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Abstract

The ability of materials to transfer electrons is a basic property controlling the func-
tionality and performance of devices at the nanoscale. Of particular importance is
the transfer of electrons at surfaces as a fundamental process in catalytic and photo-
catalytic applications. This work aims along these lines at a theoretical description of
resonant charge injection at surfaces using a combination of density functional theory
and Green’s functions. A close comparison with available data from core-hole-clock
experiments is maintained throughout the work and confirms the validity and pre-
dictive power of our first-principles approach. This is demonstrated on the basis of
three prototypical systems where we study fundamental aspects of charge transfer
providing additional, often complementary information to the interpretation of the
experiments.
First, we gauge the effect of structural fluctuations at finite temperatures on the

charge transfer dynamics at rutile TiO2(110) surfaces sensitized by isonicotinic acid
molecules in relation to photovoltaic applications. We find that, the inclusion of
such fluctuations reconciles the theoretically extracted charge transfer times with the
results from core-hole-clock experiments at room temperature. We study in detail
how variations in the geometry and the presence of a core hole affect the interfacial
level alignment and discuss how the available amount of acceptor states shapes the
temperature broadened resonance spectra in our simulations.
Second, we explore spin-dependent charge transfer on ferromagnetic substrates for

the example of argon on Co(0001) and Fe(110). Here, recent core-hole-clock experi-
ments reported a strongly spin-dependent charge transfer behavior regarding the in-
jection from core-excited argon atoms. Our calculations reproduce the experimental
observation of significantly faster decay of core-excited Ar∗4s resonances in compar-
ison with majority excitations, allowing for a detailed analysis of this phenomenon.
We find, in particular, that the position of the Ar∗4s resonance with respect to pro-
jected gaps around the Γ-point of the surface band structure is crucial to explain the
spin-dependent behavior, with important implications for spintronic applications.
Third, we closely examine the directionality of charge transfer in relation to sulfur

derived resonances at surfaces of the layered transitionmetal dichalcogenide 1T-TaS2.
In this joint experimental and theoretical work we analyze the origin of a change from
anisotropic to isotropic charge transfer behavior across the phase transition from the
nearly commensurate to the commensurate charge density wave phase at low temper-
atures. Our calculations reveal that the isotropic behavior of the ultrafast electron
transfer in the commensurate charge density wave phase is presumably rooted in an
increase in interlayer coupling and not the result of a reordering of the charge density
wave stacking in subsequent layers of the material.
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Chapter 1

Introduction

Living organisms developed efficient pathways in order to extract energy from their
natural environment. The most prominent example is the collection of sun light via
photosynthesis in plants. During this process the absorbed light energy is chemically
stored by capturing carbon. Plants and animals then use cellular respiration to release
the stored energy again, allowing their organisms to perform life-sustaining work.
Remarkably, at the elementary level these metabolic processes rely on a common
scheme: The transfer of electrons in the underlying reduction-oxidation reactions.
Very similar and often imitating nature, a wide spectrum of technological applications
has been developed that relies on electron transfer at the atomic level. Important
catalytic or photo-catalytic applications such as electrochemical cells [1], solar fuel
generators [2], and dye-sensitized solar cells [3–5] stand out as promising candidates
in the renewable energy sector.
The prospect of such technologies and a fundamental interest in elementary pro-

cesses explain the ongoing efforts to understand and describe electronic transfer. Ini-
tially, many of these efforts were focused on (outer shell) electron transfer reactions
in solutions, which lead to the development of Marcus theory and its extensions [6–8],
entering many theoretical descriptions up to date. However, experimentally as well
as theoretically the scope has changed considerably since then.
While a tendency of catalytic reactions to proceed at interfaces brought the surface

into the focus of many studies [9], the advances in the field of laser techniques opened
new roads to probe electron dynamics with time and energy resolutions sufficiently
precise to address electron transfer at its fundamental time- and length-scales. A cor-
nerstone in this development was the investigation of the decay of electrons trapped
in image potential states [10, 11]. These states arise inside potential wells, which
are formed between the surface barrier and the attractive image charge mirroring
an electron in front of the surface. Their experimental confirmation lead to a se-
ries of studies, where in particular the lifetimes of image potential states have been
investigated, e.g., by two-photon photoemission (2PPE) [12, 13] and time-resolved
two-photon photoemission (tr-2PPE) [14, 15] on various low-index surfaces of metals.
Simultaneous theoretical calculations with increasingly realistic descriptions of the
band structure of the surfaces backed these experiments [16, 17]. More recently, the

1



1. Introduction

invention of the core-hole-clock method [18–21] enabled investigations of the lifetimes
of localized states on adsorbates. This synchrotron technique allows to selectively
and locally excite electrons on adsorbates and resolve the associated transfer times
with unprecedented time-resolutions down to the sub-femtosecond regime [22].
The interpretation of such increasingly fine-tuned experiments requires in turn

precise theoretical tools for their description down to the atomic level. Here, quantum
effects are dominant and lead to an exponential increase in complexity with the
number of the involved particles. Fortunately, in the absence of known analytical
solutions to these complex problems, the developments of approximate first-principles
quantum mechanical methods like density functional theory (DFT) [23–25] and their
numerical implementations as for example in the SIESTA code [26–29] permit to
model realistic systems with up to thousands of atoms with affordable computational
effort.
This thesis makes use of DFT and Green’s functions to study elastic charge transfer

from localized resonance states at surfaces. Wherever possible a direct comparison
with available data from core-hole-clock experiments is drawn. We consider an elec-
tron transfer process from a core-excited donor atom or molecule D to an extended
surface A acting as acceptor, as summarized by the following scheme

DA+ hν
(1)−→ D∗A

(2)−→ D+A−. (1.1)

Here, the combined system DA in it’s ground state is irradiated by an incoming X-
ray beam of energy hν. (1) This beam excites a core-electron at an atomic site of the
donor D preparing the latter in an intermediate (excited) state D∗. (2) Subsequently,
the excited electron on the donor decays (delocalizes) into the extended surface A.
The transfer of the electron leaves the donor with a positive (D+) and the surface
with a negative (A−) partial charge.
In our first-principles DFT approach we model the system in the intermediate

(transient) state directly after the core-excitation of an electron [after step (1) in
Eq. (1.1)], while we do not explicitly account for the exciting electromagnetic field.
The electron in the excited state is instead described by a heuristically determined
localized wave-packet on the donor D. This wave-packet resembles a discrete energy
level of the isolated donor, which typically becomes spread out in energy as a result
of the coupling to the continuum of states in the substrate (one speaks of a resonance
in the continuum of substrate states) [30–33]. This energy broadening is given by the
linewidth Γ of the resonance wave-packet. Using the uncertainty relation τ ·Γ = 1 (in
atomic units) the linewidth Γ can be translated into the lifetime τ , which represents
the characteristic time the electron takes to delocalize into the substrate (the charge
transfer time).
In the widely adopted approach to model surfaces by slabs consisting of a few

atomic layers, only a finite number of acceptor states is supported by such a finite
model of the substrate. This absence of a bulk continuum of states at the sur-
face inhibits a consistent description of the resonant coupling at the interface. To
overcome this deficiency we employ a Green’s function method based on DFT cal-
culations [34, 35], which is capable of treating surfaces with an infinite amount of
atomic layers and therefore supports true resonant coupling of atomic resonances to

2



1. Introduction

a continuum of states, while the methodology can be adapted to treat resonances on
molecular adsorbates at surfaces [36].
The extracted resonant linewidths Γ (or accordingly the lifetimes τ) are of elastic

character in our model, in the sense that they do not account for any additional in-
elastic effects due to, e.g., electron-electron or electron-phonon scattering. In general
lifetimes are affected by both, elastic and inelastic processes. The latter arise in a
quasiparticle picture through the interaction with, e.g., electron-hole pairs, phonons,
magnons, or plasmons. Although methods exist to treat such interactions, these
come usually at the expense of elevated computational costs, which restricts their
applicability to small systems or reduced models, like simulating the electrons inside
the surface as a free electron gas or using DFT-derived model potentials represent-
ing realistic surfaces [37, 38]. Examples for such approaches to inelasticity, are the
estimation of inelastic electron-electron scattering from the GW self-energy [39] and
the treatment of electron-phonon scattering through calculation of the Eliashberg
function (cf. Refs. 16, 17). However, here we focus on extremely fast charge transfer
processes at surfaces where the role of elastic coherent propagation is dominant.
As soon as a more realistic quantum description of large atomic structures is nec-

essary DFT remains the tool of choice. While we employ in this work a DFT-based
Green’s function technique [34, 35], a variety of similar techniques to extract res-
onance widths and positions exists. Closely related is the deconvolution technique
which analyzes widths of resonances in finite slab calculations considering a Gaussian
broadening of the discrete projected density of states (DOS), which is corrected for
later, when extracting the resonance widths [40]. Furthermore, a similar description
of charge transfer times can be achieved via direct propagation of wave-packets in
the time-domain, however, this requires in practice the introduction of a complex ab-
sorbing potential to avoid reflections of the propagating electrons at the boundaries
of the simulation cells [17, 41]. Aside from these, a range of techniques have been
elaborated to determine the linewidths of resonances at surfaces. Among these are
the stabilization method [42], coupled angular momentum technique [43], complex
scaling [44], or close-coupling [45], which have been briefly reviewed in Ref. 46. While
these techniques provide accurate descriptions of the resonances, they also bring along
complications which limit their applicability. However, also these methods do not
offer an explicit description of the perturbation (e.g., the incoming electromagnetic
field) causing the initial excitation of the resonance.
The thesis is organized in the following way. A brief introduction to the applied

theory and the employed tools is provided in Chapter 2, where the required approx-
imations to obtain a tractable theoretical framework are emphasized. In particular,
we introduce DFT, where we focus on a formulation in terms of localized orbitals in
relation to the numerical implementation in the SIESTA code [26–29], since this is
the main tool employed throughout this thesis.
Chapter 3 defines the elastic lifetime of an electronic state within the previously

described DFT framework as the central quantity of interest in this thesis. This
is achieved by introducing the concept of the single particle Green’s function and
explaining its role as quantum mechanical propagator. Moreover, it is established
how Green’s functions can be exploited to treat the effect of a larger environment
inside a smaller embedded region of interest. This property is then used to include

3
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the effect of a fully semi-infinite substrate coupled to a finite surface region.
After the introduction to the theoretical tools a brief review of the core-hole-clock

method [18–21] in Chapter 4 highlights this X-ray spectroscopic approach to extract
lifetimes of localized states on adsorbates or atoms at surfaces experimentally. Ex-
periments using the core-hole-clock technique are later extensively used as a reference
for comparison with our simulations. In the literature different implementations of
the core-hole-clock are found, these are briefly outlined and a comparison with time-
resolved pump-probe measurements is drawn.
Chapter 5 starts with a preface on the interactions of step-edges and vacancies on

TiO2, thereby introducing TiO2 as a substrate material. Our simulation suggest a
scenario in which vacancies travel to the step edges of the material in support of the
observations in curved crystal experiments on reduced TiO2(110) surfaces performed
by A. Miccio et al. in the group of Prof. E. Ortega (cf. Ref. 47). This allows us
to present the main electronic properties of the TiO2 substrate and how they are
influenced by the presence of oxygen vacancies. The density of available acceptor
states is an important ingredient for the determination of charge transfer times as
discussed in Chapter 3. Subsequently, we turn to the investigation of charge transfer
times at a prototypical interface in a dye-sensitized solar cell (DSSC). In particular,
we investigate how interfacial structural fluctuations at finite temperatures affect the
charge injection from chemisorbed isonicotinic acid molecules into TiO2(110) sur-
faces. We show that the inclusion of such finite temperature effects can bring the
experimentally observed time-scales by Schnadt et al. [48] into agreement with our
theoretical estimates. An in-depth discussion of the obtained statistics highlights
the role of the DOS in the substrate in shaping the temperature broadened spec-
tra. Finally we attempt to establish a direct connection of the spectral broadening
and the extracted lifetimes with specific vibrational modes. While the inhomoge-
neous broadening of the electronic levels can be explained within a semi-classical
harmonic oscillator model involving linear electron-phonon couplings, a similar di-
rect connection between the renormalization of the lifetimes and the excitation of
specific vibrations was not possible.
In Chapter 6 we study the influence of the electron spin during charge injection

processes at interfaces exhibiting spin polarization. In this context a minimal system
that can be thought up is a single atom on a ferromagnetic surface, like argon atoms
on Co(0001) or Fe(110) surfaces. For these systems precise and recently confirmed
core-hole-clock data on spin dependent charge injection is available [49–51]. We
show that our first-principles approach reproduces the experimental findings of faster
minority spin charge injection on these surfaces and discuss how a detailed knowledge
of the electronic structure in terms of electronic gaps of the surface band structure
can explain this behavior, while we argue that explanations solely in terms of the
available acceptor DOS in the substrate are bound to fail.
Chapter 7 explores ultrafast charge transfer from chemically bound sulfur atoms

at the surface of the transition metal dichalcogenide 1T-TaS2, pushing our method-
ology to the limits of its applicability. 1T-TaS2 represents a promising candidate for
ultrafast optoelectronic switching applications as well as an archetypal system for in-
vestigations of the directionality of charge transfer due to its layered two-dimensional
structure. In a combined core-hole-clock spectroscopy and DFT study we exploit se-
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lectively prepared orbital-polarizations of intermediate wave-packets to determine the
directionality and time-scales of the ultrafast electron dynamics at the 1T-TaS2 sur-
face. The experiments conducted in the group of Prof. A. Föhlisch by D. Kühn et al.
(see Ref. 52) show a transition from two-dimensional charge transfer behavior in the
nearly commensurate charge density wave phase towards three-dimensional charge
transfer in the commensurate charge density wave phase. We use our simulations to
rationalize the isotropic charge transfer behavior in the low-temperature phase and
discuss the effect of variations in the stacking order of the charge density waves in
subsequent layers.
Finally, Chapter 8 summarizes the combined results of the investigations in this

thesis and provides a general outlook as a perspective to future studies.
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Chapter 2

The Many-Body Problem
in Practice

The aim of this chapter is to outline the tools and models employed in this work
while indicating possible short-comings in terms of the approximations made. In
order to build on a mathematical foundation the many-body problem is stated and
the necessary approximations for a computationally tractable solution are introduced.

2.1. The Many-Body Problem in Condensed
Matter Physics

The quantum mechanical motion of N particles such as electrons and nuclei is
described by the Schrödinger equation [53]. The Schrödinger equation reads in its
time-dependent form

i ∂
∂t

Ψ = ĤΨ, (2.1)

where Ψ(r1, r2, . . . , rNe ,R1,R2, . . . ,RNn , t) is the full many-body wave-function de-
pending on time t and the 3N spatial coordinates of the interacting particles (the
electrons are at the positions ri with i = 1, . . . , Ne and the nuclei at the positions RI

with I = 1, . . . , Nn and N = Ne + Nn). Additionally, the degrees of freedom related
to the electron and nuclear spin have to be taken into account, although they are
not explicitly appearing in Eq. (2.1). Ĥ is the Hamiltonian operator and we have
written the equation in atomic units

~ = me = (4πε0)−1 = 1. (2.2)

Atomic units are used throughout this thesis unless otherwise stated. In the case of a
time-independent Hamiltonian Ĥ one may separate the time degree of freedom and
write the time-independent Schrödinger equation

ĤΨ = EΨ, (2.3)

7



2. The Many-Body Problem in Practice

describing a quantum system in a stationary state of an energy E. The solutions of
the Schrödinger equation are to this level defined up to an arbitrary phase factor eiα.
The Hamilton operator Ĥ describing the interactions between the particles

Ĥ = T̂e + T̂n + V̂ee + V̂en + V̂nn (2.4)

with the kinetic energy operators of the electrons T̂e and of the nuclei T̂n defined as

T̂e = −
∑
i

∇2
i

2 , T̂n = −
∑
I

∇2
I

2MI

. (2.5)

Repulsion between electrons V̂ee, attraction between nuclei and electrons V̂en, as well
as repulsion between nuclei V̂nn are given by the Coulomb terms

V̂ee =
∑
i 6=j

1
|ri − rj|

, V̂en = −
∑
i,I

ZI
|ri −RI |

, V̂nn =
∑
I 6=J

ZIZJ
|RI −RJ |

. (2.6)

The analytic solution of Eq. (2.1) is known for a single Hydrogen atom [53]. The
task of solving the equation for systems involving more particles has not been achieved
analytically and is referred to as the many-body problem. Although up to date ana-
lytically intractable, the problem can be approached numerically, if suitable approx-
imations are made. Such a set of approximations is the focus of this chapter.

2.2. The Born-Oppenheimer Approximation and
the Electronic Problem

As a first step we introduce the Born-Oppenheimer approximation as an important
simplification of the many-body problem [54]. This approximation allows to separate
the nuclear from the electronic motion and, therefore, to treat electrons and ions
independently from each other. It has to be kept in mind that the approximation
will break down under certain conditions. The following is based on the discussion
in the book chapter by Cederbaum [55].
One can define the electronic Hamiltonian describing the interacting electrons mov-

ing in the fixed potential due to the nuclei by

Ĥe = T̂e + V̂ee + V̂en + V̂nn, (2.7)

where the effects of the kinetic energy of the nuclei have been omitted. The solution
of the Schrödinger equation of the electronic system

Ĥeψi(r,R) = Vi(R)ψi(r,R) (2.8)

yields a complete set of electronic eigenstates ψi(r,R) with eigenvalues Vi(R) for a
set of fixed nuclear coordinates R entering parametrically. Note, that exclusively in
this section r = {r} and R = {R} are interpreted as the entire sets of the electronic
and the nuclear coordinates, respectively. In the rest of this work the symbols are
used explicitly for the spatial coordinates of single particles. The completeness of the
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2.2. The Born-Oppenheimer Approximation and the Electronic Problem

electronic eigenstates ψi(r,R) allows a formally exact expansion of the full many-
body wave function Ψ(r,R) in terms of the electronic wave functions, such that

Ψ(r,R) =
∑
i

χi(R)ψi(r,R). (2.9)

To this end one may choose the electronic wave-functions to be real by multiplication
with a proper phase factor eiα(R). In a periodic solid, the solutions can be classified
according to how they transform under translations. This gives rise to a phase factor
depending on the so-called Bloch vector quantum number (cf. Section 2.4). How-
ever, slowly (adiabatically) transporting the system around a circle by a continuous
variation of the coordinates R, the system acquires a well-defined geometrical phase
factor. This so-called Berry phase can be correlated to interesting properties of
the system [56]. Substituting the ansatz [Eq. (2.9)] into the full Schrödinger equa-
tion Eq. (2.3) and multiplying from the left by ψ∗j (r,R) yields after integration over
the electronic coordinates the expression

[T̂n + Vj(R)]χj(R)−
∑
i

(Aji +Bji)χi(R) = Eχj(R). (2.10)

The terms Aji and Bji are known as non-adiabatic couplings. The first term can be
identified as

Aji(R) =
∑
I

1
MI

∫
ψ∗j (r,R)∇Iψi(r,R)∇I dr (2.11)

and is of derivative nature. The second non-adiabatic coupling term is of scalar
character

Bji(R) =
∑
I

1
2MI

∫
ψ∗j (r,R)∇2

Iψi(r,R) dr . (2.12)

If the off-diagonal terms of Aji and Bji are negligible, then Eq. (2.8) for the electrons
and Eq. (2.10) for the nuclei effectively uncouple and describe a system in which
the lighter electrons follow instantaneously the motion of the heavy nuclei. This
is the adiabatic or Born-Oppenheimer approximation (BOA) [55]. Since Aji and
Bji both are divided by the masses of the heavy nuclei MI , one may assume their
contributions to be small. On the other hand, application of ∇I to the electronic
Schrödinger equation, Eq. (2.8), yields the expression

〈ψj(r,R)|∇I |ψi(r,R)〉 = 〈ψj(r,R)|(∇IHe)|ψi(r,R)〉
Vi(R)− Vj(R) , (2.13)

for i 6= j. If two electronic states are nearly degenerate (e.g., at conical intersections
of the potential energy surfaces), the denominator in Eq. (2.13) becomes small and
the contribution to Aji in Eq. (2.11) explodes so that the BOA breaks down. Nev-
ertheless, assuming the approximation to be valid, it remains to solve the electronic
problem Eq. (2.8) for a particular nuclear configuration R as described in the next
sections.
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2. The Many-Body Problem in Practice

2.3. Density Functional Theory
DFT is currently the tool of choice to simulate and engineer systems consisting

of hundreds to thousands of atoms on computers. The idea behind DFT is that
the physical properties of a system of interacting electrons are readily defined by its
ground state electronic density. This seems surprising since the density is a much
simpler object in comparison to the wave function. The density depends only on three
spatial coordinates, in contrast to the electronic wave function which is a function of
the 3N coordinates of the particles in the material of interest. Moreover, the density
can be obtained from the hermitian operator

n̂ =
∑
i

δ(r− ri) (2.14)

and hence, is a quantum mechanical observable. The following expression for elec-
tronic density nσ(r) of the spin-component σ ∈ {↑, ↓} emphasizes the reduction of
dimensionality when using the density instead of the many-body wave function as
the principle variable,

nσ(r) = N
∑

σ2,...,σN

∫
· · ·

∫
|ψ(rσ, r2σ2, . . . , rNσN)|2 dr2 . . . drN . (2.15)

Note, that the symbol r describes here and from now on a single variable in three
spatial coordinates, while it was associated with a set of electronic coordinates {r} in
the previous section. The total electronic density n(r) is given as the sum of the two
spin components, i.e., n(r) = n↑(r)+n↓(r). The approach to use the electronic density
as the basic variable in quantum mechanical calculations is nearly as old as quantum
mechanics itself. The energy density functional proposed initially by Thomas and
Fermi [57, 58] is widely seen as a forerunner of modern DFT. Nevertheless, a rigorous
mathematical foundation DFT was first provided much later by Hohenberg and Kohn
[23]. Finally, the work of Kohn and Sham [24] made DFT applicable in practice.
In the following two sections, DFT is introduced as the standard tool for ab-initio

modeling of electronic structure, Eq. (2.8). More complete accounts can be found in
the books by Martin [59], or Engel and Dreizler [60] on which this chapter is based.

2.3.1. The Hohenberg-Kohn Theorem
Hohenberg and Kohn [23] formulated in their seminal paper the theorem, which

builds the basis for modern DFT. The main statements are outlined in this section.
Using common nomenclature, we define an external potential vext, which accounts for
the electrostatic interactions of the ions among themselves and with the electrons,
thereby incorporating the Born-Oppenheimer approximation into the formalism

Eext[n] = 〈ψ|V̂ext|ψ〉 = 〈ψ|V̂en + V̂nn|ψ〉 =
∫
vext(r)n(r) dr . (2.16)

In this form the energy contribution Eext[n] due to V̂ext = Ven + V̂nn has been recast as
a functional of the density n(r). In general, the external potential may contain further
contributions stemming for example from an external electric field. Time-dependent

10



2.3. Density Functional Theory (DFT)

potentials can be treated in the framework of time-dependent DFT, which is beyond
the scope of this section. The Hamiltonian describing electrons subject to a static
external potential reads

Ĥe = T̂e + V̂ee + V̂ext. (2.17)
First, we assume the case of a non-degenerate ground state. Usually, the steps in com-
puting the ground state density corresponding to the above electronic Hamiltonian
are: (A) Solving the Schrödinger equation, Eq. (2.8), to obtain the ground state ψ0.
(B) Extracting the ground state density using Eq. (2.15). Those steps are indicated
by the blue arrows in Fig. 2.1 and give a unique mapping of the Hamiltonian (or the
external potential) onto the ground state wave function (in the non-degenerate case).
On the other hand, one can show, e.g., by contradiction (reductio ad absurdum),

that also the reverse direction (red arrows in Fig. 2.1) of the mapping is unique.
One can therefore invert the mappings A and B so that: (B−1) The ground state
density maps to a unique ground state wave function. (A−1) The latter ground state
wave function defines the external potential up to a constant term. Therefore, the
knowledge of the ground state density n0(r) is sufficient to determine the external
potential vext(r) up to a constant term (red dashed lines in Fig. 2.1). In other words,
the ground state density is sufficient to define all physical properties (the ones defined
by the Hamiltonian) of a system. This is the first statement of the Hohenberg-Kohn
(HK) theorem. In light of the mapping (B−1) one often writes the following equation

|ψ0〉 = |ψ[n0]〉 , (2.18)

which only holds strictly for non-degenerate ground states. The expectation value
for the total energy is defined as

E[n0] = 〈ψ[n0]|Ĥe|ψ[n0]〉 . (2.19)

Application of Ritz’s variational principle leads to the following minimization rule

E0 = E[n0] ≤ E[n], (2.20)

where it can be shown that only the exact ground state density n0(r) minimizes the
total energy [23]. This second statement of the HK theorem provides a recipe to
determine the ground state density of a system and, therefore, in principle all of its
properties. Since the external potential defines the electron density unequivocally,
the remaining part of the Hamiltonian in Eq. (2.17) is associated with a universal
functional of the density

FHK[n] = 〈ψ[n]|T̂e + V̂ee|ψ[n]〉 . (2.21)

The HK theorem can be generalized to include the case of degenerate ground states.
A proof of this generalization is analogous to the non-degenerate ground state case
but treats a mapping between sets of degenerate wave functions and degenerate
densities [60]. In the forward direction (blue arrows in Fig. 2.1) for a given vext (plus
a constant term) there is a set of degenerate ground-state wave functions (A) which
can in turn be mapped onto a set of degenerate ground state densities (B). Two
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Eq. (2.15)
Eq. (2.18)

B

B−1

HK theorem
Schrödinger
equation
Eq. (2.3)

A A−1 n0(r)

vext

ψi

Figure 2.1.: Scheme of the Hohenberg-Kohn theorem: The theorem states the exis-
tence of a unique mapping A−1 ◦B−1 of the ground-state density n0(r) to an external
potential vext.

different but degenerate ground state wave functions may be mapped onto the same
ground state density, but a mapping onto distinct degenerate ground state densities
is equally possible. In the reverse mapping (red arrows) one set of degenerate ground-
state densities pertains to a unique set of degenerate ground-state wave functions.
Each wave function in this degenerate set in turn uniquely defines the same external
potential up to a constant. Overall, a unique mapping between disjoint sets of wave-
functions belonging to different external potentials (up to a constant) and disjoint
sets of densities belonging to sets of degenerate wave functions is established. This
extends the HK theorem to the degenerate case.
One may note that the functional |ψ[n]〉 in Eq. (2.18) is not unique in the degen-

erate case. However, since the ground state energy is the same for all degenerate
ground state wave functions, it is sufficient to pick one wave function from the set
of degenerate wave functions corresponding to a given density. This allows to define
a unique energy functional E[n] as in Eq. (2.20) recovering the variational principle
for the degenerate case. The Hohenberg Kohn theorem can be further generalized as
for example to include spin polarization, a proof can be found in [60].
In the original proof of the HK theorem the search for the minimum energy in

Eq. (2.20) is performed over all densities n(r), which refer to some external potential
vext (v-representability of the density). In other words, it is assumed that a Hamil-
tonian with an external potential vext exists that produces the trial density. The
condition of v-representability has not been proven to hold necessarily for any den-
sity, but the requirement can be lifted and the domain of the search can be extended
by using the constrained search algorithm proposed by Levy [61] and Lieb [62]. Lieb
and Levy defined the universal energy functional in a modified way. The Lieb-Levy
functional FLL[n(r)] considers all anti-symmetric wave functions that produce one ex-
plicit density integrating to N particles (N -representability of the density) and then
returns the lowest energy value after performing a minimization over those wave
functions. This may be written formally as

FLL[n(r)] = min
ψ→n(r)

〈ψ|T̂ + V̂ee|ψ〉 . (2.22)

In this definition the search automatically includes degenerate wave functions ψ and
it is known that any trial density is actually N -representable [63] such that the prob-
lem of v-representability is circumvented. Since the total energy functional E[n(r)]
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is minimal for the exact ground state density n0(r) and n0(r) is known to be v-
representable due to the HK-theorem, FHK[n0(r)] equals the originally introduced
exact universal functional FLL[n0(r)] for n0(r).

2.3.2. The Kohn-Sham Equations
An early attempt to use the variational principle in terms of the electronic den-

sity Eq. (2.20) was proposed by Thomas and Fermi [57, 58]. In their model the kinetic
energy of the electrons was given as a functional of the inhomogeneous electron den-
sity T [n(r)] =

∫
tHEG[n(r)]n(r) by borrowing the known analytic expression of the

kinetic energy density tHEG[n(r)] from the homogeneous electron gas (HEG), where
nHEG(r) = const. In the same way known analytic form for exchange energy of a HEG
and an approximation for the correlation contribution where introduced. While such
an approach yields qualitative results, it does not reproduce basic quantum mechani-
cal behavior like the correct shell structure of atoms and Friedel oscillations. It would
be appealing to find a satisfying description of the electronic problem exclusively in
terms of the electronic density. However, such orbital-free kinetic energy DFTs lack
up to date the desired accuracy [64, 65]. Instead, the Kohn-Sham approach to DFT
provides a sufficiently precise alternative for many practical applications.
Kohn and Sham had the idea to make use of an auxiliary system of non-interacting

electrons with the same ground state electronic density as the interacting system [24].
The HK theorem is then applied to the auxiliary system as illustrated schematically
in Fig. 2.2. The electronic wave function of the auxiliary system can be written in
terms of a single anti-symmetric Slater determinant φSD of N independent particle
orbitals φi [66]

φSD(r1σ1, r2σ2, . . . , rNσN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(r1σ1) φ2(r1σ1) · · · φN(r1σ1)
φ1(r2σ2) φ2(r2σ2) · · · φN(r2σ2)

... ... . . . ...
φ1(rNσN) φ2(rNσN) · · · φN(rNσN)

∣∣∣∣∣∣∣∣∣∣
. (2.23)

Here, each single-particle spin wave function φi(rjσj) = φσi (rj)α(σj) is a product of a
spinor α(σj) describing the spin state and a spatial function φσi (rj), which may differ
for different spins. The total density is then given by the sum of the contributions
from both spins n(r) = n↑(r) + n↓(r).
The introduction of a non-interacting auxiliary system enables the description of

the kinetic energy in terms of single-particle wave functions,

Ts[n↑, n↓] = 〈φSD|T̂ |φSD〉 = −1
2
∑
σ=↑,↓

∑
i

fσi

∫
φσi (r)∇2φσi (r) dr . (2.24)

Here, the fσi are the occupation numbers, which are given by the Fermi-Dirac statis-
tics

fσi = f(εσi ) = 1
eβ(εσi −EF) + 1

, (2.25)

where β = (kBT )−1, kB is the Boltzmann constant, and T is the electronic tempera-
ture. The total energy of the electronic system is then written as a functional of the
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electronic density

E[n↑, n↓] = Ts[n↑, n↓] + EH[n] + Exc[n↑, n↓] + Eext[n], (2.26)

where EH is the Hartree term describing the classical electrostatic Coulomb repulsion
due to the non-interacting electron density

EH[n] = 1
2

∫∫ n(r)n(r′)
|r− r′|

dr dr′ = 1
2
∑

i,j,σ,σ′

∫∫ |φσi (r)|2|φσ′j (r′)|2

|r− r′|
dr dr′ . (2.27)

Importantly, the Hartree term contributes even if only a single electron is consid-
ered, e.g., terms with i = j. This spurious effect is known as self-interaction of
electrons and has to be canceled by the other terms in the exact energy functional.
The remaining contributions to the energy of the many-electron system defined by
〈ψ|Ĥe|ψ〉 (Eq. (2.17)) are included in the exchange-correlation energy

Exc[n↑, n↓] = Ex[n↑, n↓] + Ec[n↑, n↓]. (2.28)

Here, one may split off the exchange part which is defined analogous to Hartree-Fock
theory, with a Slater determinant over the Kohn-Sham orbitals

Ex[n↑, n↓] := 〈φSD|V̂ee|φSD〉 − EH[n]. (2.29)

The spin dependence of the exchange energy follows the spin scaling relation [67]

Ex[n↑, n↓] = 1
2(Ex[n↑, n↑] + Ex[n↓, n↓]), (2.30)

making it an easy task to construct the spin-dependent exchange functional once
the spin-independent form is known. With the above definitions, the remaining
correlation part of the energy is

Ec[n↑, n↓] = 〈ψ|T̂ |ψ〉 − Ts[n] + 〈ψ|V̂ee|ψ〉 − Ex[n↑, n↓]− EH[n] (2.31)

The differences between expectation values over the full electronic wave function and
the single-particle Slater determinant represent contributions from the kinetic terms
(kinetic correlation) and the Coulombic terms (Coulomb correlation).
The functional derivative of the exchange-correlation energy with respect to the

density εxc[n↑, n↓] is the exchange correlation potential.

vσxc(r) = δExc[n↑, n↓]
δnσ(r) (2.32)

= δ

δnσ(r)

∫
n(r)εxc[n↑, n↓] dr = εxc[n↑, n↓] + n(r)δεxc[n↑, n↓]

δnσ(r) (2.33)

Although an explicit formula for exact exchange in terms of the Fock operator is
known, this term is treated implicitly in the exchange correlation potential in stan-
dard DFT as its explicit calculation is in practice computationally too expensive. No
explicit analytical form of the exact exchange correlation energy functional is known
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and, therefore, further approximations have to be made. Such approximations will
be described in the next section. Applying the variational principle, the ground state
density can be found in the spirit of the HK-theorem by minimization of the total
energy functional. This is formally achieved by functional derivation with respect to
the density

δ

δnσ

{
E[n↑, n↓]− µ

∫
[n(r)−N ] dr

}∣∣∣∣
n(r)=n0(r)

= 0. (2.34)

This can be compared with a system of non-interacting electrons moving in an effec-
tive potential ∂Veff

∂n
where one has similarly ∂Es

∂n
= ∂Ts

∂n
+ ∂Veff

∂n
− µ = 0. One finds the

following single particle equations called Kohn-Sham equations [24][
−1

2∇
2 + vσeff(r)

]
φσi (r) = εσi φ

σ
i (r). (2.35)

where the effective, local and spin-dependent potential vσeff(r) is identified as

vσeff(r) = vH(r) + vσxc(r) + vext(r). (2.36)

Here, we have used the Hartree potential defined as the functional derivative of the
Hartree energy Eq. (2.27) with respect to the density ∂EH[n]

∂n
. The Kohn-Sham equa-

tions are usually solved iteratively in a self-consistent manner and one speaks then of
a self-consistent field (SCF). The solutions φσi (r) to Eq. (2.35) are the single-particle
states, or Kohn-Sham orbitals associated with the Kohn-Sham energy eigenvalues εσi .
The Kohn-Sham orbitals form the electronic wave function in terms of a single Slater
determinant. The non-interacting electronic density is then given by the sum of the
squares of the single-particle energy eigenstates

n(r) =
∑
σ

nσ(r) =
∑
i,σ

fσi |φσi (r)|2, (2.37)

weighted by the occupation number fσi [cf. Eq. (2.25)] considering collinear spin
σ ∈ {↑, ↓}. The multiplicative character of the effective potential in Eq. (2.35) con-
stitutes the mean-field character of Kohn-Sham DFT. The ground state energy is
effectively minimized by solving Eq. (2.35). Using the Kohn-Sham eigenvalues εσi in
Eq. (2.35) the total energy in Eq. (2.26) reads

E0 =
∑
i,σ

fσi ε
σ
i −

∑
σ

∫
vσxc(r)nσ0 (r) dr− EH[n0] + Exc[n↑0, n↓0]. (2.38)

Although the total energy functional in Eq. (2.26) is in principle exact, no explicit
analytic form of the exchange-correlation part Eq. (2.28) is known. The problem
of solving the many-body Schrödinger equation has been shifted from finding the
real interacting wave-function to the search for an explicit form of the exchange-
correlation functional.

2.3.3. Exchange-Correlation Functionals and Their
Limitations

DFT is in principle an exact theory, however, to apply it in practice one needs
to find suitable approximations for the unknown exchange-correlation functional
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n0(r)

interacting

vext

ψi

⇔ n0(r)

non-interacting

φi

vKS

Figure 2.2.: Scheme of the Kohn-Sham ansatz. Application of the HK theorem to
a system of non-interacting electrons, which yields the same electronic density as the
interacting electrons. ψi are the full many-body electronic wave-functions while φi
are the single-particle Kohn-Sham orbitals.

in Eq. (2.26). In this section the most common approaches are mentioned. These
approximate functionals have been associated by Perdew and Schmidt [68] with the
first steps on a Jacob’s ladder to an imaginative functional heaven, where chemical
accuracy is reached.
A first approximation to the exact energy functional is the local density approx-

imation (LDA) or also local spin density approximation (LSDA) if the inclusion of
spin is explicitly mentioned. In this approximation the exchange-correlation energy
density is treated locally as in a HEG for which accurate expressions are known. The
energy density functional becomes therefore a function of the density evaluated at
one point in space so that the total exchange correlation energy reads

ELSDA
xc [n↑, n↓] =

∫
εHEG

xc (n↑(r), n↓(r))n(r) dr . (2.39)

The combined energy density εxc is the sum of contributions from exchange and
correlation

εxc(n↑, n↓) = εx(n↑, n↓) + εc(n↑, n↓). (2.40)
The expression for exchange is known analytically [69] and the correlation energy
has been parametrized for different densities of a HEG using high accuracy Monte
Carlo methods [70, 71]. The LDA can provide a good description of materials, for
which the electronic density varies only little over space, as for example in the case
of many metallic solids.
As soon as the electronic density exhibits stronger variations in space, the local

approximation is no longer accurate enough. From this perspective a natural exten-
sion to the LDA is to include the gradient of the density in the description, giving
the functional a semi-local character. Unfortunately, the expressions obtained for
low-order density gradient expansions are not useful [60] since the expansions break
down for large density gradients in atoms [72] and violate certain conditions for the
exchange-correlation functional [73]. In practice, therefore, generalized expressions
are used, which have been shown to improve results over LDA [73]. Such generalized
gradient approximation (GGA) functionals assume the form

EGGA
xc [n↑, n↓] =

∫
εxc(n↑, n↓, |∇n↑|, |∇n↓|)n(r) dr . (2.41)

16



2.3. Density Functional Theory (DFT)

The two main strategies to create such GGAs are either to empirically fit parametric
functionals to a wide range of materials as, e.g., done for the exchange term by Becke
[74] or to construct them by exclusively matching known analytic properties of the
exact functional. A widely used example of the latter approach is the Perdew-Burke-
Ernzerhof (PBE) functional [75] that fulfills a maximum amount of known analytic
properties.
Further improvement can be achieved by including higher order contributions of

the gradient expansion, e.g., through the kinetic energy density in so-called meta-
GGAs [68, 76].
A source of error in local and semi-local functionals is the incomplete cancella-

tion of self-interaction arising in the Hartree term. This spurious self-interaction
is completely canceled in Hartree-Fock theory by the Fock operator describing the
exchange interaction. Based on this observation hybrid functionals have been con-
structed which mix some amount of exact exchange into a given local or semi-local
density functional approximation (DFA) according to the scheme

Ehybrid
xc = EDFA

xc + a(Ex − EDFA
x ), (2.42)

where the correlation contribution is kept as in the underlying DFA [77].
Evaluating the exchange expression from the definition in Eq. (2.29) leads to the

exchange term Ex[n] familiar from Hartree-Fock theory. Here, the term has a slightly
different meaning since it is evaluated over the Kohn-Sham orbitals

Ex[n] = −1
2
∑
i,j,σ

fσi f
σ
j

∫ ∫ φσ∗i (r)φσj (r)φσ∗j (r′)φσi (r′)
|r− r′|

dr dr′ . (2.43)

The above expression is for the collinear spin case for which Eq. (2.29) holds. Gen-
eralizations for the non-collinear case are possible. Looking at Eq. (2.43) it is clear
that hybrid functionals are not in the spirit of pure DFTs, as they are based on
an orbital-dependent expression. Furthermore, the non-local character of the lat-
ter makes numerical work costly. However, the description of materials where self-
interaction plays a dominant role is greatly improved. A common example of a hybrid
functional is the PBE0 functional, which employs a mixing parameter of a = 1/4 in
combination with the PBE approximation. This has been rationalized by Perdew
et al. [78].
A further drawback of the local or semi-local nature of standard LDAs and GGAs

is the absence of long-range effects such as van der Waals forces [79]. More specif-
ically so-called London dispersion forces are not properly described in basic DFAs.
Such forces originate from fluctuating dipoles that interact with each other over long
distances with a characteristic 1/R6 asymptotic behavior [80]. This problem has
sparked an extensive discussion about the inclusion of van der Waals (vdW) forces
in recent years [79]. A major achievement was the development of van der Waals
density functionals (vdW-DFs) with the energy composition [81]

EvdW
xc = EGGA

x + ELDA
c + Enl

c , (2.44)

where the short-ranged correlation part is treated at the level of LDA and the miss-
ing fully non-local correlation is described by the correlation functional Enl

c . This
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2. The Many-Body Problem in Practice

functional can be cast in the following simple form [82]

Enl
c = 1

2

∫∫
n(r)ϕ(r, r′)n(r′) dr dr′ , (2.45)

where the non-local character is explicit. The interaction between densities at differ-
ent positions in space is given by an integration kernel ϕ(r, r′), which itself depends
parametrically on the density and its gradient [81]. The kernel produces the correct
asymptotic −1/R6 behavior of dispersion forces and vanishes in the limit of the HEG,
whose correlation is already described by ELDA

c . The proposal of an efficient numer-
ical implementation [83] made vdW-DFs applicable to larger more realistic systems,
while reducing the computational cost to almost the one of standard GGAs. Apart
from the initial proposal, improved descriptions have been put forward [84, 85]. In
particular, Klimeš et al. [85] proposed a modified form based on an optimized version
of Becke’s exchange [74] for reasons of which this vdW-DF is dubbed optB88-vdW.
The optB88-vdW functional is employed Chapter 7 for the description of layered
two-dimensional materials.
Furthermore, simplified accounts for vdW-interactions in terms of semi-classical

corrections have been devised. Such corrections exhibit the pairwise additive form

EvdW = −1
2
∑
A,B

g(RAB)C6,ABR
−6
AB, (2.46)

where the sum runs over atomic sites A and B separated by the interatomic dis-
tances RAB. Each pair of atoms is associated with a C6,AB-coefficient, which in the
simplest case is a fixed number for each pair obtained from combining atomic species
on the periodic table. g(RAB) is a damping function, which is used to suppress the
singularities in R−6

AB and to avoid short-range contributions from EvdW which are
readily captured by standard DFT functionals. Widely used is the scheme proposed
by Grimme [86] and its extension [87, 88]. Tkatchenko and Scheffler [89] proposed
a method in which the C6-coefficients depend on the chemical environment by em-
ploying the density partitioning by Hirshfeld [90]. This scheme has been adapted to
include many-body effects beyond pairwise atomic interactions [91] and to provide a
description of screened vdW-forces at hybrid organic-inorganic interfaces [92].

2.3.4. Kohn-Sham Energy Eigenvalues and Orbitals
In practice, Kohn-Sham energy eigenvalues are often directly compared with the

energies of electronic states probed in photoemission experiments. However, such a
direct comparison is theoretically not justified, with one exception: the first ionization
potential (IP) is identified as the eigenvalue of the highest occupied state I(N) = −εN
in an N -electron system in exact DFT (Koopman’s theorem of DFT). This is known
from comparing the asymptotics of the exact density decaying into vacuum as n(r) ∼
exp (−2

√
2I) with the asymptotics of the KS system n(r) ∼ exp (−2

√
−2εN) [93].

It is often pointed out that the fundamental gaps are underestimated by Kohn-
Sham energy eigenvalues obtained with local and semi-local DFAs. The fundamental
gap Efund

gap is defined here as the difference between the electron affinity A and the
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2.3. Density Functional Theory (DFT)

first ionization potential I of the N -electron system1

Efund
gap = I(N)− A(N). (2.47)

Realizing that the electron affinity of the N -electron system is equal to the ionization
potential of the (N + 1)-electron system one can identify the deviation ∆XC of the
energy gap in Kohn-Sham DFT EDFT

gap = εN+1(N) − εN(N) from the fundamental
gap,

Efund
gap = I(N)− I(N + 1) (2.48)

= εN+1(N + 1)− εN(N) (2.49)
= εN+1(N + 1)− εN+1(N) + εN+1(N)− εN(N) (2.50)
= ∆XC + EDFT

gap . (2.51)

The quantity ∆XC is related to the discontinuity in the exchange correlation func-
tional across integer occupations [Eq. (2.52)]. Due to ∆XC even exact DFT underes-
timates the fundamental gaps of materials. One may use calculations with different
amounts of electrons for a better estimate of fundamental gaps as in Eq. (2.48).
DFT approximately accounts for the so-called exchange-correlation hole which

describes that in the presence of one electron the probability to find another one in
its vicinity is effectively reduced. Therefore unoccupied orbitals (virtual orbitals) in
DFT effectively experience N − 1 electrons, the N electrons of the system minus
the exchange-correlation hole (equivalent of one electron) as if the virtual state were
actually occupied.2 Along this line, it has been argued that the band gap problem
in DFT is not a deficiency but a feature of DFT providing a starting point for the
estimation of optical excitation gaps, as common functionals like PBE give a relatively
good description of the exchange-correlation hole [94].
Apart from this, DFT as a ground state theory is not suited to describe excita-

tions, which are the subject of time-dependent perturbations and can for example be
treated with time-dependent density functional theory (TDDFT). Another approach
to excited states is finding a solution using the GW-approximation [95] in terms of
single-particle Greens functions. The latter provides a good description of electron
addition or removal energies. To accurately describe optical excitations it is neces-
sary to account for interactions of the excited electrons with holes (excitons). This
can for example be done by solving the Bethe-Salpeter equation [96], which involves
the use of two-particle Green’s functions.
Unfortunately, these approaches are computationally expensive and not feasible

when simulating large, realistic systems with standard computational facilities. There-
fore in this thesis we resort to approximate methods based on DFT. A practical ap-
proach is adopted for the estimation of lifetimes of excited adsorbate states. The

1This quantity may be experimentally determined by a combination of photoemission spec-
troscopy (PES) probing the highest occupied states (ionization potential) and inverse photoemission
spectroscopy (IPES) probing the lowest unoccupied state (electron affinity).

2On the other hand, Hartree-Fock yields fundamental gaps larger than the experimentally ob-
served ones, since the unoccupied orbitals (virtual orbitals) actually experience an N electron sys-
tem [94]. The Fock term does not cancel any self-interaction in the Hartree term for unoccupied
levels (the sum in Eq. (2.43) runs only over occupied orbitals). Hartree-Fock (HF)-theory does not
include any correlation and virtual HF-orbitals are known to be overly delocalized.
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excitations are modeled as unoccupied Kohn-Sham states and therefore experience
the exchange-correlation of standard semi-local functionals. Additionally and similar
to the transition potential method we take into account a certain amount of orbital
relaxation by including a core-hole in our calculations (the core-hole is included in
the pseudopotential, see Section 2.5).
A further interpretation of the Kohn-Sham eigenvalues is provided by Janak’s

theorem [97],
∂E

∂fi
= εi. (2.52)

According to this equation, the total energy of the N -electron Kohn-Sham system
is a continuous function varying piecewise linearly with the fractional occupations
fi of the eigenstates corresponding to the Kohn-Sham energies εi. The slopes of
the linear segments are the Kohn-Sham energies εi . The abrupt changes of the
slope over integer occupations (derivative discontinuities) reflect the non-analytical
behavior of the exact functional. Integrating Eq. (2.52) over occupations between
systems differing by one electron yields the following approximate relation for the
ionization energies

E(N)− E(N − 1) =
∫ 1

0
εl dfl ≈ ε(fl = 1/2). (2.53)

Here, fl is the occupation of the lowest unoccupied level of the N−1 electron system.
The integral has been evaluated at half occupation of the orbital (mid-point approx-
imation). This is known as Slater’s transition state method [98] which can be used
to estimate excitation energies for transitions from an initial state i to a final state f
by evaluating the eigenvalue difference Ei→f = εf (Θi = 1/2,Θf = 1/2) − εi(Θi =
1/2,Θf = 1/2). The notation indicates that the energy eigenvalues have been eval-
uated self-consistently with the constraint that the initial and final states are half
filled (i.e., belong to the family of ∆SCF approaches). In practical implementations
suitable methods for constraining the excited state occupations have to be found,
as has been done, e.g., in the case of molecular adsorbates on surfaces [99, 100].
Unfortunately, ∆SCF approaches are usually not very practical in solids or large sys-
tems with delocalized states, where the obtained corrections are usually negligible.
A variation of Slater’s transition state method is the transition potential approach
proposed by Triguero et al. [101] where only the initial state is half filled (periodic
systems need to be neutralized, e.g., by a constant background charge). This ap-
proach allows to calculate several transition energies (eigenvalue differences) with
one calculation so that near edge X-ray absorption fine structure (NEXAFS) spectra
can be simulated. Such simulations agree surprisingly well with experiments as, e.g.,
results for molecules on surfaces show [102, 103].

2.4. DFT with Localized Atomic Orbitals
As soon as an appropriate choice for the exchange-correlation functional has been

made, a practical implementation of DFT has to be chosen to solve the Kohn-Sham
scheme.
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Self Consistent Field

The standard approach is to solve the equations self-consistently using the following
iterative procedure:

1. Making an initial (educated) guess for the density in the system.
2. Solving the Poisson equation to obtain the Hartree potential from the density.
3. Solving the effective single particle Schrödinger equation, where the Hartree

potential and the exchange-correlation approximation enter.
4. Computing a new density and mixing this new density with densities stemming

from a number of previous cycles.
5. Jumping to step 2 to repeat the cycle as long as the calculation is not converged.

Once the convergence criterion is met the calculation is terminated and the
Kohn-Sham equations are considered to be solved numerically.

Depending on the code various convergence criteria may be found. In this thesis
the SIESTA implementation is used. The most widely used convergence criterion
within the SIESTA code [27–29] refers to the density matrix: a system is considered
converged once the elements in the density matrix change less than a specified value
with respect to the last cycle.

Basis Set

Since the variational space of the energy functional is in principle infinite dimen-
sional useful approximations have to be found to make the involved calculations
numerically tractable. In practice the problem is reformulated on a suitable basis
spanning the Hilbert space. The used basis set is then truncated to obtain a compu-
tationally accessible set of equations. Sufficient terms have to be included which is
usually done until convergence of the physical quantities of interest is reached. One
possibility is to select a plane-wave basis set and include terms up to a certain wave
vector. In the SIESTA code the Kohn-Sham eigenstates φσi (r) are expanded as linear
combinations of numerical atomic orbitals ϕν(r) [104]

φσi (r) =
∑
ν

cσiνϕν(r), (2.54)

with the expansion coefficients cσiν . Those orbitals are localized in space and designed
in such a way that they vanish beyond a certain cutoff radius. This efficiently reduces
the number of matrix elements that need to be computed and stored.

Periodic Boundary Conditions

Using periodic boundary conditions the terms in the above equation depend on
the crystal momentum k, hence we write

φσi (k, r) =
∑
ν

cσiν(k)ϕν(k, r). (2.55)

The basis set {ϕν(k, r)} consists of Bloch-type functions ϕν(k, r) [105] constructed
from the numerical atomic orbitals ϕν(r − tν − R). Here, the νth atomic orbital
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belongs to the atom specified by the vector tν inside the periodic cell specified by
the lattice vector R. The Bloch-type functions read3

ϕν(k, r) = Aν(k)
∑
R

eikRϕν(r− tν −R). (2.56)

These basis functions are normalized by the normalization constant Aν(k) obtained
after integration over a single unit cell (see Appendix A). The Kohn-Sham eigenstates
in the effective single particle Schrödinger equation can then be expanded in terms of
the above defined Bloch-type basis set. Subsequent multiplication from the left with
ϕ∗µ(k′, r), and integration over r inside one unit cell leads to the eigenvalue equation,∑

ν

[Hσ
µν(k)− εσi (k)Sµν(k)]cσiν(k) = 0. (2.57)

This expression is readily diagonal in the crystal momentum, such that only the terms
k = k′ contribute. However, the non-trivial solutions to the remaining eigenvalue
problem are found by diagonalization of a finite Hamiltonian matrix Hσ

µν(k) in the
case of a finite basis set. The Hamiltonian matrix is given by

Hσ
µν(k) =

∫
ϕ∗µ(k, r)Ĥσ

e ϕν(k, r) dr =
∑
R

eikRHσ
µν(R). (2.58)

This Hamiltonian is obviously spin-dependent, since the exchange-correlation poten-
tial entering the effective single particle equations depends on spin. The real-space
Hamiltonian Hσ

µν(R) describing the interactions between the orbitals in unit cells
separated by a lattice vector R inside the crystal is defined as

Hσ
µν(R) =

∫
ϕ∗µ(r− tµ)Ĥσ

e ϕν(r− tν −R) dr . (2.59)

Because of the finite range of the numerical atomic orbitals, the interactions between
unit cells in the crystal vanish for large separations R. Hence, the infinite sum over
lattice vectors R becomes finite and the problem reveals a tight-binding-like behavior.
One finds for the overlap matrix between the basis orbitals

Sµν(k) =
∑
R

eikR
∫
ϕ∗µ(r− tµ)ϕν(r− tν −R) dr =

∑
R

eikRS(R), (2.60)

The overlap is spin-independent in contrast to the Hamiltonian, the spin-dependency
is instead carried by the energy eigenvalues εσi (k).

2.5. Pseudopotentials and Core-Holes
The use of plane wave basis sets has inspired the construction of pseudopotentials

as a common ingredient for ab-initio calculations. This additional approximation
3In the SIESTA code a slightly modified convention is used for the Bloch-type basis. The

coefficients c̃iν(k) = eiktν ciν(k), the Hamiltonian H̃µν(k) = eik(tµ−tν )Hµν(k), and the overlap
matrix S̃µν(k) = eik(tµ−tν )Sµν(k) carry additional phases. This corresponds to a unitary trans-
formation in the variational space, leaving the eigenvalues εσi (k) in the Schrödinger equation∑
ν [H̃σ

µν(k)− εσi (k)S̃µν(k)]c̃σiν(k) = 0 unchanged.
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aims at reducing the variational space accessed by basis sets as well as the number
of electrons that must be treated explicitly, while maintaining the accuracy of the
calculations. The idea is originated in the difficulties of plane wave basis sets to
reproduce the strong oscillations of the wave functions near the singularities at the
ionic cores. The tightly bound core electrons require a large amount of plane wave
components to be captured. However, usually the relevant physics is dominated by
the behavior of the valence electrons participating actively in the formation of bonds
within the chemical environment. The wave functions of core states in contrast stay
largely unaffected by the chemical environment and can therefore assumed to be
fixed by effectively including them in a pseudopotential. Unfortunately, this is in
some cases a strong approximation. Pseudopotentials are employed by the SIESTA
code although they are not as vital for localized orbital codes as for plane wave
implementations [28]. In the following the construction of pseudopotentials is out-
lined and the effective inclusion of core-holes in pseudopotentials is described. The
latter is used in this thesis to enable the comparison of the theoretical results to
core-spectroscopy experiments.
A justification of the pseudopotential theory can be found considering that the

wave function of an atomic valence electron is composed by a smooth valence-like
pseudo state and a fixed, quickly oscillating part that can be expanded in terms of
the wave functions of the core-electrons,

|ψv
i 〉 = |ψ̃v

i 〉+
∑
j

aj |ψc
j〉 . (2.61)

Knowing that the real wave functions of the valence electrons must be orthogonal to
the core electrons one may write

0 = 〈ψc
k|ψv

i 〉 = 〈ψc
k|ψ̃v

i 〉+
∑
j

aj 〈ψc
k|ψc

j〉 = 〈ψc
k|ψ̃v

i 〉+ ak, (2.62)

finding the expansion coefficients

ak = −〈ψc
k|ψ̃v

i 〉 . (2.63)

The expansion coefficients reflect the non-orthogonality of the smooth pseudo wave
functions to the core states. Substituting the expansion Eq. (2.61) into the Schrödinger
equation one obtains a new Schrödinger-like equation

(Ĥ + V̂ nl) |ψ̃v
i 〉 = εv

i |ψ̃v
i 〉 , (2.64)

with a pseudo Hamiltonian containing a non-local potential term of the form [106,
107]

V̂ nl =
∑
j

(εv
i − εc

j) |ψc
j〉 〈ψc

j | . (2.65)

This non-local term together with the potential of the atomic core Zc/r is called a
pseudopotential.
The actually used pseudopotentials in SIESTA differ from those described by

Eq. (2.65). They belong to the so-called class of norm-conserving pseudopotentials
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[108, 109], which are given in terms of distinct smooth radial functions for different
angular momenta. Norm-conserving pseudopotentials are usually separated into an
entirely local component and a semi-local part based on spherical harmonics in the
following form

V̂ PS = V̂loc(r) +
lmax∑
l=0

l∑
m=−l

|lm〉 δV̂l(r) 〈lm| . (2.66)

The semi-local term in the latter equation only includes a few angular momenta
l ≤ lmax. Higher angular momenta are not occupied by core electrons, so that there
are no orthogonality constrains and, in principle, one can assume that the wave
function components of larger momenta all interact with the ionic core in a similar
way described by the local term.
Kleinman and Bylander rewrote the semi-local part of the pseudopotential as an

approximate fully non-local and separable term [110]

V̂KB = V̂loc +
∑
lm

|δV̂lφlm〉 〈φlmδV̂l|
〈φlm|δV̂l|φlm〉

. (2.67)

This form of the pseudopotential is computationally more efficient as it only requires
the computation of two-center integrals in contrast to the three-center integrations
required by the semi-local term in Eq. (2.66).
The overall procedure to create an ab-initio norm-conserving pseudopotential of a

chemical element follows roughly the following steps. First, one obtains the atomic
valence orbitals of the element of interest by solving the radial Schrödinger equation.
Then one creates a set of node-less pseudo wave functions (cf. Fig. 2.3). The radial
Schrödinger equation can now be inverted, as the pseudo wave functions are node-
less, and one receives pseudo potentials for each angular momentum l. Finally the
Hartree and exchange-correlation contributions due to the pseudo valence density
nPS are subtracted from the total pseudopotential (unscreening). The unscreening
procedure avoids a double counting of exchange-correlation contributions by the va-
lence electrons in subsequent calculations. Since the exchange-correlation potential
is not linear Vxc[nPS +nc] 6= Vxc[nPS]+Vxc[nc] a simple subtraction of the contribution
by Vxc[nPS] is usually not sufficient and so-called non-linear core corrections may be
applied [112].
During the construction often a set of conditions, put forward by Hamann et al.

[108], is fulfilled to ensure the transferability of the pseudopotential into different
chemical environments: The pseudo wave functions have the same eigenvalues as the
all-electron wave functions for a specific electronic configuration. The real and the
pseudo wave function are equal outside the chosen cutoff radius rc (see also Fig. 2.3).
The norm of the pseudo and the real wave function are the same inside the cut off
radius rc (norm-conservation). Finally, the logarithmic derivative of the real and the
pseudo wave-function are required to be equal at rc. Importantly, Hamann et al.
[108] showed that the condition of norm-conservation leads to the correct scattering
properties of the atom and therefore ensures the transferability of the pseudopoten-
tial. Nowadays, many plane-wave codes use ultrasoft pseudopotentials, which at the
cost of norm-conservation produce even smoother pseudo wave functions [113].

24



2.5. Pseudopotentials and Core-Holes

0.0 0.2 0.4 0.6 0.8 1.0

r (Å)
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Figure 2.3.: Pseudopotentials vPS(r) and radial parts of the pseudo wave functions
rR(r) of Nitrogen as constructed with the ATOM code [111]. The effect of including
core-holes in the pseudopotential is shown in colors. Increasing sizes of core-holes
(0, 0.25, 0.5, 0.75, and 1.00 electron charges) are depicted in darker colors. The
radial part of the all electron wave function (thin black lines) exhibit n− l−1 nodes,
while the pseudo wave functions are node-less. Beyond the cutoff radius rc the pseudo
wave functions coincide with the all electron wave functions and the pseudopotentials
equal the potentials Zc/r (thin black lines).

The above guidelines to construct a pseudopotential still leave much room for the
design of the pseudo wave function inside the core region. The SIESTA code uses
pseudopotentials in the Kleinmann-Bylander form [110] that are norm-conserving
and based on a construction scheme initially proposed by Troullier and Martins
[109]. These pseudopotentials can be created with the ATOM program [111]. The
transferability of these pseudopotentials is then tested by comparing the eigenvalues
of different valence configurations (e.g., partial occupations mimicking hybridization)
from the all electron calculation with the eigenvalues of the pseudo calculation. A
further test is the analysis of the logarithmic derivatives defining the scattering prop-
erties of the pseudo atom.
Finally, it is possible to consider a configuration that includes a core-hole in the

pseudopotential. This is achieved by constraining the occupations when creating
the pseudopotential (such a constraint is directly achievable in an isolated atomic
system). This method has been used extensively for the calculations in this work
since it enables simulations in closer correspondence to core level spectroscopies.
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Unlike in Slater’s transition state method, where half-filled states are considered, we
use mainly full core-holes. We typically perform our calculations including also one
additional electron, which is constrained to occupy the excited state of interest in
the adsorbate. Empirically we have found that this procedure leads to reasonable
positions of the adsorbate electronic resonances on the surface in comparison to
experimental information. Furthermore, we tested the effect of different core-hole
sizes (cf. Fig. 2.3) on the resulting spectra for isonicotinic acid adsorbed on TiO2
in Chapter 5 (see Appendix C.3) and found no considerable influence onto our results.
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Chapter 3

Charge Transfer Times from
Green’s Functions

In this chapter a definition of the elastic lifetime of a localized quantum resonance
is given and a theoretical approach to extract such lifetimes on the basis of a time-
independent DFT framework is presented. The wording “time-independent DFT” in
the context of lifetime calculations appears contradictory, but refers to an idealized
time-evolution described by an effective single-particle Hamiltonian that does not
explicitly depend on time (static Hamiltonian). In this approach lifetimes of purely
electronic origin can be modeled, where dynamic loss-processes, for example due
to vibrations (electron-phonon scattering) or due to collective electronic excitations
(electron-plasmon scattering), are explicitly excluded.

In the following, first, Green’s functions are introduced as the central mathematical
tool employed to study the time-evolution of quantum states. Secondly, these single
particle Green’s functions are used to simulate the electronic structure of a sub-set
of atoms inside a small region of a larger atomic structure. The Green’s functions
are constructed from numerical atomic orbitals as employed in the SIESTA code.
Exploiting the localized character of these orbitals, it is possible to simulate atomic
structures of infinite spatial extent, i.e., consisting of an infinite amount of atoms.
This allows us, in particular, to simulate surfaces terminating an unlimited sequence
of stacked atomic layers. Based on such a setup, we employ a suitable procedure to
estimate the elastic lifetimes of quantum states at surfaces [34, 35]. These lifetimes
are associated with interfacial charge transfer processes, hence, we also speak of
charge transfer times. A comprehensive account for Green’s functions in general can
be found in the book by Economou [114], which provided the basis for part of the
following.
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3.1. Propagators and Green’s Functions
The Green’s functionG associated with the time-independent Schrödinger equation

Eq. (2.3) is defined by the following differential equations

[z − Ĥ]G(z) = 1 or [z − Ĥ]G(r, r′; z) = δ(r− r′), (3.1)

where in the first form the Green’s function is an operator acting on an abstract
Hilbert space and in the second equivalent form the Green’s function operator has
been recast in real space representation according to G(r, r′; z) = 〈r|G(z)|r′〉.
Using the relation f(Ĥ) |φi〉 = f(εi) |φi〉 (the spectral theorem) and inserting a

complete set of eigenstates ∑i |φi〉 〈φi| = 1 one obtains the Green’s function in it’s
spectral representation

G(z) =
∑
i

|φi〉 〈φi|
z − εi

or G(r, r′; z) =
∑
i

φi(r)φ∗i (r′)
z − εi

, (3.2)

where the second equation is in turn the real space analogue. The Green’s function
is defined for all energy values z on the complex plane, except for the poles in the
spectral representation, Eq. (3.2). These poles appear for each of the real energy
eigenvalues εi. Therefore, avoiding these singularities, the following two limiting
contours along the real axis are specified

G±(r, r′;E) = lim
η→0+

G(r, r′;E ± iη), (3.3)

which represent physically relevant Green’s functions for real energies E. The two
limiting cases are referred to as the retarded G+ and the advanced G− Green’s
function. One may inspect the spectral representation of the Green’s function in
Eq. (3.2) by applying the identity

lim
y→0+

1
x± iy = P 1

x
∓ iπδ(x), (3.4)

where P indicates that the principal value has to be taken. The first term in the above
formula is therefore an abstract notation, and has to be interpreted in the sense of a
distribution like the δ(x) of the second term. The notation becomes sensible under
an integral, where the principal value integral has to be taken. Applying the formula
to the real space representation of the spectral decomposition of the Green’s function
one finds

G±(r, r′;E) = P
∑
i

φi(r)φ∗i (r′)
E − εi

∓ iπ
∑
i

δ(E − εi)φi(r)φ∗i (r′). (3.5)

Here, the second term can be identified for r = r′ as the local density of states
(LDOS) ρ(r, E) related to the Hamiltonian associated with the Green’s function

ρ(r, E) = ∓ 1
π

Im
{
G±(r, r;E)

}
. (3.6)

Integration over the entire real space yields the DOS ρ(E).
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On the other hand, one may start from the time-dependent Schrödinger equation
Eq. (2.1), thus defining a time-dependent Green’s function G(r, r′, t−t′) as a solution
to the following differential equation

[i ∂
∂t
− Ĥ(r)]G(r, r′; t− t′) = δ(r− r′)δ(t− t′). (3.7)

The Fourier transform of the Green’s function G±(E) as specified for the static case,
Eq. (3.1), is identified as a solution to the above equation

G±(t− t′) = 1
2π

∫ ∞
−∞

G±(E)e−iE(t−t′) dE =
∮
C
G±(z)e−iz(t−t′) dz . (3.8)

To calculate the Fourier transform of G+(E) and G−(E) along the real axis one
can extend the integration into the complex plane by closing a contour C along a
semi-infinite half-circle. The contour is closed in the lower complex plane for times
t− t′ > 0 following Jordan’s lemma. The integral along the infinite half-circle of this
contour is then zero due to the asymptotic behavior of the Green’s function. Then
one can evaluate the Fourier transform along the real axis by applying the residue
theorem ∮

C
G±(z) dz = 2πi

∑
k

Res[G±(z), ak], (3.9)

where Res[G±(z), ak] are the residues of G±(z) at the singular points z = ak of G±(z)
enclosed by the contour C in the complex plane. One finds that G+(t−t′) is non-zero
while G−(t− t′) vanishes for times t− t′ > 0. Similarly one can close the contour C in
the upper complex plane for times t− t′ < 0 , finding instead, that G−(t− t′) is non-
zero and G+(t − t′) vanishes. This clarifies the previously introduced nomenclature
of retarded and advanced Green’s functions.
As a consequence, it is possible to define the difference of the retarded and advanced

Green’s function G̃(t− t′) = G+(t− t′)−G−(t− t′) with the property,

G±(t− t′) = ±θ(±t− t′)G̃(t− t′). (3.10)

Since both G+ and G− satisfy Eq. (3.7), G̃ itself cannot satisfy Eq. (3.7) and hence
is not strictly speaking a Green’s function. A closer inspection of G̃ reveals instead
that G̃ relates to the unitary time evolution operator Û(t), which can be seen by

G̃(t) = G+(t)−G−(t) = 1
2π

∫ ∞
−∞

[G+(E)−G−(E)]e−iEt dE (3.11)

= −i
∫ ∞
−∞

∑
i

δ(E − εi) |φi〉 〈φi| e−iEt dE (3.12)

= −i
∑
i

e−iεit |φi〉 〈φi| = −ie−iĤt = −iÛ(t). (3.13)

In the second line the spectral decomposition of the Green’s function Eq. (3.5) and
in the last line the spectral decomposition of the Hamiltonian Ĥ = ∑

i εi |φi〉 〈φi|
were used. By plugging the term Û(t) into the Schrödinger equation, Eq. (2.1) one
can verify that it describes a quantum mechanical time-evolution. Consequently, the
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3. Charge Transfer Times from Green’s Functions

retarded Green’s function G+(t) describes a propagation forward in time, whereas
the advanced Green’s function G−(t) propagates backwards in time, cf. Eq. (3.10).
Finally, a projection of Û(t) into the coordinate space yields a propagator K(r, r′, t−
t′) = 〈r|Û(t− t′)|r′〉 which describes the evolution of a probability amplitude at one
point in space r′ and an initial time t′, towards a probability amplitude at a point r
and another time t.

3.2. Lifetimes of Quantum States
Following the introduction about the propagation of probability amplitudes above,

we can define the survival amplitude of a wave-packet at some time t, which was
initially prepared in the state ψ(t0) at a time t0 < t,

A(t) = 〈ψ(t0)|ψ(t)〉 = 〈ψ(t0)|U(t− t0)|ψ(t0)〉 . (3.14)

Making use of the Born rule, the square modulus of the amplitude A(t) gives the
survival probability

S(t) = |A(t)|2 = | 〈ψ(t0)|iG+(t− t0)|ψ(t0)〉 |2. (3.15)

The survival amplitude S(t) is the probability that an initially prepared wave-packet
in a state ψ(t0) is still found in its initial state at a later time t. Eq. (3.15) explicitly
describes a causal evolution of ψ, where the propagation of the wave-packet over
a time interval follows the initial preparation of the state (i.e., the propagation is
caused by the initial preparation). This is achieved by using the retarded Green’s
function, iG+(t) = Û(t) for t > t0, combining Eq. (3.13) and Eq. (3.10). Using the
survival amplitude Eq. (3.15), we can define the lifetime τ as the mean time 〈t〉 the
wave-packet remains in its initial state

τ = 〈t〉 =
∫∞

0 t S(t) dt∫∞
0 S(t) dt . (3.16)

If the survival probability exhibits a decaying behavior over time such that the in-
tegrals in the fraction converge, the lifetime τ obtains a finite positive value. In the
case of an exponential decay of the survival probability S(t) = N0e−Γt, where N0 is
the initial population of the state one finds the relation

τ = 1
Γ (3.17)

between the lifetime τ and the rate Γ of the exponential decay.

3.3. Localized States at Surfaces
In this section Green’s functions are applied as a tool to describe smaller systems of

atoms inside a larger chemical environment. This allows to simulate localized states
of a finite surface region coupled to a substrate consisting of a few atomic layers. In

30



3.3. Localized States at Surfaces

H01

H10 H11

H00

H11

H11 H11 H10

H01 H00

spacer
bulkbulk-like

adsorbate

H21

H12

H22

H32

H23

H33

H43

H34

H44

H01

H10 H11

H00

H22 H33 H44H11H11
H00

H11
H00 H00

H12 H23 H34H01H01 H11 H10

H10 H11 H01 H21 H32 H43H10

from periodic slab 

Figure 3.1.: Illustration of the scheme used to compute the Green’s function of
an infinite system in the surface region. In a first step the Hamiltonian of a surface
region is obtained from a calculation of periodically repeating slabs with a finite
amount of atomic layers separated by vacuum (left side). The surface region is then
coupled in a second step to an infinite amount of bulk like atomic layers (right side).
The bottom of the scheme shows the block-tridiagonal form of the Hamilton matrices
in relation to the structures on top.
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3. Charge Transfer Times from Green’s Functions

a second step the scheme is extended to include the coupling to an infinite amount
of stacked atomic layers. The procedure is formulated in the basis of local numerical
orbitals used in the SIESTA code.
The starting point is to rewrite the differential equation defining the Green’s func-

tion, Eq. (3.1), in a the Bloch basis Eq. (2.56),∑
µ

[zSλµ(k‖)−Hσ
λµ(k‖)]Gσ

µν(k‖) = δλν . (3.18)

Here, we consider a system that is periodic in the directions parallel to the surface.
Therefore, only wave-vectors k‖ parallel to the surface are taken into account. In the
direction perpendicular to the surface no periodicity is assumed, which is equivalent
to performing a calculation at the Γ-point in that direction. The steps in arriving
at Eq. (3.18) are shown in the Appendix B. The indices in Eq. (3.18) run over the
numerical orbitals at all atomic sites. As in Eq. (2.57) the use of a non-orthogonal
basis set requires the consideration of the overlap matrix. Computationally, the
Green’s function in the energy domain and k-space G(k, z) can be obtained in two
equivalent ways as shown in the formula

Gσ
µν(k; z) =

∑
i

cσiµ(k)cσ∗iν (k)
z − εσi (k) = [zS −Hσ(k)]−1

µν , (3.19)

which follows from Eq. (3.5) for the localized basis set. cσiν(k) are the coefficients of
the single particle Kohn-Sham states with energy eigenvalue εσi (k), cf. Eq. (2.35). In
the following the notation for the wave vector k and spin σ are dropped for clarity.
The available indices for µ and ν are separated into two subsets 0 and 1. Set 0
belongs to the local orbitals of the atoms inside a smaller region (e.g., an adsorbate)
connected to a larger environment forming set 1 (e.g., a substrate of a few atomic
layers). Introducing this short hand notation we correspondingly rewrite Eq. (3.18)
as [

zS0,0 −H0,0 zS0,1 −H0,1
zS1,0 −H1,0 zS1,1 −H1,1

] [
G0,0 G0,1
G1,0 G1,1

]
=
[
10,0 0
0 11,1

]
. (3.20)

Omitting the couplings (the overlap and interaction terms in the Hamiltonian) be-
tween the sub-systems, one may define the isolated Green’s functions G0

0,0 and G0
1,1

of the sub-systems

G0
0,0 = (zS0,0 −H0,0)−1, (3.21)

G0
1,1 = (zS1,1 −H1,1)−1. (3.22)

The parts H0,0 and H1,1 of the Hamiltonian (called isolated systems here) belong
to the Hamiltonian of the combined system and therefore in principle have to be
obtained from an explicit self-consistent calculation of the whole set of atoms. Solving
for the first column in Eq. (3.20) one obtains

(zS0,0 −H0,0)G0,0 + (zS0,1 −H0,1)G1,0 = 10,0, (3.23)
(zS1,0 −H1,0)G0,0 + (zS1,1 −H1,1)G1,0 = 0. (3.24)
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3.3. Localized States at Surfaces

After eliminating the term G1,0 by substitution one receives the result

(zS0,0 −H0,0)G0,0 − (zS0,1 −H0,1)(zS1,1 −H1,1)−1(zS1,0 −H1,0)︸ ︷︷ ︸
(zS0,1 −H0,1)G0

1,1(zS1,0 −H1,0) = Σ0,0(z)

G0,0 = 1, (3.25)

where in the second term one may identify the isolated Green’s function G0
1,1(z) and

define a new energy dependent quantity Σ0,0(z) which is commonly referred to as
self-energy. With the definition of Σ0,0(z) we rewrite the Green’s function inside the
reduced space region 0 as [115]

G0,0(z) = [zS0,0 −H0,0 − Σ0,0(z)]−1. (3.26)

The self-energy term Σ0,0(z) effectively introduces the interaction with the set of
atoms outside the region 0, so that G0,0(z) describes the region 0 correctly in terms
of the coupling to the rest of the system. The main advantage here is that the size
of the matrices appearing in Eq. (3.26) is given by the fractional amount of orbitals
in region 0.
The above scheme can now be further extended to include the interaction of a

primary region belonging to the surface with an infinitely extending substrate. This
is achieved by including the coupling to an infinite amount of bulk-like layers.
In the following we assume that the outer surface region is well-described by tak-

ing the matrix elements H0,0, H1,1, H0,1, and H1,0 from a periodic slab calculation
(cf. Fig. 3.1, left side). In this periodic calculation repeating images of the slab are
separated by vacuum. The slab is required to consist of a sufficient amount of sub-
strate layers (i.e., it contains a sufficiently large spacer region, cf. Fig. 3.1) so that
bulk character is approached in the central region H1,1 of the slab. We employed
throughout this work ideal structures of perfectly symmetric slabs. In part of the
calculations the surfaces of the slab were decorated (symmetrically) with adsorbates.
This setup ensures that possible occurrences of spurious surface dipoles on both sides
of the slab cancel each other [116].
The bulk-like region of the finite slab H1,1 is subsequently coupled to an infinite se-

quence of blocks H2,2, H3,3, . . . (cf. Fig. 3.1, right side) representing the bulk material.
Considering the periodicity of the system in one half space, one has

H1,1 ≈ H2,2 = H3,3 = . . . = Hn.n = . . . , (3.27)

where the elements H2,2, H3,3, . . . are taken from a periodic bulk calculation of the
substrate material. Care has to be taken when connecting the bulk and slab systems,
since both need to be aligned in practice at a common energy reference. The Fermi
energy provides a suitable reference for metallic systems. Semi-conducting materials
can be aligned via the (Hartree) potential inside the bulk-like material (see e.g. Sec-
tion 5.2.2).
The connection of the surface region to the infinite bulk is not treated self-consistently

in the approach used in this thesis. We consider here, that the matrix elements
from one-shot periodic slab calculations and bulk calculations may be directly con-
nected, assuming therefore that the electronic structures of the separate parts are
not mutually affecting each other in a significant way, when they are attached. At
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3. Charge Transfer Times from Green’s Functions

zero bias, in the absence of external fields, this can usually be considered a reason-
able assumption, which can be controlled by increasing the thickness of the slab.
Generally, self-consistent treatments can be achieved using non-equilibrium Green’s
functions [117, 118] at significantly higher computational costs.
Due to the limited spatial extent of the orbitals in the basis, the size of the repeating

chunks of bulk material (computational bulk unit cell) can be chosen in a way that
only neighboring blocks interact with each other. This results in a block tri-diagonal
form of the Hamiltonian and overlap matrices (cf. Fig. 3.1). It is therefore possible
to write for the defining equations of the Green’s function, Eq. (3.18),

zS1,1 −H1,1 zS1,2 −H1,2 0
zS2,1 −H2,1 zS2,2 −H2,2

. . .
0 . . . . . .



G1,1 G1,2 · · ·
G2,1 G2,2
... . . .

 =


11,1 0 · · ·
0 12,2
... . . .

 . (3.28)

Equating the first column one obtains the infinite set of equations

(zS1,1 −H1,1)G1,1 + (zS1,2 −H1,2)G2,1 = 11,1,

(zS2,1 −H2,1)G1,1 +(zS2,2 −H2,2)G2,1 + (zS2,3 −H2,3)G3,1 = 0,
...

(zSn,n−1−Hn,n−1)Gn−1,1+(zSn,n −Hn,n)Gn,1+(zSn,n+1−Hn,n+1)Gn+1,1 = 0.

(3.29)

Considering the periodicity inside the material [cf. Eq. (3.27)] one may simplify these
expressions by writing

(zS1,1 −H1,1)G1,1 +(zS1,2 −H1,2)G2,1 = 11,1,

(zS2,1 −H2,1)G1,1 +(zS1,1 −H1,1)G2,1 +(zS1,2 −H1,2)G3,1 = 0,
...

(zS2,1 −H2,1)Gn−1,1+(zS1,1 −H1,1)Gn,1+(zS1,2 −H1,2)Gn+1,1 = 0.

(3.30)

This set of equations can be solved by considering a single transfer matrix T con-
necting the pairs of the n-th and (n − 1)-th layers [119] in the infinite material, so
that

Gn,1 = TGn−1,1. (3.31)

Using the transfer matrix T the following recursive relation for the transfer matrix
can be easily derived,

T = [zS1,1 −H1,1 + (H1,2 − zS1,2)T ]−1(zS2,1 −H2,1). (3.32)

This expression can be solved self-consistently with the initial guess of T = 0. The
converged result for the matrix T together with the defining equation, Eq. (3.31),
and the first line of Eq. (3.30) yields the Green’s function belonging to the outer-
most bulk-like region (for now excluding the termination by the surface associated
with H0,0)

G1,1 = [zS1,1 −H1,1 + (H1,2 − zS1,2)T ]−1. (3.33)
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In a final step the outer surface (adsorbate and spacer, H0,0) can be connected via
Eq. (3.25) and Eq. (3.26) with the infinite slab, which is now described by the finite
matrix in Eq. (3.33). Notice that in order to do this G0

1,1 in Eq. (3.25) must be
identified with G1,1 in Eq. (3.33). Thereby one obtains the Green’s function inside
the surface region G0,0 as desired.
In the practical part of this work (Chapters 5 to 7) we use the TranSIESTA mod-

ule [117, 118] of the SIESTA code to calculate the Green’s function of the surface
region (i.e., the combined system of H0,0 and H1,1 coupled to the semi-infinite sub-
strate). TranSIESTA uses the highly efficient algorithm proposed by Sancho et al.
[120, 121] to perform the computations of the semi-infinite substrate. The original
purpose of the TranSIESTA code to simulate transport through junctions made it
necessary to adopt a setup, where actually two semi-infinite substrates are separated
by vacuum (similar to a break junction). The vacuum region is then chosen large
enough so that the surfaces, do not interact1.

3.4. Initial Wave Packets and Resonances
The theoretical estimation of lifetimes of intermediate states that are initially pre-

pared by an excitation (e.g., an external perturbation by light), is at the center of
this work [cf. Eq. (1.1)]. So far the intermediate states or wave-packets have not
been specified explicitly. In principle, they are defined by the excitation process
e.g., the polarization, intensity, and direction of the incoming light. In this work, a
direct treatment of the initial excitation process is neglected, as the employed time-
independent DFT does not account for the time-dependent field of the excitation.
Instead, we adopt a heuristic approach, in which an intermediate wave-packet is con-
structed from the occupied or unoccupied Kohn-Sham states of a smaller subsystem,
e.g., an atom or molecule attached to the surface. These wave-packets may also be
calculated considering certain constraints, as for instance the inclusion of a core-hole
in relation to core-spectroscopy experiments. Overall, the method leaves room to
explore qualitatively different excitations, e.g., spin-selective [122] or polarization-
dependent excitations [22, 123], by considering certain orbitals or mixtures thereof.
This heuristic approach to excited states can be justified, since the symmetry and

shape of Kohn-Sham states is usually close in comparison to the physically well-
motivated Hartree-Fock orbitals, relating to excitations upon electron addition or
electron removal. The unoccupied (virtual) or occupied Kohn-Sham orbitals rep-
resent even arguably better approximations to excited quasi-particle states than
Hartree-Fock orbitals due to the approximate inclusion of the exchange-correlation
hole in DFT (Hartree-Fock orbitals are known to be too diffuse). We further assume
that the lifetime of the resonance wave-packet does only depend weakly on the precise
shape of the wave packet allowing for a well-motivated guess.
Using the tools [34, 35] described in the previous two sections, the lifetime of

1We used a version of the TranSIESTA code carrying the number trunk-458–ts-npa-57 which
was kindly provided by Nick Papior Anderson. We modified this development version for our
purposes. In the more recent versions of the TranSIESTA code n-electrode calculations, with n ≥ 1
are feasible [118]. This would in principle allow to directly perform single electrode calculations.
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an initially prepared resonance wave packet |ψR〉, which is taken to be the Kohn-
Sham state of a smaller subsystem at a surface, can be determined. This can be
done by calculating the Green’s function of the surface region in the energy domain,
Eq. (3.26), and employing it’s Fourier transform to propagate the wave packet in
time, cf. Eq. (3.8). Alternatively, one first performs a projection of the Green’s
function onto the initial wave-packet in the energy domain and then executes the
Fourier transform F , i.e.,

A(t) = F( 〈ψR|iG+(E)|ψR〉) = F [iG+
RR(E)]. (3.34)

Weakly coupled resonances

In the presence of a single resonance R on an adsorbate attached to a semi-infinite
surface, the formula in Eq. (3.26) reflects the Anderson-Grimley-Newns model for
chemisorption [31–33] or Fano’s description of resonances [30]. These models are
based on a Hamiltonian of the form

H =
[
ER VRk
VRk Hk

]
, (3.35)

where the resonant energy level ER is connected by the coupling elements VRk to
an infinite diagonal matrix Hk with the continuum of energy eigenvalues Ek of the
substrate as diagonal elements.
The resonance spectrum G+

RR(E), Eq. (3.26), is therefore of the form gRR(E) de-
scribed by these models, i.e.

G+
RR(E) ≈ gRR(E) = 1

E − ER − Σ(E) , with Σ(E) =
∑

k

|VRk|2

E − Ek
. (3.36)

The complex self-energy Σ(E) = Λ(E)− i∆(E) can be split into a real contribution
causing a shift of the resonance energy ER,

Λ(E) = P
∫ ∆(E ′)
E − E ′

dE ′ , (3.37)

where the sum over the discrete energies has been converted to an integral, and an
imaginary part, which is known as the chemisorption function,

∆(E) = π
∑

k
|VRk|2δ(E − Ek) = π|Vav|2ρk(E). (3.38)

The chemisorption function is related to the broadening of the resonance peak ap-
pearing in the density of states. This can be seen, considering a less general case
in which ∆(E) ≈ Ω is independent of energy, and the real-valued shift Λ(E) ≈ 0 is
negligible. This case corresponds formally to the wide band limit in which the DOS
of the substrate ρ(E) is constant. The projection of the DOS onto the resonance
wave-packet is then given by

ρR(E) = − 1
π

Im[G+
RR(E)] ≈ − 1

π
Im[gRR(E)] = 1

π

Ω
(E − ER)2 + Ω2 . (3.39)
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Thus, the resulting spectrum is of a Lorentzian lineshape, which has a maximum at
the resonance energy ER and the linewidth broadening is given by the full width half
maximum (FWHM) of Γ = 2Ω. Strictly speaking, the Lorentzian distribution does
not possess any finite statistical moment of order k ≥ 1. Hence, instead of the mean
and the variance of the distribution, we use the resonance position ER the FWHM,
respectively.
Taking the Fourier transform F [gRR(E)] = gRR(t) one can calculate the survival

amplitude igRR(t) = ie−(iER−Ω)t for t > 0. The integral of the Fourier transform is
evaluated by extending the integration path into the complex plane. One obtains the
result by applying the Cauchy integral formula and Jordan’s lemma closing a contour
in the lower (upper) plane for t>0 (t<0) . For the survival probability one has

S(t) = |igRR(t)|2 =

 0, for t < 0,
e−2Ωt = e−Γt, for t > 0.

(3.40)

The mean lifetime in relation to the exponential decay is finally τ = (2Ω)−1 = 1/Γ,
cf. Eq. (3.17). Since Γ is a broadening in the energy domain, Eq. (3.17) is identified
as an expression for the uncertainty in energy and time.
Hence, if the spectrum in Eq. (3.26) provides a single and sufficiently clear res-

onance peak, one can extract the associated lifetime by fitting a Lorentzian and
determining its width. Such well-defined resonances are found for weakly interacting
states in the absence of multiple resonances and without strong contributions from a
continuous background. It was possible to apply this approach to the molecular and
atomic resonances in chapchap:05 and Chapter 6
In practical calculations the Green’s function is evaluated at a slightly complex

energy z = E+iη to avoid the poles on the real axis and to facilitate the convergence
of the recursive scheme. This results in an additional finite contribution to the width,
which we correct for a posteriori by subtracting it, so that Γ = 2(Ω−η) for the width
of the resonance peak.

Strongly coupled resonances

If no clear resonance can be determined, i.e., the coupling of the small region to
the environment is strong, it is practically not possible to fit a Lorentzian curve and
instead an explicit calculation of the time-evolution is necessary. In this case, one has
to consider which part of the spectrum Im[G+

RR(E)] in Eq. (3.39) is actually populated
by the initial excitation and thus shaping the part of the spectrum associated with the
resonance. Here, in principle only unoccupied states are accessible upon excitation,
such that the spectrum is in practice cropped by a Fermi distribution f(E) [35]

Im[G+
RR,cut(E)] = [1− f(E)] Im[G+

RR(E)]. (3.41)

One may further consider the possibility of a separate pumping of distinct fea-
tures [36] by the incoming light pulse, which further narrows the window of ac-
cessible states. To determine the full Green’s function describing the causal decay
of the resonance wave-packet one obtains the real part Re[G+

RR,cut(E)] by using the
Kramers-Kronig relations.
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3. Charge Transfer Times from Green’s Functions

The Kramers Kronig relations can be derived using the residual theorem. Closing
a contour C+ in the upper half plane one can relate the real and the imaginary parts
of the Green’s function G+. Analogously, one can close a contour in the lower half
plane for G−. In summary one has in the absence of residues

0 =
∮
C±

G±(E ′)
E ′ − E

dE ′ = P
∫ G±(E ′)
E ′ − E

dE ′ ∓ iπG±(E) (3.42)

The above formula may then be split into real and imaginary parts G± = ReG± +
i ImG± so that one finds the Kramers-Kronig relations,

Re[G±(E)] = ± 1
π

P
∫ ∞
−∞

ImG±(E ′)
E ′ − E

dE ′ = P
∫ ∞
−∞

ρ(E ′)
E − E ′

dE ′ , (3.43)

Im[G±(E)] = ∓ 1
π

P
∫ ∞
−∞

ReG±(E ′)
E ′ − E

dE ′ . (3.44)

Using Eq. (3.43) we can obtain the real part Re[G+
RR,cut(E)] corresponding to the

partial spectrum Im[G+
RR,cut(E)] . The entire projected Green’s function G+

RR,cut(E)
is thereby determined in energy domain. Finally, after Fourier transformation one
obtains the survival amplitude S(t) and the mean lifetime τ of the resonance state can
be extracted. Following this route was necessary to explore the evolution of strongly
coupled sulfur 3p-resonances excited inside the surface of TaS2 in Chapter 7.

Resonance states

To this end we have established the tools to extract lifetimes from heuristically
determined resonances on adsorbates (by choosing a suitable projection), which are
attached to infinite surfaces. However, a conceptual complication arises, when look-
ing at the Schrödinger equation and the time evolution operator: a hermitian Hamil-
tonian operator does not admit solutions with an exponentially decaying behavior,
since all eigenstates have real eigenvalues. Therefore in principle any eigenstate of
the Hamiltonian must oscillate in time with a frequency given by its eigenenergy.
However, in analogy to the use of the Green’s function in the surface region above

a resonance state of the following shape may be defined

φG =
∫ 1

i

√
Ω
π

1
E − ER + iΩ |E〉 dE . (3.45)

This resonance state is normalized 〈φG|φG〉 = 1 and the DOS in the substrate is
considered to be flat, i.e., ∆(E) = Ω and the energy shift Λ(E) ≈ 0 to be negligible as
in Eq. (3.39). The states |E〉 are the energy eigenstates belonging to the Hamiltonian
of the infinite system (including the adsorbate, where the resonance is localized).
Then, Eq. (3.45) does not describe an eigenstate of the (infinite) Hamiltonian in
the regular sense, but rather an infinite combination over the continuum of energy
eigenstates supported by the latter.
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3.4. Initial Wave Packets and Resonances

Using a test function 〈ϕ| one can carry out the following steps [124]

〈ϕ| Ĥ |φG〉 =
∫ 1

i

√
Ω
π

〈ϕ|Ĥ|E〉
E − ER + iΩ dE =

∮ 1
i

√
Ω
π

zϕ(z)
z − ER + iΩ dz (3.46)

= 2
√
πΩ(ER − iΩ)ϕ(ER − iΩ) = 2

√
πΩ 〈ϕ| (ER − iΩ) |ER − iΩ〉 (3.47)

= 〈ϕ| (ER − iΩ) |φG〉 (3.48)

where 〈ϕ|E〉 = ϕ(E) is considered a well-behaving function. The integral above was
evaluated closing a contour in the complex plane and applying the Cauchy integral
formula. Similarly, one finds [124, 125]

〈ϕ| e−iĤt |φG〉 = 〈ϕ| e−(iER−Ω)t |φG〉 (3.49)

The resonance states φG in Eq. (3.45) are sometimes called Gamow vectors and live
on an extended (rigged) Hilbert space [124–126]. While they represent something
like eigenstates of a hermitian Hamiltonian operating on an extended domain, they
are not eigenstates in the regular sense, since the wave-packet in Eq. (3.45) consists
of a continuum of energy eigenstates. The formulae, roughly outlined here, are not
of immediate practical importance for this work but they do provide a consistent
picture of decaying resonance states [cf. Eq. (3.49)] in connection with a hermitian
Hamiltonian and complex eigenvalues [cf. Eq. (3.46)]. A rigorous introduction is
beyond the scope, instead we refer to the literature by Bohm et al. [124, 125, 126].
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Chapter 4

Experimental Determination of
Lifetimes of Excited States

The realistic simulation of electronic lifetimes can only be ensured through in-
dependent experimental validation. The core-hole-clock provides an experimental
technique capable of probing ultrafast charge transfer dynamics after electronic ex-
citation with X-rays [18–21]. The method is based on a model that is used to ana-
lyze spectroscopic signatures in order to determine the lifetimes of excited electronic
states. Core-hole-clock studies therefore provide an important experimental reference
for the verification of the theoretically extracted lifetimes in this thesis. Conversely,
the simulations presented in the following chapters may add to the interpretation
of the experiments. In this chapter the basic principles behind the technique are
introduced, while it is not intended to lay out any actual experimental realization.
The limitations of the technique are discussed and a concise comparison to laser
pump-probe approaches is drawn.

4.1. A Primer on Core-Hole-Clock Measurements
The core-hole-clock technique is predominantly used to analyze data from resonant

photoemission maps. A different approach, which utilizes resonant inelastic X-ray
scattering is possible (see, e.g., Ref. [127]). The dominant processes in the recorded
photoemission spectra are illustrated in Fig. 4.1. The figure comprises different types
of Auger-like decays, shown schematically for an Argon adsorbate on a metal surface
(see Chapter 6).
Initially, an electron is excited from a core-level into a bound unoccupied state

under the absorption of an incident X-ray photon with energy hν. The excitation
energies lie often in the range of soft X-rays (250–1000 eV). The initial excitation
is shown in Fig. 4.1a for the electronic transition from the 2p core-level into the 4s-
resonance below the vacuum level Evac. The transition happens at an element specific
energy and follows dipole-selection rules. Subsequently, two distinct scenarios are
possible. In one case the excited electron tunnels into the substrate and the core
hole decays in a regular Auger process leaving the system in a two hole final state.
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4. Experimental Determination of Lifetimes of Excited States

Tunneling into the substrate requires availability of empty DOS around the resonance
energy above the Fermi level EF and sufficient overlap of the resonant state with the
substrate. If the excited electron propagates into the substrate (or more generally the
environment) one speaks of a delocalized channel (d-channel). The other possibility is
that the electron remains initially on the excited atom. It may then either be involved
as a passive spectator in a resonant Auger decay (Fig. 4.1c) or as an active participator
in a resonant photoemission process (Fig. 4.1d). One speaks in the latter two cases
jointly of a localized decay channel (l-channel) or sometimes of auto-ionization [21].
Other authors [22, 123] refer to the entire spectrum due to the processes in Fig. 4.1b-
d as auto-ionization spectrum, which will be the nomenclature adopted here. The
emitted electrons are collected by a detector quantifying the intensity and kinetic
energy of the electrons. With the recorded data it is therefore possible to map out
the intensity I(Ekin, hν) of the electrons as a function of their kinetic energy Ekin and
the incident photon energy hν in a two-dimensional plot. In a subsequent analysis the
contributions from all the different decay processes can be disentangled by suitable
fitting procedures. In principle, the spectroscopic signatures of the processes can
be distinguished as will be pointed out below. Knowing the individual intensity
contributions, it is possible to obtain information about the time-scales of the system
specific electron dynamics.
Decays via the d-channel appear at constant kinetic energy independent of the

photon energy. From the perspective of the Auger electron the information about
the energy of the photon is lost during the injection of the excited electron into the
substrate (where it is subject to various kinds of scattering processes). Therefore,
the initial excitation and the subsequent Auger decay become mutually incoherent
processes. Based on this phenomenology the overall decay is often described in an
approximate two-step picture of the initial excitation and the subsequent normal
Auger decay.
Under so-called Auger resonant Raman conditions the emitted electrons of the l-

channel exhibit a linear dispersion of the kinetic energy with the photon energy in
contrast to the d-channel,

Ekin = hν − EB. (4.1)

Here, the binding energies EB of the Auger emitted electron has been taken to be pos-
itive. Because of Eq. (4.1) one may equivalently read in literature that the l-channel
appears at constant binding energies. The Auger resonant Raman conditions are
fulfilled “if the bandwidth of the radiation source is notably narrower than the nat-
ural linewidth of the intermediate neutral excited state” [128]. Hence, under these
conditions a two-step description of the l-channel is not possible. Excitation and de-
excitation have to be interpreted as a single coherent process. Modern synchrotron
light sources routinely operate under these conditions producing the described be-
havior.
Finally, the spectator contributions (resonant Auger) can be distinguished in gen-

eral from the normal Auger decay, since due to the presence of a spectator electron
the core-hole is screened in the subsequent decay. The spectator peak appears there-
fore blue shifted with respect to the Auger peak in experimental spectra. This is
often referred to as spectator shift.
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Figure 4.1.: Relevant processes in resonant X-ray photoelectron spectroscopy of
Argon on a metal surface: (a) Initial excitation of a core electron under absorption
of a photon. (b) Decay of the excited (intermediate) electron by tunneling into the
substrate, followed by a normal Auger decay leaving the system in a two-hole state
(delocalized channel). (c) The intermediate electron stays as a localized spectator
during an Auger-like decay leaving the system in two-hole one-electron state. (d)
The intermediate electron participates in the decay via resonant photoemission and
is ejected. The processes in (c,d) are often referred to as decays via a localized
channel.
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4. Experimental Determination of Lifetimes of Excited States

Knowing the intensities of the separate processes they can be clocked against the
lifetime of the core-hole to extract the charge transfer time. In principle this can
be achieved using two different types of analysis outlined below. The first approach
analyzes the spectrum of the entire localized channel including participant and spec-
tator decays, while the second one is based exclusively on the analysis of participant
decay [21].

4.1.1. Disentangling l-Channel and d-Channel
The core-hole-clock method is based on the assumption that the excited (inter-

mediate) electron and the core-hole follow independently an exponential decay law.
Hence, their populations N obey the differential equation

Ṅ(t) = −Γ
~
N(t). (4.2)

The solution, normalized over all positive times, is the overall probability P (t) =
(Γ/~)e−Γt/~ of finding an electron in the excited state (or respectively a core-hole).
Here t is the time after the initial excitation. Using this assumption one can calculate
the probability that a charge transfer happens before the core-hole decay

Pct = lim
t→∞

Pct(t) = lim
t→∞

∫ t

0

Γc

~
e−Γct2/~

∫ t2

0

Γct

~
e−Γctt1/~ dt1 dt2 = Γct

Γct + Γc
, (4.3)

where the decay of the core-hole was enforced by taking the limit of infinite times
t → ∞. The probability that the core-hole decays after charge is transfered is then
Pc = 1 − Pct under the exclusion of other processes such as for example radiative
decays (radiative decays are less likely for lighter elements).
The probability for charge transfer before a core-hole decay is then equal to the

fraction of the d-channel intensity Id in the overall spectrum

Pct = Γct

Γct + Γc
= Id

Id + Il
. (4.4)

In this picture the rates of the processes Γct = τ−1
ct = kId and Γc = τ−1

c = kIl are
directly proportional to the measured intensities with a common overall proportion-
ality constant k. If the core-hole lifetime τc is known, one can find the charge-transfer
time

τct = Id

Il
τc. (4.5)

Here, it is assumed that the core-hole lifetime, is independent of the system under
consideration. The value for the core-hole lifetime of the atomic species are usually
taken from separate experiments. The decay of the core-hole acts then as an inter-
nal clock to the dynamics of competing processes. The approach described in this
subsection was applied in the experiments of Blobner et al. [50] and Kühn et al. [52]
which we refer to in our theoretical work in Chapter 6 and Chapter 7, respectively.
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4.1.2. Comparing Participator Decay in Coupled and
Uncoupled Systems

In some cases the evaluation of the charge transfer time is difficult using the pre-
scription from the section above and instead a different approach is adopted. This
is for example the case if the normal Auger channel cannot easily be distinguished
from the l-channel [48, 129]. This can happen for example due to spectral overlap,
e.g., if the Auger resonant Raman conditions are not met, or if the background in
the spectra does not allow for an unambiguous disentanglement.
In such cases one may exclusively use the participator channel and compare a

coupled and an uncoupled system. This can, e.g., be achieved in the case of organic
molecules adsorbed on surfaces by comparing a monolayer and a multilayer. In the
multilayer case the charge transfer from the molecules to the substrate is efficiently
quenched due to the presence of the insulating layer of organic molecules between
the absorbing outer layer of molecules and the substrate. Then, the probability that
charge transfer happens before the core-hole decay is given by the reduction of the
participator intensity comparing the coupled and the isolated system

Pct = Γct

Γct + Γc
= Iiso − Icoup

Iiso
. (4.6)

Since two separate measurements of different systems are compared, the intensities
need to be normalized by a common reference. This is usually done by dividing the
participator spectrum by the overall X-ray absorption spectrum (of the resonance
of interest) for each system Icoup/iso = Iparticipator

coup/iso /IXAS
coup/iso. This adds another com-

plication to the experimental procedure apart from additional assumptions that are
made implicitly. The first assumption being that the multilayer system is actually
uncoupled from the substrate (i.e., the d-channel is quenched in the isolated system).
Secondly, the l-channel must behave similarly in the respective isolated and coupled
systems. In particular, the participator channel (in terms of it’s matrix elements)
should be largely unaffected when isolating the system in a multilayer setting. If
these assumptions are fulfilled the charge transfer time is obtained by rearranging
Eq. (4.6),

τct = τc
Icoup

Iiso − Icoup
. (4.7)

Such an approach was used by Schnadt et al. [48] to determine the charge transfer
time from isonicotinic acid attached to rutile TiO2(110) as studied theoretically in
Chapter 5.

4.2. Time Resolution and Applications
The time resolution of the core-hole-clock is limited by the lifetime of the core-

hole in a way that the method is only applicable for charge transfer within roughly
one order of magnitude deviation from the charge transfer time under investigation,
0.1τc ≤ τct ≤ 10τc [19].
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The core-hole-clock has been used to probe dynamics in the femto-second regime [18]
and even slightly below 1 fs charge transfer [130]. Later even faster charge dynam-
ics in the attosecond regime were measured via so-called Coster-Kronig decay [22].
In this type of core-hole decay the hole is filled by an electron of the same shell, a
process that is usually an order of magnitude faster than the ordinary decay of the
same core-hole. In a fundamental proof of the method, by comparing Coster-Kronig
decay and ordinary core-hole decay in one single system, charge transfer times have
been shown to be independent of the “clock” taken as a reference [131].
A large number of systems have been studied and continue to be studied with the

core-hole-clock up to date. This includes various investigations on organic/electrode
interfaces [129, 132], dyes on bulk metals [133–135], and dyes on semiconducting
rutile-TiO2(110) as present in many DSSCs [136–138]. Most recently, charge dynam-
ics in the context of 2d-materials, like metal-adsorbed graphene monolayers [139], in-
terfaces between, e.g., transition metal dichalcogenides (TMDs) and graphene [140,
141], or layered TMDs [142] are starting to be investigated. Along these lines we
investigate in Chapter 7 the layered TMD 1T-TaS2.
Moreover, the core-hole-clock has been used to investigate the dependence of inter-

facial charge injection on different physical aspects such as linker-sizes [143], bonding
character [144, 145], and adsorption sites [132] of adsorbed molecules, or spin polar-
ization [49–51] and orbital polarization [123, 131] of the intermediate state.
Recently, the investigation of bi-directional charge dynamics due to additional

transfer of electrons in the opposite direction from the substrate to the adsorbate
has raised attention [141, 146–148]. Such a scenario becomes possible if the core-hole
attraction causes the lowest unoccupied molecular orbital (LUMO) of the studied
adsorbate to shift partly below the Fermi level of a metallic substrate, thereby leading
to its occupation. The occupation of the LUMO results then in so-called super-Auger
or super-participator processes (such processes are summarized in Ref. 148).

4.3. Relation to Laser Pump-Probe Spectroscopy
Although the core-hole-clock method is used widely to probe ultrafast time scales

in the femtosecond regime and below, in particular, pump-probe techniques [13, 149–
151] are developing fast and present an alternative providing in many ways a more
direct access to the fast dynamics of electrons in adsorbates [152]. In such techniques
similar to the core-hole-clock initially an electron is excited into an unoccupied state.
However, in pump-probe experiments this is done with an incident light pulse of
short duration (pump pulse). The system is then probed by a second beam of short
duration, such that the temporal evolution of the excited electron can be monitored
with photoemission, if the time delay between the two pulses is controlled. This
technique is therefore called tr-2PPE.
Due to the additional experimental parameter of the time delay such approaches

are often referred to as direct measurements in the time domain, while the core-
hole-clock is sometimes seen as a stationary energy domain X-ray technique [153].
However, it has been mentioned by Menzel [154] that in principle the core-hole-clock
could also be interpreted as a special type of pump-probe measurement, in which
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a continuous light pulse excites the system and subsequently the core-hole decay
probes the delocalization of the excited electron with an exponential distribution in
the time-domain.
Up to recently tr-2PPE experiments with time resolutions in the femto- and at-

tosecond regime were only realizable for photon energies below the ones of soft X-ray
irradiation (optical excitations). These optical beams excite valence states and there-
fore also electrons from the environment, e.g., from the substrate. In those cases, the
hole states are delocalized and evolve independently of the confined excited electrons
on the adsorbate. When probing layers of adsorbates under optical excitations, even
the final states spread out over the sample as they display a band-like character.
Clearly, chemical selectivity is lost in these cases.
In core-spectroscopies, the hole and the excited electron are localized on a single

adsorbate, even if dense layers are probed. Moreover, low intensity X-ray beams
produce low concentrations of excitations in molecular layers, while the latter is
different in laser-pumped systems, where high densities of coherently excited electrons
may be present. Such a case corresponds to a collective excitation in contrast to the
local character of the core-excitations.
Developments of novel X-ray sources based on free electron lasers are about to

allow high time-resolution, low intensity X-ray pump-probe measurements and thus
element specific access to electronic time-scales [155–158]. Actual evidence of this can
already be seen [159]. Measurements using these novel techniques are expected to be
directly comparable to core-hole-clock measurements, while not being constrained by
the lifetime of the core-hole.
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Chapter 5

Lifetimes of Molecular States at
TiO2 Surfaces

Titanium dioxide (TiO2) exists abundantly on earth and appears as a component
of a wide range of technological applications [160, 161]. Among these are optical and
protective coatings, white colorants, and its use in electrical devices or gas sensors.
The material’s photocatalytic properties [162, 163] promise applications in solar fuel
generation like water splitting [164] and in TiO2-based DSSCs directly converting
solar energy into electricity [5, 165]. These desirable clean energy applications make
TiO2 an extensively studied as well as widely reviewed material in the literature (see
the mentioned exemplary references).
Bulk TiO2 materializes predominantly in three structural phases: anatase, brookite,

and rutile. All these phases feature large optical gaps at low temperatures with about
3.00 eV [166, 167] for rutile and 3.40 eV [167] for anatase, while for brookite various
values up to 3.5 eV [168] (at room temperature) are reported. The thermodynamically
most stable phase is rutile, whereas anatase and brookite are metastable undergo-
ing a phase transition to the rutile structure at high temperatures [161]. While the
bulk crystal structure of these phases is known, a precise knowledge of the atomic
structure at surface terminations of TiO2 is crucial to understand the microscopic
processes taking place there. The (110) termination of rutile stands out as a heavily
investigated [160], stable, low-index termination of crystalline TiO2 [169, 170] and
forms the basic substrate studied in this chapter.
Being a wide band gap material, TiO2 is transparent for visible light and absorbs

photons in the ultraviolet range. However, sunlight-driven applications require the
absorption of light in the visible range, which is often achieved by depositing dye-
molecules on the surface of TiO2 —a process generally known as dye-sensitization.
Upon irradiation by light the electrons in sensitized TiO2 devices are excited across
the HOMO-LUMO gaps [the electronic gaps between the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)] of the
chemisorbed dye-molecules. Subsequently, the excited electrons can be injected into
the conduction band of the TiO2 substrate, where they ideally separate from the
left-behind holes before recombination occurs. This is the underlying principle of
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charge injection in DSSCs [3–5].
In DSSC devices the injected electrons generate a current, which is converted

into consumable electrical energy. Typically the surface ratio in such devices can
be increased by employing porous TiO2 electrodes in order to maximize absorption
of photons. Due to the use of porous TiO2 various facets of TiO2 crystals coexist
in actual devices and surface reconstructions, step edges, or defects (e.g., electron
donating oxygen vacancies) may cause disorder at realistic surfaces.
We investigated in particular the formation of vacancies in the vicinity of step

edges on rutile TiO2(110) in connection with experiments on curved crystals of TiO2.
The results of this combined experimental and theoretical work are presented below
(Section 5.1) in modified form1. This allows us to introduce the TiO2 substrate which
we discuss subsequently in connection with charge transfer dynamics at a prototypical
DSSC interface.
The main focus of this chapter is on charge injection from localized states on

molecules (isonicotinic acid) sensitizing rutile (110) surfaces, resembling the inter-
face at an electrode inside a DSSC device. We seek to explore the effect of structural
fluctuations at finite temperatures on ultrafast charge injection at the interface. This
work was performed in direct comparison with available data from core-hole-clock
spectroscopy [48]. Using the methodology to extract lifetimes as described in the
introductory chapters and sampling the atomic motion at finite temperatures from a
Car-Parinello molecular dynamics (CPMD) trajectory, we obtain a consistent descrip-
tion of the charge transfer at the interface in close agreement with the experiment.
We discuss the effect of including a core-hole in our model and the role of the density
of acceptor states for temperature broadened spectra. The corresponding part of this
chapter (Section 5.2) reproduces our original publication in slightly adapted form2.
Finally, we investigate the electron-phonon coupling of the molecular states of

isonicotinic acid on TiO2(110), to trace the influence of structural fluctuations on the
interfacial level alignment back to specific vibrational modes. We find that modes
stretching the carboxyl group anchoring the molecules to the surface have a dominant
effect. Assuming similarly a linear relationship between the structure and the elastic
linewidths determining the charge transfer does not allow to single out contributions
from specific modes. We discuss the fluctuations of the energy levels in a semi-
classical model of harmonic oscillators, rationalizing the Gaussian-type broadening
of electronic spectra at finite temperatures.

5.1. Interplay Between Steps and Oxygen
Vacancies on Curved TiO2(110)1

Investigations of TiO2 surfaces at the atomic level are of general importance to
understand catalytic processes at these surfaces and to tailor devices through efficient
interface engineering. Along this line, experiments on curved crystals in combination
with first principles calculations are especially useful to study the formation and the

1Reprinted (adapted) with permission from [47]. c© 2016 American Chemical Society.
2Reprinted (adapted) with permission from [171]. c© 2018 American Chemical Society.
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Figure 5.1.: Ball-and-stick representation of stoichiometric steps oriented along
the [1-10] direction on a TiO2 rutile (110) surface. The O atoms appear in dark
red, while the larger Ti atoms appear in a lighter color shade. The image shows
2 × 2 computational cells as seen from the top. In our calculations we consider
the formation of vacancies along the two rows of bridging oxygens Obr and oxygens
directly at the step Os (A-row: positions A1-A5 and B-row: positions B1-B4).

interplay of steps and defects on surfaces systematically.
A curved crystal constitutes a low index surface that has been rounded off along

a particular direction. In this way, as one moves away from the center of the sample
along the selected direction one enters surface areas that are subject to a larger miscut
angle, i.e., corresponding to larger Miller indices. Cutting samples of TiO2(110) in
this fashion along the [001] direction leads to the formation of steps with a smoothly
growing step density. The sample can subsequently be treated by a sputtering-
annealing procedure to introduce oxygen vacancies on the surface. A sample gener-
ated in this way allows to investigate the interplay of oxygen vacancies with step-edges
on TiO2(110) in a unique fashion. To this end a combination of scanning tunneling
microscopy (STM) and angular resolved photoemission spectroscopy (ARPES) mea-
surements was carried out on curved TiO2(110) crystals. The experimental results
were obtained by our collaborators (cf. Ref. 47) and will be outlined here, while we
concentrate on the theoretically obtained results.
In particular, STM measurements confirmed a smooth variation of the density

of step edges on curved TiO2(110) surfaces. Furthermore, step edges and oxygen
vacancies can be linked to prominent features in the STM images: (i) Vacancies
in the rows of bridging oxygens Obr (see Fig. 5.1) appear as bright features on
TiO2(110) [172, 173] and (ii) intense triangular protrusions St are characteristic of
zigzag edges (cf. Fig. 5.1) of steps on rutile (110) [174].
It has been previously reported that mainly Obr vacancies are responsible for the

creation of gap states at TiO2 surfaces [175]. These gap states effectively donate
charge to the crystal thereby reducing the crystal (doping). Counting the number
of Obr vacancies and triangular protrusions St in areas with varying step densities
according to the STM images, reveals that the sum of both features correlates with
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the corresponding intensity emitted from gap states in ARPES measurements. Since
the measured ARPES intensity is nearly constant across the entire curved sample,
both Obr vacancies and triangular protrusions St need to contribute in a similar way
to the ARPES signal and therefore equally donate charge to the crystal doping.
The increasing number of triangular protrusions St at higher step densities (going

along with a decrease of Obr vacancies in the middle of the terraces) points to either
of two scenarios: Step edges induce gap states contributing to the crystal doping,
while simultaneously the nominal concentration of oxygen vacancies is diminished at
higher step densities. Or, vacancies tend to migrate towards the step edges, where
they do not perceivably alter the appearance of triangular protrusions in the recorded
STM images, but contribute to the crystal doping. As we will see in the following,
the latter scenario is strongly supported by our DFT study of gap states at these
stepped surfaces, formation energies of oxygen vacancies (Section 5.1.2), as well as
simulated STM images (Section 5.1.3).

5.1.1. Computational Setup
In our theoretical approach we assess the formation of Obr vacancies in the vicinity

of step edges through spin-polarized DFT as implemented in the SIESTA code [28].
We simulate monatomic [1-10] steps according to the model proposed by Luttrell
et al. [174]. This type of step edges prevails at high step densities on TiO2(110),
as is evident from the recorded STM images [47]. A slab thickness of four oxide
layers was employed, while also thinner slabs of three oxide layers were considered
to estimate finite size effects (cf. Section 5.1.2). The width of the terraces in the
supercell is visible in Fig. 5.1. All atomic positions in the slabs were relaxed using a
conjugated gradient scheme with a force tolerance of 25 meV/Ang and a maximum
atomic displacement of 0.1 Bohr between consecutive geometry optimization steps.
It is known that an incomplete cancellation of electronic self-interaction in semi-

local GGA functionals often leads to a spurious spreading of otherwise localized
states. This affects in particular the description of localized gap states stemming
from oxygen vacancies at surfaces of TiO2. Such spurious behavior of the gap states
can be remedied to some extent using hybrid functionals [176]. Unfortunately, the
increase in computational demand coming along with the use of hybrid functionals
precludes their use in our current study considering the amount of calculations to be
performed and the size of the supercells involved. A possible alternative description
by DFT+U methods comes at the expense of introducing an additional empirical
parameter (U), which favors a localization of the excess electronic charge related
to the Ti3d-flavored gap states [177]. Such DFT+U calculations depend strongly
on the choice of the U parameter and have been reported to yield qualitatively
different charge distributions related to the oxygen vacancy induced gap states in
comparison with hybrid functional calculations [177]. Therefore, we opted, in spite
of the mentioned short-comings, for employing the semi-local PBE functional [75]
in our calculations. This functional has been previously used to simulate stepped
stoichiometric surfaces TiO2 [174, 178, 179]. We aim at studying the formation
energies of vacancies at varying distances relative to the step edges, i.e., missing
oxygens at the positions A1-A5 and B1-B4 in Fig. 5.1. We expect that the employed
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Figure 5.2.: Energetics of the vacancy formation at [1-10] steps on rutile TiO2 (110):
(a) Majority DOS related to stoichiometric steps and to steps containing a vacancy
at the outermost position towards the edges (cf. position A2 in Fig. 5.1). (b) energies
related to the formation of vacancies at different inequivalent oxygen positions in the
A-row or B-row of oxygens (as specified in Fig. 5.1) inside the computational unit
cell.

functional is capable of capturing the correct qualitative trends, which we assume to
be governed by the variation of the release of strain for different vacancy positions.
Moreover, we employed norm-conserving Troulier-Martins-type pseudopotentials

together with a double-ζ polarized basis of numerical atomic orbitals, which was
generated by using a SIESTA-specific EnergyShift parameter of 100 meV. The elec-
tronic density was sampled on a real space grid with a fineness equivalent to a plane-
wave cutoff of 200 Ry (MeshCutoff parameter) in order to compute the Hartree and
exchange-correlation potentials. We used a 2 × 2 × 1 Monkhorst-Pack k-point sam-
pling [180] and an electronic temperature of 300 K. The SCF cycle was considered
converged, as soon as changes in the elements of the density matrix did not exceed
a tolerance value of 10−4.

5.1.2. Energetics of Vacancy Formation
To assess a potential doping of TiO2 crystals by stoichiometric step edges on the

surface we inspect the computed DOS plots shown in Fig. 5.2a. It is clearly visible,
that stoichiometric steps do not induce any states inside the gap (blue dashed line),
while on the contrary a vacancy at, e.g., position A2 (cf. Fig. 5.1) does introduce a
state ∼ 400 meV below the conduction band edge (solid red line) in our calculations.
As one expects, both the gap and the distance of the vacancy state to the conduction
band minimum are underestimated due to the use of semi-local DFT. Fig. 5.3 shows
the DOSs around the edges of the conduction band related to single vacancies at
different positions on the terraces (cf. Fig. 5.1, A1-A5 and B1-B4) of a four layer slab
in the computational cell. Our analysis confirms that all gap states in our calculations
carry a total spin moment of 2 µB, where µB is the Bohr magneton. The peaks inside
the gap are of Ti3d-type character and are derived from two flat defect bands. The
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Figure 5.3.: Majority channel electronic DOS of [1-10] step edges on TiO2(110)
including a single vacancy at different positions inside the oxygen rows on one side
of the slab. The subplots refer to vacancies located (a) inside the A-row or (b) inside
the B-row as specified in Fig. 5.1. The bracketed values in the legend indicate the
corresponding mean energy positions of the gap states with respect to the conduction
band edge at the origin of the energy axis.

values in brackets inside the legend indicate the mean energy position of these peaks
with respect to the conduction band minimum (the latter has been shifted to 0 eV,
taking into account the electronic temperature of 300 K in our calculations). A clear
dependency of the energy position of the gap state on the location of the vacancies
cannot be stated at this point. The current set of calculations suggests, that the
uppermost occupied state inside the gap is lower in energy for vacancies at the centers
of the terraces (A3 and B3 in Fig. 5.3 a and b, respectively). However, owing to the
possibility that the derived geometries correspond to local minima in the potential
energy surface, further calculations are necessary to confirm this observation.
The absence of gap states on stoichiometric steps and the experimental finding

that the sum of the Obr vacancies and triangular protrusions St correlates with the
ARPES intensity from gap states, suggests that a migration of vacancies towards
step edges takes place. To further investigate this presumption we examine the
(relative) vacancy formation energies when moving the Obr vacancy along the rows
of the bridging oxygens on the surface. Here, a migration of vacancies towards step
edges seems plausible, since the vacancies in the middle of terraces are less stable
in our calculations. This can be read from the relative vacancy formation energies
along the rows of the bridging oxygens in Fig. 5.2.
We considered in our calculations a single vacancy on one side of the slab in the

computational supercell. However, this creates an asymmetry with respect to the
two surfaces of the slab. To estimate the effect of this asymmetry we additionally
conducted calculations with vacancies on both sides of the slab for the positions A1,
A2, A4, A5 (cf. Fig. 5.1). Likewise, the finite size of the slabs in our model may af-
fect the results. Therefore, we also conducted calculations with three layers in order
to assess the corresponding errors. According to these tests we estimate an uncer-
tainty of about ±50 meV. Additionally, some of our calculations were fairly sensitive
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Figure 5.4.: Simulations of STM images according to the Tersoff-Hamann approach
(a, c, d, e) in comparison with the experimental STM image (b) of tightly packed
[1-10] steps on rutile TiO2(110): (a, d) Simulation cell containing a single vacancy at
the theoretically most stable position next to the step edge (position A2, Fig. 5.1) and
(c, e) stoichiometric step edges. The figures (a, c) closely resemble the experiment
(b) exhibiting the triangular protrusions St characteristic of [1-10] edges. Even the
corresponding zoomed sections (d, e) as indicated by black boxes in (a, c) are hardly
distinguishable despite the missing oxygens in (d). The images were created using
the WSXM tool [183] and the STM tool of the SIESTA package.

regarding the geometry relaxation of the structures, which sometimes converged to
different minimum energy structures. This was in particular the case for the most
stable vacancies at A2 or A5 positions. Based on these results we raised the overall
error bars to an estimated ±150 meV.

These errors were consequently assigned to all values in Fig. 5.2. Accordingly,
we read from Fig. 5.1 that the formation of a single vacancy at the upper edge of
the step (position A2) is energetically most favorable, closely followed (with over-
lapping error bars) by the formation of vacancies at the lower edges of the steps
(position A5, Fig. 5.1). In contrast, all other examined positions are substantially
less stable. Hence, our calculations support a view in which vacancies tend to migrate
towards [1-10] step edges, in line with a similar tendency for vacancy formation in the
vicinity of [1-11] step edges [181, 182]. A migration of Obr towards step edges might
also explain why water molecules dissociate in an analogous way at oxygen bridging
vacancies and at [1-10] steps in our experiments on reduced TiO2 surfaces [47].
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5.1.3. Appearance of Vacancies in Simulated STM Images
Overall, the absence of a doping effect by stoichiometric step edges in combination

with a tendency of Obr vacancies to form at step edges suggests that triangular pro-
trusions in STM images are to a large extent populated by oxygen vacancies. On the
other hand it has previously been demonstrated that triangular protrusions in experi-
mental STM images are closely resembled by simulated STM images of stoichiometric
step edges in the Tersoff-Hamann approximation [174]. This apparent inconsistency
can be resolved, if the triangular protrusions in STM images containing a vacancy
are not perceivably different from triangular protrusions due to stoichiometric step
edges.
We investigate this presumption by carrying out simulations of constant current

STM images within the Tersoff-Hamann approximation [184, 185]. In particular
we simulate empty state imaging with energies up to 1.0 eV above the conduction
band minimum, imitating the experimental bias voltage range from 0.7 V to 1.8 V.
Both types of step edges in Fig. 5.4, the ones containing a vacancy (a) and the
stoichiometric ones, closely resemble the experimental image (b). A zoom onto the
single triangular protrusions St in the images (d, e) further corroborates that the
minor differences induced by missing oxygens at the step edges in Fig. 5.4d) do not
alter the overall appearance of the protrusions.
We note that our STM simulations possibly underestimate contributions from the

titanium rows on the surface, which are known to appear as bright lines in exper-
imental STM images [160, 175]. Likely, this deficiency is due to the finite support
of the numerical orbitals employed by the SIESTA code, which leads to a vanishing
LDOS at realistic tip-to-sample distances in comparison with actual STM experi-
ments. This deficiency can be cured by extrapolating the finite-ranged orbitals into
the vacuum region starting from a plane above the surface using the STM tool of
the SIESTA code. However, since it is difficult to define a plane with respect to the
stepped surfaces, we performed the extrapolation starting from two different planes
parallel to the corrugated surface. The final images in Fig. 5.2 were obtained as the
average of the two extrapolations.
The pronounced contributions from the oxygens at the step edges in our STM

simulations seem to mask the contributions of the titaniums. However, we do not
expect that possible additional weight from the titaniums will alter our observation
that missing oxygens at step edges have a negligible effect on the appearance of the
STM images. The latter is unlikely, since the signatures of triangular protrusions are
predominantly due to twofold coordinated oxygens at the step edges [174].

5.1.4. Conclusion and Outlook
In this section we described theoretical calculations of [1-10] step edges and Obr

vacancies on TiO2(110) and the implications of our results for corresponding curved
crystal experiments. In particular, our findings strongly suggest that stoichiometric
step edges do not introduce additional states inside the electronic gaps of TiO2(110)
and therefore are not donating excess charge to the crystal. Instead our results
indicate that oxygen bridging vacancies tend to migrate to the edges of the steps,
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where they contribute to the reduction of the crystal. This appears plausible, since
the corresponding triangular signatures of such reduced step edges in STM images
appear unaltered with respect to the ones from stoichiometric step edges, as backed
by our Tersoff-Hamann simulations of STM images.
These findings provide a possible explanation for a similar tendency of water

molecules to dissociate at step edges or at Obr vacancies on reduced TiO2(110) sur-
faces (as observed in the experiments [47]). Presumably, this is due to the presence
of Obr vacancies at the step edges and not due to an intrinsic reactivity of the Os
atoms at these edges (cf. Fig. 5.1). However, we believe further investigations are
necessary to substantiate this interpretation.

5.2. Effect of Structural Fluctuations on Elastic
Lifetimes of Adsorbate States: Isonicotinic
Acid on Rutile(110)3

After the introductory discussion about steps and vacancies on TiO2(110), we turn
now to the study of dye-molecules attached to perfect TiO2(110) surfaces. Making use
of the methodology introduced in Chapter 3 we investigate how structural disorder
caused by temperature influences charge transfer at the interface.
We sample ab initio molecular dynamics trajectories to address the impact of

structural fluctuations on elastic lifetimes of adsorbate states at room temperature
focusing on heterogeneous charge injection from isonicotinic acid as a key anchoring
unit in dye-sensitized energy devices. Complementing related theoretical studies, we
employ a Green’s function technique based on density functional theory to account
for a fully semi-infinite substrate of rutile TiO2(110). We address the effect of a core-
excitation enabling direct comparison with soft X-ray experiments. We find that
room temperature fluctuations drastically improve the agreement with experimental
lifetime measurements while the core-hole plays an important role shifting the spectra
and reducing the electron vibrational coupling of the adsorbate states. Ultimately,
the emerging resonance spectra highlight the role of the continuum of acceptor states
in temperature broadened Voigt-type profiles.

5.2.1. Introduction
Ultrafast electronic processes at surfaces are at the heart of many applications in

photochemistry, catalysis, and molecular electronics. After an initial excitation by
light, ultrafast electron transfer takes place during generation of solar fuel, [2] as
well as from photo-excited dyes towards semiconducting substrates in DSSCs [3–5].
Although the original design of the DSSC has been challenged in recent years by
perovskite-based solar cells, [186, 187] electronic charge injection remains the basic
physical process behind these sunlight harvesting energy devices.
Among a variety of candidates, isonicotinic acid is a common anchoring unit in

DSSCs as, for instance, in the high-performing N719-dye [188]. Isonicotinic acid has
3Reprinted (adapted) with permission from [171]. c© 2018 American Chemical Society.
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been investigated extensively, from an experimental and theoretical point of view.
In particular many studies have examined isonicotinic acid on different facets and
structural phases of TiO2, which is the preferred material for the anode of DSSCs
due to its stability, high mobility, mesoporous structure and high availability.
A series of core-spectroscopy studies by Schnadt et al. [48, 189–192] investigated

the structural and electronic properties of mono- and multilayers of isonicotinic acid
on rutile TiO2(110). Using core-hole-clock spectroscopy, [19, 21, 154] they extracted
electron injection times from core-excited isonicotinic acid (identified as LUMO+2)
into the substrate at an ultrafast time-scale below 5 fs at monolayer coverage [48].
The employed core-hole-clock technique can be pushed to measure charge-transfer
times in the attosecond domain [22].
From a theoretical point of view, the calculation of charge-transfer times from ad-

sorbates has been approached using different techniques [34, 36, 193]. For example,
starting from standard DFT calculations, Fermi’s golden rule was used to estimate
charge-transfer rates from the computed Hamiltonian matrix elements between the
extended states in the substrate and the localized states in the adsorbate. In prin-
ciple, the relatively short range of these interactions (proportional to the overlaps
between adsorbate and substrate wave functions) can be exploited to design efficient
algorithms to screen dyes for optimal charge injection [193] as carried out by Martsi-
novich and Troisi [194]. These authors estimated lifetimes below 1 fs for isonicotinic
acid in its equilibrium geometry (no core-excitation included) on rutile (110) and on
anatase (101) [194].
While the calculations described above analyze static structures, some groups have

already tried to incorporate the effect of temperature on the electron injection pro-
cess. This has been done at different levels of theory. For example, Prezhdo et
al. [195–197] have used a combination of non-adiabatic molecular dynamics based
on fewest switches surface hopping [198] and DFT. Employing this technique they
found for the LUMO of isonicotinic acid on rutile (110) at 50 K a lifetime of 28 fs
averaging over 10 different trajectories [199]. In a subsequent work using a derivative
of isonicotinic acid functionalized with silver cyanide, they found that the lifetime
of the LUMO dropped to 5 fs when the temperature was increased to 350 K and
100 initial configurations were considered. Although it is difficult to obtain a precise
picture of the effect of temperature from these simulations, since the data are not
directly comparable (different derivatives and statistics are used), the authors make
the interesting observation that the increased transfer rate is mostly due to adiabatic
effects.
Batista et al. [200, 201] studied the effect of thermal fluctuations, focusing on the

case of catechol on anatase (101). They used ab initio molecular dynamics to generate
trajectories at a given temperature in combination with extended Hückel theory to
model the electron dynamics along the trajectory. They found lifetimes of the LUMO
around 38 fs at 0 K, [200] while an ensemble average of fixed initial configurations
from a trajectory at 300 K reduces the injection time to about 6 fs [200]. Additional
non-adiabatic effects due to nuclear motion during electronic decay lead to further
reduction of the lifetime to about 2.5 fs [201]. This observation seems consistent with
the one mentioned above concerning the relative importance of adiabatic and non-
adiabatic effects. After the ultrafast initial injection to an interfacial charge state,
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Batista et al. also followed the delocalization of the electron into extended substrate
states.
The approaches mentioned so far treat the ions as classical particles, which is

usually necessary for such complex systems. However, there have been model calcu-
lations that use a full quantum treatment to study electron dynamics at the DSSC
interface [202–205].
Along similar lines, in this work, we investigate the elastic lifetimes of the frontier

orbitals of isonicotinic acid on rutile TiO2(110) in the presence of structural fluctua-
tions by sampling static nuclear configurations from ab initio molecular dynamics at
room temperature [206]. Thereby we extended previous work considering the equilib-
rium structure (0 K) [36] to include the effect of temperature. This approach does not
include non-adiabatic effects explicitly. However, the sampling of the configurational
space at a given temperature is included. Such sampling has been identified as a key
ingredient to determine the temperature dependence of charge-transfer rates. The
adopted Green’s function technique improves the description of the electronic struc-
ture of the substrate over that provided by finite slabs and cluster models [34, 36].
Thus, our method is suitable to describe charge-transfer into fully delocalized states
in the substrate. Additionally, and importantly, we include a core-hole in our simu-
lations to obtain charge-transfer rates comparable with core-hole-clock experiments
by Schnadt et al. [48]
We performed a detailed analysis of the cumulative theoretical spectra. Our results

indicate that the inhomogeneous broadening due to the fluctuating energy positions
of the resonances is not sufficient to explain their shapes. It is crucial to take into
account the variation of the average elastic width with energy. The latter reflects the
energy dependence of the density of states in the substrate.
The presentation of the results below is organized in two parts, the first considering

the adsorbate in its electronic ground-state and the second the core-excited case.

5.2.2. Computational Methods
In this work we analyze the effect of thermal structural fluctuations on the elastic

linewidths of the molecular resonances. We access a set of structures representative
of the configurational space sampled by the adsorbed molecule at finite temperature.
Extending our previous study for the equilibrium configuration, we consider a num-
ber of snapshots generated along a previously calculated CPMD trajectory [206] of
isonicotinic acid (C5H4NCOOH) adsorbed on rutile (110). The CPMD trajectory
was computed at a constant temperature of 300 K using a Nosé thermostat, a slab
containing four TiO2 trilayers, a 3×2 TiO2 supercell in the lateral directions and one
molecule per supercell adsorbed on one of the surfaces of the slab. The trajectory
covers 10 ps after an initial equilibration period of 2 ps. As described in detail in Ap-
pendix C.1, we devise a matching procedure that allows us to model an infinitely
extended TiO2 substrate starting from the finite-slab CPMD geometries.
In the present work we have selected a total of 161 snapshots (at a constant

sampling rate of one frame every 62.5 fs) and recomputed electronic structure of
each configuration using the SIESTA/TranSIESTA package [28]. As a first step, for
each original structure we generated a new structure employing the above mentioned
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Figure 5.5.: (a) As described in the text, a symmetric slab containing nine TiO2
trilayers plus one adsorbate in each surface is constructed starting from selected
snapshots of the CPMD simulation in Ref. 206. (b) The coupling of the structure to
a semi-infinite bulk support is included in the Green’s function of the central region
via self-energies Σ. Blue ovals represent adsorbates, light blue areas stem from finite
slab calculations, while green areas refer to bulk calculations. The self-energies due
to the bulk are added to the slab in the Σ-regions. The coupling of the adsorbed
isonicotinic acid to the continuum of states in rutile(110) yields then the lifetime
broadening. (c) Side view and (d) top view of the system. The black and white
boxes refer to the computational unit cell.

matching procedure (described in Appendix C.1). The idea is to construct geome-
tries with a larger number of layers and approaching the perfect bulk phase inside the
material. This is necessary to provide a smooth connection with the self-energies that
describe the semi-infinite TiO2 substrate in our Green’s function technique. In the
final geometries only the two outermost trilayers of TiO2 and the adsorbate move
according to the original CPMD simulation. Hence, the third trilayer provides a
smooth transition to the fixed bulk configuration, that is assumed in the inner lay-
ers. To cancel spurious dipoles the final slab is symmetrical and contains nine TiO2
trilayers in total. Periodic images are separated by at least 24.4 Å of vacuum in
order to avoid interaction between replicas. This setup is illustrated schematically
in Fig. 5.5a, while Fig. 5.5c, d shows the details at the organic-semiconductor inter-
face.
Our SIESTA calculations utilized a double-ζ polarized basis set of numerical atomic

orbitals [104] to expand the wave functions, whose radii were determined using a
100 meV energy shift [28]. The exchange-correlation functional by Perdew, Burke
and Ernzerhof [75] was employed in combination with norm-conserving Troullier-
Martins pseudopotentials [109] to perform closed shell simulations (a separate dis-
cussion about the influence of spin for the core excited case can be found in Ap-
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pendix C.5, where we show that the explicit inclusion of the spin degree of freedom
does not alter our conclusions). We used 3×2×1 k-point sampling and a mesh cutoff
value of 250 Ry, respectively, for the reciprocal and real-space grids. A tolerance of
10−4 was used for the changes of the density matrix in order to stop the self-consistent
cycle.
In a final step we include the coupling of the scattering region (enclosing the dec-

orated surfaces) to the fully semi-infinite TiO2 support (Fig. 5.5b) in an embedding
approach [207–209]. The coupling is accurately simulated inside the scattering region
by adding self-energies (Σ) due to the semi-infinite substrate (Fig. 5.5b) that connect
to four trilayers (layers 3 to 6) of the initially calculated nine-trilayer slab. We use the
Green’s function procedure implemented in the TranSIESTA transport code [117].
The TiO2 electrode was defined using 1×2×4 bulk unit cells with a k-point sampling
of 9×2×2. To compute the Green’s function an imaginary part of η =0.02 eV was
added to the energies.
The Hamiltonian and self-energy matrices coming from bulk calculations (green

areas, Fig. 5.5b) and slab calculations (light blue areas, Fig. 5.5a) were aligned at
a common reference to correctly include the coupling to bulk TiO2 in the Green’s
function procedure. This is important, since the Fermi level commonly used to
align transport calculations for metallic systems cannot be used for calculations of
semiconducting materials, which produce in practice arbitrary positions of the Fermi
level inside the electronic gap. Additionally, the zero of potential in periodic systems
is known to be arbitrary [210]. To overcome both issues, the energy levels of bulk and
slab calculations were aligned at the Hartree potential of the bulk TiO2 assuming
that the bulk value of the Hartree potential is reached deep inside the slabs. We
determine the macroscopically averaged Hartree potentials applying the smoothing
method of Junquera et al. [211, 212] in the direction perpendicular to the surface.
Subsequently, the two values are aligned at the transition towards the bulk region,
making the bulk DOS a common energy reference for all calculations. Such a common
reference also enables the comparison of peak positions from different snapshots. For
plotting purposes, the origin of the spectra was shifted to the valence band maximum
(VBM) of bulk TiO2. This appeared to be a reasonable choice since the total DOS of
the 9 trilayers and symmetrically attached adsorbates only showed small fluctuations
of the VBM across different snapshots of the CPMD simulation.
We extract (resonant) elastic lifetimes of initial wave-packets derived from single

molecular orbitals (MOs) of isonicotinic acid following the procedure in Refs. 34, 35
and extensions to MOs in Refs. 36, 147. For the calculation of the MOs the hydrogen
atom dissociated upon adsorption is added back to the molecule in order to saturate
free bonds. The reference wave-packet Φ is then obtained by setting the basis set
coefficients related to the added hydrogen to zero and normalizing. This is expected
to give good results as the coefficients for the hydrogen atom’s orbitals are negligible
for the MOs of interest here [36]. We subsequently calculate the projected density of
states (PDOS) on the reference wave-packets [cf. Eq. (3.39)]:

ρΦ(E) = − 1
π

Im
[∫ ∫

Φ∗(r)G(E, r, r′)Φ(r′)drdr′
]
≈ 1
π

Ω
(E − ER)2 + Ω2 , (5.1)

where G(E, r, r′) is the Green’s function of the scattering region. The resulting spec-
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tra are fitted in an energy window of ±0.8 eV around their maxima by a Lorentzian
function with a proportionality coefficient, and the resonance energy ER and the full
width at half maximum of 2Ω as fitting parameters. The elastic linewidth Γ of the
resonance is extracted as Γ = 2(Ω − η) considering that the Green’s function was
calculated at an imaginary energy E + iη. We found that the use of η = 20 meV is
sufficient to determine the linewidth of narrow peaks within an accuracy of ∼ 1 meV
(for a more detailed discussion on this issue please refer to Appendix C.2). Employ-
ing the uncertainty relation we obtain the lifetime ~/Γ (~ = 658.21 fs · meV in the
relevant units).
In CPMD simulations ionic and electronic degrees of freedom are strictly sepa-

rated due to the Born-Oppenheimer approximation. Non-adiabatic effects such as
electronic transitions caused by ionic movement are hence explicitly excluded. As
a result the electronic properties are governed by the electronic structure at every
instance of time. In that spirit, considering a Lorentzian line shape as in Eq. (5.1)
implies that the populations of the instantaneous initial states P (t) decay exponen-
tially with time. In regions of strong coupling, where deviations from the Lorentzian
line shapes occur, we still expect that the width will give a reasonable estimate
of the time scale for charge transfer (for further discussion of the fitting procedure
refer to Appendix C.2). The dependence on temperature is then included in the
statistical ensemble 〈P (t)〉 = 〈exp(−Γt/~)〉, where 〈. . . 〉 denotes the arithmetic av-
erage over all snapshots. This model is well-placed for fast processes, where the
structural configuration remains virtually unchanged, while the electron is trans-
ferred. For larger charge transfer times the expression becomes approximate [213].
To simplify the forthcoming discussion, unless otherwise stated we approximate
〈P (t)〉 ≈ exp(−〈Γ〉t/~), where ~/〈Γ〉 plays the role of an approximate average life-
time. The limit to this approximation is discussed at last.
To compare our simulations with core spectroscopy experiments, we effectively

introduce a core-hole in our calculations by reducing the occupation of the 1s state
of the nitrogen atom during the construction of the pseudopotential. In the slab
calculations this core-hole is neutralized by adding back the removed electron to the
valence. The model represents a metastable situation with a strongly localized hole
on the nitrogen 1s level, and an electron has been excited into a molecular resonance.
The transfer of this electron into the TiO2 support is the main process whose time-
scale we aim to study.

5.2.3. Elastic Lifetimes in the Electronic Ground State
We start by analyzing isonicotinic acid adsorbed on rutile (110) in its electronic

ground state. The corresponding spectra computed according to Eq. (5.1) are pre-
sented in Fig. 5.6. To investigate the dependency of the elastic linewidths on the
adsorption and molecular geometry we calculated the projections of the Kohn-Sham
DOS onto the adsorbate states ranging from the HOMO-1 to the LUMO+2 at dif-
ferent snapshots along a CPMD simulation at a constant temperature of 300 K, as
well as in the equilibrium geometry. The latter case is shown in Fig. 5.6a, and Ta-
ble 5.1 presents the corresponding extracted linewidths Γeq and peak positions of the
molecular resonances ER. These values are in good overall agreement with previously
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reported values by Fratesi et al. [36] (shown in brackets). The observed deviations
are attributed to the larger unit-cell in the present calculations (3×2 instead of 3×1).
Another difference with respect to the model in Ref. 36 lies in the chosen adsorption
site for the dissociated hydrogen, that is put closer to the molecule in the current
work, following the CPMD study [206]. However, we explicitly checked that this
choice has negligible effect on the reported results.
We now compare the case of the equilibrium structure with instantaneous snap-

shots from our CPMD simulation. We sample the 10 ps trajectory taking 161 snap-
shots after an initial equilibration time of 2 ps. Under the effect of temperature the
resonance peaks move around their equilibrium positions and relative to the DOS
of the bulk TiO2 (Fig. 5.6b). The overall picture suggests a correlated motion of
the energy position of the different levels across time (peak ordering and distances
between peaks tend to keep constant), although deviations from a rigid shift can
be observed. In Fig. 5.6b it is visible that the HOMO lies within the band gap
for most of the snapshots. Just in a few cases it is severely downshifted, which is
most clearly seen in Fig. 5.7. The LUMO splits into two peaks corresponding to a
bonding (lower energy peak) and an antibonding (higher energy peak) interaction
with the substrate [36]. This is particularly apparent for the equilibrium geometry
as shown in Fig. 5.6a. For most of the snapshots the bonding component of the
LUMO melts into an extended tail towards the edge of the conduction band of the
TiO2 substrate and it does not give any distinct peak in the cumulative spectrum
in Fig. 5.6c. Contributions to the spectrum from the antibonding part dominate the
LUMO’s PDOS, and the reported values in Table 5.1 and Fig. 5.7 correspond to this
antibonding peak. The LUMO+1 is uncoupled from the substrate in the equilibrium
geometry and structural fluctuations preserve the single peak shape, only causing
a small increase in width. Peak broadening during the dynamics is also visible in
the case of the LUMO+2, where already at the equilibrium structure coupling to

Table 5.1.: Computed values of the linewidths Γeq, associated lifetimes ~/Γeq, and
resonance positions ER of the molecular states at the equilibrium adsorption geome-
try. These values are to be compared with the corresponding averages obtained using
the structures visited during the CPMD trajectory: Mean energy positions of the
molecular resonances 〈ER〉 and their standard deviations σ(ER), average linewidths
〈Γ〉 and their relative standard error δ(〈Γ〉), lifetimes ~/〈Γ〉. The values for the
equilibrium adsorption shown in brackets are taken from Ref. 36. All quantities are
further defined in the text. All energies are referred to the VBM of TiO2.

equilibrium (0 K) thermal average (300 K)
ER Γeq ~/Γeq 〈ER〉 σ(ER) 〈Γ〉 δ(〈Γ〉) ~/〈Γ〉
(eV) (meV) (fs) (eV) (eV) (meV) (%) (fs)

HOMO 0.27 0 (0) ∞ (∞) 0.27 0.45 11 43 62
LUMO 3.53 218 (186) 3 (4) 3.47 0.30 280 5 2

LUMO+1 4.61 1 (0) 657 (∞) 4.61 0.27 6 10 105
LUMO+2 5.93 35 (15) 19 (44) 5.83 0.29 57 5 12
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Figure 5.6.: Density of states projected onto the frontier orbitals (HOMO-1 up to
LUMO+2) of isonicotinic acid [Eq. (5.1)]: (a) Spectrum for the equilibrium structure.
(b) 81 snapshots during 10 ps of the CPMD at 300 K (every second snapshot of
the full sampling shown). (c) Cumulative spectra after averaging all 161 snapshots
(colored areas), additionally repeated after rescaling (×4) to facilitate visualization
(light shaded areas). Black lines in (a) and (c) show the DOS (×0.14) from finite slab
calculation. The gray line in (c) shows the bulk TiO2 DOS (×0.6). The origin of all
the spectra was shifted to the VBM of the bulk DOS as a common energy reference.
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the substrate yields a finite width. Strong couplings to the substrate for distorted
configurations induce additional deviations from the Lorentzian line-shape as visible
in several snapshots in Fig. 5.6b.
In spectroscopy experiments probing the density of states under typical conditions,

thermal averages of spectra are recorded. Even at zero temperature such spectra usu-
ally correspond to an ensemble of different structures, as the configuration may vary
from molecule to molecule. In analogy to such experiments we average our set of
calculated spectra from different snapshots. The resulting cumulative spectra are
shown in Fig. 5.6c. While the finite sampling still leads to spiky features for the
weakly interacting HOMO and LUMO+1 states (reflecting the need of a larger stat-
ics), for the more strongly coupled LUMO and LUMO+2 the spectra approach a
smooth profile. Regarding the LUMO resonance, its bonding component is smeared
out in the cumulative spectrum reducing the possibility of a separate experimental
measurement of its lifetime at room temperature, as was suggested for the zero tem-
perature case [36]. We note that the width of the peaks in the cumulative spectrum
cannot be directly related to electronic charge-transfer times, as the latter depend
on the instantaneous electronic couplings, while the former are dominated by the
fluctuations of the MO energies at room temperature. Hence, thermally broadened
spectra do not provide direct access to electronic lifetimes. Instead, more sophisti-
cated experimental techniques such as the core-hole-clock method or high resolution
pump-probe experiments are required.
For a quantitative statistical analysis, we examine the mean value 〈ER〉 of the MO

resonance positions ER and its standard deviations σ(ER). All extracted values are
listed in Table 5.1. A binning procedure allows us to analyze the distribution of ER
during the dynamics, as reported in Fig. 5.7c. The number of sampled configurations
is sufficient to approximately reproduce a Gaussian shape of the distributions. As
expected, the thermal averages 〈ER〉 are found to be in close agreement with the peak
positions in the equilibrium geometry ER,eq. However, the spreads of the values of ER
are relatively large, as evidenced both by the plot in Fig. 5.7c and by their standard
deviations σ(ER) that reach about 0.3 eV (even 0.45 eV for the HOMO). Overall, the
size of the fluctuations in our study is consistent with observations in related works.
For example, Prezhdo and coworkers find slightly smaller energy fluctuations at 50 K
for the evolution of the excited state (state with the highest occupation after initial
filling of the Kohn-Sham LUMO) in non-adiabatic molecular dynamics simulations of
isonicotinic acid on rutile (110) [199]. Furthermore, for a structurally strongly related
compound (consisting of isonicotinic acid with an added AgCN group) on TiO2 they
report an energy range of up to 1 eV for the resonance position at 350 K [214].
Similarly, for alizarin on TiO2 they report a standard deviation of 0.39 eV [165, 215]
at ambient temperature.
To further assess the statistical distribution of the resonance positions ER we com-

pare the results for the HOMO with those related to the highest occupied electronic
state following its evolution during the CPMD simulation, where more than 5000
steps were recorded. A Gaussian-like distribution is even more apparent in the latter
case, as can be seen from the histogram in Fig. 5.7c (to facilitate comparison to the
other plots, its area is also normalized to N = 161). It is interesting to see that the
position and shape of both distributions is very similar. Indeed, we can see that the
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Figure 5.7.: Fluctuations of the positions and widths of the molecular resonances for
161 snapshots of the CPMD trajectory. The values were extracted from a Lorentzian
fit to the PDOS of the frontier orbitals of isonicotinic acid (cf. Fig. 5.6b): (d) Evo-
lution of the peak positions. Shaded areas indicate the corresponding widths (

√
Γ

plotted instead of Γ to make small changes in the width more visible) (c) Histograms
of the resonance positions. (a,b) Mean widths of the Lorentzian fits and their stan-
dard deviations (error bars) in each of the energy bins of the histograms in (c),
highlighting the importance of the DOS in the substrate (light shaded areas). Two
separate plots (a,b) are presented to allow the use of different scales on the y-axes
for each set of data (colored dots) and to avoid the overlapping of the data in energy.
Black lines in (c,d) show the highest occupied state during CPMD trajectory (corre-
sponds, in principle, to the HOMO) for which larger statistics regarding its energy
position are available.
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energies of the highest occupied level during the CPMD (computed using a finite slab
and plane-waves, thin black line in Fig. 5.7d) and the mean position of the HOMO
projection of the surface Green’s function (calculated using a semi-infinite surface
and the SIESTA/TranSIESTA package, blue line in Fig. 5.7d) agree very well at
most of the 161 snapshots selected. They only deviate in a few snapshots where the
HOMO and the HOMO-1 projections cross (e.g., at 9 ps in Fig. 5.6b). This supports
the reliability of the procedure used to match (Appendix C.1) the fluctuating struc-
tures of the adsorbate and surface layers (from the slab calculation) to the static
semi-infinite bulk necessary to incorporate the effect of the substrate.
To quantitatively assess our theoretical results for elastic lifetimes, we extracted

the linewidth of the MO peaks for each snapshot of Fig. 5.6b by Lorentzian fitting as
illustrated in the methods section. The average widths presented in Table 5.1 follow
the trend 〈ΓLUMO+1〉 < 〈ΓHOMO〉 < 〈ΓLUMO+2〉 < 〈ΓLUMO〉, which is similar to that
found for the equilibrium geometry apart from 〈ΓHOMO〉. Unlike for the equilibrium
structure, the HOMO state enters the valence band at several simulation times where
it couples strongly to the substrate and we get a finite average electronic width of
〈ΓHOMO〉 ∼11 meV (i.e., an average lifetime ~/〈Γ〉 ∼62 fs). Also the linewidth of
the other analyzed peaks increases in comparison to the equilibrium structure. For
example, the LUMO+1 state is strongly broadened leading to a reduction of about
half a picosecond in its charge transfer time. Overall the effect of the structural
fluctuations clearly shows that it is indispensable to take into account an extended
set of geometries in order to obtain a realistic picture of the charge transfer times in
a device.
We stress that structural fluctuations not necessarily tend to increase the aver-

age linewidths of adsorbate levels, although we observed such behavior here. For
example, the opposite effect may occur for a molecular resonance whose energy in
the equilibrium geometry overlaps with a large peak of the DOS of the substrate.
In that case, deviations of the peak position may result in a reduction of the aver-
age linewidth due to the reduced availability of final states in the substrate in the
configurations visited during the dynamics.
The coupling to a continuum of states in the substrate is usually described by

Fermi’s golden rule [194, 216]

ΓR = Γ(ER) = 2π|MRS(ER)|2ρS(ER), (5.2)

where MRS(ER) is the Hamiltonian matrix element coupling the resonance R to the
electronic states S in the substrate at a given energy ER, and ρS(ER) is the den-
sity of states in the substrate. Here, by averaging Γ over the various snapshots,
we effectively deal with a thermally averaged version of this equation, 〈Γ(ER)〉 =
2π〈|MRS(ER)|2ρS(ER)〉. We note that the density of states ρS(ER) depends on the
adsorption configuration only through the resonance energy ER. However, the cou-
plings MRS(ER) are in general dependent on fine structural details and on ER, since
the character (e.g., symmetry, shape, decay into vacuum, . . . ) of the states from
the substrate is also depending on energy. For a more intuitive understanding of the
results it is desirable to separate the role of ρS(ER) and |MRS(ER)|2. In particular,
the above expression simplifies if both ingredients entering Eq. (5.2) behave as sta-
tistically independent, i.e., 〈|MRS(ER)|2ρS(ER)〉 ≈ 〈|MRS(ER)|2〉〈ρS(ER)〉, leading
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to
〈Γ(ER)〉 ≈ 2π〈|MRS(ER)|2〉〈ρS(ER)〉. (5.3)

The validity of this approximation in our specific case was investigated by evaluat-
ing separately 〈ρS(ER)〉 and 〈|MRS(ER)|2〉, operatively defined as 〈Γ(ER)/[2πρS(ER)]〉.
The excellent agreement between the values of 〈Γ(ER)〉 and of 2π〈|MRS(ER)|2〉〈ρS(ER)〉
(see Table 5.2) confirms their approximate statistical independence for isonicotinic
acid on rutile TiO2.
This indicates that the average character of the substrate states does not change

dramatically within the energy windows explored by the resonances as the system
fluctuates at room temperature and, thus, MRS(ER) does not exhibit a strong varia-
tion as a function of ER (note that this is still compatible with a strong dependence
on other variables, e.g., structural ones, which however do not exhibit a one-to-one
correspondence with ER). We are then enabled to disentangle the role of the matrix
elements and the DOS, and to analyse the average coupling matrix 〈|MRS|2〉 as a
physically meaningful quantity.
Additional insight into this aspect is provided by evaluating subset averages of

Γ within narrow energy intervals, for which we take the bins of Fig. 5.7c. The
resulting 〈Γ〉bin values are shown in Fig. 5.7a and b), where it is apparent that the
average widths scale with the amount of available acceptor states. Thus, structural
fluctuations at the interface affect the coupling matrix |MRS|2 in a way that is on
average independent of the energy ER at which the molecular resonance appears.
Nevertheless, fluctuations of the width Γ of single snapshots even within the bins are
relatively large as shown by their standard deviations (error bars in Fig. 5.7a and b).
To summarize the discussion of isonicotinic acid in its ground-state electronic con-

figuration, we return to the cumulative spectra in Fig. 5.6c. Those spectra are the
result of two broadening mechanisms. The electronic coupling leads to approximately
Lorentzian-like peaks for the molecular resonances in each snapshot, with some ex-

Table 5.2.: Separate evaluation of time averages of the different terms in Fermi’s
golden rule for the ground state and core-excited molecular resonances of isonicotinic
acid on rutile (110). Here, ρS is the density of states of the nine trilayer slab computed
with SIESTA. The core-excited case is further discussed in Section 5.2.4.

Ground state 2π〈|MRS|2〉 ≡ 〈ΓR/ρS〉 〈ρS〉 2π〈|MRS|2〉〈ρS〉 〈ΓR〉
(10−3eV2) (eV−1) (meV) (meV)

LUMO 1.87 145.66 272.05 279.89
LUMO+1 0.10 65.40 6.58 6.29
LUMO+2 0.63 94.29 59.19 56.94

Core-excited 2π〈|MRS|2〉 ≡ 〈ΓR/ρS〉 〈ρS〉 2π〈|MRS|2〉〈ρS〉 〈ΓR〉
(10−3eV2) (eV−1) (meV) (meV)

LUMO 0.01 15.23 0.18 0.19
LUMO+1 0.05 185.09 9.22 9.19
LUMO+2 1.61 69.13 111.39 105.57
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Figure 5.8.: Spectra as in Fig. 5.6 but including an N 1s core-hole in the calcula-
tions.
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ceptions to this behavior depending on the details of the electronic structure around
the resonances and the strength of the coupling to the substrate. Within our clas-
sical treatment of the dynamics of ions, thermal fluctuations result in a Gaussian-
like distribution of the resonance positions. Then, neglecting deviations from the
two approximations described above, the cumulative spectra (see Fig. 5.6c) of the
MO PDOS may be approached by a sum of Voigt curves, i.e., convolutions of Gaus-
sians with Lorentzian profiles. Such Voigt or Pseudo-Voigt curves are routinely used
to fit experimental spectra, [217] where additional broadening due to the resolution
of detector and broadening of incident beams must be also taken into account in
order to extract relevant electronic couplings. A detailed discussion of such a fitting
of the computed cumulative spectra with Voigt-type curves can be found in the Ap-
pendix C.6. As described there, we find that the quality of the fit is improved if the
energy dependence of the average elastic width is taken into account. This energy
dependence describes mostly the variation of the DOS of the substrate.

5.2.4. Elastic Lifetimes upon Inclusion of the N1s
Core-Hole

In this second part of our analysis we include a core-hole in our calculations as
necessary to quantitatively compare our theoretical charge-transfer times with avail-
able data from core-hole-clock experiments [36, 48]. The core excited (Fig. 5.8a) and
the ground state systems (Fig. 5.6a), both computed in the ground-state equilibrium
structure, exhibit striking differences since the levels shift downwards in energy due
to the presence of the positive core-charge. The HOMO level is now positioned inside
the valence band of the substrate and consequently is strongly broadened so that it
overlaps with the HOMO-1 level. Furthermore, the LUMO gets pinned to the edge
of the conduction band, where the added electron (excited from the core N 1s level)
gets localized and screens the positive charge of the nitrogen core-hole. Although
the LUMO+1 peak of the core-excited spectrum is located at energies comparable to
those of the LUMO peak in the ground-state spectrum, the LUMO+1 remains largely
decoupled from the substrate. This is in contrast to the case of the LUMO of the
unexcited molecule, where interaction with the substrate is favored by the symmetry
and spatial distribution of the MO [36]. Similarly, the width of the LUMO+2 peak
in the core-excited system is smaller than in the ground-state case. The extracted
values of the linewidths at the equilibrium geometry and the corresponding lifetimes
can be found in Table 5.3, the values for the equilibrium adsorption structure from
Ref. 36 are given in brackets. We find a good agreement between the two sets of data.
As pointed out by Fratesi et al. [36], coincidentally the energy level alignment of the
adsorbate and substrate states compare well with those reported experimentally [48].
This can be considered as a fortuitous cancellation of errors in this specific case, given
that semi-local DFT functionals tend to misdiagnose the gaps of semi-conductors and
the HOMO-LUMO gaps of adsorbates, as well as their relative level alignment.
We now turn towards investigating the effect of structural fluctuations in the pres-

ence of the core-hole, paralleling our previous discussion for the ground state case.
We discuss the evolution of the spectra along the CPMD trajectory (Fig. 5.8b), in
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Figure 5.9.: Energy positions of the resonances and associated elastic linewidths
for the core-excited case. The figure is organized analogously to Fig. 5.7.

comparison to the spectrum at the equilibrium structure (Fig. 5.8a), and address the
cumulative spectrum (Fig. 5.8c) including the effect of the finite temperature fluctu-
ations. The shift of the molecular levels to lower energies due to the presence of the
core-hole is similar for all the snapshots along the CPMD trajectory (Fig. 5.8b). The
HOMO-1 and the HOMO level are strongly hybridized with the substrate and show
overlapping distributions in the density of states. In a few simulation snapshots these
two resonances exchange their relative energy positions. The situation is different for
the LUMO and LUMO+1 states showing only a weak coupling to the surface during
the whole CPMD simulation. This is particularly true in the case of the LUMO
state spending most of its time inside the substrate’s gap. Thus, these peaks keep
a predominantly Lorentzian shape in the successive spectra displayed in Fig. 5.8b.
In contrast, the LUMO+2 is found to hybridize strongly with the substrate in many
snapshots, to the extent that the resonance splits into more than one peak in some
cases. This is also in contrast to the case of the ground-state equilibrium structure,
for which the LUMO+2 state of the core-excited molecule is more weakly coupled
than in most of the CPMD snapshots (compare the values of Γeq and 〈Γ〉 in Table 5.3).
For the LUMO, LUMO+1 and LUMO+2 we observed considerably smaller fluc-

tuations of the peak positions along the CPMD trajectory than in the ground state.
This is reflected by smaller values for σ(ER) in Table 5.3 as compared to those
in Table 5.1. As a consequence of this and the moderate coupling to the substrate,
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Figure 5.10.: Exponential decays corresponding to the calculated LUMO+2
linewidths Γ for the sampled snapshots during the CPMD trajectory (gray lines).
The lifetime τ of the state, defined as the time to decay to a population of 1/e, is
slightly increased when considering the average of the exponential decays (broken
red line) instead of the exponential determined by the averaged linewidth 〈Γ〉 (thick
green line).

we find well separated peaks for each of these resonances in the cumulative spectra
in Fig. 5.8c. This clearly differs from the ground-state case shown in Fig. 5.6c.
As in the section covering the electronic ground-state configuration, we carry out a

quantitative analysis by extracting the maximum peak positions ER and the width Γ
(using Lorentzian fitting) for a large number of snapshots during the CPMD simu-
lation. The data is visualized in Fig. 5.9d and the corresponding values summarized
in Table 5.3. The scaled widths displayed in the plot Fig. 5.9d show the trend
〈ΓLUMO〉 < 〈ΓLUMO+1〉 < 〈ΓLUMO+2〉 < 〈ΓHOMO〉, which coincides with the trend for
the equilibrium geometry (see Table 5.3).
Regardless of the finite temperature fluctuations, the LUMO maintains a vanishing

(< 1 meV) width and is approximately pinned to the conduction band edge. The cou-
pling to the substrate of the LUMO+1 resonance is similar during the CPMD steps
than for the equilibrium structure. Indeed, the average 〈ΓLUMO+1〉 equals ΓLUMO+1

eq ,
although the estimated relative error of δ(〈Γ〉) = σ(Γ)/(〈Γ〉

√
N) = 5% for N = 161

snapshots (sample size) indicates that the width slightly fluctuates along the trajec-
tory (σ(Γ) refers to the standard deviation of the linewidths). The average linewidths
of the HOMO, LUMO, and LUMO+1 states retain the same order of magnitude when
including the influence of fluctuations. Conversely, the LUMO+2 peak is significantly
broadened from ΓLUMO+2

eq = 15 meV to 〈ΓLUMO+2〉 = 110 meV. Correspondingly, its
lifetime decreases from ~/Γeq = 45 fs to ~/〈Γ〉 = 6 fs, to be compared to an experi-
mental value of 5 fs [48]. Therefore, the inclusion of structural fluctuations improves
considerably the agreement to available experimental data.
In Fig. 5.10 we explore two possible definitions of the mean lifetime of an elec-

tronic state under the effect of structural fluctuations. So far we have identified
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the average lifetime ~/〈Γ〉 in connection with the average elastic linewidth, i.e., giv-
ing rise to the exponential decay of the molecular orbital occupation exp(−〈Γ〉t/~).
A reasonable alternative would be to extract the elastic lifetime τ ′ from the aver-
age of the exponential decays for all the snapshots along the molecular dynamics,
〈exp(−Γt/~)〉. The lifetime would then be defined as the solution of the equation
〈exp(−Γt/~)〉 = exp(−1), which we solve graphically in Fig. 5.10 for the LUMO+2
resonance. We find that such alternative analysis produces larger lifetimes, although
the difference is moderate and it does not change the results qualitatively. For exam-
ple, in the case of the LUMO+2 this increases the computed elastic lifetime from 6 fs
to 9 fs, thus retaining the improved agreement with the experiment. Table 5.4 com-
pares the analysis of the lifetimes τ ′ from this alternative approach to the previous
estimate τ = ~/〈Γ〉.
It can be seen in Table 5.4 that no changes in the trends occur, while the absolute

values of the lifetimes τ ′ are somewhat larger. In the ground-state case the width
of the LUMO is always very close to zero, since it is located inside the gap. The
HOMO enters the valence band of the TiO2 substrate only at a few simulation times.
In those cases it has a rather large width, which is the reason we report in Table 5.4
only a finite value for ~/〈Γ〉. However, it is impossible to extract a meaningful value
for τ ′ in the case of the HOMO in the ground-state.
The observation that, for core-excited isonicotinic acid on TiO2, only the LUMO+2

resonance features a significant increase in width upon inclusion of structural fluctu-
ations can be rationalized in terms of the symmetry and spatial distribution of the
MOs. Only the LUMO and the LUMO+2 state exhibit a significant overlap with the
substrate (π-type bonding visible in Fig. S7) and, thus, making the coupling very
sensitive to interfacial structural fluctuations. However, the LUMO appears in an
energy position with a low density of acceptor states (spending a large amount of
time inside the substrate gap), resulting in the quenching of the corresponding decay
channel [48] and leaving the elastic width of the LUMO+2 resonance as the only one
largely affected by the dynamics.
Analogously to the ground state case we analyze the distributions of the resonance

Table 5.3.: Energy positions and linewidths of the electronic levels extracted from
the spectra calculated for the core-excited molecule. The values presented in brackets
are taken from Ref. 36 and were computed only at the equilibrium adsorption struc-
ture. The values in this Table can be contrasted with those presented in Table 5.1
for the molecule in its ground-state electronic configuration.

equilibrium (0 K) thermal average (300 K)
ER Γeq ~/Γeq 〈ER〉 σ(ER) 〈Γ〉 δ(〈Γ〉) ~/〈Γ〉
(eV) (meV) (fs) (eV) (eV) (meV) (%) (fs)

HOMO -1.57 152 4 -1.60 0.24 292 3 2
LUMO 1.53 0 ∞ 1.51 0.08 0 11 ∞

LUMO+1 3.24 9 (7) 75 (93) 3.21 0.12 9 5 72
LUMO+2 4.80 15 (15) 45 (44) 4.69 0.13 106 7 6
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positions of the MOs and compare their standard deviations during dynamics. The
respective values in Table 5.3 show in general a significant decrease of the standard
deviations σ(ER) of the unoccupied state’s energy upon inclusion of the core-hole,
with respect to the case without the core-hole in Table 5.1. Most significantly the
fluctuations of the LUMO’s energy level are decreased upon pinning to the con-
duction band edge leading to a low standard deviation of 0.08 eV. Approximately
reduced by a factor of two appear the fluctuations of the HOMO, the LUMO+1,
and the LUMO+2 which have standard deviations of 0.24 eV, 0.12 eV, and 0.13 eV,
respectively. This reduction of the temperature broadening can be rationalized as a
result of the localization of the adsorbate states on isonicotinic acid due to the at-
tractive interaction with the core-hole, making them less susceptible to the structural
fluctuations at the surface-molecule interface and to low energy fluctuations of the
molecular structure.
Fig. 5.9 analyzes the distribution of the resonance positions and widths over energy.

Consistent with the observations made in the previous paragraph, the distributions
of both the LUMO+1 and LUMO+2 states can be described by narrow Gaussian-like
curves (see Fig. 5.9c). In contrast, HOMO and LUMO states do not present such
symmetric energy distributions exhibiting tails towards the band edges. Similarly to
the ground-state case, we find that also in the excited state the average widths of
the peaks referring to each of the energy bins in Fig. 5.9c follow approximately the
DOS of the substrate as shown in Fig. 5.9a and b. This suggests that the energy
dependence of the DOS plays a key role in determining the average coupling of each
resonance and the shape of the cumulative spectra in Fig. 5.8c.

5.2.5. Discussion on Different Estimates of Average
Lifetimes

The two estimates for the lifetimes ~/〈Γ〉 and τ ′ presented in Table 5.4 can be seen
as upper and lower limits to the charge transfer times as we discuss here. We assume
that a rather general description of the rate of the population decay is given by

Ṗ (t) = −Γ(t)P (t) (5.4)

Table 5.4.: Estimation of the lifetime at room temperature from the average
linewidth (~/〈Γ〉) and alternatively from an ensemble average of exponential decays
(τ ′). All values are given in femtoseconds.

ground-state core-excited
~/〈Γ〉 τ ′ ~/〈Γ〉 τ ′

HOMO 62 - 2 3
LUMO 2 3 ∞ ∞

LUMO+1 105 220 72 84
LUMO+2 12 14 6 9
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with the solution
P (t) = P0 e−

∫ t
0 Γ(s+t0)ds (5.5)

where the initial population P0 = 1 is normalized and Γ(t) is the decay rate at each
instance of time t. However, Eq. (5.5) is a simplification of the quantum propagation
with Û(t, 0) = T̂ exp[− i

~
∫ t

0 Ĥ(s) ds], where T̂ is the time-ordering operator.
Under the assumption Eq. (5.4) and a statistical distribution of decays we show

that the average population decay 〈P (t)〉 is confined by upper and lower averages
according to, so that 〈

e−Γt
〉
≥ 〈P (t)〉 ≥ e−〈Γ〉t. (5.6)

This implies that the lifetime τ is bounded by the two estimates ~/〈Γ〉 and τ ′,

τ ′ ≥ τ ≥ ~
〈Γ〉 , (5.7)

which is consistent with the values extracted before, as can be seen in Table 5.4.
We provide now a simple proof of Eq. (5.6) employing the relation∫

e g(x)ρ(x) dx ≥ e
∫
g(x)ρ(x)dx, (5.8)

where g(x) is any real valued function and ρ(x) is some probability distribution.
Eq. (5.8) is a special case of Jensen’s inequality that can easily be derived by ex-
panding in a Taylor series,〈

e−X
〉

= e−〈X〉
〈
e−X+〈X〉

〉
≥ e−〈X〉 〈1−X + 〈X〉〉 = e−〈X〉, (5.9)

where we have considered in analogy to the current case [Eq. (5.4)] a negative sign
and we introduced a short hand notation with angle brackets for expected values of
the stochastic variable X.
We may then calculate the ensemble average over Eq. (5.5) by writing

〈P (t)〉 =
〈

e−
∫ t

0 Γ(s+t0)ds
〉

= 1
T

∫ T

0
e−
∫ t

0 Γ(s+t0)ds dt0 , (5.10)

where we employed ergodicity 〈. . .〉 = 1
T

∫ T
0 . . . dt after the second equality sign.

Then there are two ways in which we can apply the inequality in Eq. (5.8) to the
ensemble average in Eq. (5.10). The first way consists in moving the inner integration
outwards, so that

〈P (t)〉 = 1
T

∫ T

0
e−

1
t

∫ t
0 Γ(s+t0)·t ds dt0

≤ 1
T

∫ T

0

1
t

∫ t

0
e−Γ(s+t0)·t ds dt0 = 1

T

∫ T

0
e−Γ(t0)·t dt0 =

〈
e−Γt

〉 (5.11)

Since Γ depends equally on s and t0 the double integral can be reduced to a single
ensemble average. Secondly, we move the outer integration inside the exponential
function, so that we receive

〈P (t)〉 ≥ e−
1
T

∫ T
0

1
t

∫ t
0 Γ(s+t0)·t ds dt0 = e−〈Γ〉t. (5.12)

All together one obtains the final result Eq. (5.6) under the assumption of statistical
distributions of the decays and a generalized exponential decay law [Eq. (5.4)].
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5.2.6. Conclusions
We investigated ultrafast electron injection from a prototype dye to a rutile TiO2(110)

substrate by DFT slab calculations and Green’s function techniques. To include the
effect of thermal fluctuations we computed the resonant lifetimes of the molecular
states by sampling a Car-Parinello molecular dynamics trajectory at room tempera-
ture. We studied both the molecular ground state and an excited case with a core-hole
in the nitrogen 1s shell as occurring in core-hole-clock experiments [48].
We find temperature effects to be substantial: The LUMO+2 channel, dominating

the experimental spectrum, couples more strongly to the substrate in configurations
far from equilibrium. At room temperature this resulted in a computed lifetime
in the range of 6 to 9 fs in agreement with the experimental observation [48] –a
result that cannot be reproduced by only considering the relaxed structure. The
LUMO and LUMO+1 are less affected by temperature and remain weakly coupled
to the substrate. We observe a reduction of thermal broadening in comparison to
the ground-state and explain this by a stronger localization of the molecular states
in the core-excited case.
The presented thermally averaged spectra can be described by Voigt-type profiles

obtained by convolving a Lorentzian peak describing the electronic resonance with
a Gaussian distribution modeling the temperature broadening. The description is
substantially improved by taking into account the energy dependence of the configu-
rationally averaged electronic width. We find this energy dependence to be governed
by the variation of the density of acceptor states in the substrate.
Our study shows that the description of fast processes at finite temperatures, where

an electron is transferred while the underlying ionic configuration remains virtually
unchanged, requires detailed knowledge of the instantaneous configuration and the
electronic excitation. Here, a statistical sampling of the configurations available at
finite temperatures is instrumental. Yet, to access the dynamics of faster processes
in the attosecond domain further considerations have to be made. In such strongly
coupled cases discernible resonance features are absent and approaches like real time
propagation of wave packets, possibly including an explicit treatment of the external
exciting field, become necessary. Current developments of experimental techniques
such as free electron lasers [155, 157, 158] to probe ever faster electron dynamics
require combined theoretical models for their interpretation.

5.3. Vibrational Analysis of Isonicotinic Acid
Adsorbed on TiO2(110)

In order to further characterize the influence of the atomic motion and its effect
onto the molecular levels, we analyze the computed spectra of isonicotinic acid on
TiO2 in the vibrational eigenmode basis of the adsorbed molecule. Our intent is to
determine the modes which have the largest impact on the spectra, i.e., the modes
along which the energetic positions of the molecular orbitals change most significantly.
This is achieved by estimating the diagonal elements of the electron-phonon coupling.
We introduce a semi-classical harmonic oscillator model of the spectral broadening
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at finite temperatures. In this framework the electron-vibrational couplings and
the corresponding eigenfrequencies determine the inhomogeneous broadening at a
given temperature. An a priory prediction of the modes with the strongest effect
on the electronic spectra is not possible, since the thermalization of the modes leads
to a broad range of contributions. However, after a detailed analysis, particular
vibrational modes can be identified, which affect the spectra most strongly. A similar
linear coupling between the computed electronic widths (instead of the energetic
positions) and a few selected modes is not apparent. Instead, a broad range of
modes affects the matrix elements related to the electronic widths in a simple linear
coupling model like the one we assume.
In the analysis carried out in this section, we use mainly data from the molecular

dynamics simulations (cf. Section 5.2), which is readily at hand. A separate calcula-
tion of the electron-vibrational (electron-phonon) couplings in terms of other methods
(e.g. density functional perturbation theory [218]) is technically not necessary.
The section is organized in the following way: First, we briefly describe the extrac-

tion of a vibrational eigenmode basis from ab initio forces. Then we use the mode
vectors in a semi-classical model to describe their effect in temperature broadened
spectra. Subsequently, we look at the effect of particular modes and address the
question of whether a subset of vibrational modes is useful to determine the position
of the electronic level for each particular geometry.

5.3.1. Semi-Classical Model of Spectral Broadening in a
Normal Mode Basis

We start by deriving the broadening of the electronic levels from a semi-classical
model giving rise to Gaussian line shapes. Applying the Born-Oppenheimer approx-
imation we treat the N nuclei classically so that their effective energy is given by the
Hamiltonian

H =
3N∑
i=1

1
2MiṘi + V (R). (5.13)

Here, V (R) is the potential energy, which depends on the complete set of the 3N
coordinates R = (R1, . . . , R3N) specifying the positions of the nuclei with the corre-
sponding masses Mi.
We follow the common approach (e.g., Ref. 219) introducing a mass-scaled set of

coordinates qi(t) =
√
Mi[Ri(t)−Ri,0] describing the displacements from the equilib-

rium positions Ri,0. In this new set of coordinates the Hamiltonian can be rewritten
as

H(p,q) =
3N∑
i=1

p2
i

2 + V0 +
3N∑
i,j=1

1
2!

(
∂2V

∂qi∂qj

)
q=0

qiqj, (5.14)

where the kinetic energy depends quadratically on the momentum q̇i = ∂H
∂pi

= pi.
The potential energy is given up to second order by a Taylor expansion around the
equilibrium configuration at q = 0, where all linear terms vanish. As already above,
we use boldface typesetting to indicate the full set of the coordinates. The equilibrium
contribution to the potential energy V0 is set to zero without loss of generality.
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By Newtons law ṗi = q̈i = −∂H
∂qi

and the vibrational ansatz qi,k(t) = Ai,k cos(ωkt+ φk)
one has for the time-evolution of the coordinates

3N∑
i=1

(
Dij − ω2

kδij
)
qi,k = 0, (5.15)

which is an eigenvalue equation describing a set of 3N independent harmonic oscil-
lators. We have defined the dynamical matrix

Dij = 1√
MiMj

(
∂2V

∂Ri∂Rj

)
R=R0

=
(
∂2V

∂qi∂qj

)
q=0

. (5.16)

The dynamical matrix can be set up, by computing the change in the forces upon
displacements of single atoms from the Hellman-Feynman theorem (frozen phonon
approximation). The solution of the eigenvalue problem Eq. (5.15) yields a complete
set of vibrational eigenmodes with the corresponding frequencies ωk.
The dynamical matrix can be extended by considering Bloch-like distortions in

periodic crystal structures. This allows to analyze phonon spectra along phononic
wavevectors k′, very much like the k-points related to the Bloch waves described by
the Hamiltonian in Eq. (2.57). However, here we consider exclusively atoms moving
identically in the periodically repeating unit cells of the structure, this corresponds
to vibrations with a phononic wave-vector of k′ = 0.
Defining the set of the normal coordinates Qk by the orthogonal transformation

qi =
3N∑
k=1

Ai,kQk, (5.17)

allows for a more convenient treatment. The columns ak of the matrix with the
elements Ajk are given by the eigenvectors of the dynamical matrix Dij, that corre-
spond to 3N vibrational eigenmodes including three translations with zero frequency
and, for finite systems also, rotations. The nuclear Hamiltonian can be rewritten in
a separable form using the normal mode basis

H(P,Q) = 1
2

3N∑
k=1

(
P 2
k + ω2

kQ
2
k

)
, (5.18)

where the momenta are given by Pk = Q̇k.
Employing the above introduced classical harmonic oscillator formalism one can

derive the effect of the vibrations onto an electronic level of a molecule. We as-
sume that the energetic position E of the molecular level depends linearly on the
coordinates Qk of the normal modes (i.e. neglecting higher order terms),

E(Q) = E0 +
3N∑
k=1

αkQk, with αk =
(
∂He

∂Qk

)
Q=0

. (5.19)

Here, the coupling constant αk quantifies the energy shift of a molecular level E0
(i.e., an eigenstate of the electronic Hamiltonian He or of a part of the latter) after
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a displacement with respect to the equilibrium position at Q = 0 along the normal
coordinateQk. The αk correspond hence to the diagonal terms of the electron-phonon
coupling matrix, which are the most relevant coupling terms for molecular levels with
sufficiently large energy spacings.
A way to compute the coupling αk is by displacing the molecule along a single

eigenmode ak = ∑3N
j=1Ajkej with a forward difference scheme

αk =
(
∂E

∂Qk

)
Q=0

= lim
Qk→0

E
(
R0 +Qk

∑3N
j=1AjkM

−1/2
j ej

)
− E0

Qk

, (5.20)

where three standard basis vectors ej span the real space at each of the N atoms
and thus the 3N -dimensional space in total. We note that this one-sided differencing
scheme avoids ambiguities when identifying the average coupling of degenerate eigen-
states. The crossing of degenerate energy levels requires to identify the corresponding
states at energies below and above the crossing point, since the crossing changes the
order of the energy levels, which is in practice not trivial. Performing a one sided
average avoids this complication and an average couplings of the degenerate levels
can be determined.
Using the definitions above one can derive the spectral broadening of the electronic

level E in the following statistical average (canonical ensemble, with a fixed volume
and number of particles at a constant temperature)

〈δ(E − E(Q))〉 = 1
Z

∫∫
δ(E − E(Q))e−βH(P,Q) dP dQ , (5.21)

with

Z =
∫∫

e−βH(P,Q) dP dQ =
3N∏
k=1

2π
βωk

. (5.22)

Where we defined β = kBT , the product of the Boltzmann constant kB with the
temperature T . The two integrations run over all 3N degrees of freedom, as in-
dicated by the short hand notation

∫
. . . dQ =

∫
. . . dQ1 · · · dQ3N and

∫
. . . dP =∫

. . . dP1 · · · dP3N . We make use delta function in the Fourier representation

δ(E − E(Q)) = 1
2π

∫
e−i(E−E(Q)t dt , (5.23)

to recast the numerator of Eq. (5.21) in the following form

1
2π

∫∫∫
exp

[ 3N∑
k=1

(
−β2P

2
k −

β

2ω
2
kQ

2
k + iαkQkt

)]
e−i(E−E0)t dP dQ dt . (5.24)

The system consists of 3N independent oscillators, i.e., H(P,Q) is separable, and
therefore we can factor the exponentials and execute the Gaussian integrals over
the momenta Pk. This yields the constant factors ∏3N

k=1(2π
β

) 1
2 , which cancel with the

corresponding terms from the integrations over momenta in the denominator Z. In
the following steps we drop the Fourier transform related to the integral over time
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for readability. We are left with∫
exp

[ 3N∑
k=1

(
−β2ω

2
kQ

2
k + iαkQkt

)]
dQ =

3N∏
k=1

(∫
e−

β
2 ω

2
kQ

2
k+iαkQkt dQk

)

=
3N∏
k=1

√
2π
βω2

k

exp
(
− α2

kt
2

2βω2
k

)
.

(5.25)

Here, we carried out the Fourier transform of a Gaussian in Qk after the final equality
sign. As before the resulting prefactors ∏3N

k=1( 2π
βω2

k
) 1

2 cancel the remaining terms from
the integration over the coordinates Qk in the denominator Z. Restoring the Fourier
transformation previously dropped for readability in Eq. (5.24) we receive the spectral
density in a statistical average

〈δ(E − E(Q))〉 = 1
2π

∫
exp

(
1

2β

3N∑
k=1

α2
k

ω2
k

t2
)

e−i(E−E0)t dt . (5.26)

This is just the Fourier transform of a Gaussian, which can be equated to the final
result

〈δ(E − E(Q))〉 = 1√
2πσ2

e−
(E−E0)2

2σ2 , where σ =
(
kBT

3N∑
k=1

α2
k

ω2
k

) 1
2

. (5.27)

According to this semi-classical description, an electronic level E is vibrationally
broadened into a Gaussian peak, where the standard deviation σ is given by the
coupling constants αk, the frequencies of the independent oscillations ωk, and the
temperature T .
The steps carried out here are similar to the ones of Sevian and Skinner [220] [cf.

the standard deviation in Eq. (2.27) of Ref. 220] . However, we discuss here explicitly
the relation to normal modes considering a linear coupling with the electronic levels.
The result for the standard deviation σ can be interpreted applying the equiparti-

tion theorem considering the Hamiltonian in Eq. (5.18), so that one has

kBT =
〈
Qk

∂H

∂Qk

〉
= ω2

k〈Q2
k〉. (5.28)

Using this one can see that σ is given by the root of the summed squared energy
fluctuations along each mode [compare to Eq. (5.19)],

∆Ek = αk〈Q2
k〉1/2. (5.29)

The energy fluctuations themselves are due to the standard deviations in each of the
independent normal coordinates 〈Q2

k〉1/2 = (kBT )1/2/ωk.

5.3.2. Characterization of the Molecular Motion in the
Vibrational Eigenmode Basis

We have extracted the vibrational eigenmodes of isonicotinic acid on rutile (110)
in an effort to relate the observed lifetimes to specific structural changes at finite
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temperatures. In particular, we computed the mode vectors related to the atoms
of the adsorbed molecule and the two Ti atoms, where the molecule is attached to
the surface (15 atoms, 45 modes). For this purpose we diagonalized the dynamical
matrix Eq. (5.16). Although we computed the dynamical matrix at this stage in
the frozen phonon approximation [218], one can alternatively determine an effective
normal mode basis directly from the trajectory by performing a principal component
analysis of the dynamics (see e.g. [221]).

Once a set of normal mode vectors spanning all possible molecular positions is
available, one can project the mass-scaled trajectory of the molecule into this com-
plete basis. Thereby one obtains the coefficients Qk for the mode number k at each
instance of time in the CPMD simulation.

Fig. 5.11a displays the time evolution of the normal mode coordinates Qk(t) dur-
ing 10 ps of the CPMD simulation. The evolutions along each mode vector are
not perfectly harmonic, nevertheless their oscillatory character with a dominant fre-
quency is clearly visible. The modes in the plot are ordered according to increasing
eigenfrequencies ωk, as obtained from our frozen phonon calculations (blue dots in
Fig. 5.11b). The blue dashed line in Fig. 5.11b represents the average frequencies
ω̃k of each mode, obtained from the extracted normal mode coordinates Qk using
Eq. (5.28), ω̃k = (kBT/〈Q2

k〉)−1/2. It is visible that some reordering of the frequencies
occurs in the CPMD calculation, while the overall trend of ωk and ω̃k coincide.

Looking at the variances of the normal mode coordinates 〈Q2
k〉 (bar plot in Fig. 5.11b,

logarithmic scale) one sees that, as expected at thermal equilibrium, the contribu-
tions from larger frequencies bring about smaller structural fluctuations. Again the
trend agrees roughly with the frozen phonon estimate kBT/ω

2
k (red dots). The jump

in the plots after mode number 40 occurs since the four highest frequency modes
strongly involve the light hydrogen atoms around the pyridin cycle.

To get an impression of the overall motion of the molecule on the surface, we an-
alyze the three lowest frequency modes, i.e., the modes producing the largest struc-
tural fluctuations along the CPMD trajectory in Fig. 5.11c-e. The main motion can
be characterized by three angles, which are related to (c) tilting, (d) twisting, and
(d) sidewards bending of the molecule as the figure shows. The mode displacement
vectors related to these angles are displayed by yellow arrows in the top panels. Cor-
respondingly one can see in the bottom panels that the respective evolutions of the
normal coordinates Qk(t) (black lines) match the evolutions of the three angles (red
lines).

However, a comparison of the evolution of the angles in Fig. 5.11 with the ener-
getic positions (or also the linewidths) of the resonances (Figs. 5.7 and 5.9) shows
that higher frequencies significantly couple to the molecular levels and cannot be ne-
glected. Therefore, the evolution of the electronic states cannot be described by a set
of low frequency modes, although they represent the largest structural displacements.
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Figure 5.11.: Analysis of the CPMD trajectory of isonicotinic acid on TiO2 in
the normal mode basis of the adsorbate’s atoms and the two Ti atoms, where the
adsorbate is attached. (a) Color plot of the time evolutions of the normal mode coor-
dinates Qk(t). (b) Corresponding bar plot showing the variance of the normal mode
coordinates 〈Q2

k〉 in comparison with the quantity kBT/ω
2
k (connected red dots). Ad-

ditionally shown are the frequencies ωk from a frozen phonon calculation (connected
blue dots) in comparison with the frequencies ω̃k = (kBT/〈Q2

k〉)−1/2 [cf. Eq. (5.28)].
(c-e) Visualization of the three lowest frequency mode vectors (yellow arrows) in the
top panels. The displayed displacement vectors of the modes refer to (c) tilting,
(d) twisting, and (e) sidewards bending with respect to the angles Θ, φ, and α. The
evolutions of the angles are shown in the bottom panels (red lines), they coincide
with the evolutions of the coordinates Qk (black lines).
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5.3.3. Mode Specific Analysis of the Electron-Vibrational
Coupling

Employing a basis of vibrational eigenmodes {bk} as introduced in Section 5.3.1,

bk =
3N∑
j=1

Ajk√
Mj

ej (5.30)

one can expand a chosen quantity w(R) around the equilibrium position R0 along
the normal coordinates Qk [cf. Eq. (5.19)]. If this is done to first order one obtains
the following linear model

∆w = w(R)− w(R0) = w

(
R0 +

∑
k

Qkbk
)
− w(R0)

≈
∑
k

Qk

(
∂w

∂Qk

)
Qk=0

=
∑
k

Qkmk = Q ·m,

(5.31)

where we defined the couplings mk =
(
∂w
∂Qk

)
Qk=0

and adopt a vector notation in the
last step.
Assuming that the approximation in Eq. (5.31) holds for each of the i = 1, . . . , Ns

snapshots in a molecular dynamics trajectory, one can write ∆wi ≈
∑
kQi,kmi,k. If

we further assume there exists a constant effective coupling mk for all the snapshots,
we can write ∆wi ≈

∑
kQi,kmk = ∆w′i, which reads in matrix notation

∆w ≈ C ·m = ∆w′. (5.32)

Here, ∆w is a vector containing the deviations ∆wi of the quantity wi from the
equilibrium value w(R0) for each of the Ns snapshots. Further we have introduced
the effective vector m containing the average couplings mk corresponding to each
of the 3N modes (k = 0, . . . , 3N − 1). C is the Ns × 3N -matrix containing the
corresponding 3N normal coordinates Qi,k specifying the geometry of the molecule
at each snapshot i.
If the number of snapshots Ns is larger than the number of modes 3N , Eq. (5.32)

is overdetermined. In this case one can perform a pseudoinversion of the problem
in search of an optimal solution m. This can be achieved by performing a singular
value decomposition [222] of the normal mode coefficient matrix C = UΣVT, where
U is a Ns × 3N -matrix (the columns of U are orthonormal), Σ = diag(s1, . . . , s3N)
is a diagonal 3N × 3N -matrix, and V is a 3N × 3N -matrix. The pseudoinverse
of the matrix C in terms of the singular value decomposition is defined as C+ =
VΣ+UT. Here, the pseudoinverse of Σ, is given by the diagonal matrix Σ+ =
diag(1/s1, . . . , 1/s3N), where the diagonal elements 1/si are set to zero for all si = 0
with i = 1, . . . , 3N . Making use of the pseudoinverse C+ one can compute the
effective couplings m by

m = C+ ·∆w. (5.33)
The obtained effective coupling m minimizes the Euclidian norm ‖C m −∆w‖ =
‖∆w′−∆w‖ and hence is the best solution to the linear problem given by Eq. (5.32)
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Figure 5.12.: Analysis of the electron vibrational coupling for the HOMO, LUMO,
LUMO+1, and LUMO+2 resonances of isonicotinic acid on TiO2(110) in the ground
state. (a) Reconstruction of the energy fluctuations ∆w′ of the LUMO+2 (thick
dashed line) in comparison with the fluctuations of the original resonance po-
sitions ∆w (solid line) around the equilibrium energy position [cf. Eq. (5.32)].
(b) Quality of the reconstructed energy positions of the molecular resonances of
isonicotinic acid (HOMO to LUMO+2) in terms of the ratio between the stan-
dard deviation σ(∆w′ −w) of the reconstructed energy fluctuations ∆w′ from
the original ones ∆w and the standard deviation of the original resonance posi-
tions σ(∆w) = σ(∆ER). Including only the lowest frequencies up to mode number
k and incrementally raising k, leads to an increasingly more accurate reproduction
of the original data. In particular, mode 17 [(b) left inset] and mode 36 [(b) right
inset] improve the description substantially, as can be seen from the sharp drops of
the lines upon their inclusion. This observation coincides with the contributions from
the couplings α2

k/ω
2
k (with α2

k = m2
k) of the corresponding modes k (c-e). The gray

bar plots in (c-e) refer to the Pearson correlation of the energy positions ∆w of the
molecular resonances at each snapshot with the normal mode coordinates Qk.
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in the sense of a least square optimization [222]. Therefore, Eq. (5.33) provides a way
to extract effective mean couplings mk of the vibrational modes to some quantity w
by fitting a linear model to the snapshots of a molecular dynamics simulation.
We have applied this model to the CPMD trajectory from Section 5.2 (Ns = 161)

in order to extract the effective electron-phonon couplings of the molecular levels of
isonicotinic acid on TiO2(110). For this purpose, we set the quantity w in Eq. (5.31)
to the energy positions ER of the molecular resonances at each of the snapshots in
Figs. 5.7 and 5.9. The results for the electron-phonon couplings related to the HOMO
to LUMO+2 in the ground state are summarized in Fig. 5.12.
In Fig. 5.12a the fluctuations of the original positions of the resonances ∆w for

snapshots of the CPMD trajectory are displayed for the LUMO+2, which can be com-
pared with the reconstructed fluctuations of the energy level ∆w′ [cf. Eq. (5.32)].
The overall correspondence is visibly good. The quality of the reconstruction can be
estimated by calculating the ratio σ(∆w′−∆w)/σ(∆w), where σ(∆w′−∆w) is the
standard deviation of the reconstructed fluctuations ∆w′ from the original fluctua-
tions ∆w in the snapshots. We emphasize here that σ(∆w) = σ(ER) corresponds to
the standard deviation of the original energy positions ER discussed in Section 5.2.
We calculated the ratio σ(∆w′ −∆w)/σ(∆w) for the HOMO up to the LUMO+2
while successively increasing the amount of the considered vibrational modes in the
description (following the order of the modes specified in Fig. 5.11). In Fig. 5.12b one
can see that a large part of the standard deviation is captured by the linear model
upon the inclusion of all 45 vibrational modes related to the molecule on the surface.
The remaining deviations are due to non-linearities not captured by the model or
vibrations inside the substrate.
Furthermore, it is clearly visible in Fig. 5.12b that the modes number 17 and

number 36 couple most strongly to the LUMOs (i.e. LUMO up to LUMO+2). The
corresponding displacement vectors are shown in the insets of Fig. 5.12b (mode 17
left inset, mode 36 right inset). It can be seen that both modes involve strongly the
carbon atom or the two oxygen atoms linking the molecule to the surface.
Also a direct assessment of the frequency-scaled electron phonon couplings α2

k/ω
2
k

[with αk = mk, cf. Eq. (5.27)] in the subplots Fig. 5.12d-f (colored stem plots) shows
clearly that the modes 17 and 36 exhibit the highest coupling strength with respect
to the examined LUMOs. It is also visible, that mode 28 –a breathing mode of the

Table 5.5.: Broadening of the molecular resonances of isonicotinic acid on TiO2
based on the extracted electron phonon couplings in comparison with the standard
deviations from the original data.

ground-state core-excited
σ [Eq. (5.27)] σ(ER) σ [Eq. (5.27)] σ(ER)

HOMO 0.37 0.45 0.21 0.24
LUMO 0.30 0.30 0.06 0.08

LUMO+1 0.22 0.27 0.12 0.12
LUMO+2 0.23 0.29 0.11 0.13
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pyridin cycle– strongly affects the HOMO (cf. Fig. 5.12c) but has a considerably
lower effect upon the LUMOs.
The bar plots, which are additionally shown in Fig. 5.12, represent the Pearson

correlation of the normal coordinates Qk with the energy levels ER (the Pearson
correlations are plotted on the same axes, while they assume as usual dimension-
less values ranging from zero to one). As one expects, strong electron-vibrational
couplings are linked to strong correlations between Qk and ER.
We conducted the above analysis of the electron-phonon couplings analogously for

the resonance positions ER of the core-excited isonicotinic acid molelecule (including
an N1s-core-hole in the calculations). The results of this analysis can be found in
the Appendix C.7. There, it is visible that the vibrational mode 17 is also noticeably
influencing the core-excited molecular levels and in particular the LUMO+2 which
is the level probed by the core-hole-clock experiments. However, overall it is harder
to single out a dependence on particular modes in the core-excited state.
A dependency on particular modes (as in Fig. 5.12) is even less apparent, when

investigating a connection of the modes with the electronic widths Γ(ER) at each
snapshot [or equally with the matrix elements Γ(ER)/ρ(ER)]. Reasons for this may
be an increasingly non-linear behavior of these quantities, additional influences from
the motion of the atoms in the substrate, or merely a simultaneous dependence
of Γ(ER) on a broad range of modes.
As a final consistency check one may sum up the extracted electron phonon cou-

plings α2
k/ω

2
k with αk = mk from all vibrational modes according to Eq. (5.27)

and compare the obtained standard deviation with the one from the original data
set σ(ER). This can be done by inspecting Table 5.5. The table shows a good
agreement of the two values of standard deviations, while non-linear behavior or
fluctuations in the substrate may be possible sources of deviations.

5.3.4. Conclusion and Outlook
In this section we have discussed the role of specific vibrational modes in broadening

the electronic spectra of isonicotinic acid adsorbed on rutile(110). We set up a semi-
classical model, which describes the spectral broadening in terms of linear electron-
phonon couplings and explains the Gaussian character of the emerging line shapes.
While in general the largest structural deviations at finite temperatures are due

to low-frequency modes, a broad range of eigenmodes may contribute to the spectral
broadening of the energy levels. This makes it hard to narrow down the sources of
the level fluctuations to a few dominant modes, instead it is necessary to study all
vibrational modes coupling to the molecular levels. We find in the case of isonicotinic
acid on TiO2(110) that stretching modes involving the anchoring carboxyl groups of
the dye-molecules on the surface exhibit particularly large electron-phonon couplings
and therefore are a primary source of the fluctuations in the molecular levels. Because
of their strong contributions to these fluctuations, these modes are expected to affect
the lifetimes of the states to which they couple. However, a direct connection of the
vibrational modes with the lifetimes of the molecular states could not be established.
Further theoretical studies on isonicotinic acid at TiO2(110) or similar systems

may aid in designing future combined experiments, where the activity of single vi-
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brational modes can potentially be driven by infrared beams, while simultaneously
charge transfer is monitored by core-hole-clock spectroscopy. Comparably, but less
specific, temperature dependent core-spectroscopy studies could be used to gain fur-
ther insight into the effects of structural fluctuations on charge transfer, although
measuring at higher temperatures may introduce considerable noise in such experi-
ments. Another possibility in order to investigate similar effects could be to conduct
core-hole-clock experiments on molecules containing different isotopes of the consti-
tuting atoms to tune the vibrational frequencies.
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Chapter 6

Spin-Dependent Charge Transfer
on Magnetic Surfaces

Argon atoms on magnetic substrates played in recent years an important role
for the investigation of spin-dependent charge injection using core-hole-clock spec-
troscopy [49–51]. These measurements revealed that electrons promoted from core-
states to unoccupied resonances on Argon are significantly longer-lived for majority
spin than for minority spin on Fe(110) and Co(0001) surfaces. Up to date these ex-
perimental results have not been reproduced by independent theoretical calculations
and the origin of the spin dependency of the charge transfer is subject to ongoing
discussion.
In this chapter we simulate spin-dependent charge injection by applying the Green’s

function technique described in Chapter 3 to core-excited Argon atoms on magnetic
Fe(110) and Co(0001) surfaces. We find a good agreement with the experiments in
terms of the overall trends and the absolute values of the experimentally detected
charge transfer times.
It has been suggested, that the difference in the charge transfer time between the

two spin channels could possibly explained by the available DOS of d-symmetry at
the interface [50] and the need for theoretical studies to discuss this in detail has been
mentioned at various places [19, 50, 223]. We argue here on the basis of our first-
principles calculations, that such a picture would be incomplete if not misleading in
the case of Ar on the studied surfaces: While there exists an inverse proportionality
relation between the charge transfer times and the amount of d-type DOS at a given
energy, this does not provide a consistent reasoning to explain the phenomenology.
In fact, for Cs on Fe(110) theoretical calculations by Muiño et al. [122] indicated the

opposite relation between the line widths and the available DOS of d-type symmetry
at the resonance position. In connection with this initial result, Blobner et al. [50]
suggested to extrapolate such a relation to the case of Ar on Fe(110) and Co(0001),
finding a contradiction. However, we want to stress that there is a conceptual differ-
ence between those two works. The discussion in Ref. [122] is made in terms of the
angular momenta of the atomic states giving rise to the substrate bands at the res-
onance position, thus, distinguishing bands of different symmetry (i.e., flat d bands
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as opposed to dispersive sp bands of Fe and Co). However, Ref. [50] used a decom-
position of the DOS around the resonance position into different angular momentum
components by means of a projection scheme, which leads to the appearance of a
non-zero partial DOS of d-symmetry with respect to the atomic centers. However, in
the latter case, the d bands of Fe and Co (following traditional nomenclature) appear
at lower energies than the Ar∗4s resonance and, thus, do not play a crucial role in
the measured charge transfer process. Therefore, although both references used a
similar nomenclature, in practice they referred to different concepts.
We demonstrate, that the differences in the line widths are instead related to the

spin-dependent sizes of the electronic gaps at the energy of the Ar resonance in the
surface-projected band structures of the magnetic surfaces. It has been emphasized
before that the presence of such electronic gaps is important to characterize charge
transfer processes at interfaces [34, 35, 41, 224–226]. Here, the effect of the gaps is
studied by mapping out the line shapes of the relevant 4s-resonances of Argon in
reciprocal space. Subsequently, a simplified model [35] incorporating the effect of
the electronic gaps is used to explain the spin-dependent behavior for Fe(110) and
Co(0001) at a semi-quantitative level. Generally, the effect of electronic gaps on
charge transfer depends strongly on the particular interface being considered.
The chapter is structured in the following way: First, we analyze the simplest

approach, where the initial wave packet of the 4s-resonance of the core-excited argon
on Fe(110) and Co(0001) is described in terms of the 4s orbitals of an isolated Ar∗
atom. Secondly, we attempt an improved description considering the polarization
of the initial wave-packets at the interface by the admixture of 4pz-components.
Subsequently, we study the competing effects of the spatial overlap of the resonance
wave packet with the states inside the surface, the energetic position of the resonance,
and the presence of electronic gaps in surface projected band structures. Finally, we
wrap the observations up by employing a simplified model [35], explaining the spin-
dependent behavior.

6.1. Argon on Co(0001) and Fe(110) -
Computational Settings

For the investigation of the resonances of Argon adsorbed on magnetic Fe(110)
and Co(0001) the following computational set-up was employed. In order to obtain
relaxed crystal structures we computed bulk Fe in the body centered cubic (bcc)
primitive lattice and Co in the hexagonal close packed (hcp) primitive lattice. The
primitive cell of bulk Co contains two atoms. The lattice constants of the primitive
cells were determined by periodic bulk calculations relaxing the forces and stresses.
The underlying SCF cycles were considered converged if the elements in the density
matrix changed by less than 10−4. All geometry relaxations used a force tolerance of
25 meV/Å and a maximum atomic displacement of 0.1 Bohr in consecutive relaxation
steps.
The calculations employed the PBE functional and a double-ζ basis set, unless

otherwise stated. Moreover, we make use of norm-conserving Troullier-Martins pseu-
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dopotentials [109]. The basis was constructed with a SIESTA specific energy shift
parameter of 0.1 eV and the calculations were run at an electronic temperature of
300 K.
The lattice constants converged within ±0.01 Å for a mesh cutoff of 250 Ry and

a Monkhorst Pack grid of 10 × 10 × 10 to a value of a = 2.88(2) Å for Fe and
a = 2.51(0) Å and c = 4.09(8) Å for Co. The magnetic moments showed a much
slower convergence: At a k-point sampling of 20× 20× 20 we obtained a converged
bulk magnetic moment per atom of 2.28 µB for Fe and of 1.64 µB for Co using a
22× 22× 14 k-point grid. Wherever an even number of k-points along one direction
in the reciprocal lattice was used, the sampling in that direction was shifted by 0.5
diminishing the amount of irreducible points in the Brillouin zone [28, 180].
We modeled clean surfaces using 11-layer slabs where the outermost layer on each

side was allowed to relax. We used a mesh cutoff of 250 Ry and a k-point sampling
of the surface Brillouin zone of 20× 20× 1 for Fe and 22× 22× 1 for Co, consistent
with the values used for the bulk calculations. With these settings the total energies
converged within ±10 meV. The change of the outer Fe layer was barely noticeable
leaving the interlayer distance of 2.04 Å unchanged. The outermost Co layers relaxed
slightly outwards changing the interlayer spacing of equally 2.04 Å by less than 2 %.
To quantify the magnetization of the surfaces we extracted the magnetic moment

inside the slab and at the surface. At the surface we obtained 2.82 µB for Fe and
1.78 µB for Co. The magnetic moment of the innermost layers of the slabs was found
to be 2.29 µB per atom for Fe and 1.64 µB for Co. These values agree with those
from our periodic bulk calculations stated above. We note, that this is important in
order to ensure a good alignment of the spin-polarized band structure deep inside the
slab with that of the bulk material. Such a matching is necessary for the subsequent
connection of the slabs to the semi-infinite bulk electrodes. Increasing the size of the
slab further to 15 layers did neither change the magnetic moment on the surface atoms
nor the magnetic moments of the inner atoms of the slab by more than ±0.01 µB.
The values for the magnetic moments agree well with experimental values of 2.22 µB
for Fe and 1.72 µB for Co [227], as well as with calculations, e.g., Refs. 228–231 for
Fe and Refs. 229, 231 for Co.
The ideal surface structures are depicted in Fig. 6.1 showing the hexagonal Co(0001)

and the non-hexagonal Fe(110) surfaces from the top and side view. Both materials
follow an ABAB stacking scheme. The Argon atoms were attached to the Fe or Co
surfaces in top-position in Fig. 6.1 with varying adsorption heights h. In the Ap-
pendix D other possible adsorption sites are taken into account. As shown there,
charge-transfer times are rather insensitive to the adsorption site and, thus, in the
following we will focus only on the results obtained for the top configuration. We con-
sidered 4× 4 unit cells in single point calculations and employed a k-point sampling
of 5× 5× 1 and 6× 6× 1 for Fe and Co, respectively.
Regarding the bulk calculations needed to construct the self-energy terms entering

the surface Green’s functions we considered a smaller 1× 1 unit cell of the electrode
with 6 layers and a k-point sampling of 20×20×5 and 24×24×5 for Fe and Co, re-
spectively. The four-fold k-point sampling parallel to the surface allows to expand the
Bloch-waves of the electrodes and to connect with the 4×4 supercell of the scattering
regions. This feature is implemented in recent versions of the TBTrans/TranSIESTA
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Figure 6.1.: Geometric properties of our models for Ar/Co(0001) (top panels) and
Ar/Fe(110) (bottom panels) interfaces in real space and in reciprocal space. (a)
Top views of the computational unit cells of the slabs showing the primitive lattice
vectors of the clean surfaces. (b) Side views of slabs of five layers. The core-excited
argon atom is attached to the metallic surfaces in top position (directly on top of
an atom in the surface) at an adsorption height h. (c) Schemes of the respective
surface Brillouin zones showing the reciprocal lattice vectors and the high symmetry
points Γ̄,H̄, and N̄. The non-hexagonal surface structure of Fe(110) is reflected in its
Brillouin zone.

code.
As in the case of isonicotic acid on TiO2 (Chapter 5) we modeled the decorated

surfaces as tunneling junctions (two electrodes separated by vacuum) owing to the
version of TranSIESTA we are using. In the case of Fe(110) we analyze a surface
region of 6 layers where the last 3 layers are connected to the self-energy of the
semi-infinite substrate. For the simulations of Co(0001) a larger surface region of
8 layers was required, where the last 4 layers carried the self-energy of the semi-
infinite substrate. This resulted from careful checks regarding the amount of bulk
layers included. In both cases the vacuum between the metal surfaces was ∼ 40 Å.
The infinite slabs were not treated self-consistently regarding the calculation of the
Green’s functions. For the small imaginary broadening parameter used to calculate
the Green’s functions in this chapter we employed a value of η = 5 meV, which we
have tested to yield converged results for the lifetimes.

6.2. Constrained Model to Account for
Excitations

In relation to the experiment, we consider as in Chapter 5 a core-excited system,
including a 2p-hole in the pseudopotential. In contrast to the previously studied
systems the localized charge of the excited electron tends to delocalize over the entire
system, because the populated state is resonant with the conduction band of the
substrate. We prevent the latter by using a constrained approach. The system
is effectively modeled in an intermediate state, where the core-excited electron is
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located on the Argon atom before it relaxes to the surface. In the following such a
core-excited Argon atom is denoted by Ar∗. The excited electron is constrained by
fixing the occupation of the first ζ-component of the 4s-orbital of the Argon atoms
to a value of one, following the procedure in Ref. 35. This means that the population
of the 4s1ζ-orbital is not allowed to relax during the SCF cycle. In our case two
Argon atoms are present at the positions R1 and R2: one on each side of the slab in
order to obtain a symmetric system. The total density is then constructed from the
relaxed Kohn-Sham density ρNe−2 of the (Ne− 2)-electron system plus the density of
the two constrained 4s orbitals

ρ(r) = ρNe−2(r) + ρ4s1ζ(r−R1) + ρ4s1ζ(r−R2) (6.1)

=
Ne−2∑
i=1
|φi(r)|2 + |ϕ4s1ζ(r−R1)|2 + |ϕ4s1ζ(r−R2)|2. (6.2)

Here, the φi(r) are the Ne−2 self-consistently computed Kohn-Sham states of lowest
energy, while the ϕ4s1ζ(r−R1) are the 4s1ζ orbitals of the two core-excited Ar∗ atoms
on each side of the slab. The basis set of each Ar∗-atom consisted of 16 pseudo atomic
orbitals: the double-ζ components of 4s- and 3p-shells as well as the single-ζ bases
of the 4p- and 3d-shells. The spin of the constrained electron was specified explicitly
in the simulations to mimic the excitation of a particular spin.

6.3. Spin Dependence of the Charge Transfer
Time

In the following the results for the 4s-resonance spectra of Ar∗ adsorbed on Fe(110)
and Co(0001) surfaces are analyzed, the spin-dependent charge injection times are
extracted, and the observed behavior is discussed in comparison with the experiment.
Fig. 6.2a, b show the imaginary part of the projection of the Green’s function
− 1
π

Im[ 〈φR|G+(E)|φR〉] onto the initial wave packet φR for the Ar∗4s-resonances on
Fe(110) and the two spin channels. The spectra are shown for varying adsorption
heights starting from 2.4 Å up to 3.6 Å changing in steps of 0.3 Å (Fig. 6.2a, b).
It is visible that a closer positioning of the adsorbate towards the surface leads to a
stronger confinement of the resonance wave packet causing an upwards shift towards
higher energies.
Examining the shapes of the resonance peaks, deviations from an ideal Lorentzian

lineshape and the associated purely exponential decay are visible. The Lorentzian
fits to the resonances are indicated by narrow black lines in the plots. In the case
of the majority channel in Fig. 6.2a an extended tail towards the Fermi level (at
0 eV) is visible at all adsorption heights, while the peak shape becomes increasingly
asymmetric at lower adsorption heights. For the minority channel in Fig. 6.2b the
resonances exhibit shoulders around 2 and 3 eV as the onset of the more localized
d-bands around 2 eV is approached (see also the band structure in Fig. 6.8 introduced
further below). This leads to some deviations from the Lorentzian line shape that
complicate the analysis. Readily, after the inspection of the graphs, it is evident that
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Figure 6.2.: Resonance peaks appearing in the imaginary part of the Ar∗4s pro-
jected Green’s function for Ar∗/Fe(110). The majority (a) and minority (b) channels
are shown for various adsorption heights. The thin black lines represent Lorentzian
fits to the resonance spectra. The DOS projected onto different components of the
angular momentum of the surface atoms of clean Fe(110) is shown in (c) and (d) for
the respective spin channels. The resonance positions (peak maxima) are indicated
by dashed lines in (a, c) and (b, d). The energies in the subplots refer to the Fermi
level.

the broadened minority channel is associated with faster charge transfer than the
majority channel.
The interaction with the d-states in the substrate has been mentioned as a possible

source of the difference between the majority and minority lifetimes, while a connec-
tion to the sp-states would result in opposite trends [50]. At first sight, this interpre-
tation holds in a direct comparison of different angular contributions to the DOS of
a clean surface at the respective resonance positions, as can be seen in Fig. 6.2c, d.
The DOS projected onto d-symmetry orbitals for minority spin exceeds that of the
majority spin over the whole range of the Ar∗ resonance positions (dashed lines in
the plots). However, it has already been pointed out that such a relation between an
available DOS of strong d-character and a larger coupling to the substrate is some-
how counterintuitive since d-states are typically localized in nature and contribute
less to charge transfer [19]. The latter is indeed, what we see in our calculations.
Moreover, there are no bands of clear d-type atomic character (i.e., derived from the
atomic 3d states) in the energy range of interest where the Ar∗ resonances appear.
In this context, it is important to consider the origin of labeling states by their

symmetries (s, p, d, f, etc.). From a chemists point of view the band-like states in
solids are formed by the orbitals of the constituent atoms and their overlaps determine
the dispersions of the bands [232]. Thus, localized d-states constitute less dispersive
bands than s- or p-bands. The concept of associating bands with symmetries is
straightforwardly applied in DFT-codes employing atomic orbital basis-sets. On the
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Figure 6.3.: Majority (a) and minority (b) resonance peaks appearing in the imag-
inary part of the Ar∗4s projected Green’s function for Ar∗/Co(0001). The surface
projected DOS of the clean Co(0001) slab due to different components of the angular
momentum is shown in (c) and (d). The figure is organized analogously to Fig. 6.2.

other hand, analyzing the electronic structure by projecting into localized orbitals can
lead to misleading results. An example of this occurs when using projection routines
to analyze states of predominant plane-wave character. The higher the energy of the
plane-wave state the stronger it’s variation in space, which is eventually captured
best by projections onto more localized (e.g., d-type) states in a finite atomic orbital
basis-set. However, in this case an interpretation of highly dispersive plane-wave
states as d-type states is not very meaningful.
An example of the projection of dispersive bands onto states labeled by a d-type

symmetry can be seen in Fig. 6.2d (compare also with the surface band structure
of Fe(110) in Fig. 6.8 on Page 103, where the flat d-bands, following traditional
nomenclature, appear at energies below the resonance positions). Here the d-type
DOS dominates the s- and p-contributions over an extended energy range associ-
ated with the underlying dispersive bands. Moreover, since the employed projection
schemes vary from code to code, a unique identification of the bands’ symmetries is
not guaranteed.
The adsorption of Ar∗ on Co(0001) leads qualitatively to a similar picture, as

can be seen in Fig. 6.3a, b. Here, both spin channels reveal long tails towards
the Fermi level. For 2.7 Å to 3.3 Å small peak splittings are visible in the majority
channel. The minority peak shows a growing shoulder that splits for larger adsorption
heights at around 3.6 Å. Readily from the plots it is visible that the sharp peaks of
the majority channel will lead to significantly longer lifetimes than the minority
channel, as it has been observed in core-hole-clock experiments [50]. As before the
contributions from different angular momenta to the DOS projected onto the surface
in Fig. 6.3c, d indicates that the difference in peak widths between the spin channels
appears to correlate with the amount of DOS projected onto the d-orbitals. However,
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Figure 6.4.: Extracted line widths of the Ar∗4s resonances from Lorentzian fits and
energy positions of peak maxima with respect to different adsorption heights (insets).
Minority and majority channels are displayed. Subplot (a) refers to Ar∗/Fe(110) and
subplot (b) shows the case of Ar∗/Co(0001). The dashed lines in the insets refer to
the resonance energies determined in the experiment [50]. The dashed lines in the
main panels display the values obtained using optimized wave packets to describe the
Ar∗4s-resonance, which take into account polarization effects in the presence of the
surface (see also Section 6.4). Continuous lines correspond to values obtained using
a single atomic Ar∗4s orbital to model the resonance wave function.

as explained above this should not be interpreted as an indication that a larger
amount of available d-states leads to shorter lifetimes (larger coupling). This rather
indicates that the highly dispersive bands of Co(0001) (see also the band structure of
Co(0001) in Fig. 6.9 on Page 104) in this energy range present a large contribution
from d-symmetry basis orbitals. The inspection of the DOS at the interface across
different adsorption heights (Fig. 6.3d) shows that the variations of the peak widths
at different energetic positions (Fig. 6.3b) do not resemble the d-type DOS.
To get a quantitative picture of the theoretically determined data and the as-

sociated trends on both substrates, the extracted line widths associated with the
4s-resonance are displayed in dependence of the adsorption height in Fig. 6.4 (con-
tinuous lines). Here, the line widths have been determined from the FWHM of a
Lorentzian fitting (cf. Section 3.4).
For the minority channel on Fe(110) one observes that the line widths increase

as the adsorbate approaches the surface. This is expected due to the increasing
overlap of the adsorbate states with the surface states at lower adsorption heights.
However, on Co(0001) the opposite trend is observed for the minority channel: The
widths increase at larger distances from the surface and a minimum at around 3 Å
adsorption height is observed. This behavior can be explained by considering the
dispersion of the peaks in energy (cf. insets in Fig. 6.4) and the interplay with
electronic gaps: the resonances become increasingly confined when approaching the
surface, this leads to an up-shift of their energetic positions into regions with a
different amount of available DOS. Importantly, the accessible DOS is determined
by the interaction of the resonances with projected band gaps, as discussed in detail
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in Section 6.5. As a result of this the line widths are controlled by the competing
effects of the spatial overlap of the adsorbate wave function with the surface states,
and the resonance position with respect to the surface band structure. Both effects
are entangled through the adsorption height.
Also in the case of the majority channel opposite trends on both substrates are

visible. On the Fe(110) substrate the widths show a minimum at around 2.7 Å
adsorption height and the widths increase again at larger distances. On the Co(0001)
substrate we find a continuously decreasing width upon increase in the adsorption
height. While the trends on the two substrates behave rather oppositely, the majority
channel exhibits independently of the distance and the substrate material smaller
peak widths than the minority channel.
To complete the quantitative analysis we compare directly with the experimental

results from core-hole-clock spectroscopies. In the setup by Blobner et al. [50] charge
transfer dynamics from core-excited Ar∗(2p−1

3/24s) adatoms on the magnetic surfaces
Fe(110), Co(0001), and Ni(111) were probed using spin-selective core-excitation by
circularly polarized light. Values for lifetimes of the Ar∗4s-resonance in a range from
2 to 3.3 fs have been reported [50]. In a follow-up work spin-selective core-hole-clock
measurements using spin-independent excitation in combination with spin-selective
detection of the decay spectra were proposed [49]. In a series of measurements this
technique was shown to provide consistent results with the earlier measurements for
Ar/Co(0001). In particular, the reported final average of this second type of mea-
surements agrees with the first study by Blobner et al. [50] within the errorbars [51].
The experimentally reported quantities of these studies are summarized in Table 6.1.
We have determined the values for the lifetimes of the Ar∗4s-resonances by extract-

ing peak widths from Lorentzian fits as well as with the direct approach by Fourier
transformation (see Section 3.4) to the time-domain and estimating the lifetime by
integrating Eq. (3.16) up to 30 fs (using larger integration ranges did not affect the
results). Although the Lorentzian fits (shown by slim lines in Figs. 6.2 and 6.3)
are not always optimal –since the peak shapes may exhibit long tails, shoulders, or
peak splits– the agreement between the two methods is remarkable as the values in
Tables 6.2 and 6.3 suggest.
For a quantitative comparison in-between the two substrates, and in-between the

two spin-channels, as well as with the experiment [50] we display the extracted values

Table 6.1.: Majority and minority decay times τ exp.
maj. and τ exp.

min. of core-excited Ar∗
and the energetic position of the corresponding Ar∗4s-resonances Eexp.

R on different
magnetic metal substrates, as determined by core-spectroscopy experiments [50, 51].

τ exp.
maj. τ exp.

min. Eexp.
R

(fs) (fs) (eV)
Ar/Fe(110) [50] 2.67± 0.15 2.08± 0.15 2.97
Ar/Co(0001) [50] 3.24± 0.15 2.63± 0.15 3.11
Ar/Co(0001) [51] 3.1± 0.20 2.4± 0.10 −
Ar/Ni(111) [50] 3.12± 0.15 3.12± 0.15 3.14
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Table 6.2.: Various extracted quantities for Ar∗ resonances on Fe(110) related to
the majority and minority spin channels. Values obtained using an Ar∗4s1ζ orbital
to model the resonance wave function and values obtained using an optimized wave
packet containing a 4pz component: the peak maximum at ER, the width Γ extracted
by a Lorentzian fitting, the related lifetime ~/Γ, and the lifetime τFFT obtained by the
Fourier transform method described in Section 3.4. In the case of the optimized wave
packet additionally the mixed-in percentages |cp|2 of 4pz contributions are given.

Fe(110) |φR〉 = |ϕ4s1ζ〉 |φ̃R〉 = cs |ϕ4s1ζ〉+ cp |ϕ4pz〉

Height ER Γ ~/Γ τFFT Eopt.
R Γopt. ~/Γopt. τ opt.

FFT |cp|2
(Å) (eV) (meV) (fs) (fs) (eV) (meV) (fs) (fs) (%)

M
aj
or
ity

2.4 3.67 305 2.16 2.14 3.67 262 2.51 2.52 63
2.7 3.53 216 3.05 3.01 3.54 186 3.53 3.43 56
3.0 3.37 244 2.70 2.81 3.37 206 3.18 3.21 50
3.3 3.21 267 2.46 2.43 3.21 239 2.74 2.76 43
3.6 2.98 268 2.45 2.36 2.99 247 2.66 2.64 33

M
in
or
ity

2.4 3.74 1209 0.54 0.76 3.81 740 0.89 1.08 65
2.7 3.60 736 0.89 0.99 3.64 590 1.12 1.26 57
3.0 3.44 571 1.15 1.19 3.47 495 1.33 1.41 49
3.3 3.26 509 1.29 1.30 3.29 456 1.44 1.51 41
3.6 3.06 472 1.39 1.40 3.07 444 1.48 1.55 32

Table 6.3.: Extracted quantities for Ar∗ resonances on Co(0001) related to the
majority and minority spin channels. The table is organized completely analougous
to the case of Fe(110) in Table 6.2.

Co(0001) |φR〉 = |ϕ4s1ζ〉 |φ̃R〉 = cs |ϕ4s1ζ〉+ cp |ϕ4pz〉

Height ER Γ ~/Γ τFFT Eopt.
R Γopt. ~/Γopt. τ opt.

FFT |cp|2
(Å) (eV) (meV) (fs) (fs) (eV) (meV) (fs) (fs) (%)

M
aj
or
ity

2.4 3.92 140 4.69 4.24 3.92 129 5.10 4.61 60
2.7 3.74 139 4.73 4.28 3.74 136 4.82 4.52 52
3.0 3.52 120 5.46 4.76 3.52 121 5.43 4.94 43
3.3 3.35 102 6.39 5.08 3.35 104 6.31 5.20 37
3.6 3.17 98 6.67 5.29 3.17 98 6.66 5.42 30

M
in
or
ity

2.4 4.04 254 2.59 2.56 4.04 223 2.94 2.96 63
2.7 3.86 189 3.46 3.27 3.86 170 3.87 3.67 56
3.0 3.68 178 3.69 3.65 3.68 149 4.41 4.13 50
3.3 3.50 234 2.80 3.11 3.51 188 3.48 3.58 44
3.6 3.34 306 2.14 2.65 3.34 253 2.59 3.10 38
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6.3. Spin Dependence of the Charge Transfer Time

Figure 6.5.: Ab-initio lifetimes and comparison to the experimental values (green
solid lines) from core-hole-clock spectroscopy experiments [50] for the case of
Ar∗/Fe(110) in (a) and Ar∗/Co(0001) in (b). It is clearly visible that electrons in the
majority channel are longer-lived than their minority excited counterpart. Dashed
lines represent the values obtained using optimized wave packets to describe the
Ar∗4s-resonance, which take into account polarization effects in the presence of the
surface (see Section 6.4). Continuous lines correspond to values obtained using a
single atomic Ar∗4s orbital to model the resonance wave function.

for ~/Γ in Fig. 6.5. It is visible that our calculations reproduce the characteristic
of faster minority channel decay in comparison with the majority channel, and an
overall faster charge transfer regarding both spin-channels on the Fe(110) substrate
in comparison with Co(0001). Also a good quantitative agreement with the exper-
imental values can be stated. Here we consider exclusively the top adsorption site.
A significant dependence of the line widths on the adsorption site could be ruled out
by additional simulations: The trends and the time-scales across different sites are
conserved (compare with the results in Appendix D).
The relatively small deviations from the experimental results may stem from several

factors. Among these we list: (i) The deficiency of GGA functionals to describe the
localized states causing a possible shift of the resonance positions with respect to
the substrate’s bands in combination with the sensitivity of the resonance’s width on
the energetic position [36, 122], which is in principle entangled with the adsorption
height (see also Fig. 6.4 and the attempt to disentangle the effects in Section 6.5.2).
(ii) We simulate elastic lifetimes excluding any effects of structural fluctuations or
scattering with phonons and other inelastic processes, which might shorten lifetimes
further. (iii) The calculations are based on static Hamiltonians, dynamic effects of
screening during the electron transfer are not considered.
We have additionally performed calculations for the unconstrained system, thus,

relaxing the electron occupying the Ar∗4s1ζ-orbital. The extracted lifetimes of these
unconstrained calculations in Table 6.4 show surprisingly an opposite trend in one
instance: The majority channel for an adsorption height of 3.3 Å on Fe(110) is faster
than the minority channel. This coincides with the behavior reported for constrained
and unconstrained calculations of Cs/Fe(110) [122]. We note that this behavior is
opposite to what would be expected, when comparing with the amount of d-type
DOS (cf. Fig. 6.2) around the resonance positions ER. Indeed, in the region of the
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6. Spin-Dependent Charge Transfer on Magnetic Surfaces

Figure 6.6.: Calculations without the constraint described in Section 6.2: Ar∗-
resonance spectra for (a) Ar∗/Fe(110) and (b) Ar∗/Co(0001). The blue lines represent
the majority spin channel and the red lines the minority spin channel.

largest d-type contributions the line widths are reduced, supporting the idea that
more localized states contribute less to charge transfer [19]. The remaining values
of ~/Γ in Table 6.4 show about equal charge transfer times for both spin channels.
The positions of the resonances are comparable with the ones reported for the case
of Cs/Fe(110) between 2 and 2.5 eV [122]. However, the energy range in which
the resonances occur in the unconstrained case is far lower than the experimentally
observed resonance position, so that this case is irrelevant for a direct comparison
with the experiment by Blobner et al. [50]. The main purpose of the unconstrained
calculations is to illustrate the effect of an overlap of the resonance wave packet with
the flat minority d-bands and to emphasize the importance of the resonance position
with respect to the surface band structure.
So far we have considered a resonance wave packet of pure 4s-character in our

calculations. However, indeed it can be expected that in the presence of the surface
the excited wave-packet is polarized in the direction perpendicular to the surface.
This possibility is examined in the next section.

6.4. Polarization of the Resonance Wave Packet
The approximately spherical shape of the Ar∗4s wave function is reflected in the

spatially resolved DOS integrated over an energy window of 1 eV around the reso-
nance positions in Fig. 6.7. However, due to the presence of the surface the spherical
shape is slightly distorted, so that the DOS deforms towards the Fe or Co atoms,
where the adsorbate is attached to the surface. Independently of the spin-channel
and the substrate the behavior is similar. It is also visible that the DOS around the
surface atoms is increased in the case of the minority channels in Fig. 6.7b, d.
In search of a wave packet capturing the above described polarizing effect onto the

resonance, we employ an optimization scheme considering the additional inclusion of
a pz-orbital in the description of the resonance wave-packet

|φ̃R〉 = cs |ϕ4s1ζ〉+ cp |ϕ4pz〉 . (6.3)
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6.4. Polarization of the Resonance Wave Packet

Figure 6.7.: Spatially resolved DOS integrated in a range of ±0.5 eV around the
maximum peak position of the Ar∗4s resonance: Ar/Fe(110) for majority (a) and
minority (b) electrons, as well as Ar/Co(0001) for majority (c) and minority (d)
electrons. Shown are sections through the Argon adsorbate in the xz-plane. The
surface’s atoms are centered at a height of z = 0 Å. The color code follows a square
root dependency to highlight the differences for small densities.

Here, the 4pz-orbital is one of the pseudo-atomic orbitals obtained for Ar∗, which is
contained in the basis set employed in the calculations.
The optimized wave-packet is then chosen such that it maximizes the spectral

density inside of a small energy region around the position of the resonance for the
real coefficients cs and cp. This is achieved by finding the maximum of the integral

I(cs, cp) =
∫ ER+ Γ

2

ER−Γ
2

Im 〈ψ̃R|G(E)|ψ̃R〉 dE , (6.4)

under the constraint that the resonance wave packet is normalized c2
s + c2

p = 1.
The integration range [ER − Γ/2, ER + Γ/2] is centered around the energy ER and

Table 6.4.: Extracted values of the lifetimes ~/Γ and the resonance positions ER
with respect to the 4s-resonances of Ar∗ adsorbed on Fe(110) and Co(0001). Both
(majority and minority) spin channels are shown. In these calculations the electron
occupying the Ar∗ resonance was allowed to relax so that it is transfered to the
metal substrate, thereby leading to an excited ion on top of the surfaces. Under this
condition our DFT-GGA calculations predict too low energetic positions for the Ar
∗4s-resonance as compared to the experiment [50].

Majority Minority
h ~/Γ ER ~/Γ ER
(Å) (fs) (eV) (fs) (eV)

Fe(110) 2.7 1.19 2.44 1.16 2.11
3.3 1.42 1.57 3.28 1.54

Co(0001) 2.7 1.45 2.45 1.04 2.22
3.3 1.78 1.26 1.74 1.12
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6. Spin-Dependent Charge Transfer on Magnetic Surfaces

has a length of Γ, which correspond to the extracted values for the resonance po-
sition ER and the line width Γ in the calculations discussed above where a pure
Ar∗4s wave packet was considered. The finite region of integration ensures that the
feature related to the resonant charge transfer process of interest is maximized. A
formal derivation of the optimized coefficients cs and cp can be found in Appendix E.
The optimized wave packets result overall in larger lifetimes τ opt.

FFT than the pure
Ar∗4s resonances (τFFT), reflecting a closer match with the physical character of the
systems under study –at the current level of theory. For a quantitative comparison
all values are listed in Tables 6.2 and 6.3. The change in the lifetimes is rather small
(a few tenths of a femtosecond), as can be seen from the dashed lines in Fig. 6.5
which show the values of the optimized resonances.
Studying the qualitative trends across different adsorption heights with the ones

observed for the pure Ar∗4s resonance, no significant changes are found, cf. Fig. 6.2
and Fig. 6.3, the largest difference being a smaller increase in the resonance width
towards lower adsorption distances in the minority channel of Ar/Fe(110).
It is interesting to analyze the amount of the pz-component, which is mixed into the

wave packet by the optimization prescription. The percentages |cp|2 of the admixture
of pz-components are displayed in Tables 6.2 and 6.3. For the largest distances
(3.6 Å) we find that the contribution from the pz-components amounts to one third,
this steadily increases to about two thirds at close proximity to the surface (2.4 Å).
This increase in polarization upon approaching the surface is found regardless of
the two substrates or the spin-polarization under consideration with nearly the same
quantitative behavior. Considering the large amount of polarization in proximity to
the surfaces, the marginal changes in the lifetimes are surprising and verify a certain
robustness of the resonant line widths.

6.5. Interplay with Electronic Gaps of the
Surface Band Structure

As discussed above, a characterization of the Argon-surface interaction cannot
only rely on arguments based on the total DOS or on a rather arbitrary partition
of the DOS into symmetry components. Instead, additionally a careful analysis of
the electronic coupling is necessary. In particular, the interaction with projected
gaps in the surface band structure has been studied in this context [41, 224–226].
Projected band gaps are known to lead to a blocking effect regarding the charge
transfer [34, 35, 233]. A discussion of this blocking effect of electronic band gaps in
connection with Ar∗ on magnetic substrates is the subject of this section.
We start by inspecting the alignments of the resonance positions with respect

to the band structure of the clean substrates in Figs. 6.8 and 6.9 for Fe(110) and
Co(0001), respectively. In both plots the majority (a) and minority (c) spin-channels
are analyzed. The resonance positions at different adsorption heights (compare also
the insets in Fig. 6.4) are indicated by horizontal lines. It is directly visible that
band gaps are opening around the Γ-points at the positions of the resonances. The
band gaps are framed by the highly dispersive free-electron-like bands of the metal
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Figure 6.8.: Band structure (k-resolved DOS) of clean Fe(110) computed using the
surface unit cell (a, c) and highlighting the effects of band folding in a 4×1-supercell
(b, d). The band structures of the 4 × 1-supercell are found by folding twice along
the vertical white lines: The corresponding result is shown in the rightmost quarter
of the panels b and d. The energies are referred to the Fermi energy. The grey scale
in the plots represents the magnitude of the imaginary part of the Green’s function
of the semi-infinite substrate projected on to the surface region. Majority states are
shown in (a, b) and minority states in (c, d). The horizontal blue lines in (a) and red
lines in (b) indicate the Ar∗4s-resonance positions. The five resonance positions in
each of the two spin channels correspond to different adsorption heights from 2.4 Å
to 3.6 Å. Lighter shadings represent smaller adsorption heights (cf. Fig. 6.2). Note,
that the flat d-bands occur away from the resonance positions at energies roughly
below ∼ 0.2 eV for majority spin and below ∼ 2.9 eV for minority spin.

surfaces.
The Fe(110) surface differs qualitatively from the Co(0001) surface in two points:

the gaps are less isotropic around the Γ points due to the geometry of the Fe(110)
surface, and in the case of the minority channel of Fe(110) the resonances approach
the flat localized d-bands below 2 eV in the band structure (cf. Fig. 6.8c).
To study the effect of the identified gaps more directly, we computed the Ar∗4s

projected DOS along the high-symmetry lines between the N and Γ-points of the
4 × 4 unit cell (k-resolved DOSs in Figs. 6.10 and 6.11c-f). The resonances on the
excited Argon map out the underlying band structures of the substrates in reciprocal
space. For a straightforward comparison, we folded the band structures of the 1× 1
unit cells twice along the direction of the corresponding wave vectors to obtain the
equivalent electronic structure in a 4× 1 cell. The folding procedure is illustrated in
Figs. 6.8 and 6.9b, d. The resulting folded bands are displayed rotated and magnified
for the relevant energy range in Fig. 6.10a, b and Fig. 6.11a, b.
The resonant line shapes in Figs. 6.10 and 6.11c-f clearly reflect the areas of larger

spectral density and lower density due to the folding of the free-electron-like bands
around the surface projected band gap. In regions of lower DOS the resonances
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6. Spin-Dependent Charge Transfer on Magnetic Surfaces

Figure 6.9.: Band structure (k-resolved DOS) of clean Co(0001) obtained from the
Green’s function approach to describe a semi-infinite surface. The figure is organized
analogously to Fig. 6.8.

appear sharply peaked while in regions of larger surface density the broadening is
stronger, so that the resonances mirror the folded band structure in k-space. Away
from the Γ-point towards the boundary of the Brillouin zone (e.g., at N) the intensity
of the resonance peaks decreases rapidly, indicating that larger crystal momentum
components have a smaller contribution to the localized wave packet of the Ar∗4s res-
onances.
For a smaller adsorption height of 2.7 Å (Fig. 6.10e, f and Fig. 6.11e, f) the res-

onances shift up in energy and thus deeper into the gaps. This locates the Ar∗4s
resonances in regions of low substrate DOS in reciprocal space. At the same time
the spatial overlap of the resonance wave-packet with the surface wave functions is
increased leading to stronger interaction reflected in broadened peaks and a decrease
of the intensity around the maximum peak position.
In some cases, as we move along Γ − N , the resonances enter into regions with

reduced DOS leading to sharp changes in the shapes of the resonances. The positions
of these sharp changes in the DOS are determined by the folding of the lower threshold
of the gap in the supercell. An example of this situation can be found around 4.0 eV
at the N -point for the minority channel on Fe(110) when reducing the adsorption
height of Ar∗ from 3.3 Å in Fig. 6.10d to 2.7 Å in Fig. 6.10f.
The correspondence of the band structure to the k-resolved DOS of the resonance

obtained from simulations in a 4 × 4 unit cell is less apparent, when comparing
with the actual surface band structure of the 4 × 4 unit cell in Fig. 6.10g, h and
Fig. 6.11g, h. Additional bands appear due to the folding along the perpendicular
direction in the Brillouin zone complicating a direct comparison. However, looking
closely at the band like features of the 4×4 supercell one can only see for this supercell
a perfect agreement with the different features in the resonances. The latter is very
apparent for the d-type contributions at energies below 2 eV for the minority channel
on Fe(110) in Fig. 6.10f.
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Figure 6.10.: (a, b) Relation of the folded surface band structure of the 1 × 4
cell (magnified and rotated from Fig. 6.8b, d) to the k-resolved resonance spectra
obtained by projecting the Green’s function of the decorated Ar∗/Fe(110) 4×4 slabs
onto the Ar∗4s1ζ state for each spin (c-f). Panels (c, d) refer to an adsorption height
of 3.3 Å and panels (e, f) to 2.7 Å. Clearly, the resonances map out the surface bands
as can be seen for the majority (a, c, e, g) and the minority (b, d, f, h) channels.
The presence of band gaps leads to weak coupling regions with low DOS, where the
resonances become sharper. A comparison with the folded bands of the 4 × 4 unit
cells (g, h) is less straightforward due to the additional amount of features, but is in
better agreement with the curves mapped by the resonances in (c, f).
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Figure 6.11.: Relation of the folded surface band structure in Fig. 6.9 (b,d) to the k-
resolved resonance spectra obtained from the Ar∗4s-projected Green’s function of the
semi-infinite Ar∗/Co(0001) surfaces in analogy to the case of Fe(110) in Fig. 6.10.The
dashed lines in (c, e) indicate that very sharp and tall peaks have been cropped along
these lines.
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6.5.1. Effect of Surface Projected Gaps: Descriptive
Tunneling Model

At this point, it is instructive to devise a simplified model to understand the effect
of the band gaps as proposed in Ref. [35]. The model proposed there maps out the
coupling V (k‖) of the resonance state (Ar∗4s) in reciprocal space to get a qualitative
picture of the line widths Γ. Assuming, that at the energy of the resonance the onset
of the bands contributing to the otherwise homogeneous DOS is at a distance k0
from the Γ-point (i.e., the bands start, where the gap ends). The value of k0 defines
a circle in the two-dimensional surface Brillouin zone. The tunneling rate is then
related to the available phase space by the equation [35]

Γ ≈ 4π2
∫ ∞
k0
|V (k‖)|2k‖ dk‖ . (6.5)

Secondly, it is assumed, that the coupling in reciprocal space V (k‖) is given in
terms of the overlap of the resonance state ϕ4s1ζ(r) with the wave functions of the
states ψk‖ belonging to the surface,

V (k‖) ≈
∫
ψk‖(r)ϕ4s1ζ(r) dr ≈

∫
f(k‖, d)e−ik‖rϕ4s1ζ(r) dr ≈ f(k‖, d)ϕ̃4s1ζ(k‖) (6.6)

Finally, the components of the surface wave functions can be factored indepen-
dently from the rest of the terms into a plane wave contribution with a wave vec-
tor k‖ parallel to the surface and a contribution f(k‖, z = d), which accounts for the
tunneling behavior perpendicular to the surface. We evaluate the tunneling behavior
at a distance from the surface z equal to the adsorption height d of the Ar∗ atom.
The highly dispersive (parabolic) nature of the surface bands justifies the plane wave
character of the corresponding states in parallel to the surface.
To estimate the coupling V (k‖) we identify the three-dimensional Fourier transform

of the spherical (pseudo-)wave function ϕ4s1ζ(r), which we evaluate using the Fourier-
Bessel transform (see Appendix F), by writing f(k‖, d)ϕ̃4s1ζ(k‖) ≈ f(k‖, d)ϕ̃4s1ζ(k‖).
The factor f(k‖, d) describes the tunneling behavior in front of the surface in terms

of the expression for the wave functions in the semi-classical WKB-approximation.
This equals the characteristic exponential dependence on the distance d, which is
assumed to set in at some value d = d0

f(d,ER, k‖) = exp
[
−(d− d0)

√
2(Φ− ER) + k2

‖/m
∗
]
. (6.7)

The contribution of this factor to the tunneling probability |f(d,ER, k‖)|2 depends
on the work function of the surface Φ, the energy position of the resonance ER with
respect to the Fermi level, and the momentum of the injected electron parallel to the
surface k‖. The effective masses m∗ depend on the dispersion of the surface bands.
Adopting a homogeneous DOS inside the bands, the resonance width can be esti-

mated by
Γ(d,ER) ≈

∫ ∞
k0
|f(d,ER, k‖)ϕ̃4s1ζ(k‖)|2k‖ dk‖ . (6.8)

In this equation, the spread in reciprocal space of, both, the Ar∗4s resonance state
and the substrate wave functions (i.e., the electronic gaps), are taken into account.
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Figure 6.12.: Ingredients of a simplified model of spin-dependent charge injection at
surfaces. (a) Approximate description of the projected electronic gaps around Γ as a
function of k‖ (i.e., k0(E) following the nomenclature in Eq. (6.5)), for Fe(110) (solid
lines) or Co(0001) (dashed lines) and majority (blue) or minority (red) electrons.
The shaded area indicates the region, where the resonances occur (for adsorption
heights d from 2.4 Å to 3.6 Å). (b) Weighting |ϕ̃4s1ζ(k‖)|2k‖ of the contributions
to the line widths due to the structure of the Ar∗4s1ζ orbital ϕ4s1ζ(r) in reciprocal
space. The shaded region indicates the range of values k0 at the resonance energies,
where the gaps are opening. (c) Filtering effect due to f(d,ER, k‖) at a constant
adsorption height (d = 5 Bohr,d0 = 2.0 Bohr) for varying resonance energies ER,
varying momenta k‖, and a fixed effective mass of m∗ = 0.4 .

In the following we apply the model to the present case of Ar∗ on Fe(110) and
Co(0001). We explain the differences in charge transfer times for minority and
majority spins in terms of the gap sizes in the surface band structure. The same
argumentation explains the differences between the two substrates.
The ingredients of the model are shown in Fig. 6.12 for both spins and materials.

The average gap size along Γ–N and Γ–H in Fig. 6.12a varies strongly around the
resonance energies (gray shaded area). Simultaneously, the weighting in reciprocal
space due to the spread and shape of the Ar∗4s wave function in Fig. 6.12b changes
rapidly at the edge of the projected band gap k0. The region of the gap edges k0 at
the relevant energies is marked by the gray shaded in Fig. 6.12b. Due to these strong
variations the coupling V (k‖) in Eq. (6.6) is very sensitive to the size of the gap.
In Fig. 6.12c it can be seen that f(d,ER, k‖) decays strongly for larger values

of the momentum k‖ parallel to the surface. Therefore f(d,ER, k‖) has a filtering
effect on contributions with larger parallel momenta. This is reasonable in the sense
that higher values of k‖ lead to less available momentum in the tunneling direction
perpendicular to the surface [note that we are taking the free-electron dispersion with
an effective mass m∗ as a simple approximation for the dispersive bands of Fe(110)
and Co(0001) ]. Equivalently, one may think of an increase of the effective barrier to
2(Φ−ER)+k2

‖/m
∗ for non-zero parallel momenta. At the same time higher resonance

energies ER render tunneling processes more likely by reducing the effective barrier.
In contrast to the increase in tunneling rate with rising values of ER, the widening
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Figure 6.13.: Simplified model of spin-dependent line widths. (a) Behavior for a
constant adsorption height of d = 5 Bohr as a function of the resonance energy ER.
The shaded area indicates the region, where the resonances occur (considering ad-
sorption heights from d = 2.4 Å to 3.6 Å). (b) Line widths Γ in dependence of
adsorption heights d considering the height-dependent resonance energies ER(d). (c)
Ratios of the line widths ΓMin/ΓMaj between both spin-channels (thick black lines).
All quantities in the plot are shown for Ar∗4s resonances on Fe(110) (solid lines)
or Co(0001) (dashed lines), and minority (red) or majority (blue) spins. The gray
data points in (c) display the results from our DFT calculations (cf. Fig. 6.4). The
effective masses m∗ were extracted for each spin channel and material by analyzing
shapes of the gaps in Fig. 6.12a using Eq. (6.9). We adopted a distance parameter
of d0 = 3.0 Bohr and a work function of Φ = 5 eV.

of the electronic gaps at higher resonance energies leads to a decrease of the tunneling
probability. Putting together the ingredients illustrated in Fig. 6.12 we obtain the
curves shown in Fig. 6.13a, choosing the parameters Φ = 5 eV and d0 = 3 Bohr.
The model shows clearly how the line widths Γ increase exponentially until the point
where the gaps open, which causes the immediate decay of the line widths.
Here, we have estimated the material- and spin-dependent effective masses based

on the energy difference ∆E of the resonance position (at ER = 4 eV) minus the
bottom of the band gap and the gap size ∆k‖ at ER = 4 eV,

m∗ =
∆k2
‖

2∆E . (6.9)

The extracted values for the effective masses of the majority (minority) electrons are
0.38 (0.46) for Fe(110) and 0.45 (0.48) for Co(0001).
In a second step, we incorporate the dependence of the width on the adsorption

height by letting the resonance positions ER vary with d. To do so, we fit the trends
of the DFT-based resonance energies ER (cf. Fig. 6.4) linearly across different widths.
The fits match the original data well, as can be seen in Fig. 6.14a. Additionally, one
has to consider that the gap sizes k0 change with the resonance energy, so that one
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Figure 6.14.: Model of the resonant line widths for distance dependent reso-
nance positions ER(d), while simultaneously fixing the distance in the pre-factor
d − d0 = 2.0 Bohr of the exponential tunneling behavior f(d,ER, k‖): (a) Dis-
tance dependence of resonance energies. (b) Resulting line widths. (c) Ratios of
the line widths ΓMin/ΓMaj between both spin-channels. The lines are defined as in
Fig. 6.13: Fe(110) (solid lines) or Co(0001) (dashed lines) and minority (red) or ma-
jority (blue) spins. The connected gray data points display the data from our DFT
calculations in (a,c). The values of m∗ and Φ equal those in Fig. 6.13.

receives the adapted formula

Γ(d) ≈
∫ ∞
k0[ER(d)]

|f(d,ER(d), k‖)ϕ̃4s1ζ(k‖)|2k‖ dk‖ . (6.10)

The behavior described by Eq. (6.10) is shown in Fig. 6.13b. Overall, the model
resembles qualitatively the line widths of the DFT calculations (cf. Figs. 6.4 and 6.5):
In particular, the minority channels relate to faster charge transfer (i.e., broader line
widths), the charge transfer on Fe is faster than on Co, and the minority channel on
Co exhibits the same time scales as the majority channel on Fe. However, all line
widths in Fig. 6.13 decrease for larger distances d due to the dominant exponential
dependence in Eq. (6.7). This exponential distance dependence can explain the
decreasing line widths for the Fe(110) minority electrons and Co(0001) majority
electrons, but does not account for the behavior of the other two spin channels in
Fig. 6.4. Most importantly the increase of Γ at larger distances for Fe(110) minority
electrons cannot be explained.
To eliminate the unknown scaling between the model and the DFT output it

is useful to compare them in terms of the ratios ΓMin/ΓMaj of the minority and
majority line widths. The plots of ΓMin/ΓMaj in Fig. 6.13c show that the ratios are
captured very well for both materials. However, a description of the trends across
different adsorption heights is not feasible. Although the ratios related to Co(0001)
in Fig. 6.13c (dashed lines) follow an overall increase as in the DFT results, the
corresponding separate quantities ΓMin and ΓMaj do not agree with the trends of
the DFT data in Fig. 6.4, where the minority widths increase significantly at larger
distances d. In the case of Fe(110) (solid lines, Fig. 6.13c) opposite trends are found
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already for the ratios ΓMin/ΓMaj.
Inspecting Fig. 6.13a, an increase of the line width Γ as the adsorbate’s distance

to the surface d is increased can be easily justified: ER decreases (from about 4 eV
to 3 eV, gray shaded region) with increasing d and, correspondingly, the size of the
projected band gap encountered at ER also decreases. The reason we only find a
decrease of Γ with increasing d stems from the exponential dependence assumed for
the prefactor f(d,ER, k‖) cf. [Eq. (6.7)]. However, while such exponential dependence
is expected in the tunneling regime (large values of d), the values of d we consider
here are relatively small and assuming such exponential decay may not be justified1.
Therefore, we consider now the opposite extreme in Fig. 6.14: a modified model
where the explicit dependence on the distance in f(d,ER, k‖) is canceled by fixing
d − d0 = 2 Bohr in Eq. (6.7), so that the distance only enters through ER(d). The
plot in Fig. 6.14b shows now an increasing behavior of Γ as a function of d.
This saturation of the exponential decay or at least a milder distance dependence of

the wave-function overlaps, at small values of d can explain the increase in line width
as the adsorption height increases for minority spin on Co(0001). This behavior can
be seen in Fig. 6.4b. Equally, fixing the factor d− d0, changes the slope of the ratios
in Fig. 6.14, which now display decreasing trends. In summary, the simple model
presented here can explain the main features of the spin dependence observed in the
detailed ab initio calculations and in the experiments in a satisfactory manner. In
particular, our model highlights the important roles of the energy position of the
resonance and the size of the projected band gaps for the cases of argon on Fe(110)
and Co(0001) considered here.

6.5.2. Disentangling the Effect of Energetic Position and
Adsorption Height in the Ab Initio Model

As discussed above, the position of the resonance and the adsorption height appear
entangled in the ab initio calculations, therefore a separate analysis of their effect is
not directly possible. In the previous section a descriptive model was used to analyze
their effects. In this section we explore the separate effects using the full Green’s
function based model for the case of the Ar∗/Fe(110) interface. This is achieved
by varying the resonance positions through modifications of the Hamiltonian. In
particular we shift the matrix elements of the Hamiltonian Hij which belong to the
excited Ar atom by an energy ∆ε multiplied with the overlap matrix Sij,

H ′ij =

Hij + Sij∆ε for {i, j} ∈ Argon atom,
Hij otherwise.

(6.11)

In principle, this modification allows to move the energetic position of the Argon
projected DOS nearly at will. However, due to the overlaps in the non-orthogonal

1Similarly, in STM experiments a saturation of the current with distance is observed in the
contact regime. Also here the donor/acceptor state’s position (on the tip) with respect to the
substrate band structure may vary further due to confinement as the tip approaches the surface.
This may affect the measurements.
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Figure 6.15.: Effect of the energy shift ∆ε on the Ar∗4s (solid lines) and Ar∗4pz
(dashed lines) resonance spectra for Ar∗ adsorbed at a distance of 3.0 Å on Fe(110).
The spectra show the energy ranges from 1.5 eV to 5.0 eV above the Fermi level.

basis set of SIESTA also neighboring sites may be affected, e.g., contributions to the
DOS related to the Fe-atom where the Ar-adsorbate is attached.
We employ the shift in Eq. (6.11) for the case of Ar∗ adsorbed on Fe(110). The

more complete basis set used so far for Argon does not allow for an unambiguous
interpretation of the peaks, since the character of the peaks changes as we apply
the energy shift ∆ε complicating the interpretation considerably. This can be seen
in Fig. 6.15: The contributions from 4s and 4pz orbitals to the resonances move
downwards in energy with increasing negative shifts (up to −1.0 eV). Around ∆ε =
−0.6 eV a jump occurs where the anti-bonding 4pz-contribution crosses with the 4s
resonance resulting in a sharp peak. The bonding 4pz-contribution almost coincides
with the 4s-peak for small shifts ∆ε (this goes along with our previous results for
the optimized wave-packets, where the 4pz-component was shown to have a large
contribution, see Section 6.4). These effects are related to the simple procedure used
to shift the resonance energy in Eq. (6.11): Ar∗ resonances of distinct symmetries
hybridize each in a particular way with the substrate and carry therefore different
weights on the orbitals of the Ar∗ atom and the Fe substrate. This gives rise to
different behaviors as a function of ∆ε.
In an effort to avoid mixing with Ar∗4p states, we restrict ourselves to a limited

basis set for Argon, where only 3p-contributions and the 4s1ζ-component are taken
into account. Using this restricted basis set we apply shifts ∆ε in steps of 0.2 eV. The
resulting line widths Γ for varying shifts can then be mapped out for combinations
of resonance positions ER and adsorption heights d. This is shown in Fig. 6.16.
In the plot it is visible that increasing the adsorption height, while keeping simul-

taneously the resonance at a constant energy position, leads to a decay of the line
widths as it is expected from the exponential decay in Eq. (6.7). On the other hand
one can also see the effect of changing the resonance position at a constant adsorp-
tion height. This reveals the effect of the band gaps. In particular, for the majority
spin channel in Fig. 6.16a a decrease in the line widths can be seen for increasing
resonance energies ER at constant adsorption heights.
Along the red dashed line for zero energy shifts (∆ε=0) we see a decrease of the line
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Figure 6.16.: Disentangling the effects of the adsorption height d and the energy
position of the resonance ER for Ar∗/Fe(110), a reduced basis set is used to describe
of Ar∗ in this case, as explained in the text. The extracted widths are shown in colors
and are in units of meV. The connected red dots are the data points for ∆ε = 0 eV.
The black dots represent the data points for which calculations with positive and
negative shifts have been performed. (a) Shows the majority spin channel and (b)
the minority channel. The green shaded area in (b) indicates schematically the energy
region of the 3d bands.

widths at growing distances as observed for the calculations using a more complete
basis set for Argon (cf. Fig. 6.4). Because of the description of the Argon resonance
in a restricted basis, the line widths from the model calculations differ from the
previously calculated values. However, the effect of the band gap is clearly visible
along the variation of the resonance energies for the majority spin channel. For the
minority channel the behavior as a function of the energy is somewhat different since
in the energy range covered by Fig. 6.16b the dominant character of the bands in
the Fe substrate changes in from the 3d manifold for energies below ∼ 2.9 eV (green
shaded area) towards dispersive 4sp bands at the energies above.

6.6. Conclusions and Outlook
In this chapter we discussed spin-dependent charge injection from core-excited

Argon adsorbates into magnetic surfaces from a theoretical perspective. The Green’s
function technique [34, 35] introduced in the first chapters was used to estimate the
elastic lifetimes of the lowest-energy bound resonance on core-excited Argon.
Our results corroborate the experimental finding that minority spin electron trans-

fer is significantly faster in comparison with the majority spin on Fe(110) and Co(0001)
substrates [50]. As in the experiment the injection is faster on Fe(110) regarding each
separate spin channel, while minority charge transfer on Co(0001) is about as fast as
majority charge transfer on Fe(110). The absolute charge transfer times are of the
order of a few femtoseconds and hence in good agreement with the time-scales from
core-hole-clock experiments [50].
We explore the character of the resonances in front of the surfaces by employing an

optimization scheme mixing pz-components into the initially considered pure Ar∗4s-
resonance. While we find that the optimized wave-packets describing the resonances
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become strongly polarized when approaching the surface, this has only a small effect
on the extracted lifetimes.
We explain the spin-dependency by the interplay with electronic gaps in the sur-

face’s band structures. The variation of the gap sizes for the investigated materials
and different spin channels controls the effective injection time. We qualitatively
illustrated the behavior in reciprocal space using the output from our first-principles
calculations. Subsequently, we employed a descriptive model to give a consistent
explanation in terms of the electronic gaps. While the model captures the effects of
the gaps, it can also be adapted to reproduce the dependence of the lifetimes on the
adsorption height as observed in our DFT-based Green’s function calculations.
We find a discussion of the lifetimes in terms of the angular momenta of the ac-

ceptor states misleading, considering the highly dispersive character of the substrate
states in the energy range of interest. Although contributions from d-type compo-
nents and larger angular momenta can be expected to grow with increasing energies
(as it happens e.g., for a simple plane-wave with respect to an arbitrary center),
this does not reflect and should not be confused with the traditional nomenclature,
where 3d-bands are associated with flat bands directly derived from bound 3d-type
atomic orbitals. Therefore, we claim that the correlation between the spin-dependent
charge-transfer times and the amount of DOS labeled by a d-type symmetry found in
Ref. 50 is mostly coincidental and does not reflect the ultimate cause of the observed
effect. Instead the spin-dependence of the size of the projected band gaps around Γ
at the resonance positions explains the behavior for the studied substrates.
In general charge transfer times at surfaces are primarily controlled by a combina-

tion of the coupling matrix, accounting for the symmetry and the spatial overlap of
the states, and the available density of acceptor states in reciprocal space (Fermi’s
golden rule). To determine the availability of acceptor states, the energetic position
of the resonances with respect to electronic gaps in the surface band structures is
crucial. In the case of Ar∗ on Fe(110) or Co(0001) the resonance position is strongly
influenced by the increasing confinement of the resonance wave-packets as one re-
duces the adsorption height. This shifts the resonances up in energy and forces them
deeper into the projected band gaps. Hence, the effect of the electronic gaps competes
with simultaneously growing overlaps at decreasing adsorption heights. Overall, at
the level of time-independent semi-local DFT the agreement with the experiment is
good, even considering that the alignment of the adsorbate states with the substrate’s
electronic structure might be misrepresented.
Aside from performing explicit time-propagations in order to investigate dynamic

effects, a continuation of the current study for the magnetic Ni(111) substrate to
complete the comparison with all three experimentally studied surfaces is desirable
for future investigations. Furthermore, a potential extension of prevailing tunneling
models like the Tersoff-Hamann approximation [184] for STM simulations to incor-
porate the effect of band gaps along the lines of the descriptive model [35] employed
in this chapter provides an interesting perspective. This requires the use of a reason-
able model for the wave function of the tip in order to assign relative weights to the
contributions from the DOS at different k-points.
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Chapter 7

Polarization Dependence of
Electron Dynamics on 1T-TaS2

In the preceding chapters we explored the lifetimes of resonances on adatoms and
molecules that were attached to surfaces. In this chapter we take it a step further
and study charge transfer in the outer atomic layers of surfaces. In particular, we
are interested in the TMD 1T-TaS2, which we study by first-principles modeling in
combination with a core-hole-clock analysis. This work is the result of a close col-
laboration with the experimental group lead by Prof. A. Föhlisch and, in particular,
D. Kühn et al., who conducted the core-hole-clock experiments. The chapter is based
on the publication in Ref. 52.
TMDs are materials of the chemical compositionMX2, where each transition metal

atom (M = Mo, W, Ta, etc.) is sandwiched between two chalcogen atoms (X =
S, Se, Te). They often exhibit a layered structure and in many cases TMDs can
be synthesized as few- or monolayer structures. They comprise semi-conducting
2D-materials with promising electronic properties for technological applications like
switching, sensing, energy storage, and opto-electronics [234–237]. The pronounced
spin-orbit coupling in TMDs allows to address spin or valley degrees of freedom in
electronic applications (i.e., spintronics, valleytronics) [238–240]. TMDs typically
preserve quasi-two-dimensional properties in the bulk phase, where individual layers
are joined by vdW forces. They often exhibit various electronic and structural phases.
An especially rich phase diagram is observed for 1T-TaS2 featuring charge density
waves (CDWs) with varying degrees of commensurability, superconducting behavior,
and metal-insulator transitions [241, 242]. This offers the possibility to study specific
physical processes, like electronic excitations or charge transfer, in different electronic
phases of one material.
At the same time 1T-TaS2 can be seen as a prototypical system for investigations

of the directionality of charge transfer. The layered structure of the material supports
delocalization of electrons into in-plane directions, while it hampers delocalization
into out-of-plane directions (with respect to the material’s layers). Such directionality
can be probed by polarization-dependent excitations of oriented wave-packets in core-
hole-clock experiments [22, 123]. The promotion of electrons into in-plane polarized
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resonances that overlap strongly with orbitals of the neighboring atoms of the same
layer favors in-plane charge transfer. Equivalently, out-of-plane orbital-polarization
favors out-of-plane charge transfer. This picture is paralleled in this chapter by first-
principles calculations of 1T-TaS2 surfaces, where we study spectral projections onto
different orbital-orientations.
Our polarization dependent core-hole-clock experiments with respect to the sulfur

2s → 3p transitions in 1T-TaS2 indicate a surprising change in the charge transfer
behavior across different electronic phases, when varying the temperature. In the
nearly commensurate charge density wave (NCDW) phase out-of-plane polarized
excitations yield twice slower charge transfer times, than in-plane excitations. This
reflects the layered structure of the material and is in line with comparable results
for SnS2 [142]. In striking contrast to this, the commensurate charge density wave
(CCDW) leads to isotropic behavior, where the out-of-plane charge transfer proceeds
equally fast as its in-plane counterpart, whose time-scale remains unaffected by the
NCDW to CCDW transition.
In order to explore the possible sources of the observed behavior, we perform

Green’s function calculations of 1T-TaS2 surfaces in the CCDW. Our theoretical
model reproduces the invariance of the charge transfer times with respect to different
orbital-polarizations of the excited wave-packets. In combination with the experi-
ment, we conclude therefore, that an increased interlayer coupling causes isotropic
three-dimensional charge transfer behavior in the CCDW phase. The experimentally
observed breakdown towards anisotropic charge transfer in the NCDW phase is not
easily addressed in our fully periodic calculations (due to the incommensurations in
the structure). However, it is has been suggested that variations with respect to the
stacking of the CDWs in subsequent layers can critically affect the electronic struc-
ture around the Fermi level [243, 244]. Here, we study the effect of such variations
in the stacking onto the unoccupied electronic structure. Our results indicate, that
these variations are not the responsible mechanism for the differences in the charge
transfer behavior across the NCDW–CCDW transition.
The chapter is organized as follows: First, we set up a theoretical model of 1T-TaS2

in the CCDW phase, which captures previously observed experimental properties of
the material. Secondly, we briefly introduce some aspects of excitations in atoms by
linearly polarized light and their effect onto the spectra in our calculations and ex-
periments. Then we summarize the experimental core-hole-clock results. To further
investigate the origin of the experimental results, we study the calculated unoccupied
electronic structure of 1T-TaS2 above the Fermi level. Here, we focus on the effect
of different stackings and orbital-projections of the extracted spectra in relation to
the polarization-dependent experiments. We relate the features of the experimental
spectra to semi-empirical two-dimensional maps derived from our DFT calculations.
The correspondence between experiment and theory allows us to extract estimates
of the lifetimes of the identified features in the energy ranges probed by the exper-
iment. We use our results to rationalize the invariance of the experimental charge
transfer times with respect to different polarizations of the excitation in the CCDW.
The chapter is concluded with a summary and a brief outlook onto possible future
investigations.
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7.1. 1T-TaS2 in the Commensurate Charge
Density Wave Phase

A CDW is a periodic modulation of the electron density, which arises commonly
in low-dimensional electron systems in combination with a periodic lattice distortion
(PLD) [242, 245]. The period of these two modulations can be expressed by rational
or integer multiples of the lattice vectors in the case of a CCDW, or by irrational
multiples of the lattice vectors in the case of a NCDW. Either way the original
translational symmetry of the underlying crystal lattice is broken. The mechanism
behind the formation of CDWs is frequently illustrated using the example of Peierls
distortions in one-dimensional chain-like systems [246].
Regarding a Peierls distortion a doubling of the lattice constant by displacing ev-

ery second atom in the one-dimensional chain leads to the opening of a gap around
the Fermi energy (for half-filled bands, i.e., every ion contributes one electron). This
opening of a gap translates into an effective energy gain due to the shift of the
occupied band next to the Fermi level to lower energies, driving a metal-insulator
transition. A Peierls distortion can be observed, whenever the gain in energy due to
the opening of gaps around the Fermi energy is larger than the energy required to
distort the lattice. This happens usually below a characteristic transition temper-
ature. A more general analytic description of CDWs is achieved in terms of model
Hamiltonians taking electron-electron and electron-phonon interactions into account,
such as the Fröhlich Hamiltonian [247].
At ambient pressure 1T-TaS2 exhibits a CCDW at temperatures below ∼ 180 K.

The super lattice is rotated by 13.9◦ with respect to the original crystal lattice and
exhibits a PLD, where clusters of 13 Ta atoms form the so-called Star-of-David recon-
struction [248]. Above the critical temperature of ∼ 180 K a transition to a NCDW
occurs. Here, the CDW vector is rotated by 12◦ with respect to the fundamental lat-
tice and multiple Star-of-David reconstructions agglomerate into clusters separated
by domain walls [249]. At even higher temperatures above ∼ 350 K the CDW be-
comes incommensurate [241]. Incommensurations and domain walls are not easily
simulated in periodic calculations as the simulation cells become quickly intractably
large. However, recently DFT has been used to model the appearance of domain wall
reconstructions related to the NCDW [250].
In our calculations we restrict ourselves to fully periodic 1T-TaS2 in the CCDW

phase. We employ the SIESTA/TranSIESTA code and in particular the tbtrans
module to extract Green’s functions in relation to semi-infinite surfaces as described
in Chapter 3. Since the repeating layers of 1T-TaS2 are joined by vdW-interactions,
we apply the vdW-DF by Dion et al. [81] with the optimized exchange by Klimeš
et al. [85] (optB88-vdW) to account for dispersion forces in-between the layers. The
optB88-vdW functional has been reported to yield a good performance for layered
materials in comparison with accurate RPA calculations, in particular when inves-
tigating energetic variations related to different stackings [251]. To generate the
required relativistic Troullier-Martins pseudopotentials [109], we used the semi-local
density functional BLYP [74, 252], which is based on the exchange by Becke [74],
as is the optB88-vdW functional [85]. Furthermore, we employed an atom centered
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Figure 7.1.: Geometries employed in the simulations presented in this chapter. (a)
Unit cell of the distorted structure of TaS2 in the CCDW. The black box indicates the√

13a×
√

13a supercell in which the blue Ta atoms are slightly displaced towards the
central Ta atom (displacements not discernible in the figures) by a periodic lattice
distortion in the CDW-phase. The light blue vectors a, b, and c in the subplots
depict the unit cell vectors of 1T-TaS2 in the undistorted structure. (b, c) Set-ups
for simulations of 9-layer slabs of 1T-TaS2 with respect to different CDW stackings:
(b) according to a stacking vector Ts = c and (c) according to Ts = 2a + c. The
stacking in (c) results in a tilted computational cell. The blue shaded areas indicate
the layers carrying the self-energies to connect the slab on each side of the cell to
infinite 1T-TaS2 substrates.

basis set including double-ζ and polarization orbitals [104] with a SIESTA-specific
energy-shift of 0.1 eV for the confinement of the orbitals.
This level of theory is not expected to reproduce every detail of the band structure

around the Fermi level as for example the accurate size of the experimentally observed
pseudogap [253]. Nevertheless, a rather good overall agreement with spectroscopic
results has been reported for comparable simulations [243, 244].
To simulate the bulk phase of 1T-TaS2 in the CCDW state, we set up the well-

known
√

13a×
√

13a hexagonal super cell containing 13 Ta atoms in the Star-of-David
reconstruction [248, 254], see Fig. 7.1a. This is achieved by an initial displacement of
the surrounding Ta atoms towards a central one. A subsequent geometry relaxation
produces the Star-of-David reconstruction, where the sulfurs around the center of
contraction buckle slightly outwards. The distortion of the lattice simultaneously
stabilizes a CDW [243]. The forces were relaxed within a threshold of 25 meV/Å and
a maximum displacement of 0.1 Bohr was allowed between subsequent relaxation
steps. We used a 5 × 5 × 9 Monkhorst-Pack k-point sampling, a Mesh cutoff of
200 Ry, and an electronic temperature of 300 K. Convergence was assumed when the
elements of the density matrix changed by less than 10−4 in consecutive SCF steps.
In order to set up the

√
13a×

√
13a super cell of the layered bulk material the lattice

parameters of the undistorted material’s cell containing a single unit of TaS2 were
used. The corresponding in-plane lattice vectors a and b of the undistorted material
are shown in Fig. 7.1a (light blue arrows). The lattice parameters a = 3.398 Å and
c = 5.910 Å were obtained from relaxation runs with a stress tolerance of 0.1 GPa
and a k-point sampling of 20× 20× 10. These values are in good agreement with the
ones determined experimentally (a = 3.360 Å and c = 5.897 Å) [249].
The final slab calculations with a fixed cell employed nine layers, where the outer
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Figure 7.2.: Perspective sketch of the selective excitation of S2s-electrons into S3p-
states inside a single layer of 1T-TaS2 by linearly polarized light with an electrical
field vector E: Shown are the dipole transitions into (a) out-of-plane and (b) in-plane
polarized orbitals.

two layers on each side have been relaxed. The surface Brillouin zone was sampled
with 5× 5 k-points and 30 Å of vacuum were added. Moreover, we used two types of
cells to simulate different stackings of the CDW/PLD in consecutive layers: Hexago-
nal super cells (Fig. 7.1b) to simulate the CDW stacking given by the stacking vector
Ts = c [249, 255] and triclinic super cells (Fig. 7.1c) for the Ts = 2a+c stacking. The
outer two layers on each side of the cells carried the selfenergies connecting the slab
to an infinite amount of layers representing the bulk substrate (see blue shaded areas
in Fig. 7.1b, c). These selfenergies were extracted from separate bulk calculations
considering a computational cell with just two TaS2-layers.
In the Tables 7.1 and 7.2 we compare the distorted

√
13a ×

√
13a unit cell from

our bulk calculations with the experimental observations [255, 256]. Our calculations
produce reasonable structures as can be seen from the displacements with respect
to the undistorted crystal structure in Table 7.1 and the distances between pairs
of neighboring atoms Table 7.2. Considering the experimentally reported standard
deviations and the slightly larger simulation cell in comparison to the experimental
lattice, the calculated values agree well with the geometry in the experiment.

7.2. Selective Excitation with Polarized Light
In the experiment the X-ray excitation causes an electronic transition from an

occupied S2s state into an unoccupied S3p orbital. According to atomic dipole selec-
tion rules the polarization of the incident electromagnetic field E with frequency hν
can be used to formally select the orientation of the intermediate S3p states, i.e., a
preparation of the initial wave packet or the excited electron in terms of a particular
linear combination of the px, py, and pz orbitals is possible. Accordingly, we write
for the resonance states in our calculations [22]

|φR〉 = |φR(t = 0)〉 = ex |px〉+ ey |py〉+ ez |pz〉 = |φR(ϑ, ϕ)〉 , (7.1)

where ei=x,y,z are the components of the normalized polarization vector e of the
electromagnetic field E = |E|e. The polarization of the resonance state can be
expressed in terms of polar coordinates |φR(ϑ, ϕ)〉 with the azimuthal angle ϕ.
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Table 7.1.: Displacements in Å of different atoms in the Star-of-David reconstruction
with respect to the undistorted substructure of 1T-TaS2 in comparison with the
experimental findings [255, 256]. The inequivalent atomic sites are numbered in the
drawing on the left in analogy to the Refs. 255, 256. The values in brackets refer to
the standard deviations in units of the last displayed digit.

theo. exp. theo. exp.
Ta1 0.001 0.0 S1 0.112 0.11(4)
Ta2 0.192 0.215(5) S2 0.092 0.09(3)
Ta3 0.245 0.236(6) S3 0.084 0.10(1)

S4 0.090 0.13(2)
S5 0.073 0.07(2)

Table 7.2.: Distances between neighboring atoms in the Star-of-David reconstruc-
tion in comparison with the experimental values [255, 256]. Shown are values for
Ta—Ta and Ta—S pairs in Å. The theoretical values show three decimal places to
put emphasis on chemically different and equivalent sites. The integers before the
numbered atoms refer to the amount of equivalent neighbors. We note, that the
theoretical values for the two Ta2—1S1 distances might be swapped with respect to
the experimental ones as it was not possible to identify the atoms unequivocally. The
same holds for the two Ta2—1S2 distances.

theo. exp. theo. exp.
Ta1—6Ta1 3.207 3.15(1) Ta1—6S1 2.528 2.50(3)
Ta2—1Ta1 3.207 3.15(1) Ta2—1S1 2.456 2.39(3)

—2Ta2 3.207 3.15(1) —1S1 2.462 2.41(3)
—1Ta2 3.268 3.27(1) —1S2 2.541 2.48(3)
—1Ta3 3.305 3.29(1) —1S2 2.537 2.45(3)

—1S3 2.568 2.54(3)
—1S4 2.583 2.57(3)
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The spectral density is then given by the expectation value of the Green’s function
operator over the resonance state ρR(E, ϑ, ϕ) = −1/π ImG+

RR(E) [cf. Eq. (3.39)].
We split the spectrum G+

RR(E) into two parts: an in-plane G+
‖ (E) and an out-of-

plane G+
⊥(E) contribution. The in-plane contribution is given by an average over the

azimuthal angles ϕ (the z-direction is perpendicular to the surface)

G+
‖ (E) = 1

2π

∫ 2π

0
〈φR(ϑ = π/2, ϕ)|G+(E)|φR(ϑ = π/2, ϕ)〉 dϕ

= 1
2 〈px|G+(E)|px〉+ 1

2 〈py|G+(E)|py〉 ,
(7.2)

whereas the out-of-plane contribution is simply given by the contribution from the
pz orbitals

G+
⊥(E) = 〈pz|G+(E)|pz〉 . (7.3)

Using Eqs. (7.2) and (7.3) one can in principle extract estimates of the ultrafast time-
scales of the charge transfer in different directions inside the material (cf. Chapter 3
and Section 7.6 below).
Additionally, and in analogy to the core-level spectroscopy experiments presented

below (see also the introduction in Chapter 4), we generate pseudopotentials for
excited sulfur atoms considering an electronic configuration with a hole in the 2s core
state. In our periodic calculations the positive charge due to the hole is subsequently
balanced by an additional electron in the valence. We assume that there are only two
excited sulfur atoms inside the simulation cell, i.e., one on each of the two outermost
sulfur layers of 1T-TaS2 facing each other (cf. Fig. 7.1b, c). The excited sulfurs
are placed symmetrically on both sides of the slab in a dipole canceling set-up. We
take into account the five inequivalent sulfur sites in the outermost sulfur layers in
separate calculations. It can be seen in the drawing in Table 7.1, that there are three
of each of the sulfurs numbered 1 to 4 and only one with the label 5. To obtain the
overall spectra we perform correspondingly weighted averages.

7.3. Polarization Dependence of the Resonant
Photoemission Spectra

The core-hole-clock analysis of resonant photoemission spectroscopy (see Chap-
ter 4) is a uniquely powerful tool to investigate the atomic origin and directionality
of charge transfer. This is rooted in the chemical selectivity, surface sensitivity, de-
fined knowledge about the involved electronic transitions, and sub-femtosecond time
resolution of the technique. As illustrated in the previous section, atomic dipole se-
lection rules allow in such experiments to selectively populate oriented orbitals such
as px, py, and pz components of the sulfur 2s→3p transition (see Fig. 7.2). This has
been established for the directional attosecond charge transfer from adsorbed sulfur
atoms into a Ru(0001) [22, 123] surface. This section summarizes new results from
polarization dependent core-hole-clock experiments probing directional charge trans-
fer for different electronic phases of layered 1T-TaS2. The experiments have been
carried out by D. Kühn et al. in the group of Prof. A. Föhlisch at the BESSY II
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Figure 7.3.: Experimentally recorded Coster-Kronig auto-ionization spectra of
1T-TaS2 in the NCDW (a, b) and CCDW (c, d) phase for the S2s→S3p transi-
tions. In both cases the spectra are shown for excitation into in-plane orbitals (‖)
and out-of-plane orbitals (⊥) of p-type. Lighter colors show higher intensities. The
lines in (a, b) indicate the linear dispersion of the localized Auger-Raman decay
channels for S2p−13p−13p1 (L) and S2p−13s−13p1 (l) final states. In contrast, the
delocalized Auger decay channels with the final states S2p−13p−1deloc1 (D) and
S2p−13s−1deloc1 (d) do not disperse with the incoming photon energy. The delo-
calized channels appear above the resonance frequency of hν = 226 eV. For clarity,
the lines indicating the channels are not repeated in (b, d), where instead the boxes
indicate the rough energy ranges of the simulated spectra presented below in Fig. 7.9.
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Figure 7.4.: Scheme showing the various transitions during resonant photoemission
in sulfur contributing to the auto-ionization spectra in Fig. 7.3. In particular, ¬ initial
excitation by incoming radiation, ­ decay of the core-hole, and ® ejection of the
Auger(-like) electron. In the presence of the excited electron localized channels (l, L)
contribute, after delocalization of the excited electron delocalized channels (d, D)
contribute. The Shake-up process shown on the left side leads to an equivalent final
state as the decay via the L-channel. Note that the numbering of the transitions
is not meant to imply a strict chronological order of the processes. In particular,
the Auger-like decay via ­ and ® is often considered as one process. Regarding the
localized l, L-channels also the excitation cannot be seen as entirely independent from
the decay, which is evident from the dispersion of the kinetic energy of the emitted
electron with the incident photon energy in the experiments.

in Berlin. More details regarding the specifics of the experiment can be found in
Ref. 52.
Fig. 7.3 shows the experimental auto-ionization spectra for the room temperature

NCDW phase and the low temperature CCDW phase (∼ 30 K, cryogenic tempera-
ture) of 1T-TaS2. The spectra have been recorded for excitations with in-plane (‖)
and out-of-plane (⊥) polarized X-rays, referring to the surface plane. The dashed
lines in Fig. 7.3a, b indicate the various decay channels appearing in the spectra.
After the initial excitation (S2s→S3p), the excited electron has the possibility to

stay localized at the excited atom during the core-hole decay. In this case the Auger
decay proceeds via emission from an occupied 3s-level via the so-called l-channel
or via emission from an occupied 3p level via the L-channel. The associated final
state configurations are S2p−13s−13p1 (l) and S2p−13p−13p1 (L), respectively. The
localized channels show the typical linear dispersion of the features towards higher
kinetic energies with increasing energy of the incoming photons.
The excited electron has also the possibility to decay (delocalize) into the sub-

strate before the core-hole decays, leading to delocalized decay channels via Auger
processes. This involves the possible final states S2p−13p−1deloc1 (D-channel) and
S2p−13s−1deloc1 (d-channel) for decays involving the occupied 3p or 3s levels, re-
spectively. Clearly, for the delocalized channels the energy is not locally conserved.
In other words the coherence between the initial excitation process and the subse-
quent Auger decay is lost so that the Auger emission lines appear at constant kinetic
energies of 41 eV (d-channel) and at 50, 6 eV (D-channel).
A scheme showing all the possible transitions contributing to the auto-ionization

spectra can be seen in Fig. 7.4. The scheme additionally shows that shake-up pro-
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7. Polarization Dependence of Electron Dynamics on 1T-TaS2

Figure 7.5.: Experimentally obtained charge transfer times for in-plane (‖) and
out-of-plane (⊥) polarization of the incoming radiation: (a) results for the NCDW
and (b) for the CCDW of 1T-TaS2. Due to the appearance of a second resonance
between 229 eV and 230 eV only the extracted value below 228.5 eV can be directly
interpreted as charge transfer times. The values above those energies, which are
shown here as shaded data points, result from a superposition of the intensities from
the first and the second resonance (see Section 7.5 below) and hence are difficult
to interpret, i.e., to analyze in terms of absolute charge transfer times using the
core-hole-clock technique.

cesses involving an excitation of the 3p-level and direct photoemission from the 2p-
level coincide with the final states of decays via the L-channel. These shake-up
processes are allowed through monopole selection rules [22]. Their presence makes
the analysis of the L-channel unsuitable for the core-hole-clock analysis, since they
prevent a direct identification of the localized channels and thus inhibit an unam-
biguous extraction of the Raman fraction. Therefore, we examine instead the pure
auto-ionization feature of the l-channel in order to extract information about the
lifetimes of the excited resonances.
The resonances appear at photon energies of ~ω = 226 eV. The intensities of all

the channels (l, L, d, D) can be unambiguously extracted for photon energies ranging
from 227.5 eV to 235 eV, probing states above the Fermi level. At 235 eV the l- and
D-channels cross. Nevertheless, the charge transfer analysis of the experimental data
had to be further restricted to the range of photon energies from 227.5 to 228.5, where
the l-channel and the d-channel are ideally separable. The reason for this is, that
between 229 eV and 230 eV a second resonance appears making an unambiguous
identification of the separate channels difficult (see the description in Section 7.5
below).
To extract the lifetimes from the experimental data, a set of Lorentzian peaks was

fitted for each photon energy (see [52] for details of the fitting procedure). This
allows to extract the Raman fraction in dependence of the photon energy from the
intensities of the localized and delocalized decay channels. The charge transfer time
is then determined relative to the core-hole lifetime (τc = 0.5 fs) of the sulfur 2s state
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Figure 7.6.: Ta planes of 1T-TaS2 in the CCDW: (a) Star-of-David reconstructions,
where 12 surrounding Ta atoms contract towards a central one. The red dashed line
marks the

√
13a ×

√
13a cell. Different stacking vectors Ts (red dashed arrows)

control the alignment of the reconstructions in adjacent layers: (b) Pairing of the
Star-of-David centers in subsequent layers Ts = c and (c) avoiding such paring in
subsequent layers Ts = 2a + c.

[cf. Eq. (4.5)]. Fig. 7.5 displays the extracted lifetimes for all combinations of the
two investigated CDW phases and the two polarizations of the X-ray excitation in
the relevant energy range.
In the NCDW phase in-plane charge transfer is twice as fast as out-of-plane charge

transfer (cf. Fig. 7.5a), emphasizing the two-dimensional character of the material. A
similar, but more pronounced anisotropy regarding the charge transfer in quasi-two-
dimensional materials has been reported for core-hole clock experiments on layered
SnS2 [142]. In the latter work, the anisotropy was related to different spectral ranges
with varying composition of orbital orientations (in-plane and out-of-plane), as ob-
tained from DFT-calculations. The measurement on TaS2 presented here, directly
assess the anisotropy in the material by probing different orbital orientations via
selective initial excitation.
Surprisingly, and in contrast to the NCDW phase, the CCDW phase (cf. Fig. 7.5b)

exhibits no dependence on the polarization of the initial excitation. We observe thus
an isotropic charge transfer behavior. Both, the in-plane and the out-of-plane charge
transfer being as fast as the in-plane charge transfer in the NCDW phase. The
nominal time-scale is about 100 as. This lines up with several previous experimental
findings: The appearance of domain walls in the NCDW phase [249]. The increase
of CDW ordering along the c-axis during the NCDW to CCDW transition. The
presence of a metallic band at the Fermi level in the direction perpendicular to the
crystal layers observed in ARPES experiments [257].

7.4. Influence of Stacking on the Electronic
Structure of 1T-TaS2

The electronic structure of low-dimensional materials depends strongly on a variety
of parameters like pressure, doping, and stress. Similarly, the electronic structures
of 1T-TaS2 [243, 244, 258] and TaSe2 [259] are known to be sensitive to the stacking
sequence of the CDW/PLD in subsequent layers. In particular, the formation of a
metallic band along the out-of-plane direction [257] has been linked to a particular
stacking order in several studies of CCDW phase. To investigate the possibility of
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similar effects at energies further above the Fermi level (where the 3p-resonances of
interest live, i.e., in the range up to ∼ 2 eV above the Fermi level), we study the
influence of stacking in the CCDW phase within our DFT model.
We examine in particular two different stackings, which appear in the CCDW phase

of 1T-TaS2 according to theoretical considerations [260, 261] and diffraction experi-
ments [262–264]. The first one is defined by the stacking vector Ts = 2a and aligns
the centers of the Star-of-David reconstructions within adjacent layers (Fig. 7.6b).
This first stacking is energetically less favorable, since it pairs the outwards buckling
sulfur atoms around the Star-of-David centers in the neighboring TaS2 sheets. The
second stacking according to Ts = 2a + c pairs weakly displaced Sulfur atoms in-
between the centers of contraction in one layer with strongly displaced Sulfur atoms
at the Star-of-David centers in a neighboring layer.
At the Fermi level, our bulk calculations of 1T-TaS2 in the CCDW phase show

clearly the observed metallic band for the Ts = c stacking along the out-of-plane
Γ—A direction of the band structures displayed in Fig. 7.7a, b. The band is almost
entirely flat in the in-plane directions of the Brillouin zone, where the electronic struc-
ture is pseudogapped around the Fermi level, making the material a semiconductor
along these directions. Interestingly, changing the stacking to Ts = c in Fig. 7.7c, d
switches the material to a metallic phase along all directions in the calculations. This
reproduces the observations from comparable DFT-based studies [243, 259].
Above the Fermi level the band structure from our bulk calculations appears split

by an electronic gap at around ∼ 2 eV. This is in line with the observations from
IPES experiments [265, 266]. The IPES spectroscopic results in both of these studies
show a splitting into two bands around ∼ 2 eV. Another slight splitting of the bands
is also visible for the Ts = c stacking in Fig. 7.7a, b around 1 eV, whereas it is absent
in the second stacking.
Additionally, we study the contributions to the different bands from in-plane po-

larized (‖, px,y-orbitals, Fig. 7.7b, d) as well as from out-of-plane polarized (⊥, pz-
orbitals, Fig. 7.7a, c) p-type orbitals. This is indicated by the widths of the bands
in the plots. The weights of the in-plane polarizations have been determined by an
average between the px and py contributions [compare to Eq. (7.2)] and the ones
of the out-of-plane polarizations by the pz contributions. It is clearly visible that
the dispersive metallic band crossing the Fermi level is related to out-of-plane po-
larized orbitals, while the weight stemming from in-plane polarized contributions is
negligible.
The block of bands between the Fermi level and the gap around ∼ 2 eV is overall

rather similar regarding the weights on in-plane and out-of-plane components in the
Γ—A direction. However, a few dispersive bands appear, which pertain mainly to
out-of-plane oriented p-orbitals. Above the electronic gap around ∼ 2 eV the contri-
butions are less homogeneously distributed: Contributions from in-plane polarized
orbitals are centered around roughly 3.5 eV, while the out-of-plane contributions
dominate at higher energies around roughly 5 eV for both stackings.
In comparison with experiments and further theoretical studies, we have so far es-

tablished a model of the geometry and the electronic structure of 1T-TaS2 in the bulk
CCDW phase. This allows us to move on to surface calculations using Green’s func-
tions to describe the semi-infinite substrate (see the geometric setup in Fig. 7.1b, c).
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Figure 7.7.: Band structures of bulk 1T-TaS2 for different stackings of the CDW
around and above the Fermi energy (used to define the zero of energy): (a, b) stacking
according to Ts = c and (c, d) according to Ts = 2a + c. The thickness of the bands
reflects the weight of the states on the in-plane px,y-orbitals (‖) in (a, c) and the
out-of-plane pz-orbitals (⊥) in (b, d). Our results reproduce the transition from
an in-plane semi-conducting material for Ts = c towards an in-plane conductor for
Ts = 2a + c in agreement with Ref. 243.
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Figure 7.8.: Spectral densities from weighted averages across inequivalent sulfur
sites in relation to different polarizations of S3p orbitals: in-plane pxy-polarization
(‖) and out-of-plane pz-polarization (⊥). Shown are two different stackings of CDWs
in consecutive layers. In (a) the stacking is according to a stacking vector Ts = c
and in (b) according to Ts = 2a + c. The thick lines refer to the core-excited case
and the thin dashed lines belong to the ground state case. To obtain the average
core-excited spectra, we performed five distinct calculations, each considering a hole
in the 2s shell of the pseudopotentials of one of the inequivalent sulfurs at the surface.

We also introduce the core-excited sulfur atoms by considering modified pseudopo-
tentials as described in Section 7.2.

Fig. 7.8 shows the spectral densities related to in-plane [Eq. (7.2)] and out-of-plane
[Eq. (7.3)] polarized S3p-orbitals in the outer atomic layer of a 1T-TaS2 surfaces. We
also consider the two readily introduced stacking schemes Ts in the plot. All spectra
have been calculated from weighted averages over the inequivalent sulfur sites. The
thick lines refer to the core-excited simulation, while the dashed lines refer to the
ground state. In the core-excited case the main weights of the two blocks of bands
which can be observed above the Fermi level are shifted towards lower energies.
However, the splitting of the DOS shortly above 2 eV, which we already observed
for the ground state bulk band structures in Fig. 7.7, is preserved in the averaged
spectra of the core-excited case (thick lines). Regarding both stackings, the DOS
is spread out over a broad energy range, as a consequence of the covalent bonding
of the sulfur atoms inside the material. The appearance of the spectra in the two
subplots Fig. 7.8a, b is not critically affected by Ts.

The broad appearance of the spectra in Fig. 7.8 makes an assignment of spectral
features to the resonances studied in the core-hole-clock experiment difficult. This is
in contrast to the previously studied molecules (Chapter 5) and atoms (Chapter 6)
adsorbed on surfaces, where the adsorbate states appeared as peaked resonances in
the spectra. To relate the resonances observed in the experiment to the calculations
we perform a post-processing of the data in the next section.
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Figure 7.9.: Simulated spectra of the auto-ionization processes according to the
semi-empirical formula in Eq. (7.4). The spectra are derived from the spectral den-
sities related to the stacking vector Ts = c in Fig. 7.8a. Shown are the results for
out-of-plane excitations (a) and in-plane excitations (b).

7.5. Semi-Empirical 2D Intensity Maps
In order to achieve a more immediate comparison with the experimental autoion-

ization spectra for the CCDW phase of 1T-TaS2, we map the intensity of the localized
decay channels (l- and L-channels) after S2s→S3p excitation in the plane of the kinetic
energy of the outgoing Auger-like electrons EA and the photon energy ~ω. Therefore,
we employ an adapted semi-empirical model following Drube et al. [267] and Föhlisch
et al. [268], which we use to simulate the localized autoionization channels shown in
Fig. 7.4,

I(EA, ~ω) ∼
∫ ∞
EF

dE
∫ EF

−∞
dE ′

ρ3p(E)
(~ω − E − E2s)2 + (Γ2s/2)2

× ρ
3s/3p
SO (E ′)

(~ω − E − EA − E2p3/2 − E ′)2 + (Γ3s,3p/2)2 .

(7.4)

The first fraction below the double integral refers to the probability of the transi-
tion S2s→S3p of the excitation process (Fig. 7.4, ¬), where the denominator ensures
the conservation of energy taking into account a broadening due to the lifetime of the
sulfur 2s core-hole of Γ2s = 1.5 eV. The electron is excited into the unoccupied DOS
of the 3p-orbitals ρ3p(E) at the energy E. This DOS is taken from our core-excited
surface calculations shown by the thick lines in Fig. 7.7a. We use exclusively the
data for the Ts = c stacking since the differences with respect to the other stacking
are negligible.
The Auger-like decay is described by the second fraction in Eq. (7.4) and proceeds

via the transitions ­ and ® in Fig. 7.4. In this schematic view the 2s core-hole
is filled by electrons from the energetically higher lying 2p-levels and the thereby
released energy is used to eject electrons from the occupied DOS of the sulfur 3s-states
(l-channel) or 3p-states (L-channel) at the energy E ′. We denote the corresponding
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occupied DOS by ρ3s/3p
SO (E ′) and adapt it, to account for the spin-orbit splitting of

the 2p level in the following way,

ρ
3s/3p
SO (E ′) =

∫
[ρ3s(E ′) + ρ3p(E ′)][δ(ε− E ′) + 2δ(ε− E ′ + ∆ESO)] dε . (7.5)

Here, we have taken into account the ratio between the multiplicities of the spin-orbit
split 2p levels by placing a factor of 2 in front of the second δ-function (i.e., 2p3/2
has four, while 2p1/2 has only two states corresponding to different values of the
projection of the total angular momentum quantum number MJ ). The spin-orbit
splitting is given by the energy ∆ESO = E2p1/2 − E2p3/2 = 1.2 eV. The experimental
determined binding energies of the E2p1/2 level and E2s level are around 162.4 eV and
226 eV, correspondingly (considering a single-hole final state). EA is the energy at
which the Auger electron is emitted. All energies in Eq. (7.4) are with respect to the
Fermi level EF, so that in order to obtain the kinetic energy Ekin in the plots one has
to subtract the experimentally estimated work function of ∼ 4.2 eV from A.
Furthermore, we employ in Eq. (7.4) a broadening Γ3s,3p = 3.3 eV, corresponding

to the phenomenological width which was used for the experimental fittings of the
autoionization spectra. In order to match the experiment, the final spectra have
been shifted to lower kinetic energies by ∼ 2.6 eV. This discrepancy may be due to
additional coulomb interaction between the two holes in the final states (S2p−13s−1

and S2p−13p−1) of the localized decay channels.
Fig. 7.9 shows the resulting semi-empirical spectra for the Ts = c stacking and the

two polarizations (in-plane and out-of-plane). The features in the spectra, resemble
the experimental data in Fig. 7.3c, d closely. The corresponding energy ranges in
the experimental data (Fig. 7.3) are marked by white frames. The splitting of the
bands around 2 eV (cf. Fig. 7.8) causes two features in the semi-empirical spectra
around ∼ 228 eV in both subplots of Fig. 7.9. However, for the out-of-plane polar-
ization (Fig. 7.9b) the second feature above ∼ 228 eV appears strongly broadened
along the axis of the photon energies as in the experimental data. This establishes
a good correspondence between the two separate features above the Fermi level in
the theoretical spectra with the features in the experimental auto-ionization spectra.
Due to the presence of two resonance features (one below and the other above ∼ 2 eV
with respect to the Fermi Level) a reliable analysis of the charge transfer times in
terms of the core-hole-clock method can only be performed for photon energies below
the appearance of the second resonance, while at energies above the spectra contain
information about two distinct 3p-resonances.

7.6. Lifetime Extraction from S3p-Resonances in
1T-TaS2: Facing Limitations

The theoretically determined S3p-projected spectra in Fig. 7.8 are rather broad
and exhibit multiple features, reflecting the strongly hybridized character of the sul-
fur atoms. Such strong broadening inhibits the direct extraction of lifetimes from
peak widths, which are associated with well-defined resonances. However, the corre-
spondence of the experimental and the semi-empirical spectra in (Figs. 7.3 and 7.9),
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respectively, allows us to identify the spectral features related to the energy ranges for
which an unequivocal determination of the lifetimes by the core-hole-clock method
is possible.
We identify in particular, the DOS between the Fermi energy EF = 0 eV and

the gap around 2.2 eV in Fig. 7.8a, b with the first resonance in the experimental
spectra at 226 eV. Readily upon inspection with the bare eye, the calculated spectral
densities in this energy range do not depend significantly on the orbital polarization
in this energy range. One can also see that a strong dependence of the spectra on
variations related to the stacking Ts can be ruled out.
In order to estimate values for the lifetimes related to separate features in the

theoretical spectra ρ(E) (cf. Fig. 7.8), we transform these to the time domain. We
consider here a window function W (E) to isolate the spectral feature corresponding
to a resonance living on an energy interval [Emin;Emax],

W (E) = [1− f(E − Emin)]f(E − Emax), (7.6)

where f(E) is the Fermi distribution at room temperature (300 K). The imaginary
part of the projected resonance spectrum is then given by

ρWR (E) = − 1
π

Im 〈φR|G(E)W (E)|φR〉 . (7.7)

Here the resonance wave-packets φR may be any of the polarizations of the S3p-
orbitals (px, py, or pz).
To extract the lifetimes related to the spectral features ρWR (E) living on different

energy intervals, we apply the procedure for the case of strongly coupled resonances
outlined in Section 3.4; reconstructing the real part of ρWR (E) via the Kramers-
Kronig relations and subsequently Fourier transforming to the time-domain. The
value for the lifetime of a resonance at one site τi is taken to be the smallest time t
for which the population of the initial state drops below e−1 (we correct a posteriori
for the small energy broadening η = 20 meV used in Green’s function calculations
by multiplying the time-evolution of the population with a factor e2ηt). The overall
lifetime τR is computed by the expression 1

τR
= ∑

i
wi
τi
, where the wi are the weights

Table 7.3.: Theoretically extracted lifetimes in units of fs for the resonance feature in
the energy intervals from 0 to 2.2 eV and from 2.2 to 5.7 eV. In both cases two distinct
stacking orders Ts of the CCDW are analyzed as well as different polarizations of
the sulfur 3p orbital (px, py, and pz) defining the initial wave-packet after excitation
with a correspondingly polarized X-ray.

interval Ts τ3px τ3py τ3pz

(eV) (fs) (fs) (fs)

[0.0; 2.2] c 1.21± 0.15 1.19± 0.15 1.19± 0.06
2a + c 1.20± 0.15 1.19± 0.14 1.18± 0.08

[2.2; 5.7] c 1.17± 0.19 1.27± 0.09 0.80± 0.11
2a + c 1.19± 0.19 1.27± 0.08 0.82± 0.11
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of the inequivalent sulfur sites in the super cell. The extracted values are listed in
Table 7.3 together with their standard deviations due to the inequality in the sulfur
sites.
The theoretical lifetime values for the first spectral feature living on the energy in-

terval from EF = 0 eV to 2.2 eV are listed in Table 7.3. They agree qualitatively with
the experimentally observed isotropic charge transfer behavior, reflected by the con-
stant time-scales for the delocalization into the in-plane directions τ3px and τ3py and
into the out-of-plane direction τ3pz . However, the absolute values for the theoretically
determined charge transfer times depart from the experimental values (cf. Fig. 7.5)
by an order of magnitude.
The charge transfer times for the second resonance in the DOS (cf. Fig. 7.8) living

on the energy range from 2.2 eV to 5.7 eV show a different trend. The lifetimes
τ3px and τ3py related to in-plane orbital-polarizations even exceed the lifetime τ3pz

related to the out-of-plane orbital-polarization [cf. Table 7.3]. Although this trend is
seemingly reflected by the lifetimes in Fig. 7.5b, these extracted values are the result
of a fitting procedure that assumes a single pair of l- and d-channels corresponding
to a single resonance, hence a direct comparison is not possible. An extension of the
applied fitting procedure, e.g., assuming another pair of l’- and d’-channels branching
off at the second resonance, would require further assumptions to extract lifetimes
in the energy range above ∼ 230 eV, where the contributions from both resonances
overlap.

7.7. Conclusions and Outlook
In this chapter we presented combined theoretical and experimental evidence that

1T-TaS2 exhibits in spite of its layered structure surprisingly strong electronic in-
terlayer coupling in the CCDW phase. We employed in our study a core-hole-clock
analysis of resonant photoemission data in conjunction with Green’s function based
calculations at the level of semi-local DFT.
We studied in our theoretical model the dependence of the charge transfer times

on different orbital-polarizations reflecting the selective excitation into in-plane and
out-of-plane polarized sulfur 3p orbitals (wave-packets) by linearly polarized X-rays
in the experiments. Although, the absolute ultrafast time-scales probed by the ex-
periments are challenging for our model, we find that it supports the experimentally
observed qualitative behavior: Resonances related to both in-plane and out-of-plane
polarized orbitals produce equal charge transfer times, revealing the isotropic, three-
dimensional character of the ultrafast charge transfer inside the material in CCDW
phase.
We started by setting up a model of 1T-TaS2 in the CCDW which reproduces the

known Star-of-David reconstruction of the material and important features of the
electronic structure, such as a splitting of the conduction bands and a metallic band
crossing the Fermi level.
The projected DOS that we derive from our Green’s function calculations of

1T-TaS22 surfaces show two prominent features. We relate these to the measured
two-dimensional spectra by similarly mapping out our theoretical spectra using a
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semi-empirical formula. A good qualitative correspondence is found. The feature
living on the first ∼ 2 eV above the Fermi level can be related to the observed
isotropic charge transfer behavior. The second feature centered ∼ 3 eV above the
Fermi level, is linked to an even faster out-of-plane than in-plane charge transfer.
However, a direct comparison with the experimental values in the corresponding en-
ergy range is difficult due to an overlap of the intensities stemming from the two
resonances.
Finally, our results are invariant with respect to different stacking schemes of the

commensurate charge density waves in subsequent layers of 1T-TaS2. This suggests
that a variation of the stacking is not the prevalent mechanism for the deviations
in the charge transfer behavior across the NCDW–CCDW transition, although in
general the band structures of TMDs are sensitive to these.
In contrast to the CCDW, the experimentally observed charge transfer behavior in

the NCDW phase is anisotropic and of two-dimensional character, the in-plane charge
transfer being twice as fast as the out-of-plane charge transfer. This corresponds to
the expected behavior for a layered material like 1T-TaS2. Unfortunately, the NCDW
cannot be directly addressed in our fully periodic calculations due to the occurrence
of CDW clusters separated by domain walls, which bring along prohibitively large
simulation cells.
In conclusion our theoretical model rationalizes the isotropic charge transfer be-

havior in the CCDW, but it is not suited to make predictions about the NCDW nor
to reproduce the absolute time-scales of the measured charge transfer in 1T-TaS2.
Future studies involving explicit time-propagations of the initial wave-packets could

provide a more immediate picture of the delocalization of excited electrons inside the
material. This could be used to trace the path of the electrons in the material to
gather information about the evolution of the initially three-dimensional behavior
charge transfer behavior at larger time-scales.
Another interesting perspective is provided by simulations involving spin-orbit cou-

pling in the material to address spin-dependent applications. We note that here our
combined experimental and theoretical approach is especially useful since both meth-
ods can be adapted to incorporate spin-dependency. Finally, multi-scale methods
may be able to address the electronic behavior and disorder in the NCDW phase in
future.
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Chapter 8

Summary and Outlook

Electronic charge transfer is a fundamental process in nature and elementary to
many technological applications. A thorough understanding of its workings at the
atomic level is of great importance for the design of new materials and devices. In
particular, electron transfer takes place in catalytic and photocatalytic applications,
like DSSCs, solar fuel generators, and electrochemical cells. In such applications the
transfer of the electron commonly proceeds at or across interfaces, while it originates
at a chemical donor unit, like an atom or a molecule. Modern experimental techniques
are able to address such interfacial electron transfer at their fundamental time and
length scales. However, in complex and large systems multiple processes can interfere,
hence at a basic level electron transfer at surfaces is best studied in prototypical
systems of minimal models that can be addressed theoretically and experimentally.
This thesis is concerned with a theoretical treatment of elastic electron transfer

at surfaces by means of first-principles methods. In particular, a combination of
Green’s functions and DFT calculations was employed to describe resonant elec-
tron transfer at surfaces in terms of the delocalization of a wave-packet towards a
continuum of states inside a substrate consisting of an infinite amount of layers.
We studied a variety of electron donors at interfaces ranging from relatively weakly
coupled chemisorbed dye-molecules, over atomic argon adsorbates, to strongly chem-
ically bound sulfur atoms. The corresponding speeds of the charge transfer observed
in core-hole-clock experiments progressively increased from a few femtoseconds to
the sub-femtosecond domain. In connection with this, a variety of solid substrates of
different character were explored from semi-conducting TiO2 (Chapter 5) over ferro-
magnetic metallic Co(0001) and Fe(110) (Chapter 6) to layered two-dimensional 1T-
TaS2 (Chapter 7), respectively. Our results illustrate the versatility of the approach
in addressing various physical aspects, such as the inclusion of finite temperature
effects (Chapter 5) as well as modeling of charge transfer after spin-selective (Chap-
ter 6) or orbital-selective (Chapter 7) excitations, which allowed us to maintain a
close relationship to core-hole-clock experiments throughout this thesis.
We started by introducing semi-conducting TiO2 substrates with an investigation

of [1-10] steps and oxygen bridging vacancies on vicinal rutile(110) facets in rela-
tion to curved crystal experiments. The theoretically extracted vacancy formation
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energies and Tersoff-Hamann STM simulations support a scenario in which oxygen
bridging vacancies tend to migrate towards step edges, where they are difficult to de-
tect, since their presence does not essentially alter the appearance of the [1-10] step
edges in STM images. Furthermore, an analysis of bridging-oxygen vacancy induced
gap states in the computed DOSs, suggests that vacancies at step edges contribute
equally to the crystal doping as vacancies in the middle of the (110) terraces, while
stoichiometric step edges do not bring about additional gap states in the material.
Therefore, a tendency of oxygen vacancies to migrate to step edges can explain the
experimentally observed decrease in the amount of oxygen vacancies in areas with
higher step densities on curved crystal surfaces alongside a simultaneously homo-
geneous doping level across the entire reduced sample. These findings on curved
crystals demonstrate the importance of defects in shaping the density of states of
the substrate, which is an important ingredient when charge transfer processes are
considered.
After this preface on TiO2 we considered the problem of chemisorbed isonicotinic

acid molecules on a perfect rutile (110) surface in order to explore the effects of
structural fluctuations at finite temperatures on molecule-to-surface charge transfer
for a prototypical DSSC interface. Applying our DFT-based Green’s function tech-
nique to snapshots of a CPMD trajectory at 300 K, we found that the inclusion of
structural fluctuations at finite temperatures reconciles the extracted elastic charge
transfer time with core-hole-clock measurements at room temperature.
The fluctuations of the molecular resonance positions at finite temperatures result

in a Gaussian-type broadening of the cumulative spectra, which can be described
by a simple semi-classical model of harmonic oscillators assuming linear electron-
phonon couplings of the vibrational modes to the molecular levels. Simultaneously,
the molecular resonances exhibit Lorentzian-like line shapes of average widths con-
trolled by the available density of acceptor states in the substrate. A mode specific
analysis showed that vibrations stretching the carboxyl group anchoring the molecule
to the surface contribute most strongly to the temperature-induced broadening. A
similar linear coupling of specific vibrations to the elastic linewidths could not be
established.
In order to mimic the corresponding core-hole-clock experiments, we included a

nitrogen 1s core-hole in our calculations. The presence of the core-hole leads to a
down shift of the molecular levels in energy with respect to the substrate’s DOS,
while simultaneously, the molecular orbitals localize around the attractive core-hole
making them less susceptible to structural changes, thus effectively reducing the
electron-vibrational coupling at the interface.
Subsequently, we focused on electron injection from Ar towards the ferromag-

netic metal substrates Co(0001) and Fe(110) in order to analyze the origin of spin-
dependent charge transfer times observed in core-hole-clock measurements. Our cal-
culations confirm the experimental observation that core-excited minority electrons
in the 4s state of Ar are injected significantly faster than majority electrons on both
substrates. Furthermore, we found in agreement with the experiments faster charge
transfer for each spin channel on Fe(110) in comparison with Co(0001), while the
majority channel on Fe(110) is as fast as the minority channel on Co(0001). All
extracted transfer times are of about a few femtoseconds and hence in near to quan-
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titative agreement with the experiments.
We argued that a discussion of the observed spin-dependency of the charge transfer

times in terms of the angular momenta of acceptor states as suggested in Ref. 50 is
misleading in the case of Ar on Fe(110) or Co(0001). While growing DOS contri-
butions from d-symmetries and from higher angular momenta are to be expected at
increasing energies, the highly dispersive character of the surface bands in the energy
regions of the resonances is not in line with the common notion that d-bands con-
stitute flat bands pertaining to bound states of d-type atomic character. Therefore,
we claim that a correlation of the d-type DOS components with the spin-dependent
lifetimes is mostly coincidental in this particular case.
Instead, we found that the source of the observed spin-dependency lies in the vari-

ation of the size of the electronic gaps in the spin-dependent surface band structure
around the Γ-point at the resonance positions. This was further confirmed by an
analysis of the calculations employing a simplified model, which captures the effect
of the projected gaps, leading to a consistent picture in comparison with the ex-
periments. These results highlight that taking into account realistic surface band
structures as well as the spatial distribution and localization (which translates into
a well-defined structure in reciprocal space) of intermediate states can be crucial in
interfacial tunneling problems. This puts an interesting perspective on the develop-
ment of extensions to conventional Tersoff-Hamann STM simulations which account
for weighting of the band structure in reciprocal space by a more realistic model of
the tip wave-function.
In a final study, we pushed the employed Green’s function technique to the limits

of its applicability by investigating the sub-femtosecond charge dynamics following
an X-ray excitation at the surface of the layered TMD 1T-TaS2. We employed a
combined core-hole-clock and first-principles approach, which is tailored to address
the directionality of charge-transfer by selectively exciting electronic resonances cor-
responding to different orientations of S3p orbitals. This is achieved by using lin-
early polarized light in the experiments and correspondingly preparing intermediate
wave-packets with specific S3p-polarizations in our simulations. The analysis of the
core-hole-clock data by our experimental collaborators shows that anisotropic two-
dimensional charge transfer behavior prevails in the NCDW phase of 1T-TaS2 at
room temperature, while in the low temperature CCDW phase charge transfer is
isotropic on ultrafast time-scales in spite of the material’s layered structure.
Our calculations were able to address the CCDW phase of 1T-TaS2 by setting up a

model of the semi-infinite substrate using the known
√

13a×
√

13a reconstruction of
the layers in the material. We identified the main spectroscopic features in the the-
oretically extracted S3p-projected DOSs in direct comparison with the experimental
spectra.
The computed lifetimes for a localized initial wave packet formed by the electronic

states in the range up to ∼ 2 eV above the Fermi level are independent on the orbital
polarization, and hence in the polarization of light. This is in agreement with the
experimentally observed isotropic charge transfer in the CCDW phase. Moreover,
this result is independent with respect to variations in the stacking of the CDWs
in consecutive layers of the material. However, the absolute time-scales are over-
estimated by an order of magnitude in comparison with the experiments. Based
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on these results we suggest that the transition from anisotropic, two-dimensional
charge transfer in the NCDW phase to isotropic, three-dimensional charge transfer
in the low-temperature CCDW phase is due to enhanced interlayer coupling and not
a consequence of variations in the CDW stacking.
Overall, this thesis demonstrated for the examples of several prototypical inter-

faces, that the applied Green’s function methodology is highly suitable to describe
elastic electron transfer at realistic surfaces. Since the calculations are carried out
in the energy domain a close and often direct comparison with spectroscopy experi-
ments is possible, while the inclusion of a core-hole inside a modified pseudopotential
can effectively be used to mimic core-excitations. This enables a near to quantitative
agreement with core-hole-clock measurements of charge transfer times ranging from
slightly below a femtosecond up to a few hundred femtoseconds. For the determi-
nation of larger charge transfer times numerically very accurate calculations (e.g.,
using a very small imaginary broadening) need to be performed. For shorter charge
transfer times the broad appearance of resonances makes it difficult to identify the
relevant resonance features. In such a case time-resolved calculations, as for exam-
ple by employing a wave-packet propagation method, can give insight about charge
transfer dynamics, since these methods are not restricted to the identification of a
resonance feature in computed spectra. Furthermore, wave-packet propagations can
provide complementary information to the Green’s function approach used in this
thesis, since they are able to resolve the delocalization of electrons in real space. Be-
yond the description of elastic charge transfer as in the current work, the inclusion of
inelastic scattering processes like electron-phonon scattering (e.g., Eliashberg theory)
and electron-electron scattering (e.g., GW approximation) are desirable to obtain an
even closer agreement with the experiment. Ultimately, a full description of charge
transfer processes including the dynamic preparation of an initial wave-packet by
an explicitly modeled incoming light source is of increasing importance at shorter
time-scales.
While semi-classical treatments of light are in principle feasible, it is not clear

if they provide a realistic account of the photon-absorption by the materials. Here,
likely a quantum description of light is inevitable. However, to the best of our knowl-
edge, methods combining such descriptions with first-principles electronic structure
methods are not sufficiently developed in order to apply them to large and realistic
systems. Current approaches capable of an explicit treatments of excitations are
prohibitively demanding in terms of computational resources so that new roads to
describe these ultrafast processes and possibly along with this entirely new physics
are to be found.
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Normalization of Bloch States in an Atomic Orbital Basis

A. Normalization of Bloch States in an Atomic
Orbital Basis

The Bloch-like basis functions

ϕν(k, r) = Aν(k)
∑
R

eikRϕν(r− tν −R). (A.1)

are normalized within one unit cell of the crystal. The normalization is obtained in
the following way

〈ϕµ(k′)|ϕν(k)〉
A∗µ(k′)Aν(k) = (A.2)

=
∫
Vcell

∑
R′

e−ik′R′ϕ∗µ(r− tµ −R′)
∑
R

eikRϕν(r− tν −R) dr (A.3)

=
∑
R′

ei(k−k′)R′∑
R

eik(R−R′)
∫
Vcell

ϕ∗µ(r− tµ −R′)ϕ∗ν(r− tν −R) dr (A.4)

=
∑
R′

ei(k−k′)R′∑
R

eik(R−R′)
∫
Vcell

ϕ∗µ(r− tµ)ϕ∗ν(r− tν − (R −R′)) dr (A.5)

=
∑
R′

ei(k−k′)R′∑
T

eikT
∫
Vcell

ϕ∗µ(r− tµ)ϕ∗ν(r− tν −T) dr (A.6)

= δk,k′Ncell
∑
T

eikTSµν(T) = δk,k′NcellSµν(k), (A.7)

where the integration in the second line is over the entire volume V of the crystal.
Ncell is equal to the number of unit cells with volume Vcell in the supercell making
up the crystal so that V = NcellVcell. T is the collection of lattice vectors pointing to
neighboring unit cells with respect to an arbitrarily chosen central cell at T = 0. In
general, the atomic orbitals in neighboring cells overlap with each other. We find for
the normalization constant Aµ(k),

Aµ(k) = |Aµ(k)| = 1√
Ncell

· 1√
1 +∑

T 6=0 eikTSµµ(T)
(A.8)
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B. Defining Equation for Green’s Functions in a
Non-Orthogonal Basis

To see that the defining equation for the Green’s function in a non-orthogonal basis
is given by ∑

µ

[zSλµ(k‖)−Hσ
λµ(k‖)]Gσ

µν(k‖) = δλν , (B.9)

one may start from the general definition of a Green’s function in real space

[z − Ĥσ(r)]G(r, r′; z) = δ(r− r′). (B.10)

Here we consider explicitly the spin dependence of the Hamiltonian. For the sake of
clarity we omit here any explicit k-dependence. Using the spectral representation of
the Green’s function one may first rewrite the expression, so that

δ(r− r′) =[z − Ĥσ(r)]φ
σ
i (r)φσ∗i (r′)
z − εσi

(B.11)

=[z − Ĥσ(r)]
∑
µν

ϕσµ(r)
∑
i

cσiµc
σ∗
iν

z − εσi
ϕσ∗ν (r′) (B.12)

=[z − Ĥσ(r)]
∑
µν

ϕσµ(r)Gσ
µνϕ

σ∗
ν (r′), (B.13)

where we have defined the Green’s function Gσ
µν in the atomic basis in the last step.

Multiplying from the left with ϕσλ(r) and integrating over r one receives∫
ϕσ∗λ (r)δ(r− r′) dr =

∑
µν

∫
ϕσλ(r)[z − Ĥσ(r)]ϕσµ(r) drGσ

µνϕ
σ∗
ν (r′) (B.14)

ϕσ∗λ (r′) =
∑
µν

[zSλµ −Hσ
λµ]Gσ

µνϕ
σ∗
ν (r′) (B.15)

ϕσ∗λ (r′) =
∑
ν

(∑
µ

[zSλµ −Hσ
λµ]Gσ

µν

)
︸ ︷︷ ︸

= δλν

ϕσ∗ν (r′). (B.16)

Here, we have identified the Kronecker delta in the last line yielding the definition
Eq. (B.9) as desired.
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C. Isonicotinic Acid on TiO2: Additional
Material

This section of the appendix contains additional material regarding the investiga-
tions of isonicotinic acid on TiO2 presented in Chapter 5. In particular, it constitutes
the supporting material to the work presented in Section 5.2.1 Additionally, data with
respect to the electron-phonon coupling of isonicotinic acid investigated in Section 5.3
is presented for the core-excited case (see Appendix C.7).

C.1. Matching Procedure of the Fluctuating Interface to
the Fixed Bulk Geometry

The CPMD simulation used in Section 5.2 was obtained employing the plane-
wave code Quantum Espresso (QE) and a slab containing four TiO2 trilayers and the
adsorbate attached to one side. This CPMD trajectory was taken from Ref. 206. The
electronic structure was subsequently treated with the SIESTA/TranSIESTA code in
order to include the effect of a semi-infinite substrate and evaluate properly the width
of the molecular states. In order to set-up geometries for the SIESTA/TranSIESTA
runs we applied the protocol schematically described in Fig. C.1.

1 2

3

t

4

Figure C.1.: Schematics of the matching procedure used to match the fluctuating
decorated surface to the fixed bulk TiO2 inside the slab. The four steps are described
in the text below.

1. For each time step configuration {RCPMD
i (t)}, we calculated the set of displace-

ments {∆RCPMD
i (t)} of the atomic coordinates with respect to the QE relaxed

equilibrium configuration {RRel.
i }. The displacement of the i-th atom is given

by
∆RCPMD

i (t) = RCPMD
i (t)−RRel.

i (C.17)

The center of mass of the bottom two trilayers was used as a common reference
in order to ensure a proper alignment of all the structures. This only produces
a small modification of the coordinates, but ensures a good matching to the
fixed bulk geometry. The position of the atoms in those bottom layers is only
weakly affected by the vibrational movement of the adsorbate, which is the
focus of this work.

1Reprinted (adapted) with permission from [171]. c© 2018 American Chemical Society.
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2. Then, we created a thicker slab to perform the SIESTA/TranSIESTA Green’s
function calculation. This is necessary to have a bulk-like internal region where
we can connect the electronic self-energy describing the TiO2 substrate. This
structure was obtained from the relaxed structure of a slab containing five
trilayers of TiO2 with isonicotinic acid molecules adsorbed on both sides of
the slab (dipole canceling configuration). Here, the middle trilayer was kept
fixed at bulk configuration during relaxation. Later, four additional bulk layers
were added at the center of the slab. This resulted in a slab containing nine
trilayers that was used as an equilibrium reference structure {RRef.

i } for the
SIESTA/TranSIESTA runs.

3. Subsequently, one could simply add the displacements ∆RCPMD
i (t) to this new

reference structure
Rnew
i = RRef.

i + ∆RCPMD
i (t), (C.18)

obtaining a set of configurations describing the dynamics of the system with
a thicker slab. However, such procedure will result in structures exhibiting a
discontinuous transition from a fixed bulk geometry to the moving surface.

4. Therefore, we additionally applied a damping to the displacements, smoothen-
ing the transition between the second (zmax) and the third (zmin) trilayers. We
defined the following damping function:

f(z) =


0 for z < zmin,
1
2 ·
[
1− cos

(
z−zmin

zmax−zmin
π
)]

for zmin ≤ z ≤ zmax,

1 for z > zmax.

(C.19)

Applying this damping function we obtain the “matched” configurations {Rmatched
i },

Rmatched
i = RRef.

i + f(RRef.
i,z ) ·∆RCPMD

i (t), (C.20)

where RRef.
i,z is the z-component of the i-th atom position in the reference struc-

ture.
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C.2. Imaginary Energy Broadening and Fitting Procedure

Figure C.2.: LUMO to LUMO+2 resonances for η values from 1 to 30 meV. Also
shown are the DOSs of slab calculations (shaded areas) and of bulk TiO2 (black line).

We employed in Section 5.2 a parameter of η = 20 meV entering the complex
energy z = E + iη in the Green’s function to study the linewidth of the molecular
resonances. The spectral broadening due to this value is balanced to make the
calculations tractable while giving results with the desired accuracy. To illustrate
this, the spectra of the resonances from the LUMO to the LUMO+2 for the core-
excited case in the equilibrium structure are shown in Fig. C.2 for different values of η.
The corresponding linewidths obtained from Lorentzian fitting are listed in Tab. C.1.
The values are virtually independent of η. This holds up to an accuracy of below
1 meV, as can be read from the data. Since the additional FWHM resulting from the
imaginary energy broadening is 2η, distinct resonance features can be distinguished
down to this limit. In our case we study single resonances associated with non-
degenerate orbitals of the free isonicotinic acid molecule (HOMO to LUMO+2). Only
the LUMO in the ground state case is strongly split into anti-bonding and bonding
contributions of which we consider the dominant (anti-bonding) component in our
analysis. In broad spectral features deviations from Lorentzian line shapes occur
and a Lorentzian fitting has a more approximate character, while we still expect to
correctly catch the time scale of the decay by such a fitting. In the limit of such
broad resonances the dependence of the lifetime on the width is weaker due to their
inverse relationship (also the size of the small η-parameter is less important). Overall
we expect to obtain reasonable estimates for peaks with a lifetime of up to ∼ 660 fs
(below ∼ 1 meV we do not intend to resolve peak widths). Not least, the room
temperature values presented in Section 5.2 are averages over 161 snapshots and
hence accuracy is improved by statistics.

Table C.1.: Extracted linewidths for various η values of the imaginary energy z =
E + iη in the Green’s function.

η (meV) 30 20 10 5 1
ΓLUMO (meV) 0.1 0.0 0.0 0.1 0.3
ΓLUMO+1 (meV) 8.6 8.8 9.1 9.6 -
ΓLUMO+2 (meV) 14.4 14.5 15.2 15.0 -
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C.3. Varying the Core-Hole Charge Inside
Pseudopotentials
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Figure C.3.: DOS from a Green’s function calculation projected onto different MOs
as a function of the nitrogen core-hole charges used in the calculation. Black and
gray lines as in Fig. 2c of the main text.

To check the robustness of our calculations with respect to the charge of the hole
created in the 1s shell of nitrogen, we performed calculations using pseudopotentials
generated from ions with different charges 0 to +1 in steps of 0.25. The removed
charge from the N1s was added back to the valence in the calculations in order to
neutralize the system (cf. Fig. C.3). Removing zero electrons from the N1s core level is
equivalent to the ground state calculation presented in the main text, whereas a full
core-hole corresponds to the presented core-excited case. Overall, the unoccupied
molecular resonances LUMO to LUMO+2 are only changing marginally after an
initial jump between removal of zero and 0.25 electrons (note, that in the core-
excited cases the LUMO is at least partly occupied, but the nomenclature of the
ground state is kept to maintain consistency). Leaving the ground state case (zero
electrons removed) apart, the LUMO downshifts slightly as a function of the core
charge, while the HOMO exhibits a larger, but still moderate, upshift. The LUMO+1
and LUMO+2 also show small shifts with a minimum for the case of half a core-hole.
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C.4. Molecular Orbitals Associated with the Resonances
For the assessment of the role of symmetry it is useful to look at the wave-functions

and the LDOS around the resonance positions. As commented in the main text, the
plots in Fig. C.4 and Fig. C.5 clearly show that LUMO and LUMO+2 have a shape
and symmetry particularly appropriate for coupling to the substrate. These MOs
have π character and a substantial weight on those atoms, which are linked to the
substrate.

HOMO LUMO LUMO+1 LUMO+2

Figure C.4.: Lower panels show the MOs for the ground state molecule in the gas
phase. Upper panels show the local density of states at the energies of the molecular
resonances of the adsorbed molecule in the ground state.

LUMO LUMO+1 LUMO+2

Figure C.5.: Orbital shapes analogous to Fig. C.4 but for the core-excited case.
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C.5. Effect of Spin Polarization in the Core-Excited State
To estimate the consequences of spin polarization after excitation of an electron

into the LUMO we performed open shell calculations for several snapshots. The
resulting spectra are depicted in Fig. C.6. The figure includes the case of the reference
structure (equilibrium structure from ground state calculation) together with some
extreme cases of snapshots, where the LUMO is located well inside the gap (at
10.63 ps), or where the LUMO+2 is strongly broadened due to interaction with the
substrate (at 12 ps). The other snapshots have been chosen randomly spanning a
large range of simulation times to obtain an indication of the effect of spin splitting
on the molecular resonances. We note, that for the comparison with experiments,
particularly in the LUMO case only the occupied spin channel is of interest (i.e., spin
up, here).
The appearance of the line-shapes themselves is only moderately affected by the

inclusion of spin and some curves cannot be distinguished at all in the figure. The
extracted values of the linewidths can be compared in Tab. C.2. We find a variation
for the spin polarized case (spin up) with respect to the unpolarized case (unpol.)
of no more than 30%. The only exception is the strongly energy-shifted spectrum at
10.63 ps, where also by visual inspection the LUMO+2 peak appears altered.
Within the scope of the current work, statistical averages are more important than

specific configurations. Overall, the average quantities from the set of spin polarized
calculations appear in line with the ones from the unpolarized case (see averages
in Tab. C.2). Therefore, at the level of semi-local density functional theory the
additional collinear spin degree of freedom is not expected to alter the qualitative
findings nor to significantly affect the quantitative estimates for elastic lifetimes in
the case of isonicotinic acid on rutile(110).
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Table C.2.: Comparison of spin-polarized and closed shell calculations for the core-
excited case. Shown are the extracted values of the linewidths Γ and corresponding
lifetimes τ = ~/Γ. The last lines in the table refer to averages 〈Γ〉 and ~/〈Γ〉. The
spin polarization ∆ns of the molecule is given for each snapshot in terms of the
difference between the two spin channels regarding the Mulliken population (ns with
s =↑, ↓) on the molecule ∆ns = n↑ − n↓.
snapshot spin ∆ns ΓLUMO τLUMO ΓLUMO+1 τLUMO+1 ΓLUMO+2 τLUMO+2

(meV) (fs) (meV) (fs) (meV) (fs)
reference unpol. 0.00 0.1 ∞ 8.8 75.0 14.5 45.3

up 0.90 0.0 ∞ 7.3 90.7 15.4 42.7
down 0.90 65.6 10.0 4.3 152.0 17.6 37.4

2.75 ps unpol. 0.00 0.1 ∞ 17.6 37.4 89.5 7.4
up 0.86 0.1 ∞ 15.1 43.6 86.7 7.6

down 0.86 61.1 10.8 8.4 78.4 101.4 6.5
4.31 ps unpol. 0.00 0.0 ∞ 4.4 150.6 32.9 20.0

up 0.93 0.0 ∞ 5.1 130.0 34.9 18.9
down 0.93 18.5 35.5 4.9 134.5 480.5 1.4

7.13 ps unpol. 0.00 0.1 ∞ 4.7 141.1 20.1 32.8
up 0.87 0.1 ∞ 6.0 109.5 23.9 27.5

down 0.87 60.5 10.9 3.5 188.5 67.8 9.7
10.63 ps unpol. 0.00 0.1 ∞ 6.6 99.1 50.4 13.1

up 0.93 0.0 ∞ 4.9 135.5 28.2 23.3
down 0.93 2.5 259.3 3.5 186.1 51.2 12.9

12.00 ps unpol. 0.00 0.2 ∞ 11.0 59.6 164.8 4.0
up 0.87 0.2 ∞ 8.7 75.3 177.7 3.7

down 0.87 83.0 7.9 7.9 83.3 134.0 4.9

average unpol. 0.1 ∞ 8.8 74.4 62.0 10.6
up 0.1 ∞ 7.8 83.9 61.1 10.8

down 48.6 13.6 5.4 121.3 142.1 4.6
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Figure C.6.: Spectra for different snapshots from spin-dependent (thin lines, spin
up solid lines, spin down dashed lines) and spin-independent (thick lines) calculations.
In the background the bulk DOS of the electrodes (gray) and the DOS of the slab
with the attached molecules (black) are shown. The line shapes are only weakly
affected by the additional complication of spin, for this system.
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C.6. Effective Voigt-like Profiles
Here we show that the final line shapes of the cumulative spectra (i.e., the spectra

shown in Fig. 5.6c and Fig. 5.8c) can be accurately described in terms of Voigt-
like curves which are modulated by the density of states of the substrate. First, we
approximate the width of the resonances [Eq. (5.2)] at each configuration i as obtained
from the Fermi golden rule using an average matrix element and the density of states
of the substrate at the instantaneous resonances’ energies, i.e.,

Γ(Ei
R) ≈ 2π〈|MRS(Ei

R)|2〉ρS(Ei
R), (C.21)

where for the average matrix element we take the one extracted in the previous
Section and given in Table 5.2, i.e., 2π〈|MRS(ER)|2〉 ≈ 〈Γ(ER)〉/〈ρS(ER)〉, and the
resulting width is modulated by the substrate density of states. According to this
simplification, the cumulative spectra S(E) for the 161 snapshots are approximated
as follows:

S(E)≡
161∑
i=1

Si(E) (C.22)

≈
161∑
i=1

L(E,Ei
R,Γ(Ei

R)) = S(a)(E) (C.23)

where L is a Lorentzian function centered at the energy of the instantaneous reso-
nance’s energy:

L(E,ER,Γ(ER)) = 1
π

Γ(ER)/2
(E − 〈ER〉)2 + [Γ(ER)/2]2 . (C.24)

The results S(a)(E) of this approximation, solid lines in Fig. C.7 or Fig. C.8, are in
good agreement to the original values of S(E), shaded areas, further confirming the
applicability of an average matrix element in our case.
To extend our results to an ergodic sampling of the dynamics, we can further

assume that a continuous distribution of values of ER is obtained, observing a normal
distribution around 〈ER〉 with standard deviation σR (we use the values reported in
Table 5.1 and Table 5.3:

N(ER, 〈ER〉, σR) = 1
σR
√

2π
exp

[
−(E − 〈ER〉)2

2σ2
R

]
, (C.25)

It is interesting to point out that the use of a normal distribution is perfectly justified
using the harmonic approximation for the vibrations around the equilibrium position
and assuming a linear electron-phonon coupling. Taking such a distribution instead
of the summation in Eq. (C.23) results in

S(b)(E) =
∫
N(ER, 〈ER〉, σR)L(E,ER,Γ(ER))dER (C.26)

which, strictly speaking, differs from a Voigt profile (convolution of Gaussian and
Lorentzian functions) because here the Lorentzian width Γ(ER) depends on the en-
ergy and is modulated by the substrate density of states, see Eq. (C.21). These
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Figure C.7.: Cumulative spectra in the electronic ground state for different
molecular resonances from 161 snapshots as in Section 5.2 [colored shaded areas,
cf. Eq. (C.22)]. Additionally, shown are various approximations to those cumulative
spectra: Approximate spectra S(a)(E) [cf. Eq. (C.23)] from Lorentzian line shapes
at the 161 resonance positions of the computed cumulative spectra, but assuming
their widths are given by an average matrix element modulated by the density of
states in the surface (solid lines in colors corresponding to the cumulative spectra).
Effective line shapes S(b)(E) [cf. Eq. (C.26)] for an infinite number of normally dis-
tributed Lorentzian resonances with their widths given by an average matrix element
modulated by the density of the states in the surface (dashed lines). The result-
ing asymmetric Voigt-like spectra reflect the behavior of the DOS in the substrate
ρS(E). Symmetric Voigt curves S(c)(E) [cf. Eq. (C.27)] resulting from a Gaussian
distribution of an infinite amount of Lorentzians with a constant width (blue dia-
monds). Note, that for the direct comparison with the computed cumulative spectra
the widths of the Lorentzians must be taken as Ω(ER) = Γ(ER)/2 + η, where η is
the small imaginary component of the energy used for the calculation of the Green’s
functions. Orange solid lines show the variation of ρS(E) as a function of energy in
arbitrary units.
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Figure C.8.: Cumulative spectra for different molecular resonances in the core
excited case and various approximations to those spectra. The figure is organized
analogously to Fig. C.7

results are shown as the dashed lines in Fig. C.7 and Fig. C.8. A higher density
of states in the substrate results in broader Lorentzian components flattening the
resonances, whereas lower density of states results in sharper resonances leading to
large peaks in those regions. In the case of the LUMO resonance of the ground state
we can clearly see how the structure of the density of states around 〈ER〉 gives rise to
a very asymmetric peak of the resonance peak. Indeed, the real cumulative spectrum
is even more asymmetric, which is probably related to the splitting of the LUMO
peak into bonding and antibonding features that is beyond the model used here. In
general, the overall agreement is rather good considering the limited sampling of the
molecular dynamics trajectories.
Finally, we compare the asymmetric line-shape S(b)(E) due to the modulation of

Γ(ER) by ρS(ER) with a completely symmetric Voigt curve, given by

S(c)(E) =
∫
N(ER, 〈ER〉, σR)L(E,ER, 〈Γ〉)dER. (C.27)

Here, the fixed average Lorentzian width 〈Γ〉 is used (values shown in Table 5.2)
resulting in a symmetric line shape. The curves are shown in Fig. C.7 and Fig. C.8
(blue diamonds). We find that in the current case of isonicotinic acid on rutile(110)
the asymmetries are more prevalent in the ground state than in the core-excited case,
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where only the LUMO+2 is located in an energy region with a more pronounced
variation of ρS(ER).
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C.7. Electron-Vibrational Coupling in the Core-Excited
Case

Figure C.9.: Analysis of the electron vibrational coupling for the HOMO, LUMO,
LUMO+1, and LUMO+2 resonances of core-excited isonicotinic acid on TiO2(110).
The figure is organized in the same way as Fig. 5.12 in Section 5.3.3.

We additionally analyzed the diagonal electron-phonon couplings for the core-
excited case of isonicotinic acid on TiO2. This analysis was conducted in analogy
to the ground state case in Fig. 5.12 of Section 5.3.3. The results for the N1s-core-
excited simulations are summarized in Fig. C.9. Overall, the calculations reveal
smaller electron-vibrational couplings (c-f) than in the ground state (cf. Fig. 5.12).
Furthermore, Fig. C.9b shows that the fluctuations of the LUMO to LUMO+2 reso-
nances are not reproduced as well as in the ground state, while the energetic positions
of the HOMO are rather well captured within the applied linear model of electron-
phonon coupling (Section 5.3.3).
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D. Site Dependence of Ar4s-Resonances
We have investigated the site dependence of the resonant linewidths for different

adsorption sites of Argon on Fe(110) and on Co(0001). The extracted line widths are
listed in Table D.1. Looking at the values in the table apart from weak fluctuations
(less than 14 meV) no strong site-dependency of the line widths Γ is found.

Table D.1.: Extracted linewidths Γ in meV for Ar∗4s1ζ resonances with respect
to different adsorption sites of Argon on Fe(110) and Co(0001): top position (tp),
short bridge (sb), long bridge (lb), bridge position (br), fcc hollow (fcc), and hcp hol-
low (hcp). The values are shown for different adsorption heights h in Å.

Fe(110) Co(0001)
h tp sb lb tp br fcc hcp

M
aj
. 2.7 216 215 212 139 143 143 144

3.0 244 247 248 120 128 128 128
3.0 267 273 275 102 107 108 108

M
in
. 2.7 736 734 727 189 194 195 195

3.0 571 584 585 178 191 190 191
3.3 509 518 520 234 247 247 248
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Optimization of the Resonance Wave Packet

E. Optimization of the Resonance Wave Packet
With the aim to find a better description of the resonance wave packet we consider

the possibility to mix different components of the basis set. In this thesis Argon
4s resonances are investigated in Chapter 6. A possible optimization of the reso-
nances wave function by mixing in a polarization due to 4pz components is analyzed
there. Here, we derive the expressions for the real coefficients cs and cp of a general
wave packet consisting of two components |φ1〉 and |φ2〉, which can be chosen as the
numerical (real) atomic orbitals of the SIESTA basis set. The resonance wave-packet
is then of the form

|ψ̃R〉 = c0 |φ0〉+ c1eiϕ |φ1〉 , (E.28)

where ϕ is an additional relative phase between the components, which is found to
be zero below. The overall phase is irrelevant as expected. The goal is to optimize
the projection

f(c0, c1, ϕ) =
∫ b

a
Im 〈ψ̃R|G(E)|ψ̃R〉 dE . (E.29)

Here, G is the Green’s function averaged over all k-points and a and b define an
energy interval enclosing the energy position of the resonance. We introduce the
following short hand notation

f(c0, c1, ϕ) = Im
( c0
c1eiϕ

)† (
M00 M01
M10 M11

)(
c0
c1eiϕ

) , (E.30)

where the complex matrix elements Mµν are given by

Mµν =
∫ b

a
[SG(E)S]µν dE (E.31)

for µ, ν ∈ 0, 1. S is the overlap matrix of SIESTA.
Which reduces after some algebra to

f(c0, c1, ϕ) = c2
0 ImM00 + c2

1 ImM11 (E.32)
+ c0c1[(ImM01 + ImM10︸ ︷︷ ︸

=B

) cos(ϕ) + (ReM01 − ReM10︸ ︷︷ ︸
=C

) sin(ϕ)]. (E.33)

The above expression is then maximized under the constraint 〈ψ̃R|ψ̃R〉 = c2
0 + c2

1 =
1. Substituting c1 =

√
1− c2

0 f̃(c0, ϕ) = f(c0,
√

1− c2
0, ϕ) one obtains

f̃(c0, ϕ) = ImM11 + c2
0(ImM00 − ImM11︸ ︷︷ ︸

=A

)± c0

√
1− c2

0[B cos(ϕ) +C sin(ϕ)]. (E.34)

The optimization is carried out by calculating ∇c0,ϕf̃(c0, ϕ) != 0 One finds for the
partial derivative with respect to the phase ϕ

∂f̃

∂ϕ
= ∓

√
1− c2

0[B sin(ϕ)− C cos(ϕ)] != 0 ⇒ ϕ = arctan
(
C

B

)
. (E.35)
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Figure E.1.: Example of the optimization of a resonance shape: Majority channel
regarding the 4s-resonance of Ar∗ adsorbed at a distance of 3.6 Å an Fe(110). (a) The
four roots of Eq. (E.38) (vertical colored lines) coincide only in two cases with the
roots of the derivative of f̃(cs, ϕ = 0), where they maximize/minimize f̃(cs, ϕ = 0).
(b) Spectra corresponding to the four roots in subplot (a). Additionally shown in (b)
are the spectrum of the pure Ar∗4s resonance (dashed black line) and the spectrum
obtained from a numerical optimization (L-BFGS-B, dashed thick red line). The
vertical lines highlight the integration range from a to b in Eq. (E.29).

Thereby the phase has been determined. For the derivative with respect to the free
coefficient c0 one obtains

∂f̃

∂c0
= 2c0A±

1− 2c2
0√

1− c2
0

(B cos(ϕ) + C sin(ϕ)) != 0. (E.36)

Using the expression found above for ϕ one may rewrite the term in brackets as
B cos

[
arctan

(
C
B

)]
+C sin

[
arctan

(
C
B

)]
= sgn(B)

√
B2 + C2. Finally, we isolate terms

containing the coefficient c0 on one side of the equality and take the square resulting
in

4c2
0(1− c2

0)
(1− 2c2

0)2 = B2 + C2

A2 . (E.37)

This leads to the biquadratic equation

c4
0 − c2

0 + B2 + C2

4(A2 +B2 + C2) = 0, (E.38)

which has four formal solutions

c0 =


1
2 + 1

2

√
D

1
2 −

1
2

√
D

−1
2 + 1

2

√
D

−1
2 −

1
2

√
D

with D = A2

A2 +B2 + C2 . (E.39)

Of those four formal solutions only two optimize the wave packet according to
Eq. (E.36). In fact, the actual data presented in Chapter 6 confirms that C = 0
and hence ϕ = 0. The latter finding simplifies the above equations slightly.
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Optimization of the Resonance Wave Packet

To conclude this section, the optimization procedure described above is applied
for the case of Ar attached to Fe(110) at 3.6 Å adsorption height. We consider
a wave packet constructed from 4s and 4pz components and analyze the majority
channel. Fig. E.1a shows the curves for f̃(cs, ϕ = 0) of Eq. (E.35) and ∂f̃(cs, ϕ =
0)/∂cs of Eq. (E.36). The colored vertical lines in the plot indicate the four formal
solutions presented in Eq. (E.39) of which only two relate to the roots of the derivative
of f̃(cs, ϕ = 0) either maximizing or minimizing f̃(cs, ϕ = 0).
In Fig. E.1b the spectral features related to the four roots in Fig. E.1a are displayed

in the corresponding colors. The red line visually confirms that solution 2 maximizes
the spectral feature inside the energy region of the integration range from a to b
[cf. Eq. (E.29)] marked by the vertical black lines in the plot. This result is verified
independently by a numerical optimization scheme (L-BFGS-B), which yields a co-
inciding spectrum (dashed thick red line). The comparison with the spectral feature
of a pure 4s resonance state (dashed black line) emphasizes the increase in spectral
density around the peak position. Analyzing the widths of the optimized spectra in
cf. Table 6.2 and Table 6.3 one finds that the optimized wave packets consistently
exhibit longer lifetimes than the pure 4s resonances. In this sense, the optimized
states represent an improved account of the resonance wave packets.

159



F. Definitions of Fourier Transforms
The Fourier transform pair in one dimension is defined as

f(E) = F−1[f̃(t)] =
∫ ∞
−∞

f̃(t)eiEt dt , (F.40)

f̃(t) = F [f(E)] = 1
2π

∫ ∞
−∞

f(E)e−iEt dE . (F.41)

In three dimensions we use the definition

f(r) = F−1[f̃(k)] =
∫ ∞
−∞

f̃(k)eikr dk , (F.42)

f̃(k) = F [f(r)] = 1
(2π)3

∫ ∞
−∞

f(r)e−ikr dr . (F.43)

The three dimensional Fourier transform of a function f(r) = f(|r|) = f(r) which
only depends on the radius r, can be performed in spherical coordinates. In the
following, we use k · r = kr cos(θ) and the substitution x = cos(θ), dx = − sin(θ) dθ

f̃(k) = 1
(2π)3

∫ ∞
0

∫ π

0

∫ 2π

0
f(r)e−ikrr2 dr sin(θ) dθ dφ , (F.44)

= 2π
(2π)3

∫ ∞
0

f(r)
∫ 1

−1
eikrx dx r2 dr , (F.45)

= 4π
(2π)3

∫ ∞
0

f(r)sin(kr)
kr

r2 dr (F.46)

= 4π
(2π)3

∫ ∞
0

f(r)j0(kr)r2 dr . (F.47)

Here, we have identified the spherical Bessel function j0(kr) = sin(kr)/(kr) in the
last line. The inverse transformation can be found by using a similar argumentation.
These radial transforms are known as the Fourier-Bessel or Hankel transforms. In
two dimensions one can write similarly

f̃(k) = 1
(2π)2

∫ ∞
0

∫ 2π

0
f(r)e−ikrr dr dφ , (F.48)

= 1
(2π)2

∫ ∞
0

f(r)
∫ 2π

0
e−ikr cos(φ) dφ r dr , (F.49)

= 1
2π

∫ ∞
0

f(r)J0(kr)r dr . (F.50)

In the last line the inner integral over φ has been identified as 2πJ0(kr), where J0 is
the zeroth order Bessel function of the first kind.
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Resumen (Summary in Spanish)

Los procesos de transferencia de electrones son fundamentales tanto en la Natura-
leza y como para gran cantidad de aplicaciones tecnológicas. Una comprensión deta-
llada de su funcionamiento en la escala atómica es de gran importancia para el diseño
de nuevos materiales y dispositivos. En particular, la transferencia de electrones tiene
lugar en reacciones catalíticas y foto-catalíticas, así como en celdas electroquímicas y
distintos dispositivos generadores de energía solar como las células solares “sensibili-
zadas” por colorantes (en inglés “dye-sensitized solar cells”, DSSCs). En este tipo de
situaciones, con frecuencia la transferencia electrónica tiene lugar en una superficie
o a través de una interfase, mientras el electrón transferido normalmente procede
de una unidad química donora, como un átomo o una molécula absorbidos sobre o
cercanos a dicha superficie. Las técnicas experimentales modernas son capaces de
estudiar estos procesos en detalle, accediendo a sus escalas espaciales y temporales
fundamentales (el nanometro y el femtosegundo). Sin embargo, en sistemas grandes
y/o complejos diversos procesos pueden interferir, complicando la descripción. Por
dicha razón es preferible estudiar sistemas sencillos que pueden ser estudiados tan-
to de forma teórica como experimental y comprendidos con modelos relativamente
simples.
La presente Tesis se ocupa de describir procesos elásticos de transferencia electróni-

ca en superficies utilizando cálculos de primeros principios. En particular, desarrolla-
mos un método que combina el uso funciones de Green con la información obtenida a
partir de cálculos del funcional de la densidad (en inglés “density functional theory”,
DFT) para realizar una descripción realista de los procesos de transferencia electróni-
ca resonante en superficies. Los tiempos de transferencia de carga así calculados son
comparados, con frecuencia de forma muy favorable, con los extraídos de experimen-
tos que utilizan la técnica de espectroscopía “con cronometraje por hueco interno”
(en inglés “core-hole-clock spectroscopy”).
Dentro de nuestro método consideramos inicialmente capas delgadas que contienen

unos pocos planos atómicos y están decoradas por adsorbatos atómicos o moleculares
(las unidades donoras). Empleando la aproximación de Born-Oppenheimer los grados
de libertad electrónicos y nucleares pueden ser desacoplados y el subsistema electró-
nico puede ser descrito al nivel de cálculos DFT utilizando funcionales semi-locales
(“generalized gradient appoximation”, GGA) tal como se implementa en el código
SIESTA. Los funcionales GGA proporcionan un buen equilibrio entre su moderado
coste computacional y la calidad de la descripción de la estructura de bandas que
producen, sobre todo para metales. Por otra parte, los funcionales GGA suelen tener
problemas para describir el tamaño del “gap” electrónico tanto en semiconductores
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como en sistemas localizados [átomos y moléculas, el “gap” es en este caso la distancia
energética entre el último nivel ocupado (HOMO) y el primer nivel desocupado (LU-
MO)], que suele ser infravalorado. El alineamiento (posición relativa) de los niveles
energéticos en el caso de sistemas que poseen un “gap” también es problemático para
este nivel de teoría. Sin embargo, como demostramos en esta Tesis, a pesar de dichas
limitaciones y en conjunción con el experimento, este nivel de teoría ya nos permite
ahondar en la comprensión de los mecanismos detrás de los procesos de transferencia
de carga en muchos sistemas, así como en su dependencia con diversos grados de
libertad que describen el sistema como el espín electrónico o la polarización de la luz
utilizada en el excitación.
La inyección de carga a través de una interfase se inicia usualmente con un estí-

mulo externo (e.g., la excitación del donor por un haz incidente de luz), preparando
al sistema en un estado excitado resonante con los estados electrónicos del sustrato.
En una imagen simplificada (mono-electrónica) podemos decir que el electrón ex-
citado es promovido a una resonancia, un estado intermedio entre el estado inicial
localizado en el adsorbato y el estado final en el que el electrón se ha deslocalizado
en el sustrato. En nuestro trabajo asumimos que este estado intermedio puede ser
descrito en términos de un paquete de ondas localizado en el adsorbato, y que puede
ser expresado utilizando uno o unos pocos autoestados desocupados del adsorbato.
La inyección de carga se corresponde por tanto con el proceso de deslocalización de
este paquete de ondas en el sustrato, y puede ser descrito a partir de la evolución
temporal del mismo. La función de autocorrelación temporal del paquete de ondas
(i.e., la proyección del paquete en cada instante de tiempo sobre el paquete de ondas
inicial) se conoce como amplitud de supervivencia. El cuadrado de su norma nos da la
probabilidad de supervivencia, que típicamente describe un decaimiento (reducción)
en función del tiempo cuyo análisis nos da la vida media elástica de la resonancia.
Alternativamente, la transformada de Fourier nos permite expresar la evolución tem-
poral de la probabilidad de supervivencia en términos del espectro de la resonancia
en función de la energía. Idealmente, en dicho espectro podremos identificar un pico
con forma Lorentziana asociado a cada resonancia. La anchura de cada Lorentziana
es la anchura elástica del pico Γ y está ligada a la vida media elástica τ por la relación
de incertidumbre Γ× τ = 1 (en unidad atómicas). Esto nos permite extraer las vidas
medias de los paquetes de onda de cada estado resonante a partir de las anchuras de
los correspondiente picos en el espectro energético.
Para una estimación realista de las anchuras y las vidas medias de las resonancias

resulta crucial describir con la debida precisión el acomplamiento del paquete de onda
del estado excitado intermedio con los estados accesibles en el sustrato a la misma
energía. En este punto es importante señalar que el espaciado energético entre niveles
en una lámina de anchura finita (cálculo de “slab”, habitual utilizando la teoría DFT
de primeros principios) resulta un factor limitante para la precisión del cálculo de
la vida media. El espaciado entre niveles normalmente escala de forma inversamente
proporcional a la anchura de la lámina que representa el sustrato, y siendo esta de
pocas distancias atómicas se corre el peligro de que aquel sea comparable o mayor que
las anchuras de las resonancias que quieren estimarse. Por tanto, aunque normalmente
se puede conseguir una descripción razonable de la interfase (por ejemplo de sus
propiedades químicas) utilizando cálculos con láminas delgadas, para estimar las
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anchuras de las resonancias correctamente es vital tener en cuenta el acoplo de la
región superficial con una número infinito de capas atómicas describiendo el volumen
del sustrato. De esta manera tendremos un sustrato semi-infinito con una densidad de
estados continua que se asemeja más a la situación experimental. Es posible realizar
este tipo de descripción utilizando la técnica de las funciones de Green tal como
está implementada en la utilidad tbtrans del código SIESTA. Para llevar a cabo los
cálculos descritos en esta Tesis hemos realizado una modificación de programa tbtrans
para poder proyectar la función de Green dependiente de la energía en la región
superficial sobre el paquete de ondas que describe la resonancia en el instante inicial,
i.e., justo después de su excitación. Con ello obtenemos el espectro de la resonancia
con una resolución en energía en principio arbitraria, sólo limitada por la pequeña
parte imaginaria que debe ser sumada a la energía al evaluar la función de Green del
material de volumen. Esto es necesario para evitar inestabilidades numéricas y para
reducir el tiempo de computación. Sin embargo, esta anchura espuria puede tomar
un valor muy pequeño y en la práctica no limita la precisión de nuestros cálculos
como se describe en detalle en uno de los apéndices de esta Tesis.
Es importante enfatizar, que los procesos de transferencia de carga descritos en

esta Tesis son todos de carácter elástico, es decir no incluimos posible procesos de
“scattering” inelástico asociados a pérdida de energía por la excitación de, por ejem-
plo, fonones, pares electrón-hueco o plasmones. Esperamos que los procesos elásticos
dominen la transferencia de carga ultrarrápida que tiene lugar en los sistemas proto-
típicos que estudiamos en este trabajo.
Como ingrediente final, en la gran mayoría de los casos consideramos que el estado

excitado intermedio proviene de la excitación de un estado interno (de “core”) en
analogía con los experimentos de adsorción de rayos-X y, en particular, con el objeto
de comparar nuestra teoría con resultados de experimentos de espectroscopía “con
cronometraje por hueco interno”. El hueco interno se introduce en el cálculo del
pseudopotencial que describirá el átomo donde se localiza la excitación. Esto genera
una carga neta positiva en el sistema que neutralizamos añadiendo un electrón de
valencia adicional. Este electrón (i.e., el electrón excitado) es constreñido a una región
cercana al adsorbato, con una distribución aproximadamente igual a la asociada al
paquete de ondas que describe la resonancia objeto de nuestro interés. Por tanto,
reproduce la presencia de un electrón poblando la resonancia en los primeros instantes
después de la excitación. Esta receta determina el estado inicial de nuestro sistema,
a partir del cuya evolución estimaremos los tiempos de transferencia de carga.
Los fundamentos teóricos detrás de los cálculos de estructura electrónica se des-

criben en el Capítulo 2, mientras que el Capítulo 3 se ocupa de forma detallada de
las técnicas de funciones de Green. La comparación con el experimento ocupa un
papel importante en el trabajo descrito en esta Tesis. Por ello antes de presentar
nuestras investigaciones, el Capítulo 4 presenta una descripción básica de las técni-
cas experimentales utilizadas para obtener información sobre la dinámica electrónica,
ocupandonos con especial detalle de la espectroscopía “con cronometraje por hueco
interno”.
En esta Tesis hemos estudiado una gama de donores de electrones sobre superfi-

cies que incluyen desde ad-átomos de argon sobre metales, pasando por moléculas
de colorantes quemisorbidas débilmente, y llegando a átomos de azufre enlazados
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fuertemente con otro átomos de la superficie. Los correspondientes tiempos de trans-
ferencia observados en experimentos de espectroscopía “con cronometraje por hueco
interno” disminuyen de forma progresiva desde los pocos femtosegundos a la escala
por debajo del femtosegundo (del orden de pocos cientos de attosegundos). En co-
nexión con los distintos adsorbatos, una variedad de sustratos sólidos con diferente
carácter han sido explorados incluyendo el semiconductor de “gap” ancho TiO2 (Ca-
pítulo 5), las superficies de metales ferromagnéticos Co(0001) y Fe(100) (Capítulo 6),
y materiales laminares como el 1T-TaS2 (Capítulo 7). Nuestros resultados ilustran
la versatilidad de nuestra metodología para incluir diversos aspectos tales como los
efectos de temperatura finita (Capítulo 5), así como la influencia de la polarización de
espín del electrón excitado (Capítulo 6) y de la polarización de la luz utilizada en la
excitación, que se traduce en una simetría diferente del paquete de ondas inicial (Ca-
pítulo 7). Esto nos ha permitido conectar con diversas observaciones experimentales
tanto de la literatura como realizadas por colaboradores dentro de trabajos conjuntos
teórico-experimentales.
En el Capítulo 5 empezamos presentando un estudio del sustrato semiconductor

TiO2, en concreto de las superficies vecinas a la (110) del rutilo con escalones orienta-
dos en la dirección [11̄0]. Este trabajo se relaciona con los experimentos realizados en
el NanoPhysics Lab del Centro de Física de Materiales de San Sebastián utilizando
un sustrato curvado de rutilo con orientación promedio (110). El trabajo explora la
relación entre la presencia de escalones en la superficie y la distribución de vacantes
de oxígeno. En concreto se explora el grado de reducción de las muestras tal como
se obtiene en fotoemisión a partir de la intensidad del estado de defecto que aparece
cerca de la banda de conducción, la presencia de vacantes en las terrazas de los esca-
lones a partir de experimentos de microscopía túnel de barrido (en inglés “Scanning
Tunneling Microscopy”, STM) y la densidad de escalones. Nuestros cálculos teóricos
permiten obtener la energía de formación de las vacantes de oxígeno en función de
su posición en la terraza. Estos nos permite predecir la tendencia de las vacantes a
migrar hacia el borde del escalón. Nuestras simulaciones de las imágenes STM utili-
zando la teoría de Tersoff-Hamann indican que las vacantes son difíciles de detectar
en dichas posiciones cercanas al borde, i.e., el aspecto de la imagen no cambia apre-
ciablemente con respecto al de un escalón estequiométrico. Adicionalmente, análisis
de las densidades de estados (en inglés “density of states”, DOS) calculadas indican
que las vacantes en el borde del escalón contribuyen al dopaje del material de una
manera idéntica al de las vacantes en el medio de la terraza o incluso sobre la su-
perficie plana. Por el contrario, la presencia de escalones estequiométricos no lleva
aparejada la aparición de ningún estado adicional dentro del “gap” electrónico del
material. Por tanto, la tendencia de las vacantes a migrar a los bordes de los escalo-
nes puede explicar fácilmente la observación experimental del descenso aparente en
la presencia de vacantes de oxígeno en zonas con alta densidad de escalones en los
cristales curvados, a pesar de que el nivel de dopaje obtenido a partir de los datos
de fotoemisión es similar en toda la muestra. Este estudio para cristales curvados de
TiO2 demuestra la importancia de los defectos para conformar la DOS del sustrato,
que es uno de los ingredientes fundamentales a la hora de describir los procesos de
transferencia de carga.
Después de este prefacio sobre el TiO2, consideramos el problema de las moléculas
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de ácido isonicotínico quemisorbidas sobre una superficie perfecta de rutilo (110).
Nuestro objetivo será explorar los efectos de las fluctuaciones estructurales a tem-
peraturas finitas en la transferencia de carga de la molécula a la superficie en un
ejemplo prototípico de interfase en DSSCs. Aplicando nuestra técnica, que combina
cálculos DFT con funciones de Green, a multiples configuraciones instantáneas de
una trayectoria de dinámica molecular Car-Parrinello a 300 K, encontramos que la
inclusión de fluctuaciones estructurales a temperaturas finitas reconcilia los tiempos
de transferencia de carga elástica calculados con aquellos extraídos a partir de medi-
das utilizando la espectroscopía “con cronometraje por hueco interno” a temperatura
ambiente.
Las fluctuaciones a temperatura finita de la energía de cada resonancia molecular

dan lugar a una anchura Gaussiana en el promedio térmico del espectro (espectro
acumulado). Este efecto puede describirse mediante un sencillo modelo semiclásico
de osciladores armónicos que asume acoplamientos electrón-fonón lineales entre los
modos vibracionales y los niveles electrónicos de la molécula. Simultáneamente, las re-
sonancias moleculares para cada configuración instantánea muestran formas de línea
parecidas a una Lorentziana. En promedio, las anchuras de dichos picos Lorentzianos
están controladas por la densidad disponible de estados aceptores en el sustrato a
dicha energía. Un análisis de los distintos modos de vibración demuestra que aquellos
modos que deforman el grupo carboxilo que ancla la molécula a la superficie contri-
buyen en mayor medida al ensanchamiento inducido por la temperatura. Por otro
lado, en el caso de las anchuras elásticas no se pudo establecer un modelo similar
al de la posición energética de los niveles, con un acoplamiento lineal que determina
la relación entre la anchura y el grado de excitación de un determinado modo de
vibración.
Con el fin de simular los correspondientes experimentos, incluimos en nuestros

cálculos un hueco interno en la capa 1s del nitrógeno. La presencia de dicho hueco
interno produce un desplazamiento hacia energías más bajas de los niveles moleculares
con respecto a la DOS el sustrato. Simultáneamente, los orbitales moleculares se
localizan alrededor del centro atractivo creado hueco localizado. Esto hace a los
orbitales moleculares menos susceptibles a los cambios estructurales, reduciendo así
de forma efectiva el acoplamiento electrón-fonón en la interfase.
En el siguiente trabajo, nos centramos en la inyeccón de electrones desde adátomos

de Ar a los sustratos metálicos ferromagnéticos Co(0001) y Fe(110) con el fin de
analizar el origen de la dependencia observada experimentalmente de los tiempos
de transferencia de carga con el espín del electrón transferido. Nuestros cálculos
confirman la observación experimental de que los electrones de espín minoritario
excitados desde un estado interno al estado 4s del Ar se inyectan significativamente
más rápido que los electrones mayoritarios en ambos sustratos. Además, de nuevo en
acuerdo con los experimentos, encontramos una transferencia de carga más rápida
para cada canal de espín en Fe(110) que en Co(0001), siendo el canal mayoritario
en Fe(110) tan rápido como el canal minoritario en Co(0001). Todos los tiempos de
transferencia calculados son de unos pocos femtosegundos y, por lo tanto, están en
buen acuerdo cuantitativo con los experimentos.
En nuestro manuscrito argumentamos que la discusión que se realiza en Ref. 50 de

la dependencia con el espín de los tiempos de transferencia carga en términos de las
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componentes s, p o d de los estados del sustrato alrededor de los átomos metálicos
es poco clarificadora en el caso del Ar sobre Fe(110) y Co(0001). En ambos casos la
resonancia 4s del Ar excitado se encuentra en una zona de energías correspondiente
a bandas altamente dispersivas en dichos sustratos, y claramente por encima de las
bandas derivadas de los niveles atómicos 3d del Fe y el Co. Si bien cabe esperar
contribuciones crecientes de simetría d y de momentos angulares superiores a medida
que la energía aumenta, el carácter altamente dispersivo de las bandas de superficie
en la región donde se encuentra la resonancia no concuerda con la noción común de
que las bandas d están constituidas por bandas planas derivadas directamente de
estados atómicos ligados con simetría d. Por lo tanto, afirmamos que la correlación
observada entre la magnitud de la DOS proyectada sobre orbitales de tipo d y los
tiempos de vida dependientes del espín es, en este caso, puramente fortuita.
Por el contrario, encontramos que el origen de la dependencia con el espín de los

tiempos de transferencia está en la variación para distintas orientaciones del espín de
la anchura (en espacio recíproco) de los “gaps” electrónicos en la estructura de bandas
de superficie alrededor del punto Γ̄-point a la energía de resonancia. Esta hipótesis
se refuerza mediante un análisis de los cálculos utilizando un modelo simplificado,
cuyo principal ingrediente es la posición y forma de los “gaps” proyectados, y que
consigue captar las tendencias observadas en el experimento. Estos resultados ponen
de manifiesto que se debe tener en cuenta una descripción realista de la estructura de
bandas de superficie, así como la distribución espacial y la localización (que se traduce
en una estructura bien definida en el espacio recíproco) del paquete de ondas que
describe la resonancia, siendo ambos ingredientes cruciales para entender el proceso
de transferencia de carga en interfases. Esto genera una interesante perspectiva para el
desarrollo de extensiones a las simulaciones STM convencionales basadas en la teoría
de Tersoff-Hamann, estas deben ponderar de forma diferente los distintos estados
en la estructura bandas de la superficie utilizando para ello un modelo realista (en
espacio recíproco) de las funciones de onda de los estados electrónicos de la punta.
En nuestro último estudio, llevamos nuestra técnica de funciones Green a los lími-

tes de su aplicabilidad investigando la dinámica de carga en el rango por debajo del
femtosegundo. En este caso nos centramos en la dinámica posterior a excitación con
rayos X de la superficie del di-calcogenuro de metal de transición (en inglés “transition
metal dichalcogenide”, TMD) 1T-TaS2. La excitación se realiza desde el nivel 2s de
un azufre superficial hasta una resonancia desocupada con fuerte carácter S 3p. Se
trata de un trabajo conjunto experimental (usando espectroscopía “con cronometraje
por hueco interno”) y teórico (utilizando métodos de primeros principios) que intenta
abordar el problema de la direccionalidad de la transferencia de carga en este sistema
laminar. Para ello estudiamos la dinámica de resonancias electrónicasc con distinta
simetría (p‖ o p⊥, i.e., paralelo o perpendicular a la superficie). Esto se consigue
utilizando luz polarizada linealmente en los experimentos y, en consecuencia, prepa-
rando paquetes de ondas intermedios con distintas polarizaciones en la capa S 3p en
nuestras simulaciones. El análisis de los datos obtenidos por nuestros colaboradores
experimentales muestra que la anisotrópia de los tiempos de transferencia electróni-
ca, característicos de un sistema con fuerte carácter bidimensional, prevalece en la
fase de 1T-TaS2 a temperatura ambiente, correspondiente a la fase de onda de den-
sidad de carga cuasi-conmensurada (en inglés “nearly commensurate charge density
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wave”, NCDW). Sin embargo en la fase de baja temperatura (onda de densidad de
carga conmensuradas, CCDW) el comportamiento es altamente isotrópico en escalas
de tiempo ultrarrápidas, a pesar de la estructura por capas del material y, por tanto,
indicando un fuerte acoplamiento electrónico en la energía de la resonancia.
Con nuestros cálculos pudimos abordar la fase CCDW del 1T-TaS2. Para ello rea-

lizamos un modelo de sustrato semi-infinito utilizando la conocida reconstrucción√
13a ×

√
13a de cada capa del material. Se estudiaron diferentes apilamientos de

las capas. Pudimos identificar las principales características espectroscópicas expe-
rimentales en la DOS proyectada sobre los orbitales S 3p. Todas la cantidades se
promediaron sobre las distintos átomos de azufre no equivalentes en la superficie.
Los tiempos de vida calculados para un paquete de onda inicial localizado en el

azufre superficial, formado por estados electrónicos en el rango de hasta ∼ 2 eV por
encima del nivel de Fermi, resultaron ser independientes de la polarización orbital
y por lo tanto de la polarización de la luz incidente. Esto está en buen acuerdo
con la transferencia de carga isotrópica observada experimentalmente para la fase
CCDW. Además, este resultado es independiente con respecto a las variaciones en el
apilamiento de la reconstrucción

√
13a×

√
13a en capas consecutivas del material. A

pesar de este acuerdo cualitativo, la escala de tiempo absoluta está sustancialmente
sobreestimada en comparación con los experimentos. Basadonos en estos resultados,
sugerimos que la transición de una transferencia de carga anisotrópica en la fase
NCDW, i.e., de carácter bidimensional, a una transferencia de carga isotrópica, i.e.,
de carácter tridimensional, en la fase de baja temperatura CCDW se debe a un
aumento del acoplamiento electrónico entre las capas y no es una consecuencia de
variaciones en el apilamiento de las láminas. Esto último podría aventurarse como
una explicación si sólo examinásemos las variaciones de la estructura de bandas a
energías muy cercanas al nivel de Fermi.
En general, esta Tesis ha demostrado para varias interfases prototípicas que nuestra

metodología usando funciones de Green en combinación con cálculos DFT de prime-
ros principios es adecuada para describir la transferencia elástica de electrones en si-
tuaciones realistas. Esto lo demuestra el buen acuerdo cualitativo y semi-cuantitativo
que obtenemos en la gran mayoría de los casos en comparación con el experimento.
Dado que los cálculos utilizan la dependencia con la energía del propagador, es posi-
ble realizar una comparación clara con los experimentos de espectroscopía. Además,
la inclusión de huecos internos en el pseudopotencial nos permite representar de for-
ma eficaz y eficiente situaciones en las que los electrónes son excitados desde capas
atómicas internas. Esto permite un acuerdo casi cuantitativo con las mediciones por
espectroscopía “con cronometraje por hueco interno” de tiempos de transferencia de
carga que van desde un poco por debajo del femtosegundo hasta unos pocos cientos de
femtosegundos. Para la determinación de tiempos de transferencia de carga mayores
es necesario realizar cálculos numéricamente muy precisos (por ejemplo, utilizando
una parte imaginaria de la energía muy pequeña en el volumen del material), aunque
esto no representa en principio ningún problema conceptual. Para tiempos de trans-
ferencia de carga más cortos la apariencia general de las resonancias (cada vez más
anchas y usualmente menos parecidas a una Lorentziana) dificulta la identificación de
las características relevantes de la resonancia, e.g., la definición clara de su anchura.
En tal caso, los cálculos realizados en tiempo real, como por ejemplo empleando un
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método de propagación de paquetes de ondas, pueden dar una idea más clara de la
dinámica de transferencia de carga. Además, la propagación de paquetes de ondas
pueden proporcionar información complementaria al enfoque de función de Green
utilizado en esta tesis, ya que son capaces de resolver la deslocalización de electrones
en el espacio real, mientras en el caso de las funciones de Green nos limitamos a la
evolución temporal de la población del paquete de ondas inicial.
Más allá de la descripción de la transferencia de carga elástica como en el trabajo

actual, la inclusión de procesos de “scattering” inelásticos asociados a la interacción
electrón-fonón (por ejemplo, la teoría de Eliashberg) y la interacción electrón-electrón
(por ejemplo, a través de la aproximación GW) son deseables para obtener un acuerdo
aún mejor con el experimento. En última instancia, una descripción completa de los
procesos de transferencia de carga, incluida la preparación dinámica de un paquete
de ondas inicial por un frente de luz incidente incluido de forma explícita es cada
vez más importante a medida que los experimentos se adentran en escalas tempo-
rales cada vez más cortas. Sin embargo, esto no resulta en absoluto trivial. Aunque
los tratamientos semiclásicos de la luz son en principio factibles, no está claro que
proporcionen una descripción realista de la absorción de fotones por los materiales
en la escala tanto temporal como espacial que aquí nos interesa. Probablemente una
descripción cuántica de la luz es probablemente inevitable en este punto. Sin embar-
go, en nuestra opinión, los métodos que combinan tales descripciones con métodos
de estructura electrónica de primeros principios no están hoy en día suficientemente
desarrollados para aplicarlos a sistemas grandes y realistas. De hecho se encuentran
todavía en su infancia. Los enfoques actuales capaces de un tratamiento explícito
de las excitaciones son prohibitivamente exigentes en términos de recursos compu-
tacionales, por lo que se deben encontrar nuevas vías para describir estos procesos
ultrarrápidos y, posiblemente, junto con ellos una física completamente nueva.
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