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Abstract  
 

 

Breast cancer is the most prevalent female cancer and the first cause of death from cancer in 

women worldwide. Around 75% of breast tumors express estrogen receptor (ER). Tamoxifen, an 

ER antagonist, is the most common drug used in patients with ER+ breast cancer in both 

premenopausal and postmenopausal women. However, development of resistance to therapy 

occurs in approximately 30% of cases, leading to recurrence. Thus, it remains a clinical problem. 

Tamoxifen-resistant cells are enriched for stem/progenitor cell populations. The CD44+CD24-/low 

cell population increase after hormone-therapy is associated with enhanced ability to form 

mammospheres. In this thesis, I present studies showing that WNT1 expression is 

heterogeneous among breast cancer subtypes. In addition, I show that Wnt-1 activates a -

catenin independent signal in tamoxifen-resistant breast cancer cells involving ATF2 and TCF1 

and can be potentiated by the expression of USP6, which regulates the degradation and turnover 

of FZD receptors. In functional assays, Wnt-1 increases the CD44+CD24-/low population and the 

ability to form mammospheres. Consistent with these observations, tamoxifen treated ER+ 

breast cancer patients expressing high levels of WNT1 have poor prognosis. In silico analysis 

identified FZD5 as a Wnt receptor that is associated with poor prognosis in tamoxifen-treated 

patients. I demonstrate an interaction between Wnt-1 and FZD5 using co-immunoprecipitation, 

immunofluorescence and gene reporter assays.  

Together these findings suggest that targeting Wnt-1 signaling by blocking its binding to FZD5 

would be a useful approach for preventing recurrence in a defined group of breast cancer 

patients.  
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Resumen  
 

 

El cáncer de mama es el tipo de cáncer con mayor prevalencia y la primera causa de muerte por 

cáncer entre las mujeres a nivel mundial. Alrededor del 75% de los tumores mamarios expresan 

el receptor de estrógeno (ER). El tamoxifen, un antagonista de ER, es el tratamiento más común 

empleado para tratar a pacientes que expresan ER, tanto en mujeres pre-menopáusicas como 

en las post-menopáusicas. Sin embargo, en el 30% de los casos se desarrolla resistencia a la 

terapia incrementando los casos de recurrencia, lo que continúa siendo un problema clínico.  

Las células resistentes a tamoxifen están enriquecidas en células madre/progenitoras. El 

incremento de la población de células CD44+CD24-/low tras la terapia hormonal está asociado con 

una mayor habilidad de formar mamosferas. En esta tesis se muestra que la expresión de WNT1 

es heterogénea entre los distintos subtipos de cáncer de mama. Además, Wnt-1 activa una 

señalización independiente de la -catenina y mediada por ATF2 y TCF1 y es, además, 

potenciada por la expresión de USP6, que regula la degradación y el reciclaje de los receptores 

FZD. En los ensayos funcionales se ha observado que Wnt-1 incrementa la población de células 

CD44+CD24-/low y la habilidad de formar esferas. Estas observaciones son consistentes con el peor 

pronóstico que presentan los pacientes de cáncer de mama con tumores que expresan ER y han 

recibido tratamiento con tamoxifen. Por medio de análisis in silico se identificó FZD5 como un 

receptor de Wnt que se correlaciona con un peor pronóstico de los pacientes tratados con 

tamoxifen. La interacción de Wnt-1 y FZD5 se demuestra a través de ensayos de 

inmunoprecipitación, inmunofluorescencia y ensayos de genes reporteros.  

Estas observaciones indican que el bloqueo de la señalización de Wnt-1 evitando su unión a FZD5 

podría ser una buena estrategia para prevenir la recurrencia en un grupo determinado de 

pacientes de cáncer de mama.  
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Resumen extendido 
 

 

El cáncer de mama es el tipo de cáncer con mayor prevalencia entre las mujeres a nivel mundial. 

El tamoxifen, un antagonista de ER, es el tratamiento más común empleado para tratar a 

pacientes que expresan ER, tanto en mujeres pre-menopáusicas como en las post-

menopáusicas. Sin embargo, el desarrollo de resistencia a la terapia continúa siendo un 

problema clínico, con el consecuente incremento de los casos de recurrencia.  

Las células resistentes a tamoxifen están enriquecidas en células madre/progenitoras. El 

incremento de la población de células CD44+CD24-/low tras la quimioterapia está asociado con 

una mayor habilidad de formar mamosferas. Además, la señalización Wnt está estrechamente 

relacionada con la regulación de la función de las células madre. Por ello, con este proyecto se 

propuso el objetivo de estudiar los mecanismos por el que la señalización Wnt controla el 

comportamiento de las CSCs y contribuye a la resistencia a la terapia hormonal. Para ello, se 

propusieron tres objetivos más específicos:  

1. La identificación de las proteínas Wnt involucradas en el mantenimiento de las 

poblaciones de CSCs en cáncer de mama.  

 

2. Caracterizar la ruta de señalización Wnt en las líneas celulares resistentes a tamoxifen.  

 

3. Desarrollar estrategias para inhibir la vía de señalización Wnt en las CSCs de mama.  

 

Para abordar el primero de los objetivos, se estudió la expresión génica de distintos genes Wnt 

en las CSCs de dos líneas celulares resistentes a tamoxifen, MCF-7TamR y T47DTamR. Para el 

enriquecimiento de la población de CSCs se cultivaron las células en condiciones adecuadas para 

favorecer la formación de mamosferas, donde se ha visto que la proporción de CSCs aumenta. 

A continuación, se sortearon las células CD44+CD24-/low y se analizó la expresión génica de 

diferentes genes Wnt. Únicamente el incremento de la expresión de WNT1 en el conjunto de las 

esferas, en comparación con la expresión de este gen en células cultivadas en adherencia, fue 

estadísticamente significativa en las células MCF-7TamR. Esta tendencia se mantuvo en la 

población CD44+CD24-/low con respecto a su control CD44-CD24+. Por otro lado, en las células 

T47DTamR la expresión tanto de WNT1 como de WNT3A tuvo mucha variabilidad y no resultó 
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ser estadísticamente significativa. Además, la expresión de WNT3A se encontró disminuida en 

la población de células CD44+CD24-/low, al igual que en las MCF-7TamR.  

A continuación, se estudió la respuesta de estas células resistentes a tamoxifen a la expresión 

de los genes Wnt analizados. Para ello, se llevó a cabo el ensayo de reportero empleando una -

catenina/TCF-luciferasa, que refleja la activación de la vía de señalización de Wnt/β-catenina. 

Las células MCF-7TamR no respondieron a la expresión de ninguno de estos genes ni al medio 

enriquecido en Wnt-3a, mientras que las células T47DTamR sí que respondieron tanto a la 

señalización mediada por Wnt-1 como al Wnt-3a presente en el medio. Para determinar los 

factores que puedan influir en la diferencia de la respuesta observada en las distintas líneas 

celulares, se consideraron aspectos como la expresión de los receptores ER y AR, así como la 

expresión de diferentes factores de transcripción implicados en la vía de señalización Wnt. Los 

resultados mostraron que AR no está implicado en la respuesta a Wnt en las células de cáncer 

de mama, mientras que la señalización de Wnt/β-catenina parece estar reprimida en las células 

que expresan ER. Además, estas diferencias se pueden deber a los distintos niveles de expresión 

de los factores de la familia TCF y LEF que pueden actuar tanto como activadores como 

represores de la ruta dependiendo del contexto (Sprowl and Waterman, 2013). En general, se 

observó que los niveles de expresión de los genes de la familia TCF/LEF son muy bajos. En las 

células MCF-7TamR se comprobó que la expresión de TCF4 no es suficiente para activar la 

actividad transcripcional, mientras que sí que lo es la expresión de TCF1. La activación mediada 

por TCF-1 es independiente de la expresión de -catenina. El uso del mutante dominante-

negativo de ATF2 (ATF2) redujo la activación mediada por TCF-1, lo que sugiere que ATF2 

participa en esta activación. Además, la expresión de WNT1 incrementa la actividad 

transcripcional mediada por TCF-1.  

Por otro lado, dado que la expresión de WNT1 no activa la vía de señalización de Wnt/β-catenina 

y tanto Wnt-1 como ATF2 tienen un papel relevante en la señalización mediada por TCF1, se 

analizó el efecto de la expresión en la actividad transcripcional mediada por ATF2, utilizando 

para ello el reportero ATF2-luciferasa. Se observó que la expresión de WNT1 incrementaba la 

actividad transcripcional de este reportero. Estos datos fueron confirmados utilizando 

reporteros que codifican GFP bajo los promotores que responden a TCF o a ATF2. Por tanto, se 

concluye que entre las células resistentes a tamoxifen, la expresión de WNT1 está incrementada 

en algunas poblaciones de células madre con capacidad de formar mamosferas. Además, se ha 

observado que la señalización mediada por Wnt-1 en estas células puede ser activada 

independientemente de la -catenina y mediada por ATF2 y TCF-1. 
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A continuación, se estudió más en profundidad los niveles de expresión de WNT1 en el contexto 

del cáncer de mama utilizando bases de datos disponibles online. En esta tesis se muestra que 

la expresión de WNT1 es heterogénea entre los distintos subtipos de cáncer de mama y no se 

correlaciona con el grado ni con la expresión del receptor de estrógenos. En correspondencia 

con los datos obtenidos de los pacientes, tampoco se observó ninguna diferencia significativa 

en el nivel de expresión de WNT1 entre las distintas líneas celulares que se utilizan para los 

estudios in vitro. Sin embargo, sí que se observó una reducción significativa en la supervivencia 

de pacientes de cáncer de mama que expresan receptores de estrógeno y altos niveles de WNT1 

y que han sido tratados con tamoxifen. Para una caracterización más detallada de los niveles de 

Wnt-1 en los tumores mamarios, se llevó a cabo un análisis inmunohistoquímico de un array con 

casi 200 muestras. Los datos obtenidos reflejaron una correlación de los niveles de ER y PR con 

Wnt-1, pero no de HER2. Los niveles de Wnt-1 también mostraron una correlación inversa con 

las muestras de metástasis, en las que apenas se apreció la tinción de Wnt-1.  

Tras observar el incremento de la expresión de WNT1 en las células madre con fenotipo 

CD44+CD24-/low consideramos la posibilidad de estudiar los niveles de expresión en distintos 

tipos de células madre. Para ello, se utilizaron distintas líneas celulares de ratón de cáncer de 

mama metastático, 67NR, 4T1 y 4T07. Estas células tienen un alto porcentaje de células madre 

caracterizadas por la expresión de ALDH+, sin embargo, aunque la expresión de Wnt1 se vio 

incrementada en el conjunto de las mamosferas formadas por estas células, los niveles de Wnt1 

no cambiaron entre la población ALDH+, con respecto al nivel expresado por las células ALDH-. 

Estos datos sugieren que el incremento de la expresión de WNT1 es exclusivo de determinadas 

células madre/progenitoras, como por ejemplo, aquellas con fenotipo CD44+CD24-/low, que se 

encuentran enriquecidas en las poblaciones de células resistentes a tamoxifen.  

Para una mejor caracterización de los efectos que la expresión de WNT1 tiene en las células 

madres, se establecieron líneas celulares estables que expresan WNT1. Los niveles de expresión 

de WNT1 fueron considerablemente incrementados, así como la producción de proteína Wnt-

1, que se detectó por western blot, en los extractos celulares y en la matriz extracelular, y por 

inmunofluorescencia. No se observaron cambios morfológicos ni alteraciones en los niveles de 

proliferación o ciclo celular de las células que expresan WNT1. La actividad transcripcional de las 

células establecidas fue similar a lo determinado previamente; Wnt-1 no es capaz de activar la 

actividad transcripcional de -catenina/TCF pero si la transcripción mediada por ATF2.  

En primer lugar, se analizó si la expresión estaba ligada al proceso de adquisición de la 

resistencia. Sin embargo, la expresión de WNT1 no incrementó la resistencia a tamoxifen de 

células sensibles al tratamiento. Las células MCF-7TamR son también menos sensibles que las 
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células control a otros antagonistas de ER. Por ello, se probó si Wnt-1 afecta al aumento de la 

resistencia a ICI, un antagonista de ER. Aunque se observó una tendencia a aumentar el tamaño 

de las colonias formadas por las células resistentes que expresan WNT1, no se apreció un 

aumento en el número de colonias totales. Este resultado indica que Wnt-1 probablemente 

tenga un efecto en la proliferación de aquellas células con capacidad de formar colonias. Este 

efecto parece depender de la expresión de ER, aunque no de su actividad transcripcional.  

En los ensayos funcionales se observó que la expresión de WNT1 se traduce en un incremento 

de la población de células CD44+CD24-/low y en la habilidad de formar esferas en las células 

resistentes a tamoxifen. Estos datos son consistentes con la peor prognosis que presentan los 

pacientes de cáncer de mama con tumores que expresan ER y han recibido tratamiento con 

tamoxifen. Sorprendentemente, cuando se analizaron los niveles de expresión de genes 

marcadores de CSCs, como SOX2, NANOG y OCT4, ningún cambio significativo fue detectado. 

Los niveles de Wnt1 tampoco aumentan en la población ALDH+ analizadas en líneas celulares de 

cáncer de mama de ratón. Estos resultados sugieren que las células que expresan altos niveles 

de WNT1 podrían tener ciertas características correspondientes a grados intermedios entre las 

células madre y células diferenciadas, por lo que podría tratarse de células progenitoras.  

Los cambios en las células con características epiteliales para adquirir propiedades más similares 

a la de las células mesenquimales están asociadas con una mayor capacidad metastática. El 

análisis de los niveles de expresión de Wnt1 en las líneas celulares de ratón muestra que los 

niveles más altos se encuentran en la línea celular 4T07, que es una línea celular que muestra 

propiedades tanto epiteliales como mesenquimales. Cuando se analizaron los cambios 

producidos en los genes característicos de propiedades epiteliales o mesenquimales, se observó 

que no había cambios en las células resistentes a tamoxifen, mientras que sí que se encontró un 

aumento significativo de la expresión de VIMENTIN y SNAI2 en las células sensibles al 

tratamiento tanto en adherencia como en las células que forman esferas. Estos datos indican 

que la respuesta a la expresión de WNT1 es diferente en las células en función de su sensibilidad 

a tamoxifen y que el peor pronóstico de los pacientes resistentes a tamoxifen con altos niveles 

de expresión de WNT1 no está asociado a cambios de transición epitelial-mesenquimal (EMT).  

Los receptores FZDs son capaces de activar tanto la ruta canónica como la no canónica de la vía 

de señalización Wnt, por ello, la terapia dirigida al bloqueo de los receptores parece ser 

prometedora. USP6 es una deubiquitinasa que regula la abundancia de FZDs en la membrana 

evitando la ubiquitinación mediada por las ligasas RNF43 y ZNRF3 y con ello su reciclaje. En esta 

tesis, se muestra que la señalización mediada por Wnt-1 puede ser regulada por USP6. La 

expresión de USP6 potenció la capacidad de Wnt-1 de activar la transcripción mediada por ATF2. 
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Además, aumentó la capacidad de las células MCF-7TamR que expresan WNT1 para formar 

mamosferas, sugiriendo que la acumulación de receptores en la membrana induce la activación 

de la señalización mediada por Wnt-1. Sin embargo, dada la baja especificidad de USP6 por 

regular todos los receptores FZD, pueden surgir efectos secundarios adversos. Todos estos 

resultados indican la necesidad de conocer el receptor que específicamente reconoce Wnt-1 y 

activa la señalización. Para determinar cuál de los receptores de Wnt se encuentra implicado en 

este proceso se llevó a cabo un cribado in silico. Se encontró una buena correlación entre los 

niveles de expresión de WNT1 y FZD5. Es más, un nivel alto de expresión de FZD5 en pacientes 

con tumores ER+ tratados con tamoxifen se correlaciona con un peor pronóstico.  

La colocalización fue determinada por inmunofluorescencia y la unión entre Wnt-1 y FZD5 fue 

confirmada por inmunoprecipitación. Además, la expresión de FZD5 incrementó la señalización 

mediada por Wnt-1.  

Todas estas observaciones indican que más estudios son necesarios para tratar de bloquear la 

señalización de Wnt-1 evitando su unión al receptor FZD5 y mejorar con ello el pronóstico y 

prevenir la recurrencia en un grupo determinado de pacientes de cáncer de mama.  

Las conclusiones que se han obtenido de este trabajo son las siguientes:  

- La expresión de WNT1 se encuentra incrementada en las mamosferas y en la población 

de CSCS con fenotipo CD44+CD24-/low de las células MCF-7TamR, pero no en las CSCs 

ALDH+.  

- La actividad de la ruta de señalización Wnt/-catenina es muy baja en las células MCF-

7TamR, lo que puede deberse a bajos niveles de expresión de los genes de la familia 

TCF/LEF.  

- TCF1 recupera la respuesta canónica de la señalización Wnt, y además, permite la 

activación de la transcripción independiente de -catenina, que a su vez puede ser 

bloqueada por ATF2.  

- Wnt-1 activa la señalización dependiente de ATF2 en las células MCF-7TamR.  

- La expresión génica de WNT1 es heterogénea entre los distintos subtipos de cáncer de 

mama, pero los niveles de proteína correlacionan con los niveles de ER y PR pero no de 

HER2. Por otro lado, los pacientes ER+ tratados con tamoxifen y con alta expresión 

génica de WNT1 tienen un peor pronóstico. Los niveles de Wnt-1 en metástasis son muy 

bajos.  

- La expresión de WNT1 no afecta a la resistencia a tamoxifen, sin embargo, puede tener 

un efecto en la proliferación de poblaciones determinadas de CSCs.  
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- Wnt-1 tiene un efecto diferente en las células resistentes o sensibles a tamoxifen, 

favoreciendo la expresión de marcadores de EMT o enriqueciendo la población 

CD44+CD24-/low, respectivamente.  

- Wnt-1 se une a FZD5 y promueve la señalización mediada por ATF2, que puede estar 

regulada por USP6. Tanto FZD5 como USP6 son posibles dianas terapéuticas para el 

bloqueo de la señalización mediada por Wnt-1 en el cáncer de mama.  
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1. HUMAN BREAST 

1.1. Human breast structure 

Mammary glands are secretory organs composed of different cell types that undergo many 

stages of development (pubertal growth, pregnancy, lactation and involution) after birth. 

Changes occurring in the epithelial compartment depend on signals from the mesenchyme 

during embryogenesis. On the other hand, during puberty and adulthood, these changes depend 

on circulating hormones released from the pituitary gland and the ovaries (Macias and Hinck, 

2013).  

Breast tissue is formed by epithelial parenchymal elements and the stroma. Epithelial 

components occupy 10% to 15% of the breast volume, and the remainder is formed by stromal 

elements (Bland, 2009). The breast is formed by 15 to 20 lobes, divided into 20 to 40 smaller 

lobules, which are branched tubule-alveolar glands. Each lobe drains into a lactiferous duct and 

this into a lactiferous sinus leading to the nipple. The space between lobes is filled by adipose 

tissue. Mammary glands can vary in size, contour and density between individuals, mostly due 

to the volume of adipose tissue. The breast is divided into four quadrants, upper inner, upper 

outer, lower inner and lower outer. Most of the breast volume is in the upper outer quadrants, 

where most tumors are located (Pandya and Moore, 2011). Tubular structures are bi-layered 

epithelium mainly composed of basal and luminal cells. Basal epithelium is formed by 

myoepithelial cells, forming the outer layer of the gland and a small population of stem cells. 

The luminal epithelium from the inner layer, formed by cells expressing hormone receptors, 

builds ducts and secretory alveoli (Macias and Hinck, 2013). 

1.2. Breast development 

Mammary ridges develop at the fifth or sixth week of human embryogenesis. At this stage, two 

ventral bands of thickened ectoderm, which extend from the axillary to the inguinal regions, are 

visible. In humans, these mammary ridges of the embryos disappear, except a small portion that 

remains in the pectoral regions. A primary bud is formed by the ingrowth of the ectoderm 

allowing the development of each breast and leading to development of 15 to 20 secondary 

buds that will form the lactiferous ducts and their branches (Moore and Persaud, 2007). The 

primary lactiferous ducts open a hollow that will transform into a nipple during infancy. In 

mammals, the rest of the mammary gland does not develop until puberty, under the influence 

of ovarian estrogen and progesterone production, which will lead to the proliferation of 
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epithelial and connective tissue elements (Pandya and Moore, 2011), as well as formation of 

terminal end buds (TEBs) (Paine and Lewis, 2017). TEBs are the structures that direct the growth 

of ducts through the fat pad, forming the main ductal system of the mammary tree (Williams 

and Daniel, 1983) (Fig. 1). There are two main structures that form the TEBs; a highly 

proliferative and low differentiated region located in the bulbous part and a more differentiated 

and less proliferative region in the ductal part. In the ductal part, two different compartments 

can be distinguished. There is a single-cell layer of “cap cells” in the outer compartment, which 

will differentiate into myoepithelial cells as the duct elongates. The inner compartment is 

formed by a multi-cellular layer of “body cells” (Williams and Daniel, 1983), formed by luminal 

and alveolar progenitors, which will give rise to more mature luminal cells as the duct elongates 

(Paine and Lewis, 2017). 

During adulthood, side branching and alveolar budding occurs under the influence of ovarian 

steroids during the menstrual cycle. However, the major changes take place in preparation for 

lactation during pregnancy and postlactational involution (Howard and Gusterson, 2000). During 

pregnancy, the mammary gland undergoes maturation and alveologenesis. These changes are 

controlled mainly by progesterone and prolactin, which lead to an increase in secondary and 

tertiary ductal branching. Proliferating epithelial cells give rise to alveolar buds and differentiate 

into alveoli resulting in the formation of milk-secreting lobules. Progesterone induces side-

branching and alveologenesis to create a lactation-competent gland in collaboration with 

prolactin, which also promotes the differentiation of alveoli to synthesize and secrete milk. After 

lactation, the involution process is initiated to remove milk-producing epithelial cells and restore 

the ductal architecture back to as it was. There are two involution phases. The first and 

reversible one takes 48 h, and it is characterized by an apoptotic process, alveolar cell 

detachment and accumulation of shed cells into the lumen. The transition to the second and the 

irreversible phase begins when alveoli start to collapse. This involves breakdown of ECM and 

activation of proteases induce tissue remodeling, which by day six will allow removal of most of 

the secretory epithelium and its replacement by adipocytes. Although several signaling 

pathways are involved in the regulation of the switch from lactation to involution, STAT family 

proteins play a major role, while the second phase of remodeling involves MMPs and 

plasminogen (Macias and Hinck, 2013) (Fig. 1).  

In comparison, age-related lobular involution is a different process that consists of the 

replacement of glandular epithelium and interlobular connective tissues with fat. In aged breast, 

only few acini and ducts remains embedded in thin strands of collagen. This reduction of 

epithelial tissue is important for breast cancer diagnosis, since it increases the effectiveness of 
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mammography. It also has a protective role, as it has been reported that postmenopausal 

women, whose breasts have undergone lobular involution have significantly decreased risk of 

breast cancer. This fact may be related to the depletion of mammary stem cells in the aging 

breast (Macias and Hinck, 2013). 

 

 

Figure 1. Stages of postnatal mammary gland development. At birth, there are only few small 

visible ducts that grow until puberty. During puberty, ductal morphogenesis will fill the fat pad 

with a mammary epithelial tree under the influence of estrogen. During adulthood, side 

branches form every menstrual cycle under the influence of ovarian steroids. Alveologenesis 

occurs during pregnancy, under the effect of prolactin (PRL) and progesterone. PRL stimulation 

continues until lactogenesis, which ends in milk production until the involution process in which 

mammary gland is remodeled to its original adult state by the involution process. Adapted from 

Macias and Hinck, (2013).  

1.3. Estrogen receptors 

Nuclear hormone receptors are members of a large family of nuclear receptors that act as 

transcription factors, and include the androgen receptor, the glucocorticoid receptor, 

progesterone receptors, mineral-corticoid receptors, and estrogen receptors. The activity of 

nuclear hormone receptors is modulated by steroid hormones derived from cholesterol, which 

are able to diffuse through the membrane due to their hydrophobic nature. Estrogens, including 

estrone, estradiol (E2) and estriol are one class of these steroid hormones. Estradiol is the most 

potent estrogen hormone and is involved in several physiological functions, such as 

development and maintenance of reproductive organs, regulation of cardiovascular, skeletal 

muscle, immune and central nervous system homeostasis, but it has also been involved in the 

initiation and development of tissue malignancies (Yaşar et al., 2017). 

The effect of estradiol is mediated by estrogen receptor- (ER) and estrogen receptor-(ER), 

which are differently distributed and play different roles in each tissue. ER is the principal 
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player in the uterus, pituitary gland, skeletal muscle, adipose tissue, bone, and more 

importantly, in the mammary gland, while ERis more important in the ovary, prostate, lung, 

cardiovascular and central nervous system (Yaşar et al., 2017). 

The ER gene (ESR1) is located at q24-q27 of chromosome 6, and comprises 8 exons that encode 

a 66 kDa protein composed of 595 amino acids. On the other hand, the ER gene (ESR2) is 

located at q22-24 of chromosome 14, it also has 8 exons and encodes a smaller protein of 60 

kDa with 530 amino-acids. Both ER and ERcan be divided into 6 functionally different 

domains. The A/B domain, encoded by exon 1, is the domain that shares less identity between 

the ERs, 17% amino-acid identity. The central C region is on the other hand, the one with more 

identity (97%) and is encoded by exons 2 and 3. This well conserved region contains the DNA 

binding domain (DBD). Exon 4 encodes part of the C region, D region and part of the E region. 

The D region contains the nuclear localization signal (NLS) (36% identity) and links the C domain 

to the multifunctional E region, also called the ligand-binding domain (LBD). The E region (56% 

identity) is a globular region with a hormone-binding site, a dimerization interface and ligand-

independent co-regulator interaction function (activation function, AF-2), encoded by exons 4-

8. Exon 8 also encodes the F region (18% identity), located at the carboxyl-terminus (Fig. 2A) 

(Yaşar et al., 2017). The binding of estradiol to the LBD induce structural reorganization for the 

formation of dimers or interaction of co-regulators and converts inactive ER to a functionally 

active form (Mak et al., 1999) (Fig. 2B). 
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Figure 2. Schematic structure of ERs. A. ESR genes are composed of 8 exons that encode ER 

proteins. These proteins are divided into 5 regions, where DBD is in the C region, NLS in the D 

region and LBD in the E region. The amino acid sequence identities between ER and ERare 

indicated. B. Representation of estrogen binding and conformational changes that ERs undergo. 

 

The ER homodimer binds to DNA and other co-regulatory proteins in specific regions called 

estrogen-response elements (EREs) located in the promoters of estrogen target genes, and 

enhances their transcription. The binding to these co-regulatory proteins is allowed by the 

conformational changes induced previously by the binding of the ligand. The most important 

conformational change takes place in helix 12 (H12) of ER (Shiau et al., 1998). There are many 

canonical ER target genes described that regulate cell proliferation and survival, such as pS2 

(Stack et al., 1988), PGR, ESR1, GREB1, MYC and GATA3 (Carroll et al., 2006). 
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1.4. Progesterone receptors 

Progesterone is an ovarian hormone with a critical activity during normal breast development, 

but it has also been linked to increased breast cancer risk (Lydon et al., 1999). Progesterone 

effects are mediated through the progesterone receptor (PR), which is expressed as two 

isoforms, PRA and PRB. Both isoforms are transcribed from distinct estrogen-regulated 

promoters on a single gene (PGR) located at the q22-q23 in chromosome 11 (Rousseau-Merck 

et al., 1987). Both sequences are identical except in the N-terminus, in which PRA lacks 164 

amino acids, encoding proteins of 81 kDa (769 amino-acids) for PRA and 115 kDa (933 amino-

acids) for PRB (Kastner et al., 1990). Three domains can be distinguished in PRs; an amino-

terminal domain (NTD) truncated in the PRA, a central globular DBD and the C-terminal LBD. 

There are two different AFs; AF-1 is located in the NTD and AF-2 in the LBD (Gronemeyer, 

Gustafsson and Laudet, 2004; Hill et al., 2012; Kumar and McEwan, 2012). Progesterone 

enhance conformational changes in the LBD, most notably in helix 12 (H12) to form an AF-2 

pocket, which allows co-regulatory protein binding to regulate transcription of target genes 

(Grimm, Hartig and Edwards, 2016) (Fig. 3A).  

 

 

Figure 3. Schematic structure of PRs. A. PRs are divided into 3 regions, where the DBS is in the 

central part and the LBD in the C-terminal region. B. Representation of progesterone binding 

and conformational changes that PRs undergo. 
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In the normal breast, PRA and PRB are commonly expressed at the same level. However, 

imbalance occurs early in breast cancer development and is commonly seen also in premalignant 

lesions (Mote et al., 2002). The activity of PR is regulated by post-translational modifications, 

such as phosphorylation, mainly in the N-terminal region of both isoforms by MAPKs and CDK2, 

for instance (Pierson-mullany and Lange, 2004). But it can also be modified by acetylation or 

sumoylation which will affect to the localization, stability and activity of PR (Lane, Shen and 

Horwitz, 2000; Abdel-Hafiz and Horwitz, 2014). PR is expressed in many tissues, including not 

only mammary glands, uterus and ovaries, but also in brain, the cardiovascular system, bone 

and central nervous system. However, distribution of PR can vary in these tissues. While it is 

expressed in every cell in the uterus (epithelial and stromal), it is only expressed in a small subset 

of epithelial cells in the breast (Hilton, Graham and Clarke, 2015). Binding of progesterone to PR 

induces conformational changes, receptor dimerization (Fig. 3B), and their binding to 

progesterone response elements (PREs) in the promoter regions of target genes by recruitment 

of co-activators and co-repressors (Le Dily et al., 2014). PR target genes mediates cell 

proliferation, transcription, lipid metabolism and membrane-associated signal transduction 

through the activation of several paracrine signaling pathways, such as RANKL, Wnt, Notch and 

GH/cytokines. On the other hand, there is also autocrine regulation of proliferation by 

progesterone in the mammary gland, induced by the activation of target genes, CCND1, for 

instance (Hilton, Graham and Clarke, 2015). 

1.5. Other nuclear receptors 

Androgen receptors are activated by the androgens testosterone and dihydrotestosterone 

(DHT). Testosterone is converted to the more potent DHT by 5--reductase in peripheral tissues 

or by aromatase to the 17-oestradiol in ovaries, bone, brain, adipose tissue and prostate (Li 

and Rahman, 2008; Ellem and Risbridger, 2010; Smith, Mitchell and McEwan, 2013). In breast, 

AR is expressed in epithelial glands and stromal/fibroblast cells (Hickey et al., 2012). 

The AR gene is located at chromosome X at the locus q11-q12. AR encodes a protein of 919 

amino acids that contains an AF-1 domain in the NTD, a central DBD and a LBD in the C-terminus 

(Hunter et al., 2017). Normal binding leads to conformational changes, nuclear translocation 

and binding to DNA androgen response elements (ARE) (Pietri et al., 2016), and regulates 

transcription of AR-regulated genes, such as PSA and TMPRSS2. Enzalutamide (MDV3100) is a 

potent antagonist of AR that blocks the translocation of AR to the nucleus reducing the 

expression of target genes (Pal k., Stein and Sartor, 2013).  
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2. BREAST CANCER 

2.1. Breast cancer epidemiology 

Breast cancer is the most common malignancy in the female population worldwide in terms of 

incidence, and the first cause of death from cancer in women (Ferlay et al., 2018). Cancer 

survival has improved since the 1970s for the most common cancers, and this is attributed to 

improvements in early detection and treatments (Berry et al., 2005). In the case of breast cancer, 

the death rate has dropped 39% from 1989 to 2015 in the United States (Siegel, Miller and Jemal, 

2018). 

As for many other cancer types, breast cancer incidence is most common in developed 

countries, and risk factors are determined by genetic, lifestyle and environmental factors. The 

first of the risk factors is related to family history and personal characteristics. Women with a 

family history of breast cancer, mostly in a first-degree relative, show a higher risk for the disease 

(Collaborative Group on Hormonal Factors in Breast Cancer, 2001). This fact indicates the 

importance of genetic predisposition. Two of the best known genetic alterations for breast 

cancer risk are inherited mutations in BRCA1 and BRCA2, which are present in 5-10% of female 

breast cancers, increasing to 15-20% in familial breast cancers (Turnbull and Rahman, 2008; 

Tung et al., 2016). Moreover, these mutations increase the risk of developing breast cancer by 

80 years of age from 10% in the general population to 70% (Kuchenbaecker et al., 2017). Other 

personal characteristics, such as height and menstrual cycles (early menstruation and late 

menopause) increase the risk of breast cancer (American Cancer Society, 2017).  

Reproductive factors are also important to consider, since having a first child before age 35 and 

having more children reduce the probability of luminal breast cancer (Lambertini et al., 2016). 

On the other hand, although the consumption of fertility drugs has not been related to cancer 

risk, the use of menopausal hormones showed higher risk of developing breast cancer 

(Chlebowski et al., 2013; Manson et al., 2013; Brinton, 2017). Regarding lifestyle, obesity in 

postmenopausal women (La Vecchia et al., 2011), the lack of physical activity (Pizot et al., 2016), 

diets poor in fruit and/or vegetable intakes (Jung et al., 2013; Emaus et al., 2016; Farvid et al., 

2016), alcohol consumption (Liu, Nguyen and Colditz, 2015) and smoking before the first 

pregnancy (Gaudet et al., 2013; Dossus et al., 2014; Macacu et al., 2015) have been related to 

increased risk of breast cancer.  
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2.2. Breast cancer classification 

Most breast cancers begin in the lobules, the tissue made up of glands for milk production, or in 

the ducts that connect lobules to the nipple. When cancer is detected, it is necessary to 

characterize the type of disease and determine the extent of spread (stage). The prognosis of 

invasive cancer is strongly influenced by the stage when it is first diagnosed. The TNM 

classification of tumors provides information about tumor size and whether it has spread to 

adjacent tissues (T), to nearby lymph nodes (N), or whether there is distant metastasis (M) to 

other organs (Edge and Compton, 2010). A stage value from 0 to IV is also assigned to determine 

if it is a carcinoma in situ for stage 0 (cells have not penetrated the ducts or glands), an early-

stage invasive cancer (I), or more advanced diseases (II, III and IV) (American Cancer Society, 

2017).  

Breast cancer can also be classified as in situ, including ductal carcinoma in situ (DCIS) and lobular 

carcinoma in situ (LCIS), and invasive cancer. Around 80% of breast cancers are invasive or 

infiltrating, growing into surrounding breast tissue. There are 21 different histological subtypes, 

but they can be mainly classified into four molecular subtypes that differ in terms of risk factors, 

response to treatment and outcomes (Tamimi et al., 2012; The Cancer Genome Atlas Network, 

2012; Dieci et al., 2014) (Fig. 4). These subtypes can be classified based on the presence or 

absence of biological markers, such as the hormone receptors ER and PR and the expression 

levels of human epidermal growth factor 2 (HER2) (Cheang et al., 2015): 

 

 Luminal A (ER+, PR+, HER2-): This is the most common breast cancer (71%), is usually 

less aggressive than other subtypes, being associated with the most favorable prognosis, 

mostly in short term survival due to the hormone therapy (Blows et al., 2010; Haque et 

al., 2012). 

 

 Luminal B (ER+/-, PR+, HER2+): This cancer subtype is less abundant (12%), it is 

characterized by the presence of hormone receptors but also by the high expression of 

Ki67 or HER2, which indicate a high proportion of dividing cells, which is translated into 

a more aggressive, higher stage and poorer prognosis than luminal A cancers (Haque et 

al., 2012). 

 

 HER2-enriched (ER-, PR-, HER2+): This is the least abundant group (5%), cancers are 

more aggressive than the luminal subtypes and are associated with a poorer prognosis. 
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However, targeted therapies such as Trastuzumab, a monoclonal antibody against HER2, 

seems to be a promising way to improve outcome among these patients (Romond et al., 

2005). 

 

 Basal or triple negative (ER-, PR-, HER2-) (12%): This is the breast cancer type with 

poorest prognosis as there are no targeted therapies available. These cancers are more 

common in black women, in premenopausal women and women with a BRCA1 gene 

mutation (Perou and Borresen-Dale, 2011).  

 

 

Figure 4. Comparison of the histology, molecular pathology, therapy and prognosis used in 

different breast cancer tumor subtypes.  
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2.3. Tamoxifen treatment 

Tamoxifen, first known as ICI 46474, is a selective ER modulator (SERM) and the most commonly 

used therapeutic agent in ER+ breast cancer patients. It belongs to a group of planar compounds 

with a rigid core region (Fig. 5A). Tamoxifen binds to ER and induces conformational changes as 

ER does, however, while E2-ER binding allows helix 12 to pack against helix 3 and helix 11 to 

form a pocket, tamoxifen blocks helix 12 repositioning (Shiau et al., 1998) and thereby blocks 

coactivator binding to AF-2. Tamoxifen acts as an ER antagonist of genes that depend on AF-2 

activation for ER-mediated transcription, but it has also been described to act as an agonist in 

the uterus, which may be related to the differential expression of co-regulators in tissues, and 

more importantly it may act as an agonist in the transcription of genes where AF-1 is more 

important (Chang, 2012). 

Diethylstilbestrol (DES) was the first synthetic non-steroidal estrogen with proven clinical 

relevance and was used in postmenopausal patients with advanced breast cancer in the 1960s. 

During this time MER-25, an antiestrogen compound was approved to be used as a 

contraceptive in the UK. This compound led to the discovery of tamoxifen and it showed efficacy 

in clinical trials for advanced breast cancer by the 1970s, similar to that shown by DES but with 

fewer side effects. Nevertheless, it did not show the same activity in vitro as it did in vivo, until 

it was found that its activity was due to the active metabolites, 4-hydroxytamoxifen and 

endoxifen (Patel and Bihani, 2018) (Fig. 5). 

One of the most relevant problems using tamoxifen and other SERMs is the large degree of 

resistance that develops after years of treatment. Resistant tumors present activated ER 

signaling (Dodwell, Wardley and Johnston, 2006; Nardone et al., 2015). This fact led to the 

search of alternative agents such as selective estrogen receptor degraders (SERDs), which are 

antiestrogens that destabilize H12 of ER, inducing ER degradation, so that dimers are not formed 

and ER signaling is completely blocked (McDonnell and Wardell, 2010). One of these compounds 

is ICI 182,780, also known as fulvestrant, a steroidal compound with a long side chain (Fig. 5B) 

that binds to ER in the monomeric form, preventing dimerization and ER signaling by inducing 

ER degradation through the ubiquitin-proteasome pathway (Patel and Bihani, 2018).  

Tamoxifen plays a critical role in the treatment of ER+ breast cancer in the adjuvant, advanced 

and neoadjuvant settings (Chang, 2012). In patients with early stage breast cancer, adjuvant 

tamoxifen treatment for 5 years delays local and distant relapses and increases overall survival 

(Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), 1998). In women under 40, 5 years 

of tamoxifen treatment reduced recurrence and mortality rate (Early Breast Cancer Trialists’ 
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Collaborative Group (EBCTCG), 2005). These trials have made tamoxifen the main standard of 

treatment in premenopausal women with early stage breast cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Chemical structures of tamoxifen, its active metabolites, 4-hydroxitamoxifen and 

endoxifen and fulvestrant. Adapted from Patel and Bihani, 2018. 
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2.4. Tamoxifen resistance 

Despite the benefits that tamoxifen shows in the short term, 20-30% of breast cancer patients 

experience a recurrence, meaning that tumors eventually acquire tamoxifen resistance. 

Antiestrogen resistance is generally divided into two categories; de novo resistance, which are 

ER+ breast tumors nonresponsive to antiestrogen therapy from the beginning of the treatment, 

and acquired resistance, developed after a long exposure to antiestrogen therapy in ER+ tumors 

that initially responded to the treatment (Jordan, 2004). 

Several mechanisms that occur in cells lead to antiestrogen resistance. Moreover, taking into 

account the heterogeneity of breast tumor tissues, mechanisms of resistance within tumors may 

vary (Chang, 2012). Some of the proposed mechanisms include loss of ER expression and 

function, alterations in the expression of co-regulatory proteins, activation of growth factor 

receptor signaling pathways, pharmacological and metabolic changes, regulation of redox 

status, and enrichment of cancer stem cells (CSCs) and changes in the regulation of cell fate-

associated pathways (Chang, 2012). 

Recently, it has been proposed a model that combines the last two mechanisms mentioned 

above. SOX2 is a member of the Sox family of High mobility Groups (HMG) box transcription 

factors (Avilion et al., 2003) known to be a stem cell marker. SOX2 expression is important for 

keeping ES cells undifferentiated and to maintain self-renewal capacity of pluripotent ES cells 

(Masui et al., 2007). Piva et al., (2014) proposed that SOX2 plays an important role in the 

development of tamoxifen resistance by maintaining breast cancer cells in a more stem cell-like 

state through increased Wnt signaling. Tamoxifen resistant MCF-7 cells showed increased 

expression of SOX2, associated with a CD44+CD24-/low phenotype (See Section 3.2), while SOX2 

silencing significantly reversed tamoxifen resistance in several models. Moreover, clinical 

relevance was demonstrated with a cohort of ER+ breast cancer patients who received 

tamoxifen therapy, where high SOX2 levels were correlated with endocrine treatment failure 

and poor relapse-free survival. In this study, enrichment of CSCs was proposed to be a 

consequence of activation of Wnt signaling, a well-known pathway involved in cell fate 

regulation.   
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3. STEM CELLS 

3.1. Adult stem cells 

Adult stem cells are responsible for tissue renewal during homeostasis and regeneration. These 

are cells that represent specific lineages in each organ and give rise to proliferating progenitors 

responsible for producing more differentiated cells to carry out physiological tissue functions. 

Stem cells persist long-term, due to their self-renewal capability and ability to generate all 

differentiated of an organ over the organism´s lifetime. Stem cells can be classified as 

homeostatic if they are active and responsible for day-to-day maintenance of tissues, or 

facultative if they are quiescent but perform stem cell functions after injury. These two types of 

stem cells can coexist in the same tissue, for example Lgr5+ and Troy+ cells are facultative stem 

cells in the gastric corpus, however Lgr5+ basal cells in the gastric pylorus contribute to 

homeostasis (Simons and Clevers, 2011; Tan and Barker, 2018).  

In the mammary gland, TEBs are made up of cap cells and body cells. Cap cells, functionally 

referred to as mammary stem cells (MaSCs) (Chen, Liu and Song, 2017), express several markers, 

including keratin 5 and 14, smooth muscle actin (SMA) and p63. In addition, the stem cell specific 

isoform of SH2-containing inositol 5’-phosphatase (sSHIP) specifically marks cap cells, although 

its function in the mammary gland is unknown (Bai and Rohrschneider, 2010). Body cells from 

TEBs express keratin 6, 8 and 18, and some of them, although they do not respond to ovarian 

hormones, also express ER and PR (Ismail et al., 2002; Grimm et al., 2006; Paine and Lewis, 

2017). Cap cells have been postulated to be examples of multipotent mammary stem cells, as it 

has been observed by limiting dilution analysis that they can form a complete mammary gland 

at a higher frequency than other basal lineage cells (Bai and Rohrschneider, 2010). Moreover, 

cap cells have been reported to show high Wnt signaling, a hallmark of stemness (Roarty et al., 

2015).  

Since SCs are present in the mammary gland, many strategies have been developed to isolate 

and purify them (Tiede and Kang, 2011). The first approaches used to identify stem cells were 

based on morphological and biological properties. Cap cells, hypothesized to represent an 

undifferentiated mammary stem/progenitor cell population, were initially identified by electron 

microscopy as pale or light staining cells with low complexity (Smith and Medina, 1988). Another 

approach, using Hoechst 33342 dye efflux, found a MaSC-enriched fraction with an abundant 

luminal progenitor population (Welm et al., 2002; Alvi et al., 2003; Asselin-Labat et al., 2008). 
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3.1.1. Mouse mammary stem cells 

 

A third approach used fluorescence-activated cell sorting (FACS) to detect stem cells that express 

specific cell-surface markers. Stem cell antigen-1 (Sca1) was used to identify a subpopulation of 

mammary epithelial cells (MECs). In mouse, MaSCs have been recognized by their expression of 

CD24 and CD29 (1-integrin) or CD49f (6-integrin) (Shackleton et al., 2006; Stingl et al., 2006). 

This defined a population of CD24+/medCD29hiCD49fhi cells that display hallmarks of stem cells. In 

addition, protein C receptor (Procr) has been described as a novel Wnt target in mammary 

epithelia to be present in a subset of multipotent mouse MaSCs (D. Wang et al., 2015). 

Therefore, the surface marker profile of mouse MaSCs is presently defined as Lin-

Procr+CD24+/medCD29hiCD49fhiSca1low/- (Chen, Liu and Song, 2017). 

 

3.1.2. Human mammary stem cells 

 

Human MaSCs have been more difficult to purify than mouse MaSCs because there are not such 

reliable markers. Mammosphere culture technology has been used to enrich stem cell 

populations. However, MaSCs are still less than 1% in cultured mammospheres (Ismail et al., 

2002; Grimm et al., 2006; Paine and Lewis, 2017). The PKH26 fluorescent dye labels cells with 

slow-cycling and quiescent traits during mammosphere formation (Pece et al., 2010). There are 

also studies claiming that Lin-CD49f+EpCAMlow/- or CD10+ basal phenotypes define subsets of cells 

enriched for human mammary repopulating units. Nevertheless, it is still not known whether 

human mammary stem/progenitor cells only are located within a subset of basal epithelial cells 

or in both luminal and basal cell populations (Eirew et al., 2008; Lim et al., 2009; Keller et al., 

2011; Chen, Liu and Song, 2017). 

3.2. Breast Cancer Stem Cells 

There is a small subpopulation of undifferentiated cells termed breast cancer stem cells (BCSCs) 

that are more likely to give rise to tumor progression, and have also been implicated in 

resistance to conventional therapy (Fillmore and Kuperwasser, 2008; Lin et al., 2012). However, 

the origin of these cells remains controversial. There is some evidence to suggest these cells 

arise from MaSC or progenitor cells. Apart from specific properties highly similar to MaSCs, such 

as self-renewal or tumor initiating ability (Ma et al., 2014), there are some mammary progenitor 

which express CD44+CD24- cell markers and resemble the CD44+CD24-Lin- population found in 

BCSCs (S. Liu et al., 2014; Bao et al., 2015). Moreover, since normal stem cells remain for long 
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periods of time, they are more prone to accumulate genetic alterations, a process that occurs 

during oncogenic transformation (Sin and Lim, 2017). On the other hand, a second hypothesis 

postulates the origin of BCSCs in non-stem cells, in differentiated mammary cells, and the 

exposure to environmental factors as well as to chemotherapy, which leads to genetic 

alterations giving rise to de novo generation of CSCs by a dedifferentiation process (Lagadec et 

al., 2012; Koren et al., 2015) (Fig. 6). 

 

Figure 6. Model of BCSC formation. BCSC have been proposed to be generated from MaSCs that 

undergo several mutations during the quiescent state, from mammary progenitor cells that 

accumulate mutations during cell division, leading to transformation or from mutated and 

differentiated cells that undergo de-differentiation to re-acquire stem-cell properties.  

 

The most commonly used markers to identify human BCSCs are CD44, CD24 and ALDH1 (Beça et 

al., 2013) but others can also be used, such as CD133, CD61 or CD49f, for instance (Sin and Lim, 

2017). 

 CD44: A transmembrane glycoprotein implicated in several tumor related events, such 

as adhesion, intracellular signaling, cell proliferation, angiogenesis, migration and 

invasion properties (Lagadec et al., 2012). Its expression is increased in BCSCs retaining 

tumorigenicity, multipotency functions and increasing anti-tumor drug resistance (Van 

Phuc et al., 2011). 
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 CD24: A surface glycoprotein involved in cell adhesion, upregulation of which reduces 

stemness in breast cancer cells (Schabath, 2006). 

 ALDH1: A detoxifying enzyme that catalyzes oxidation of intracellular aldehydes and 

mediates conversion of retinol to retinoic acids, which modulates proliferation. ALDH 

marks both normal and cancerous mammary cells and its expression is related to cell 

proliferation, differentiation and chemo-resistance (Moreba et al., 2012). 

The combined expression of some of these markers has been shown to be much more effective 

to identify BCSCs. Al-Hajj et al., (2003) showed that CD44+CD24-/lowLin- population from tumors, 

including breast, exhibit properties of stem cells. However, the size of the CD44+CD24-/low cell 

population varies among different breast cancer subtypes, basal type is the more enriched in 

these cells ranging from 0 to 90% while in the luminal subtype it is only between 0 and 15% of 

the population (Sheridan et al., 2006; Pham et al., 2011). On the other hand, CD44high and ALDH1 

activity do not generally coexist in CSCs, suggesting they may be different types of CSCs (S. Liu 

et al., 2014; Nieto et al., 2016). 

Therapy resistance has been correlated with tumors with enrichment of the CD44+CD24-/low cell 

population (Colak and Medema, 2014; Pattabimaran and Weinberg, 2014; Piva et al., 2014; 

Cojoc et al., 2015; Gong et al., 2017; Yang et al., 2017) and these cells may be precursors to form 

secondary tumors (recurrent or metastatic) (Raouf et al., 2012; Medema, 2013; Geng SQ, 

Alexandrou AT, 2014; Guo, 2014; Nilendu et al., 2018). 

3.3. EMT and Cancer Stem Cells 

Epithelial to mesenchymal transition (EMT) is a process in which cells acquire new features that 

allow carcinoma cells to migrate and disseminate to distant sites (Fig. 7). The reverse process, 

mesenchymal to epithelial transition (MET) is associated with loss of migratory ability, induction 

of cell proliferation and growth in secondary sites. EMT is a complex process that epithelial cells 

undergo in response to certain signaling factors, such as TGF family growth factors (Nieto et 

al., 2016).  
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Figure 7. Schematic representation of EMT and MET processes. Tumor cells at the primary site 

undergo an EMT process to acquire the ability for intravasation. Cells that survive at metastatic 

sites undergo MET in order to proliferate and allow secondary tumor growth.  

 

These changes are induced not only by specific transcription factors (TF), called EMT-TFs, such 

as Snail, Zeb, and Twist, among others, but also by miRNAs and epigenetic and post-translational 

regulators (Nieto et al., 2016). However, there is growing evidence that in addition to the 

mesenchymal and epithelial states, there are intermediate states in which cells undergo a partial 

EMT. Actually, there have been described many intermediate states with mixed epithelial and 

mesenchymal phenotypes both in development and in cancer (Blanco et al., 2007; Leroy and 

Mostov, 2007; Futterman, Garcia and Zamir, 2011; Grigore et al., 2016). 

Among the EMT-TFs in breast cancer, ZEB2 has been involved in regulation of cell fate and stem 

cell differentiation, and SNAI1 regulates miR-34. This microRNA also regulates ZEB and SNAI 

EMT-TF establishing a negative feedback for regulating epithelial and mesenchymal states. In 

breast, expression of EMT-TFs has been observed in chemo-resistant triple-negative carcinomas, 

enriched for EMT and stem-cell markers with low level of luminal/epithelial differentiation 

(Puisieux, Brabletz and Caramel, 2014). ZEBs and SNAI1 EMT-TFs negatively regulate expression 

of target genes, including CDH1, CLDNs and OCCL (Lamouille et al., 2013). CDH1 encodes E-

cadherin, a transmembrane protein that forms adherent junctions together with intracellular 

components such as -catenin and -catenin, while claudin and occludin proteins encoded by 

CLDN and OCCL, respectively, form tight junctions (Hartsock and Nelson, 2008). PRRX1 and 

TWIST1 are EMT-TFs thought to be more potent mesenchymal inducers, while SNAI1 and ZEB1 

are strong epithelial repressors and weak mesenchymal promoters (Nieto et al., 2016). 

Reactivation of the EMT program is a physiological event during puberty and pregnancy in the 

mammary gland (Shamir and Ewald, 2015). Within the tumor, it is important to consider the 

heterogeneity of phenotypes; there is a small population of invasive cells with mesenchymal 

properties, while the main bulk of the tumor retains epithelial characteristics. Since the tissue 

of origin can also affect the heterogeneity shown during EMT program activation, Tan et al., 

(2014) established a quantitative EMT scoring system based on gene expression profiles, where 
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VIM and CDH2, which encode for Vimentin and N-cadherin, respectively, were used as 

mesenchymal markers and CK19 and E-cadherin as epithelial markers. They showed that in 

breast cancer, basal cell lines have an intermediate-high EMT score, whereas luminal cell lines 

have a lower EMT score, and an intermediate EMT score corresponds to a mixed basal-luminal 

phenotype. 

4. WNT SIGNALING 

In 1982, Nusse and Varmus, (1982) found that the mouse mammary tumor virus (MMTV) 

induced mammary gland tumors in upon insertion upstream of a gene named Int1, thereby 

inducing expression of the Int1 protein. Wingless (Wg) was first described in 1976 to be the gene 

responsible of the phenotype in Drosophila melanogaster mutants lacking wings (Sharma and 

Chopra, 1976), and was then found to be the fly homologue of Int1. During the next ten years, 

major research in Wnt signaling focused on development. Injection of mouse Wnt1 mRNA was 

found to cause formation of a secondary body axis in Xenopus laevis embryos, providing an assay 

to characterize new components of the pathway (McMahon and Moon, 1989a). Other 

components such as TCF and LEF were cloned in 1991 by Clevers and colleagues (Travis et al., 

1991; Van De Wetering et al., 1991; Waterman, Fischer and Jones, 1991) and later the Frizzled 

receptors, LRP5 and 6 co-receptors and also the secreted Wnt inhibitors SFRPs, DKK and WIF1 

were identified. Another important milestone in the field was the discovery of the importance 

of -catenin stability in Wnt signaling (Peifer et al., 1994; van Leeuwen, Samos and Nusse, 1994; 

Munemitsu et al., 1995). In the late 1990s the first direct transcriptional target of canonical 

signaling, the proto-oncogene MYC, was described (He et al., 1998). The non-canonical planar 

cell polarity (PCP) pathway was first described in Drosophila and Wnt-5a was found to be 

involved in calcium signaling in zebrafish and Xenopus. Nowadays, it is well known that Wnts are 

a large family of 19 secreted glycoproteins that have important roles in regulation of cell 

proliferation, survival, migration, polarity, specification of cell fate and self-renewal in stem cells 

(Klaus and Birchmeier, 2008; Anastas and Moon, 2013). 

4.1. Canonical Wnt signaling 

Canonical Wnt signaling is transduced by the binding of canonical Wnt ligands to FZD receptors 

and LRP5/6 co-receptors, thereby stabilizing -catenin. In the cytoplasm, -catenin is recruited 

into a degradation complex containing Axin and APC proteins. Phosphorylation of β-catenin 

within this complex by CKI and GSK-3 targets it for ubiquitination and subsequent proteolytic 

destruction by the proteosomal machinery in unstimulated cells. In the nucleus, TCF/LEF 1 
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transcription factors are bound to co-repressors and transcription of target genes is blocked. 

Wnt proteins can be prevented from signaling by binding to secreted Wnt antagonists, such as 

sFRPs and WIF1 or by binding DKK1. In addition, non-canonical Wnt ligands can compete with 

canonical Wnt ligands for binding to FZD receptors.  

On the other hand, when signaling is activated by the binding of canonical Wnt ligands to FZD 

receptors and LRP5/6 co-receptors, the latter are phosphorylated and recruit Axin and DVL 

proteins to the membrane, disrupting the degradation complex and stabilizing -catenin in the 

cytoplasm. Cytoplasmic -catenin can translocate to the nucleus and bind to TCF/LEF1 family 

proteins, displacing co-repressors. Binding to co-activators such as CBP and Bcl9 enables 

transcriptional activation of target genes containing TCF/LEF binding sites, for example c-MYC, 

VEGF, FGF9, FGF18, CCND1, LBH, SOX2, SOX9 and genes that encode proteins that provide 

negative feedback, such as AXIN2, DKK1 and an inhibitory isoform of LEF1 (He et al., 1998; Tetsu 

and McCormick, 1999; Yan et al., 2001; Hovanes et al., 2001; Shimokawa et al., 2003; Blache et 

al., 2004; Niida et al., 2004; Van Raay et al., 2005; Hendrix et al., 2006; Rieger et al., 2010; Kypta 

and Waxman, 2012) (Fig. 8).  

 

Figure 8. Schematic representation of canonical Wnt signaling. On the left, when -catenin 

signaling is switched off, cytoplasmic -catenin is recruited into a degradation complex in which 

CKI and GSK3 kinases phosphorylate -catenin, which ultimately results in its proteosomal 

degradation. In the nucleus, TCF/LEF1 family transcription factors are bound to transcriptional 

co-repressors and transcription is blocked. On the right, when canonical Wnt ligands bind to FZD 

receptors and LRP5/6 co-receptors, DVL is recruited to the plasma membrane disrupting the 

degradation complex and enabling stabilization and translocation of -catenin to the nucleus. 

In the nucleus, -catenin binds to TCF/LEF1 transcription factors and other co-activators, such 

as CBP and Bcl9 to activate transcription of target genes.  
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4.2. Non-canonical Wnt signaling 

In addition to canonical Wnt signaling, there are a number of other Wnt-regulated signals, 

including Planar cell Polarity (PCP) pathway, the Wnt Calcium (Ca2+) pathway and other -catenin 

independent signals (Fig. 9).  

The Wnt/PCP pathway, includes the cytoplasmic signal transduction protein DVL and 

downstream small GTPases of the Rho family act as mediators of the signal (Strutt, Weber and 

Mlodzik, 1997), with Rho-associated kinase (ROCK) acting as an effector (Winter et al., 2001). 

Daam1 is a protein that binds DVL and Rho and is required for both Wnt activation of Rho and 

cytoskeletal remodeling (Habas, Kato and He, 2001). Another non-canonical signal connected to 

the PCP pathway involves the Jun N-terminal Kinase (JNK) pathway (Boutros et al., 1998). 

Various stress stimuli activate Rho family GTPases (Rac, Rho and cdc42) in the cell membrane 

and other membrane proximal protein components MAP3ks, such as MEKKs, ASK1, TAK1/AB1 

or MLK3 that lead to the phosphorylation of JNKs (Kumar et al., 2015). Finally, FZDs can activate 

intracellular effectors such as p38 through DVL (Bikkavilli, Feigin and Malbon, 2008) to activate 

JNK, which leads to the activation of Activator Protein-1 (AP-1) family transcription factors 

(Gomez-Orte et al., 2013). JNKs phosphorylate and activate AP-1, which comprises homo- and 

heterodimers of Jun and Fos family members that bind and activate target gene promoters 

(Kumar et al., 2015). JNK also phosphorylates activating transcription factors-2 (ATF2) and 

cAMP-responsive element-binding protein (CREB). CREB is also activated by other cytoplasmic 

effectors including adenylate cyclase (AC) and protein kinase A (PKA) (Chen, Ginty and Fan, 

2004). The CREB family contains there members ATF1, CREM and CREB, which form dimers 

within the family and bind the DNA consensus sequence termed the cyclic AMP responsive 

element (CRE). The ATF2 family also contains three proteins, ATF2, ATF7 and CRE-BPa. ATF2 

proteins not only form homodimers but also heterodimers with Jun, Fos and C/EBP family 

members (Watson, Ronai and Lau, 2018). Binding specificity varies depending on the proteins 

that form the dimers, as well as their DNA binding specificity (Hai and Curran, 1991). 

Other non-canonical Wnt signals involve Ca2+ signaling (Veeman, Axelrod and Moon, 2003). 

Some Wnt ligands can activate the Ca2+-sensitive kinase protein kinase C (PKC) (Sheldahl et al., 

1999) and Ca2+/calmodulin-dependent kinase II (CamKII) (Kühl et al., 2000), leading to the 

activation of the Ca2+-responsive transcription factor nuclear factor of activated T cells (NF-AT) 

(Murphy and Hughes, 2002; Saneyoshi et al., 2002). It is also known that non-canonical signals 

can inhibit -catenin dependent signaling. Inhibition has been proposed to be mediated by the 

activation of Nemo-like kinase (NLK), which phosphorylates TCF/LEF transcription factors 
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through CamKII and TAK1 (Ishitani et al., 2003). There are also other mechanisms, involving 

competition for molecules involved in both canonical and non-canonical signaling, such as DVL 

or FZD receptors. Activation of the canonical or non-canonical pathway depends on the 

specificity of the Wnt ligand for coupling FZD to different co-receptors triggering different 

phenotypic responses. DVL is a component of both canonical and non-canonical Wnt signaling. 

The N-terminal domain has been reported to be required for canonical Wnt singling, whereas 

the C-terminal is necessary to display the non-canonical signaling (Grumolato et al., 2010). 

 

Figure 9. Schematic representation of non-canonical Wnt signaling. Non-canonical Wnt 

signaling is able to activate different pathways and intracellular effectors. Wnt and FZD 

receptors can activate Rho GTPases, which can lead to the activation of YAP/TAZ signaling, or 

cytoskeletal remodeling through the activation of ROCK. The Wnt-Ca2+ pathway can also induce 

cytoskeletal remodeling and activate nuclear factor of activated T-cells (NFAT)-dependent 

transcription of target genes, concomitantly inhibiting Wnt/-catenin signaling. Wnt/PCP 

signaling not only activates ROCK but also JNK, which leads to the activation of AP-1 family 

transcription factors c-Jun, ATF2 and CREB. FZD receptors can also activate kinases like PKA and 

p38. DAAM1, disheveled associated activator of morphogenesis 1; CAMKII, Ca2+ and calmodulin 

kinase II; PLC, phospholipase C; AC, adenylate cyclase; MKK, mitogen-activated protein kinase 

kinase.  
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Wnt/LRP6 signaling has traditionally been described as a linear signal transduction for the 

stabilization of -catenin. More recently, it has been reported that downstream events include 

but are not limited to Wnt/-catenin signaling. For instance, Acebron et al. reported a -catenin 

independent signal in proliferating cells. They showed a Wnt-dependent stabilization of many 

proteins (Wnt/STOP) that peaks during mitosis increasing cellular protein levels and cell size. 

This signal protects critical proteins such as MYC from GSK3-dependent polyubiquitination and 

degradation, suggesting its relevance in many cancer cell types (Acebron et al., 2014). Other -

catenin-independent Wnt/LRP6 signaling cascades leads to GSK3 inhibition, which not only 

targets proteins to degradation but also activates target of rapamycin (TOR) to increase protein 

translation, modulates the activity of microtubule-associated proteins and inhibits the activity 

of protein phosphatase 1 (PP1) (Acebron and Niehrs, 2016). 

Furthermore, Wnt signals can result in different outputs, depending not only on the specific 

ligand, receptor or intracellular components that may be acting (Najdi et al., 2012), but also on 

the crosstalk of all the above-mentioned proteins with other signaling pathways. One example 

is Wnt-YAP/TAZ signaling, in which Rho GTPases mediate FZD1-Gα12/13-induced YAP/TAZ 

activation promoted by Wnt ligands, which results in osteogenesis, cell migration and Wnt/-

catenin signaling blockade as result of induction of secreted Wnt inhibitors (Park et al., 2015) 

(Fig. 9). 

4.3. Wnt ligands 

The WNT genes encode 19 Wnt proteins that share between 27 to 83% amino-acid sequence 

identity. WNT genes are highly conserved among vertebrates. Several human WNT genes are 

located closely to each other in the genome, for instance WNT6 and WNT10A are located 

adjacent to each other on chromosome 2, and WNT1 and WNT10B on chromosome 12 and 

transcribed from the same strand of DNA. The close proximity of these pairs of genes has been 

conserved in mouse. Since in Drosophila, the paralogous genes wingless (wg), DWnt6 and 

DWnt10 are located adjacent on the second chromosome, it is believed that there was an 

ancient cluster of Wnt genes consisting of Wnt1, Wnt6 and Wnt10 in a common ancestor of 

vertebrates and arthropods, but this cluster may have been duplicated losing Wnt1 from one 

cluster and Wnt6 from the other. In vertebrates, orthologues in different species are very similar 

in sequence. Human Wnt-1 and mouse Wnt-1 are identical in 98% and human Wnt-5a and 

Xenopus Wnt-5a present 85% identity. On the contrary, identity with flies is lower, ranging from 

21% between human Wnt8 and Drosophila DWnt8 to 42% identity between human Wnt-1 and 

Drosophila Wingless (Wg) (Miller, 2002).  
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Human Wnt proteins are similar in size, ranging from 39 kDa for Wnt-7a to 46 kDa of Wnt-10a. 

They all contain 22 to 24 cysteine residues, which are important for correct protein structure 

and activity. Analysis of the signaling activities point the carboxy-terminal region of Wnt proteins 

as important for specificity of responses to different Wnts (Du et al., 1995) and the amino-

terminal region as mediator for interactions with Wnt receptors (Miller, 2002). Wnts are 

secreted proteins that can associate with glycosaminoglycans in the ECM and are bound to the 

cell surface (Bradley and Brown, 1990; Reichsman, Smith and Cumberledge, 1996). 

Nevertheless, it is also possible to collect active Wnt from the medium of cultured cells 

(Shibamoto et al., 1998) and several N-linked glycosylated intermediate Wnt protein products 

in cell lysates (Mikels and Nusse, 2006).  

Secretion and recognition of Wnts by receptors is essential for their activity. Wnt proteins were 

shown by metabolic labeling to be fatty acylated, which is required for secretion of these 

proteins. Wnt-3a has been described to incorporate fatty acyl groups of different chain lengths 

at Ser209 but palmitoleate appears to be the elected lipid. Desaturation of palmitoyl-CoA 

(C16:0) introduces a double bond between the ninth and tenth carbon atoms of the hydrocarbon 

chain (cis-C16:1n-7) producing a substrate for the Wnt fatty acyl transferase porcupine, which 

leads to the formation of palmitoleoylated Wnt proteins (Nile and Hannoush, 2016). 

Independently of their fatty acylation status, Wnt proteins also undergo glycosylation in the ER-

Golgi system (23). In the ER, palmitoleoylated Wnts interact with Wntless to traffic to the Golgi 

and then be transported to the plasma membrane in vesicles (Nile and Hannoush, 2016).  

 

4.3.1 WNT1 

One of the most studied WNT genes in the context of breast cancer is WNT1. Wnt1 was 

first discovered in a study of the common integration sites of the mouse mammary 

tumor virus (MMTV). MMTV infects mouse mammary glands leading to the integration 

of the viral genome into the host genome; this integration ultimately results in the 

formation of a mammary tumor because of the transcriptional activation of a cellular 

oncogene. Two common integration sites of the MMTV were found: int-1 and int-2 (van 

Ooyen and Nusse, 1984). The int-1 site is located next to the Wnt1 gene, located in the 

chromosome 15 in mice. Its coding region consist of 4 exons that encodes a 41 kDa, 370 

amino acid protein (McMahon and Moon, 1989b). In humans, the WNT1 gene is located 

on chromosome 12. Wnt-1 is not expressed in normal mammary mouse tissue, but Wnt1 

mRNA can be detected in the neural tube of midgestation embryos suggesting a 

developmental function.  
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There are four immature forms of Wnt-1 glycoprotein (molecular weight of 36, 38, 40 

and 42 kDa) that are processed to a mature heterogenous glycoprotein with a molecular 

weight of 44 kDa (Papkoff, 1989). Under normal growth conditions, the 44 kDa protein 

is hardly detected in the cell culture medium and the majority is found associated with 

the ECM. In vitro, it can be bound to heparin, indicating it might bind glycosaminoglycans 

in the ECM and suggesting a role in cell-cell communication over short distances (Bradley 

and Brown, 1990). 

Wnt1 expression in female mice induces a potent mitogenic effect on mammary 

epithelium; ductal hyperplasia is detectable in the end-buds by 18 days of gestation and 

is very evident 2 weeks after birth. Due to the extensive ductal hyperplasia, female mice 

are not able to deliver milk to their young. Moreover, breeding females develop tumors 

earlier than virgin mice, which may be caused either by the hormonal influence or the 

increased mass of the mammary epithelium during pregnancy and lactation. These 

primary tumors do not metastasize. However, the majority of female mice expressing 

Wnt1 develop lymph node and/or lung metastasis after removal of the primary tumor. 

The tumors found in these mice are moderately differentiated and are formed of ducts 

with multiple layer of epithelial cells that show higher nucleus-to-cytoplasm ratio. There 

is also some necrosis, hemorrhage and extensive fibrosis is present in neoplasms (Li, 

Hively and Varmus, 2000).  

WNT1 over-expression has been associated with tumor proliferation and a poor 

prognosis in many types of cancer, including breast and lung (Schlange et al., 2007; 

Nakashima et al., 2008). In breast, WNT1-expressing cells were found to have more 

active -catenin compared to control cells and treatment with the secreted Wnt 

antagonist sFRP1 blocked their proliferation. This effect was observed in JIMT-1, SkBr3 

and MDA-MB-231 cells but not in BT474 and MCF-7 cells (Schlange et al., 2007; Jamieson 

et al., 2016). Given the link to MMTV, many studies of Wnt-1 have been carried out using 

mouse models.  

4T1 murine breast adenocarcinoma model is a highly clinically relevant model of 

spontaneous breast cancer metastasis in multiple sites. 4T1 is a model for triple-negative 

breast cancer that metastasizes to the lung, liver, bone and brain (H Heppner, R Miller 

and Malathy Shekhar, 2000; Kau et al., 2012). In mouse 4T1 cell lines, knockdown of 

Wnt1 suppressed mammosphere forming ability and ALDH activity, whereas addition of 

recombinant Wnt-1 enhanced in vitro properties of stem cells. Moreover, knockdown of 

Wnt1 in 4T1 cells injected into the mammary gland, reduced tumorigenic potential and 
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tumor initiation capacity in vivo (Choi et al., 2012). These effects relate to the ability of 

Wnt1 to regulate apoptosis and CSC migration in these metastatic mouse mammary cell 

lines (Jang et al., 2015). 

4.4. FZD receptors 

Frizzled genes encode 7 transmembrane (TM) proteins that function in several signal 

transduction pathways. These genes show essential roles in development, tissue cell polarity, 

formation of neural synapses and regulation of cell proliferation, among other processes (Huang 

and Klein, 2004). There are ten human FZD genes described that are classified into four main 

clusters. FZD1, FZD2 and FZD7 share approximately 75% amino acid identity; FZD5 and FZD8 share 

70% identity; FZD4, FZD9 and FZD10 share 65% identity and FZD2 and FZD6 share 50% (Fredriksson 

et al., 2003; Zeng, Chen and Fu, 2018). FZD proteins contain about 500 to 700 amino acids. The 

N-terminus contains a cysteine-rich domain (CRD) followed by a hydrophilic linker region. The 

seven TM -helices contain hydrophobic domains. The intracellular carboxyl-terminal tails are 

the least conserved among different family members (Wang et al., 1996) (Fig. 10A). It is well 

known that each Wnt can bind multiple FZDs, and each FZD can respond to multiple Wnts (Hsieh 

et al., 1999; Holmen et al., 2002; Logan and Nusse, 2004; Wang et al., 2005; Kikuchi, Yamamoto 

and Kishida, 2007; Smallwood et al., 2007). Crystallization of glycosylated XWnt8/Fz8-CRD 

allowed Janda et al. to determine the structure of the complex. They showed that XWnt8 grasps 

Fz8-CRD at two opposing sites using extended thumb and index fingers projecting from an 

extended palmitoleic acid (PAM) group to contact “site 1” and “site 2”, respectively. Wnt 

lipidation is directly involved in binding site 1, whereas in site 2 protein-protein interactions are 

dominant and this site has been suggested to be important for discriminating between specific 

Wnt/Fz pairs (Janda et al., 2012) (Fig. 10B).  
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Figure 10. Schematic FZD receptors and crystal structure of XWnt8-Fz8-CRD binding. A. The N-

terminus contains a cysteine-rich domain (CRD) where Wnt ligands bind. This region is followed 

by a hydrophilic linker region. The seven TM -helices contain hydrophobic domains. B. Surface 

representation of XWnt8 structure. The extended palmitoleic acid (PAM) group is shown in red 

extending from the Wnt thumb (Adapted from Janda et al., 2012). 

 

4.4.1 FZD5 

FZD5 is one of the most highly expressed FZD receptor in the prostate cancer cell lines. 

Moreover, high WNT5A and FZD5 expression in combination correlates with longer 

disease-specific survival for prostate cancer patients (Thiele et al., 2018). In breast MCF-

7 and MDA-MB-231 cells lines FZD5 downregulation inhibited Wnt/-catenin signaling 

reducing proliferation and migration of breast cancer cells (F. Liu et al., 2014). FZD5 

mediates sFRP2-induced angiogenesis via calcineurin/NF-AT pathway in endothelial 

cells (Peterson et al., 2017).  

The function of FZD5 in eye development seems to be species-dependent, it can activate 

non-canonical signaling in zebrafish and in mice also seems to be independent of Wnt/-

catenin signaling but it activates canonical Wnt signaling in frog embryos (Burns et al., 

2008). FZD5 is also involved in establishment of neural polarity through the activation of 

non-canonical Wnt signaling involving JNK in rat medullar PC12 tumor cell lines (Slater 

et al., 2013). On the other hand, using the same cell line, Caricasole et al., (2003) 

reported that Wnt-7b interacts with FZD5 and LRP6 to activate -catenin signaling.  
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4.5. Wnt signaling in cancer stem cells 

There is Wnt signaling cross-talk with FGF, Notch, hedgehog and TGF/BMP signaling cascades 

that regulates stem cell signaling networks (Katoh and Katoh, 2007; Lamb et al., 2015). Both, 

canonical and non-canonical signals play roles in the development and evolution of CSCs. 

Canonical Wnt/-catenin signaling is involved in self-renewal of stem cells and proliferation or 

differentiation of progenitor cells (Lui, Hansen and Kriegstein, 2011; Barker, 2014; Van Camp et 

al., 2014; Yang et al., 2016). On the other hand, non-canonical Wnt signals promote invasion, 

survival and metastasis of CSCs, cell polarity and inhibition of canonical signaling (Qin et al., 

2015; Webster, Kugel and Weeraratna, 2015; Kumawat and Gosens, 2016; Katoh, 2017).  

Wnt/-catenin signaling is activated by canonical ligands, such as Wnt-3a (Zhang et al., 2017) or 

Wnt-3, among others (Katoh et al., 2001), but there are also genetic alterations in many 

components of the Wnt pathway that can induce signaling. For instance, EIF3E-RSPO2 or PTPRK-

RSPO3 fusions, gain of function mutations in CTNNB1 (-catenin) and loss of function mutations 

in APC, AXIN, RNF43 and ZNRF3 genes. The activation of this pathway directly promotes CSC 

proliferation through the regulation of CCND1, MYC and YAP/TAZ, but also by inducing 

expression of secreted growth factors in CSCs that modify the microenvironment (Katoh, 2017). 

MET ( which encodes the HGF receptor) is upregulated in human basal-like breast cancers with 

TP53 mutations (Chiche et al., 2017), and combined activation of Wnt/-catenin and HGF/MET 

signals induces sonic hedgehog (SHH) upregulation in mouse mammary CSCs, which has been 

reported to activate cancer-associated fibroblasts for the synergistic proliferation of CSCs and 

cancer-associated fibroblasts (Valenti et al., 2017). Therefore, Wnt/-catenin signaling does not 

only induce CSC maintenance directly, but also through indirect effects (Katoh, 2017).  

Non-canonical Wnt signaling in CSCs are activated by Wnt-5a, Wnt-11 and other non-canonical 

ligands secreted by cancer cells (Sheldahl et al., 1999) or by stromal/immune cells (Blumenthal 

et al., 2009), and also as a result of genetic alterations, such as MET amplification (Gentile et al., 

2014). Moreover, FZD and ROR family Wnt receptors can activate non-canonical signaling. For 

example, both FZD7 and ROR1 have been reported to activate the phosphatidylinositol-3-kinase 

(PI3k)-AKT signaling cascade (Zhang et al., 2012). The activation of these signals leads to 

promotion of invasion, survival and metastasis of melanoma CSCs or prostate circulating tumor 

cells (CTCs) (Miyamoto et al., 2015; W. Wang et al., 2015; Webster, Kugel and Weeraratna, 2015; 

Katoh, 2017).  
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4.6. Wnt signaling in breast 

 

4.6.1 Wnt signaling in breast development 

Wnt signals are essential to initiate specification of cells that will form the mammary 

lines during embryogenesis and later these signals become restricted to the cells 

forming placodes (Yu, Verheyen and Zeng, 2016). Chu (2004) reported that over-

expression of Dkk1 in the ectoderm blocks the formation of mammary placodes and 

antagonizes the expression of Wnt10b. It is thought that Wnt3, Wnt6 and Wnt10b are 

expressed in a band of the ectoderm flanking the mammary line to initiate specification, 

while non-canonical Wnts, such as Wnt5a and Wnt11 are expressed in the underlying 

flank mesenchyme, suggesting that non-canonical signaling regulates canonical 

signaling, limiting the response to the ectodermal ridge that becomes the mammary 

lines (Chu, 2004; Veltmaat et al., 2004; Macias and Hinck, 2013).  

Wnt pathway components are temporally and spatially differentially expressed in the 

mammary gland (Buhler et al., 1993; Lane and Leder, 1997). Lrp6 co-receptors are 

expressed in both layers of the epithelium and stroma during embryogenesis; however, 

in young and adult mice expression is limited to the basal layer (Lindvall et al., 2009). In 

TEBs, although Wnt-4 and Wnt-5a ligands are localized in the luminal compartment, 

canonical signaling is mostly active in the cap cell layer (MaSCs), where Wnt-6 is localized 

(Paine and Lewis, 2017). Rspo1 is regulated by estrogen and progesterone in luminal 

epithelial cells and collaborates with Wnt-4 to expand these MaSCs (Pierce et al., 1993). 

LRG5 and 6 (receptors for R-spondins) are also localized in the basal layer and are 

required for TEB formation and side branching (Badders et al., 2009; Lindvall et al., 

2009). Canonical Wnt signaling is required for stem cell maintenance, branching and 

alveologenesis.  

Non-canonical Wnt signaling is also crucial in mammary gland development. Wnt-2, 

Wnt-5a and Wnt-7b ligands and ROR2 receptor are expressed in TEBs during puberty to 

regulate branching and proliferation by inhibiting canonical signaling (Roarty and Serra, 

2007; Roarty et al., 2015). 
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4.6.2 Wnt signaling in breast cancer 

Several components of the Wnt pathway have been defined as oncogenes or tumor 

suppressors in human cancer. The most evident example is loss-of-function mutations 

in APC, a scaffold protein that is essential for the destabilization complex that promotes 

-catenin degradation. APC mutations are found in 85% of colon cancer tumors. 

Mutations in -catenin itself, which affect phosphorylation sites and result in its 

stabilization, have been reported in several human cancers, including colorectal, 

medulloblastomas, hepatoblastomas, hepatocellular carcinomas, endometrial, and 

Wilm´s tumors (Polakis, 2012). However, genetic mutations in the Wnt pathway are not 

typically associated with breast cancer. Only 6% of breast tumors contain mutations in 

the APC gene and there are no further reports indicating mutations in -catenin in breast 

cancer (Sorlie, Bukholm and Borresen-Dale, 1998; Schlosshauer et al., 2000; Geyer et al., 

2010; Yu, Verheyen and Zeng, 2016). However, epigenetic inactivation of extracellular 

Wnt antagonists seems to be a frequent event. Methylation of DKK1 and DKK3 

promoters have been reported, as well as epigenetic silencing of genes encoding sFRPs 

(Suzuki et al., 2008; Veeck et al., 2009), which is associated with worse prognosis. In 

addition, expression of the secreted Wnt antagonist WIF1 is reduced in 60% of breast 

cancers (Wissmann et al., 2003). Furthermore, modulation of FZD receptors, such as 

FZD7 (Sorlie, Bukholm and Borresen-Dale, 1998) in TNBC and increases in Wnt-2, Wnt-4, 

Wnt-5a, Wnt-7b, Wnt-10b and Wnt-13 (now called Wnt-2b) proteins have been 

reported in breast tumors (Huguet et al., 1994; Lejeune et al., 1995; Bui et al., 1997; 

Bergstein and Brown, 1999). Many and Brown (2014) showed that both canonical and 

non-canonical Wnt pathways are important for promotion of stem cell growth in 

mammospheres. Moreover, autocrine activation of Wnt signaling has been reported to 

regulate the proliferation and survival of human basal and luminal breast cancer cell 

lines (Schlange et al., 2007). Regarding treatment resistance, Wnt signaling mediates 

radiation resistance of mouse mammary progenitor cells (Woodward et al., 2007) and 

inhibition of Wnt signaling restores tamoxifen sensitivity in breast cancer cell lines (Piva 

et al., 2014).  

Studies in mice have been relevant to demonstrate that Wnt signaling over-activation 

increases breast cancer risk. Overexpression of Lrp6 (Zhang et al., 2010) or of a stabilized 

form of -catenin (Hatsell et al., 2003) causes mouse mammary hyperplasia. 

Overexpression of Wnt1 and Rspo in mouse mammary epithelial cells resulted in 

mammary tumor formation, and cells exhibit a strong EMT phenotype with high 
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metastatic capacity to form secondary tumors in lung or spleen (Klauzinska et al., 2012). 

These effects may be related to the ability of Wnt1 expression to enrich the cancer stem 

cell population (Choi et al., 2012). Moreover, both CSC enrichment and metastasis can 

be suppressed by silencing Wnt1 (Jang et al., 2015). It is noticeable that the murine 

MMTV-Wnt1 model of mammary cancer exhibits hallmarks and shares transcriptional 

patterns with human TNBC. Some of these genes are known to be direct targets of β-

catenin/TCF binding (Herschkowitz et al., 2007; Yu, Verheyen and Zeng, 2016).  

4.7. Wnt inhibition approaches 

Due to the aberrant expression of Wnt signaling in many cancers, targeting this pathway has 

been a goal in biomedical research for the last 30 years. However, no drugs have been approved 

for targeting this pathway yet. One of the key issues is that inhibition of Wnt signaling may affect 

normal stem cell populations and regeneration of tissues and organs. Deeper knowledge of 

cross-talk between signaling pathways is necessary for designing efficient therapeutic 

approaches (Krishnamurthy and Kurzrock, 2018).  

A widespread approach used to block Wnt signaling, is to target porcupine (PORCN), a 

membrane-bound O-acyltransferase that is required for Wnt ligand secretion as it palmitoylates 

Wnts, which is essential for their secretion and biological activity (Wang et al., 2013). LGK974 is 

a Porcupine-selective inhibitor that blocks Wnt signaling and tumor growth in vivo (Liu et al., 

2013). There are ongoing clinical trials for this drug in metastatic colorectal and head and neck 

cancers. ETC-159 is another PORCN inhibitor in clinical trials for colorectal cancer (Teneggi et al., 

2016).  

Another approach is based on the use of antibodies against Wnt ligands. Antibodies have been 

developed against Wnt-1 and Wnt-2 and have been reported to show tumor suppression activity 

in melanoma, sarcoma, colorectal cancer, non-small cell lung carcinoma and mesothelioma (He 

et al., 2004; Mikami et al., 2005). There are also monoclonal antibodies that target FZD 

receptors, such as OMP-18R5 (Vantictumab), which targets five out of ten FZD receptors 

(FZD1/2/5/7/8). The safety and efficacy of this antibody in non-small cell lung cancer, pancreatic, 

breast (Gurney et al., 2012) and ovarian cancer (Fischer et al., 2017) are being evaluated alone 

and in combination with chemotherapy.  

Wnt inhibitors have been proposed to be good candidates to eradicate drug resistant cancer 

stem cells as a second line therapy (Fischer et al., 2017). Other approaches that have been 

proposed for cancer therapy include Tankyrase inhibitors, which stabilize Axin, thereby 
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increasing -catenin degradation, Dishevelled inhibitors, TCF/-catenin transcription complex 

inhibitors, Wnt co-activator antagonists that inhibit binding between -catenin and its 

transcriptional co-activator CBP, and Notch and Hedgehog inhibitors that have been reported to 

cross-talk with the Wnt pathway (Krishnamurthy and Kurzrock, 2018).  

 

4.7.1 DUBs as targets for cancer therapeutics  

The therapeutic potential of targeting deubiquitinases (DUBs) is an emerging approach 

as an option for treatment for cancer. Several DUBs have been reported to play a role in 

the regulation of cellular processes, such as cell cycle control, cell signaling and 

apoptosis. The ubiquitin-proteasome system (UPS) is one of the main systems for 

controlling protein function and stability. Actually, more than 80% of cellular proteins 

are degraded by the UPS. Ubiquitination is a process of covalent modification of a 

protein with the small molecule ubiquitin. This process is dependent on the activity of 

three enzymes, Ub-activating (E1), Ub-conjugating (E2) and Ub-ligating (E3). Substrate 

specificity is conferred by E3 ligases, which bind and coordinate the covalent attachment 

of ubiquitin to target substrates. Ubiquitination can be reversed by specialized enzymes 

known as deubiquitinases (DUBs), which oppose the action of E3 ligases by cleaving the 

bond between target proteins and ubiquitin (D’Arcy, Wang and Linder, 2015).  

Several DUBs directly regulate Wnt pathway components. For instance, USP4 modulates 

Wnt signaling through interactions with TCF4 but also can directly regulate -catenin 

deubiquitylation and USP6 increases FZD abundance in the membrane by opposing the 

activity of the ubiquitin ligase RNF43 pointing to USP6 as a potential target to modulate 

Wnt signaling (Madan et al., 2016). 
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Since CSCs have been linked to resistance to therapy in cancer, and more specifically to 

tamoxifen resistance in breast cancer, and given the importance of Wnt signaling in the 

regulation of stem cell function, the overall aim of this project is to study how Wnt signals affect 

proliferation and tamoxifen resistance in breast cancer stem cell populations. A better 

understanding of the mechanisms involved could lead to novel strategies to overcome 

resistance and provide a basis for new breast cancer treatment options. I therefore had the 

following aims: 

 

1. Identification of Wnt proteins involved in the maintenance of CSC populations in breast 

cancer.  

 

2. Characterization of Wnt signaling pathway activity in tamoxifen resistant cell lines. 

 

3. Development of strategies to regulate Wnt signaling in breast CSCs.  
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1. CELL CULTURE AND DRUG TREATMENTS 

1.1. Human and mouse cell lines culture 

MCF-7 and T47D cell lines were obtained from American Tissue Culture Collection (ATCC) and 

their resistant derivatives were developed by the culture of cells in the presence of 5 x 10-7 M 4-

OH-tamoxifen or ethanol for six months, as described in Piva et al., (2014). Cells were 

continuously cultured in the presence of 5 x 10-7 M tamoxifen (Table 1). LNCaP C4-2B cells were 

obtained from Charlotte Bevan (Imperial College London) and HEK293 cells from ATCC. Mouse 

67NR, 4T07 and 4T1 breast cancer cell lines were a gift from Beatrice Howard (Institute of Cancer 

Research, London). All cells were grown in media supplemented with 8% fetal bovine serum 

(FBS) (Life Techonologies) and 1% penicillin/streptomycin (Life Technologies) in incubators at 

37°C and 5% CO2. 

Cells over-expressing WNT1 were obtained by transfecting 3 x 10-5 MCF-7C or MCF-7TamR cells 

in 6 cm plates with 3 g of a plasmid encoding pcDNA-WNT1 (GeneCopoeia, Frederick, MD) or 

with an empty pcDNA3 vector, as control, using Lipofectamine LTX and Plus Reagent (Life 

Technologies) following the instructions provided by the manufacturer. These vectors also 

contain a gene that confers resistance for Geneticin (G418), the drug that was used for selection. 

Transfected cells were exposed to a high concentration (400 g/ml) of G418 (Life Techonologies) 

for two weeks and later maintained in culture with 200 g/ml G418.  

 

 

Table 1: Description of breast cell lines characteristics and drugs kept in culture. Concentration of 

tamoxifen was 5 x 10-7 M and 200 g/ml for G418. EtOH, ethanol; ER, estrogen receptor; PR, 

progesterone receptor; HER2, human epidermal growth factor 2. 

 

Cell line Specie Disease Molecular Receptors Drug in

classification  expression culture

MCF-7C Human ER+ PR+ HER2- EtOH

MCF-7TamR Human ER+ PR- HER2- tamoxifen

MCF-7C-V Human ER+ PR+ HER2- EtOH+G418

MCF-7C-W1 Human ER+ PR+ HER2- EtOH+G418

MCF-7TamR-V Human ER+ PR- HER2- tamoxifen+G418

MCF-7TamR-W1 Human ER+ PR- HER2- tamoxifen+G418

T47D-C Human Ductal Carcinoma Luminal A ER+ PR- HER2- EtOH

T47DTamR Human ER-PR- HER2- tamoxifen

67NR Mouse ER-PR- HER2-

4T07 Mouse Basal like ER-PR- HER2-

4T1 Mouse ER-PR- HER2-

Breast cancer

Adenocarcinoma Luminal A
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1.2. Drug treatments 

Drugs for normal maintenance of cells in culture are described in Table 1.  

MCF-7TamR and T47DTamR cells were treated with Wnt-3a CM, added at 1:2.5 dilution in 

normal medium. Conditioned media (CM) were prepared using L-Wnt3a cells obtained from 

ATCC. Cells were grown for 4 days and then media were harvested and filtered to obtain the 

first batch. Fresh media was added to the cells for another 3 days and a second batch of medium, 

after filtering, was mixed 1:1 with the first batch. This Wnt-3a CM was stored at 4ºC. Cells were 

also treated with IWP-2 (Calbiochem) at 5 M, diluted and filtered before use; the same volume 

of DMSO (Sigma) was used as a control. Fulvestran (ICI 182,780) (Tocris) was used at 5 x 10-7 M.  

1.3. Mammosphere formation 

MCF-7TamR and T47DTamR cells were detached with Tryple 1X (Gibco) and seeded in Poly(2-

hydroxyethyl methacrylate) (pHEMA)-coated (Sigma) ultralow attachment 6-well plates 

(Corning) at 103 cells/well or at 104 cells/ml in flasks (Corning) for primary mammosphere 

formation or 5 x 103 cells/ml for secondary mammospheres. Cells were cultured in serum-free 

DMEM:F12 supplemented with B27 (Invitrogen), 20 ng/mL EGF (Life Technologies) and 20 ng/mL 

bFGF (BD Biosciences).  

Mammospheres were dissociated with Tryple 1X after 3 days for passaging or 5 days for analysis. 

The numbers of mammospheres were calculated as the average of 3 wells for each cell line in 3 

independent experiments. All the samples were analyzed using a FACSAriaTM flow cytometer (BD 

Biosciences). 

1.4. Colony formation assay 

Colony formation is an in vitro cell survival assay based on the ability of a single cell to grow into 

a colony that consists of at least 50 cells. The assay tests the ability of cells to retain the capacity 

for giving rise to progeny after a treatment (Franken et al., 2006). To perform the assay, a bottom 

layer made of 0.7% agarose/DMEM without cells was prepared in 6-well plates and kept at 4°C 

for 1 h. In the upper part 103 cells/well treated with tamoxifen 5 x 10-7 M, ICI 10-9 M or ethanol 

were embedded into a 0.35% agarose/DMEM layer. Colonies were grown for 10 days, during 

that time 250 l of fresh media with treatments were added every 3 days. Colonies were 

counted taking into account the average of 9 fields for each well and counting the colonies using 

a 10X magnification lens on an Olympus CKX31 inverted microscope in triplicates and in 3 
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independent experiments. The sizes of the colonies were also considered using an Olympus 

WHB 10x/20 eyepiece with micrometer, defining colonies with a diameter greater than 50 m 

as large colonies and those smaller than this as small.  

1.5. Cell proliferation assays 

MCF-7C and MCF-7TamR cells, selected with G418 after transfection of pcDNA or pcDNA-WNT1, 

were seeded in normal media at 103 cells/well in 96-well plates. Tamoxifen dilutions starting at 

10-6 M were added after 24 hours and medium was changed every 3 days. Cell proliferation was 

determined after 7 days by staining with crystal violet (Sigma). For staining, cells were washed 

twice with PBS and stained with 100 l of crystal violet for 20 min on a rocker to ensure all the 

surface was covered and after washing another two times with PBS, plates allowed to dry 

overnight. Once plates were dry, the crystal violet-stained cells were dissolved in 10% acetic acid 

solution for 5 minutes and then absorbance was measured at 595 nm.  

1.6. Cell cycle analysis 

2 x 105 cells were seeded in 6 cm plates and treated with 5 x 10-7 M tamoxifen. After 48 h, cells 

were detached with 0.25% trypsin and centrifuged at 0.4 x 103 g for 5 min. After washing with 

PBS, cells were re-suspended in 1 ml of EtOH 70%, vortexed and frozen for at least 24 h at -20°C. 

Propidium iodide (PI) (Life Technologies) staining was used to determine DNA content in cell 

cycle analysis. To determine cell viability and analyze only live cells, DRAQ7 (Biostatus) was used, 

a far-red fluorescent DNA dye that only stains the nuclei in dead and permeabilized cells. All the 

samples were analyzed using a BD FACSCanto™ II system flow cytometer. 
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2. CELL TRANSFECTION 

Assay 
Plate 

(wells) 

Volume of 

transfection (l) 
DNA 
(ng) 

Lipo LTX 

(l) 

Plus 
Reagent 

(l) 

GeneJuice 

(l) 

GFP Reporters 6 200 1000 3 1.5 3 

Gene Reporter 
Assays 

12 100 500 1.5 0.5 1.5 

Immunofluorescence 24 50 250 0.5 0.5 1 
 

Table 2: Amounts of reagents used for transfection in different types of assay. 

2.1. Plasmids 

The plasmids used were pcDNA hWNT1, hWNT3A, hWNT7B, hWNT10B (GeneCopoeia, 

Frederick, MD), pRL-tk (Promega), Super8XTOPFlash (Veeman, Axelrod and Moon, 2003), ATF2-

luciferase (Van Der Sanden et al., 2004), kindly provided by Christof Niehrs (Mainz, Germany), 

ARR2-Pb-luciferase (Clegg et al., 2012), MMTV-luciferase (Truica, Byers and Gelmann, 2000) 

from C. Bevan (Imperial College London), TOPdGFP (Boitard et al., 2015), ATF2dGFP (Ohkawara 

and Niehrs, 2011) and its empty vector UBI-GFP (Giry-Laterrière, Verhoeyen and Salmon, 2011), 

pRK5 mFzd1-10-1D4 (Yu et al., 2012) were from Chris Garcia and Jeremy Nathans, pcDNA3.2-

FZD5-V5 (Voloshanenko et al., 2017) was from MM Maurice, CMV500 ΔATF2, ΔCREB, ΔFos and 

its empty vector CMV500 (Ahn et al., 1998) were from Charles Vinson, TCF1 (Van de Wetering 

et al., 1996) and HA-tagged TCF4 were provided by Marc van de Wetering and Hans Clevers, -

catenin (Giannini, Vivanco and Kypta, 2000), pcDNA5D FRT/TO GFP USP6 (MRC PPU Reagents 

and Services, University of Dundee) and pEGFP-C1 (Clontech).  

2.2. Transfections for gene reporter assays 

8 x 104 cells were plated in normal growth medium without tamoxifen or G418. After 24 h, cells 

were washed twice with PBS to remove antibiotics and serum, and 400 l of OptiMEM (Gibco) 

was added to each well. Cells were transfected using the amount of DNA indicated in Table 2. 

The reporters used were Super8xTOPFlash (TOP-luc), ATF2-luciferase, the AR-dependent 

reporters ARR2-Pb-luciferase and MMTV-luciferase, a constitutive Renilla luciferase reporter 

(pRL-tk) and plasmids encoding genes related to Wnt signaling. The ratios of plasmids used are 

indicated in Table 3. Cells were transfected using Lipofectamine LTX and Plus Reagent (Life 

Technologies) following the instructions by the supplier (Table. 2). WNT1-expressing cell lines 
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were transfected with GeneJuice (Millipore), following manufacturers’ instructions. 

Transfection mix was removed after 4 h and fresh medium was added to the cells. After 24 h, 

cells were washed with PBS and lysed in 110 l of Passive Lysis Buffer (Promega). Luminescence 

was determined using Glow-Juice (PJK GmbH) following manufacturer´s guidelines and 

measured using a luminometer (Turner Biosystem). Results are shown as relative light units of 

luciferase activity, normalized to Renilla.  

2.3. Transfections using GFP reporter plasmids 

2.5 x 105 cells were plated in normal medium for 24 h. Cells were then washed twice with PBS 

and 800 l of OptiMEM added to each well. Transfection conditions using Lipofectamine LTX are 

indicated in Table 2 and the quantity of each plasmid in Table 3. WNT1-expressing cell lines were 

transfected using GeneJuice. The reporters used were TOPdGFP, ATF2dGFP (Section 2.1); which 

are plasmids that encode GFP driven by TCF-responsive or ATF2-responsive promoters, 

respectively. UBI-GFP was used as a control. The transfection mix was removed after 4 h and 

fresh media added. After 72 h, cells were washed and detached using Tryple 1X and centrifuged 

for 5 min at 0.4 x 103 g. Cells were re-suspended in FACSFlow medium (PBS 1X, HEPES 25 mM 

pH 7, EDTA 5 mM, BSA 1%) and DRAQ7 was added as a marker of cell viability. All the samples 

were analyzed using a FACSAriaTM flow cytometer.  

 

  Gene Reporter Assays GFP Reporters Immunofluorescence 

Reagent DNA (ng)/well DNA (ng)/well DNA (ng)/well 

Reporter 350 500 - 

Renilla 50 - - 

Test Gene 100 500 250 
 

Table 3: Amounts of plasmids used for each type of assay. 

 

. 
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3. FACS ANALYSIS 

3.1. Sorting of CD44+CD24-/low cells 

Mammospheres were dissociated into single cells using Tryple 1X and placed into polystyrene 

V-bottom-96-well plates (Sarstedt). Cells were blocked for 15 min in PBS with 40% FBS at room 

temperature, washed twice with 1% BSA in PBS buffer and then incubated for 30 min at 4°C with 

PE-CD24 (BD, ML5) and APC-CD44 (BD, G44-26) antibodies diluted in PBS with 1% BSA. Control 

samples were stained with isotype-matched control antibodies. More information about the 

antibodies is detailed in Table 7. After staining, cells were washed twice with 1% BSA in PBS and 

re-suspended in 300 l of homemade FACSFlow media (PBS with 1% BSA) with 1.67 l of the 

viability dye 7AAD (BD), a ready-to-use nucleic acid dye for dead cell exclusion. This dye can be 

used in conjunction with PE- and FITC-labelled monoclonal antibodies, with minimal spectral 

overlap between 7AAD, PE and FITC fluorescence emissions.  

Control cell populations (cells collected from adherent cultures) were analyzed to gate the 

population by selecting populations based on their granularity (side scatter, SSC), size (forward 

scatter, FSC) and to exclude cells positive for 7AAD (See populations P1, P2 and not P3 in Fig. 

11). Compensation process is performed to correct spillover, the physical overlap among the 

emission spectra of fluorochromes. Cells forming mammospheres were then analyzed using the 

same parameters. Cells in quadrants Q4 and with the phenotype CD44+CD24-/low were selected 

for sorting, the counterparts in the quadrant Q1 were also sorted as control cells. 
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Figure 11. Gating strategy used to select the population of interest for FACS analysis. First 

population is selected based on size and granularity (FSC-A and SSC-A) (P1). Then single cells 

(P2) and finally live cells (not P3) are selected. After compensation process of fluorochromes, 

gates were established for PE-CD24 and APC-CD44 using MCF-7TamR cells from adherent 

cultures.  

3.2. ALDEFLUOR analysis 

ALDH enzymatic activity was measured using the ALDEFLUOR assay (Stemcell Technologies) 

according to manufacturer's guidelines. High expression of ALDH identifies stem and progenitor 

breast cells providing a complementary method to the one that uses antibodies to stain for cell 

surface antigens. During FACS analysis, control cells treated with 4-(N, N-diethylamino) 

benzaldehyde (DEAB), which blocks the reaction by formation of stable, covalent acyl-enzyme 

intermediate species (Luo et al., 2015), were used to adjust FCS and SSC voltages and define the 

region indicating cells that are negative for ALDH activity. ALDH+ cells have different SSC 

properties, so maintaining the same gate as used in the control test, probe cells were analyzed 

for FITC-A staining (Fig. 12). The viability of all samples was determined using DRAQ7.  
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Doublet
discrimination

Live cell selection CD24/CD44 analysis



Characterization of Wnt signaling in tamoxifen resistant breast cancer stem/progenitor cells 
 

 

 
 

74 

 

 

 

 

 

 

 

Figure 12. Gating strategy used to select the population of interest for ALDH assay. First, cells 

treated with DEAB are used to define cells negative for ALDH activity. Then probe cells are analyzed 

maintaining the same gate to identify ALDH+ cells. 

 

3.3. Quantification of GFP reporters 

Results are shown as relative percent of GFP positive cells transfected with WNT1 or TCF1 

plasmids with respect to cells transfected with pcDNA3, for each of TOPdGFP and ATF2dGFP 

reporters, as compared to cells transfected with the same plasmid and the control UBI-GFP 

reporter. Calculation formulas are indicated below. Since the GFP signal of cells transfected with 

each UBI-GFP, TOPdGFP or ATF2dGFP differed considerably, it was necessary to gate 

independently for every reporter co-transfected with pcDNA.  
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4. BIOINFORMATIC DATABASE ANALYSIS 

WNT1 mRNA expression levels in breast cancer were examined using GOBO (Gene Expression-

Based Outcome for Breast Cancer Online; http://co.bmc.lu.se/gobo) (Ringnér et al., 2011), 

which stratifies breast cancer according to molecular subtypes and also shows the expression 

levels of WNT1 mRNA in breast cancer cell lines. Breast-Mark 

(http://glados.ucd.ie/BreastMark/mRNA_custom.html) was used to correlate WNT gene 

expression and survival in breast cancer patients and bc-GenEXMiner v4.1 

(http://bcgenex.centregauducheau.fr) was used to determine the correlations between WNT1, 

FZD receptors and USP6 expression. 

5. RNA EXTRACTION AND ANALYSIS 

5.1. RNA extraction and cDNA synthesis 

RNA from adherent cells and mammospheres was extracted using PureLink RNA Mini Kit (Life 

Technologies), according to manufacturer´s instructions. The concentration and quality of RNA 

was measured using a ND-1000 spectrophotometer (NanoDrop Technologies). 2 g of RNA 

diluted in 22 l of H2O was used for cDNA synthesis using the Moloney Murine Leukemia Virus 

Reverse Transcriptase (M-MLV) (Life Technologies) in a final volume of 40 l. Thermocycler 

conditions were set up for 1 h at 37 °C followed by 1 minute at 95 °C to inactivate the enzyme. 

The cDNA samples were stored at -20 °C.  

RNA from FACS sorted cells was extracted using PureLink RNA Micro Kit (Life Technologies), 

according to manufacturer´s instructions. RNA was eluted from columns in 14 l H2O and the 

whole sample used for cDNA synthesis using SuperScript™ VILO™ cDNA Synthesis Kit (Life 

Technologies) in a final volume of 18 l. Thermocycler conditions were set up for 10 min at 25 

°C, followed by 1 h at 42 °C and enzyme inactivation was carried out for 5 min at 85 °C. The cDNA 

samples were stored at -20 °C. 

5.2. Primer design and set up 

Primers were designed using Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primer-

blast/). Selection parameters included primers targeting a unique sequence for each gene of 80-

150 bp, if possible, primers were separated by an intron to avoid genomic DNA amplification, 

and an optimal melting temperature of 62 °C. When possible, self-complementary, GC% above 

http://glados.ucd.ie/BreastMark/mRNA_custom.html
http://bcgenex.centregauducheau.fr/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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70 and differences in melting temperature between forward and reverse primer were avoided. 

Primer amplification efficiency at different concentrations was determined by serial dilutions of 

cDNA and standard curve analysis. Amplicons resulted from the PCR were run on agarose gels 

to confirm the size was the same as the product length predicted by Primer-BLAST.  

5.3. qRT-PCR 

Real-Time PCR was performed either in a ViiA7 System or QuantStudio 6 Flex Real-Time PCR 

System (Life Technologies) using Perfecta SYBR Green SuperMix Low Rox (Quanta Bio). All 

reactions were run in a final volume of 6 l, of which 1 l was cDNA and the annealing 

temperature was set at 62°C. The Ct quantitation method was used to determine the changes 

in gene expression. In all cases, 36B4 was used as a housekeeping gene. Details of the primers 

are in Table 4.  

 

Gene 
sequence 5>3 Specie 

Primer 
Concentration 

(nM) 

SOX2 F GCACATGAACGGCTGGAGCAACG Human 900 

SOX2 R TGCTGCGAGTAGGACATGCTGTAGG Human 900 

NANOG F CAGCTGTGTGTACTCAATGATAGATTT Human 300 

NANOG R ACACCATTGCTATTCTTCGGCCAGTTG Human 900 

OCT 4 F GACAACAATGAAAATCTTCAGGAG Human 900 

OCT 4 R CTGGCGCCGGTTACAGAACCA Human 900 

WNT1 nonCDS F ATGGTGTCATTCTGCCTGCT Human 300 

WNT1 nonCDS R GACTTAGGAGGACCCGGAGA Human 300 

WNT1 CDS F CTTCGGCAAGATCGTCAACC Human 900 

WNT1 CDS R TAGTCACACGTGCAGGATTCG Human 900 

WNT3A F GTGGAACTGCACCACCGT Human 900 

WNT3A R ATGAGCGTGTCACTGCAAAG  Human 900 

WNT7B F TGGCGTCCTGTACGTGAAGCTC Human 900 

WNT7B R CGGGGCTAGGCCAGGAATCTT Human 900 

WNT10B F TGCGAATCCACAACAACAGG Human 900 

WNT10B R CATGACACTTGCATTTCCGCT Human 900 

WNT11 F AGACCGGCGTGTGCTATG Human 900 

WNT11 R CACCTGTGCAGACACCAGAC Human 900 

TCF1 (TCF7) F CCGTCTACTCCGCCTTCAAT Human 100 

TCF1 (TCF7) R CGTAGAGAGAGAGTTGGGGGA Human 100 

TCF3 (TCF7L1) F GTCACCATCTCCAGCACACTT Human 300 

TCF3 (TCF7L1) R CCGGGGGAGAAGTGGTCATT Human 300 

TCF4 (TCF7L2) F TGCCTTTCACTTCCTCCGAT Human 900 

TCF4 (TCF7L2) R CAAGGGCCGCACCAGTTATT Human 900 

LEF1 F AGCACGGAAAGAAAGACAGC Human 300 
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LEF1 R TCGTTTTCCACCTGATGCAGA Human 300 

ER F CCACCAACCAGTGCACCATT Human 300 

ER R GGTCTTTTCGTATCCCACCTTTC Human 900 

PR F CGCGCTCTACCCTGCACTC Human 900 

PR R TGAATCCGGCCTCAGGTAGTT Human 900 

PS2 F TCGGGGTCGCCTTTGGAGCAG Human 300 

PS2 R GAGGGCGTGACACCAGGAAAACCA Human 300 

AR F GGTGTCACTATGGAGCTCTCACAT Human 900 

AR R GCAATCATTTCTGCTGGCG Human 900 

TMEPAI F CGAGATGGTGGGTGGCAGGTC Human 900 

TMEPAI R CGCACAGTGTCAGGCAACGG Human 900 

TMPRSS2 F CACGGACTGGATCTATCGACAA Human 900 

TMPRSS2 R CGTCAAGGACGAAGACCATGT Human 900 

VIM F GCTTCAGAGAGAGGAAGCCG Human 600 

VIM R AAGGTCAAGACGTGCCAGAG Human 600 

SNAI2 F GCCAAACTACAGCGAACTGG Human 300 

SNAI2 R AGTGATGGGGCTGTATGCTC Human 300 

ZEB1 F AAGAATTCACAGTGGAGAGAAGCCA Human 300 

ZEB1 R CGTTTCTTGCAGTTTGGGCATT Human 300 

CDH1 F AGCAGAACTAACACACGGGG Human 600 

CDH1 R ACCCACCTCTAAGGCCATCT Human 600 

OCCL F TCTCCCTCCCTGCTTCCT Human 600 

OCCL R GAGCAATGCCCTTTAGCTTCC Human 600 

36B4 F GTGTTCGACAATGGCAGCAT Human 300 

36B4 R AGACACTGGCAACATTGCGGA Human 300 

Wnt1 F CTGTGCGAGAGTGCAAATGG Mouse 600 

Wnt1 R GATGAACGCTGTTTCTCGGC Mouse 600 

36B4 F TCCAGGCTTTGGGCATCA Mouse 900 

36B4 R CTTTATCAGCTGCACATCACTCAG Mouse 900 
 

Table 4. Table summarizing the primers used in this study. 

 

6. PROTEIN ANALYSIS 

6.1. Sample preparation 

Cell extracts were obtained by lysing cells in radioimmunoprecipitation assay (RIPA) lysis buffer 

(Millipore) with phosStop (Roche), Protease Inhibitors (Roche) and 0.1% SDS (Life Technologies) 

and centrifuged for 10 min at 15 x 103 g. The supernatants were mixed with 2X Laemmli Buffer 

(Sigma) and heated at 95 ºC for 5 min. The amounts of lysis buffer used for each plate when 70-

80% confluent are shown in Table 5.  
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 Plate size 12-well 6-well 6 cm 10 cm 

RIPA 1X (l) 100 200 300 800 
 

Table 5. Volume of RIPA lysis buffer used for different plate size. 

 

Extracts from extracellular matrix (ECM) were obtained as described by Howe et al., (1999). 

Briefly, cells were removed by incubating with PBS containing 2 mM EDTA for 10 min and 

proteins remaining on the plate were directly solubilized by boiling in 2X Laemmli Buffer (Sigma). 

A parallel gel was run with the same amount of sample stained using Coomassie.  

6.2. Immunoprecipitation 

HEK293 cells (3.5 x 105 cells) were plated in 6 cm plates and transfected with 1250 ng of DNA. 

Cells were harvested 24 h following transfection and extracted using lysis buffer (50 mM TrisHCl 

(pH 8), 1% Triton X-100, 150 mM NaCl, 1mM EDTA) supplemented with Complete, EDTA-free 

protease Inhibitor cocktail tablets (Roche) and phosStop (Roche). Cell extracts were clarified by 

centrifugation for 12 min at 15 x 103 g at 4 ºC and incubated with anti-1D4 antibody on a rotating 

wheel at 4 ºC for 90 min before another incubation with protein A/G-Plus agarose beads for 1 

h. After three washes in lysis buffer, the beads were resuspended in SDS sample buffer and 

heated at 37 ºC for western blotting. 

6.3. Western blotting 

Extracts were separated on SDS polyacrylamide gels, with the acrylamide/bis-acrylamide 

(Sigma) concentration between 6 and 12% depending on the size of the target protein. The 

amounts of the other components used for the gels are shown in Table 6.  

Reagent 
Volume (ml) for a X % 

resolving gel 
Volume (ml) for stacking gel 

H2O 3.767 – Vacrylamide 0.68 

30% Acrylamide/Bis-
acrylamide  

X * 0.03 * 5 0.17 

1,5 M Tris (pH 8,8) 1.3 0.13 

10 % SDS  0.05 0.01 

10 % Ammonium 
persulfate  

0.05 0.01 

TEMED 0.003 0.002 
 

Table 6: Reagents used for preparing SDS polyacrylamide gels. 
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Gels were run at 15 V/gel for 2 h and transferred to 0.45-micron filter nitrocellulose membranes 

(Millipore) at 10 V for 30 min using a Semi-Dry Transfer Cell (BioRad). Membranes were washed 

in TBST (Tris-buffered saline, 0.05% Tween (Sigma)) and incubated in blocking buffer 3% BSA in 

TBST for 1 h. Primary antibodies diluted in blocking buffer were incubated overnight and after 

washing with TBST three times, HRP-conjugated secondary antibodies diluted at 1:20,000 in 

blocking buffer were incubated for 1 h. After washing in TBST, membranes were developed using 

chemiluminescence (Clarity Western ECL Substrate, BioRad). Information about the antibodies 

used is detailed in Table 7.  

 

Antibody Company Specie Application Concentration 

WNT1 Santa Cruz Rabbit 
WB, ECM 

extracts 
1:200 

WNT1 Enzo Life Sciences Rabbit WB, IF, IHC 1:500; 1:25; 1:200 

ER Novocastra Mouse WB 1:2000 

PR Novocastra Mouse WB 1:1000 

1D4 Santa Cruz Mouse WB, IF 1:1000; 1:200 

V5 Invitrogen Mouse WB, IF 1:1000; 1:200 

GFP Roche Mouse WB 1:1500 

GAPDH Santa Cruz Mouse WB 1:1000 

HSP60 Santa Cruz Rabbit WB 1:5000 

APC-CD44 BD Mouse FACS 1.5 g/ml 

PE-CD24 BD Mouse FACS 25 g/ml 

 

Table 7: Table summarizing the antibodies used in this study. 

 

7. IMMUNOFLUORESCENCE 

5 x 104 cells/well were seeded in 24-well plates containing cover slips and cultured for 24 h. 

Transfection was performed after 24 h (See section 2). After 24 h, cells were washed twice with 

PBS and fixed with 4% paraformaldehyde (Santa Cruz) for 20 min and permeabilized with 0.1% 

TritonX-100 (Sigma) in PBS for 10 min. Blocking buffer was prepared with 2% BSA, 0.01% NaN3 

and 50 mM Glycine (Sigma). After blocking samples for 1 h, antibodies diluted in blocking buffer 

were incubated overnight and washed three times with PBS. AlexaFluor conjugated antibodies 

diluted at 1:500 were incubated for 1 h. Details of the primary antibodies used are in Table 7. 
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Vectashield mounting medium with DAPI (Vector laboratories Laboratories Inc.) was used to 

mount coverslips and samples were stored at 4 °C in the dark. Pictures were taken using a Zeiss 

fluorescence microscope Axioimager D1 and a Leica Confocal microscope.  

8. IMMUNOHISTOCHEMISTRY 

To determine the conditions for detection of Wnt-1 by IHC, two breast invasive ductal carcinoma 

tissue arrays (T089a), including 3 cases of breast invasive ductal carcinoma, medullary carcinoma 

and invasive lobular carcinoma, were used to test different conditions for antibody staining. 

Figure 13 shows an example of images from the array stained with Wnt-1 antibody, which was 

found to be optimal at 1:200 dilution in pH 6.0 citrate buffer, and the respective negative control 

of the condition sample.  

 

 

 

 

 

 

 

 

 

Figure 13. Immunohistochemistry of T089a tissue array used for tritation of Wnt-1 antibody. 

On the left a sample stained with antibody at 1:200 and on the right the same sample only 

stained with secondary antibody. DAB agent was used for 10 sec in both cases. Low scale bars 

= 100 m and high scale bars = 20 m. 

 

Tissue microarrays were obtained from US Biomax Inc. BR2082b TMA contains 192 specimens, 

including 32 cases of metastatic carcinoma, 69 invasive ductal carcinomas, 21 lobular 

carcinomas, 4 squamous cell carcinomas, 17 intraductal carcinomas, 1 lobular carcinoma in situ, 

9 fibroadenomas, 8 hyperplasias, 12 inflammatory tissues, 17 adjacent normal breast tissues 

and 2 normal breast tissues, that had been classified according to patient pathology, grade (I-

IV), TNM grading and ER, PR and HER2 expression levels. Detailed information of the tumor 

samples can be found at https://www.biomax.us/tissue-arrays/Breast/BR2082b.  

https://www.biomax.us/tissue-arrays/Breast/BR2082b
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Paraffin-embedded tissue sections were deparaffinized with Histo-Clear II (National Diagnosis) 

and then rehydrated through citrosol and transferred through four changes of 100, 96, 70% 

ethanol and water. Antigen retrieval was performed using sodium citrate buffer at pH 6.0 in a 

pressure cooker for 20 min and endogenous peroxidase was blocked with 3% H2O2 for 10 min 

and washing three times in PBS for 5 min. Avidin/Biotin blocking kit (Thermo Fisher Scientific) 

was used, following the manufacturer´s instructions. Sections were incubated for 30 min in 

blocking solution containing 5% horse serum in PBS. Staining was performed overnight with 

rabbit-anti human Wnt-1 antibody (See Table 7) in Antibody Diluent (DAKO North America) at 4 

ºC. Afterwards, sections were incubated with biotinylated secondary antibody by Vectastin® 

Elite ABC Kit (1:200, Vector Laboratories Inc.) in blocking buffer for 30 min and diaminobenzidine 

(DAB) (DAKO) was used as a chromogenic agent for detection. Sections were counterstained 

with Mayer´s hematoxylin (Sigma) for 10 sec and mounted with DPX (Sigma). Stained samples 

were visualized using a Zeiss light microscope Axioimager A1.  

 

9. STATISTICAL ANALYSIS 

Data shown are the averages of 3 or 4 independent experiments. In the case of luciferase assays, 

RT-PCR, proliferation assays, mammosphere and colony formation assays, each experiment was 

the result of the average of triplicates. Two-sided student´s t test for single comparison or one-

way analysis of variance (ANOVA) with Tukey's multiple comparisons test (post-hoc analysis) 

was applied to determine significance and P < 0.05 was considered to be statistically significant, 

unless otherwise specified. For TMA analysis, patients were divided into low (0, 1) and high (2, 

3) expression and analyzed by one-way v2 test, Pearson Chi-square test with correction or 

Fisher’s exact test, two-sided, available on the VassarStats website (http://vassarstats.net/). If 

the contrary is not indicated error bars show SD. Microsoft Excel and Graph-pad Prism 6.0 were 

used for statistical analysis. * P < 0.05; ** P < 0.01; *** P < 0.001. 

 

http://vassarstats.net/
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I. WNT SIGNALING IN TAMOXIFEN RESISTANT MODELS 

1. WNT gene expression in CSC enrichment conditions in two tamoxifen resistant cell 

lines  

Several tamoxifen resistant breast cancer cell lines have been developed and characterized in 

our laboratory. Both MCF-7 and T47D parental cell lines are ER+. However, when T47D cells 

became resistant to tamoxifen ER expression is lost. The mammosphere formation assay is a 

widely used technique that has been described to increase the enrichment of CSCs (Dontu, El-

Ashry and Wicha, 2004). Tamoxifen resistant MCF-7 breast cancer cells show increased 

efficiency for formation of primary (MS I) and secondary (MS II) mammospheres. Moreover, 

MCF-7TamR and T47DTamR cell lines showed a significant increase in the proportion of 

CD44+CD24-/low cells and an increase in SOX2 mRNA and protein levels (Piva et al., 2014).  

The first aim of this project was to identify Wnt ligands that might be involved in the 

maintenance of CSCs in tamoxifen resistant cells. For this point, we used two cell lines MCF-

7TamR and T47DTamR, which were cultured in low attachment conditions to promote 

mammosphere formation and increase the proportion of CSCs. As expected, under these 

conditions, we found a clear increase in the CD44+CD24-/low CSC population in both cell lines (Fig. 

14A). On average, the increase was 5-fold for MCF-7TamR cells and 2-fold for T47DTamR cells 

(Fig. 14B).  
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Figure 14. FACS analysis of tamoxifen resistant breast cancer cell lines. A. Representative analysis of 

MCF-7TamR and T47DTamR cells stained for CD24 and CD44. CD44+CD24-/low population was increased in 

all experiments when cells were grown in low attachment conditions (MS). NonCSC population were 

selected for sorting cells from Q1 corresponding to the phenotype CD44-CD24+ and CSC population from 

Q4 for the phenotype CD44+CD24-/low. B. Percentage of CD44+CD24-/low cells in adherence (ADH) and in 

mammospheres (MS) for MCF-7TamR and T47DTamR cells; n=4,* P < 0.05; ** P < 0.01, Student´s t test. 

ADH, adherent; MS, mammospheres. 

 

In order to determine the expression levels of Wnt family genes in CSCs, cells expressing high 

levels of CD44 and low levels of CD24 were FACS-sorted and WNT gene expression levels were 

analyzed by qRT-PCR. WNT gene expression was also analyzed in adherent cells and in the bulk 

cell population that form mammospheres, which is a mixture of CSCs and cells that may provide 

a CSC niche. At least 8 WNT genes have been reported to be expressed in human breast tissue, 

WNTs 2, 3, 4, 5A, 7B, 10B, 13 (2B) and 14 (9B) (Kirikoshi, Sekihara and Katoh, 2001). Huguet et 

al., (1994) studied WNT gene expression in human breast cancer, non-tumorous breast tissue 

and in human breast and breast cancer cell lines. They observed expression of WNT3, WNT4 and 

WNT7B in human breast cell lines, and Wnt-2, Wnt-3, Wnt-4 and Wnt-7b proteins in human 

breast tissues. Wnt2, Wnt4 and Wnt7b over-expression was associated with abnormal 

proliferation while Wnt1 (Lee et al., 1995) and Wnt3 (Callahan, 1996) were found to be involved 

with tumorigenesis in mice. These different functions of Wnt family members in the mammary 

gland were later corroborated by Naylor et al., (2000), who observed that Wnt4, Wnt5b and 

Wnt7b were expressed during normal mammary gland development, but not Wnt1, expression 

of which induces ductal branching and hyperplasia.  
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It was also observed that Wnt7b does not affect mammary gland development although in cell 

culture it behaves in a similar way to Wnt1. Wnt1 was the first oncogene identified in naturally 

occurring mammary tumors in mice (Nusse Ret al., 1984) and is now used in genetically 

manipulated mouse models of breast cancer using mouse mammary tumor virus (MMTV), 

although other Wnts, such as Wnt3a (Roelink et al., 1990) and Wnt10b (Roelink et al., 1990), are 

also used for insertional activation in some tumors (Li, Hively and Varmus, 2000). There are 

publications that claim that the activation of canonical Wnt signaling, mostly by Wnt-1 or Wnt-

3a, in breast cancer and breast stem cells increases the population of stem-like cells (Lamb et 

al., 2013); Wnt-7b (Wang et al., 2005) and Wnt-10b (Wend et al., 2013) have also been described 

to activate canonical Wnt signaling. For these reasons, WNT1, WNT3A, WNT7B and WNT10B 

were selected to be analyzed in the context of CSCs in tamoxifen resistant cell lines.  

In MCF-7TamR cells, WNT1 levels were significantly higher in mammospheres than in adherent 

cells (Fig. 15A) and there was a trend for an increase in the CD44+CD24-/low cells, compared to 

the CD44-CD24+ cells (Fig. 15B). There was also a trend for increased WNT3A expression in 

mammospheres, compared to adherent cells. However, WNT3A expression was similar in 

CD44+CD24-/low cells and CD44-CD24+ cells (Fig. 15A, B). WNT7B expression levels in 

mammospheres were unchanged and were lower in the CD44+CD24-/low cells and WNT10B 

expression was not altered in mammospheres or in CSCs (Fig. 15A, B). In T47DTamR cells, WNT1 

and WNT3A expression levels were highly variable and did not increase significantly in 

mammospheres (Fig. 15C). Moreover, WNT3A levels were significantly lower in the CD44+CD24-

/low population and as observed in MCF-7TamR cells, WNT7B levels also showed a tendency to 

be lower, while the expression of WNT1 and WNT10B was unchanged (Fig. 15D).  
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Figure 15. Analysis of mRNA level of WNT genes. A. Relative mRNA expression of the indicated 

WNT genes, comparing adherent (ADH) MCF-7TamR cells and mammospheres (MS); n=4. B. 

Relative mRNA expression of WNT genes comparing sorted CD44-CD24+ population (nonCSCs) 

and CD44+CD24-/low population (CSCs) in MCF-7TamR cells; n=4. C. Relative mRNA expression of 

the indicated WNT genes, comparing adherent (ADH) T47DTamR cells and mammospheres 

(MS); n=4. D. Relative mRNA levels of WNT genes comparing sorted CD44-CD24+ population 

(nonCSCs) and CD44+CD24-/low population (CSCs) in T47DTamR cells; n=4, ** P < 0.01, *** P < 

0.001, Student´s t test, (error bars represent SEM). ADH, adherent; MS, mammospheres. 
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2. Differences in canonical Wnt signaling in MCF-7 and T47D cells 

To study the effect of Wnt ligands in both cell lines and the impact they may have in the 

activation of the canonical Wnt pathway, I carried out gene reporter assays using the 

Super8xTopFlash plasmid (-catenin/TCF luciferase), which encodes eight LEF/TCF binding sites 

linked to firefly luciferase and provides a measure of Wnt/β-catenin (canonical) signaling 

activity. Renilla luciferase reporter (pRL-tk) was used as a control. Wnt signaling was activated 

using Wnt-3a-conditioned-medium (Wnt-3a CM) or by transfecting cells with plasmids 

expressing WNT1, WNT3A, WNT7B or WNT10B genes. Cells treated with Wnt-3a CM were also 

treated with IWP-2, which inhibits Wnt lipidation, preventing their secretion (Chen et al., 2009), 

as a control for possible effects of endogenous Wnt ligands. Surprisingly, the -catenin/TCF 

luciferase reporter was not activated by transfection of any of the WNT gene expression 

plasmids in MCF-7TamR cells (Fig. 16A) or by Wnt-3a CM (Fig. 16B). On the other hand, in 

T47DTamR cells the canonical pathway was significantly activated by transfection of WNT1 and 

WNT3A plasmids. Transfection of WNT10B plasmid showed a trend for activation, while WNT7B 

had no effect (Fig. 16C). In addition, Wnt-3a CM strongly activated -catenin/TCF luciferase in 

T47DTamR cells (Fig. 16D). These results indicated that MCF-7TamR and T47DTamR cells 

respond differently to Wnt ligands, with respect to activation of -catenin/TCF luciferase.  

MCF-7 and T47D cells have been reported to respond differently to sFRP1 treatment and DVL 

knockdown (Schlange et al., 2007). Actually, sFRP1 treatment reduced the level of active -

catenin measured by western blotting in T47D cells but not in MCF-7 cells. These data are 

consistent with our observation that MCF-7TamR do not show a canonical response to Wnts. 

Therefore, differences in the response of MCF-7TamR and T47DTamR to Wnt ligands are unlikely 

to be due to different mechanisms of resistance acquisition. However, others have shown that 

Wnt-3a stimulates AXIN2 expression in MCF-7 cells (Wang et al., 2014). In order to determine 

the reason for the different responses, we considered the roles of ER, AR and TCF family 

members. T47DTamR cells have lost expression of ER, which could affect Wnt signaling (El-

Tanani et al., 2001), and AR has a role in tamoxifen resistance (De Amicis, F.et al., 2010) and 

canonical WNT7B is an AR target gene (Zheng, D. et al., 2013). TCF family members are key 

mediators of canonical Wnt signaling and during the course of my studies were reported to be 

differentially expressed in MCF-7 and T47D cells (Jamieson et al., 2016). 
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Figure 16. -catenin/TCF luciferase activity in tamoxifen resistant breast cancer cell lines. A. 

Relative -catenin/TCF luciferase activity mediated by transfection of plasmids encoding 

different WNTs in MCF-7TamR cells; n=3. B. Relative -catenin/TCF luciferase activity in MCF-

7TamR cells treated with C CM or Wnt-3a CM; n=3. C. Relative -catenin/TCF luciferase activity 

mediated by transfection of plasmids encoding different WNTs in T47DTamR cells; n=3. D. 

Relative -catenin/TCF luciferase activity in T47DTamR cells treated with control CM or Wnt-3a 

CM; n=2, * P < 0.05; ** P < 0.01, Student´s t test (error bars represent SD). C CM, control 

conditioned-medium; Wnt-3a CM, Wnt-3a-conditioned-medium.  
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2.1 Effects of ER on the Wnt response 

Since ER expression was lost in one of the cell lines during the acquisition of resistance, 

we investigated whether ER expression was involved in the canonical response to Wnt-

1 and Wnt-3a. In mesenchymal progenitor cells, E2 does not affect -catenin/TCF 

reporter activity, but WNT3A up-regulates ER expression to induce osteogenic 

differentiation (Gao et al. 2013). Moreover, a genetic interaction between human ER 

and -catenin signaling has been reported (Kouzmenko et al., 2004). 

First, I determined if the different Wnt responses of T47DTamR and MCF-7TamR cells 

resulted from differential expression of ER. ER levels in T47DTamR cells were lower than 

in parental T47D-C cells (Fig. 17A). This was not the case in MCF-7TamR cells, although 

ER transcriptional activity was reduced, as indicated by reduced expression of its target 

gene PR (Fig. 17B). In order to test the hypothesis that high ER levels repress the Wnt 

response, -catenin/TCF gene reporter assays were carried out in MCF-7C and T47D-C 

cells. The reporter was not activated by transfection of any of the WNT gene expression 

plasmids in MCF-7C cells. In fact, WNT1 and WNT7B reduced -catenin/TCF reporter 

activity. Reporter activity in T47D-C cells was inhibited by WNT7B, as in MCF-7C cells. 

However, it was activated by both WNT1 and WNT3A. The strongest response of 

T47DTamR cells to Wnt-1, as compared to T47D-C cells, suggests that ER levels may 

affect the Wnt-1 response in these cells. However, MCF-7C and T47D-C cells express 

similar levels of ER and show different responses to Wnt-1, so the different responses 

of MCF-7 and T47D cells are unlikely to be related to ER.  
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Figure 17. Effect of the ER on the Wnt response. A. Protein expression of ER in human breast 

cancer cell lines. B. Relative mRNA expression level of PR in MCF-7 cell lines; n=3. C. Relative -

catenin/TCF luciferase activity mediated by transfection of plasmids encoding different WNTs 

in MCF-7C cells; n=4. D. Relative -catenin/TCF luciferase activity mediated by transfection of 

plasmids encoding different WNTs in T47D-C cells; n=4, * P < 0.05; *** P < 0.001, Student´s t 

test (error bars represent SD). 

2.2 Effect of AR on the Wnt response 

AR is a nuclear receptor whose link to Wnt signaling has been studied in more depth 

than that of ER. As previously described, -catenin modulates AR (Verras, M. Brown, J. 

Li, X. Nusse, R. Sun, 2004), but there is also evidence of AR modulating Wnt. For example, 

AR provides a vehicle for trafficking -catenin to the nucleus (Mulholland et al., 2002). 

In addition, AR signals regulate the expression of several WNT genes in prostate cancer, 

including WNT7B (Zheng et al., 2013), and can contribute to ER transcriptional activity 

in aromatase inhibitor-resistant breast cancer cells (Rechoum et al., 2014). Importantly, 

AR competes with TCF/LEF for binding to -catenin (Kypta and Waxman, 2012). 

Therefore, high AR activity could be responsible for the low -catenin/TCF activity in 

MCF-7TamR cells.  
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In order to study whether endogenous AR affected canonical Wnt signaling in MCF-

7TamR cells, cells were treated with the AR antagonist MDV3100, and examined for 

changes in expression of WNT genes (Fig. 18A) and AR and ER target genes (Fig. 18C). 

Because androgens have been reported to negatively regulate WNT11 expression in 

hormone-dependent LNCaP cells (Zhu et al., 2004) and this can be inhibited by 

MDV3100, I also checked WNT11 gene expression levels. MDV3100 treatment did not 

significantly affect the expression of WNT1, WNT3A, WNT7B, WNT10B or WNT11 (Fig. 

18A). However, WNT11 levels were significantly lower in TamR cells, compared to 

control MCF-7C cells (Fig. 18B). MDV3100 did not affect expression of AR or its target 

genes in prostate cancer (TMEPAI and TMPPRSS2) or of the ER target gene PS2. In the 

case of PR, which is also an ER target gene, there was a tendency for reduction in MCF-

7TamR cells (Fig. 18C). On the other hand, lower expression of PR, as shown previously 

in Fig. 17B, and PS2 was observed in MCF-7TamR cells, compared to MCF-7C cells (Fig. 

18D). In this comparison, TMPPRSS2 levels were also higher but were not affected by 

MDV3100. These results suggest endogenous AR is not involved in the regulation of Wnt 

gene expression in TamR cells.  

 

Figure 18. Effect of the AR antagonist MDV3100 on gene expression. A. Relative mRNA 

expression of WNT genes in MCF-7 cells treated with MDV3100, normalized to untreated cells. 

B. Relative mRNA expression of WNT genes in MCF-7TamR cells compared to control cells. C. 

Relative mRNA expression of ER and AR target genes in MCF-7 cells after MDV3100 treatment, 

normalized to untreated cells. D. Relative mRNA expression of ER and AR target genes in MCF-

7TamR cells compared to control cells; n=3, * P < 0.05; *** P < 0.001, Student´s t test (error bars 

represent SEM). 
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In order to determine AR activity in MCF-7TamR cells, gene reporter assays were carried 

out using MMTV-luc and ARR2-Pb-luc reporters, which are reporters used to measure 

transcriptional activity of AR. As a control for MDV3100 activity, gene reporter assays 

were carried out in the prostate cancer cell line C4-2B. In the presence of MDV3100, the 

transcriptional activity of both reporters was significantly reduced, as expected (Fig. 

19A). AR reporter activation was stimulated in MCF-7TamR cells by the AR ligand DHT 

(Fig. 19B). However, MDV3100 did not affect basal AR reporter activity in cells (Fig. 19C). 

These results indicate that although AR is expressed and can be activated, it is not 

normally active in MCF-7TamR cells and so is unlikely to be responsible for the low -

catenin/TCF activity in these cells.  

 

Figure 19. Effect of the AR antagonist MDV3100 on transcriptional activity of AR. A. Relative 

luciferase activity using MMTV-luc and ARR2-Pb-luc reporters in C4-2B cells treated with 

MDV3100; n=3. B. Relative luciferase activity using MMTV-luc and ARR2-Pb-luc reporters in 

MCF-7TamR cells stimulated with the AR ligand DHT; n=2. C. Relative luciferase activity using 

MMTV-luc and ARR2-Pb-luc reporters in MCF-7TamR cells treated with MDV3100; n=3, ** P < 

0.01, Student´s t test (error bars represent SD). 

2.3 Effect of TCF/LEF family factors on the Wnt response 

In order to explore other factors that could explain differences in the response to Wnt 

signaling in MCF-7TamR and T47DTamR cells, I examined differences in the mRNA 

expression levels of TCF/LEF family transcription factors, which can act as activators or 

repressors of Wnt signaling, depending on context (Sprowl and Waterman, 2013). In 

humans, high levels of LEF1 mRNA have been reported in testis, adrenal gland, blood 

cells, spleen and ileum, TCF1 is highly expressed in blood, spleen and small intestine, 

while TCF3 is abundant in cervix, breast, colon, adipose tissue and colorectal cells and 

TCF4 is found in a more ubiquitous pattern, although it is most highly expressed in breast 

(Hrckulak et al., 2016). 
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 LEF1 mRNA was undetectable in MCF-7 cells and TCF1 (TCF7) was barely detected in 

any of the cell lines (Ct values were about 38); note CT values in Fig. 20C. On the other 

hand, TCF3 (TCF7L1) mRNA was abundant in all cell lines (Fig. 20C), and was more highly 

expressed in T47D cells than in MCF-7 cells (Fig. 20A) and more in TamR cell lines 

compared to the control cells. These data was consistent with the RNAseq data, which 

was performed after the generation of cell lines resistant to tamoxifen. Jamieson et al., 

(2016) previously reported that TCF-3 protein is present in T47D cells but not in MCF-7 

cells. Our results indicated that TCF4 mRNA (TCF7L2) was less abundant than TCF3 in 

T47D and in MCF-7 cells (Fig. 20 B and C). Nevertheless, there are different TCF4 mRNA 

variants (Mao and Byers, 2011) that might account for the TCF4 levels detected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Relative RNA expression of TCF factors. A. Relative mRNA levels of TCF3 in breast 

cancer cell lines. B. Relative mRNA levels of TCF4 in breast cancer cell lines. C. CT values 

obtained for each TCF gene normalized with respect to 36B4; TCF1 (TCF7); TCF3 (TCF7L1); TCF4 

(TCF7L2).  

 

Since MCF-7TamR cells do not respond to Wnt ligands it was considered that this might 

be due to the low expression of TCF/LEF family proteins. In order to determine if 

expression of TCF/LEF family members could restore the response to exogenous Wnt 

and activate-catenin/TCF transcriptional activity, MCF-7TamR cells were transfected 
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with plasmids encoding -catenin and TCF family genes. TCF1 was chosen because of 

the availability of a TCF1 expression plasmid and the low basal expression of TCF1 in 

MCF-7 cells. In addition, I used TCF4 as its levels were higher in T47D than MCF-7 cells 

and a TCF4 plasmid was also available. -catenin/TCF luciferase assays were carried out 

using cells transfected with plasmids encoding -catenin, TCF1 and TCF4 and the -

catenin/TCF-responsive SUPER8XTOPFlash reporter. Co-expression of -catenin with 

either TCF1 or TCF4 activated this reporter in MCF-7TamR cells (Fig. 21A). Surprisingly, 

TCF1, but not TCF4 also activated the gene reporter independently of -catenin (Fig. 

21A). This result is reminiscent of a study in hematopoietic cells, in which TCF1 but not 

TCF4 associates with ATF2 to activate this reporter independently of -catenin 

(Grumolato et al., 2013). To test if a similar mechanism was taking place in TCF1-

transfected MCF-7TamR cells, we used a dominant-negative form of ATF2, ATF2 

(Steinmüller and Thiel, 2003). ATF2 mutant retains the basic leucine zipper domain 

needed for dimerization and DNA-binding, but lacks the N-terminal transcriptional 

activation domain. -catenin independent activation of the reporter by TCF-1 was 

reduced when ATF2 was expressed (Fig. 21B) suggesting a role for ATF2.  

 

 

Figure 21. Effect of TCF/LEF family factors on the Wnt response. A. Gene reporter assays 

measuring -catenin/TCF-dependent transcriptional activity in MCF-7TamR cells expressing -

catenin and/or TCF1 and TCF4; n=4. B. Gene reporter assays measuring -catenin/TCF-

dependent transcriptional activity in MCF-7TamR cells expressing TCF1, -catenin, ATF2 and 

ATF2; n=4, * P < 0.05; ** P < 0.01; *** P < 0.001, Student´s t test (error bars represent SD).-

CAT, -cateninATF2, Dominant- Negative ATF2. 
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3. WNT1 signaling in tamoxifen resistant cell lines 

Wnt1 expression has been linked to enrichment of CSCs in a mouse model of breast cancer (Choi 

et al., 2012) and has also been described to be over-expressed in human breast tumors (Ayyanan 

et al., 2006). In C57MG mouse mammary epithelial cells, ectopic expression of Wnt1 expression 

increases accumulation of cytosolic -catenin (Shimizu et al., 1997). Our results demonstrated 

that WNT1 is the most upregulated WNT gene in the CSCs compared to the non-CSCs in MCF-

7TamR cells, while none of the WNTs examined stood out in T47DTamR cells. However, ectopic 

expression of WNT1 did not increase -catenin/TCF luciferase activity in MCF-7TamR cells. 

Therefore, Wnt-1 signaling was studied in more detail.  

In MCF-7TamR cells, canonical Wnt signaling was activated by TCF1 (Fig. 21 and 22A). In order 

to determine whether Wnt-1 is involved in TCF1-mediated signaling, both WNT1 and TCF1 were 

co-expressed in MCF-7TamR cells. As shown in Fig. 22A, expression of WNT1 potentiated TCF1-

activation of the TOPFlash reporter. In order to determine the effects of WNT1 and TCF1 using 

an alternative approach, I used TOPdGFP, which encodes GFP driven by a TCF-responsive 

promoter, and measured the number of GFP-positive cells by flow cytometry. As a control, a 

GFP driven by a control promoter (CMV) was used. The GFP signal obtained for each reporter 

was normalized to the signal captured for the same reporter co-transfected with an empty 

vector. The results revealed that expression of TCF1 but not WNT1 increased the number of GFP- 

positive cells when using the TOPdGFP reporter (Fig. 22 B).  

 

 

 



Characterization of Wnt signaling in tamoxifen resistant breast cancer stem/progenitor cells 
 

 

 
 

98 

 

Figure 22. Effect of WNT1 expression in TCF1 mediated signaling. A. Gene reporter assay 

measuring -catenin/TCF-dependent transcriptional activity in MCF-7TamR cells co-expressing 

WNT1 and TCF1; n=3. B. GFP based reporter assay measuring TOPdGFP reporter by FACS. GFP 

signal was normalized using an empty GFP vector; n=5, * P < 0.05; *** P < 0.001, Student´s t 

test (error bars represent SD). C. Pictures of GFP positive cells transfected with TCF1 or WNT1 

using TOPdGFP reporters. Bright field images are shown in insets to reveal cells.  

 

Although ATF2 has been found to be a partner of TCF1 for activation of canonical Wnt signaling, 

it also mediates non-canonical signaling. ATF2 forms dimers with other AP-1 family components 

and different heterodimers have different DNA binding specificities (Hai and Curran, 1991) and 

roles in cancer (van Dam and Castellazzi, 2001). To better understand the role of ATF2, the effect 

of WNT1 expression on ATF2-mediated transcription was determined. The ATF2-dependent 

luciferase reporter is based on the C/EBP-activating transcription factor-responsive element that 

provides a readout for non-canonical WNT/JNK signaling (Ohkawara and Niehrs, 2011). 

Expression of WNT1 in MCF-7TamR cells activated the ATF2-dependent luciferase reporter and 

also an ATF2-based GFP reporter (Fig. 23A and B). AP-1 family members can form homo- or 

heterodimers at ATF/CRE binding sites. Although Jun-Jun and Jun-Fos dimers can bind ATF/CRE 
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sites (van Dam and Castellazzi, 2001), ATF/CREB heterodimers have a higher affinity for these 

sites (Hai and Curran, 1991). Here, I have used dominant-negative constructs to block AP-1 

family transcription factors. Cells were co-transfected with the ATF2 reporter and WNT1 

together with dominant-negative forms of ATF2 (ATF2), CREB (CREB) and Fos (FOS). ATF2 

binds and inhibits endogenous ATF2 and Jun (Hai and Curran, 1991), whereas FOS binds Jun 

(Abate, Luk and Curran, 1991), and CREB inhibits gene expression via inhibition of the DNA 

binding activity of CREB and is considered to be a specific inhibitor of CREB-mediated gene 

transcription (Ahn et al., 1998). ATF2 showed the strongest inhibition of gene reporter activity 

(Fig. 23C), suggesting that ATF2 and its partners are important for Wnt-1 activation of the ATF2 

reporter. Although dominant-negative ATF2, c-Jun and c-Fos all reduced the response to Wnt-1, 

ATF2 or its binding proteins had the strongest effect on Wnt-1 activation of ATF2-luciferase (Fig. 

23C).  
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Figure 23. Effect of WNT1 on ATF2-dependent transcriptional activation in MCF-7TamR cells. 

A. Gene reporter assay measuring ATF2-dependent transcriptional activity in MCF-7TamR cells 

expressing WNT1; n=4. B. GFP based reporter assays measuring ATF2dGFP reporter by FACS. 

GFP signal was normalized using a vector expressing GFP driven by the CMV promoter; n=5. C. 

Gene reporter assasy measuring ATF2-dependent transcriptional activity in MCF-7TamR cells 

expressing dominant negative forms of ATF2, c-Jun and c-Fos in the presence or the absence of 

WNT1 expression; n=3, * P < 0.05, ** P < 0.01; *** P < 0.001, Student´s t test (error bars 

represent SD). D. Pictures of GFP-positive cells transfected with WNT1 using ATF2dGFP 

reporters. Bright field images are shown in insets to reveal cells. ATF2, dominant-negative 

ATF2;CREB, dominant-negative CREB; FOS, dominant-negative FOS.  
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II. CHARACTERIZATION OF WNT1 EXPRESSION IN BREAST CANCER AND 

BREAST CANCER STEM CELLS 

1. WNT1 expression in ER+ breast cancer patients 

Based on our observations of WNT1 gene expression levels in CSCs in MCF-7TamR cells and the 

interest of Wnt-1-mediated signaling in this context, we characterized the expression of WNT1 

in breast cancer. We examined publically available data from patients to analyze WNT1 

expression changes in patients, according to clinical characteristics that might identify some 

differences using the GOBO Gene set online tool (Ringnér et al., 2011). Results showed that 

there are no significant differences in WNT1 expression with respect to molecular subtypes, ER 

status or tumor grade (Fig. 24).  

 

 

 

 

 

Figure 24. WNT1 expression in human breast tumor. Box plot of WNT1 gene expression for 

tumor samples stratified according to HU subtypes (Hu et al., 2006), according to ER status or 

according to histological grade. Obtained from GOBO Gene set online tool. Dots represent 

outliers and bars minimum and maximum values excluding outliers.  

 

Afterwards, we analyzed possible links between WNT1 expression and patient survival. Fig. 25A 

represents the disease free survival (DFS) of all breast cancer patients and patients classified 

according to breast cancer tumor subtypes. There were no differences in survival related to 

WNT1 expression in any of these subgroups. However, more detailed analysis revealed a worse 

prognosis and a significant decrease in the overall survival (OS) and distant disease free survival 

(DDFS) among those patients expressing high levels of WNT1 and presenting ER+ tumors who 

had undergone treatment with tamoxifen (Fig. 25B). In contrast, the whole patient population 

did not show any variation in the DFS rates related to the expression of WNT1. In order to 

reconsider other WNTs as possibly being linked to survival, we checked the other WNT genes 

(Table 8). Kaplan-Meier analysis using OS as endpoint is shown in Fig. 25C. Apart from WNT1, 

the expression levels of WNT6, WNT7A and LEF1 were also correlated with poor prognosis. On 
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the contrary, low expression of WNT7B, WNT5A, WNT11, TCF1 and TCF3 were associated with 

good prognosis (Table 8). These results indicate that WNT1 expression might be important in 

the context of tamoxifen-treated patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. WNT1 expression in human breast tumors and survival effect. A. Kaplan-Meier 

analysis, using DFS as endpoint for basal, HER2+, luminal A and luminal B tumors stratified into 

high and low WNT1 gene expression level. B. Kaplan-Meier analysis, using OS and DDFS as 

endpoint for ER+ tumors in patients treated with tamoxifen, stratified into high and 

low WNT1 gene expression level and using DFS for all BC patients stratified into high and 

low WNT1 gene expression level. C. Kaplan-Meier analysis, using OS as endpoint for ER+ tumors 

in patients treated with tamoxifen, stratified into high (red) and low (blue) WNT3A, WNT7B and 

WNT10B gene expression. DFS, disease free survival; OS, overall survival; LumA, luminal A; 

LumB, luminal B.  
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Gene OS DDFS DFS Gene OS DDFS DFS 

WNT1 0.00172 0.03854   WNT8A       

WNT2       WNT8B       

WNT2B       WNT9A       

WNT3       WNT9B       

WNT3A       WNT10A       

WNT4       WNT10B       

WNT5A   0.02907   WNT11   0.0142   

WNT5B       WNT16       

WNT6 0.01495     TCF1  0.04609     

WNT7A 0.00027 0.01062   TCF3  0.00196 0.00163 0.00113 

WNT7B 0.00013     TCF4        

    LEF1 0.00166 0.04741   
 

Table 8. Survival effect of WNT genes expression. Kaplan-Meier analysis, using OS, DDFS and 

DFS as endpoint for ER+ tumors in patients treated with tamoxifen, stratified into high and 

low WNT gene expression level. Statistically significant p-values are indicated in red when high 

expression level and in blue when low expression level is associated with poor prognosis. OS, 

overall survival; DDFS, distant disease free survival; DFS, disease free survival. 

 

To better characterize the expression of WNT1 in breast cancer, Wnt-1 protein levels were 

examined by immunohistochemistry (IHC) in a tissue array with a range of breast cancer 

pathologies (BR2082b-TMA). This array contains 192 different samples, including metastatic 

carcinomas, ductal and lobular carcinomas, fibroadenomas, hyperplasias and inflammatory 

tissues and also adjacent normal and normal breast tissues. Information provided for TNM, 

clinical stage, pathology grade, and ER, PR and HER2 IHC results were used for correlation 

analysis. We selected a Wnt-1 antibody that was previously validated for use in IHC in several 

publications (Königshoff et al., 2008; Xie et al., 2012). Prior to staining BR2082b-TMA, the 

antibody was tested and optimized using a smaller TMA (T089a) (See Fig. 13 in Material and 

Methods, Section 8).  

Scoring of BR2082b-TMA IHC was performed using two approaches. First, in collaboration with 

a group of mathematicians, an algorithm was designed to automatically quantify and classify 

Wnt-1 staining. This method consists of four steps that are repeated for every sample. First, each 

tissue core is divided into 64 blocks, next DAB positive areas are identified and a color 

deconvolution process is performed. Then, an algorithm is used to cluster each block into four 

different intensities based on the Allred score, which calculates and combines the percentage 

of positive cells with the intensity of staining (Henriksen et al., 2007). Finally, classification of 
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each sample is obtained from the reconstitution of all segments, providing a new image with 

quantification.  

These results using this method were then compared with a second approach, in which staining 

intensities were scored independently by three people (MV, RK and EO) using the quickscoring 

method (Henriksen et al., 2007). Divergences in scores between the two methods were then re-

evaluated until consent was found. Scoring for Wnt-1 was further analyzed by a histopathologist 

(Dr. Ignacio Zabalza, Department of Pathology, Galdakao-Usansolo Hospital). Each score was 

based on the staining intensity as 0 (no staining), 1 (weak staining), 2 (moderate staining), or 3 

(strong staining). A representative example for each staining intensity is shown in Fig. 26.  
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Figure 26. Scoring system for Wnt-1 staining in human breast tissue array. Examples of Wnt-

1 immunohistochemistry in breast cancer cells using the quick score method as 0 (negative), 1 

(weak), 2 (moderate), 3 (strong). Staining of samples using H&E are shown in the upper row. 

These H&E images are available in https://www.biomax.us/tissue-arrays/Breast/BR2082b. The 

second row shows staining for Wnt-1 in low magnification. Scale bars = 100 m. In the bottom 

part higher magnification images are shown. Scale bars = 20 m. H&E, hematoxylin and eosin 

stain.  

https://www.biomax.us/tissue-arrays/Breast/BR2082b
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In order to determine whether there was an association between Wnt-1 and expression of ER, 

PR or HER2, the expression levels of Wnt-1 by IHC were compared with the data provided in the 

specification sheet for the patient tumors. Wnt-1 was significantly higher in ER+ tumors than in 

ER- tumors. There was also a positive correlation for Wnt-1 and PR whereas there was no 

correlation between Wnt-1 and HER2. Low Wnt-1 levels were noticeable in metastatic tumors, 

suggesting an inverse correlation with metastasis. Statistical analysis confirmed positive 

correlations between Wnt-1 and both ER and PR and an inverse correlation between Wnt-1 and 

metastasis (Fig. 27A and B). In Fig. 27C some examples that are representative of these 

observations are shown. Regarding ER, Wnt-1 staining is higher in ER+ patients, in which strong 

Wnt-1 can be found in 43% of patients, compared to in 12% of ER- patients. From the selected 

sections, the first two columns represent ER+ tumors and the third and fourth columns ER- 

tumors, and examples of strong and a weak Wnt-1 staining are shown in each cases. With 

respect to PR, high Wnt-1 was found in 20% of PR- tumors and 46% in PR+ tumors. In a and b, 

two invasive ductal carcinomas are shown, both with the same TNM, ER and HER2 status but 

differing in PR status. Strong staining is detected in the PR+ sample (a) and weak staining in the 

PR- one (b), but there were also examples where high Wnt-1 staining was found in PR- tumors 

(c). HER2 expression did not correlate with Wnt-1, Wnt-1 staining being high in around 30% of 

patients. Examples a, b and d are invasive ductal carcinomas with low HER2, one with high Wnt-

1 (a) and two with low Wnt-1 (b and d). Strong staining in a HER2high sample is shown in panel c. 

Finally, only 2 of the 31 metastatic expressed higher levels of Wnt-1, with the vast majority being 

negative, as is shown in Fig. 26 (example of no staining).  
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Figure 27. Immunohistochemical analysis of Wnt-1 in a human breast tissue array. A. 

Stratification of Wnt-1 according to ER, PR, HER2 levels and in metastatic and non-metastatic 

tumors, ** P < 0.01; *** P < 0.001. B. Statistical analysis of Wnt-1 staining in breast cancer. C. 

Tumor sections from patients stained for H&E (top) and Wnt-1. Low (scale bars = 100 m) and 

high (scale bars = 20 m) magnification images are shown. Chi Sq. Pearson, Pearson Chi-square 

test with correction; Fisher 2t, Fisher’s exact test, two-sided. ns, not significant.  
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2. WNT1 expression in breast cancer cell lines 

Expression of WNT1 in a range of breast cancer cell lines was also important to consider given 

the differences observed in the signaling mediated by Wnt-1 in MCF-7TamR and T47DTamR 

cells. The GOBO Gene set online tool (Ringnér et al., 2011) was used to examine WNT1 

expression in human breast cancer cell lines commonly used as models of different breast cancer 

molecular types. WNT1 was not differentially expressed in breast cancer cells of different 

molecular subtypes mimicking basal and luminal tumors (Fig. 28). In our MCF-7TamR and 

T47DTamR cell lines, expression of WNT1 was very low (Ct values on average were 16.87 for 

MCF-7TamR and 13.67 for T47DTamR), and not detectable at the protein level. RNAseq data, 

available in the lab, showed that it was not detected at all in MCF-7TamR cells and barely 

detected in T47DTamR cells (read numbers 0 and 0.7, respectively).  

 

Figure 28. WNT1 expression in human breast cancer cell lines. Expression of WNT1 across 51 

individual cell lines and box plots of WNT1 gene expression across cell lines grouped in the basal 

A (green), basal B (orange) and luminal (purple) subgroups. Obtained from GOBO Gene set 

online tool. (error bars represent SD) 
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Since many Wnt-1 studies in breast cancer have been carried out using mouse models, Wnt1 

mRNA levels and protein expression were evaluated in a panel of mouse metastatic breast 

cancer cell lines. These cell lines are isolated from a single, spontaneously arising mammary 

tumor (H Heppner, R Miller and Malathy Shekhar, 2000) and are classified on the basis of their 

ability to metastasize spontaneously from the orthotopic site. 4T1 cells metastasize via the 

hematogenous route forming visible metastases in several organs. 4T07 are highly tumorigenic, 

but fail to metastasize; cells may be recovered from the blood and lungs but visible metastases 

do not develop. Non-metastatic 67NR cells fail to leave the primary site. In adherent conditions, 

4T07 cells expressed the highest levels of Wnt1 mRNA (Fig. 29A). Total cell extracts expressed 

higher levels of Wnt-1, after normalization to the loading control HSP60 (Fig. 29B). Consistent 

with this, extracts from the ECM of 4T07 cells also contained more Wnt-1 than ECM from 67NR 

or 4T1 cells (Fig. 29). These results are consistent with the reduced expression of WNT1 in human 

metastatic tumors.  

 

Figure 29. Wnt1 expression in mouse mammary cancer cell lines. A. Expression of Wnt1 mRNA 

in the indicated mouse mammary cancer cell lines, normalized to expression in 67NR cells; n=3, 

*** P < 0.001, Student´s t test (error bars represent SD). B. Western blots for Wnt1 protein levels 

detected in cell extracts and in the ECM from indicated mouse mammary cancer cell lines. 

 

3. WNT1 expression in breast cancer stem cells 

Considering the importance of WNT1 expression in the context of CSCs, it was considered to be 

relevant to study WNT1 expression in other CSC populations in addition to CD44+CD24-/low cells 

(previously shown in Fig. 15). To this end, I examined WNT1 expression by PCR in the ALDH+ cells 

using MCF-7TamR cells FACS sorted for ALDH+ and ALDH- populations using the ALDEFLUOR 

assay. However, WNT1 expression could not be detected in this CSC population, possibly owing 

to low expression and the low proportion of ALDH+ cells. To try to resolve this issue, I used mouse 
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metastatic breast cancer cells, where the proportion of ALDH+ population and basal Wnt1 mRNA 

levels are higher (Fig. 30A and C). The results shown in Fig. 30A indicate that there was no 

enrichment of Wnt1 in the ALDH+ populations derived from these cells.  

On the other hand, Wnt1 mRNA levels were increased in mammospheres formed by 4T07 cells, 

but not in non-metastatic 67NR cells; there was a trend for an increase in 4T1 cells (Fig. 30B). 

The results in 4T07 cells are consistent with those in MCF-7TamR cell mammospheres, where 

WNT1 expression was also elevated (Fig. 15A).  

 

Figure 30. Wnt1 expression in mouse mammary cancer stem cells. A. Relative mRNA 

expression of Wnt1 in ALDH+ cells sorted from mouse mammary cancer cell lines, compared to 

ALDH- cells; n=2. B. Relative mRNA expression of Wnt1 in comparing adherent (ADH) and 

mammospheres (MS) from mouse mammary cancer cell lines; n=3, * P < 0.05; ** P < 0.01, 

Student´s t test (error bars represent SD). C. Representative analysis of ALDH+ populations. The 

ALDH+ population selected for sorting is shown in blue. ADH, adherent; MS, mammospheres.  

 

 

 

 



Results 
 

 

 111 

III. EFFECTS OF ECTOPIC EXPRESSION OF WNT1 IN MCF-7 AND MCF-7TAMR 

CELLS 

1. Generation of cells over-expressing WNT1  

Considering the potential importance of Wnt-1 in the context of stem cells and tamoxifen 

resistance, we required a system in which cells could grow long-term in the presence of Wnt-1. 

There are several approaches to activate Wnt signaling in vitro. One option is to add 

recombinant Wnt proteins, supplemented with RSPO1 (Huggins, Brafman and Willert, 2016). 

Bengoa-Vergniory et al., (2014), used recombinant Wnt-7a, Wnt-5a, and Wnt-3a to restore 

signaling to cells treated with IWP-2, and Dkk-1 to block activation of canonical signaling in 

human embryonic stem-derived neural progenitor cells. Jang et al., (2015) used Wnt-3a-CM for 

reporter assays. Recombinant Wnt-1 was used for breast tumor mammosphere formation 

assays (Choi et al., 2012). Similarly, for long term expansion of MaSCs, Zeng and Nusse (2010) 

used purified Wnt-3a protein, and Cimetta et al., (2013) used microfluidic bioreactors to expose 

human pluripotent stem cells in 3D cultures to a concentration gradient of Wnt-3a. Alternatively, 

WNT genes can be stably expressed. In breast, Karow et al., (2009), expressed Wnt3a under a 

constitutively active promoter in mouse mesenchymal stem cells. This approach was also used 

by Miranda-Carboni et al., (2008) to express WNT10B in MCF-7 cells and by Schlange et al., 

(2007), who transfected T47D and SkBr3 cells with a WNT1-encoding plasmid and harvested the 

conditioned media from these cells for co-culture assays. This is a cost-effective alternative to 

using recombinant proteins. Since over-expression of WNT genes has been reported in breast 

cancer cell lines, and our MCF-7TamR cells responded to transiently transfected WNT1 plasmid 

(Fig. 23), this approach was chosen.  

MCF-7 cells, both C and TamR, were transfected with a plasmid encoding WNT1 and selected 

with G418 to generate pooled cell lines stably expressing WNT1 (MCF-7C-W1 and MCF-7TamR-

W1) or empty vector (MCF-7C-V and MCF-7TamR-V). Expression of WNT1 mRNA was confirmed 

by qRT-PCR using a primer for the cDNA sequence (CDS), which is the sequence present in the 

plasmid. As a negative control a primer for the WNT1 non-coding region was used, which 

confirmed that endogenous WNT1 levels were not affected (Fig. 31A). Wnt-1 protein was 

detected by western blotting in cell extracts (Fig. 31B). Although Wnt-1 was not detectable in 

cell-conditioned medium, it was detected in the ECM (Fig. 31B). Wnt-1 protein was also detected 

by immunofluorescence (Fig. 31C).  
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Figure 31. Characterization of WNT1-expressing cell lines. A. Expression of WNT1 mRNA in 

MCF-7C-V vs MCF-7C-W1 and in MCF-7TamR-V vs MCF-7TamR-W1 using WNT1 primers to 

amplify WNT1 coding region and non-coding region (noCDS); n=3, ** P < 0.01, Student´s t test 

(error bars represent SEM). B. Western blots for Wnt-1 protein in cell extracts and in the ECM in 

the indicated cell lines. C. Wnt-1 detection by immunofluorescence in the indicated MCF-7 cell 

lines. Scale bars are indicated. CDS, cDNA sequence; noCDS, no cDNA sequence.  
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Next, in order to determine the effects of stable overexpression of WNT1 in canonical and non-

canonical Wnt signaling in MCF-7TamR cells, gene reporter assays and GFP reporters were 

carried out. In luciferase assays, consistent with the results of transient transfection assays (Fig. 

22 and 23), stable expression of WNT1 did not activate -catenin/TCF-dependent transcription 

but did increase ATF2-dependent transcription, as compared to control MCF-7TamR-V cells (Fig. 

32A). These results indicated that stable expression of WNT1 had similar effects as transient 

expression. However, we noted that the effect of stably expressed WNT1 were not as strong as 

in cells transiently expressing WNT1. Moreover, in experiments using canonical and non-

canonical GFP reporters, stable expression of WNT1 reduced -catenin/TCF-dependent activity 

and did not affect ATF2-dependent activity (Fig. 32B). The reasons for this are unclear but may 

reflect differences in the ways the results are normalized using the two approaches. In the 

luciferase assay, renilla is used and provides a more accurate value, as it reflects signal in cells 

expressing the specific reporter. The GFP reporter experiments rely on GFP levels expressed by 

a CMV promoter in other cells. 

 

Figure 32. Transcriptional activity of MCF-7TamR-W1 cells. A. Relative -catenin/TCF 

luciferase and ATF2-luciferase activity mediated by WNT1 in MCF-7TamR-W1 cells; n=3. B. 

WNT1 mediated transcriptional activity measured by the quantification of GFP+ cells by FACS 

using a TOPdGFP and ATF2dGFP reporters normalized to GFP; n=3, * P < 0.05, Student´s t test 

(error bars represent SD). 
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2. Effects of Wnt-1 on the acquisition of tamoxifen resistance  

Comparison of the control and WNT1-overexpressing cells did not reveal any differences in their 

morphologies (Fig. 33A). Given the link between WNT1 expression and survival of tamoxifen 

treated patients (Fig. 25), we next compared the effects of tamoxifen on the control and WNT1-

expressing cell lines. As expected, MCF-7TamR cells, which are routinely cultured in the presence 

of tamoxifen, remained resistant to tamoxifen at all tested dilutions and WNT1 expression did 

not alter this resistance. On the other hand, as previously reported for MCF-7 cells (Piva et al., 

2014), tamoxifen reduced control cell proliferation by 30% at higher doses. This inhibition was 

also seen in MCF-7C-W1 cells (Fig. 33B), suggesting that ectopic expression of WNT1 is not 

sufficient to confer resistance to MCF-7 cells. Tamoxifen is known to inhibit proliferation of MCF-

7 cells by increasing accumulation of cells in G1 phase, with a concomitant reduction of S and 

G2/M phase cells (Osborne et al., 1983). To further analyze whether Wnt-1 was having an effect 

on tamoxifen sensitivity that was not measurable using proliferation assays, cell cycle assays 

were carried out in the presence and the absence of tamoxifen. In the presence of tamoxifen (5 

x 10-7 M), the proportion of control cells arrested in G0/G1 increased from 60% to 80%. Cells in S 

phase were reduced to 10% and there was little variation in G2/M cells. Similar results were 

observed in MCF-7C-W1 cells, suggesting that WNT1 expression does not affect tamoxifen-

induced cell cycle effects (Fig. 33C). 
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Figure 33. Tamoxifen sensitivity in WNT1 over-expressing cells. A. Pictures of MCF-7 derived 

cells in normal culture conditions (error bars represent SD). B. Proliferation assay with WNT1 

expressing MCF-7C and MCF-7TamR cells respect to their control cell lines using serial dilutions 

of tamoxifen; n=5, * P < 0.05; ** P < 0.01; *** P < 0.001, Two-way ANOVA test (The median in 

shown as a line in the center of the box, whiskers represent the maximum and minimum values). 

C. Cell cycle analysis of MCF-7C cells after 5 x 10-7 M tamoxifen treatment; n=3, * P < 0.05; ** P 

< 0.01; *** P < 0.001, Two-way ANOVA test (error bars represent SD). D. ER and PR expression 

levels in generated new cell lines; n=3, * P < 0.05; ** P < 0.01; *** P < 0.001, Student´s t test 

(error bars represent SD). 

 

 

 

 



Characterization of Wnt signaling in tamoxifen resistant breast cancer stem/progenitor cells 
 

 

 
 

116 

Owing to the importance of ER expression in the context of tamoxifen resistance, the effect of 

stable expression of WNT1 on ER and PR was analyzed by qRT-PCR. There were no significant 

differences in ER mRNA levels among the cell lines. As expected, PR was lower in MCF-7TamR 

cells than in control MCF-7 cells. In addition, PR expression was lower in cells expressing WNT1, 

even in TamR cells (Fig. 33D). These data suggest that Wnt-1 inhibits ER mediated signaling.  

TamR cells are also less sensitive to other ER antagonists, such as fulvestrant (ICI 182,780) 

(Domenici et al., 2014). As a control for ICI activity, adherent cells were treated at 5 x 10-7 M ICI 

for 48 h and expression levels of SOX9, ER and PR were determined. In the presence of ICI, SOX9 

expression levels were increased in all cell lines. Regarding ER, although ER mRNA expression 

was not affected, ER protein levels were reduced. This reduction in ER protein results in the 

diminution of PR, both at the mRNA and protein level (Fig. 34A and B). However, WNT1 

expression did not affect the levels of ER or SOX9 in MCF-7C or MCF-7TamR cells. To examine 

whether expression of WNT1 affects resistance to ICI, colony formation assays were performed 

using a concentration of ICI (10-9 M) at which MCF-7C cells are sensitive and MCF-7TamR cells 

are resistant. The colony formation assay is an in vitro survival assay based on the ability of a 

single cell to undergo unlimited divisions and grow into a colony. After a treatment, only a 

fraction of seeded cells retains the capacity to produce colonies (Franken et al., 2006). However, 

in the colony formation assays there were no significant differences in the response to ICI 

between control cells and cells expressing WNT1 with respect to the numbers of colonies (Fig. 

34C). On the other hand, there was a tendency for WNT1-expressing cells to form colonies larger 

than 50 m in the presence of ICI. Moreover, WNT1 expression increased the numbers of large 

colonies formed by TamR cells. Together, these results indicate Wnt-1 does not affect the 

number of single cells able to undergo unlimited divisions but it may increase proliferation of 

those cells that form colonies.  
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Figure 34. ER blockade in WNT1 expressing cells. A. Western blot for ER and PR proteins after 

ICI treatment in the indicated cell lines. GAPDH in cell extracts was used as a loading control. 

Representative experiment of n=3. B. Relative mRNA levels of WNT1, SOX9, ER and PR in 

response to ICI treatment; n=3. C. Colony formation assays in MCF-7TamR cells in the presence 

of ICI and comparisons between the numbers of colonies > 50 m in TamR-V and TamR-W1 cells 

in the absence of treatment; n=3, * P < 0.05; ** P < 0.01; *** P < 0.001, Two-way ANOVA test 

(error bars represent SD).  
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3. Effects of Wnt-1 in breast CSCs 

Considering the potential importance of WNT1 expression in the context of CSCs and taking into 

account the previous results, the effect of stable expression of WNT1 on the CSC population was 

monitored. For this, MCF-7C and MCF-7TamR cells expressing empty vector or WNT1 were 

stained for CD44 and CD24 and FACS-analyzed. As shown in Fig. 35A, MCF-7-W1 cells were more 

enriched for CD44+CD24-/low cells compared to their respective control cells, both in adherent 

conditions and in mammospheres. This increase was significant in the case of MCF-7TamR cells 

(See an example of analysis in Fig. 35E), in which the CD44+CD24-/low population is increased 

compared to MCF-7C cells, and more clearly in the mammospheres formed by these cells (Fig. 

35B). 

The increase in CSCs can be translated into the ability of breast cancer cells to form 

mammospheres. To further analyze whether the increase in CSC was correlated with an 

increased ability to form mammospheres, mammosphere formation assays were carried out. 

The increase in mammosphere formation ability of MCF-7 cell lines expressing WNT1 is 

represented in Fig. 35C (Fig. 35F shows an example of the mammospheres). This ability was 

maintained in the second passage of cells forming those mammospheres. 

To validate the WNT-1-mediated increase in the CSC population, mRNA expression levels of the 

CSC markers SOX2, OCT4 and NANOG were analyzed. Surprisingly, no significant differences 

were observed in adherent cells. Indeed, there was a tendency for these genes to be reduced in 

the mammospheres formed by MCF-7C-W1 cells (Fig. 36A). Regarding MCF-7TamR cells, no 

significant differences were apparent in adherent cells or mammospheres, but there was a 

significant reduction in SOX2 levels after mammosphere passage (Fig. 36A, B and C). Notably, 

although WNT1 was highly expressed in primary and secondary mammospheres, it was lower in 

secondary mammospheres (Fig. 35D).  
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Figure 35. Effects of WNT1 expression in CSCs. A. Relative CD44+CD24-/low population in 

adherent and mammospheres in WNT1-expressing cells; n=3. B. Relative CD44+CD24-/low 

population in adherent and mammospheres in TamR cells relative to C cells; n=3. C. Relative 

number of mammospheres formed by cells expressing WNT1 and mammospheres formed after 

passage of mammospheres; n=3. D. Relative WNT1 expression in the mammospheres formed 

by WNT1-expressing cells; n=3, * P < 0.05; ** P < 0.01, Student´s t test (error bars represent SD). 

E. Representative analysis of MCF-7TamR-V and MCF-7TamR-W1 cells stained for CD24 and 

CD44. The percentage of CD44+CD24-/low population for each cell line is indicated. F. 

Representative pictures of mammospheres formed by the indicated cell lines. ADH, adherent; 

MSI, primary mammospheres; MS II, secondary mammospheres. 
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Figure 36. Effects of WNT1 expression on the expression of CSC and EMT markers. A. Relative 

mRNA expression of CSC markers in MCF-7C-W1 and MCF-7TamR-W1 cells compared to MCF-

7C-V and MCF-7TamR-V cells, respectively. B. Relative mRNA expression of EMT markers in 

MCF-7C-W1 and MCF-7TamR-W1 cells compared to MCF-7C-V and MCF-7TamR-V cells, 

respectively. C. Relative mRNA expression of epithelial markers in MCF-7C-W1 and MCF-7TamR-

W1 cells compared to MCF-7C-V and MCF-7TamR-V cells, respectively. D. Relative mRNA 

expression of CSCS, mesenchymal and epithelial markers in adherent MCF-7TamR cells 

compared to MCF-7C cells. (A, B, C, D) n=3, * P < 0.05; ** P < 0.01; *** P < 0.001, Student´s t 

test (error bars represent SD).  
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4. Effects of Wnt-1 on EMT markers 

In connection with this, EMT is another hallmark of CSCs in which Wnt signaling also plays a role 

(DiMeo et al., 2009; Ksiazkiewicz, Markiewicz and Zaczek, 2012). Moreover, WNT1 is a direct 

target of miR-148a, a microRNA involved in regulation of invasion and migration in MCF-7 and 

MDA-MB-231 breast cancer cells (Jiang et al., 2016). To examine whether expression of WNT1 

affects EMT, mRNA levels of genes related to EMT were analyzed, in adherent and 

mammosphere conditions. Our results showed that there were no significant differences in the 

expression of mesenchymal (VIMENTIN, SNAI2, ZEB1) or epithelial (CDH1 and OCCLUDIN) 

markers in MCF-7TamR cell lines (Fig. 36B and C, respectively). However, in MCF-7C cells there 

was a significant increase in the expression of VIMENTIN, in adherent as well as in 

mammospheres in WNT1-expressing cells. SNAI2 expression was also significantly increased in 

adherent cells. However, there were no significant differences in the expression of the epithelial 

markers. 

As a control, expression level of these genes in MCF-7TamR cells were compared to MCF-7C cells 

(Fig. 36D). SOX2 and SNAI2 gene expression levels were significantly higher in MCF-7TamR cells 

than in MCF-7C cells. There was also a trend for NANOG and OCCL, expression to be higher and 

for VIM and ZEB1 expression to be lower in MCF-7TamR cells. These results suggest that MCF-

7TamR cells do not show more mesenchymal features compared to MCF-7C cells. Expression of 

VIMENTIN and SNAI2 was significantly increased in MCF-7C-W1 cells, but not in MCF-7TamR-W1 

cells compared to MCF-7C-V and MCF-7TamR-V cells, respectively. Together, these results 

indicate that the response to WNT1 in MCF-7 cells may differ in tamoxifen treated cells.  

 

 

 

 

 



Characterization of Wnt signaling in tamoxifen resistant breast cancer stem/progenitor cells 
 

 

 
 

122 

IV. IDENTIFICATION OF WNT1 RECEPTORS AS SIGNALING MEDIATORS AND 

POSSIBLE THERAPEUTIC TARGETS 

1. Targeting FZD receptors 

Each Wnt can bind to different FZD receptors, and each FZD can respond to multiple Wnt ligands. 

To date, the selectivity of each Wnt to specifically bind a FZD receptor remains poorly 

understood. FZD receptors can activate canonical and non-canonical Wnt signals, so targeting 

FZDs might be a promising approach for cancer therapy (Zeng, Chen and Fu, 2018). USP6 is a 

deubiquitylase that increases the membrane abundance of FZDs when the gene is over-

expressed. FZD protein accumulation in the membrane increases cellular sensitivity to Wnt 

ligands by opposing the activity of the ubiquitin ligases RNF43 and ZNRF3 (Madan et al., 2016). 

USP6 prevents the turnover of FZD receptors by blocking FZD ubiquitylation, which ultimately 

prevents endocytosis and lysosomal degradation. FZD abundance in the membrane has been 

determined measuring endogenous FZD levels in HEK293 cells by flow cytometry using the 

monoclonal antibody OMP-18R5, which recognizes FZD1, FZD2, FZD5, FZD7, and FZD8 (Gurney et 

al., 2012).  

In order to analyze whether USP6 enhances Wnt-1 mediated signaling in MCF-7TamR cells, an 

ATF2-luciferase reporter assay was performed. MCF-7TamR cells were transfected with WNT1 

and USP6 expression plasmids. USP6 did not significantly alter ATF2-mediated signaling. 

However, it enhanced the effects of Wnt-1 (Fig. 37A). -catenin/TCF-dependent activity was not 

altered, consistent with these cells do not display -catenin/TCF transcriptional activity (Fig. 

37B).  

Wnt-1 increases the capacity for mammosphere formation in MCF-7 TamR cells (Fig. 35). 

Mammosphere formation assays were carried out to determine if USP6 changes the ability of 

WNT1-expressing cells to form spheres. MCF-7C-W1, MCF-7TamR-W1 cells and their respective 

control cell lines were cultured in low attachment conditions after transfection with the USP6 

expression plasmid. As shown in Fig. 37C, USP6 showed a tendency to increase the ability of 

MCF-7C-W1 cells to form mammospheres, and significantly increased the number of 

mammospheres formed by MCF-7TamR-W1 cells, but not by MCF-7C-V or MCF-7TamR-V cells, 

suggesting that USP6 enhances activation of Wnt-1-mediated signaling. 
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Figure 37. USP6 effect on WNT1 mediated signaling. A. Gene reporter assay measuring ATF2-

dependent transcriptional activity in MCF-7TamR cells expressing WNT1 and USP6; n=4. B. Gene 

reporter assay measuring -catenin/TCF-dependent transcriptional activity in MCF-7TamR cells 

co-expressing WNT1 and USP6; n=4. C. Relative number of mammospheres formed by MCF-7C 

and MCF-7TamR cells expressing WNT1 and/or USP6 compared to MCF-7C-V and MCF-7TamR-

V cells; n=3, * P <0.05; ** P <0.01; *** P <0.001, Student´s t test (error bars represent SD). 

 

However, as happens with the OMP-18R5a monoclonal antibody, a strategy targeting many FZDs 

by USP6 might present many side effects due to its universality and non-specificity. Therefore, 

to better understand how Wnt-1 signaling is transduced and to address a more specific 

therapeutic approach, I focused on the identification of the FZD receptor that transduces Wnt-

1 signal in MCF-7 cells, since this would also address Wnt specificity in the context of the 

response of breast CSCs.  

2. Identification of Specific Wnt-1 receptors 

Benhaj, Akcali and Ozturk, (2006) analyzed the expression profile of FZD receptors in breast 

cancer cell lines. In MCF-7 cells, FZD1, FZD2, FZD3, FZD4 and FZD6 were the most abundant 

receptors. Lamb et al., (2013) also described that FZD4 was over-expressed compared to normal 

breast cell lines. FZD1 and FZD8 expression has been reported to be involved in drug resistance, 

FZD5, FZD6 and FZD10 have been related to EMT and FZD7 is involved in cell proliferation (Zeng, 

Chen and Fu, 2018). On the other hand, FZD3 is less well studied and there is no antibody to 

target FZD3 for cancer therapy. However, FZD3 has been claimed to reduce migration in breast 

cancer through interaction with Wnt-5a (Hansen et al., 2009).  

Regarding Wnt-1, no direct binding of Wnt-1 to FZD receptors in breast cancer has been 

published to date. A systematic map of Wnt-FZD interactions in human HEK293 cells studied 

different combinations and measured the activation of -catenin/TCF-luciferase. The strongest 
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activation by Wnt-1 was via FZD5 and FZD8, although there was also a strong induction with FZD4, 

a medium induction with FZD2 and weak effects with FZD1, FZD7 and FZD10 (Voloshanenko et al., 

2017). 

For an initial approach, an in silico analysis with bc-GenEXMiner v4.1 was used to examine 

targeted gene correlations and the linear dependence between each pair formed by WNT1 and 

FZD family genes. Fig. 38 shows all correlation plots obtained for the 10 different FZDs. Five of 

the receptors (FZD4, FZD5, FZD8, FZD9 and FZD10) showed a significant p-value. However, 

Pearson´s correlation coefficient was in all cases weak, showing the highest values for positive 

correlation between WNT1 with FZD5 and FZD9.  

 

Figure 38. Targeted gene correlation analysis. For each pair of genes, a correlation plot is 

displayed, along with correlation coefficient value (r), corresponding p-value (p) and number of 

patients involved (No). A summary of the Correlation maps in color code obtained from bc-

GenEXMiner v4.1 is shown at the bottom of the figure. The analysis was performed by selecting 

the data from ER+ patients in bc-GenEXMiner v4.1.  

 

-10      -5        0        5 -10      -5        0        5-10      -5        0        5-10      -5        0        5

-4
  
-2

  
 0

  
 2

  
  
4
 

-4
  
-2

  
 0

  
 2

  
  
4
 

-4
  
-2

  
 0

  
 2

  
  
4
 

-4
  
-2

  
 0

  
 2

  
  
4
 

-10      -5        0        5 -10      -5        0        5-10      -5        0        5-10      -5        0        5

-4
  
-2

  
 0

  
 2

  
  
4
 

-4
  
-2

  
 0

  
 2

  
  
4
 

-4
  
-2

  
 0

  
 2

  
  
4
 

-4
  
-2

  
 0

  
 2

  
  
4
 

W N T 1

W N T 1

r=0.08

p= <0.0001

No= 5277

r=0.01

p= 0.5386

No= 4931

r=0.04

p= 0.0013

No= 5510

r=0.00

p= 0.7928

No= 5510

r=0.13

p= <0.0001

No= 5510

-10      -5        0        5 -10      -5        0        5

-4
  
-2

  
 0

  
 2

  
  
4
 

-4
  
-2

  
 0

  
 2

  
  
4
 

W N T 1

r=0.00

p= 0.8524

No= 5510

r=0.01

p= 0.4615

No= 5510

r=0.09

p= <0.0001

No= 5277

F Z D 1 F Z D 2 F Z D 3 F Z D 4

F Z D 5 F Z D 6 F Z D 7 F Z D 8

F Z D 9 F Z D 10

r=0.14

p= 0.0001

No= 5164

r=0.04

p= 0.0044

No= 4931

W
N

T
1

W N T 1

F
Z

D
1

0

F
Z

D
1

F
Z

D
2

F
Z

D
3

F
Z

D
4

F
Z

D
5

F
Z

D
6

F
Z

D
7

F
Z

D
8

F
Z

D
9

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

http://bcgenex.centregauducheau.fr/BC-GEM/GEM-Tutoriel-M4.php#null


Results 
 

 

 125 

Next, we tested which of the receptors can co-localize with Wnt-1 and so could be involved in 

the transduction of the signal. For this, co-localization analysis was performed using 

immunofluorescence. MCF-7TamR-W1 cells were transfected with 1D4-tagged FZDs. Initial 

screening showed possible co-localization between Wnt-1 and FZD3, FZD4, FZD5 and FZD10. (Fig. 

39).  

Figure 39. Co-localization assay of Wnt-1 and FZD receptors by immunofluorescence. 

Immunofluorescence staining for Wnt-1 in red and different 1D4-tagged FZD receptors in green. 

DAPI staining of nuclei is in blue, scale bars= 40 m. 

 

However, more detailed images using a confocal microscope showed that the strongest co-

localization of Wnt-1 in the membrane was with FZD3, FZD4 and FZD5 (Fig. 40). 
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Figure 40. Confocal images of co-localization assay of Wnt-1 and FZD receptors. Wnt-1 in red 

and FZD3, FZD4, FZD5 and FZD6 in green. Note the co-localization at cell borders in yellow for 

FZD3, FZD4 and FZD5. FZD6 is shown as sample of non-colocalization. DAPI staining of nuclei is in 

blue, scale bars are indicated. 
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Given the potential link between Wnt-1 and tamoxifen resistance (Fig. 25), the possible links 

between expression of FZD receptors and the survival of tamoxifen-treated breast cancer 

patients were analyzed. As shown in Fig. 41, among all FZD receptors, only high FZD5 expression 

correlated with reduced patient overall survival, demonstrating the potential importance of 

FZD5 in tamoxifen resistance. On the contrary, high expression of FZD1 and FZD10 were 

associated with good prognosis using DDFS as an endpoint (Table 9).  

 

 

Figure 41. Expression of FZD receptors and survival effect in human breast tumors. Kaplan-

Meier analysis, using OS as endpoint for ER+ tumors in patients treated with tamoxifen, 

stratified into high (red) and low (blue) gene expression level. 
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Gene OS DDFS DFS 

FZD1   0.0009 0.00239 

FZD2       

FZD3       

FZD4       

FZD5 0.03039     

FZD6       

FZD7       

FZD8       

FZD9       

FZD10   0.0434   

USP6 0.02925 0.02687   

 

Table 9. Survival effect of Wnt receptor genes expression. Kaplan-Meier analysis, using OS, 

DDFS and DFS as endpoint for ER+ tumors in patients treated with tamoxifen, stratified into 

high and low Wnt receptor gene expression level. Statistically significant p-values are indicated 

in red when high expression level and in blue when low expression level is associated with poor 

prognosis. 

 

Following the strategy used for USP6, to analyze whether FZD5 enhances Wnt-1 mediated 

signaling in MCF-7TamR cells, an ATF2-luciferase reporter assay was performed. The cells were 

very responsive to FZD transfection with only 5 ng of FZD5 plasmid being sufficient for an 

additive effect on Wnt-1 mediated ATF2-dependent gene reporter activity (Fig. 42A). To 

corroborate these results, an immunoprecipitation assay was performed in HEK293 cells to 

confirm the binding of Wnt-1 to FZD5. HEK293 cells were co-transfected with V5-WNT1 and 1D4-

FZD5, and cell lysates were incubated with 1D4 antibody and immunoprecipitated using protein 

A/G agarose beads. Fig. 42B shows that when 1D4-FZD5 is immunoprecipitated a V5-tagged Wnt-

1 is detected.  
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Figure 42. FZD5 as possible Wnt-1 receptor in MCF-7TamR cells. A. Gene reporter assay 

measuring ATF2-dependent transcriptional activity in MCF-7TamR cells expressing WNT1; n=4, 

* P < 0.05; ** P < 0.01; *** P < 0.001, Student´s t test (error bars represent SD). B. 293 cells were 

co-transfected with WNT1 and 1D4-FZD5, then cell lysates were analyzed by 

immunoprecipitation with protein A/G agarose and western blotting with Wnt-1 directly 

(bottom). To confirm immunoprecipitation of Frizzled-IgG, the immunoprecipitated sample was 

analyzed by western blotting with anti-1D4 antibody. To confirm expression of WNT1 and FZD5 

in cells, total lysate was analyzed by western blotting with anti-Wnt-1 and anti-1D4 antibody 

(top). GAPDH was used as a loading control. Representative blot of n=3. C. Western blot for the 

indicated antigens in MCF-7TamR cells; FZD5 and Wnt-1 top short exposure, bottom long 

exposure; GAPDH was used as loading control. Representative blot of n=3.  

 

Together, these results are consistent with a model in which USP6 increases membrane levels of 

FZD5 to enhance the response to Wnt-1. To better determine whether FZD5 is a USP6 target, 

FZD5 levels were measured by western blot in the presence or absence of USP6 (Fig. 42C). USP6 

increased the levels of FZD5, but also increased Wnt-1 levels, suggesting a more general effects 

of USP6. However, immunofluorescence analysis did not find membrane co-localization of USP6 

with Wnt-1 although this was observed between USP6 and FZD5 (Fig. 43). 
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Figure 43. Four color immunofluorescence staining for Wnt-1, FZD5, USP6 and DAPI in MCF-

7TamR cells. A. Staining for two by two combinations of Wnt-1, FZD5 and USP6. FZD5 was 

detected using a far red filter and is represented in green or in red for a better visualization. B. 

Immunofluorescence staining for Wnt-1 in red, FZD5 in purple and USP6 in green. DAPI staining 

of nuclei is in blue, scale bars= 10 m.  
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I. WNT SIGNALING IN TAMOXIFEN RESISTANT MODELS 

Tamoxifen is the most widely used therapy for ER+ breast cancer patients, which represent 

almost the 70% of the total. However, many patients will develop resistance to hormonal 

therapies (Chang, 2012). Wnt signaling has been shown to be important in the context of CSCs 

(Zeng and Nusse, 2010) and therapy resistance in many tissues (Yang et al., 2008; Flahaut et al., 

2009; Noda et al., 2009; Chau et al., 2012), including breast cancer (Zhang et al., 2016). Tumors 

are composed of very heterogeneous populations of cells, and only a small fraction of the cells 

have the capacity for renewal and differentiation. The most aggressive and less differentiated 

tumors have been confirmed to contain a higher proportion of CSCs, whereas more 

differentiated tumors have a better prognosis (Vivanco, 2010). Previous studies have 

demonstrated the relevance of hormones and CSCs in the development of therapy resistance 

(Simões et al., 2011; Piva et al., 2014). MCF-7TamR cells have an increased population of CSCs 

(cells with CD44+CD24-/low and ALDH+ phenotype), increased invasion capacity and a more 

aggressive phenotype than MCF-7C cells in vitro and in vivo. Functional assays demonstrated 

that Sox2 can be used not only as a biomarker, but is also involved in the process of tamoxifen 

resistance acquisition (Piva et al., 2014). Since Wnt signaling is important for the renewal and 

differentiation of CSCs, it may be a good target for new therapies. Our group has previously 

shown that Wnt signaling is inhibited in human embryonal carcinoma cell lines by retinoic acid 

(Elizalde et al., 2011) and it has also been reported that Wnt signaling is involved in the normal 

physiology of breast stem cells and that its inhibition reduces tumor growth in vivo (Proffitt et 

al., 2013). It was therefore considered relevant to study the mechanism of Wnt signaling in 

breast CSCs in more depth to try to block this pathway and inhibit or delay possible tumor 

recurrence in patients. 

Many studies have reported up-regulation of Wnt signaling in in vitro models of acquired 

tamoxifen resistance in breast cancer (Sim et al., 2014, Loh et al., 2013). These models show an 

increase in the CSC population, and it has also been observed that the Wnt pathway is activated 

in breast CSCs but suppressed in normal breast stem-like cells (Lamb et al., 2013). Moreover, 

WNT gene expression levels have been documented to differ in various breast cancer cell lines 

(Benhaj, Akcali and Ozturk, 2006). Consistent with this, I observed differences in the expression 

levels of WNT genes in two different tamoxifen resistant breast cancer cell line models enriched 

for CSCs. While MCF-7TamR cells showed increased levels of WNT1 expression, both in 

mammospheres and in CD44+CD24-/low cells, T47DTamR cells did not show any significant 

increases among any of the WNT genes examined.  
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Activation of canonical Wnt signaling, by expression of WNT1 or using recombinant Wnt-3a in 

breast cancer and breast stem cells increases the population of stem-like cells (Lamb et al., 

2013). Moreover, inhibition of Wnt signaling by generation of Wnt1 knockdown cell lines or 

using small-molecule Wnt/-catenin signaling inhibitor, not only reduces the CSC population but 

also tumor cell invasion and migration (Jang et al., 2015), suggesting that WNT genes are good 

targets for therapy. Some of the effects of Wnt have been related to other pathways, such as 

EGFR/ERK1/2 activation (Schlange et al., 2007), but other than this and -catenin/TCF signaling, 

downstream Wnt signal transduction in breast cancer has not been studied. I found that 

different breast cancer cell lines respond differently to the same Wnt ligands. On the one hand, 

T47DTamR cells respond to WNT3A expression by activating -catenin/TCF signaling. On the 

other hand, MCF-7TamR cells do not respond to WNT3A expression in this way, although they 

do activate a TCF1-mediated -catenin-independent activation of -catenin/TCF luciferase 

involving ATF2, as previously described in hematopoietic cells (Grumolato et al., 2013). One 

possibility to explain this could be cell-type specific differences in the metabolic response to 

stress, which has been observed in MCF-7 and T47D cells and is regulated by tamoxifen (Radde 

et al., 2015). Radde et al., (2015) reported that T47D cells have lower mitochondrial activity 

relative to MCF-7 cells, suggesting that T47D cells adapt better to stress caused by tamoxifen, 

which likely may reflect cancer cell avoidance of apoptosis and different activation of related 

signaling pathways. Inhibition of mitochondrial function in epithelial cancer cells is a strategy for 

conferring drug resistance (Martinez-Outschoorn et al., 2011). 

Type I nuclear receptors (NRs), such as ER, AR or PR, characterized by the ability to form 

homodimers, mediate their effects by binding ligands to activate gene expression. The target-

gene specificity for a given hormone depends on nucleotide repeats in the hormone response 

element (HRE) of the promoter of the target gene and the DBD of the receptor that recognizes 

it. NRs are also affected by posttranslational modifications as a consequence of interactions with 

other pathways, including Wnt, for instance, by phosphorylation of the the N-terminal A/B 

region of the receptors by JNKs (Tata, 2002; Rochette-Egly, 2003). Several components of the 

Wnt pathway modulate NR functions in tissues regulated by ER, PR and AR. For example, 

transfection of WNT3A enhances whereas transfection of WNT11 inhibits AR-mediated 

transcription in prostate cancer (Verras, M. Brown, J. Li, X. Nusse, R. Sun, 2004; Zhu et al., 2004). 

Moreover, activation of Wnt/-catenin signaling in AR+ prostate cancer cells is not TCF-

dependent but it is mainly through AR-dependent mechanisms (Verras, M. Brown, J. Li, X. Nusse, 

R. Sun, 2004; Cronauer et al., 2005). Expression of Wnt1 has also been linked to the induction of 

retinoic acid-responsive genes (Szeto et al., 2001). Other Wnt pathway components such as 
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catenin are co-activators of AR in LNCaP and PC3 prostate cancer cells (Truica, Byers and 

Gelmann, 2000; Mulholland et al., 2002; Yang et al., 2002). Finally, TCF factors have also been 

studied in this context. For example, TCF1 stimulates the effects of ER, whereas TCF4 acts as a 

co-repressor in rat mammary epithelial cells (El-Tanani et al., 2001). Having this and the 

importance of hormone regulation in breast in mind, it was considered that expression of 

different TCF family members might have distinct effects in breast cancer cells.  

In this study, we have observed that the loss of ER may enhance canonical Wnt signaling. 

T47DTamR cells might respond to Wnt signals as basal cancer lines do, in which it is described 

that β-catenin accumulation is an early marker of the basal-like phenotype (Khramtsov et al., 

2010). Moreover, Wnt-3a may crosstalk with ER signaling by up-regulating ER and down-

regulating ER expression in mesenchymal progenitor cells (Gao et al., 2013). Crosstalk between 

Wnt-3a and ER may explain the reduction of WNT3A gene expression in CSCs of T47DTamR cells, 

which have lost ER expression. Control luminal cells generally have low basal -catenin/TCF 

activity. T47D-C cells respond to WNT1 and WNT3A, but to a lesser extent than T47DTamR cells. 

In the case of MCF-7 control cells, there is no activation of -catenin/TCF activity; what is more, 

there is a decrease in the responses to transfection of WNT1 and WNT7B.  

AR signaling is important in the regulation of Wnt signaling in some contexts, such as prostate 

cancer (Pakula, Xiang and Li, 2017). However, AR signaling was not active in our breast cancer 

cell models, as shown by the lack of response to MDV3100 (Fig. 19).  

Another perspective directed us to further study differences in the expression of Wnt signaling 

components. We observed clear differences in the expression of LEF and TCF transcription 

factors between MCF-7TamR and T47DTamR cell lines. TCF/LEF members are a small family of 

DNA binding factors that switch from transcriptional repression to activation in response to Wnt 

signals. The specificity of this transcriptional switch depends on cell context and expression of 

TCF/LEF factors and their variants. These variants are generated by alternative promoters, 

alternative exon cassettes and alternative splicing sites, allowing combinatorial 

insertion/exclusion of functional and regulatory domains (Arce, Yokoyama and Waterman, 

2006), and differences in affinity for DNA. LEF1 protein levels have been reported to be 

increased in breast cancer cell lines, compared to normal breast cell lines (Lamb et al., 2013). On 

the contrary, Jamieson et al., (2016) reported that LEF1 protein is undetectable in MCF-7 cells. I 

did not detect LEF1 expression by qRT-PCR. However, the RNAseq data indicated that the 

increases of LEF1 in tamoxifen resistant cells was not significant in MCF-7 but it was in T47D 

cells, suggesting that could be a factor involved in their different responses to Wnt/-catenin. 
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TCF1 was the least expressed family member in both cell lines, although the expression in 

T47DTamR was higher. On the contrary, results from qRT-PCR analysis showed that TCF3 was 

the most highly expressed family member in both cell lines. These data suggest that TCF family 

expression patterns could be important to determine how cells respond to Wnt-1. However, it 

is important to note that the different variants have not been studied in depth. There are no 

many variants of TCF3, but LEF1 (not detectable in our cell lines) can be expressed with 

alternative N- and C- termini and there are more than 10 versions of TCF4 that could have 

different biological roles have been found (Mao and Byers, 2011). Context-dependent activation 

may provide for other differences. A TCF3/TCF1 switch has an important role in WNT3A induced 

stem-cell renewal, regulating stem cell marker Nanog, depending on the availability of TCF1 and 

how it competes with TCF4 variants (Yi et al., 2012) or how it is exported from the nucleus (Najdi 

et al., 2009). RNAseq data also showed increased levels of TCF1 and TCF3 in T47DTamR cells, 

compared to control T47D cells. These data suggest that changes in the balance of TCFs and/or 

expression of different TCF variants could affect how each cell line responds to Wnt ligands.  

Schlange et al., (2007) have described differences in the levels of active -catenin in response of 

MCF-7 and T47DTamR cell to sFRPs. I also observed differences in the response to activation of 

Wnt signaling. After analyzing the roles of ER and AR, which have been implicated in the 

acquisition of tamoxifen resistance, we considered whether differences could be related to the 

different expression patterns of TCF family factors that could have been altered during 

acquisition of resistance. However, Wnt signaling did not appear to depend on either ER or AR 

signaling. Clearer differences were observed in the expression of different TCF factors. 

Altogether, it seems that the differences in Wnt signaling are cell type dependent and that TCF 

factors could play a role.  

ATF2 is involved in non-canonical Wnt signaling (Ohkawara and Niehrs, 2011). In light of previous 

studies showing a switch from canonical to non-canonical ATF2-dependent Wnt signaling 

(Bengoa-Vergniory et al., 2014) and that canonical and non-canonical Wnt signals can be 

important at different steps of differentiation (Many and Brown, 2014), I analyzed ATF2 

activation using gene reporter assays in cells expressing WNT1. D’Amico et al., (2000) showed 

that expression of CCND1, a WNT target gene, is induced through a CREB/ATF2 binding site in 

MCF-7 cells. In mesothelioma cells WNT1 expression has also been implicated in non-canonical 

Wnt/JNK signaling (You et al., 2004). However, the same group published that canonical Wnt 

signals predominate in MCF-7 cells (He et al., 2004). Moreover, considering the importance of 

TCF family proteins, a synergistic cooperation has been observed between AP-1 and LEF1 

transcription factors to activate MMP7 gene expression (Najdi. et al., 2009). I found activation 
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of ATF2 in response to Wnt-1 using luciferase and GFP reporters. AP-1 family members can form 

homo- or heterodimers at ATF/CRE binding sites. Jun-Jun and Jun-Fos dimers can bind to 

ATF/CRE sites (van Dam and Castellazzi, 2001), but ATF/CREB heterodimers have higher affinity 

than Fos/Jun dimers for these sites (Hai and Curran, 1991). Jun forms stable heterodimers with 

ATF2 and although its affinity for CRE sites is lower than that of ATF2, ATF2/Jun heterodimers 

can bind to ATF/CRE sites (Hai and Curran, 1991). Dominant negative forms of AP-1 family 

members that are mutated either in the DNA binding region or that cannot bind other regulatory 

proteins, inhibit the activation of the wild-protein (Steinmüller and Thiel, 2003). Experiments 

using a set of dominant-negative constructs that block DNA binding by formation of inactive 

dimers suggested that heterodimers and homodimers containing ATF2 are likely important in 

the response to Wnt-1, since the ATF2, which binds ATF2 and Jun had the strongest inhibitory 

effects.  
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II. CHARACTERIZATION OF WNT1 EXPRESSION IN BREAST CANCER AND 

BREAST CANCER STEM CELLS 

Tumor recurrence and relapse have been reported to occur as a result of the presence of CSCs 

(Bao et al., 2013), and in the case of breast cancer the presence of CSCs is also related to worse 

prognosis (Carrasco et al., 2014). Having observed the increased gene expression of WNT1 in 

the context of CSCs present in tamoxifen resistant cells, the importance of WNT1 in terms of 

prognosis was analyzed. Clinical significance of Wnt-1 has been studied in different tissues by 

IHC analysis. Wang et al., (2009) showed by IHC that Wnt-1 levels are increased in 61% of 

nasopharyngeal carcinoma patients, however, this high expression had no effect on RFS, MFS or 

PFS of patients. In renal cell carcinoma, Kruck et al., (2013) found a correlation between Wnt-1 

staining with increased tumor diameter, stage and vascular invasion, but only high cytoplasmic 

-catenin levels were related to decreased OS and CSS, while Wnt-1 expression itself could not 

be correlated. In the case of ovarian cancer, another hormone-dependent type of tumor, Bodnar 

et al., (2014) observed increased levels of E-cadherin together with -catenin and Wnt-1, but 

again, only high -catenin expression levels correlated with decreased OS. Only in non-small cell 

lung (NSCL) carcinoma, in which Wnt-1 is highly expressed in less than 50% of tumors, was there 

a worse prognosis, namely for OS of patients with high levels of Wnt-1 in tumors (Nakashima et 

al., 2008).  

In the present study, the expression of WNT1 among different subsets of breast cancer patients 

and the possible correlation with prognosis was analyzed using online tools. Firstly, 

heterogeneous expression of WNT1 was observed among all breast cancer patients that did not 

correlate with molecular subtype, tumor grade, ER status or DFS. Interestingly, there was a 

negative correlation between WNT1 expression and OS and DDFS of patients treated with 

tamoxifen. Since CSCs have been linked to poor prognosis, and we have observed that WNT1 

expression is increased in the subset of CD44+CD24-/low cells in tamoxifen-resistant cells, Wnt 

signaling seems to be relevant for regulating the properties of CSCs, which ultimately may be 

translated into worse OS and DDFS. On the other hand, mouse cell lines that have not been 

treated with tamoxifen also have high levels of Wnt1 in mammospheres, hence, WNT1 

expression may be increased in environments appropriate for CSC proliferation. Thus, tamoxifen 

treatment is not the only condition that increases WNT1 expression, but it may be a relevant 

factor in ER+ breast cancer patients.  

To better understand expression of WNT1 in different types of breast cancer, 

immunohistochemistry was performed on a breast cancer tissue array. Analysis of the staining 
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indicated that Wnt-1 expression is quite heterogeneous in breast tumors. In normal breast 

samples, Wnt-1 staining was detected in some basal epithelial cells. Wnt target genes have also 

been found to be localized in the basal layer and to mark mouse multipotent stem cells with 

epithelial-to-mesenchymal transition characteristics and high regenerative capacity that can 

differentiate into all linages of the mammary epithelium (D. Wang et al., 2015). Since WNT1 

expression is increased in CSCs, it could also be expressed in some MaSCs. Wnt-1 staining was 

not correlated with HER2 levels, strong staining was found in around 30% of samples 

independently of the HER2 expression. On the other hand, a positive correlation between Wnt-

1 and ER and PR levels was found. In the case of ER, high Wnt-1 levels increased from 12 to 43%, 

and from 20 to 46% for PR levels. With respect to pathology, Wnt-1 levels were very low in 

almost all metastatic cases. These results suggest that Wnt-1 is important in the context of ER+ 

and PR+ patients, which correlates with the molecular characterization of luminal breast tumors 

that are those more prone to receive hormonal therapy. However, WNT1 expression in those 

patients after tamoxifen treatment is also correlated with worse prognosis. Moreover, WNT1 

expression shows an inverse correlation with metastasis, suggesting that WNT1 expression 

might be important at early stages of the disease and not in metastatic tumors.  

In silico analysis of gene expression in commonly used breast cancer cell lines showed that WNT1 

is not highly expressed in any of the cell lines representing different types of human breast 

cancer, and was rather heterogeneous among human breast cancer cell lines. Moreover, in 

mouse breast cancer cell lines, the highest Wnt1 expression was found in 4T07 cells, which 

represent tumors at an intermediate state, with EMT and MET features, suggesting that Wnt1 

expression may be increased at intermediate stages of the disease and confirming IHC data of 

human tumor samples.  

The MMTV-Wnt1 mouse breast cancer model forms tumors that contain CSCs and so is useful 

to study the role of Wnt-1 in breast cancer. In this model, Wnt1 expression is related to an 

increased population of Thy1+CD24+ cancer cells (Cho et al., 2008), ALDH+ cells (Choi et al., 2012), 

CD29lowCD24+CD61+ luminal progenitor cells (Vaillant et al., 2008) and epithelial cells expressing 

the progenitor cell markers keratin 6 and Sca-1 (Li et al., 2003). To the best of our knowledge, 

to date, no such characterization has been done using human cells. It was not possible to 

determine WNT1 expression in MCF-7TamR ALDH+ cells, although an increase of WNT1 

expression in the CD44+CD24-/low population was observed. Many studies have reported a high 

percentage of CD44+CD24-/low and ALDH+ cells in triple negative tumors but only CD44+CD24-/low 

cells in luminal subtype tumors (Ricardo et al., 2011; Beça et al., 2013). 67NR, 4T07 and 4T1 

mouse metastatic cell lines, derived from a single spontaneously arising mammary tumor in a 
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BALB/c mouse have a higher frequency of ALDH+ cells than human luminal-like cell lines (Kim et 

al., 2013). These cells show increased expression of Wnt1 in mammospheres (Fig. 30B), but this 

was not related to the ALDH+ population. These data suggest that WNT1 may be expressed in a 

subset of CSCs with the CD44+CD24-/low phenotype that are not ALDH+. Indeed, the ALDH+ 

population has been shown to be different from the CD44+CD24-/low population (S. Liu et al., 

2014). Proteomics analysis showed that the ALDH+ population could be distinguished from the 

CD44+CD24-/low population by differential expression of proteins in three major categories; cell-

cell junctions, glucose metabolism and signal transduction (Nie et al., 2015). The cell-cell 

junctions category modulates critical events, including cell motility and surface remodeling 

involved in cell migration and invasion (Azios et al., 2007) and with CSC features (Nie et al., 2015), 

in which Wnt-1 could also be involved.   
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III. EFFECTS OF ECTOPIC EXPRESSION OF WNT1 IN MCF-7 AND MCF-7TAMR 

CELLS 

To better understand the role of WNT1 expression in CSCs and whether it is important in the 

acquisition of tamoxifen resistance, cells over-expressing WNT1 were selected. Stably 

transfected WNT1 was detected at high levels by qRT-PCR and protein level by 

immunofluorescence and western blotting. Western blot assays showed that Wnt-1 protein was 

found in cell lysates and in the ECM but not in the CM. This confirmed the findings made by 

Bradley and Brown (1990), who found Wnt-1 was barely detected in the CM and associated with 

the ECM, where it is thought to act in cell-cell communication over short distances, as may 

happen in mammosphere formation assays. On the other hand, transcriptional activity of stably 

transfected WNT1 was not as strong as that of transiently transfected WNT1. The canonical Wnt 

pathway was not altered in luciferase gene reporter assays, although a modest but significant 

reduction in activity was observed using GFP reporters. Regarding ATF2 mediated transcriptional 

activation, a small but still significant effect was observed using the ATF2-luciferase reporter, 

but no changes were observed in the ATF2-based GFP reporter. This suggests that stably 

transfected Wnt-1 may accumulate in the ECM in an inactive form. Galli et al., (2018) showed 

that biologically active Wnt-1 present in the conditioned media from cells expressing WNT1 does 

not induce paracrine signaling, unlike in cell co-cultures, indicating that bioavailable Wnt-1 is 

cell-associated. Therefore, whether transfection of reporters is the best method to study the 

transcriptional activation in these cells needs to be reconsidered. On the other hand, working in 

three-dimensional cultures, as is done in the stem cell field, in which CSC growth is optimized 

and where the cell-cell contact is more important may be reliable. In addition, according to 

studies of colonic crypts, Wnts are distributed as gradients during successive cell divisions (Farin 

et al., 2016). Hence, we considered that this 3D cell culture system would be more relevant to 

study the effects of Wnt-1 in CSCs. 

Antiestrogen resistance can be separated into two categories: de novo resistance and acquired 

resistance. De novo resistance occurs in ER+ tumors, which are nonresponsive to antiestrogen 

treatment from the beginning (Chang, 2012). This type of resistance and the role of Wnt-1 can 

be studied in MCF-7 control (MCF-7C) cells, whereas acquired resistance is developed after long 

term therapy in ER+ tumors, which corresponds to the MCF-7TamR cell model (Domenici et al., 

2014). First, to determine if Wnt-1 is related to acquisition of tamoxifen resistance, I tested 

whether cell proliferation was altered by Wnt-1 at different concentrations of tamoxifen. A 30% 

reduction was observed in MCF-7C cells for tamoxifen concentrations higher than 10-8 M, 
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independently of WNT1 expression. On the contrary, as expected, MCF-7TamR cells do not show 

any significant change in proliferation in response to Wnt-1, and cells maintained their 

proliferation rates around 100%, even at the higher concentrations of tamoxifen. I also 

confirmed that tamoxifen induces cell cycle arrest at G0/G1 and that Wnt-1 does not affect this, 

suggesting that WNT1 expression is not sufficient for acquisition of de novo resistance to 

tamoxifen.  

Other mechanisms for acquisition of tamoxifen resistance are related to the loss of ER 

expression and function. I confirmed that ER mRNA expression and protein levels are not 

significantly affected by Wnt-1, however, ER transcriptional activity may be altered since both 

MCF-7C-W1 and MCF-7TamR-W1 had reduced PR expression levels (Fig. 33D). To further analyze 

whether the ER response is different in TamR-W1 cells and whether this affects tamoxifen 

sensitivity, I analyzed the ability of cells to grow in anchorage independent conditions. ICI, which 

antagonizes ER, MCF-7TamR-V and MCF-7TamR-W1 cells, did not affect the numbers of colonies 

formed. There was, however, a difference in the colony size for these two cell lines in the 

absence of treatment, indicating that Wnt-1 may not affect the number of cells that retain the 

capacity to form colonies but it may affect their proliferation. In summary, it seems that WNT1 

expression is not sufficient for acquisition of tamoxifen resistance but it may have a role in long-

term proliferation of tamoxifen resistant cells, most importantly in those cells that retain ER 

expression, even though ER is not completely active.  

In fact, WNT1 expression was found in CSCs isolated from MCF-7TamR cells (Fig. 15). I therefore 

analyzed the populations of CSCs in the WNT1 expressing cell lines. Interestingly, Wnt-1 

increased the CD44+CD24-/low population in both MCF-7C and MCF-7TamR cells (Fig. 35A). 

Consequently, the number of mammospheres formed by these cells was also increased by Wnt-

1. This was statistically significant in MCF-7TamR cells, in which the proportion of CSCs and the 

number of mammospheres formed is already elevated compared to in MCF-7C cells. 

Surprisingly, although SOX2 and NANOG levels were increased in MCF-7TamR cells in 

comparison to MCF-7C cells, SOX2, NANOG or OCT4 expression levels were not increased in 

WNT1-expressing cell lines (Fig. 36A). Moreover, expression of SOX2 was significantly reduced 

in MCF-7TamR-W1 cells in the mammospheres formed after passage, where the proportion of 

CSCs is enriched. In mice, Wnt1 silencing has been reported to suppress mammosphere 

formation and reduce the ALDH+ population in vitro and reduce tumorigenic potential and tumor 

initiation capacity of cells in vivo (Choi et al., 2012). Moreover, Wnt1 knockdown suppresses 

breast cancer capacity for invasion and migration, which translates into reduced tumor 

metastasis in a murine xenograft model (Jang et al., 2015). However, characterization of the Wnt 
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expression profile of these CSCs has not been published. In colon, the highest expression of Wnt 

targets is in the bottom of the crypts, where Lgr5+ stem cells are located between Paneth cells, 

which are the cells that produce high levels of Wnt-3. In this system, Wnt-3 is transferred in a 

cell-bound manner through cell division, and not through diffusion (Farin et al., 2016). Despite 

epithelial production of Wnt-3a, mesenchymal cells are also a redundant source of Wnt-3 in the 

niche (Puschhof and Clevers, 2018). Wnt-1 appears to accumulate in the extracellular matrix, 

where it may act on surrounding cells. Moreover, WNT1 expression increases the CD44+CD24-

/low population, but does not affect the number of single cells able to undergo unlimited divisions 

or the expression of SOX2, NANOG and OCT4 (Fig. 34 and 36), suggesting that the enriched 

population may be an intermediate stage between the complete stem and differentiated cells. 

WNT1 has been previously described not to affect the number progenitor cells under adherent 

and mammosphere conditions, but to significantly increase acinar colony formation in collagen, 

suggesting Wnt signaling is necessary for luminal acinar progenitor activity (Arendt et al., 2014). 

Thus, identification of cells and their differentiation into intermediate populations of mammary 

stem cells and/or progenitor to mammary luminal epithelial and myoepithelial cells would be 

worth studying in more detail. For that, identification of the population using several markers 

that have been used to identify these populations including Ep-CAM-/lowCD49f+, CD10+, or Ep-

CAM+/MUC-1neg (Ghebeh et al., 2013) would be recommendable to do. Primary human 

mammary epithelial cells (MECs) can form luminal acinar and basal ductal colonies on collagen 

gels. Wnt-1 has been reported to regulate both types of progenitor while progesterone favors 

ductal progenitor cells and estrogen affects acinar ones. However, both hormones stimulates 

paracrine Wnt signaling (Arendt et al., 2014). Since we have observed that Wnt-1 correlates with 

ER and PR levels and it is important in the context of tamoxifen treatment, it would also be 

interesting to further study the link between hormonal regulation and Wnt-1 signaling. 

As several types of breast cancer stem cells have been described, the possibility was considered 

that Wnt-1 enriches for other CSC phenotypes. Among the different types of breast CSCs, 

CD44+CD24-/low cells display a mesenchymal phenotype while ALDH+ cells are more epithelial-

like (S. Liu et al., 2014). In mouse breast cancer cell lines, 67NR cells are more mesenchymal than 

4T1 cells, which undergo MET and have more epithelial characteristics, while 4T07 cells have an 

intermediate phenotype with low levels of CDH2, VIM, CDH1 and ZEB2 (Dykxhoorn et al., 2009). 

I found that Wnt-1 is most highly expressed in 4T07 (Fig. 29), whereas 4T1 cells have a higher 

proportion of ALDH positive cells (Fig. 30). Analysis of the expression profiles of EMT-related 

genes found that VIMENTIN and ZEB1 levels tend to be lower in MCF-7TamR cells than in MCF-

7C cells, while SNAI2 is higher. On the other hand, there were no significant changes in epithelial 
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markers, suggesting that tamoxifen resistance does not induce EMT. When analysis was focused 

on changes induced by Wnt-1, the only significant change in MCF-7C-W1 cells were VIMENTIN 

in adherent cells and mammospheres and SNAI2 expression in adherent cells. On the other 

hand, no significant changes were found in MCF-7TamR cells, but Wnt-1 further reduced 

VIMENTIN and ZEB1 levels in mammospheres. Wnt/-catenin signaling has been reported to be 

active in TNBC, where Wnt target gene expression is much higher than in luminal cell lines (Dey 

et al., 2013). Wnt/-catenin signaling pathways in TNBC have been related to metastasis 

progression (Dey and Barwick, 2013). Moreover, Jiang et al., (2016) reported that 

overexpression of miR-148a reduced expression of WNT1 and other Wnt/-catenin 

components, such as -catenin and TCF4, blocking migration and invasion in breast cancer cell 

lines. This effect of Wnt-1 on invasion has also been reported in vivo and linked to the induction 

of Snai1 protein and repression of CDH1 transcription through an Axin2-dependent pathway 

(Yook et al., 2006). This was not observed in our system, in which MCF-7C cells showed a 

tendency to induce EMT markers in response to Wnt-1, but not tamoxifen resistant ER+ tumor 

cells.  

If we conclude that WNT1 expression is more important in early stages of breast cancer, and it 

is related to the enrichment of TamR CSCs, Wnt-1 may facilitate the adaptation of CD44+CD24-

/low cells to the niche in the presence of tamoxifen. On the other hand, the modest changes 

observed in transcriptional activation and CSCs and EMT-related gene expression can be due to 

the accumulation of Wnt-1 in the cytoplasm and ECM. Galli et al., (2018) reported that 

overexpressed Wnt-1 protein accumulates in the endoplasmic reticulum and Golgi, and that 

elevated expression of the upstream regulator of trafficking WLS is necessary to enhance Wnt-

1 signaling. Therefore, it would be interesting to upregulate this regulator, in order to determine 

if this increases the effects of Wnt-1 on breast cancer cell function.  

These results point out two aspects to consider. First, that the changes and responses to Wnt-1 

in stably WNT1 transfected cells are quite modest and second, that there may be differences in 

the response to Wnt-1 in cells that are resistant to tamoxifen, compared to those that are not. 

The effects observed are more clear and consistent in MCF-7TamR cells, were Wnt-1 seems to 

have a more important role, while in MCF-7C cells, Wnt-1 may affect EMT. However, expression 

of WNT1 in the latter cells is not sufficient to increase the CSC population or to confer resistance 

to tamoxifen.  
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IV. IDENTIFICATION OF WNT1 RECEPTORS AS SIGNALING MEDIATORS AND 

POSSIBLE THERAPEUTIC TARGETS 

I observed that Wnt-1 appears to increase the proportion of CSCs. The analyzed population does 

not express more SOX2, OCT4 or NANOG. Although we were not able to determine a specific 

phenotype, Wnt-1 does increase the number of cells that form mammospheres. These findings 

suggest that targeting Wnt-1 mediated signaling could be a promising alternative strategy to 

prevent recurrence. 

Over the last decade, targeting CSCs has been a goal to overcome poor prognosis in breast 

cancer, leading to better patient survival. Currently used approaches for targeting CSCs include 

phenotypic marker based targeting, including CD44. However, most markers do not distinguish 

normal stem cells from CSCs. Furthermore, CSCs are believed to be the cause of tumor 

heterogeneity, which is a key factor for therapy resistance and complicates targeting of cell 

surface markers (Annett and Robson, 2018). Selective targeting of CSC signaling networks to 

impair self-renewal, proliferation and differentiation is a challenge. Targeting Wnt signaling 

seems promising, and there are several approaches used in clinical trials, such as anti-FZD10 

antibodies for synovial sarcoma and OMP-54F28, which is a recombinant fusion protein of the 

cysteine-rich domain of FZD8 and the immunoglobulin Fc domain that competes with the native 

FZD receptors for Wnt ligands, as well as the previously mentioned Vantictumab (OMP-18R5) 

(Phi et al., 2018).  

Wnt-1 silencing has been reported to have apoptotic effects on MCF-7 cells (Wieczorek et al., 

2008). Another general approach for targeting Wnt signaling pathway is acting through 

regulators. Inhibition of ZNRF3 and RNF43 E3 ligases enhances Wnt/-catenin signaling, as well 

as Wnt/PCP signaling, in agreement with the role of FZD receptors in both canonical and non-

canonical Wnt signaling (Hao et al., 2012). Several USPs have been found to regulate Wnt 

signaling, specifically, FZD receptors are targets of USP6 (Madan et al., 2016). I found that USP6 

enhanced Wnt-1 mediated signaling and mammosphere formation in MCF-7TamR-W1 cells, 

consistent with a role in the regulation of the Wnt-1 response. Therefore, USP6 could be a good 

candidate to be blocked in tumors of patients with high expression of WNT1. The USP6-related 

USP32 is over-expressed in breast cancer cell lines and primary breast tumors (Akhavantabasi et 

al., 2010). Moreover, USP6 is classified as cancer causative gene by Cancer Gene Census (Gao et 

al., 2012). Nevertheless, regulating the abundance of receptors at the plasma membrane 

through the regulation of ZNRF43 may also affect other targets and have side effects. For this 
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reason, it may be therapeutically more interesting to determine the specific receptor that binds 

Wnt-1 and try to block that binding, for example using peptides or monoclonal antibodies. For 

example, LRP6 antibodies have been described, YW210.09 inhibits Wnt-1 induced signaling in 

HEK293 and breast Hs578T cell lines, whereas another potentiates Wnt signaling (Gong et al., 

2010). LRP6 is a specific Wnt co-receptor that activates Wnt/-catenin signaling when 

phosphorylated, whereas Ror1/2 Wnt co-receptors trigger non-canonical Wnt signaling 

(Grumolato et al., 2010). Since Wnt-1 increases ATF-2-dependent transcription in MCF-7TamR 

cells but not in T47DTamR cells, identification of FZD receptors that transduce the Wnt-1 signal 

would provide targets to inhibit both canonical and non-canonical Wnt signaling in tamoxifen-

resistant cells. 

In silico analysis was used to identify the Wnt-1 receptor candidate. Gene correlation analysis 

found weak correlation of WNT1 expression and all FZD receptors, with the highest positive 

correlations for FZD9 and FZD5. On the other hand, breast cancer patient data showed that FZD5 

correlated with poor prognosis in patients treated with tamoxifen. Furthermore, a general 

screen to detect co-localization of FZD receptors and Wnt-1 showed a good co-localization at 

the membrane for Wnt-1 with FZD3, FZD4 and FZD5. Taken together, these observations 

suggested that studies of FZD5 in the context of Wnt-1 signaling may be relevant. Indeed, 

Voloshanenko et al., (2017) showed that Wnt-1 activates TCF4-dependent luciferase reporter 

activity via FZD5 in HEK 293 cells. I found that FZD5 enhanced TCF/-catenin independent 

signaling. Moreover, expression of both WNT1 and FZD5 are related with poor patient survival, 

and both proteins co-localize at the membrane and increase the activation of ATF2-dependent 

signaling. Finally, since USP6 regulates FZD receptor abundance at the membrane. I tried to 

confirm the accumulation of FZD5 at the membrane by co-expressing USP6 and FZD5. Although, 

higher levels of FZD5 were observed by western blot, it was not possible to demonstrate that its 

accumulation was exclusively at the membrane. Nevertheless, there is also evidence to support 

the hypothesis that USP6 regulating FZD5, since antibodies targeting FZD5 have been observed 

to inhibit the growth of RNF43-mutant cells in vitro and in in vivo xenografts in pancreatic ductal 

adenocarcinomas (Steinhart et al., 2016), supporting the idea of the importance of 

posttranslational regulation of FZD5 by ubiquitination. Moreover, the antibodies used by 

Steinhart et al. (IgG-2919 and IgG-2921) showed high affinity binding to the human FZD5 CRD 

and some cross reactivity to the FZD8 CRD. This, compared to the cross reactivity of OMP-18R5 

for FZD1, FZD2, FZD5, FZD7 and FZD8, may present a better option for tamoxifen resistant patients. 

However, these antibodies have not yet been tested in clinical trials.  
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In summary, this work suggests that blockade of Wnt-1-mediated signaling in tamoxifen 

resistant patients has therapeutic interest for inhibition of the proliferation of CD44+CD24-/low 

population and of breast cancer cells with the capacity to form mammospheres, and therefore 

improve patient prognosis. Moreover, blocking Wnt-1 signaling may also be relevant before 

acquisition of resistance, since it seems that Wnt-1 mediated signaling may be related to early 

events of EMT, leading to a higher possibility of metastasis. The pathway may be blocked by 

inhibiting the binding of Wnt-1 to FZD5, which can be regulated by USP6. In conclusion, in future, 

it would be interesting to determine whether targeting USP6 or FZD5 can improve patient 

prognosis. 
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As a summary of these results, we can draw the following conclusions:  

1. WNT1 mRNA levels are elevated in mammospheres and CD44+CD24-/low MCF-7TamR breast 

CSCs, but not in ALDH+ CSCs. 

2. Wnt/-catenin signaling activity is low in MCF-7 cells and this is related to the low expression 

levels of TCF/LEF family proteins in this cell line. 

3. TCF1 not only restored a canonical Wnt response to MCF-7TamR cells, but also activated 

signaling independently of -catenin and this could be blocked by ATF2.  

4. Wnt-1 activates ATF-2-dependent signaling in MCF-7TamR cells.  

5. WNT1 expression in tumors is heterogeneous with respect to the different subtypes, but 

correlates with high expression of ER and PR but not with HER2 levels. Moreover, WNT1 

expression correlates with poorer OS and DDFS in ER+ breast cancer patients after tamoxifen 

treatment. In addition, Wnt-1 levels are lower in tumor metastases.  

6. WNT1 expression does not affect to tamoxifen resistance but it may play a role in 

proliferation of CSCs population. 

7. Wnt-1 has different effects on tamoxifen sensitive and tamoxifen resistant cells, enhancing 

expression of EMT markers and enriching for CD44+CD24-/low cells, respectively.  

8. Wnt-1 binding to FZD5 enhances ATF2-mediated signaling and this may be regulated by 

USP6. FZD5 and USP6 may be targets to block Wnt-1-mediated signaling in breast cancer.  
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