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Abstract 

In this paper, ring closure click chemistry methods have been used to 

produce cyclic c-PLLA and c-PDLA of a number average molecular weight 

close to 10 kg/mol. The effects of stereochemistry of the polymer chains and 

their topology on their structure, nucleation and crystallization were studied in 

detail employing Wide Angle X-ray Scattering (WAXS), Small Angle X-ray 

Scattering (SAXS), Polarized Light Optical Microscopy (PLOM) and standard 

and advanced Differential Scanning Calorimetry (DSC). The crystal structures 

of linear and cyclic PLAs are identical to each other and no differences in 

superstructural morphology could be detected. Cyclic PLA chains are able to 

nucleate much faster and to produce a higher number of nuclei in comparison to 

linear analogues, either upon cooling from the melt or upon heating from the 

glassy state. In the samples prepared in this work, a small fraction of linear or 

higher molecular weight cycles was detected (according to SEC analyses). The 

presence of such “impurities” retards spherulitic growth rates of c-PLAs making 

them nearly the same as those of l-PLAs. On the other hand, the overall 

crystallization rate determined by DSC was much larger for c-PLAs, as a 

consequence of the enhanced nucleation that occurs in cyclic chains. The 

equilibrium melting temperatures of cyclic chains were determined and found to 

be 5 ºC higher in comparison with values for l-PLAs. This result is a 

consequence of the lower entropy of cyclic chains in the melt. Self-nucleation 

studies demonstrated that c-PLAs have a shorter crystalline memory than linear 

analogues, as a result of their lower entanglement density. Successive self-

nucleation and annealing (SSA) experiments reveal the remarkable ability of 

cyclic molecules to thicken, even to the point of crystallization with extended 

collapsed ring conformations. In general terms, stereochemistry had less 

influence on the results obtained in comparison with the dominating effect of 

chain topology. 
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Introduction 

Cyclic polymers are remarkable materials that differ from their linear analogues 

in their lack of chain ends. However, this seemingly small topological peculiarity can 

lead to dramatic differences in chain conformation and therefore in polymer properties. 

The absence of chain ends could be an advantage in some applications, since 

circular topologies are designed to prevent any possible reaction or interaction across 

the ends of the chain. The interest generated in these materials has increased as cyclic 

structures have unique and improved properties.1 However, the difficulty in the 

synthesis of cyclic polymers with high cycling and purification efficiency has led to a 

lack of understanding of the properties.1 

The crystallization of cyclic polymers is a complex subject that needs more 

research to understand all the relevant factors involved.2 The methods of synthesis and 

purification used in the production of cyclic polymers with high purity have evolved for 

decades. Today, new approaches to synthesis have allowed the preparation of a wide 

range of high-purity cyclic polymers as well as more complex cyclic topologies.3-11 

These new developments have allowed researchers to study the differences between 

properties of the cyclic and linear material, such as the glass transition temperature,12,13 

melt viscosity and diffusion,12-15 morphology 16-18and crystallization.19-32 

In the particular case of crystallization, several literature reports on cyclic 

polymers indicate different trends on the results and therefore, a universal interpretation 

of the lack of chain ends for all polymers is not possible. The crystallization of cyclic 

chains depends on the type of material used, and on the level of purity, among other 

factors. The reported trends in the literature can be arbitrarily divided into 3 groups.2,28 

 In group 1 are encompassed the cyclic polymers reported to have the highest 

nucleation density, lower equilibrium melting points (𝑇𝑚
0 ) and lower spherulitic 

growth rates (G) than linear polymers of similar molecular weights. The 

reported polymers in this group are polyethylene (PE) by Kitahara et al.24 and 

poly(tetrahydrofurans) (PTHF)s by Tezuka et al.20 and Takeshita et al.32 

 Group 2 contains studies of cyclic oligomeric poly(oxyethylene) (POE) reported 

by Yu et al.19, Cooke et al.18 and Nam et al.14, which showed lower melting 

points, higher value of G and the same values of 𝑇𝑚
0  than their linear equivalents. 

Poly(ɛ-caprolactone) from Li et al.33 has also been included in this group. 
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 Finally, group 3 includes works where cyclic polymers have been found to have 

higher values of crystallization temperature (Tc), higher melting point values 

(Tm) and/or higher values of G and/or higher values of overall crystallization rate 

(1/τ50%). This group contains oligomeric alkanes, reported by Lee and Wegner et 

al.,34 PE-s of Bielawski et al.35 and PCL studies published by Schäler et al. 22 

and Müller et al.21,23,27,28,29,36 

In the present work, linear and cyclic polylactides have been employed. The 

influence of the lack of chain ends on the thermal properties and crystallization of cyclic 

PLA has not been studied in detail. Shin et al.26 in 2012, prepared mixtures of PLLA 

and (PDLA) with Mn of 15 and 19 kg/mol with cyclic and linear topologies, and 

characterized them by small-angle X-ray scattering (SAXS). They observed that the 

lamellar thickness and long period of cyclic PLLA lamellae are approximately 20% 

larger than those of linear PLLA. They obtained 20 nm long period for cyclic PLLA, 

which is in the order of the length of the extended chain (37 nm considering a 103 helix). 

The authors attributed the high value of the lamellar thicknesses and long period of the 

cyclic PLLA relative to the linear PLLA to a possible topological restriction for folding 

of cyclic PLLA chains. However, in spite of the differences in lamellar thickness, the Tm 

values reported were 150 and 135 ºC for linear and cyclic PLLA, respectively. These 

results were not explained by Shin et al. 

In contrast, Sugai et al.31 studied cyclic PLAs and reported smaller lamellar 

thickness values as compared to linear chains. The authors attributed the results to the 

more compact conformations of the cyclic chains. They also used an unmodified 

Thomson-Gibbs equation to determine surface free energy (σe) of their samples. They 

obtained a lower free interfacial energy (σe) for the cyclic PLLA than for the linear 

analogue. According to the authors, this result suggested that cyclic PLLA forms a well-

ordered loop structure on the crystal interface and amorphous state, whereas linear 

PLLA has chain ends that are probably not so organized as in the cyclic ones. In another 

study, Sugai et al.37 reported that the change of the topology between cyclic and linear 

has effects on the melting peaks with lower melting temperatures in the cyclic topology. 

They reported values of 151 ºC for linear and 147 ºC for the cyclic analogues. 

However, as far as the authors are aware, the kinetics of nucleation, spherulitic 

growth and overall crystallization for cyclic and linear PLA has not been reported in the 

literature so far. In the present work, we have analyzed the effect of the cyclic and linear 

topology on the thermal properties and crystallization kinetics. Additionally, we have 
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applied advanced DSC techniques to study the effect of chain topology on the self-

nucleation behavior and SSA (Successive Self-Nucleation and Annealing) thermal 

fractionation of the samples. 

Materials 

L- and D-lactide (L-,D-LA) (≥99%) were purchased from Galactic, 

recrystallized from dried toluene three times and stored in a glove box under dry 

nitrogen atmosphere (O2 < 5 ppm, H2O < 1 ppm) prior to use. Reagents materials were 

purchased from Aldrich and used without further purification, unless otherwise noted. 

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) was dried over BaO, distilled and stored in 

a glove box. Copper (I) bromide was purified by washing with acetic acid. 11-Azido-1-

undecanol was synthesized as reported in the literature and dried over anhydrous 

MgSO4 prior storage in the glovebox.38 N,N,N’,N”,N”-Pentamethyldiethylenetriamine 

(PMDETA) was dried over MgSO4 prior storage in the glovebox. 4-Pentynoic 

anhydride was synthesized as reported in the literature.39 Tetrahydrofuran (THF, 

Labscan, 99%) was dried using a MBraun solvent purification system under N2. 

Synthesis procedures 

Synthesis of linear PL(D)LA precursors 

Ring-opening polymerization (ROP) was applied to synthesize PL(D)LA 

samples with -hydroxyl functionality. In a glovebox under nitrogen atmosphere, a vial 

was charged with L(D)-lactide (1.00 g, 6.9 10-3 mol) and 11-azido-1-undecanol (20 µL; 

9.4 10-5 mol) initiator, in dichloromethane (7.5 mL). After solubilization, 1,8-

diazabicyclo [5.4.0] undec-7-ene (DBU) (14.5 µL; 9.5 10-5 mol) catalyst was added into 

the medium. After 9 minutes under stirring, the polymerization was quenched with 

benzoic acid. The homopolymer was recovered by precipitation into cold methanol to 

give α-azide ω-hydroxy PL(D)LA.40,41 

Finally, the linear α-azide ω-hydroxy PL(D)LA homopolymers were 

functionalized on the ω chain end with pentyonic anhydride leading to α-azide ω-alkyne 

PL(D)LA (l-PLLA:  Mn
SEC,app = 16700 g/mol, Mn

MALDI = 9700 g/mol, ÐM 1.10; l-

PDLA: Mn
SEC,app = 16200 g/mol, Mn

MALDI = 9500 g/mol, ÐM 1.11).42 
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Preparation of cyclic PL(D)LA 

The CuAAc reaction was performed in pseudo-high-dilution conditions by 

dropwise addition of linear PL(D)LA precursor. In a glovebox under nitrogen pressure 

(O2 < 5 ppm, H2O < 1 ppm), a solution of α-azido-ω-alkyne PLLA (25 mg; 2.8 10-6 mol; 

1 equivalent) in THF (1 mL) was injected over 50 minutes in a solution of Cu(I)Br (48 

mg; 120 equivalents) and pentamethyldiethylenetriamine (PMDETA) (140 µL; 240 

equivalents) in THF (6 g; 6.7 mL) under stirring using a repetitive pipette. The solvent 

was evaporated before solubilization of the crude product in CH2Cl2. Then, the medium 

was extracted two times using a saturated NaHSO4 aqueous solution. The organic phase 

was dried over MgSO4, filtered and concentrated by evaporation prior to precipitation 

into heptane. The preparation procedure was the same for cyclo PDLA (c-PLLA: 

Mn
SEC,app (c-PLLA) = 14000 g/mol, Mn

MALDI = 10000 g/mol, ÐM 1.21; c-PDLA: 

Mn
SEC,app = 13900 g/mol, Mn

MALDI = 9600 g/mol, ÐM 1.22). The synthesis procedure is 

summarized in Scheme 1. 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Synthesis pathway applied to the generation of cyclo PL(D)LA. 

 

Characterization 

1H NMR spectra were obtained on a Bruker AMX500 (500MHz) spectrometer at 

25 ºC in CDCl3 (20 mg/0.6 mL). Size exclusion chromatography (SEC) was performed 

in THF (with 2 vol% of triethylamine added) at 35 ºC using a Polymer Laboratories 

liquid chromatograph equipped with a PL-DG802 degasser, an isocratic HPCL pump 

LC 1120 (flow rate = 1 mL/min), a Marathon autosampler (loop volume = 200 µL, 
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solution conc. = 1 mg/min), a PL-DRI refractive index detector and three columns: a PL 

gel 10 µm guard column and two PL gel Mixed-B 10 µm columns (linear columns for 

separation of MWPS ranging from 500 to 106 Daltons). Polystyrene standards were used 

for calibration. 

Positive-ion MALDI-MS experiments were conducted using a Waters QTOF 

Premier mass spectrometer equipped with a Nd:YAG laser (third harmonic) operating at 

355 nm with a maximum output of 65 µJ delivered to the sample in 2.2 ns pulses at 50 

Hz repeating rate. Time of flight mass analysis was performed in the refraction mode at 

a resolution of about 10k. All samples were analysed using trans-2-[3-(4-tert-

butylphenyl)-2methylprop-2-enylidene] malononitrile (DCTB) as a matrix. Polymer 

samples were dissolved in THF to obtain 1 mg/mL3 solution. Additionally, 50µL3 of 2 

mg/mL3 NaI solution in acetonitrile were added to the polymer solution. 

WAXS measurements were performed in a Bruker D8 Advance diffractometer 

working in parallel beam geometry. By using a Göbel mirror, the originally divergent 

incident X-ray beam from a line focus X-ray tube (Cu) is transformed into CuKα 

transition photons of wavelength λ = 1.54 Å. The linear detector LYNXEYE used 

presents an active area of 14.4 mm x 16 mm. The scattering angle 2θ was varied from 4 

to 30º with a step of 0.05º in reflection geometry, measuring during 10 s point-1. 

SAXS was used to investigate the large-scale structural features by a Rigaku 3-

pinhole PSAXS-L equipment. CuKα transition photons of wavelength λ = 1.54 Å are 

produced by a MicroMax-002+ X-ray generator system, which is composed by a 

microfocus sealed tube source module and an integrated X-ray generator unit. The 

scattered X-ray are detected on a two-dimensional multiwire X-ray detector (Gabriel 

design, 2D-200X) with about 200 µm resolution and 200 mm diameter active area. The 

flight path and the sample chamber in this equipment are under vacuum. The 

azimuthally averaged scattered intensities were obtained as a function of wave vector q, 

q = 4πλ-1sinθ. Silver behenate was used as standard for reciprocal space calibration. The 

experiments were carried out at 25 ºC, using a Linkam scientific instruments THMS 600 

temperature controller. 

Perkin Elmer Pyris 1 differential scanning calorimetry (DSC) equipped with a 

refrigerated cooling system Intracooler 2P, was used to investigate the thermal 

properties. All the experiments were performed under nitrogen flow and the instrument 

was calibrated with an indium standard. 
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To erase any previous thermal history, the samples were melted in the DSC for 3 

min at 165 ºC. Then the samples were cooled at 5 ºC/min and heated at the same rate to 

register the cooling and the subsequent heating scans. 

Isothermal crystallization experiments were performed by the procedure 

recommended by Lorenzo et al.43 In the present case, it was impossible to perform 

overall isothermal crystallization experiments in the DSC by directly quenching the 

PLA samples from the melt. However, if the sample is first cooled to the glassy state, 

nucleation can be greatly enhanced and then the polymer is able to crystallize upon 

heating from the glassy state.44,45 Therefore, for isothermal crystallization experiments 

from the glassy state, samples were cooled from 165 ºC to 20 ºC at 60 ºC/min (a 

temperature below the Tg) to induce nucleation. Finally, the samples were heated at a 

rate of 60 ºC/min until the chosen isothermal crystallization temperature (Tc).  

Self-nucleation is a thermal technique designed to enhance nucleation density. 

Crystal fragments or chain segments with residual crystal memory are the best 

nucleating source for any polymer. The SN procedure applied here consists of several 

steps.46-48 

a. Erasure of previous thermal history and crystalline memory by heating the 

samples to 165 ºC for 3 min. All thermally sensitive nuclei are destroyed in this 

step leaving only temperature-resistant heterogeneous nuclei. 

b. Creation of the initial “standard” semicrystalline state by cooling the molten 

sample at 20 ºC/min down to 20 ºC. The cooling scan recorded is the “standard” 

one (and the peak crystallization temperature measured is the standard Tc), since 

it is a function of the number density of thermally stable nuclei of the polymer 

sample. 

c. The sample is heated at 20 ºC/min from 20 ºC up to a selected self-nucleation 

temperature (denoted Ts), and then the sample is held at this Ts temperature for 5 

min. During this period of time at Ts, the sample could melt, self-nucleate or 

self-nucleate and anneal depending on the Ts value. 

d. Subsequent cooling at 20 ºC/min from Ts down to 20 ºC. 

e. Final melting. The sample is heated from 20 ºC to above its melting point at 20 

ºC/min to record the full melting behavior. 

The effects of the self-nucleation treatment are reflected in the crystallization 

(step d) and melting of the material (step e), according to the selected Ts. 
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If Ts is very high, the sample is said to be in Domain I or complete melting 

domain, i.e., when complete melting occurs and the crystalline memory of the material 

is erased. If Ts is high enough to melt the sample almost completely, but low enough to 

induce self-nucleation without causing annealing, the sample will be under Domain II or 

exclusive self-nucleation domain. If Ts is sufficiently low, only part of the crystalline 

population will be molten and therefore the unmelted crystals will undergo annealing 

for 5 minutes during step (c), the sample is said to be in Domain III or self-nucleation 

and annealing domain. 

Thermal fractionation by Successive Self-Nucleation and Annealing (SSA) 

experimental protocol applies a temperature program that is designed to produce distinct 

thermal fractions by molecular segregation during crystallization, self-nucleation and 

annealing, in a fast and efficient way.47,49,50 

The procedure to apply SSA is shown schematically in Figure 1 and described 

below: 

a. Erasure of thermal history by heating the sample to 165 ºC for 3 min. 

b. Creation of a “standard” thermal history by cooling to 20 ºC at 20 ºC/min. Then, 

the sample is equilibrated at 20 ºC for 1 min. 

c. The sample is heated at 20 ºC/min to a partial melt temperature denoted Ts(ideal). 

This Ts(ideal) must be determined in separate SN experiments (as explained 

above). This temperature corresponds to the lowest Ts value within Domain II, 

or the Ts value that is capable of inducing maximum self-nucleation without 

annealing. 

d. The sample is held at this Ts for 5 min. This isothermal fractionation time is kept 

constant in the following different SSA steps. 

e. The sample is cooled at a constant rate from Ts(ideal) to 20 ºC, so the polymer will 

crystallize during cooling after self-nucleation. Then the sample is held at 20 ºC 

for 1 min. 

f. The sample is heated at 20 ºC/min from 20 ºC to Ts(1). It will be held at Ts(1) for 5 

min. The difference in temperature between Ts(ideal) and Ts(1) was set at 5 ºC. This 

is the fractionation window, since it determines the size of the thermal fraction 

and it should be kept constant throughout the SSA experiment. 

g. The sample is again cooled down, but in this case from Ts(1) to 20 ºC at 20 

ºC/min and held at 20 ºC for 1 min. 
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h. Steps “f” and “g” are repeated at progressively lower Ts values. In this work, 9 

cycles with Ts temperatures in Domain III were employed. 

i. Finally, the sample is heated at 20 ºC/min to the melt state, during this final 

heating run the consequences of SSA fractionation are revealed. 
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Figure 1. SSA thermal protocol schematic representation; see text for accurate description of the 

experimental protocol. 

 

Spherulite growth rate experiments were performed by recording their growth in 

a Leitz Aristomet polarized light optical microscope, equipped with a λ plate in between 

the polarizers at 45º. Film samples with around 20 µm thickness were heated to 165 ºC 

for 3 min and then crystallized from the melt by cooling to the chosen crystallization 

temperature (Tc) at 20 ºC/min. A temperature controlled hot stage (Mettler FP82HT) 

was used for these experiments and the dimensions of the spherulites were periodically 

registered with a Leica DC420 digital camera. Additionally, the numbers of active 

nuclei were counted as a function of time with the same equipment. 

 

Results and discussion 

Cyclic poly(L-lactide) (c-PLLA) and poly(D-lactide) (c-PDLA) were obtained 

by CuAAC reaction on end-functionalized linear poly(L-lactide) (l-PLLA) and poly(D-

lactide) (l-PDLA), respectively. 

The efficiency of the cyclization was determined by SEC, MALDI-MS, and 

quantitative 1H NMR spectroscopy. In general, a cyclization reaction leads to a more 



11 

 

compact coil that results in a smaller hydrodynamic volume; hence, cyclic polymers 

show higher retention time. SEC chromatograms on Figure 2 can be a direct and easy 

analysis of the cyclization efficiency. According to the above, a shift of the molar mass 

distribution of linear polymer (Mn
SEC,app (l-PLLA) = 16700 g/mol; ÐM 1.10 and 

Mn
SEC,app (l-PDLA)= 16200 g/mol; ÐM 1.11) to higher elution volume, combined with 

the retention of the molar mass distribution attest the efficiency of the cyclization 

reaction, giving rise to cyclic polymer (Mn
SEC,app (c-PLLA) = 14000 g/mol; ÐM 1.21 and 

Mn
SEC,app (c-PDLA)= 13900 g/mol; ÐM 1.22).  

Figure 2 reveals the presence of shoulders in the SEC traces at low retention 

times. To date, except in very peculiar conditions, the preparation of pure macrocycles 

is always accompanied by the presence of few poisoning impurities, such as linear 

chains or longer cycles. Since 1H NMR analyses (cfr., hereafter) do not reveal the 

presence of protonic end-groups, those entities are mainly constituted by interconnected 

chains, giant macrocycles or possible catenanes.41 Deconvolutions of both SEC 

chromatograms estimate a level of impurity close to 15 mol%.  
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Figure 2. SEC chromatograms of the linear precursor and the cyclic polymer. a) linear and cyclic PLLA 

and b) linear and cyclic PDLA. (THF/NEt3 as eluent) 

 

Besides, Figure 3a and b show the MALDI-TOF MS spectra where the linear 

precursor and cyclic polymer reveal a common major distribution, the molecular weight 

of the linear and cyclic polymer samples remained unchanged after the click cyclization, 

so are therefore indistinguishable based on this signal only. On the contrary, the linear 

polymer is prone to the loss of N2 (Figure 3c), while for cyclic polymer this loss is not 

observed. The protonated ions of cyclic appear as a signature for the triazole group, due 

to its pronounced basicity (Figure 3d), as suspected following the report of Li et al.51 

 

 

a)

b)
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Figure 3. a and b) MALDI-MS spectra of linear (above) and cyclic (below) PLLA. NaI as cationizing 

agent. c and d) Zoom on the MALDI-MS spectra of linear (above) and cyclic (below) PLLA. NaI as 

cationizing agent. 

 

The cyclization and the high conversion is also confirmed in the 1H NMR 

spectra, by the complete disappearance of characteristic signal for linear precursor 

PLLA, δ = 1.98, δ = 2.52 and δ = 3.25 ppm (protons i, h and a, respectively, in Figure 

4a and also the presence of the characteristic signals δ = 3.06, δ = 4.28 and δ = 7.36 

ppm (protons a, h and i, respectively, in Figure 4b) of the macrocyclic c -PLLA. 
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Figure 4. 1H NMR spectra of a) linear PLLA and b) cyclic PLLA (CDCl3, 500 MHz). 

 

Non-isothermal DSC Experiments 

Figure 5 shows standard crystallization and melting behavior of linear and cyclic 

PLLA and PDLA with Mn value of 10 kg/mol. The cooling scan was measured after the 

crystalline thermal history of the material was erased. Then the subsequent heating 

scans recorded the cold-crystallization and melting of the crystals during heating at 5 

ºC/min. The relevant parameters obtained from these DSC experiment are listed in 

Table 1. 

Neither linear PLLA and PDLA nor cyclic PLLA and PDLA polymers are able 

to crystallize during cooling from the melt (see Figure 5a) at the scanning rate employed 

(5 ºC/min). Only the vitrification process at the Tg can be observed. In the heating scan, 

the glass transition is clearly observed, followed by a prominent cold-crystallization 

exotherm and finally a complex melting behaviour, where bimodal endotherms are 

observed (see Figure 5b). 

Table 1 shows that in all cases cyclic samples have lower cold crystallization 

temperatures (Tcc) than their linear analogues. This indicates a higher nucleating 

capacity of the cyclic PLAs as compared to the linear chains. This effect is possibly due 

to the more compact coil conformation of the cyclic chains and to the larger 

supercooling of cyclic molecules.2 These aspects will be discussed in detail below. 

Regarding the experimentally determined, apparent peak melting temperatures 

(Tm) of the cyclic polymer, they are also slightly higher (i.e., 2 ºC) than those of the 

linear PLLAs or PDLAs. The difference is not very large in this case, but it is 
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qualitatively similar to that found in the case of polycaprolactones by Müller et al.28,27 

Therefore, according to their thermal behavior, these PLA systems of different chain 

topologies (linear vs cyclic) would fall within group 3 described in the introduction. 

On the other hand, the melting endotherms are bimodal, with two melting points, 

as a consequence of partial fusion and recrystallization during the heating scan and not 

to the presence of two crystalline forms (see WAXS studies below, the results 

corroborate the existence of a single crystalline form (i.e., α form)).52,53 
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Figure 5. a) Cooling DSC scans from the melt and b) subsequent heating scans for the indicated samples. 

Scanning rate 5 ºC/min. 

 

PLAs cannot crystallize during cooling at 5 ºC/min, confirming that the PLAs 

employed here exhibit a slow overall non-isothermal crystallization rate when cooled 

from the melt. However, when they are subsequently heated from the glassy state, they 

undergo cold-crystallization followed by melting. The values of cold crystallization and 

melting enthalpies (see Table 1) are nearly identical within the error of the 

measurements (typically 5-10%), indicating that all crystallization takes place during 

heating. Additionally, the amount of crystallinity that the samples develop during the 

heating run has been calculated and reported in Table 1. All crystallinity values for 
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linear and cyclic PLAs are very similar taking into account the typical errors involved in 

these estimations (i.e., 10%). 

Finally, the glass transition temperature (Tg) was around 54 ºC and 58 ºC for 

linear and cyclic PLA, respectively. So the cyclic polymers exhibit higher glass 

transition temperatures than their linear counterparts, in view of their lack of highly  

mobile chain ends, which are present in their linear counterparts. Similar increases in 

glass transition values in comparison to linear analogue chains have been reported for 

other cyclic polymers.13 

 

Table 1. Thermal transitions determined by DSC (at 5 ºC/min) of cyclic and linear materials. 

 Tg onset (ºC) Tcc (ºC) ΔHcc1 (J/g) Tm (ºC) ΔHm (J/g) a Xc (%) 

l -PLLA 54 113.0 -36.0 138.5/146.8 37.1 61 

c -PLLA 58 111.2 -23.8 139.5/148.6 24.3 55 

l -PDLA 53 113.3 -34.5 138.2/146.5 36.9 61 

c -PDLA 58 103.4 -20.2 136.8/148.5 26.1 59 

a Estimation of the degree of crystallinity developed by PLA during the heating run based on the melting enthalpy, 

employing ΔHm
º ~ 60 J/g for linear and ΔHm

º ~ 44 J/g for cyclic PLAs, as reported by Sugai et al.31 

 

Crystal structure 

As demonstrated above (Figure 5), if a cooling rate of 5 ºC/min is employed, the 

samples are unable to crystallize during cooling from the melt, but they can do it during 

heating (also at 5 ºC/min) from the glassy state. In order to perform the WAXS 

experiments, the samples were first cooled from the melt to room temperature at 20 

ºC/min (and no crystallization took place) and then heated to 110 ºC at 20 ºC/min. At 

110 ºC, the WAXS measurements were performed isothermally, as taking the WAXS 

spectra in the 2 range employed and with the resolution adopted took 60 min. 

In Figure 6, the WAXS diffractograms of linear and their analogous cyclic 

PLLA and PDLA polymers are shown. The dominant diffraction peaks in linear and 

cyclic samples are observed at 2θ values of 14.4º, 16.4º, 18.7º and 22.0º that can be 

attributed to reflections from (010), (110) and/or (200), (203) and (115) planes 

respectively. The WAXS patterns can therefore be assigned to the α form of PLA, 

which is orthorhombic with parameters a = 10.7 Å, b = 6.45 Å and c (fiber axis) = 27.8 

Å, where the molecules are assumed to have a left-handed 103 helical 

conformation.26,31,54 
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Besides the strongest diffraction peaks, some weak diffraction peaks at 2θ= 

13.3º, 20.4º, 23.7º y 24.8º indicative of (004/103), (204), (016) y (206) reflections are 

also observed in Figure 6. All these reflections represent stable α- crystals, whereas the 

characteristic diffraction of PLA α’- crystals at 18.4º and 24.4º could not be observed.55 

This implies that both linear and cyclic PLA chains are able to crystallize with an 

identical unit cell.  

In summary, the WAXS results shows that cyclic topology has no influence on 

the crystalline structure at the nanometric level. Similar results have been found for 

cyclic PCLs.2,27  
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Figure 6. a) WAXS diffraction patterns for samples heated from the glassy state at 20 ºC/min. 

Measurements performed at 110 ºC. b) magnification of the range 17º to 26º for all samples.  

 

Nucleation 

Nucleation experiments performed by polarized light optical microscopy yield 

values of nucleation density as a function of time. Such nucleation kinetic 

measurements were performed for the four samples analysed here at different 

temperatures, under isothermal conditions. The data for all samples is reported in Figure 

S1-1 in the Supporting Information. 

A representative set of nucleation kinetics data can be seen in Figure 7a. Cyclic 

PLA chains nucleate faster than linear chains at same Tc temperature (110 ºC). On the 

other hand, if the nucleation density is compared at saturation values (long times) at a Tc 

temperature of 110 ºC, it is 40% higher for c-PLLA as compared to l-PLLA. Moreover, 

this value is 70% higher if the c-PDLA and l-PDLA are compared (see Figure S1-2 in 

the Supporting Information). Such improved nucleation is also confirmed by the PLOM 

micrographs of cyclic and linear PLLA shown in Figure 7b. 
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The nucleation rate (I) provided in Figure 7b as a function of temperature was 

determined from the slope of the plots nucleation density as a function of time at short 

nucleation times, where a linear relationship could be fitted (see Figure S1-1). The 

observed values of nucleation rate are much higher for cyclic PLA at lower 

temperatures, a clear sign of a more instantaneous nucleation process as compared to 

linear chains. As the nucleation density decreases with Tc, at very high Tc values, the 

differences in nucleation rate between cyclic and linear chains tend to disappear. 
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Figure 7. a) Nucleation density as a function of time for linear and cyclic PLLA at 110 ºC. b) Nucleation 

rate (I) as a function of the crystallization temperature (Tc). 

 

We have focused so far on the general differences in nucleation between linear 

and cyclic chains. However, we also detected some differences in nucleation between l-

PLLA and l-PDLA and between c-PLLA and c-PDLA. The reason behind these 

differences is unknown. Bulk polymers always nucleate heterogeneously. The 

heterogeneities that cause nucleation are catalytic debris or impurities present in the 

monomers and solvents employed during the synthesis. For c-PLLA and c-PDLA 

samples, we would expect similar amount of residual catalyst. In addition, the 

monomers used are analytical grade but could contain different amounts of impurities 

(in the ppm range). Additionally, differences in nucleation density between c-PLLA and 

c-PDLA could be connected with small differences in PLA “impurities” content (i.e., 

linear PLA chains and/or larger cyclic molecules detected by SEC in Figure 2). The 
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differences in nucleation density between l-PLLA and l-PDLA should only be 

connected with monomer impurities, as their synthetic procedure is identical.  

In summary, cyclic PLAs exhibited higher nucleation densities and higher 

nucleation rates than their linear analogues, especially at high supercoolings. Ring chain 

topologies are characterized by their more collapsed conformation in the melt and their 

lack of chain ends,56,57 so they are expected to nucleate easier than linear chains. Similar 

results have also been reported for PCL,28 PTHF20,32 and PE.24 

 

Spherulitic growth kinetics of cyclic and linear PLA isomers 

The spherulitic growth rate from the melt is represented as a function of the 

isothermal crystallization temperature (100-135 ºC) in Figure 8. The spherulitic growth 

rate G (µm/min) was determined from the slope of the straight line obtained when the 

spherulitic radius (µm) is plotted as a function of time (min).  

The morphology of the spherulites was independent of chain topology or 

stereochemistry for all samples examined in this work. Typical PLA negative 

spherulites characteristic of the alpha form were observed during isothermal 

crystallization (see Figure 7b as an example). 

For all samples, the spherulitic radius versus time plots exhibited highly linear 

trends over the entire range of investigated Tc, implying that the growth rate was 

independent of the size of the spherulites. The curves of spherulitic growth rate versus 

Tc (Figure 8) display the typical bell-shape trend caused by the competition between 

thermodynamic control of secondary nucleation and diffusion. 

The results of Figure 8 indicate that cyclic and linear PLAs exhibit similar 

spherulitic growth for both types of PLA samples. In fact, l-PLAs display slightly 

higher growth rates than c-PLAs, however, the differences are not very significant. 

These results are not expected, and they are not consistent with those obtained for 

PCLs, where the spherulites of cyclic polymers have been shown to grow faster than 

those of their linear analogues.21,28 As cyclic molecules have a faster diffusion rate than 

linear ones, it is expected that spherulitic growth rates should be larger for cyclic 

chains.2 

The similarities in spherulitic growth between cyclic and linear samples may be 

attributed to the presence of impurities in the cyclic samples, constituted either by linear 

chains or by cyclic molecules of higher molecular weight. López et al.36 have recently 
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demonstrated that growth rates of cyclic PCL chains can be significantly decreased by 

the presence of small amounts of linear chains, as they thread though the cyclic chains 

and hinder diffusion.  

In the present case, Figure 2 shows that there is a difference in the 

chromatograms of the linear and cyclic chains, as the cyclic chains exhibit a shoulder at 

low elution times (or higher molecular weights). As in our case, NMR results do not 

evidence the presence of protonic end-groups, the anomalous high molecular weight 

small fraction present in the cyclic PLAs is probably due to intermolecular reactions 

that yield longer cyclic molecules or interconnected linear chains. Such longer rings or 

linear chains, may also have a similar threading effects on the smaller (and dominant 

fraction) cyclic chains hindering their diffusion. In this way, such “impurities” cause a 

decrease in the spherulitic growth rate that makes the growth kinetics of cyclic PLAs 

similar to that of linear PLAs. 
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Figure 8. Spherulitic growth determined by PLOM for the indicated cyclic and linear PLA samples. The 

solid lines are the fits to the Lauritzen-Hoffman (LH) theory (details of how the fit was performed can be 

found in the Supporting information, S2) 

 

Overall Isothermal Crystallization 

In this paper, isothermal crystallization experiments were performed by DSC to 

determine the overall crystallization rate of PLAs with linear and cyclic topology. The 



21 

 

inverse of the half crystallization time provides an experimental measure of the overall 

crystallization rate, which includes both nucleation and growth. The overall isothermal 

crystallization experiments were performed by previously cooling the samples (which 

cannot crystallize during cooling from the melt at 60 ºC/min) to the glassy state in order 

to enhance their nucleation. Then, the samples were heated from 25 ºC to Tc at a rate of 

60 ºC/min (to avoid crystallization during heating) and the isothermal crystallization 

was recorded in the calorimeter as a function of time. 

Figure 9a and Figure 9b show the experimental overall crystallization rate 

(1/τ50%) from the glassy state as a function of Tc for linear PLLA and PDLA and their 

analogous cyclic polymers. All the samples display the typical bell-shape trend, where 

the crystallization rate goes through a maximum as the kinetics changes from nucleation 

control at higher temperatures to diffusion control at lower temperatures.  

The differences in crystallization kinetics from the glassy state between cyclic 

and linear PLA are striking. Figure 9 reports that cyclic chains require lower 

supercooling or higher Tc values to crystallize than linear chains. In addition, the overall 

crystallization rate is much faster for cyclic chains than for analogous linear chains 

regarless of the stereochemistry involved in L or D samples. For example, comparing 

the samples with D-stereoisomers, at a constant Tc value of 115 ºC, cyclic PDLA 

display 40% faster crystallization rate as compared to its linear analogue.  
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Figure 9. The inverse of half-crystallization time as a function of Tc (a and b) and supercooling (ΔT) (c 

and d) for indicated PLA samples. 

 

Additionally, Figure 9c and Figure 9d represent the overall crystallization rates, 

but as a function of the supercooling (∆𝑇 =  𝑇𝑚
0 − 𝑇𝑐), using the equilibrium melting 
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temperatures (𝑇𝑚
0 ) values determined below. It can be observed that the representation 

as a function of supercooling shifts the curves in the x axis normalizing the differences 

in crystallization temperature exhibited by the cyclic and the corresponding linear 

chains. However, the curves are not superimposed on the vertical axis, as the kinetic 

differences between cyclic and linear chains cannot be normalized by a thermodynamic 

variable like 𝑇𝑚
0 . These results indicate that both thermodynamic and kinetic factors are 

responsible for the differences observed.  

In the present work, the behaviour of observed in Figure 9 can be explained 

taking into consideration our nucleation and growth rate results. It was shown that 

cyclic PLAs chains nucleate at a faster rate than linear PLAs, whereas the growth 

process was similar between c-PLA and l-PLA. Taking into account, that the overall 

crystallization process involves these two stages, the observed differences in 1/τ50% are 

due to the increase in nucleation. Furthermore, as the crystallization was conducted by 

heating from the glassy state, the previous cooling from the melt to the glassy state also 

contributed to increase nucleation density. There is no doubt that the cyclic chains 

exhibit a higher nucleation density and a higher nucleation rate than their linear 

analogues, irrespective of the D or L chain configuration. 

Finally, the continuous lines are fits to the Lauritzen Hoffman theory,58,59 which 

are discussed in the Supporting Information S2. 

 

Fitting of DSC isothermal data to the Avrami model 

 

The Avrami equation can describe the primary crystallization process in 

polymers.60,61 The equation can be written in the following form, as postulated43 

 

1 − 𝑉𝑐(𝑡 − 𝑡0) = exp (−𝑘(𝑡 − 𝑡0)𝑛)                            (1) 

 

where Vc(t) is the relative volumetric transformed fraction as a function of time, t is the 

experimental time, t0 is the induction time for crystallization, n is the Avrami index and 

k is the overall crystallization rate constant. The fits to the Avrami equation were 

performed using the Origin plug-in developed by Lorenzo et al.43 and Figure 10 shows a 

representative fit of Avrami model for the crystallization of c-PDLA at 100 ºC.  
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Figure 10. Isothermal crystallization studied by DSC. a) Avrami plot of the data obtained during 

crystallisation of cyclic PDLA at 100 ºC. Raw heat flow data of c-PDLA during crystallization at 100 ºC, 

compared to the data predicted by the Avrami model. 

 

Figure 10a shows the double logarithmic representation that linearizes eqn (1), 

in the conversion range of 3-20% corresponding to the primary crystallization. The 

Avrami index, n, obtained as well as the k value and the correlation coefficient for the 

fit, R2, are included for one example, the rest of the results obtained are summarized in 

Supporting Information (Table S3). Using these values in eqn (1) and by differentiating 

the equation, the experimental heat flow data can be modeled by the Avrami equation, 

and it is shown in Figure 10b.  
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Figure 11. a) Inverse of half crystallization times for the linear and cyclic PLA as a function of Tc. b) 

Normalized rate crystallisation constant (k1/n) of the Avrami model as a function of Tc. c) Avrami index as 

a function of Tc. Solid lines correspond to fittings of the Lauritzen–Hoffman model (see Supporting 

information for more details on the application of the LH model). 

 

Figure 11 shows the representation of several kinetic parameters of 

crystallization as a function of the crystallization temperature. First, in Figure 11a, the 

inverse of the half crystallization experimental data is plotted with the LH fitting as 

continuous lines. The isothermal rate constant k has units that depend on n (i.e., min-n), 

and since n values are not constant, a direct comparison can not be made. One way to 

overcome this difficulty is to elevate k to 1/n, so that all values of k are expressed in 

reciprocal time units (in this case min-1), as has been plotted in Figure 11b. The values 

of , k1/n are proportional to the overall crystallization rate and, therefore, can also be 

adjusted to the Lauritzen and Hoffman theory, represented by the solid lines in Figure 

11b. This is an excellent way to compare experimental data points (experimental values 

of 1/τ50% in Figure 11a) with the Avrami theory parameters (calculated k1/n values, 

plotted as data points in Figure 11b). The remarkable qualitative similarity between 
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Figure 11a and Figure 11b is a consequence of the excellent fit of the Avrami equation 

to the overall crystallization rate data.  

In this work, small differences are observed between l-PLLA and l-PDLA in 

terms of overall crystallization kinetics, as shown in Figure 11. Figure 8 demonstrates 

that differences in growth rate and nucleation densities are not significant. Therefore, 

the small differences observed in the overall crystallization kinetics in Figure 11 

between l-PLLA and l-PDLA can be attributed to the higher nucleation rate observed 

for l-PDLA, which are reported in Figure S1-2 (see Supporting Information). These 

differences are magnified when cyclic PLAs are considered in Figure 11 and are also a 

consequence of the larger nucleation density and nucleation rate of cyclic PDLA as 

compared to cyclic PLLA. The reason why PDLA nucleates more than PLLA in cyclic 

materials is unknown but the possible reasons for this behavior have been discussed 

above (see Nucleation section). 

Figure 11c shows the values of the Avrami index as a function of Tc. The values 

fluctuate between 2 and 3. It must be remembered that the overall isothermal 

crystallization kinetics was determined by heating from the glassy state. Hence the 

nucleation density was greatly enhanced. Under such circumstances, when PLOM 

observations are made, a granular texture is observed (results not shown) which can 

correspond either to instantaneously nucleated spherulites (n=3) or instantaneously 

nucleated axialites (n=2). The results are therefore expected on the basis of the observed 

morphology. No specific trends are observed regarding stereoisomerism, chain topology 

or crystallization temperature. 

 

Equilibrium melting Temperature (𝑻𝒎
𝟎 ) 

 

In previous sections, the effect of chain topology has been found to have a very 

important influence on nucleation and crystallization kinetics, as expected from the 

faster diffusion of cyclic rings in comparison with linear analogue chains. However, it is 

important to ascertain if some of the differences observed can also be due to 

thermodynamic factors, such as the degree of supercooling applied to the material for 

nucleation and crystallization. This is the reason why we determine the equilibrium 

melting point differences between linear and cyclic PLAs. As far as the authors are 

aware, the equilibrium melting point of cyclic PLA chains has never been reported in 

the literature. 
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The equilibrium melting temperature, 𝑇𝑚
0 , is the melting point of a perfect crystal 

without surface, equivalent to a crystal in which all the chains are extended (i.e., the 

folded surfaces do not exist).59 It is a very important property in crystallizing polymers 

and not only reflects the molecular and conformational characteristic on the chain, it is 

also a key parameter in the analysis of crystallization kinetics. For this reason, the 𝑇𝑚
0  

value will be studied for the samples l-PLLA, l-PDLA, c-PLLA, c-PDLA. 

The Thompson–Gibbs approach is one of the simplest and most widely used 

methods to evaluate 𝑇𝑚
0 , and it is based on equation 261: 

 

𝑇𝑚 = 𝑇𝑚
° (1 −

2𝜎𝑒

𝑙∆ℎ𝑓
0)                                                   (2) 

 

where 𝑇𝑚
0  is the equilibrium melting point, ∆ℎ𝑓

0 is the enthalpy per unit volume of a 

perfect crystal (100% crystalline) and 𝜎𝑒 is the fold surface free energy.  

Su et al.27 derived a modified Thompson-Gibbs equation (3) for cyclic polymers by 

considering that the entropy of a cyclic and a linear chain in the melt are not equivalent. 

The modified Thompson-Gibbs equation can be written as: 

 

𝑇𝑚 =  
𝑇𝑚𝐿

0

(1+
𝑇𝑚𝐿

0 ∆𝑆𝑐𝑦𝑐

∆ℎ𝑓
0 )

[1 −
2𝜎𝑒

∆ℎ𝑓
0𝑙

]                            (3) 

 

where 𝑇𝑚𝐿
0  is the equilibrium melting point of the linear polymer and ∆𝑆𝑐𝑦𝑐 is the 

cyclization entropy difference between the crystalline state and the melt state. 

For both Thompson-Gibbs and Thompson-Gibbs modified equation, 𝑇𝑚
0   for 

linear and cyclic chains can be obtained by extrapolation to infinite lamellar thickness 

(i.e., 1/l = 0), which can represent the equilibrium melting temperature of a defect-free 

crystal (even though in cyclic chains crystals some defects will always be present, as the 

chain can only adopt an extended chain conformation with one fold at each end, as it 

has no chain ends). 

In order to determine 𝑇𝑚
0 , the samples were submitted to a specially designed 

isothermal crystallization procedure from the melt. The samples were first isothermally 

crystallized (after cooling from the melt at 60 ºC/min) for 24 hours at five different 

crystallization temperatures (Tc) 90, 100, 110, 120 and 130 ºC. After this time had 
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elapsed, the samples were quenched in iced water to prevent any further crystallization 

during cooling from the melt. To these samples, SAXS measurements were performed 

at room temperature, as shown in Figure 12a and Figure 12b to obtain long periods and 

from these values lamellar thickness were calculated (see the Supporting Information 

Figure S4 for the results of PDLA). Additionally, DSC heating scans were performed to 

the same samples in order to obtain experimental melting points and melting enthalpies. 
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Figure 12. a and b) Lorentz-corrected SAXS profiles, with intensity times q2 as a function of scattering 

vector. c and d) Representation of the Thompson - Gibbs plots to obtain 𝑇𝑚
0  for linear and cyclic PLA. 

 

From the data presented in Figure 12a and 12b, values of qmax were obtained 

from the peak that is observed in all SAXS profiles. This diffraction signal is due to the 
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long period of the lamellar structure in the material and transforming the scattering 

vector to distance, the long period can be found (L). In order to calculate the value of 

the lamellar thickness (l), we have employed the approximation l = Xv L, where Xv is the 

crystal volume fraction (see the Supporting Information for the procedure employed to 

calculate the crystal volume fractions).62 Using the lamellar  thickness values and the 

experimental melting points of the isothermally crystallized samples, the Thompson-

Gibbs equation can be applied.59 

Figure 12c and 12d displays the Thompson-Gibbs plots of both cyclic and linear 

PLA. The equilibrium melting temperatures (𝑇𝑚
0 ) determined from the intercept are 159 

± 1.8 ºC and 159 ± 0.7 ºC for l-PLLA and l-PDLA respectively. For c-PLLA and c-

PDLA the 𝑇𝑚
0  values determined are 164 ± 0.7 ºC and 164 ± 1.6 ºC respectively. 

Therefore, 𝑇𝑚
0  is higher in cyclic PLAs than in their linear analogues and D or L 

stereoregularity has no influence on this thermal property. The determining factor is the 

topology of the chain. Similar results, where cyclic chains have been found to have 

higher equilibrium melting points than their linear analogues, have also been reported 

for PCL,27 PTHF20,32 and PE.24  

The values of the equilibrium melting temperature determined in this work are 

lower than others reported in the literature.63,64 However, it should be noted that 

𝑇𝑚
0  values depend on the molecular weight in the low molecular weight range (before it 

saturates above a critical molecular weight range), a fact confirmed by Pan et al.55 

specifically for PLLAs. It must be remembered that the samples employed in this work 

have number average molecular weight values of just 10 kg/mol, therefore lower 

apparent melting points and equilibrium melting points are expected in comparison to 

those exhibited by higher molecular weight samples. 

The fold surface free energy (𝜎𝑒 ) and cyclization entropy (∆𝑆𝑐𝑦𝑐) can also be 

obtained from the Thomson-Gibbs analysis based on equations (2) and (3).27 The value 

of ∆𝑆𝑐𝑦𝑐 is -2 J/kgK.  

The values of 𝜎𝑒 of linear PLA determined from the slope of the plots are 13 and 

15 mJ/m2 for l-PLLA and l -PDLA, respectively. Moreover, for cyclic samples 12 and 

13 mJ/m2 values were determined for c-PLLA and c-PDLA. The differences in the 

values are within the experimental error of the measurements. The fact that no 

differences are found may be due to the presence of linear and/or larger cyclic chains 

impurities in the cyclic chains. Slightly larger 𝜎𝑒  could be expected for cyclic PLAs as 
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larger loops could formed at the crystal surface by the cyclic chains as compared to 

linear ones, as well as to the presence of the triazole groups that close the cycles and are 

rejected to the amorphous intervening layers.  

It is noted that, for both linear and cyclic PLAs, the values of σe determined from 

the Thompson–Gibbs analysis in Figure 12c and 12d are smaller than those obtained by 

us from the Lauritzen–Hoffman analysis (see the Supporting Information). It has been 

suggested that σe determined by growth rate analysis is a “kinetic” surface free energy, 

whereas that obtained by the Thompson–Gibbs plot is a “thermodynamic” one. The 

experimental melting points used in this work for the Thompson–Gibbs plot were 

determined  after the samples have undergone isothermal crystallization for 24 h and the 

crystals would have reached their maximum crystal size for the applied supercooling. 

During the long isothermal crystallization time, the crystal surface may reorganize to 

reduce the fold surface free energy. On the other hand, the σe obtained from the growth 

rate is the surface free energy of the crystals just formed during the crystallization 

process and the great amount of defects on the surface leads to a higher surface free 

energy. A similar discrepancy has also been found for PCL.27 

 

Self-nucleation 

The self-nucleation technique, described in detail in the experimental part, was 

applied to the four samples employed here, namely, linear and cyclic PLLA and PDLA. 

Figure 13 shows as examples, the self-nucleation experiments on linear and cyclic 

PLLAs, where cooling and subsequent heating runs from the applied Ts temperatures 

are shown. 
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Figure 13. Self-nucleation of l-PLLA and c-PLLA, a) and c) DSC cooling scans from Ts and b) and d) the 

subsequent heating scans. 

 

The self-nucleation process classifies the physical state of the material with 

respect to its nucleation, in three domains. PLAs cannot crystallize during cooling from 

the melt at 20 ºC/min. In Figure 13 it can be observed that if Ts is greater or equal to 149 

ºC in l-PLLA and 156.5 ºC in c-PLLA, no crystallization of the material occurs, 
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therefore it is considered that the material is in Domain I or complete melting domain, 

where the crystalline memory of the material is completely erased and the polymer 

presents a thermal behaviour identical to that in standards scans.  

Figure 13a and 13c show that if Ts is between 148.5-148 ºC in l-PLLA and 156-

155.5 ºC in c-PLLA an exothermic crystallization peak is observed during cooling. The 

polymers are now able to crystallize during cooling from the melt thanks to the self-

nuclei produced by the thermal protocol applied. This behaviour corresponds to Domain 

II or self-nucleation domain, since no trace of annealing can be seen in the subsequent 

melting scans.  

Finally, if the selected Ts temperature is equal or lower than 147.5 ºC in l-PLLA 

and 155 ºC in c-PLLA, partial melting occurs and the unmolten crystals can anneal 

during the 5 min at Ts. In the subsequent heating scans, annealed crystals melt at higher 

temperatures inducing an extra peak, as observed in Figure 13b and 13d (signalled with 

arrows). In this Ts range, the polymer falls into Domain III.65,66 The self-nucleation 

technique was also applied to PDLA samples and the results are presented in the 

Supporting Information Figure S5-1. 

 

Table 2. Self-nucleation Domains (DI, DII and DIII) transition temperatures for the indicated samples. 

 DI to DII (ºC) DII to DIII (ºC) 

l -PLLA 149 148 

l -PDLA 149 148 

c -PLLA 156.5 155.5 

c -PDLA 152.5 151.5 

 

After performing the self-nucleation procedure to the samples, the temperatures 

at which the domain transitions were found are reported in Table 2. The temperatures at 

which the transition between the different domains occurs are shown on top of the 

standard DSC heating scans in Figure S5-2 (see Supporting Information). 

The temperature range of Domain II in all samples are similar for both linear and 

cyclic PLAs. In addition, the onset temperature of Domain II occurs in l-PLAs at values 

that are higher than the final melting temperature, as compared to the cyclic ones. The 

ability to induce self-nucleation when the sample is molten (case of linear samples) is 

directly related to the crystalline memory of the material.48  The crystalline memory 

effect has been explained by considering that residual chain orientation or 
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intermolecular interactions between chains remains (under the applied temperature and 

time) and prevent the material from achieving an isotropic melt (with random coil 

conformations).2,28,67 

Figure S5-2 shows that the crystalline memory of c-PLAs are smaller than that 

exhibited by their linear analogues. This represents another interesting result produced 

by differences in molecular topology. It is clear that the entanglement density in l-PLAs 

is higher than c-PLAs. Therefore, partially disentangled PLA cyclic chains can reach a 

pseudo-equilibrium random coil conformation much easier than more entangled linear 

chains. Hence, the crystalline memory of c-PLAs can be erased at lower temperatures 

than in l-PLAs (see the DI to DII transition temperatures in Figure S5-2). A similar 

results has been reported by Perez et al.28 for cyclic PCLs.  

 

Successive Self-Nucleation and Annealing (SSA) 

The SSA (Successive Self-nucleation and Annealing technique) was developed 

by Müller et al.47,49,50 Thermal fractionation was applied to the same samples whose 

self-nucleation domains were determined in the previous section. In order to be able to 

compare the results, the first self-nucleation temperature for all materials was kept 

constant at 155.5 ºC. This temperature corresponds to the ideal self-nucleation 

temperature (Ts(ideal)) for the sample with the highest melting point (i.e., c-PLLA). A 

total of 10 cycles were applied, as was explained in the experimental part. 

Figure 14a shows the final heating scan after the SSA was performed. Vertical 

lines indicate the Ts values used for the fractionation. All samples show a certain degree 

of thermal fractionation and therefore a distribution of melting peaks corresponding to 

various lamellar sizes that melt at different temperatures produced by the SSA 

procedure. The SSA technique is particularly sensitive to defects that may disrupt the 

crystallizable sequences. Linear PLAs do not have branches or other defects along the 

chain, they are expected to be fractionated only by their molecular weight distribution. 

In the case of cyclic PLAs, the group that binds the chains when the click reaction is 

made is a defect that can only be located in the amorphous areas of the sample, but it is 

a single group per molecule, so its impact on molecular fractionation will be reduced. 

All samples presented in Figure 14a were successfully fractionated. 

The melting peaks have been labelled according to their origin. The thermal 

fraction 1 corresponding to the melting peak 1 and refers to an annealed population 

produced mainly during the five min holding time at Ts(1), although successive steps 
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might have also some limited influence in the size of the fraction. Melting peak 2 is 

produced by Ts(2) and so on. 
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Figure 14.  Final heating run after SSA thermal fractionation. a) DSC heating scan after SSA plotted as 

normalized Heat Flow (mW/g) versus temperature b) Heat Flow (mW/g) versus lamellar thickness (l) for 

the indicated samples, l values are calculated from the modified Gibbs-Thomson equation. The vertical 

lines indicate approximate values of the average extended chain lengths calculated by equation 4. 
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It is interesting to observe in Figure 14a that only cyclic samples have the 

highest melting fraction, or melting peak 1. Therefore, the temperature Ts(1) was only 

able to cause annealing in the samples with cyclic topology, as they have higher melting 

points in comparison to their linear analogues. Fraction 2 or melting peak 2 is present in 

all samples. 

SSA experiments show that cyclic PLAs seem to have a higher annealing 

capacity as compared to their linear analogues, as they are the only ones exhibiting 

fraction 1. This is remarkable since linear PLA chains could be in theory extended up to 

a length that would be twice that of a cyclic chain with identical molecular weight. 

Hence, linear chains have the potential to produce thicker crystals near equilibrium 

conditions, but under the SSA parameters used (which are dominated by kinetic 

factors), cyclic PLA crystals apparently anneal more and produce crystals that melt at 

higher temperatures (compare the highest melting fractions in cyclic and linear 

materials, i.e., fractions labeled 1 versus fraction labeled 2 respectively). Once again, 

the lower entanglement density and cyclic chain topology are probably playing an 

important role to facilitate annealing. Perez et al. 28 reported similar results for cyclic 

and linear PCLs.  

The extended chain length (Lextended) of a linear PLLA chain has been calculated 

employing eq. (4), derived from crystallographic data for α type crystals: 

 

𝐿𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 =  𝑁 𝑥 𝑐 10⁄          (4)                                                        

 

where N is the degree of polymerization, given by  𝑁 = 𝑀 ⁄ 𝑀𝑈𝑅 , M is the molecular 

weight of the sample and MUR is the molecular weight of the repeating unit, 72.06 

g/mol. The parameter c corresponds to the dimension of the crystalline unit cell in the 

direction of the chain and 10 is the number of repetitive units along the chain axis. From 

this equation, Lextended can be calculated to be: 41 nm. 

On the other hand, in order to estimate the lamellar thickness of the samples 

after the SSA treatment, their peak melting point values were employed (Tm). By the 

modified Thomson-Gibbs equation fits obtained in Figure 12, it has been possible to 

relate these melting temperature values to their respective lamellar thickness values, 

which are plotted in Figure 14b.  

Figure 14b shows the distribution of lamellar thickness for both linear and cyclic 

chains. Cyclic PLA crystals melt at higher temperatures (Figure 14a), but their lamellar 
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thicknesses are, according to Figure 14b, in the same range of values (for instance, 

fractions 1 for cyclics and fraction 2 for linear PLAs are in the same range, between 20 

and 30 nm). This is due to the different supercooling of the samples, as the Thomson-

Gibbs equation takes into account the influence of the value of 𝑇𝑚
0 , which is different 

for cyclic and linear PLAs.  

 

Figure 15. Schematic cartoon illustrating extended and once folded linear and cyclic PLA chains: a) 

representation of a linear extended chain (Lextended) ; b) once folded linear chain, approximately 

corresponding to SSA fraction number 2 for l-PLLA; c) cyclic extended chain (Lextended) (approximately 

corresponding to SSA fraction number 1 in c-PLLA) and d) once folded cyclic chain, which 

approximately corresponds to SSA fraction number 3 for c-PLLA) 

 

The value of the extended chain length (Lextended) for linear PLLA is indicated 

with a vertical line in Figure 14b. The equivalent value for the cyclic PLLA chain is 

also indicated in the Figure 14b, assuming that it will be one half of the calculated value 

for the linear chain. Therefore, after the SSA treatment, some cyclic chains (those 

within fraction 1) are most probably extended as a collapsed circle inside the crystal 

with the folds closely tight in the surface of the crystal, as indicated in the cartoon of 

Figure 15.  

As indicated in Figure 14b, the length of the extended cyclic chain should be 

around 20.5 nm and according to the Thompson-Gibbs equation (which can only give a 

rough approximation to lamellar thickness values), after SSA, cyclic chains have 

fraction number 1 with lamellar thickness in the range between 20-30 nm. So within the 

errors involved (approximations of the Thompson-Gibbs equation and mean values of 

molecular weight employed to calculate the extended chain values), it seems that a 

certain fraction of cyclic chains may crystallize with extended chains (like in Figure 

15c). 

Lextended

Linear

Lextended

Cyclic

l linear
l cyclic

(a) (b) (c) (d)



37 

 

On the other hand, according to the obtained value for the extended linear 

chains, they should crystallize in fraction 2 (the highest melting fraction) with at least 

one fold, not being able to extend fully (see Figure 15b). The lower density of 

entanglements of cyclic chains probably plays an important role in facilitating the full 

extension of a certain fraction of the chains.15 

 

 

Conclusions 

 In the present paper, we studied for the first time the influence of chain topology 

and stereochemistry on the nucleation and crystallization kinetics of PLAs. WAXS 

results demonstrated that chain topology has no effect on the crystal structure of both 

PDLA and PLLA. On the other hand, important differences in nucleation and 

crystallization kinetics were found, as cyclic chains nucleate much faster than linear 

ones. The effect of nucleation dominated the overall crystallization, as the growth rate 

was influenced by the presence of high molecular weight “impurities” present in the 

cyclic samples. 

 The differences found between cyclic and linear PLA chains in terms of thermal, 

nucleation and overall crystallization kinetics are due to both kinetic and 

thermodynamic effects. The kinetic effects are related to the faster diffusion of cyclic 

chains which stem from their lack of chain ends (that reduce entanglement density) and 

more collapsed compact coil conformations. The thermodynamic effects are due to the 

enhanced supercooling of the cyclic chains in comparison to linear ones, as the 

equilibrium melting point of cyclic chains was found to be higher than that of linear 

chains as a consequence of the lower entropy of cyclic chains in the melt. 

The reduced density of entanglements of cyclic PLA chains induces a shorter 

crystalline memory in comparison with l-PLAs. SSA results show that c-PLAs have a 

higher annealing capacity than linear chains and form fractions that can melt at higher 

temperatures in comparison to l-PLAs. In fact, the highest melting point fractions in c-

PLAs formed extended chain cyclic molecules, while in l-PLAs, the highest melting 

point fractions are formed by folded chains. 

 The effect of chain topology was found to be dominant and more important than 

that of stereochemistry, as the results for PLLA and PDLA were in several cases very 

similar. 
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