref
0

× 100;ER1 =
N1,0

Nref
1

× 100 (5)

TER =
ER0 + ER1

2
(6)

A minimum duration of 15 frames both for speech and si-
lence segments was set. This value was empirically chosen after
some preliminary experiments.

4. VAD experiments
Initially, we have analysed whether a threshold can be set for
VAD purposes, considering the various SNR values. Then, we
have tested that threshold in a separate database, and, in addi-
tion, a validity test has been carried out comparing the results
with those obtained with three standard VAD algorithms.

4.1. Analysis of the decision threshold

Different thresholds have been considered to label frames as
speech or silence. Results are shown in Figure 3, both for bab-
ble noise (left) and white noise (right).

For the cleanest signals (SNR = 50dB), the equal error
rate (EER) points of ER0 and ER1 curves are located near
−200. However, as the SNR gets lower, the EER points
move towards higher values. In the case of white noise, this
shift reaches the −120 value for 5 dB.

Figure 3: ER0 and ER1 (top) and TER (bottom) for different
decision threshold values when testing the signals of SNR 50
to 5 dB in the babble noise subset (left) and the white noise
subset (right) of the Noisy TIMIT database.

Regarding the error rates, the minimum TERs are obtained
at Th = −150, except for 5, 10 and 15 dB in white noise
subset, which occur at −100. Thus, we can consider the point
of Th = −150 as the most valid threshold. Some ER0 and
ER1 values obtained for Th = −150 are shown in Table 1.

Table 1: TER, ER0 and ER1 for Th = −150 on the signals
of SNR 50, 35, 20 and 5 dB in the babble noise (left) and white
noise (right) subsets of the Noisy TIMIT database.

Babble White
ER0 ER1 TER ER0 ER1 TER

50dB 34.89 6.71 20.80 34.88 6.95 20.92
35dB 30.87 7.48 19.18 28.05 9.18 18.62
20dB 26.35 11.25 18.80 21.53 16.89 19.21
5dB 22.60 20.78 21.70 15.49 30.90 23.20

For Th = −150, the minimum ER1 is 6.71, at 50 dB. As
expected, the ER1 increases as the SNR decreases. However,
notice that the TER does not present the minimum at 50 dB,
neither in the babble noise subset nor in the white noise subset,
as might be expected.

4.2. Testing

The threshold calculated in the previous section has been ap-
plied to the files of ECESS subset of the Spanish Speecon
database. 4080 files have been tested (1020 in each Ci subset).
Results are shown in Table 2.

The results obtained for the ECESS subset using the thresh-
old calculated from the Noisy TIMIT are very good. Compared
with the best result obtained for the Noisy TIMIT (see 50 dB
row in Table 1), much lowerER0 andER1 have been obtained.
The error rates, as expected, increase as SNR decreases, al-
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Table 2: TER, ER0 and ER1 with Th = −150 on the sig-
nals of channels C0, C1, C2 and C3 in the Spanish Speecon
database.

ER0 ER1 TER

C0 6.21 2.74 4.48
C1 4.22 6.13 5.18
C2 7.10 6.00 6.55
C3 9.46 6.45 7.96

though the best silence error rate is obtained for theC1 channel.
Additionally, a tuning has been performed for ER1 reduc-

tion. Indeed, for speech processing, it is important to reduce
the ER1 as much as possible, so that the minimum number
of speech frames are lost for the next stage. For that purpose,
we have sought to reduce the impact of non-speech to speech
boundaries, setting an additional margin of 5 and 10 frames
around the speech segments. Results are shown in Table 3.

Table 3: TER,ER0 andER1 for 5 and 10 frames long speech-
segment margins, with Th = −150 for the signals of channels
C0, C1, C2 andC3 in the ECESS subset of the Spanish Speecon
database.

5 frames 10 frames
ER0 ER1 TER ER0 ER1 TER

C0 10.84 1.29 6.07 15.68 0.79 8.24
C1 7.94 3.47 5.71 12.42 2.30 7.36
C2 10.91 3.50 7.21 15.39 2.47 8.93
C3 13.29 3.95 8.62 17.59 2.89 10.24

The table shows that ER1 reduces and ER0 increases.
TER increases as well, because ER0 increases faster than
ER1 reduces. All in all, the use of a margin around speech
segments allows decreasing significantly ER1, with a not very
significant resulting TER degradation.

4.3. Comparison with other systems

In order to validate the previous results, our results have been
compared with the outcomes of three popular standard VAD al-
gorithms carried out in a previous work [18]. These systems
are standard defined by ITU (International Telecommunication
Union) and ETSI (European Telecommunications Standards In-
stitute):

1. The VAD algorithm of the ITU G.729 system [19].

2. The AFE-FD (frame-dropping mechanism) algorithm
implemented in ETSI AFE-DSR (Advanced Front-End
for Distributed Speech Recognition) [20].

3. The AFE-NR (noise reduction system) algorithm imple-
mented in ETSI AFE-DSR [20].

Table 4 shows the results obtained for the three VAD sys-
tems along with the proposed method (using Th = −150 and
a margin of 10 frames), over the same dataset (4080 files from
the ECCESS subset). Regarding ER1, the AFE-FD gets better
results, and also the AFE-NR for C0 and C1. However both
systems show the disadvantage of getting very high ER0 for
all the channels (the lowest value is 38.10 %). This means that
many silence frames will be sent to the recognizer. The ER0 in
our results are between 12.42 and 17.59 %.

Table 4: Comparison of different VAD algorithm results at four
SNR levels

(a) Silence error rates (ER0)
G.729 AFE-FD AFE-NR Prop.

C0 56.06 63.88 58.23 15.68
C1 70.23 54.75 55.96 12.42
C2 59.54 52.10 38.10 15.39
C3 70.49 50.10 47.65 17.59

(b) Speech error rates (ER1)

G.729 AFE-FD AFE-NR Prop.

C0 3.63 0.03 0.62 0.79
C1 9.28 0.23 1.98 2.30
C2 18.19 0.48 4.83 2.47
C3 17.22 1.41 8.30 2.89

5. Conclusions
In this paper, we have assessed the usefulness of the observa-
tion likelihood generated by the central state GMM of a silence
HMM trained using CMVN, as a possible basis on which to
build a VAD system. We have seen that a good classification
between speech and silence can be performed, just by setting a
threshold in the curves that observation likelihoods form.

The silence HMM has been trained using the close-talk
channel from the Basque Speecon-like database. Then, a thresh-
old analysis has been carried out, processing the babble and
white noise files of the Noisy TIMIT database. As a conclu-
sion, we have noticed that the minimums error rates occur at
the same likelihood point in 17 SNR values out of a total of
20. This point is the one we have chosen as the threshold.

This threshold has been tested with a separate database: the
ECESS subset of the Spanish Speecon database. The results
obtained for this database are even better than those obtained
for the Noisy TIMIT, which leads us to think that the silence
observation likelihood behaves similarly on different channels.

Additionally, the results of the test have been compared
with three different standard VAD systems. Although the best
speech error rates have not been achieved with the use of the
decision threshold, we have got the best silence error rates. Our
results are quite competitive; actually, the best total classifica-
tion rates have been obtained.

As a final conclusion, competitive results are obtained just
by setting a decision threshold to the silence observation likeli-
hood curves. This fact has been applied in [21], where a method
called Multi-Normalization Scoring (MNS) is used to explode
the discriminative potential of the observation likelihood scores.
Robust on-line results are shown in that paper, where the scores
obtained with MNS are classified with a Multi-Layer Percep-
tron (MLP). This issue and others related to the selection of the
optimal threshold are being investigated currently in our labo-
ratory.
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