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SUMMARY 

 

Mice are widely used in research. This animal species has also been 

extensively used to study the relationship between ticks and their mammalian hosts, 

including the design and test of vaccine candidates, although it is believed that mice do 

not develop tick immunity. We have established a test system in order to assess protection 

against tick feeding using this small animal model. We have redesigned containment 

capsules and tested the use of tissue cement to attach them to the shaved skin of the mice. 

Our results provide both an improved capsule design and permanent and strong bonding 

capabilities of the tissue cement. We then assessed the protective capacity of different 

immunization strategies, both active and passive, against an array of antigens and tissue 

extracts. We therefore tested active immunization with tick Histamine Release Factor 

(tHRF), as well as passive transfer of both human and bovine sera against whole tick, 

midgut or salivary gland extracts. We found that none of the strategies utilized elicited 

strong and consistent effects on different parameters of tick feeding, such as attachment 

time, weight at detachment or molting efficiency. These results suggest that, at least for 

the European tick, Ixodes ricinus, mice are not in general a suitable model to test anti-tick 

vaccines. 

On the other hand, in order to identify tick antigens as potential targets for the 

development of a tick vaccine, salivary gland and midgut extracts were 

immunoprecipitated with immune antisera raised in cows that had shown protective 

effects against tick feeding in these animals. We identified antigen with putative 

metalloprotease, integrin and Apple domain-containing proteins that could function to 

prevent blood coagulation. Our identification was validated with the protein annotated as 

I. ricinus A0A0K8RQF1, which shares homology with Toll-like receptors and could form 

part of the immune response of ticks. This antigen, which is differentially recognized by 

protective anti-tick sera could alone or in combination protect against tick feeding in 

species such as cows and perhaps humans, and provide the basis for a new anti-tick 

vaccine. 

 

Salp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T 

cells. Treatment with Salp15 results in the inhibition of early signaling events and the 
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production of the autocrine growth factor, interleukin-2.  The fate of the CD4 T cells 

activated in the presence of Salp15 or its long-term effects are, however, unknown. We 

now show that Salp15 binding to CD4 is persistent and induces a long-lasting 

immunomodulatory effect. The activity of Salp15 results in sustained diminished cross-

antigenic antibody production even after interruption of the treatment with the protein. 

Transcriptionally, the salivary protein provokes an acute effect that includes known 

activation markers, such as Il2 or Cd44, and that fades over time. The long-term effects 

exerted by Salp15 do not involve the induction of either anergy traits nor increased 

populations of regulatory T cells. Similarly, the treatment with Salp15 does not result in B 

cell anergy or the generation of myeloid suppressor cells. However, Salp15 induces the 

increased expression of the ectoenzyme, CD73, in regulatory T cells and increased 

production of adenosine. Our study provides a profound characterization of the 

immunomodulatory activity of Salp15 and suggest that its long-term effects are due to the 

specific regulation of CD73. 
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RESUMEN 

 

El modelo de ratón ha sido ampliamente usado en investigación. Esta especie 

animal ha sido también ampliamente usada para estudiar las relaciones entre las 

garrapatas y sus huéspedes mamíferos, incluyendo el diseño y evaluación de antígenos 

para el desarrollo de vacunas, a pesar de la creencia de que los ratones no desarrollan 

inmunidad frente a garrapatas. En nuestro grupo, hemos establecido un sistema con el fin 

de poder evaluar la protección frente a la alimentación de las garrapatas usando este 

modelo animal. Hemos rediseñado capsulas de contención y puesto a prueba el uso de 

pegamento tisular para fijar las capsulas a la piel del ratón. Nuestros resultados 

proporcionan tanto un diseño mejorado de la capsula de contención como una fuerte 

capacidad de adhesión y duración por parte del pegamento tisular. De esta manera, 

evaluamos la capacidad protectora de las diferentes estrategias de inmunización, tanto 

activa como pasiva, frente a una variedad de antígenos y extractos tisulares de garrapata. 

Asimismo, evaluamos la inmunización activa con el Factor de Liberación de Histamina, 

así como la transferencia pasiva de sueros tanto humanos como bovinos frente a extractos 

de garrapata total, estomago o glándula salivar. Los resultados mostraron que ninguna de 

las estrategias utilizadas provocó efectos sólidos y consistentes en cuanto a parámetros 

relacionados con la alimentación de garrapatas, tales como el tiempo de adhesión al 

huésped, el peso a la hora de su desprendimiento o la eficiencia en la muda. Estos 

resultados sugieren que, al menos para la garrapata europea, Ixodes ricinus, el modelo de 

ratón no es un modelo apropiado para el diseño y estudio de vacunas anti-garrapatas.  

 Por otra parte, con el fin de identificar antígenos de garrapatas como dianas 

potenciales para el desarrollo de una vacuna, extractos de glándula salivar y estómago 

fueron inmunoprecipitados con suero inmune elaborado en vacas que previamente 

mostraron efectos protectores frente a su alimentación en estos animales.  De esta forma, 

identificamos antígenos tales como metaloproteasas, integrinas y proteínas con dominios 

Apple que podrían actuar previniendo la coagulación de la sangre. Nuestra identificación 

fue validada con la proteína anotada como I. ricinus A0A0K8RQF1, que comparte 

homología con los receptores Toll y podría formar parte de la respuesta inmune de las 

garrapatas. Este antígeno, diferencialmente reconocido por el suero inmune contra 

garrapatas, podría, o bien sólo o bien en combinación con otros antígenos, proteger contra 
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la alimentación de garrapatas en especies tales como vacas y tal vez humanos, y 

proporcionar, a su vez, la base para una nueva vacuna frente a estos parásitos. 

 

Salp15, una proteína de la saliva de garrapatas del genero Ixodes, inhibe la 

activación de las células CD4 T. El tratamiento con Salp15 resulta en la inhibición de 

eventos de señalización celular tempranos y de la producción del factor de crecimiento 

autocrino, interleuquina-2. El destino de las células CD4 T activadas en presencia de 

Salp15 o sus efectoras a largo plazo son, sin embargo, desconocidos.  En este estudio 

mostramos que la unión de Salp15 a CD4 es persistente e induce un efecto 

inmunomodulatorio de larga duración. La actividad de Salp15 provoca una producción 

reducida de anticuerpos frente a antígenos cruzados que es prolongado en el tiempo, 

incluso después de la interrupción del tratamiento con Salp15. A nivel transcripcional, 

la proteína salivar provoca un efecto agudo en la transcripción de varios genes que 

incluyen marcadores de activación, tales como Il2 o Cd44, y que se desvanece con el 

tiempo. Los efectos a largo plazo ejercidos por Salp15 no involucran la inducción de 

marcadores de anergia ni el aumento de la población de células T reguladoras. 

Similarmente, el tratamiento con Salp15 no resulta en la generación de células B 

anergicas o de células mieloides supresoras. Sin embargo, Salp15 induce un 

incremento en la expresión de la ectoenzima, CD73, en las células T reguladoras y un 

aumento en la producción de adenosina. Nuestro estudio proporciona una 

caracterización profunda de la actividad inmunomodulatoria de Salp15 y sugiere que 

su efecto a largo plazo es debido a la regulación específica de CD73. 
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HYPOTHESIS AND OBJECTIVES 

 

Tick populations are increasing worldwide driving a surge in the number of 

tick-borne infections. This increase is associated with the alteration of their habitat and to 

factors related to climate change, the distribution of their mammalian hosts and those 

related to anthropogenic changes. Ticks belonging to the Ixodes genus constitute the 

vectors for several medically important diseases, such as Lyme Disease, Human 

granulocytic anaplasmosis, Tick-Borne Encephalitis or Babesiosis. The European tick, I. 

ricinus is responsible for the transmission of the highest number of vector borne 

infections in Europe. Conventional control measures to prevent the expansion of ticks 

have classically consisted in the employment of acaricides or the unfeasible culling of 

wildlife reservoirs, which are becoming socially unacceptable due to their environmental 

harmful effects. As an alternative, the development of environmentally friendly vaccines 

against ticks would ideally prevent the transmission of tick-borne microorganisms. 

Therefore, the characterization and identification of new protective antigens that can 

induce the blockade of tick feeding would form the basis for the development of a tick 

vaccine that ideally could prevent the transmission of tick-borne pathogens. 

The specific objectives of the first part of this thesis were: 

1. The establishment of a tick feeding system on mice for the assessment of 

potential tick vaccine formulations. 

2. The identification of new tick vaccine antigens from protective immune 

antisera as well as the in silico characterization of the antigens.  

The identification of potentially useful activities among tick salivary antigens 

can provide the development of novel therapies for different pathological conditions. The 

activity of Salp15 on CD4 T cells has been tested in different models of immune diseases, 

including asthma and multiple sclerosis. Since this protein is able to inhibit early T cell 

signaling events, we hypothesized that the protein could preclude the activation of CD4 T 

cells and induce a long-term unresponsive or anergic state in disease models in which the 

activation of these cells is predictable, such as transplantation. Therefore, we sought to 

establish: 

1. The characterization of the long-term effects of Salp15 in CD4 T cells in a 

murine model of transplantation and graft versus host disease. 
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2. The identification of short- and long-term transcriptional traits induced by 

Salp15 on activating CD4 T cells. 

3. The study of the induction of populations of anergic and/or regulatory cells by 

Salp15 in vitro and in vivo. 
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1.1. INTRODUCTION 

 

A brief anthropocentric history of ticks. Humans have been aware of ticks since 

ancient times. Around 1.500 B.C., Egyptians made illustrations representing ticks 

infesting hyena-like animals (Arthur, 1965) and described “tick fever” in papyrus 

scrolls (Varma 1993, Hillyard 1996). Later on, Homer left some writings about ticks, 

and Aristotle (384–322 B.C.) associated tick infestation of animals with high grass in 

his Historia Animalium (Aristotle, 343 B.C). He described them as a “disgusting 

parasitic animal generated from couch grass” (Elymus repens). In those times, ticks 

were named ricini from the Latin name used later to designate the castor oil plant, 

Ricinus communis, due to the high similarity between their seeds and the parasite. 

Pliny the Elder (23–79 A.D.) in his Historia Naturalis referred them as "an animal 

living on blood with its head always fixed and swelling, being one of the animals 

which has no exit (i.e., anus) for its food, bursts with over-repletion and dies from 

actual nourishment” (Arthur, 1965). However, even though the effect of ticks in 

animals and humans is known since many centuries ago, it was not until 1893 when 

Smith and Kilbourne demonstrated for the first time that ticks transmit pathogens 

(Assadian et al., 2002). They showed that the protozoan Babesia bigemina, the 

causative agent of the Texas cattle fever, is 

transmitted by cattle ticks from the genus 

Boophilus. Nowadays, it is well known that 

ticks transmit a variety of different 

pathogens worldwide and since at least 

5.300 year ago, the age of mummified 

human remains found in the Alps (Ötzy; 

Figure 1.1) that contain genetic material 

from the bacterium that causes Lyme 

disease. 

Ticks: brief description and taxonomy. 

Ticks are members of the phylum Arthropoda within the kingdom Animalia. The 

phylum Arthropoda is divided into six major classes. Ticks belong to the subclass 

Acari within the class Arachnida. There are about 900 species of ticks, but while they 

Figure 1.1. Remains of Ötzy, a 5.300 
year-old mummy recovered from the Alps 
on the border between Austria and Italy. 
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are arranged in four families, most of them fall within two major families: Ixodidae 

and Argasidae, commonly known as hard and soft ticks, respectively (Fig. 1.2.; 

Estrada-Peña, 2015). All ticks are obligate blood feeding ectoparasites. However, the 

two families go through different life cycles and contain several morphological 

features that separate them. The main 

distinguishing characteristic is the presence 

(hard ticks) or absence (soft ticks) of a 

sclerotized dorsal shield (scutum). Apart from 

this main feature, they are differentiated by 

another peculiarity. The members of the 

Argasidae family do not contain a prominent 

mouth and feeding structure (gnathosoma) and 

they can only engorge up to ten times their 

body mass in blood during a period of a few 

hours. On the other hand, members of the 

Ixodidae family exhibit a gnathosoma that is 

apically located, allowing them to feed for 

extended periods of time. 

Furthermore, they are able to ingest more than 100 times their body mass 

in blood. Moreover, soft ticks present a specialized coxal organ that ultrafiltrates the 

excess of water from the incoming blood meal, whereas hard ticks accomplish their 

osmoregulation by secreting the excess liquid back into the host as saliva via their 

salivary glands (Estrada-Peña, 2015), which is precisely the site of development and 

replication of many pathogens (Kocan et 

al., 2010; Bishop et al., 2004; Bock et al., 

2004; Piesman & Gern, 2004; Mansfield 

et al., 2009). 

European Ixodes ticks: Ixodes ricinus. 

The genus Ixodes is the biggest group 

within the family Ixodidae, containing 

almost 250 species. They are considered, 

together with mosquitoes, the most 

Figure 1.3. Sexual dimorphism in Ixodes 
ricinus. Male (left) and female (right). 

Figure 1.2. General morphology of the 
Argasidae and Ixodidae families. A 
and C represent the dorsal views of a 
soft and hard (Ixodes ricinus) tick. B 
and C represent the ventral views 
(Estrada-Peña, 2015). 
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important vectors of human and animal diseases worldwide. However, only a few 

species that are potential carriers of pathogens or that indirectly serve as vectors for 

diseases have been generally studied (Ash et al.; 2017). Thus, the European tick Ixodes 

ricinus, which can harbor a variety of pathogens has been the most studied tick in 

Europe. 

Ixodes ricinus. The castor bean tick, I. ricinus is a relatively small tick. It presents 

sexual dimorphism at the adult stage, being the females slightly larger than males (Fig. 

1.3). As other members of the family Ixodidae, they show a sclerotized dorsal scutum, 

which protects and covers the whole body in males and only partially in females. This 

hard tick has a wide geographical distribution in Europe due to its ability to survive in 

various environmental conditions, covering a region that extends from Portugal to 

Russia and from North Africa to Scandinavia. 

Life cycle. The life cycle of I. ricinus consists of four stages: egg, larva, nymph and 

adult. They must feed on a host in order to molt into the next life stage. First, the six-

legged larvae hatch in summer usually from a batch of around 3,000 eggs. They then 

climb the vegetation and wait for passing hosts in order to adhere to them. Usually, 

these are small animals such as mice, voles as well as birds. After feeding for 2-3 days, 

they fall into the vegetation and begin the molting process into 8-legged nymphs. 

Nymphs feed on a second host, which usually are small or medium sized animals, 

including rodents and lagomorphs. After feeding for 4-5 days, nymphs molt to the 

adult stage, which will mate and feed on a third larger animal (herbivores such as 

bovids and cervids, carnivores or humans) with the sole purpose of laying eggs, dying 

afterwards (Fig. 1.4.; Soneshine et al., 2013). 



 

CHAPTER 1. IDENTIFICATION OF TICK VACCINE ANTIGENS 

6 

 

Figure 1.4.Three-host life cycle of the Ixodidae family (Sonenshine et al., 2013). 

 

Stages in which transmission of pathogens occur. At the moment of attachment, 

larvae, nymphs and adults start to introduce their saliva into the host. Tick saliva 

contains several compounds with pharmacological functions that help the arthropod 

during attachment and feeding (See below). Ticks can acquire pathogens while feeding 

on an infected host, transtadially (across life stages) or transovarially (from the female 

to the offspring). Apart from the introduction of the cocktail of functional proteins into 

the host, ticks also introduce pathogens via their saliva. However, the life stage that 

can transmit pathogens vary depending on both the tick species and the pathogen. Even 

though transmission of pathogens is most common by nymphs, followed by adults 

(because of the amount of bites per year in comparison to larva bites), larvae are also 

known to transmit certain pathogens. In fact, it has recently been described that larvae 

can transmit B. afzelii and B. miyamotoi to humans, which is a direct consequence of 

transovarial transmission of these bacteria in this species (Duijvendijk et al., 2016). 
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Ixodes ricinus as vectors of pathogens. The European castor bean tick is able to 

transmit a great variety of pathogenic microorganisms, ranging from virus to 

protozoans, thus causing the highest number of human vector-borne diseases in Europe 

(Rizzoli et al. 2014). Among all the vector-borne diseases, the most prevalent is Lyme 

disease or Lyme borreliosis. Lyme borreliosis is caused by Borrelia burgdorferi sensu 

lato and include the genospecies B. burgdorferi sensu stricto, B. garinii and B. afzelii 

(Cerar et al., 2016). It accounts for at least 65.000 cases per year in Europe (Sprong et 

al., 2014). The diseases caused by vector-borne virus such as tick borne encephalitis 

virus (TBEV) are also clinically important. TBEV is the most pathogenic of all tick-

transmitted microorganisms, causing around 1-2% of deaths among all the cases while 

50% of infected individuals suffer long term sequelae. Furthermore, several emerging 

diseases of medical and veterinary importance, caused by obligatory intracellular 

bacteria belonging to the order Ricketsiales have been described. These include Human 

granulocytic anaplasmosis (HGA), caused by Anaplasma phagocytophyllum or the 

spotted fever group (SFG) caused by members of the Ricketsia genus, among others. 

Finally, protozooans from the genus Babesia produce babesiosis in humans (Rizzoli et 

al., 2014). 

• Lyme borreliosis. Upon its deposition into the dermis, B. burdogferi stablishes 

a local infection, which usually initiates a local inflammatory response that can 

result in the appearance of a slowly expanding skin lesion named erythema 

migrans. At this stage (Stage I), other non-specific, flu-like symptoms can 

occur, including fever, headache, malaise, myalgia and/or arthralgia. The 

spirochete then disseminates hematogenously throughout the body by binding 

to blood components such as plasminogen, platelets and the integrins lining the 

endothelium of blood vessels (Stage II). The bacterium can colonize different 

tissues and organs, inducing symptoms such as conduction system 

abnormalities, meningitis and acute arthritis. Some untreated individuals 

develop persistent forms of the disease normally associated with the prolonged 

infection with the spirochete: arthritis, neuroborreliosis or cutaneous lesions 

such as acrodermatitis chronica atroficans (Smith et al., 2002; Steere, 2001; 

Steere et al., 1983).  
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• Human granulocytic anaplasmosis is a ricketsial infection caused by A. 

phagocytophyllum. This pathogen can induce a severe illness and even death. 

While many patients resolve the infection without any antibiotic treatment, 

most symptomatic patients need a specific antibiotic therapy, usually 

doxycycline. Early symptomatology is non-specific, frequently mimicking a 

viral illness, and tests for early diagnosis are not available (Bakken & Dumler, 

2015). 

• Tick-borne encephalitis is an important viral infection of the central nervous 

system transmitted to humans predominantly by tick bites. Even though it is 

preventable by vaccination, the incidence is increasing in the last years and is 

becoming a health problem in Europe and Asia. Symptoms may range from 

mild meningitis to severe meningoencephalitis with or without paralysis. A 

post-encephalitic syndrome can develope in up to 50% of patients after acute 

tick-borne encephalitis (Bogovic & Strie, 2015).   

• Babesiosis is caused by protozoans belonging to the genus Babesia. It is 

considered an emerging parasitic tick-borne disease. More than 100 Babesia 

species have been described so far, but only B. microti, B. divergens and B. 

venatorum have been associated with human disease. The infection is often 

asympomatic or mild but it can lead to progressive and more severe illness in 

immunocompromised individuals. 

Effect of habitat alterations in tick populations and tick-borne infectious diseases. 

Tick populations are increasing due to habitat changes caused by multiple and 

interacting factors. The drivers of tick expansion can be divided into three groups: 

those related to changes in climate change, those involved in the distribution of tick 

hosts, and anthropogenically-induced changes. Climate change is rising the average 

surface temperatures on Earth, increasing rainfall, decreasing snow cover and 

extending vegetation. All these conditions make the periods in which ticks can be 

questing hosts, molting or reproducing longer and more productive, enhancing the 

survival of the species and its abundance. On the other hand, the effects of climate 

change can also be identified by the geographical distribution change of tick hosts, 

including the colonization of higher latitudes and altitudes and ticks are dispersing 

with them (Medlock et al., 2013). Also important are the changes induced by human 
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activity. In the last twenty years, urbanized areas have increased worldwide expanding 

outwards into wildlife areas (Fig. 1.5). Urbanization leads to the fragmentation of 

ecosystems and loss of biodiversity (Rizzolli et al., 2014), including predators for both 

ticks and their hosts. Another consequence of this invasion of the tick habitat is the 

development of new contact opportunities between humans and their pets with ticks 

(Uspensky, 2014) or with economically important and domesticated grazing animals 

like cows, sheep, goats or horses, making tick reservoirs increase. All of these factors 

improve the survival, development and reproduction of ticks. 

 

 

Figure 1.5. In the last twenty years, urbanized areas have increased worldwide 
expanding outwards into wildlife areas of ticks. Satellite images of the Great Bilbao area 
along the stuary of the river Nervion taken 20 years apart. The images show the expansion of 
the urban areas around the biggest city in the Basque Country. 

 

From conventional control measures to tick vaccines. Apart from the expensive, 

impractical and unfeasible culling of wildlife reservoirs, conventional control measures 

of ticks have been based for many years in the use of acaricides. However, the 

application of these compounds is becoming socially unacceptable due to their 

environmentally harmful effects, including the appearance of acaricide-resistance ticks 

and the contamination of meat and milk products with acaricide residues (Domingos et 

al., 2013; Gortazar et al., 2014). As an alternative, the use of tick vaccines might be a 
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cost-effective and environmentally friendly alternative to prevent problems associated 

with the use of acaricides. A commercially available vaccine for the control of cattle 

tick infestations by Rhipicephalus microplus has been used with success using the tick 

protective gut antigens, BM86 and BM95. The combination of antigens such as 

subolesin and BM86 has also been able to reduce R. microplus infestations in red deer 

and white-tailed deer with an overall efficacy of approximately 80% (Gortazar et al., 

2014; de la Fuente et al., 2016). The use of this anti-tick vaccine dramatically reduced 

the incidence of bovine babesiosis in cattle (Sprong et al., 2014). Because of the 

success in controlling this tick species and the related tick-borne diseases, vaccines are 

also being considered as an alternative for the control of human tick-borne diseases 

caused by the European castor bean tick I. ricinus (de la Fuente et al., 2016). Indeed, 

humans with hypersensitivity to ticks have a lower risk of contracting Lyme Disease 

(Burke et al., 2011).  Therefore, the identification of tick antigens that could be 

developed as vaccines can complement vaccination strategies for individual tick-borne 

infectious diseases (TBD). 

Vaccines for tick-borne diseases. Specific vaccines for some human TBDs are 

already available or still ongoing. For example, a highly effective inactivated vaccine 

for TBEV is accessible and licensed for use in Europe and Russia. However, 

protection requires multiple doses and frequent boosters to maintain the immunity 

against the virus and therefore, vaccination rates remain still very low in endemic areas 

(Rumyantsev et al., 2013). A vaccine against Lyme borreliosis is not currently 

available, even though a vaccine was licensed in the United States in 1998 against B. 

burgdorferi sensu stricto based on the lipidated form of the outer surface protein A 

(OspA). Nevertheless, the vaccine was removed from the market in 2002 due to poor 

sales and later unsubstantiated safety concerns (Šmit & Postma, 2016) even though it 

is still used in pets. The vaccine targeted a surface protein of the spirochete that is only 

expressed in the tick (de Silva et al., 1996), which required yearly boosts in order to 

maintain high circulating antibody titers. Even though there is extensive research 

seeking alternative vaccines against B. burgdorferi that target surface antigens 

expressed in the mammalian host, no single candidate has been clearly identified. On 

the other hand, no vaccines are currently available for HGA or Babesiosis. Therefore, 

there is a need to identify novel vaccine targets that protect against one or more TBDs. 
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Acquired host tick immunity. Usually, tick bites are unnoticeable; however, some 

individuals show sensitivity and develop local reactions around the bite area. These 

skin reactions to tick bites have also been known to occur in certain species of animals 

for over 75 years. In 1939, William Trager described a phenomenon that he called 

“tick immunity” (Trager, 1965). He observed that Dermatocentor variabilis ticks did 

not engorge efficiently on guinea pigs after several infestations. Tick immunity has 

been demonstrated in other species, including rabbits (Narasimhan et al., 2007) and 

may be responsible for the enhanced sensitivity observed in humans that perform 

activities with increased exposure to ticks, such as forestry workers. Noticeably, tick 

immunity has not been reproduced in mice, although one manuscript described this 

phenomenon in Balb/c mice (Borsky et al., 1994) , which, however, has not been 

replicated. The differential capacity of mammalian species to develop immunity 

against these arthropods may have ecological implications, since small rodents are 

important for the maintenance of ticks in Nature. 

Tick immunity affects the numbers of ticks feeding on the host, results in 

delayed time of engorgement, a reduction in tick weight, the inability of the tick to 

molt and decreased fecundity. Aside from the involvement of some cellular types - 

such as mast cells, basophils and eosinophils -, antibodies against tick proteins play an 

important role in tick immunity (Schuijt et al., 2011). Thus, passive transfer of tick 

immune sera mimics the effect on engorging ticks (Das et al., 2001; Whelen et 

al.,1993). Thus, the identification and characterization of the antigens that elicit this 

humoral response has been the subject of extensive investigation (Sprong et al., 2014; 

Schuijt et al., 2011). 

Tick salivary gland proteins as targets for anti-tick vaccines. The tick salivary 

gland is a multifunctional organ that is critical for the success and survival of ticks. It 

serves as an osmoregulatory instrument when the tick drops from the host, but during 

the period of time in which the tick is attached, salivary glands also play a crucial role. 

Salivary glands maintain the tick attached to the host, help the infection and the 

transmission of pathogens and facilitate their feeding from the blood meal by the 

introduction of tick saliva into the host (Bowman and Sauer, 2004). Therefore, tick 

saliva antigens are the first exposed to the mammalian host during feeding and they 

can be used as a vaccine targets (Juncadella & Anguita, 2009). Moreover, 
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immunization with salivary gland extracts is able to trigger anti-tick immune responses 

in laboratory animals (Hovius et al., 2008).  

Tick saliva. Tick saliva contains an array of functional proteins that support tick 

feeding. The discovery of the activities presented in tick saliva has been expanding 

from initial limited screening procedures, including its biochemical characterization 

(Valenzuela, 2004) or the use of antibodies from tick-immune animals (Narasinmhan 

et al., 2007) to more recently, high throughput screening technologies such as 

transcriptomics (NGS), proteomics (LC-MS/MS or RP-LC-MS/MS), multiple RNA 

interference (RNAi) screenings, capillary feeding, functional genomics approaches 

(Merino et al., 2013), protein arrays (Manzano-Román et al., 2012) or the use of Yeast 

Surface Display (YSD) expression libraries of tick cDNA probed with immune sera 

(Schuijt et al., 2011). Several studies have been performed using novel high-

throughput technologies in order to elucidate the characterization of salivary protein 

composition and gene expression dynamics (Chmelar et al., 2016). These technologies 

are contributing to elucidate the salivary family proteins that are the most represented 

across tick species, or regulated by feeding or the presence of specific pathogens. The 

most over-represented tick saliva family proteins in Ixodes ricinus during feeding are 

collagen-like proteins, Kunitz domain-containing proteins, basic tail proteins, 

Salp15/ixostatin family members, lipocalins, metalloproteases and several new 

proteins families of unknown function (Chmelar et al.,  2008; Kotsyfakis et al., 2015). 

However, very few studies have been performed in order to characterize the changes in 

gene expression induced by the presence of pathogens in the tick. For example, most 

studies have been focused on the interaction between Ixodes ticks cell lines and A. 

phagocitophillum and little is known about the genes involved in the immune response 

by I. ricinus to this pathogen (Alberdi et al., 2015; Ayllón et al., 2015). Some studies 

have, however, described changes in gene expression in TBEV-infected ticks (Villar et 

al., 2017) or B. burgdorferi (Cotté et al., 2014). In response to the infection by the 

spirochete, the upregulation of proteins used for protein synthesis, processing and cell 

defense was noted, while cytoskeleton proteins were downregulated. Nevertheless, 

new protective antigens need to be stablished to enhance vaccine efficacy for the 

control of TBDs (de la Fuente et al., 2016). 
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The functional characterization of salivary gland proteins is complicated in 

the absence of a complete annotated genome. Only around 67% of the non-repetitive 

sequences of the I. ricinus genome have been annotated (Cramaro et al., 2017), even 

though it has been sequenced (Cramaro et al., 2013). Currently, homology with 

annotated I. scapularis genes is being used to elucidate the function of I. ricinus 

proteins. The problem is compounded by the fact that the genes present in tick salivary 

glands are subjected to great evolutionary pressure, since these proteins are exposed to 

immunological responses by the host. Thus, transcriptomic analysis in ticks show that 

salivary gland gene expression is very diverse especially compared to hematophagous 

insects (Chmelar et al., 2012) and are evolving rapidly (Gulia-Nuss et al., 2016). For 

example, the I. scapularis genome is the richest source of Kunitz domain-containing 

proteins, while lipocalins (40 genes) and metalloproteases (34 genes) represent 

families with gene expansions in the I. scapularis genome (Gulia-Nuss et al., 2016). 

Despite these challenges, great advances have been made in the 

determination of the activities associated with these protein families that affect host 

homeostasis and immune responses. These include vasodilators, inhibitors of platelet 

aggregation and blood coagulation, inhibitors of angiogenesis, complement inhibitors, 

chemokine-binding proteins (or evasins) and modulators of immune cell function 

(Kazimírová & Štibrániová, 2013, Hovius et al., 2008). For example, Salp15, also 

presented in I. ricinus as Iric-1, inhibits the activation of CD4 T cells (Anguita et al., 

2002) and the production of pro-inflammatory cytokines by LPS-activated dendritic 

cells (Hovius et al., 2008). Among the proteins described in the transcriptomics and 

proteomics studies, only a few of them have been tested in animals as potential 

antigens to serve as a whole or in part of a tick vaccine. 

Specific recombinant tick antigens and their effect on ticks and pathogen 

transmission. 

1. BM86. Vaccines exist for the control of Rhipicephalus microplus cattle tick 

infestations since 1990. This vaccine is based on the midgut protein BM86 

from R. microplus and is able to reduce the number of ticks feeding in cows, 

their weight, the reproductive capacity of engorging female ticks as well as the 

incidence of babesiosis while also controling the transmission of A. marginale 

in regions where ticks are their main vector (Merino et al. 2013). Despite the 
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ability of the BM86-based vaccine to limit cattle tick infestations and pathogen 

transmission, the vaccine is not universally effective. In fact, homologues of 

this protein have been tested in other tick species. A negative effect on numbers 

of engorging ticks or on tick feeding has been shown in ticks such as R. 

annulatus, R. decoloratus, Hyalomma anatolicum, H. dromedarii, H. 

anatolicum and H. scupense. However, no effect has been observed in ticks 

such Amblyomma cajennense, A. variegatum or R. appendiculatus (Coumou et 

al. 2015). A BM86 ortholog-based vaccine is also innefective on I. ricinus 

feeding or oviposition (Coumou et al., 2015). Therefore, immunization with 

BM86 orthologues has varied effects across tick species (Merino et al., 2013). 

2. BM95. This glycoprotein is a BM86 homologue the also protects cattle against 

infestations, having a broader range of tick species effectiveness than BM86. 

Moreover, the combined immunization with BM86 and BM95 is able to induce 

longer lasting immune responses than BM86 alone (Schetters et al. 2016). 

3. 64TRP. 64TRP is a putative tick cement protein that plays a role in the 

attachment and feeding of ticks. It helps maintain the tick´s mouthparts 

attached to the host skin in both adult and immature stages of some tick 

species, including I. ricinus. This antigen induces a strong antibody response 

and delayed type hypersensitivity responses (Trimnel et al., 2005). Fed ticks in 

64TRP-immunized animal models show impaired attachment and feeding as 

well as cross-reaction with ‘concealed’ midgut antigens (Trimnel et al., 2002; 

Trimmel et al., 2005). Vaccination studies in mice prevented the transmission 

of TBEV by I. ricinus (Labuda et al., 2006), establishing that the transmission 

of this virus can be prevented by interfeering with the efficient feeding of ticks. 

4. Salp25D. This protein is expressed in salivary glands and midguts and has 

homology to peroxiredoxin antioxidants (Das et al., 2001). Immuniation with 

Salp25D reduced B. burgdorferi acquisition by I. scapularis in mice, 

suggesting that this antigen is involved in protecting the bacteria from reactive 

oxygen species produced by neutrophils. However, it did not affect 

transmission from the tick to the host (Narashimhan et al. 2007). 

5. The tick histamine release factor (tHRF). tHRF was first described in I. 

scapularis as secreted in the saliva. tHRF-silenced ticks by RNAi showed a 

decrease in tick feeding and B. burgdorferi transmission in mice. Active 
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immunization and passively transferred tHRF antiserum also protected against 

tick feeding and B. burdogferi infection in mice (Dai et al., 2010). 

6. Tick Salivary Lectin Pathway Inhibitor (TLSPI). TLSPI was characterized 

in I. scapularis by Schuijt and cols.: the protein is able to inhibit the 

complement cascade and therefore enhance the transmission of B. burgdorferi. 

Silenced ticks presented a significantly reduction in B. burgdorferi acquisition 

by nymphs and impaired its transmission to mice. However, immunization with 

the recombinant protein did not completely affect bacterial transmission from 

the tick to the host (Schuijt et al., 2011; Wagemarkers et al., 2016). 

7. Ferritins are iron reservoir proteins that maintain the homeostasis of iron during 

tick feeding. A common heavy chain type ferritin 2 has been recently 

characterized as a gut-specific protein released into the tick hemolymph, where it 

acts as an iron transporter (Hajdusek et al., 2009). The knockdown by RNAi and 

immunization with this protein reduced tick feeding, oviposition and fertility in I. 

ricinus, R. microplus and R. anulatus. 

8. TROSPA. The tick receptor in the midgut for B. burgdorferi OspA was 

identified by Pal and cols. in 2004 (Pal et al., 2004). Silencing TROSPA via 

RNA interference or the use of TROSPA antisera induced a reduction of B. 

burgdorferi attachment to the I. scapularis gut and therefore a reduction in the 

bacterial burden within the tick and in the transmission of the bacteria to the 

host (Pal et al., 2004). 

9. Serpins. This family of structurally related proteins regulates many important 

functions including coagulation, food digestion, inflammatory and immune 

responses (Mulenga et al., 2001). Immunization with a mixture of different 

serpins reduced the engorgement of the ticks after feeding, tick infestations and 

induced increased mortality of Haemaphysalis, Rhipicephalus and Theleria 

ticks (Imamura et al., 2005, 2006, 2008).  

10.  Subolesin (SUB). Subolesin was characterized from I. scapularis as an 

orhologue of insect and vertebrate akirins (AKR). SUB is involved in tick 

innate immune responses and multiple molecular pathways. Immunization with 

this antigen reduced tick infestations and the transmission of A. 

phagocytophillum, A. marginale, B. bigemina and B. burdogferi (de la Fuente 

et al., 2006b; Merino et al., 2011b; Bensaci et al., 2012). RNA interference of 

this gene presented contradictory results. It decreased tick innate immunity 
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resulting in higher infection levels, but also affected genes that are necessary 

and required for pathogen infection and multiplication (Zivkovic et al., 2010; 

de la Fuente et al., 2011). Vaccines combining epitopes from SUB/AKR 

protect against ticks, mosquito and sand fly infestations (Moreno-Cid et al., 

2013).  

11. Salp15 inhibits the activation of CD4 T cells (Anguita et al., 2002), 

complement activity (Schuijt et al., 2008), as well as dendritic cell function 

(Hovious et al., 2008). The salivary protein binds to B. burdogferi OspC (outer 

surface protein C) and protects the bacteria from antibody mediated killing 

facilitating the survival of the spirochete, pathogen transmission and host 

infection (Ramamoorthi et al., 2005; Dai et al., 2009). Salp15-immunized mice 

showed protection from infection with B. burgdorferi (Dai et al., 2009). 
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1.2. METHODS 

 

Tick capsule assembly. Before developing the final capsule design, several tests were 

performed from the original design provided by our collaborators at the ANTIDotE 

project. The capsules were assembled using the following materials: 5 ml syringes 

from BD (catalogue number:307731); 0.5 ml tubes with screwed caps (Axygen, SCT-

050-G) and 2 mm thick EVA foam sheets. A syringe was cut at the top just below the 

mark ‘BD’ (Fig. 1.6A). Then, the top, flat part of a screw cap of a 0.5 ml tube was 

eliminated (Fig. 1.6B) and inserted into the cut syringe (Fig. 1.6C). A piece of 2 mm 

EVA foam that fits the top of the cut syringe was attached to it with Pattex glue, 

forming the base of the capsule (Fig. 1.6D). A 0.5 ml tube was then cut below the 

ribbed rim and closed with an intact cap, as shown in Fig. 1.6E. This modified 

container would be used for maintaining the ticks before their attachment to the mice, 

keeping it closed with another screw cap (Fig. 1.6F). 

Tick capsule fitting. Six to 10-week-old Balb/c mice were anesthetized with 

isoflurane using an anesthesia machine (Fig. 1.6G). Then, they were placed on a 

heating pad to avoid heat loss introducing their head into a mouth piece attached to the 

anesthesia machine. The right-hand side flank was shaved with an electric trimmer 

before attaching the capsule, either with Pattex glue or tissue cement (Fig. 1.6H), 

carefully checking that the capsule does not impede the movement of the legs. 

Capsules were always attached to the mice 24 h before placing the ticks, 

since we observed that the fumes emanating from both Pattex glue or tissue cement 

would inhibit tick attachment (data not shown). 

I. ricinus ticks were placed on ice, counted and maintained inside the 

capsules until they were placed on the mice. In all the experiments, 10 nymphal ticks 

were used per mouse. To allow tick attachment, the capsules were gently tapped on a 

table. The screwed cap was then taken off and the tube was quickly screwed into the 

skin-attached capsule holding piece (Fig. 1.6I). 
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Figure 1.6. Tick capsule assembly and fitting. Panels A through F present the steps in the 
assembly of the tick chambers used throughout these studies. Mice were anesthetized by 
isoflurane in the gas chamber (GC) of the anesthesia machine. Then, mice were placed in a 
heating pad (HP) introducing their head into the mouth piece (MP) of the anesthesia machine. 
SF: Shaved flanks. BC: Bottom of the capsule. 
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Tick feeding. I. ricinus ticks were obtained through BEI Resources, in collaboration 

with the Centers for Disease Control and Prevention (CDC). Ticks were monitored 

after 2-3 h of attachment and daily for five days. Tick weight was measured upon 

detachment. The number of ticks that detached every day was also recorded. All the 

ticks were saved in order to examine their molting success after at least 4 weeks. All 

experiments were performed in 4 mice per group (40 ticks) and were performed at 

least twice. Data from both experiments were combined in order to apply statistical 

analysis to the results. 

Active and passive immunization studies. For active immunizations, the mice were 

immunized initially with 100 µg OVA (ovalbumin) or tHRF in aluminum hydroxide 

(Invivogen, USA) or Complete Freund’s adjuvant (CFA) as adjuvants. Mice were 

boosted two times more after the first immunization in aluminum hydroxide or 

Incomplete Freund’s adjuvant (IFA) (Sigma Chemical Co.), respectively, at two weeks 

intervals. The mice were injected subcutaneously into two different sites. The mice 

were bled at the beginning of the assay, at day 28 and at the end of the experiment to 

measure IgG titers against the proteins. 

For passive immunizations, mice were injected subcutaneously with 100 µl 

of sera in two different sites when the capsules were attached. The mice were injected 

again at the time of tick attachment. At sacrifice (5 days after tick attachment), the 

mice were bled for the detection of human and bovine antibodies in the murine serum. 

IgG titer measurement and detection. To measure IgG titers, purified soluble tHRF 

or OVA were coated overnight at 4 °C in 96-well plates, at a concentration of 0.5 

µg/ml in 0.1 M sodium bicarbonate buffer (pH 9.5). The wells were then blocked with 

PBS containing 1% fetal calf serum (FCS) for 1 h. Plates were washed and the sera 

were diluted in blocking solution and applied to the wells in triplicate at dilutions 

ranging from 1/1,000 to 1/128,000 and incubated at 4°C for 2 h. The plates were then 

washed, and biotinylated anti mouse IgG antibody (BD Pharmingen) diluted (1/1,000) 

in 1% FCS/PBS, was added. The plates were incubated at room temperature for 1 h, 

washed, and streptavidin/peroxidase (Invitrogen), diluted 1/1000 in blocking solution 

was added. The plates were then incubated at room temperature for 1 h, washed, 

incubated with a peroxidase substrate, and the optical density at 450 nm was recorded.  
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For the detection of human and bovine sera, 100-fold diluted sera were 

coated over-night at 4 °C in 0.1 M sodium bicarbonate buffer (pH 9.5) in 96-well 

plates. The plates were then washed and incubated at room temperature for 1 h with 

biotinylated anti-bovine or anti-human IgG at a 1/1,000 dilution (BD Pharmingen) in 

1% FCS/PBS. The plates were washed, and incubated with streptavidin/peroxidase and 

substrate, as before. The optical density at 450 nm was then recorded. 

Direct antigen immunoprecipitation. Control and immune calf sera IgG were 

purified using the Melon Gel IgG Spin Purification Kit (Thermo, USA), following the 

manufacturer´s protocol. Protein content was then measured in midgut and salivary 

gland lysates using the Pierce BCA Protein Assay Kit (Thermo, USA). The direct 

immunoprecipitation was performed using the Pierce Direct IP Kit (Thermo, USA) 

following the manufacturer’s instructions. Enrichment was carried out by incubation of 

100 µl of the AminoLink Plus Coupling Resin slurry with 20 µl purified sera that was 

immobilized onto the aldehyde-activated agarose resin at room temperature for two 

hours. One mg of the tissue lysates was added to each antibody-coupled resin in a spin 

column. The column was incubated with gentle shaking at 4 °C overnight to form 

antibody-antigen complexes. After several washes, the antigens were eluted in 100 µl 

and analyzed by SDS-PAGE. 

Tryptic digestion. SDS-PAGE bands of the immunoprecipitated antigens were cut 

and washed in milli-Q water. Reduction and alkylation were performed using 

ditiothreitol (10 mM DTT in 50 mM ammonium bicarbonate) at 56 ºC for 20 min, 

followed by iodoacetamide (50 mM iodoacetamide in 50 mM ammonium bicarbonate) 

for another 20 min in the dark. Gel pieces were dried and incubated with trypsin (12.5 

µg/ml in 50 mM ammonium bicarbonate) for 20 min on ice. After rehydration, the 

trypsin supernatant was discarded; Gel pieces were hydrated with 50 mM ammonium 

bicarbonate, and incubated overnight at 37 ºC. After digestion, acidic peptides were 

cleaned with 0.1% trifluoroacetic acid (TFA) and dried in an RVC2 25 speedvac 

concentrator (Christ). The peptides were resuspended in 10 µl 0.1% formic acid and 

sonicated for 5 min prior to analysis. 

LC-MS/MS analysis. Peptide separation was performed on a nanoACQUITY UPLC 

System (Waters) connected to an LTQ Orbitrap XL mass spectrometer (Thermo 

Electron) or a Synapt G2 Si (Waters). An aliquot of each sample was loaded onto a 
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Symmetry 300 C18 UPLC Trap column (180 µm x 20 mm, 5 µm (Waters). The 

precolumn was connected to a BEH130 C18 column, 75 µm x 200 mm, 1.7 µm 

(Waters), and equilibrated in 3% acetonitrile and 0.1% FA. Peptides were eluted 

directly into the nanoelectrospray capillary (Proxeon Biosystems) at 300 nl/min, using 

a 60 minute-linear gradient of 3–50% acetonitrile.   

The LTQ Orbitrap XL ETD automatically switched between MS and 

MS/MS acquisition in DDA mode. Full MS scan survey spectra (m/z 400–2,000) were 

acquired in the orbitrap with mass resolution of 30,000 at m/z 400. After each survey 

scan, the six most intense ions above 1,000 counts were sequentially subjected to 

collision-induced dissociation (CID) in the linear ion trap. Precursors with charge 

states of 2 and 3 were specifically selected for CID. Peptides were excluded from 

further analysis during 60 s using the dynamic exclusion feature. 

Data analysis. Searches were performed using the Mascot search engine v2.1 (Matrix 

Science) through Proteome Discoverer 1.4. (Thermo Electron). Carbamidomethylation 

of cysteines was set as fixed modification, and oxidation of methionines as variable 

modification, and 2 missed cleavages were allowed. Ten ppm of peptide mass 

tolerance and 0.5 Da fragment mass tolerance were used for Orbi acquisitions, whereas 

15 ppm peptide mass tolerance and 0.2 Da fragment mass tolerance were used for 

Synapt G2Si runs. Spectra were searched against the Uniprot/Swissprot database. A 

decoy search was carried out in order to estimate the false discovery rate (FDR). Only 

peptides with a false discovery rate < 1% were selected.  

Western blotting. For the validation or recognition of tick antigens by bovine immune 

sera, 5 µg of each extract or purified protein were boiled at 95 °C for 10 minutes, 

subjected to SDS-PAGE and transferred to a nitrocellulose membrane at 200 V for 1h. 

The membranes were blocked with 5% non-fat milk in Tris-buffered saline solution 

containing 0.01% Tween-20 (TBS-T). The membranes were immunoblotted with 

specific control and/or immune diluted bovine sera (1:500) at 4 °C overnight. 

Cloning and purification. The four proteins V5IFB6, A0A131YAQ2, V5HWD5, 

A0A0K8RQF1 were cloned by overlapping PCR from salivary gland cDNA and 

cloned as NcoI-SalI fragments into the pHIS-parallel 2 expression vector. Sequence-

confirmed clones of A0A0K8RQF1 were induced with 1 mM Isopropyl-β-D-
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thiogalactoside (IPTG) for 16 h at 20 °C in E. coli BL21 C41(DE3). The bacterial cells 

were then lysed and centrifuged. The expressed protein A0A0K8RQF1 was extracted 

from the inclusion bodies following the following protocol: the pellet was thoroughly 

homogenized in 50 mM Tris pH 8; 300 mM NaCl; 1 mM DTT; 2% Triton X-100 

followed by an incubation at 37 °C for 30 min. The sample was ultracentrifuged at 

96,000 xg for 30 min and the pellet was homogenized again in 50 mM Tris pH 8; 300 

mM NaCl; 1 mM DTT and incubated at 37 °C for 30 min. After a second 

ultracentrifugation, the pellet was homogenized in 50 mM Tris pH 8; 300 mM NaCl; 1 

mM DTT; 7 M urea. The denatured proteins were refolded by dialysis in PBS 

overnight with an intermediate exchange of buffer to a final concentration of 2 M urea. 

Statistical analysis. Results are presented as means ± SE, unless otherwise indicated. 

The differences in means between groups were tested using the Student´s T-test. 

Differences in antibody titers were assessed by a 2-way ANOVA. Differences in tick 

molting efficiencies were tested using the Fisher’s exact test. All calculations were 

made in GraphPad Prism, version 7. A p value < 0.05 was considered statistically 

significant. All experiments were performed at least 3 times. In vivo experiments 

consisted of groups of 4 mice and were performed at least twice. 

Ethics statement. All work involving animals was approved by the Institutional 

Animal Care and Use Committee (IACUC) at CIC bioGUNE and the competent 

authority (Diputación de Bizkaia). CIC bioGUNE animal facility is accredited by 

AAALAC Intl. All experiments were performed in accordance with European and 

Spanish guidelines and regulations. 
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1.3. RESULTS 

 
Establishment of the tick feeding system on mice. Mice have been routinely used to 

feed ticks for propagation of tick colonies (Embers et al. 2013), and for the study of 

tick-host-pathogen interactions (Smith et al. 2016) or the efficacy of vaccines (Dai et 

al. 2010). These studies require the attachment of all placed ticks, and therefore they 

are enclosed or retained in glued chambers or capsules (Coumou et al. 2015) 

mimicking the natural situation in which ticks are grouped together at localized sites 

(Randolph et a. 1997). Several laboratories use common adhesives to attach the 

capsules to the mouse skin, including Pattex (Fig. 1.7). However, in order to follow 

regulations regarding animal welfare stablished by the Association for Assessment and 

Accreditation of Laboratory Care Animal International (AAALAC) International, we 

tested tissue cement (Fig. 1.7) as an alternative, clinically accepted adhesive to attach 

the capsules to the mouse. After several tests to optimize the amount of tissue cement 

for the proper attachment of the capsule to the shaved flank of the mice, a test was 

performed to compare tick attachment and feeding when using both types of adhesives 

(Fig. 1.8). 

 

 

Figure 1.7. The two type of commercial adhesives tested for tick feeding efficiency. 

 

Four mice were used per group to which 10 ticks were placed within the 

capsule.  The results did not show any difference in the weight of the recovered ticks 

between both adhesives (Fig. 1.8). These preliminary experiments confirmed that the 

use of an appropriate veterinary-grade tissue adhesive results in the attachment and 

feeding of I. ricinus ticks. 
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Assessing the use of mice to test tick vaccines. We then proceeded to the 

immunization of mice with a known antigen originally described as protective against 

I. scapularis feeding. Tick Histamine Release Factor (tHRF) is secreted in the saliva 

and binds to host basophils stimulating the release of histamine. Immunization with I. 

scapularis tHRF reduced the efficiency of tick feeding. Therefore, we sought to 

address whether the I. ricinus variant would show the same protective effect (Dai et 

al., 2010). 

Using primers specific for I. scapularis tHRF, we cloned the I. ricinus 

ortholog in E. coli. Even though both orthologs differ in 11 nucleotides, a single 

mutation encode a non-synonymous substitution. Therefore, the amino acid sequences 

were almost identical, except for a conserved modification at amino acid 162 

(Val162Met) (Fig. 1.9A). The protein was cloned into the pHIS-parallel 2 expression 

vector with a HIS-tag added at the N-terminus to allow its purification by nickel 

affinity chromatography (Fig. 1.9B). The expressed protein was soluble and purified 

by affinity chromatography (Fig. 1.10). 

Once purified, we immunized groups of Balb/c mice and tested tick 

feeding parameters following the approach described in Fig. 1.11. The immunizations 

were performed with both aluminum hydroxide and CFA. Ovalbumin (OVA) was used 

as a control in both cases. 
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Figure 1.8. Tick weights upon feeding in mice to which the ticks 
capsules were attached with the two adhesives. The capsules were 
attached either with tissue cement (TC) or the commercial glue, 
Pattex (P). The circles represent the weight of individual recovered 
ticks until day 5 after attachment. 
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Figure 1.9. Alignment of the nucleotide and amino acid sequences of I. scapularis 
(IsHRF) and I. ricinus (IrHRF) tHRF orthologs. (A) Alignment of the nucleotide 
sequences. The sequence corresponding to the poly His tag attached to the N-terminus of the 
protein is highlighted in yellow. The synonymous substitutions between both orthologs are 
noted in green, while the unique non-synonymous substitution is marked in red. (B) Alignment 
of the amino acid sequences of both tHRF orthologs. The amino acid sequence corresponding 
to the vector (in yellow) and the incorporated HIS-tag (in blue) are noted. 

A 
 
IsHRF                                                      ----------------- 
IrHRF                                                      ATGTCGTACTACCATCA 
                                                                             
 
IsHRF           ------------------------------------------------------------ 
IrHRF           CCATCACCATCACGATTACGATATCCCAACGACCGAAAACCTGTATTTTCAGGGCGCCAT 
                                                                             
 
IsHRF           ----ATGCTGCTTTTCAAGGATATCTTGACCGGTGACGAGATGTTCACCGACTCGGTCAA 
IrHRF           GGGAATGCTGCTTTTCAAGGATATCTTGACCGGTGACGAGATGTTCACCGACTCGGTCAA 
                    ******************************************************** 
 
IsHRF           ATACAAGCTGGTGGATGACTGCATCTTCGAAATCGAGTGCGAGCACGTGACACGGAAGGT 
IrHRF           ATACAAGCTGGTGGATGACTGCATCTTCGAAATCGAGTGCGAGCACGTGACGCGCAAGGT 
                *************************************************** ** ***** 
 
IsHRF           GGGCGAGGTGGCGCTGGACGGCGCCAACCCATCTGCCGAGGAAGTGGAGGAGGGCACGGA 
IrHRF           GGGCGAGGTGGCGCTGGACGGTGCCAACCCATCTGCCGAGGAAGTGGAGGAGGGCACGGA 
                ********************* ************************************** 
 
IsHRF           GGAGGGCACAGAAAGCGGCCTGGACCTGGTGCTGAACATGCGCCTGGTGGAGACGGGTTT 
IrHRF           GGAGGGCACAGAGAGCGGCCTGGACCTGGTGTTGAACATGCGCCTGGTGGAGACGGGTTT 
                ************ ****************** **************************** 
 
IsHRF           CTCCAAGACGGACTACAAGAACTACCTCAAGACTTACACCAAGGCCCTGATGGACAAGTG 
IrHRF           CTCCAAGACAGACTACAAGAACTACCTCAAGACCTACACCAAGGCCCTGATGGACAAGTG 
                ********* *********************** ************************** 
 
IsHRF           GAAGGAGGATGGCAAGTCGGAGGCCGAGGTCAACGAGGCCAAGAGCAAGCTCACAGAGGC 
IrHRF           GAAGGAGGACGGCAAGTCGGAGGCCGAGGTCAACGAGGCCAAGAGCAAGCTCACCGAGGC 
                ********* ******************************************** ***** 
 
IsHRF           CGTCAAGAAGGTGCTGCCCAGGATTGGGGACATGCAGTTCTTCCTCGGAGAATCTTCCAA 
IrHRF           CGTCAAGAAGGTGCTGCCCAGGATCGGGGACATGCAGTTCTTCCTCGGAGAATCTTCCAA 
                ************************ *********************************** 
 
IsHRF           CCCCGACGGCATTGTTGCCCTCTTGGAGTACCGCCCGAACAAGAGCGGTGGCGAGACGCC 
IrHRF           CCCCGACGGCATTGTTGCCCTCTTGGAGTACCGCCCGAACAAGAGCGGTGGCGAGACGCC 
                ************************************************************ 
 
IsHRF           AGTCGTGATGTTCTTCAAGCACGGGCTCTTGGAAGAGAAGCAGTAA 
IrHRF           AGTCATGATGTTCTTCAAGCACGGGCTCTTGGAAGAGAAGCAGTAA 
                **** ***************************************** 
 
B 
 
IsHRF           ---------------------------MLLFKDILTGDEMFTDSVKYKLVDDCIFEIECE 
IrHRF           MSYYHHHHHHDYDIPTTENLYFQGAMGMLLFKDILTGDEMFTDSVKYKLVDDCIFEIECE 
                                           ********************************* 
 
IsHRF           HVTRKVGEVALDGANPSAEEVEEGTEEGTESGLDLVLNMRLVETGFSKTDYKNYLKTYTK 
IrHRF           HVTRKVGEVALDGANPSAEEVEEGTEEGTESGLDLVLNMRLVETGFSKTDYKNYLKTYTK 
                ************************************************************ 
 
IsHRF           ALMDKWKEDGKSEAEVNEAKSKLTEAVKKVLPRIGDMQFFLGESSNPDGIVALLEYRPNK 
IrHRF           ALMDKWKEDGKSEAEVNEAKSKLTEAVKKVLPRIGDMQFFLGESSNPDGIVALLEYRPNK 
                ************************************************************ 
 
IsHRF           SGGETPVVMFFKHGLLEEKQ 
IrHRF           SGGETPVMMFFKHGLLEEKQ 
                *******:************ 
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Figure 1.10. Production of I. ricinus tHRF in E. coli. Steps performed for the erichment of 
the protein using niquel affinity chromatography. The soluble fraction (2) was bound to a 
nickel resin, washed and eluted using 250mM of imidazol. 

 

 

 

Figure 1.11. Strategy for active immunization. Four Balb/c mice per group were immunized 
subcutaneously with 100 µg OVA or tHRF. Once the immunization was completed, 10 ticks 
were attached in each mouse and monitored for 5 days. At the end of the experiment the 
following parameters were measured: tick weight, dettachment time, engorgement efficiency 
and molting. 

 

When aluminum hydroxide was used, we performed a first immunization 

followed by two boosts at two weeks intervals. Mice were bled and antibody titers 

against tHRF were determined at days 0 and 28, as well as at the end of the experiment 

(Fig. 1.12A). Once the IgG response against tHRF was recorded after the third boost, 

10 ticks were placed in each mouse and parameters related to tick feeding were 

measured for 5 days (Fig. 1.12B,C,D,E): tick weight, attachment, engorgement time 

and molting.  In a second set of experiments, mice were immunized once with CFA 

followed by a single boost with IFA (incomplete Freund’s adjuvant), since antigen-

specific titers were high and similar to the immunization with aluminum hydroxide 
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(Fig. 1.13A). As in the previous assay, ticks were placed in mice and parameters 

related to tick feeding were measured over time. 

Immunization with aluminum hydroxide did not affect tick weights, 

feeding or molting efficiency (Fig. 1.12). Similar results were observed when the mice 

were immunized using CFA/IFA as adjuvants. (Fig. 1.13), except that a small but 

significant reduction in molting succes was observed in the tHRF-immunized group 

compared to the OVA-immunized, control group (Fig. 1.13E). 
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Figure 1.12. Tick feeding parameters in tHRF immunized mice using aluminium 
hydroxide as adjuvant. (A) IgG titers for OVA (control) and tHRF at the beginning of the 
assay (IgG d0), after the second boost (IgG d28) and at the end of the experiment (IgG dEnd). 
The curves represent the mean IgG response from  four mice. (B) Weights of ticks after 
feeding on tHRF- and OVA-immunized mice. (C) Percentage of ticks remaining attached 
throughout the experiment. (D) Percentage of fully engorged ticks recovered throughout the 
experiment. (E) Rate of success in molting. Percentage of molted ticks relative to those fully 
engorged. 
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t 

Figure 1.13 Tick feeding parameters in tHRF immunized mice using Freunds adjuvant. 
(A) IgG titers for OVA (control) and tHRF at the beginning of the assay (IgG d0), after the 
second boost (IgG d28) and at the end of the experiment (IgG dEnd). The curves represent the 
mean IgG response from  four mice. (B) Weights of ticks after feeding on tHRF- and OVA-
immunized mice. (C) Percentage of ticks remaining attached throughout the experiment. (D) 
Percentage of fully engorged ticks recovered throughout the experiment. (E) Rate of success in 
molting. Percentage of molted ticks relative to those fully engorged. * Fisher’s exact test, p < 
0.05. 
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Effect of passive immunization with human and bovine immune sera in tick 

feeding parameters in mice. We then tested a passive immunization strategy using 

sera obtained from humans that either had shown a local inflammatory response upon 

tick attachment or that had reported more than 20 tick bites per year, as well as sera 

obtained from cows immunized with combinations of tick extracts that had shown 

effect on the ability of ticks to subsequently feed. The sera used for these experiments 

are summarized in Fig. 1.14. 

 

Figure 1.14. Human and bovine tick immune antisera used for the passive immunization 
of mice. Human sera were obtained from forestry workers reporting a local inflammatory 
reaction at the site of tick bites (Redness) or more than 20 tick bites per year (>20TBY). 
Bovine sera were raised against whole tick homogenates, midgut or salivary gland extracts. 

 

First, we used human sera obtained from forestry workers that had 

developed a local inflammatory reaction to tick bites, indicated by redness on the bite 

site (RN sera), or reporting more than 20 tick bites per year (>20 sera). As control, we 

used sera obtained from clerical workers. Mice were passively immunized as described 

in figure 1.15. All the sera were provided by Dr. Joppe Hovius at Amsterdam Medical 

College from their collection and as part of the ANTIDotE project. 

Four Balb/c mice per group were passively immunized subcutaneously 

with control, RN or >20 TBY sera the day the tick capsules were attached and the 

following day, at the time of tick deposition. Parameters of tick feeding were measured 
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as before. Circulating human IgG were readily detected in the murine sera at the time 

of sacrifice (day 5 of feeding; Fig. 1.16A). However, no differences in tick feeding 

were observed regardless of the sera used (Fig. 1.16). 

 

Figure 1.15. Established strategy for passive immunization. Four Balb/c mice per group 
were immunized subcutaneously with 100 µl control or immune sera one day before and at the 
time of tick placement. Ticks were monitored during 5 days. At the end of the experiment the 
following parameters were measured: tick weight at dettachment, attachment period, 
engorgement time and molting success. 
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Figure 1.16. Effect of passive immunization with human sera on tick feeding parameters. 
(A) Human sera detection in mice. The bars represent the mean IgG response from four mice. 
(B) Tick weights at the time of dettachment. (C) Percentage of attached ticks throughout the 
experiment. (D) Percentage of the fully engorged ticks recovered throughout the course of the 
experiments. (E) Rate of success in molting. Percentage of molted ticks relative to the number 
of engorged ticks recovered. 
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Because the perception that humans have on their response to tick bites is 

subjective and not formal demonstration that tick immunity had occurred in these 

groups of workers, we also tested sera from cows that had been immunized with whole 

tick tissue homogenates, midgut extracts or salivary gland extracts. Active 

immunizations were performed by Dr. Ard Nijhof’s group in Berlin (a member in the 

European ANTIDotE project), and had shown the ability to reduce tick feeding success 

on cows (data not shown). In those immunization studies sera were collected before 

immunization (Control sera) or after two rounds of immunization using Montanide® 

as adjuvant. The groups of sera tested were: 

• Serum at day 0 before immunization (Control sera, a-ME d0, a-SGE d0) 

• Serum from whole tick tissue homogenate (TH) immunized cows (TH 

antisera). 

• Serum from midgut extract (ME) immunized cows (ME antisera, a-ME d68) 

• Serum from salivary gland extract (SGE) immunized cows (SGE antisera, a-

SGE d68) 

Mice were passively immunized as before (Fig. 1.15) and infested with 10 

ticks. Cow IgGs were detected in the murine sera at the end of the experiment (5 days 

post feeding; Figs. 1.17A, 1.18A). We found that the passive immunization with whole 

tick homonegate antisera reduced tick weights at dettachment (Fig. 1.17), while no 

other analyed parameters were affected (see Figs. 1.17).  On the other hand, the use of 

cow sera specific for tick SGE or ME did not replicate the effect observed in tick 

weights (Fig. 1.18). However, a small delay in tick dettachment was noted as a result 

of the use of anti-tick ME sera (Fig. 1.18). 

Overall, these results show that although some parameters associated with 

tick rejection can be replicated in mice upon immunization with antigens shown to be 

protective in other species, the murine model does not provide a robust system to 

thoroughly test anti-tick vaccines . These data also confirm that mice do not replicate 

features of tick immunity observed in other species, most predominantly guinea pigs 

and rabbits, but also those observed in immunized cows, and even under forced 

(immunization) conditions, the murine immune system does not develop strong anti-

tick effector mechanisms. 
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Figure 1.17. Effect of passive immunization with bovine sera raised against whole tick 
extracts. (A) Cow sera detection in mice. The bars represent the mean IgG response from four 
mice. (B) Tick weights at the time of dettachment. *, Student’s T test, p < 0.05. (C) Percentage 
of attached ticks throughout the experiment. (D) Percentage of the fully engorged ticks 
recovered throughout the course of the experiments. (E) Rate of success in molting. 
Percentage of molted ticks relative to the number of engorged ticks recovered. 
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E 

Figure 1.18. Effect of passive immunization with bovine sera raised against salivary 
gland (SGE) and midgut (ME) extracts. (A) Cow sera detection in control, SGE and ME 
immunized mice. The bars represent the mean IgG response from four mice. (B) Weights of 
ticks at the time of dettachment. (C) Percentage of attached ticks throughout the experiment. 
(D) Percentage of the fully engorged ticks recovered throughout the course of the experiments. 
*, Student’s T test Control vs. ME, p < 0.05. (E) Rate of success in molting. Percentage of 
molted ticks relative to the number of engorged ticks recovered. 
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Identification of tick vaccine antigens from cow hyperimmune sera. In order to 

determine the specificity of the bovine anti-tick sera used in the previous experiments, 

we immunoblotted midgut and salivary gland extracts using day 68 hyperimmune and 

day 0 control sera. Both sera showed specific recognition of proteins in SGE and ME 

extracts (Fig. 1.19). However, while the anti-SGE sera recognized a limited number of 

antigens, midgut antisera showed a wide range of proteins that were specifically 

recognized (Fig. 1.19). 

 

Figure 1.19. Reactivity of bovine sera against midgut and salivary gland extracts. Five µg 
of midgut (ME) and salivary gland (SGE) extracts were separated on SDS-PAGE and 
transferred to a nitrocellulose membrane. MG and SGE blots were tested using midgut antisera 
(a-ME d68) and salivary gland antisera (a-SGE d68), respectively. Pre-immune (d0) sera were 
used as controls. 

 

We then sought to identify the antigens recognized by the hyperimmune 

sera because we argued that either alone or in combination, they could provide 

protection against tick feeding upon immunization and therefore, serve as vaccine 

candidates. For this purpose, we implemented an approach based on the 

immunoprecipitation of the antigens contained in both SGE and MG extracts by their 

specific antisera, followed by the identification of the antigens by Mass Spectrometry 

(Fig. 1.20). 

Extract:														MG																																																	SGE				

Sera:													α-ME																																												α-SGE				

d0									d68																																	d0													d68	
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Figure 1.20. Outline of the experimental approach followed to identify antigens 
specifically recognized by MG and SGE bovine antisera. 

 

 

Figure 1.21. SDS-PAGE of the immunoprecipitated MG and SGE antigens. The gel was 
cut in slices as depicted, followed by in-gel protease digestion. 

 

The immunoprecipitation of the antigens contained in the midgut and 

salivary gland extracts was performed using a technique that allows the binding of 

several antibodies per bead and to minimize the co-elution of heavy and light chains of 

the antibodies, by their direct covalent binding to the beads. This prevents their elution, 
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obtaining therefore a solution containing only the specific antigens recognized by these 

antibodies. We performed four immunoprecipitations with the antibodies contained in 

these sera: a-ME d0, a-ME d68, a-SGE d0, a-SGE d68. 

The eluted immunoprecipitated proteins were ran in SDS-PAGE and the 

gels were excised as shown in Fig. 1.21. Slice number 3 was digested separately due to 

the higher density of bands. An in-gel tryptic digestion generated peptides that were 

separated by liquid chromatography and detected by mass spectrometry. The 

identification of the proteins was performed by Mascot software by comparing the 

peptides with those in the Uniprot/Swissprot database. The results of this analysis are 

summarized in Table 1.1. 
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For the selection of the new target antigens used to validate the 

immunoprecipitation assay, we first identified those specifically recognized by the 

hyperimmune sera. Then, we eliminated those proteins with housekeeping function, 

including ribosomal proteins, histones, etc. With the remaining list of proteins, we 

applied the following criteria in order to identify those of the highest interest: 

• Proteins that were annotated as secreted or extracellularly exposed. 

• Proteins with putative activities that could enhance our understanding of the 

relationship between the tick and the mammalian host. 

When applying these criteria, we selected the proteins shown in Table 1.2 

for furhter analysis. 

 

Table 1.2. Identification of specific midgut and salivary gland extracts 
immunoprecipiated by the specific bovine antisera. 

 

Following, there is a brief description of the four selected proteins, with 

the inclusion of some salient features identified by a preliminary in silico analysis. 

V5IFB6: beta integrin. The analysis of the sequence of this protein (Fig. 1.22) 

revealed the presence of two EGF repeats (Fig. 1.23), related to integrin-like proteins. 

Integrins are transmembrane proteins with extracellular domains involved in processes 

such as cell motility, survival, proliferation and differentiation (Barczyk et al., 2010). 

According to SignalP 4.1, the protein does not contain a signal peptide. However, the 

online tool HMMTOP (http://www.enzim.hu/hmmtop/) identified a transmembrane 

domain in aminoacids 693-713, predicting an extracellular N-terminal domain and an 

intracellular C-terminus. 

UNIPROT ID ORIGIN DESCRIPTION 

V5IFB6 Midgut Integrin beta (Fragment) 

A0A131YAQ2 Midgut Putative conserved secreted protein 

V5HWD5 Salivary Gland Putative metis5 protein 

A0A0K8RQF1 Salivary Gland Putative secreted protein (Fragment) 
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  1 SSCGECLRQP QCAWCTQQDF PRGLERCAPE KLLVDSGCSQ DAIENPQSKM IQETPLDKAG 

 61 SDVQLQPGKV RLALRQGAPQ TFTVRYRQAD DYPVDLYYLM DLTHSMKDHR DKVAELADDM 

121 VASMLNVTRN FRLGFGSFID KVVMPYVDTT PARLQNPCHD TQCAPPYGFH HQLPLTTNSS 

181 LFTETVSSAA LSGNLDNAEG GFDAIMQAIV CKEKIGWNER SRKILLFATD SIFHAAGDGL 

241 LGGIVRRNDE ECHLDQDGFY SESSDQDYPS LSQIVGVVQR SKINLIFAVP EGAYDVYRQL 

301 SAFIDGSSVG KLVGDSSNIV HLVRDQYYKI RSEVVLKDNA PWFLRVNYSS NCLSGTGAKN 

361 KQKTNACGGI RVGDEVEFQV SVELVNCPAD ASSHVFRISP VGVNEYVEVQ VEPICSCDCE 

421 APQRTETNSS RCNGRGSSAC GVCSCDPNFY GKQCECLDTE LQLHKALCQA SNSSTELCSN 

481 RGDCVCGECQ CYNPQGGGRV FGQWCQCDSF SCERDAESRV CGGPERGQCC GGECQCNSGW 

541 GGSACDCSTD TSTCVAPGDP AGRMCGGHGD CVCGACRCRA DAGGRYSGPF CQDCAACVGR 

601 CSEFRSCVQC TMFGSGEQSE KCRSECSKLN IVPVDKAEEA GPEERKCIFK DVDDCSFSFV 

661 YYYDENNEPV IEAQKTKECG KEALTWYIVG GVVGGIVIFG LLAVCIGRFL LYLKDKLEYE 

721 KFVKERKNAA WRLEMNPIFK EPVSEYRNPM YETGQPSTAG LSSGRS 

 

Figure 1.22. Amino acid sequence corresponding to the I. ricinus protein annotated as 
V5IFB6. The peptides identified by LC/MS are highlighted in green. A putative 
transmembrane domain is highlighted in blue 

 

 

 

Figure 1.23. Output of the ScanProsite webserver for the V5IFB6 sequence. The specific 
domains and their location on the amino acid sequence are noted. 
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A0A131YAQ2: putative conserved secreted protein. This protein (Fig. 1.24) 

contains two PAN/Apple domains (Fig. 1.25), known to be involved in the inhibition 

of blood coagulation. According to SignalP 4.1, the protein contains a signal peptide 

ranging from residues 1 through 24. 

   1 MRLTACLAAA VALTTLSVIE QSNGACDVRP KPGVKPKKYP DMLKVYENGY KLTAEINVEG 

  61 EKSTLFFHEY YSFDFKQGLL ELTYRGITTN ILYLHHTEEI FVFDNRSCVT FPITSPPKLI 

 121 SPLLLRWSSL FTGNNTIFGP SVLFLSPALN PAVRMTFQGS DEEVRGIQTI KWATCLKNSD 

 181 DPYEVYFVDK KWNYGYGTGK TIPLRVRHGK VVTDIMRMQP YVGDPEQKLK IPMFVGCQRL 

 241 ARGFPKPPNF DNIPMEFHSA LAFSNPTVNG QYSYTSHLDI IRDPVNNIFS HIFAPWNTGS 

 301 GKLDQQLSVL PETQTIFDVT NGIQYLKVPH YFGYEPFGRG KCYVSSRKDF RPVVQLPDNT 

 361 TLSLLDTIAP SYETLKNANY LGIHVVRNAP VHVYEIVTTN VPVSGAVFSH AVITYCYLVE 

 421 WVYPTFTSQR NLPIRVSMRA YSTNKNLKIP YFWFTANIHD ISTAMEELND KMNVMDCYDE 

 481 NEASYTWFQM GFPYTDMYEE FLRYSPQIKS KFLATFLRTT SLSPMRVPRV LVDITENMIY 

 541 VTSLILERPL LETDYDRKKN FDLKDHQLKF GVVTLDECLK ICSSADYPDC KAVAYCGASC 

 601 YTSSLSSGGV DAGIVKSTDC TTYIKNDLSK KRKLPLTRDA IRKVETAVKE SKFTFTVEDS 

 661 TTFVVATLVA ESTDDSLGSL SMTFRGDDRF GTPHSHRRDG EELDGFKTYS LKSRLLADVD 

 721 GAVDLGSYPL NDCADICRDR PDCQFFSSCL VDSQCVISTI PAQTSKWIEM KLQCSTFAKS 

 781 VKDNFELFSG ISLDVGARKA VMTINDEECA RLCMVETGFD CKSFDYCGQA KDMH 

 

Figure 1.24. Amino acid sequence corresponding to the I. ricinus protein annotated as 
V5IFB6. The peptide identified by LC/MS is highlighted in green. A putative signal peptide is 
highlighted in yellow. 

 

 

Figure 1.25. Output of the ScanProsite webserver corresponding to A0A131YAQ2. 

 

V5HWD5: putative metis5 protein. This protein (Fig. 1.26) is a putative 

metalloprotease. Metalloproteases are protein hydrolytic enzymes whose catalytic 

mechanism involves a metal ion (Hamin Neto et al., 2016). They are also known to act 

as anticoagulants and show fibrinolytic activity (Stibrániová & Kazimírová, 2013). 

According to SignalP 4.1, the sequence does not contain a signal peptide. 
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   1 MSSFAGVLTE DCFKVVSSQS YTFSKKPKPG TNWNLFPGKA WNKTFYCQKL HPQFLGVTGH 

  61 DHESYSPRCK LLCCPKYHRT CFVNDMADGM GCGGDKVCMR HVCARPGGHP TAPPRTTTTP 

 121 STTTTKTTTT RRRWRWTGLN RHRRPATKLL 

Figure 1.26. Amino acid sequence corresponding to the I. ricinus protein annotated as 
V5HWD5. The peptide identified by LC/MS is highlighted in green. 

 

A0A0K8RQF1: putative secreted protein. A BLAST search of this protein (Fig. 

1.27) revealed that it belongs to the Toll-like receptor family (Fig. 1.28). We argued 

that if indeed it is a secreted protein, it may function as a decoy receptor to prevent the 

activation of innate immune responses in mammalian cells. The protein also possesses 

a Leucine-rich repeat (LRR) motif at its C-terminus, which is characteristic of Toll like 

receptors (Fig. 1.27). However, the in silico analysis of the amino acid sequence 

predicted a transmembrane domain between amino acids 20 and 43, with an 

intracellular N-terminal domain and an extracellular C-terminus. On the other hand, 

SignalP 4.1 predicted a signal peptide spanning the first 40 amino acids. 

   1 IMNRRRSGRV FPASAASAKM FSAFFFKLSL LLLVASIVLS SPVCYDQESS NKYRCMNFTS 

  61 PDDFSEHVKP PILHQDLTFI VKNSRLSHLP TRAFAGVNVS VLEFDNVHLE PFTLQDENPF 

 121 AGLETTLRKV IFSEGSTVPE NWGLFANMLR LVTVRLSEIT NLNLTSGFNQ LPKSVRVITI 

 181 AFSTIGHVDE NWVSELENLE AVGIRHCDLL TXSRSMLPKP ALHLWRLDLY KNNLTSLPRD 

 241 FYR 

 
Figure 1.27. Amino acid sequence corresponding to the I. ricinus protein annotated as 
A0A0K8RQF1. The peptide identified by LC/MS is highlighted in green. A putative signal 
peptide is highlighted in yellow. The LRR motif is shaded in grey. 
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Figure 1.28. A0A0K8RQF1 is a TLR family member. Output of the Basic Local Alignment 
Search Tool (BLAST) of the National Center for Biotechnology Information (NCBI) 
webserver for A0A0K8RQF1 sequence. The two sequences show a homology of 52%. 

 

Initial validation of the immunoprecipitacion/proteomic identification of SGE 

and ME antigens. The four proteins identified as specifically recognized by bovine 

immune antisera were cloned into the pHIS-parallel2 expression vector for their 

subsequent purification. The validation of the immunoprecipitation was performed 

with the protein A0A0K8RQF1, which was produced and tested for the differential 

recognition of anti-SGE and day 0 antisera. A0A0K8RQF1 was cloned excluding the 

first 40 amino acids to avoid solubility problems. However, the protein remained in the 

insoluble cellular fraction after induction (Fig. 1.29A). Therefore, we proceeded to its 

extraction in the presence of urea and its refolding after solubilization (Fig. 1.29B). 

Then, we tested its differential recognition by the antisera by Western blotting. Figure 

1.29C shows that the protein A0A0K8RQF1 is specifically recognized by 

hyperimmune anti-SGE but not the control cow sera. These data confirm that 

A0A0K8RQF1 is a candidate antigen that could participate in the protective immune 

response observed in SGE-immunized cows. 
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Figure 1.29. Validation of A0A0K8RQF1 as an antigen specifically recognized by 
immune anti-SGE sera. (A) Insoluble (IF) and soluble (SF) fractions obtained after induction 
and E. coli cell lysis. (B) Refolding of A0A0K8RQF1. 1: soluble protein in buffer containing 7 
M urea. 2: intermediate refolding step in buffer containing 2 M urea. 3: refolded protein once 
the urea was completely removed. (C) Validation of the immunoprecipitation employed for the 
detection of new vaccine antigens. C: Control cow serum at day 0 (a-SGE d0). SGE: 
hyperimmune cow serum at day 68 (a-SGE d68). 
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1.4. DISCUSSION 

 

The mouse is a widely used animal model to study infectious diseases and 

the development of vaccine candidates. Besides the determination of the use of these 

animals as an appropriate model for human or veterinary pathologies, welfare 

considerations need to be taken into account (Neuhaus, 2017). The test of adhesives 

approved for veterinary use is required in order to prevent unwanted and unnecessary 

distress to the animals (Gargili et al.; 2007). Therefore, we tested the use of tissue 

cement as adhesive to attach the tick capsules to the shaved skin of the mice, in order 

to follow regulations regarding animal welfare stablished by the Association for 

Assessment and Acreditation of Laboratory Care Animal International (AAALAC). 

Our experiments provide both an improved capsule design as well as evidence that 

tissue cement is able to provide strong bonding capabilities that are durable along the 

life of the experiment (at least 5 days). Our initial tests also resulted in an improved 

tick attachment protocol that minimizes animal discomfort while providing consistent 

and robust results. 

The choice of an animal model is decisive in the development of human or 

veterinary vaccines. In this regard, the evaluation of the quantity and quality of the 

immune response against pathogens or parasites such as ticks is a critical step (Gerdts et 

al.; 2007). Previous results suggest that the utilization of the murine model is appropriate 

for vaccine assessment (Carpentier et al., 1996). Moreover, the use of small laboratory 

animals in vaccine evaluation has economic advantages (Lee et al., 2016), as well as other 

benefits including the availability of inbred, genetically defined strains, time and labor 

savings and easy handling (Lee et al., 2016; Gerds et al., 2007). The mouse model has 

been extensively used to study different aspects related to the relationship between ticks 

and mammalian hosts, including the design and test of vaccine candidates (Dai et al., 

2010; de la Fuente et al., 2006; Schuijt et al., 2011; Dai et al., 2009). However, albeit one 

study claimed that Balb/c mice develop immunity after several rounds of tick infestation 

(Wikel et al., 1997), it is widely believed that mice do not develop tick immunity. 

The immunization of mice with I. scapularis tHRF results in effects on tick 

feeding parameters (Dai et al., 2010) and we argued that this was an appropriate 

control to test whether its I. ricinus ortholog would induce the same effects against the 
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European tick. Our results, however, demonstrate that, regardless of the type of 

adjuvant used, mice are not able to mount a response that is able to significantly affect 

I. ricinus feeding, in spite of the almost complete homology between both orthologs. 

These results suggest that there are significant differences in the immune relationship 

stablished between mice and I. scapularis or I. ricinus ticks, which can result from the 

differential expression of tHRF or the participation of other antigens or 

immunomodulators with the host immune system. Further work will determine 

whether this is indeed the case. Mice are the natural tick hosts and the reservoir of the 

pathogens they transmit (Levine et al., 1985; Keesing et al. 2012; Hersh et al., 2012; 

Donoso-Mantke et al., 2011). Coevolutionary mechanisms have probably resulted in 

the mouse being unresponive to tick feeding, since they do not develop resistance to 

repeated infestations as other species do (Borsky et al., 1994) However, ticks can 

affect the murine immune response. For example, tick feeding results in the 

polarization of CD4 T cells toward a Th2 phenotype with a suppression of Th1 

lymphocyte activity (Schoeler et al., 2000; Ferreira and Silva, 1999; Mejri et al., 

2001), which seems to be advantageous for the survival of the ticks (Kaximírová & 

Iveta Štibrániová, 2013). 

Passive immunization also results in effects on I. scapularis feeding 

parameters (Dai et al., 2010; Brossard et al., 1979; Askenase et al., 1982) indicating that 

antibody mediated responses can thwart tick feeding. The specific mechanisms by which 

tick-specific antibodies affect the feeding process are not defined but can include 1) the 

blockade of essential tick functions during feeding, as it seems to be the case for tHRF 

(since passive immunization mimics the effects after silencing of the gene) (Dai et al., 

2010); 2) the perturbation of blood acquisition due to the formation of immune 

complexes; or 3) the activation of immune cells through the interaction of antibody-

antigen complexes with specific receptors. The last mechanism would also be important 

when considering the protective effect of antibodies in passive transfer experiments using 

sera from species other than mice. Some crossreactivity has been demonstrated between 

human antibodies and murine immunoglobulin receptors (Ober et al., 2001) and our 

results show that passive immunization with cow sera exert some effects over tick 

feeding. However, our results show that mice are in general not a suitable model to test 

anti-tick vaccines, regardless of the mechanism(s) of action responsible for protection and 

that the blockade of essential activities exerted by salivary proteins may not be sufficient 
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to elicit a rejection response under our experimental conditions, as has been reported by 

others (Dincer et al., 2006).  

As part of our implication in the ANTIDotE project (www.antidote-

fp7.org), we aim to identify vaccine candidates that can foil tick feeding and the 

transmission of tick-borne pathogens. As part of this approach, we pursued an 

approach combining immunoprecipitation and proteomics tools using sera that had 

been generated by our collaborators in immunized cows that had shown protection 

against tick feeding. Using this approach, we identified tick antigens that are currently 

being tested as candidates for tick vaccines, of which we validated the differential 

recognition by the bovine sera of one of them. Of the identified differentially 

recognized tick proteins, we chose 2 present in the salivary gland and 2 from the 

midgut, based on their extracellular exposure (either because they are transmembrane 

or putatively secreted) or because they represented activities of interest. The identified 

metalloprotease, the integrin and the A0A131YAQ2 secreted protein are predicted to 

have activities related to the prevention of blood coagulation. On the other hand, the 

protein annotated as A0A0K8RQF1 is described as a secreted protein, and shows high 

homology with Toll-like receptors, including those present in several species of ticks. 

This is, therefore, likely a protein that could form part of the tick immune response 

belonging to one of the three identified innate immune pathways that are present in 

arthropods (Buchon et al., 2014; Smith et al. 2016; Liu et al., 2012; Narasimhan et al., 

2014). In spite of being annotated as a secreted protein, an in silico analysis indicated 

the presence of an transmembrane domain, suggesting that it may act as a classic TLR. 

These results underscore the absence of a complete and accurate annotated genome 

and proteome for I. ricinus and advice that care must be taken assigning defined 

functions and cellular locations to the tick’s proteins. Overall, we describe here the 

identification of a putative, validated, antigen that is recognized by immune sera that is 

protective against tick feeding in cows and that could provide the basis for a new 

vaccine formulation of veterinary and perhaps, human, use. Further work will 

determine the protective effect elicited by vaccination with this and other recognized 

antigens identified in this work and in the larger work performed by the ANTIDotE 

consortium. 



 

  



 

 

 

 

 

 

 

CHAPTER 2 

THE IMMUNOSUPPRESSIVE EFFECT OF THE TICK PROTEIN, 

SALP15, IS LONG-LASTING AND PERSISTS IN A MURINE 

MODEL OF HEMATOPOIETIC TRANSPLANT 
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2.1. INTRODUCTION 

 
Salp15. The salivary protein of 15 kDa (Salp15) was 

identified from the salivary gland of I. scapularis ticks as 

one of several antigenic proteins recognized by tick-

immune guinea pigs (Das et al., 2001). A 408-bp gene 

encoding a 14.7 kDa protein with a signal sequence of 21 

amino acids was detected. In silico analysis of the amino 

acid sequence showed a weak homology with the active 

motif region of Inhibin A, a member of the TGFß 

superfamily (Anguita, 2002), suggesting that the protein 

may have immunomodulatory activity. Indeed, Salp15 

inhibits the proliferation of CD4 T cells by repressing the production of the autocrine 

growth factor IL-2. Salp15 interferes T Cell Receptor (TCR) (Fig. 2.1; Fig. 2.3) 

signaling, since at lower concentrations of anti-CD3e mAb or in the absence of co-

stimulation (Fig. 2.2), the production of IL-2 was still markedly affected (Anguita et 

al., 2002). Confocal microscopy localized Salp15 attached to CD4 T cells, but not CD8 

T cells. Further experiments showed that CD4 is the receptor for Salp15. Salp15 is able 

to impede the proper activation of the Src kinase Lck through the induction of a 

conformational change in CD4 that prevents the binding of Lck (Ashish et al., 2008). 

This results in the inhition of downstream signaling cascades, including Zap-70, the 

downstream effector enzyme PLCγ1, and other downstream early signaling 

intermediate components of T cell activation such as Vav1, Lat and CD3e. Salp15 also 

affected negatively lipid raft organization, actin reorganization and TCR-triggered 

Ca+2 fluxes from intracellular stores during the activation of CD4+ T cells. All these 

effects contribute to the diminished activation of regulatory elements that bind the 

proximal IL-2 promoter, including NF-kB and NF-AT and therefore, the inhibition of 

the expression of the il-2 gene and the production of the cytokine (Garg et al., 2006; 

Juncadella et al., 2007). 

 

 

Figure 2.1. Basic 
composition of the T Cell 
Receptor (TCR). 
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Figure 2.2. Activation of CD4 T cells The activation of CD4 T cells is mediated by two 
independent stimulations or signals: TCR stimulation and CD28 co-stimulation (A). When the 
TCR encounters with an antigen presented by an antigen presenting cell or APC, CD45 
dephosphorylate Lck initiating its kinase activity (B). In turn, CD4 co-receptor initiates its 
aproximation to TCR to interact with MHC class II molecule bringing Lck into close 
proximity to phosphorilate ITAMs (immunoreceptor tyrosine-based activation motif) (C) and 
originate the signal cascade that will finish with the production of IL-2 via TCR signaling 
pathway (see Fig 2.3). Adapted from Janeway Immunobiology (7th edition), 2008. 
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Figure 2.3. TCR signaling pathway Once ITAMs are phosphorylated on the cytosolic side 
of the TCR/CD3 by the tyrosine kinase Lck, the zeta-chain associated to the 70kDa tyrosine  
phosphoprotein kinase (Zap70) is recruited by ITAMs to the TCR/CD3 complex and is 
phosphorylated by Lck tyrosine kinase. This promotes the recruitment and phosphorylation of 
downstream intermediate components such as PLCy1, Vav, LAT, etc... The phosphorylation 
of PLCy1 results in the hydrolysis of PIP2 which act producing the second messengers DAG 
and IP3. DAG is necessary to promote the pathway that will finish with the production of the 
transcription factor NF-kB. IP3, in contrast, is the responsible of the release of Ca2+ from the 
ER, activating the entry of extracellular Ca2+ into cells via CRAC (Calcium Release-Activated 
Channels). In turn, calmodulin binds to the extracellular Ca2+ to mobilize calcineurin in order 
to promote the transcription of the autocrine growth factor IL-2 via the binding of NFAT to the 
promoter region of the gene il-2 (Modified imagen from cell signaling technology). 
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Use of Salp15 as immunotherapy. The described effects of Salp15 in CD4 T cells 

made the saliva protein an interesting candidate as a therapeutic agent in pathologies 

mediated by these cells. Fisrt, Salp15 was tested in a mouse model of allergic asthma. 

Salp15 prevented the development of ovalbumin-induced asthma (Paveglio et. al., 

2007), but once the disease was developed, the treatment with Salp15 was inefficient, 

suggesting that tick saliva protein does not affect memory or effector CD4+ T cells. 

Next, Salp15 was tested in experimental autoimmune encephalomyelitis (EAE), a 

mouse model for multiple sclerosis. However, treatment with the salivary protein 

resulted in increased pathology (Juncadella et al., 2010). Salp15 induced the 

differentiation of proinflammatory Th17 effector cells, suggesting that under strong 

TCR signals, Salp15 leads to a Th17 phenotype (Juncadella et al., 2009). 

Graft versus host disease. The previous results suggested that the use of Salp15 as a 

therapy could be restricted to diseases in which the activation of CD4 T cells is 

predictable, such as transplants. A common complication associated with allogeneic 

hematopoietic stem cell transplantation (HSCT) is the appearance of Graft-versus-host 

disease (GvHD). In the early 1950s experimental evidence showed that the inoculation 

of bone marrow or fetal spleen cells into irradiated animals could rescue the 

hematopoietic system (Jacobson et al., 1950; Lorenz et al. 1951). Soon, irradiation 

followed by transplantation was proposed as an approach to treat hematopoietic 

malignancies, such as leukemia (Barnes & Loutit, 1956). The first successful human 

bone marrow autologous transplant was performed in 1959 (Thomas et al., 1959) in 

identical twins. Later, allogeneic transplantations were proposed as an alternative 

approach to treat hematopoietic malignancies. Nowadays, the number of allogeneic 

transplants worldwide reaches around 400.000 per year (Gratwohl et al., 2015). 

Unfortunately, allogeneic transplants can lead to secondary pathologies including Graft 

versus Host Disease (GvHD). 

GvHD appears when donor T cells recognize as foreign the recipient 

antigens, including both human leukocyte (HLA) and minor histocompatibility 

antigens. GVHD appears in 50% of the transplants and causes death in 15% of the 

cases (Blazar et al., 2012). The induction of immunosuppression after HSCT can 

produce undesirable effects, even though it is usually effective. These include the 

inhibition of graft-versus-tumor effector cells (GvT) and the appearance of infections 
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and neoplasms (Blazar et al. 2012; Mikulska et al., 2009; Dykewicz et al., 2001; 

Akhtari et al., 2013; Friedman et al., 2013). The treatments used for the mitigation or 

elimination of this disease are ineffective and unspecific. In fact, pre-transplantation 

chemotherapy and radiotherapy treatments (conditioning) applied in these cases for the 

elimination of the cancer cells and the establishment of the transplanted cells can result 

in nonspecific inflammatory events, helping create the necessary conditions for the 

activation of donor T cells (Holler et al., 2004). After pre-transplantation conditioning, 

human GvHD is classically manifested first as acute GvHD (aGvHD), around 100 

days after transplantation and comprise the activation of antigen presenting cells by the 

conditioning regimen, the activation of alloreactive T and tissue destruction by the 

activated T cells. Typically, a chronic phase (cGvHD) develops around 2-5 years after 

transplantation. cGvHD occurs in 50% of long-term survivors and is still the leading 

cause of death in HSCT patients (Schroeder & DiPersio, 2011; Boieri et al., 2016). The 

clinical manifestations of cGvHD are comparable to an autoimmune syndrome, 

characterized by systemic fibrosis, autoantibody production, chronic inflammation and 

immune complex deposition in different tissues. Interestingly, therapies that prevent 

aGvHD do not decrease in general the occurrence of cGvHD (Lee, 2010). These 

therapies include the use of immunosuppressive drugs such as folic acid and/or 

calcineurin inhibitors, as well as cytokine antagonists, including TNF, IL-6 or IL-2. 

Other approaches target chemokines or chemokines receptors as well as co-stimulatory 

molecules including CD28, CD80 and CD86, among others. Cell therapy has also 

broadly been used as GvHD treatment, particularly mesenchymal stem cells and 

regulatory T cells (Boieri et al. 2016). However, despite the advances performed 

through preclinical modeling of GvHD in mice, many questions remain. Basic research 

using murine models of GvHD can therefore enhance our understanding of human 

GvHD and help design novel therapeutic approaches (Schroeder & DiPersio, 2011). 

Although several murine models of transplantation exist (Schroeder et al. 

2008; Chu et al., 2008), none recapitulates exactly the pathology observed in human 

transplantation. The dose and type of the T cell subsets influences the severity of the 

disease, but also the conditioning regimen as well as genetic disparities in the antigens 

expressed in MHC molecules or minor histocompatibility antigens (miHAs) 

(Schroeder & DiPersio, 2011). The following modified tables (Schroeder & DiPersio; 

2011) show the GvHD models that have been developed so far:   
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Because Salp15 is able to inhibit early T cell signaling events, we 

hypothesized that the protein could preclude the activation of CD4 T cells and induce a 

long-term unresponsive or anergic state after the exposure to the salivary protein. We 

used a murine model in which a transplant from pure strains is injected into the F1 

offspring, which does not require previous conditioning and results in mild episodes of 

acute GVHD followed by a period of chronic disease characterized by the production 

of autoantibodies (Tschetter et al., 2000). Our results show that Salp15 is able to 

change the transcriptional program of CD4 T cells during activation that nevertheless, 

fades over time and does not result in increased populations of anergic or regulatory T 

cells. However, the protein induces the upregulation of the ectoenzyme, CD73 on the 

surface of regulatory T cells, likely inducing increased production of the 

immunosuppressive molecule, adenosine. Overall, the activity of Salp15 is evident in a 

long-term transplantation murine model and prevents the deposition of immune 

complexes in the kidney, a hallmark of chronic GVHD. 

  



 

  



 

CHAPTER 2. THE IMMUNOSUPPRESSIVE EFFECT OF SALP15 

65 

2.2. METHODS 

 
Protein purification and labeling. Salp15 and an inactive deletion mutant lacking the 

last 20 aminoacids (Salp15D11) (Juncadella et al., 2010) were purified from 

Drosophila S2 cells, as described (Anguita et al., 2002). Protein labeling was 

performed using the Alexa Fluor® 488 Protein Labeling Kit (Thermo Fisher Scientific, 

Eugene, OR), following the manufacturer’s instructions. 

Cell purification and activation. CD4 T cells were purified from the spleens of 

C57BL/6 mice by negative selection using a CD4 T cell isolation Kit (Miltenyi Biotec, 

Bergisch Gladbach, GE) according to the manufacturer’s instructions. Purified CD4 T 

cells at the indicated concentrations were activated with 5 µg/ml of plate-bound anti-

CD3e and 1 µg/ml of soluble anti-CD28 (BD Biosciences, San Diego, CA) in the 

presence of Salp15 or Salp15DP11. Cells were incubated at 37ºC in TexMACS 

Medium (Miltenyi Biotec). 

Flow cytometry. Blood was extracted from the saphenous vein in the presence of 

EDTA and depleted of erythrocytes by hypotonic lysis. Whole splenocytes were 

isolated from immunized or GvHD mice by mechanical disruption followed by lysis of 

erythrocytes. The cells (106/ml) were incubated with Fc Block (anti-CD16/CD32; BD 

BioSciences) and labelled with fluorochrome-labeled antibodies against CD4, CD8, 

B220, CD69, Ly6C, F4/80, GR-1, CD25, CD11b, CD44, CD73, FR4, NRP1, Foxp3, 

CD93, IgM, CD23 (Miltenyi Biotec). To detect Salp15 binding to CD4 T cells, splenic 

purified CD4 T cells were labeled with Salp15-Alexa Fluor488 or Salp15ΔP11-Alexa 

Fluor488. 

Graft versus host disease murine model. Splenocytes were extracted from 8-week 

old C57BL/6 (H-2b) mice and 60 x 106/mouse were injected intraperitoneally into 

CB6F1 (H-2b,d) mice (Envigo, Gannat, France). The mice were treated with 50 µg of 

Salp15 by intraperitoneal injection starting the day of cell transfer and every other day 

until day 10. Blood was extracted from day 10 to day 80 at 10-days intervals. 

Erythrocytes were removed by hypotonic lysis and the cells were analyzed by flow 

cytometry. At sacrifice, kidneys were processed for histochemical evaluation. 
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Renal deposited IgG detection, PAS and HE. Kidneys were fixed in 10% neutral 

buffered formalin, dehydrated, embedded in paraffin and cut into 5µm thick sections. 

For histopathology, sections were hydrated and stained with hematoxylin – eosin (HE) 

or periodic acid-Schiff (PAS) according to standard protocols. For 

immunohistochemical analysis, tissue sections were subjected to antigen retrieval 

using protease K for 20 minutes at 37 ºC. After blocking, sections were incubated with 

primary antibody overnight. The slides were then sequentially incubated with DAB 

chromogen for 5 min, counterstained with Mayer’s hematoxylin and mounted for 

microscopy. Goat Anti-Mouse IgG-HRP Light chain specific (Jackson 

ImmunoResearch Laboratories) was used at 1/250 concentration as the primary 

antibody. Photographs were taken with an Axioimager A1 microscope and analyzed 

with Frida software (Gurel et al., 2008). 

RNAseq. Purified CD4 T cells from three mice were activated independently with 5 

µg/ml of plate-bound anti-CD3e and 1 µg/ml of soluble anti-CD28 (BD Bioscience) in 

the presence of 25 µg/ml of Salp15 or Salp15DP11 (control). Cells were incubated at 

37ºC in TexMACS Medium (Miltenyi Biotec) for 48 and 96h. RNA extraction was 

performed using the PureLink RNA Micro Scale Kit (Thermo Fisher Scientific) 

according to the manufacturer´s protocol. The quantity and quality of the RNAs were 

evaluated using the Qubit RNA Assay Kit (Invitrogen, Eugene, OR) and RNA Nano 

Chips in a 2100 Bioanalyzer (Agilent Technologies, Waldbronn, GE), respectively. 

Libraries for sequencing were prepared using the TruSeq RNA Sample Preparation Kit 

v2 (Illumina Inc, San Diego, CA) following the protocol provided by the 

manufacturer. Single-read, 50 nt sequencing of pooled libraries was carried out in a 

HiScanSQ platform (Illumina Inc.). 

The quality control of the sequenced samples was performed with 

FASTQC software (www.bioinformatics.babraham.ac.uk/projects/fastq). Reads were 

mapped against the mouse (mm10) reference genome by using the program Tophat 

(Trapnell et al., 2009) to account for spliced junctions. The resulting BAM alignment 

files for the samples were the input for the Differential Expression (DE) analysis, 

carried out by DESeq2 (Love et al., 2014), to detect differentially expressed genes 

among the different conditions. GO enrichment was tested using the ClusterProfiler 

(Yu et al., 2012) Bioconductor package and the Panther Database (Thomas et al., 
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2003). Transcriptomics data were also analyzed using QIAGEN´s Ingenuity Pathway 

Analysis (IPA, QIAGEN, Red Wood city, CA). 

Real-time RT-PCR. RNA was reverse transcribed using M-MLV reverse 

transcriptase (Thermo Fisher Scientific) and random hexamers. Real-time PCR was 

then performed using SYBR Green PCR Master Mix (Quanta Biosciences, Beverly, 

MA) on a QuantStudio 6 real-time PCR System (Thermo Fisher Scientific). Fold 

induction of the genes was calculated using the 2-DDCt	 method relative to the reference, 

previously validated genes, Rpl19 and Actb, as indicated. The primers used are listed 

below (Table 2.4): 

 

 

Table 2.4. Sequence of the Primers used for RNAseq validation by qRT-PCR.  

 

Determination of adenosine levels. The levels of adenosine were determined in the 

culture supernatants of activated CD4 T cells using the fluorometric adenosine assay 

kit (Abnova, Walnut, CA) following the methods provided by the manufacturer. 

Statistical analysis. Results are presented as means ± SE, unless otherwise stated. The 

differences in means between groups were tested using the Student´s T-test. 

Differences in antibody titers were assessed by a 2-way ANOVA. All calculations 

were made in GraphPad Prism, version 7. A p-value < 0.05 was considered statistically 

significant. All experiments were performed at least 3 times. In vivo experiments 

consisted of groups of 5 mice and were performed at least twice. 

Ethics statement. All work involving animals was approved by the Institutional 

Animal Care and Use Committee (IACUC) at CIC bioGUNE and the competent 
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authority (Diputación de Bizkaia). CIC bioGUNE animal facility is accredited by 

AAALAC Intl. All experiments were performed in accordance with European and 

Spanish guidelines and regulations. 

Data availability. The transcriptomic data are deposited under GEO accession number 

GSE98700. 
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2.3. RESULTS 

 
The effect of Salp15 on activating CD4 T cells is long-lasting. In order to determine 

whether the effect of Salp15 on the activation of CD4 T cells is sustained, we activated 

purified splenic CD4 T cells in the presence of the salivary protein for 2 days, followed 

by their extensive washing and re-stimulation for 2 more days. The production of IL-2 

was significantly reduced at both time points, including after 4 days of activation when 

Salp15 was no longer present (Fig. 2.4A). The longer-term effect of Salp15 could be 

due to its persistent binding to the surface of CD4 T cells. Thus, we determined the 

binding of Alexa Fluor488-labeled Salp15 as well as the inactive control (Salp15D11) 

by flow cytometry. Although both Salp15 and Salp15D11 bound to purified CD4 T 

cells, the deletion of the C-terminal peptide, P11, resulted in decreased binding (Fig. 

2.4B) in agreement with its reported lack of activity (Juncadella et al., 2010). 

Importantly, binding of Salp15 to CD4 T cells was detectable for up to 72h (Fig. 

2.4B), indicating a persistent ability of this protein to remain attached to CD4. 

 

A

B 

Figure 2.4. The effect of Salp15 on CD4 T cells is persistent. (A) IL-2 production by 
purified splenic CD4 T cells activated with anti-CD3/CD28 for 2 days in the presence of 50 
µg/ml of Salp15, washed and re-stimulated under the same conditions for another 48 h in the 
absence of the immunosuppressive protein. The results represent the average ± SE of one 
experiment in triplicate and are representative of 3 performed. (B) Binding of Salp15 or the C-
terminal deletion mutant, Salp15DP11 to purified CD4 T cells. The proteins were labeled with 
Alexa Fluor488 and tested for their binding for different time periods. The binding was assessed 
by flow cytometry. The shaded histogram represents unlabeled cells. The black histogram 
represents binding of Salp15∆P11. Color histograms represent binding of Salp15 at different 
time points (12, 24, 48 and 72 h). 
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In order to assess whether Salp15 could also exert long-term effects in 

vivo, we followed an immunization regime against ovalbumin and the unrelated 

protein, keyhole limpet hemocyanin (KLH). Groups of mice were immunized with 

ovalbumin in aluminum hydroxide in the absence or presence of Salp15 (day 0). Seven 

days later, the mice were boosted with ovalbumin under the same conditions. At day 

14, the mice in each group were subdivided and immunized with ovalbumin or KLH in 

the absence of Salp15. All the mice were sacrificed at day 21. Sera were then analyzed 

for the presence of ovalbumin- and KLH-specific IgG levels. As expected, ovalbumin-

specific IgG levels were significantly lower in mice that had received Salp15 in the 

first 2 immunizations (Fig. 2.5). In order to establish whether the effect of Salp15 was 

circumscribed to ovalbumin, we also determined sera IgG levels against KLH. Mice 

that had not been immunized with this antigen did not show KLH-specific IgG in the 

sera. Notably, the levels of KLH-specific IgG were high in those mice receiving the 

antigen, and significantly lower in those that had received two previous doses of 

Salp15, but not at the time of immunization with KLH (Fig. 2.5). These data show that 

the effect of Salp15 lasts beyond the treatment and can affect the response to unrelated 

antigens, such as KLH. 

 

 

Figure 2.5. Salp15 affects antibody generation in a persistent manner. Antibody titers 
specific for ovalbumin (left panel) and KLH (right panel) in mice immunized with the antigens 
as described in Methods and treated with 50 µg of Salp15 (S15OvaOva or S15OvaKLH) or 
left untreated (OvaOva or OvaKLH). Non-immunized mice served as controls (Naive). 
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To further address the long-term effect associated with the treatment with 

Salp15, we utilized a murine model of GvHD resulting from the adoptive transfer of 

spleen cells from B6 into unconditioned CB6 F1 mice (Tschetter et al., 2000). In this 

model of transplantation, the proliferation of drafted cells can be monitored in the 

blood and results in two different phases of the disease: an acute phase in which the 

transplanted cells proliferate, followed by a chronic phase predominantly characterized 

by symptomatology similar to autoimmune disease, including the deposition of IgG 

immune complex in the kidney (Tschetter et al., 2000). CB6 F1 mice were transplanted 

60 x 106 spleen cells and divided into two groups. One of the groups received 

intraperitoneal injections of Salp15 every other day for 10 days, while the control 

group received the same dose of Salp15DP11. Control animals showed a peak of 

parental cells at day 20 relative to the transplant, followed by a decline and another 

increase around 60 days post-transplant (Fig. 2.6). In contrast, the treatment with 

Salp15 during the first 10 days post transplantation resulted in a significantly reduced 

level of parental cells in the blood (Fig. 2.6). However, no effect was detected during 

the chronic phase of the disease. 

 

 

Figure 2.6. Long and short-term effect of 
Salp15 in a GvHD mouse model. Parental cell 
percentage during the acute and chronic phase of 
the disease under the treatment of Salp15 or its 
control, Salp15DP11. The acute phase comprises 
from the day 0 to day 30 and the chronic phase 
from day 30 to 80.  

 

We also analyzed the potential effect of the treatment with Salp15 on the 

pathology associated with this model at day 80 after transplantation. CB6 F1 mice 

transplanted with B6 splenocytes showed some disorganization in the glomerular 

basement membrane and tubular brush border of the kidney upon transplantation that 

was not affected by the treatment with Salp15 (Fig. 2.7A). However, immune complex 

deposition that was readily detected in the control-treated mice was significantly 
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reduced in the animals that had been treated with Salp15 (Fig. 2.7A, B). Overall, our 

results show that Salp15 has short-term and long-term effects during the development 

of immune responses that specifically affect the expansion of CD4 T cells and the 

production of antibodies. 

A B 

Figure 2.7. Long-term effect of Salp15 treatment of Immune complex deposition during 
GvDH. (A) Histological features of the kidneys of CB6F1 mice transplanted with B6 
splenocytes after 80 days. Kidney sections were stained with H&E (top panels), periodic acid 
schiff (PAS) staining (middle panels) and anti-mouse IgG immune complex deposition (lower 
panels). The scale bars represent 50 µm. (B) Assessment of IgG immune complex deposition 
scores in the kidneys of the transplanted mice by analysis of 5 different micrographs with the 
FriDA software package and averaged per section. The experiments in vivo were performed 
with groups of 5 mice and performed at least twice. 

 

Identification of transcriptional traits in activating CD4 T cells treated with 

Salp15. We then sought to determine the transcriptional signature of activated CD4 T 

cells for 48 and 96 hours with plate-bound anti-CD3 and soluble anti-CD28 in the 

presence of Salp15 or its control, Salp15ΔP11 (Fig. 2.8A). To allow the survival of the 

CD4 T cells throughout the activation process, a low dose of Salp15 (25 µg/ml) was 

used. This dose reduced the activation of CD4 T cells (Fig. 2.8A) without significant 

cell death at 4 days post-activation (data not shown). Principal component analysis 

(PCA) showed a distinct pattern of gene expression in control activated cells over the 
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the PCA at 2 days of activation, while the differences faded when the transcriptome 

was analyzed after 4 days of activation (Fig. 2.8B). 

A B 

Figure 2.8. Transcriptional traits of CD4 T cells activated in the presence of Salp15. (A) 
IL-2 production by CD4 T cells used for the transcriptomic analysis. Each bar represents one 
of the 3 mice used. The amount of Salp15 used was 25 µg/ml. Control cells were treated with 
Salp15DP11 (Control). (B) Principal component analysis showing the grouping of the different 
assay conditions according to their transcriptome. Non-activated cells (Naive, grey); 
Salp15DP11-treated at 2 days (C 2d, orange) or 4 days of activation (C 4d, red); Salp15-treated 
at 2 days (S15 2d, light blue) or 4 days (S15 4d, dark blue). 

 

These differences were also noticeable when the 1,000 most regulated 

genes were analyzed, with maximal differences between Salp15-treated and control 

activated CD4 T cells at 2 days and more discrete differences when analyzed at 4 days 

of activation (Fig. 2.9A). The activation of CD4 T cells under control conditions 

revealed 2382 genes upregulated and 2848 genes downregulated at 2 days of activation 

(Fig. 2.8B), while 1882 genes were upregulated and 1841 genes downregulated after 4 

days of activation, using a cut-off value of 1 log2fold change and an adjusted p-value < 

0.05 (Fig. 2.8B). Of these genes, 1245 were upregulated at both 2d and 4d of 

activation, 1601 were downregulated at both time points and 40 were regulated in 

opposite directions (Fig. 2.8D). Using the same cut-off values, we found 154 genes 

upregulated as a consequence of the presence of Salp15 during activation at 2d while 

only 1 gene was downregulated (Fig. 2.8C). Notably, the number of genes regulated at 

4d of activation in the presence of Salp15 was dramatically reduced to 5 genes 

upregulated and just 1 (Il10) downregulated (Fig. 2.8E). Selected transcriptional 

changes were validated as shown in Fig. 2.10. 
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Figure 2.9. Transcriptional changes induced by Salp15 on activating CD4 T cells. (A) 
Heatmap corresponding to the 1,000 most regulated genes over the conditions analyzed by 
RNAseq. (B) Volcano plots showing the genes upregulated (red) or downregulated (blue) by 
activation with anti-CD3e and CD28 at 2 (left) and 4 days (right) of stimulation. (C) Volcano 
plot showing the number of genes differentially regulated during the activation of CD4 T cells 
in the presence of Salp15 or Salp15DP11 (control) after 2 days of stimulation (D) Venn 
diagram showing the number of genes regulated at both 2 and 4 days of activation in the 
absence of Salp15. (E) Heatmap of the genes regulated in the presence of Salp15 at 4 days of 
activation. 
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Figure 2.10. (previous page) Validation of the RNAseq on selected genes. Normalized 
reads (top) and fold induction changes by qRT-PCR (bottom) of a group of selected genes 
differentially regulated in CD4 T cells activated with anti-CD3/CD28 for 2 days in the 
presence of Salp15 (S) or Salp15DP11 (C). U: Non-stimulated CD4 T cells. 

 

Salp15 affects CD4 T cell genes early during the activation process. The activation 

of CD4 T cells produced the expected profile, involving genes such as Il2, Cd44 or 

IL2ra (Fig. 2.11A). Gene ontology analysis of Biological Processes (GOBP) revealed 

that the most over-represented groups included genes related to leukocyte cell-cell 

adhesion and aggregation or T cell activation, among other immune-related processes 

(Fig. 2.11B). As expected, the presence of Salp15 induced a reduction of Il2 gene 

expression and the production of IL-2 at 2 days of activation (Fig. 2.11A, C, D; see 

also Fig. 2.8A). Furthermore, the activation marker CD44 was significantly reduced 

both at the gene expression level (Fig. 2.11A, E, F), by surface analysis of the protein 

by flow cytometry in in vitro activated CD4 T cells (Fig. 2.11G), and in vivo in the 

spleens of ovalbumin-immunized mice at day 7 post-immunization (Fig. 2.11H). 

Although the effect of Salp15 on Il2ra expression was not evident at this concentration 

(25 µg/ml, Fig. 2.11J), the analysis of CD25 on the surface of 2-day activated CD4 T 

cells revealed decreased levels of the protein in the presence of this dose of Salp15 

(Fig. 2.11K).  
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Figure 2.11. (previous page) Salp15 affects CD4 T cell genes early during the activation 
process. (A) Heatmap of the activation markers of CD4 T cells regulated in the presence of 
Salp15 at 2 and 4 days of activation. (B) Biological processes significantly regulated by the 
treatment of Salp15. (C) Normalized reads and (D) fold induction of il2 gene by qRT-PCR in 
activated CD4 T cells. (E) Normalized reads and (F) fold induction of cd44 gene by qRT-PCR 
in activated CD4 T cells. (G) Flow cytometry showing the expression of CD44 in activated 
CD4 T cells under the treatment with Sap15 or its control, Salp15DP11. The grey histogram 
represents the unstained control. (H) Percentage of CD4+CD44+ in vivo in the spleens of 
ovalbumin immunized mice at day 7 post-immunization under the treatment with Sap15 or its 
control, Salp15DP11 (I) Heatmap representing the genes associated with CD4 T cell 
differentiation according to the transcriptomic analysis in the presence of Salp15 (S) or 
Salp15DP11 (C) at 2 and 4 days of activation. (J) Normalized reads of cd44 gene by qRT-PCR 
(K) Flow cytometry showing the expression of CD25 in activated CD4 T cells under the 
treatment with Sap15 or its control, Salp15DP11. The grey histogram represents the unstained 
control. (L) Ovalbumin/KLH-immunized mice (see Materials an Methods) were sacrificed at 
day 21 and whole splenocytes (3 x 106/ml) were re-stimulated with ovalbumin (Ova) or KLH. 
The re-stimulation supernatants were analyzed for IFN-g and IL-4 by capture ELISA. The 
levels of IFN-g were below the detection limit. No differences were observed between Salp15- 
or Salp15DP11 (control)-treated, immunized mice (p > 0.05, 2-way ANOVA). The data 
represent 10 mice in each group immunized with ovalbumin and 5 per group with KLH and 
are representative of 2 independent experiments. 

 

Salp15 induces the expression of 5’-ectonucleotidase (CD73) in regulatory T cells. 

The repressed activation of CD4 T cells in the presence of Salp15 could result in the 

induction of anergy. We therefore analyzed the expression levels of genes associated 

with this phenomenon in CD4 T cells, including Satb1, Cd7, Rap1a, Itch, Rnf128, 

Dtx1, Izumo1r, Cblb, Dgka (Lechner et al., 2001), Nr4a1 or Pdcd1 (Kalekar et al., 

2016). Salp15 induced small and inconsistent changes in these genes (Fig. 2.12A, 

Table 2.2), suggesting that this protein does not induce anergy in CD4 T cells. In order 

to confirm these results, we analyzed by flow cytometry markers of anergy in CD4 T 

cells that were activated in vitro in the presence of Salp15. The percentage of 

CD4+FoxP3-CD44highCD73highFR4high (Kalekar et al., 2016) cells increased upon CD4 

T cell activation but remained as low as in naive cells in the presence of Salp15 (Fig. 

2.12B). Furthermore, the analysis of anergic CD4 T cells in mice either immunized 

with ovalbumin (Table 2.3) or induced GvHD (Table 2.4) showed no effect on this 

population as a consequence of the treatment with Salp15. Similarly, the treatment 

with Salp15 did not result in the generation of a significant anergic B cell population 

or increased the pool of monocytic myeloid suppressor cells (Table 2.3). These data 

confirm that Salp15 act as an immunosuppressor on CD4 T cells that depends on its 
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interaction with CD4 and that does not induce a long-term anergic state in T or B cells, 

nor the generation of myeloid suppressor cells. 

 

Table 2.2. Differential expression of genes associated with CD4 T cell differentiation, 
anergy and regulatory T cells. 

Log 2 FI Adj.	p-value Log 2 FI Adj.	p-value

Tbx21 -0,310 0,004 0,305 0,011
Ifng -0,292 0,014 0,496 0,003
Gata3 0,418 0,002 0,191 0,461
Maf 0,561 0,008 -0,191 0,575
Il4 0,602 0,012 0,903 5,44E-07
Rorc 0,321 0,254 0,282 0,342
Il17a 0,018 0,959 0,084 0,813

Satb1 0,304 0,012 0,002 0,997
Cd7 0,750 0,001 0,166 NA
Rap1a 0,030 0,894 -0,223 0,116
Itch 0,087 0,613 -0,065 0,816
Rnf128 -0,077 0,858 -0,321 0,186
Dtx1 -0,039 0,908 0,047 0,921
Izumo1r -0,090 0,573 -0,251 0,094
Cblb -0,403 8,40E-06 -0,656 3,74E-07
Dgka 0,282 0,001 -0,215 0,114

Foxp3 0,815 7,85E-09 -0,352 0,095
Ctla4 0,109 0,535 -0,691 1,19E-07
Nrp1 0,048 0,859 0,015 0,975
Pdcd1 -0,568 3,90E-11 0,144 0,612
Lag3 -0,721 1,81E-11 -0,540 5,44E-07
Havcr2 -0,166 0,668 -0,177 0,620
Lrrc32 0,527 0,044 -0,268 0,345
Tgfb1 -0,148 0,197 -0,164 0,473
Ikzf2 0,438 0,117 -0,558 0,00027
Il7r 1,504 6,21E-15 -0,040 0,914
Entpd1 0,402 0,163 -0,004 0,995

Il10 -0,236 0,492 -1,069 4,01E-10
Eomes 0,136 0,477 -0,193 0,351
Il2rb 0,171 0,367 -0,069 0,808
Itga4 0,536 0,027 -0,260 0,178
Itgb7 -0,578 1,78E-06 0,047 0,878
Ly6c1 0,200 0,233 -0,190 0,511
Tigit -0,387 0,001 -0,500 0,001

Regulatory	T	cells

Type	1	Regulatory	T	cells

S2D	vs.	C2D S4D	vs.	C4D
Gene	

CD4	T	cell	differentiation

Anergy
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Figure 2.12. Salp15 does not induce genes associated with either anergy nor regulatory T 
cells. (A) Heatmap of the genes associated with anergy in activated CD4 T cells in the presence of 
Salp15 at 2 and 4 days of activation. (B) Percentage of FoxP3+CD44+FR4+ in activated CD4 T 
cells in the presence of Salp15 at 2 days of in vitro activation. (C) Heatmap of the specific 
markers of regulatory T cells in activated CD4 T cells in the presence of Salp15 at 2 and 4 days of 
activation. (D) Percentage of regulatory T cells in mice immunized with ovalbumin in the 
presence of Salp15. 

 

The transcriptomic data also helped us elucidate whether activated CD4 T 

cells in the presence of Salp15 acquired specific markers of regulatory T cells, such as 

Foxp3, Ctla4, Nrp1, Pdcd1, Lag3, Havcr2, Lrrc32, Tgfb1, Ikzf2, Il7r or Entpd1 

(Chaudhary et al., 2014; Elkord et al., 2015). No major differences were found 

between controls and CD4 T cells activated in the presence of Salp15 (Fig. 2.12C, 

Table 2.2). Moreover, the analysis of FoxP3-positive cells after 4 days of activation in 

vitro did not show changes in the percentage of Tregs associated with the presence of 

Salp15 (Fig. 2.12B). The effect of Salp15 on the pool of Tregs in vivo was also 

negligible in mice that had been immunized with ovalbumin (Fig. 2.12D). 

Furthermore, the analysis of FoxP3-positive CD4 T cells in the peripheral blood of 

CB6 F1 mice transplanted with B6 splenocytes did not show differences associated 

with the treatment with Salp15 throughout the life of the experiment (Table 2.4). 

Similar results were found when we analyzed the expression of Nrp1 on CD4 T cells, 
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another marker of regulatory T cells (Table 2.3) (Bruder et al., 2004). The analysis of 

type 1 regulatory T (Tr1) cells markers, including Il10, Eomes, Il2rb, Itga4, Itgb7, 

Ly6c1 or Tigit (Zhang et al., 2017), showed that Salp15 does not induce the generation 

of these cells, although Il10 expression levels were significantly reduced in the 

presence of the salivary protein at 4 days of activation (Table 2.2). These results 

demonstrate that the treatment with Salp15 does not result in the generation of a 

population of regulatory T cells that could account for long-term immunomodulatory 

effects. 

 

 

Figure 2.13. Salp15 does not induce genes associated with either anergy nor regulatory T 
cells. (A) Normalized reads of cd44 gene by qRT-PCR in CD4 T cells in the presence of Salp15 
at 2 and 4 days of activation. (B) Flow cytometry showing the expression of CD25 in activated 
CD4 T in vitro cells under the treatment with Sap15 or its control, Salp15DP11. The grey 
histogram represents the unstained control. (C) Levels of adenosine of three different mice. In 
vitro activated CD4 T cells under the treatment with Sap15 or its control, Salp15DP11. (D) 
Percentage of the population CD4+FoxP3+CD73high at day 50 post-transplant under the treatment 
with Sap15 or its control, Salp15DP11 
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We then addressed whether the treatment with Salp15 would impact the 

activity rather than the size of the Treg population. The ectoenzyme CD73 is expressed 

by Tregs and mediates the production of adenosine, an immunosuppressive molecule 

on T cells (Ehrentraut et al., 2013; Wang et al., 2013; Whitehill et al., 2016). We 

observed that expression levels of Nt5e (which encodes CD73) were increased upon 

the treatment of CD4 T cells with Salp15 (Fig. 2.13A). Therefore, we determined the 

expression levels of CD73 on the surface of FoxP3-positive cells. We found that the 

activation of CD4 T cells in vitro in the presence of Salp15 resulted in a significant 

increase in the surface expression of CD73 (Fig. 2.13B). Furthermore, the levels of 

adenosine increased upon the treatment of activating CD4 T cells with Salp15 (Fig. 

2.13C). Importantly, we observed an increase in a population of CD4+FoxP3+CD73high 

in the blood of mice that have been induced GvHD at day 50 post-transplant (Fig. 

2.13D). Overall, our results show that Salp15 is able to induce long-term effects on 

activating CD4 T cells that involve, at least in part, the increased expression and 

activity of CD73 on regulatory T cells.  

 

Table 2.3. Cell populations in blood and spleen of mice immunized with ovalbumin (O) and 
treated with Salp15 (S) or the control protein (D). All comparisons between Control vs. 
Salp15, p > 0.05 n = 5 mice per group. The gating strategies are shown in Fig. 2.14. 
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2.4. DISCUSSION 

 
The tick salivary protein Salp15 inhibits early CD4 T cell signaling events 

and, in consequence, their activation. The activity of Salp15 on CD4 T cells is well-

characterized (Anguita et al., 2002; Garg et al., 2006; Kalekar et al., 2016). Both in 

vitro and in vivo, this protein is able to prevent a full activation program on these 

immune cells (Juncadella and Anguita, 2009). The fate of CD4 T cells affected by the 

activity of Salp15 is not known. They could become permanently unable to respond to 

antigen or, alternatively, revert to a state in which they are amenable to become 

activated when antigen is present again. Here, we show that the presence of Salp15 

during the activation of CD4 T cells results in long-term effects that affect their 

encounter with new antigens. Using transcriptomics, two models of CD4 T cell 

activation in vivo and the polyclonal activation of these cells in vitro, we show that 

whereas Salp15 does not affect the generation of anergic CD4 T cells or Tregs, it 

induces the increased expression of the ectoenzyme, CD73, in Foxp3+ regulatory T 

cells. This effect results in an elevated production of adenosine, a known 

immunomosuppressive molecule produced by Tregs (Ohta and Sitkovsky, 2001; 

Sitkovsky et al., 2004). 

Treatment with Tregs has been proposed as an appropriate therapy for 

GvHD and other immune disorders (Fessler et al., 2013; Trzonkowski et al., 2013). In 

fact, several biological agents, including CTLA4 fusion proteins or anti-TNF 

antibodies (Fessler et al., 2013), have the ability to either induce an increase in number 

or the activity of Tregs. Treg function involves CD73 activity and other mechanisms of 

action (Kalekar and Mueller, 2017; Rueda et al., 2016). Indeed, the importance of 

CD73 activity has been studied in a murine model of GvDH, demonstrating that the 

ectonuclease helps control the disease (Wang et al., 2013). The conversion of 5´-AMP 

to adenosine mediated by CD73 in Tregs has been broadly described (Yegutkin, 2008). 

The anti-inflammatory effect of adenosine present in the pericellular 

microenvironment results in the suppression of proliferation of effector CD4 T cells 

and the reduction of cytokine production (Kobie et al., 2006). Indeed, we found that 

the levels of this molecule were increased in in vitro assays of CD4 T cell activation in 

the presence of Salp15. The capacity of Salp15 to increase Nt5e transcription and the 
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upregulation of CD73 on the surface of FoxP3+ T cells can therefore help explain the 

long-lasting effects elicited by Salp15. Future studies will determine whether the 

absence of CD73 on Tregs can indeed suppress the long-term immunomodulatory 

effect exerted by the salivary protein. 

Our results show that the binding of Salp15 to CD4 persists along the 

activation period in vitro. However, the changes induced by Salp15 at the 

transcriptional level fade over time. Furthermore, Salp15 does not affect CD4 T cell 

differentiation in the absence of polarizing cytokines, including the induction of Th1, 

Th2, Th17 or Treg gene markers (Fig. 2.10I). We cannot exclude that under polarizing 

conditions, Salp15 may affect CD4 T cell differentiation. In fact, in the presence of IL-

6, the inhibition of IL-2 production during CD4 T cell activation can lead to their 

differentiation towards a Th17 phenotype (Juncadella et al., 2010). Nevertheless, the 

restimulation of splenocytes of ovalbumin and KLH immunized mice resulted in 

similar levels of IL-4, while IFNg was not detected in the restimulation supernatants 

(2.10L), arguing against an effect of Salp15 on Th1 or Th2 differentiation under these 

conditions. Our analysis also show that Salp15 does not seem to exert a direct effect on 

other cellular types, including the generation of anergic B cells or myeloid-derived 

suppressor cells (MDSCs). Nevertheless, in both in vivo models, the treatment with 

Salp15 results in an indirect effect on the ability of B cells to produce antigen-specific 

antibodies, as we have previously demonstrated (Anguita et al., 2002). 

In summary, we show that the tick salivary immunosuppressor Salp15 is 

able to induce the sustained repression of CD4 T cell activation that involves the direct 

effect on these immune cells during the activation period and the increased expression 

of CD73 on regulatory T cells. These data support the notion that Salp15 is able to 

maintain its immunomodulatory action through the induction of increased Treg 

activity, leading to long-term effects in two in vivo models, including a pre-clinically 

relevant murine model of graft versus host disease. 
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CONCLUSSIONS 

 
1. We evaluated the use of the murine model for the development of tick vaccines 

by stablishing first a tick feeding system. We improved both the design of the 

tick capsules and the use of veterinary grade adhesives to obtain repetitive and 

reliable tick feeding parameters. 

2. Our results showed small and inconsistent protective effects on tick feeding 

parameters (attachment, weight at detachment, molting efficiency) when using 

active and passive immunization regimes against both isolated antigens and 

whole tick or tissue extracts, as well as human sera from forestry workers with 

responses to ticks. 

3. The use of larger animals models that better replicate immune responses 

associated with tick rejection are required to test vaccine candidates. 

4. We identified new putative protective antigens by immunoprecipitation of 

hyperimmune cow sera that had been shown to be protective against tick 

feeding. 

5. We cloned and initially characterized four proteins specifically recognized by 

bovine immune sera. An integrin, a metalloprotease and a secreted putative 

protein containing APPLE domains may function as antihemostatic factors. 

6. The protein annotated as A0A0K8RQF1 is homologous to Toll-like receptors 

and could play a role in one of the three tick immune patways present in 

arthropods. This protein is specifically recognized by anti-salivary gland 

immune sera and could serve as the basis for a potential anti-tick vaccine. 

7. Treatment with the salivary protein, Salp15, during the course of hematopoietic 

transplantation has short and long-term effects during acute and chronic graft 

versus host disease. 

8. Salp15 induces transcriptional changes in activating CD4 T cells that fade over 

time and are related to genes associated with activation. 



 90 

9. The long-term effects exerted by Salp15 are not related to increased 

populations of anergic or regulatory T cells. However, regulatory CD4 T cells 

show the specific upregulation of the ectoenzyme, CD73, in response to Salp15 

treatment, and the augmented production of adenosine. 
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The immunosuppressive effect of 
the tick protein, Salp15, is long-
lasting and persists in a murine 
model of hematopoietic transplant
Julen Tomás-Cortázar1, Itziar Martín-Ruiz1, Diego Barriales   1, Miguel Ángel Pascual-Itoiz1, 
Virginia Gutiérrez de Juan1, Alfredo Caro-Maldonado1, Nekane Merino   1, Alberto Marina1, 
Francisco J. Blanco   1,2, Juana María Flores3, James D. Sutherland   1, Rosa Barrio   1, Adriana 
Rojas   1, María Luz Martínez-Chantar1,4, Arkaitz Carracedo   1,2,5,6, Carolina Simó7, Virginia 
García-Cañas7, Leticia Abecia   1, José Luis Lavín1, Ana M. Aransay   1,4, Héctor Rodríguez1 & 
Juan Anguita   1,2

Salp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with 
Salp15 results in the inhibition of early signaling events and the production of the autocrine growth 
factor, interleukin-2. The fate of the CD4 T cells activated in the presence of Salp15 or its long-term 
effects are, however, unknown. We now show that Salp15 binding to CD4 is persistent and induces 
a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished 
cross-antigenic antibody production even after interruption of the treatment with the protein. 
Transcriptionally, the salivary protein provokes an acute effect that includes known activation markers, 
such as Il2 or Cd44, and that fades over time. The long-term effects exerted by Salp15 do not involve the 
induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment 
with Salp15 does not result in B cell anergy or the generation of myeloid suppressor cells. However, 
Salp15 induces the increased expression of the ectoenzyme, CD73, in regulatory T cells and increased 
production of adenosine. Our study provides a profound characterization of the immunomodulatory 
activity of Salp15 and suggests that its long-term effects are due to the specific regulation of CD73.

Tick saliva is composed of a cocktail of pharmacologically active biomolecules that modulate among other host 
responses, the activation of CD4 T cells1–5. One of the best-studied components of tick saliva is the protein Salp15 
from Ixodes scapularis. This protein inhibits the activation of naïve CD4 T cells, blocking early T cell signaling 
pathways, and thereby, the production of the autocrine growth factor IL-26–10. Salp15 specifically binds to the first 
domain (D1) of the CD4 co-receptor causing a conformational change that impedes its interaction with the Src 
kinase, Lck and its activation11. Due to the specificity of Salp15 for CD4 and its capacity to inhibit the activation 
of CD4 T cells, the use of this tick saliva protein has been suggested for the treatment of immune diseases. In 
addition, our group has demonstrated the ability of Salp15 to inhibit the development of CD4 T cell-mediated 
immune responses in vivo upon challenge with different antigens7, 10, 12. Moreover, Salp15 prevents the develop-
ment of experimental asthma in a mouse model7. However, whether the inhibition of CD4 T cells by Salp15 has 
long-term effects on future encounters with specific or unrelated antigens is currently unknown.

1CIC bioGUNE, 48160, Derio, Bizkaia, Spain. 2Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Bizkaia, 
Spain. 3Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of 
Madrid, 28040, Madrid, Spain. 4Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas 
(CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain. 5Centro de Investigación Biomédica en Red en cáncer 
(CIBERonc), Instituto de Salud Carlos III, 28029, Madrid, Spain. 6Department of Biochemistry and Molecular Biology, 
University of the Basque Country, 48940, Leioa, Bizkaia, Spain. 7Molecular Nutrition and Metabolism, Institute of 
Food Science Research (CIAL, CSIC), 28049, Madrid, Spain. Correspondence and requests for materials should be 
addressed to J.A. (email: janguita@cicbiogune.es)

Received: 22 May 2017

Accepted: 23 August 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-6433-3379
http://orcid.org/0000-0003-0721-4813
http://orcid.org/0000-0003-2545-4319
http://orcid.org/0000-0003-3229-793X
http://orcid.org/0000-0002-9663-0669
http://orcid.org/0000-0002-7358-3505
http://orcid.org/0000-0001-5957-1260
http://orcid.org/0000-0003-4097-8903
http://orcid.org/0000-0002-8271-612X
http://orcid.org/0000-0003-2061-7182
mailto:janguita@cicbiogune.es


www.nature.com/scientificreports/

2Scientific Reports | 7: 10740  | DOI:10.1038/s41598-017-11354-2

A common complication associated with allogeneic hematopoietic stem cell transplantation (HSCT) is the 
appearance of Graft-versus-host disease (GvHD). GvHD appears when donor T cells recognize as foreign the 
recipient antigens, including both human leukocyte (HLA) and minor histocompatibility antigens. Allogeneic 
HSCTs are used both in treatments of malignant disease and in ordinary transplants. GvHD appears in 50% of the 
transplants and causes death in 15% of the cases13. Despite its effectiveness, the induction of immunosuppression 
after HSCT can produce undesirable effects. These include the inhibition of graft-versus-tumor effector cells 
(GvT) and the appearance of infections and neoplasms13–17. Other treatments used for the mitigation or elimi-
nation of this disease are ineffective and unspecific. In fact, pre-transplantation chemotherapy and radiotherapy 
treatments (conditioning) applied in these cases for the elimination of the cancer cells and the establishment of 
the transplanted cells can result in nonspecific inflammatory events, helping create the necessary conditions for 
the activation of donor T cells18. Although several murine models of transplantation exist19, 20, none recapitulates 
in full the pathology observed in human transplantation. The transplant model of pure strains into F1 offspring 
does not require previous conditioning and results in mild episodes of acute GvHD followed by a period of 
chronic disease characterized by the production of autoantibodies21.

Because Salp15 is able to inhibit early T cell signaling events, we hypothesized that the protein could preclude 
the activation of CD4 T cells and induce a long-term unresponsive or anergic after the exposure to the salivary 
protein. Our results show that Salp15 is able to change the transcriptional program of CD4 T cells during acti-
vation that nevertheless fades over time and does not result in increased populations of anergic or regulatory T 
cells. However, the protein induces the upregulation of the ectoenzyme, CD73 on the surface of Tregs, inducing 
increased production of the immunosuppressive molecule adenosine. Overall, the activity of Salp15 is evident in 
a long-term transplantation murine model and prevents the deposition of immune complexes in the kidney, a 
hallmark of murine chronic GvHD21.

Results
The effect of Salp15 on activating CD4 T cells is long-lasting.  In order to determine whether the 
effect of Salp15 on the activation of CD4 T cells is sustained, we activated purified splenic CD4 T cells in the pres-
ence of the salivary protein for 2 days, followed by their extensive washing and re-stimulation for 2 more days. 
The production of IL-2 was significantly reduced at both time points, including after 4 days of activation when 
Salp15 was no longer present (Fig. 1A). The longer-term effect of Salp15 could be due to its persistent binding to 
the surface of CD4 T cells. Thus, we determined the binding of Alexa Fluor488-labeled Salp15 as well as the inac-
tive control (Salp15ΔP11) by flow cytometry. Although both Salp15 and Salp15ΔP11 bound to purified CD4 T 
cells, the deletion of the C-terminal peptide, P11, resulted in decreased binding (Fig. 1B) in agreement with its 
reported lack of activity22. Importantly, binding of Salp15 to CD4 T cells was detectable for up to 72 h (Fig. 1B), 
indicating a persistent ability of this protein to remain attached to CD4.

In order to assess whether Salp15 could also exert long-term effects in vivo, we performed an immunization 
regime against ovalbumin and the unrelated protein, keyhole limpet hemocyanin (KLH). Groups of mice were 
immunized with ovalbumin in aluminum hydroxide in the absence or presence of Salp15 (day 0). Seven days 
later, the mice were boosted with ovalbumin under the same conditions. At day 14, the mice in each group 
were subdivided and immunized with ovalbumin or KLH in the absence of Salp15. All the mice were sacrificed 
at day 21. Sera were then analyzed for the presence of ovalbumin- and KLH-specific IgG levels. As expected, 
ovalbumin-specific IgG levels were significantly lower in mice that had received Salp15 in the first 2 immuni-
zations (Fig. 1C). In order to establish whether the effect of Salp15 was circumscribed to ovalbumin, we also 
determined sera IgG levels against KLH. Mice that had not been immunized with this antigen did not show 
KLH-specific IgG in the sera. Notably, the levels of KLH-specific IgG were high in those mice receiving the 
antigen, and significantly lower in those that had received two previous doses of Salp15, but not at the time of 
immunization with KLH (Fig. 1C). These data show that the effect of Salp15 lasts beyond the treatment and can 
affect the response to unrelated antigens, such as KLH.

To further address the long-term effect associated with the treatment with Salp15, we utilized a murine model 
of GvHD resulting from the adoptive transfer of spleen cells from B6 into unconditioned CB6 F1 mice21. In this 
model of transplantation, the proliferation of drafted cells can be monitored in the blood and results in two 
different phases of the disease: an acute phase in which the transplanted cells proliferate, followed by a chronic 
phase predominantly characterized by symptomatology similar to autoimmune disease, including the deposition 
of IgG immune complex in the kidney21. CB6 F1 mice were transplanted 60 × 106 spleen cells and divided into 
two groups. One of the groups received intraperitoneal injections of Salp15 every other day for 10 days, while the 
control group received the same dose of Salp15ΔP11. Control animals showed a peak of parental cells at day 20 
relative to the transplant, followed by a decline and another increase around 60 days post-transplant (Fig. 1D). In 
contrast, the treatment with Salp15 during the first 10 days post transplantation resulted in a significantly reduced 
level of parental cells in the blood (Fig. 1D). However, no effect was detected during the chronic phase of the 
disease. We also analyzed the potential effect of the treatment with Salp15 on the pathology associated with this 
model at day 80 after transplantation of the parental splenocytes. CB6 F1 mice transplanted with B6 splenocytes 
showed some disorganization in the glomerular basement membrane and tubular brush border of the kidney 
upon transplantation that was not affected by the treatment (Fig. 1E). However, immune complex deposition that 
was readily detected in the control-treated mice was significantly reduced in the animals that had been treated 
with Salp15 (Fig. 1E,F). Overall, our results show that Salp15 has short-term and long-term effects during the 
development of immune responses that specifically affect the expansion of CD4 T cells and the production of 
antibodies.

Identification of transcriptional traits in activating CD4 T cells treated with Salp15.  We then 
sought to determine the transcriptional signature of activated CD4 T cells for 48 and 96 hours with plate-bound 
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anti-CD3 and soluble anti-CD28 in the presence of Salp15 or its control, Salp15ΔP11 (Fig. 2A). To allow the 
survival of the CD4 T cells throughout the activation process, a low dose of Salp15 (25 μg/ml) was used. This dose 
reduced the activation of CD4 T cells (Fig. 2A) without significant cell death at 4 days post-activation (data not 
shown). Principal component analysis (PCA) showed a distinct pattern of gene expression in control activated 
cells over the analyzed period of time (Fig. 2B). The presence of Salp15 resulted in variations in the PCA at 2 
days of activation, while the differences faded when the transcriptome was analyzed after 4 days of activation 
(Fig. 2B). These differences were also noticeable when the 1000 most regulated genes were analyzed, with maxi-
mal differences between Salp15-treated and control activated CD4 T cells at 2 days and more discrete differences 
when analyzed at 4 days of activation (Fig. 2C). The activation of CD4 T cells under control conditions revealed 
2382 genes upregulated and 2848 genes downregulated at 2 days of activation (Fig. 2D), while 1882 genes were 
upregulated and 1841 genes downregulated after 4 days of activation, using a cut-off value of 1 log2fold change 
and an adjusted p-value < 0.05 (Fig. 2D). Of these genes, 1245 were upregulated at both 2d and 4d of activation, 
1601 were downregulated at both time points and 40 were regulated in opposite directions (Fig. 2E). Using the 
same cut-off values, we found 154 genes upregulated as a consequence of the presence of Salp15 during activation 
at 2d while only 1 gene was downregulated (Fig. 2F). Notably, the number of genes regulated at 4d of activation in 

Figure 1.  The effect of Salp15 on CD4 T cells is long-lasting. (A) IL-2 production by purified splenic CD4 T 
cells activated with anti-CD3/CD28 for 2 days in the presence of 50 μg/ml of Salp15, washed and re-stimulated 
under the same conditions for another 48 h in the absence of the immunosuppressive protein. The results 
represent the average ± SE of one experiment in triplicate and are representative of 3 performed. (B) Binding 
of Salp15 or the C-terminal deletion mutant, Salp15ΔP11 to purified CD4 T cells. The proteins were labeled 
with Alexa Fluor488 and tested for their binding for different time periods. The binding was assessed by flow 
cytometry. The shaded histogram represents unlabeled cells. The black histogram represents binding of 
Salp15ΔP11. Color histograms represent binding of Salp15 at different time points (12, 24, 48 and 72 h). (C) 
Antibody titers specific for ovalbumin (left panel) and KLH (right panel) in mice immunized with the antigens 
as described in Methods and treated with 50 μg of Salp15 (S15OvaOva or S15OvaKLH) or left untreated 
(OvaOva or OvaKLH). Non-immunized mice served as controls (Naive) (D) Percentage of parental (H2b) cells 
in the blood of transplanted CB6F1 mice (H2b,d) over a period of 80 days. The mice were either treated with 
50 μg of Salp15 or Salp15ΔP11 (Control) (E) Histological features of the kidneys of CB6F1 mice transplanted 
with B6 splenocytes after 80 days. Kidney sections were stained with H&E (top panels), periodic acid schiff 
(PAS) staining (middle panels) and anti-mouse IgG immune complex deposition (lower panels). The scale bars 
represent 50 μm. (F) Assessment of IgG immune complex deposition scores in the kidneys of the transplanted 
mice by analysis of 5 different micrographs with the FriDA software package and averaged per section. The 
experiments in vivo were performed with groups of 5 mice and performed at least twice.
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the presence of Salp15 was dramatically reduced to 5 genes upregulated and just 1 (Il10) downregulated (Fig. 2G). 
Selected transcriptional changes were validated as shown in Supplementary Fig. 1.

Salp15 affects CD4 T cell genes early during the activation process.  The activation of CD4 T cells 
produced the expected profile, involving genes such as Il2, Cd44 or IL2ra (Fig. 3A). Gene ontology analysis of 
Biological Processes (GOBP) revealed that the most over-represented groups included genes related to leukocyte 
cell-cell adhesion and aggregation or T cell activation, among other immune-related processes (Supplementary 
Fig. 2). As expected, the presence of Salp15 induced a reduction of Il2 gene expression and the production of IL-2 
at 2 days of activation (Fig. 3A,B,C; see also Fig. 2A). Furthermore, the activation marker CD44 was significantly 
reduced both at the gene expression level (Fig. 3A,D,E), by surface analysis of the protein by flow cytometry 
in in vitro activated CD4 T cells (Fig. 3F), and in vivo in the spleens of ovalbumin-immunized mice at day 7 

Figure 2.  Transcriptional traits of CD4 T cells activated in the presence of Salp15. (A) IL-2 production by CD4 
T cells used for the transcriptomic analysis. Each bar represents one of the 3 mice used. The amount of Salp15 
used was 25 μg/ml. Control cells were treated with Salp15ΔP11 (Control). (B) Principal component analysis 
showing the grouping of the different assay conditions according to their transcriptome. Non-activated cells 
(Naive, grey); Salp15ΔP11-treated at 2 days (C 2d, orange) or 4 days of activation (C 4d, red); Salp15-treated at 
2 days (S15 2d, light blue) or 4 days (S15 4d, dark blue). (C) Heatmap corresponding to the 1000 most regulated 
genes over the conditions analyzed by RNAseq. (D) Volcano plots showing the genes upregulated (red) or 
downregulated (blue) by activation with anti-CD3 and CD-28 at 2 (left) and 4 days (right) of stimulation. 
(E) Venn diagram showing the number of genes regulated at both 2 and 4 days of activation in the absence of 
Salp15. (F) Volcano plot showing the number of genes differentially regulated during the activation of CD4 T 
cells in the presence of Salp15 or Salp15ΔP11 (control) after 2 days of stimulation. (G) Heatmap of the genes 
regulated in the presence of Salp15 at 4 days of activation.
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post-immunization (Fig. 3G). Although, the effect of Salp15 on Il2ra expression was not evident at this concen-
tration (25 μg/ml, Fig. 3H), the analysis of CD25 on the surface of 2-day activated CD4 T cells revealed decreased 
levels of the protein in the presence of this dose of Salp15 (Fig. 3I).

Salp15 induces the expression of 5′-ectonucleotidase (CD73) in regulatory T cells.  The repressed 
activation of CD4 T cells in the presence of Salp15 could result in the induction of anergy. We therefore analyzed 
the expression levels of genes associated with this phenomenon in CD4 T cells, including Satb1, Cd7, Rap1a, Itch, 
Rnf128, Dtx1, Izumo1r, Cblb, Dgka23, Nr4a1 or Pdcd124. Salp15 induced small and inconsistent changes in these 
genes (Fig. 4A, Table 1), suggesting that this protein does not induce anergy in CD4 T cells. In order to confirm 
these results, we analyzed by flow cytometry markers of anergy in CD4 T cells that were activated in vitro in the 
presence of Salp15. The percentage of CD4+FoxP3−CD44highCD73highFR4high[ 24 cells increased upon CD4 T cell 
activation but remained as low as in naive cells in the presence of Salp15 (Fig. 4B). Furthermore, the analysis of 
anergic CD4 T cells in mice either immunized with ovalbumin (Table 2) or induced GvHD (Table 3) showed no 
effect on this population as a consequence of the treatment with Salp15. Similarly, the treatment with Salp15 did 
not result in the generation of a significant anergic B cell population or increased the pool of monocytic mye-
loid suppressor cells (Table 2). These data confirm that Salp15 act as an immunosuppressor on CD4 T cells that 
depends on its interaction with CD4 and that does not induce a long-term anergic state in T or B cells, nor the 
generation of myeloid suppressor cells.

The transcriptomic data also helped us elucidate whether activated CD4 T cells in the presence of Salp15 
acquired specific markers of regulatory T cells, such as Foxp3, Ctla4, Nrp1, Pdcd1, Lag3, Havcr2, Lrrc32, Tgfb1, 
Ikzf2, Il7r or Entpd125, 26. No major differences were found between controls and CD4 T cells activated in the 
presence of Salp15 (Fig. 4C, Table 1). Moreover, the analysis of FoxP3-positive cells after 4 days of activation 
in vitro did not show changes in the percentage of Tregs associated with the presence of Salp15 (Fig. 4B). The 
effect of Salp15 on the pool of Tregs in vivo was also negligible in mice that had been immunized with ovalbu-
min (Fig. 4D). Furthermore, the analysis of FoxP3-positive CD4 T cells in the peripheral blood of CB6 F1 mice 
transplanted with B6 splenocytes did not show differences associated with the treatment with Salp15 throughout 
the life of the experiment (Table 3). Similar results were found when we analyzed the expression of Nrp1 on CD4 
T cells, another marker of regulatory T cells27 (Table 2). The analysis of type 1 regulatory T (Tr1) cells markers, 
including Il10, Eomes, Il2rb, Itga4, Itgb7, Ly6c1 or Tigit28, showed that Salp15 does not induce the generation of 
these cells, although Il10 expression levels were significantly reduced in the presence of the salivary protein at 4 
days of activation (Table 1). These results demonstrate that the treatment with Salp15 does not result in the gener-
ation of a population of regulatory T cells that could account for long-term immunomodulatory effects.

Figure 3.  Salp15 affects the activation of CD4 T cells. (A) Heatmap of genes involved in the activation of CD4 
T cells at 2 and 4 days of stimulation with anti-CD3/CD28 in the absence or presence of Salp15. (B) Normalized 
reads corresponding to the Il2 gene at 2 days of activation in the presence of Salp15 (S) or Salp15ΔP11 (C). 
U- Unstimulated cells. (C) Transcriptional levels of Il2 at 2 days of activation in the presence of Salp15 (S) or 
Salp15ΔP11 (C) of Salp15 determined by qRT-PCR. Normalized reads of Cd44 (D) and transcriptional levels by 
qRT-PCR (E) in CD4 T cells at 2 days of activation, as before. (F) Surface CD44 levels on CD4 T cells activated 
for 2 days in the presence of Salp15 or Salp15ΔP11. Control: Unstimulated cells. The grey histogram represents 
an unstained control. (G) Percentage of CD4 T cells expressing CD44 in the spleen of mice immunized with 
ovalbumin and treated with Salp15 compared to control treated, immunized mice (Control) and non immunized 
mice (Unst.). (H) Normalized reads of Il2ra in CD4 T cells at 2 days of activation, as before. (F) Surface CD25 
levels on CD4 T cells activated for 2 days in the presence of Salp15 or Salp15ΔP11. The color legend is as 
indicated in (F). All the experiments were performed with 25 μg/ml of Salp15 or Salp15ΔP11 (control).
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We then addressed whether the treatment with Salp15 would impact the activity rather than the size of the 
Treg population. The ectoenzyme CD73 is expressed by Tregs and mediates the production of adenosine, an 
immunosuppressive molecule on T cells29–31. We observed that expression levels of Nt5e (which encodes CD73) 
were increased upon the treatment of CD4 T cells with Salp15 (Fig. 4E). Therefore, we determined the expression 
levels of CD73 on the surface of FoxP3-positive cells. We found that the activation of CD4 T cells in vitro in the 
presence of Salp15 resulted in a significant increase in the surface expression of CD73 (Fig. 4F). Furthermore, the 
levels of adenosine increased upon the treatment of activating CD4 T cells with Salp15 (Fig. 4G). Importantly, 

Figure 4.  Salp15 does not induce increased anergic or Treg numbers but augments the levels of CD73 in 
FoxP3+ cells. (A) Heatmap representing genes associated with anergy in CD4 T cells according to the RNAseq 
analysis in the presence of Salp15 (S) or Salp15ΔP11 (C) at 2 and 4 days of activation. (B) Percentage of FoxP3+ 
and anergic CD4 T cells upon their exposure to 25 μg/ml of Salp15 or Salp15ΔP11 for 2 days. The average ± SE 
of triplicates is indicated. The p values (Student´s t test) correspond to the comparison between the Salp15ΔP11 
and Salp15 groups. The data presented is representative of 2 independent experiments with similar results. 
(C) Heatmap corresponding to genes associated with regulatory T cells according to the RNAseq analysis in 
the presence of Salp15 (S) or Salp15ΔP11 (C) at 2 and 4 days of activation. (D) Percentage of FoxP3-positive 
CD4 T cells upon exposure to 25 μg/ml of Salp15 or Salp15ΔP11 in vitro for 2 days during activation. The 
values correspond to the average ± SE of 5 mice per group. No significant differences were detected between 
the Salp15ΔP11 and Salp15 groups. The data is representative of 2 independent experiments. (E) Normalized 
reads corresponding to the expression levels of Nt5e at 2 and 4 days of activation in vitro in the presence of 
Salp15 (S) or Salp15ΔP11 (C). (F) Surface expression levels of CD73 on CD4+FoxP3+ T cells (top) activated 
for 2 days in the presence of 25 μg/ml of Salp15 (red histogram) or Salp15ΔP11 (black histogram). The 
shaded histogram represents an unstained control. The table shows the average mean fluorescence intensity 
(MFI) ± standard deviation (SD) of 5 mice per group. Differences of the means were analyzed by the Student´s 
T-test. (G) Average adenosine levels in the supernatants of CD4 T cells activated in the presence of 25 μg/
ml of Salp15 or Salp15ΔP11 for 2 days. The results represent 3 independent mice. (H) Increased percentage 
of CD4+FoxP3+CD73high cells in the blood of CB6F1 mice transplanted with B6 splenocytes at day 50 post 
induction. The histogram on the right represents the average ± SE of 5 control (Salp15ΔP11) and 5 Salp15-
treated mice. *p < 0.05.
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we observed an increase in a population of CD4+FoxP3+CD73high in the blood of mice that have been induced 
GvHD at day 50 post transplant (Fig. 4H). Overall, our results show that Salp15 is able to induce long-term effects 
on activating CD4 T cells that involve, at least in part, the increased expression and activity of CD73 on regulatory 
T cells.

Discussion
The tick salivary protein Salp15 inhibits early CD4 T cell signaling events and, in consequence, their activation. 
The activity of Salp15 on CD4 T cells is well-characterized9, 10, 24. Both in vitro and in vivo, this protein is able to 
prevent a full activation program on these immune cells6. The fate of CD4 T cells affected by the activity of Salp15 
is not known. They could become permanently unable to respond to antigen or, alternatively, revert to a state in 
which they are amenable to become activated when antigen is present again. Here, we show that the presence 
of Salp15 during the activation of CD4 T cells results in long-term effects that affect their encounter with new 
antigens. Using transcriptomics, two models of CD4 T cell activation in vivo and the polyclonal activation of 
these cells in vitro, we show that whereas Salp15 does not affect the generation of anergic CD4 T cells or Tregs, it 
induces the increased expression of the ectoenzyme, CD73, in Foxp3+ regulatory T cells. This effect results in an 
elevated production of adenosine, a known immunomosuppressive molecule produced by Tregs32, 33.

Treatment with Tregs has been proposed as an appropriate therapy for GvHD and other immune disorders34, 35.  
In fact, several biological agents, including CTLA4 fusion proteins or anti-TNF antibodies34, have the ability 
to either induce an increase in number or the activity of Tregs. Treg function involves CD73 activity and other 
mechanisms of action36, 37. Indeed, the importance of CD73 activity has been studied in a murine model of 
GvDH, demonstrating that the ectonuclease helps control the disease30. The conversion of 5´-AMP to adenosine 
mediated by CD73 in Tregs has been broadly described38. The anti-inflammatory effect of adenosine present 
in the pericellular microenvironment results in the suppression of proliferation of effector CD4 T cells and the 
reduction of cytokine production39. Indeed, we found that the levels of this molecule were increased in in vitro 
assays of CD4 T cell activation in the presence of Salp15. The capacity of Salp15 to increase Nt5e transcription 

Gene

S2D vs. C2D S4D vs. C4D

Log2FI Adj. p-value Log2FI Adj. p-value

Anergy

Satb1 0,304 0,012 0,002 0,997

Cd7 0,750 0,001 0,166 NA

Rap1a 0,030 0,894 −0,223 0,116

Itch 0,087 0,613 −0,065 0,816

Rnf128 −0,077 0,858 −0,321 0,186

Dtx1 −0,039 0,908 0,047 0,921

Izumo1r −0,090 0,573 −0,251 0,094

Cblb −0,403 8,40E-06 −0,656 3,74E-07

Dgka 0,282 0,001 −0,215 0,114

Nr4a1 0,148 0,189 0,426 1,1E-04

Pdcd1 −0,568 3,9E-11 −0,144 0,612

Regulatory T cells

Foxp3 0,815 7,85E-09 −0,352 0,095

Ctla4 0,109 0,535 −0,691 1,19E-07

Nrp1 0,048 0,859 0,015 0,975

Pdcd1 −0,568 3,90E-11 0,144 0,612

Lag3 −0,721 1,81E-11 −0,540 5,44E-07

Havcr2 −0,166 0,668 −0,177 0,620

Lrrc32 0,527 0,044 −0,268 0,345

Tgfb1 −0,148 0,197 −0,164 0,473

Ikzf2 0,438 0,117 −0,558 0,00027

Il7r 1,504 6,21E-15 −0,040 0,914

Entpd1 0,402 0,163 −0,004 0,995

Type 1 Regulatory T cells

Il10 −0,236 0,492 −1,069 4,01E-10

Eomes 0,136 0,477 −0,193 0,351

Il2rb 0,171 0,367 −0,069 0,808

Itga4 0,536 0,027 −0,260 0,178

Itgb7 −0,578 1,78E-06 0,047 0,878

Ly6c1 0,200 0,233 −0,190 0,511

Tigit −0,387 0,001 −0,500 0,001

Table 1.  Differential expression of genes associated with CD4 T cell anergy and regulatory T cells.
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and the upregulation of CD73 on the surface of FoxP3+ T cells can therefore help explain the long-lasting effects 
elicited by Salp15. Future studies will determine whether the absence of CD73 on Tregs can indeed suppress the 
long-term immunomodulatory effect exerted by the salivary protein.

Our results show that the binding of Salp15 to CD4 persists along the activation period in vitro. However, the 
changes induced by Salp15 at the transcriptional level fade over time. Furthermore, Salp15 does not affect CD4 
T cell differentiation in the absence of polarizing cytokines, including the induction of Th1, Th2, Th17 or Treg 
gene markers (Suppl. Fig. 4A). We cannot exclude that under polarizing conditions, Salp15 may affect CD4 T cell 
differentiation. In fact, in the presence of IL-6, the inhibition of IL-2 production during CD4 T cell activation can 
lead to their differentiation towards a Th17 phenotype22. Nevertheless, the restimulation of splenocytes of ovalbu-
min and KLH immunized mice resulted in similar levels of IL-4, while IFNγ was not detected in the restimulation 
supernatants (Suppl. Fig. 4B), arguing against an effect of Salp15 on Th1 or Th2 differentiation under these con-
ditions. Our analysis also show that Salp15 does not seem to exert a direct effect on other cellular types, including 
the generation of anergic B cells or myeloid-derived suppressor cells (MDSCs). Nevertheless, in both in vivo 
models, the treatment with Salp15 results in an indirect effect on the ability of B cells to produce antigen-specific 
antibodies, as we have previously demonstrated10.

In summary, we show that the tick salivary immunosuppressor Salp15 is able to induce the sustained repres-
sion of CD4 T cell activation that involves the direct effect on these immune cells during the activation period 
and the increased expression of CD73 on regulatory T cells. These data support the notion that Salp15 is able to 
maintain its immunomodulatory action through the induction of increased Treg activity, leading to long-term 
effects in two in vivo models, including a pre-clinically relevant murine model of graft versus host disease.

Methods
Protein purification and labeling.  Salp15 and an inactive deletion mutant lacking the last 20 aminoacids 
(Salp15ΔP11) were purified from Drosophila S2 cells, as described10. Protein labeling was performed using the 
Alexa Fluor® 488 Protein Labeling Kit (Thermo Fisher Scientific, Eugene, OR), following the manufacturer’s 
instructions.

Cell purification and activation.  CD4 T cells were purified from the spleens of C57BL/6 mice by negative 
selection using a CD4 T cell isolation Kit (Miltenyi Biotec, Bergisch Gladbach, GE) according to the manufactur-
er’s instructions. Purified CD4 T cells at the indicated concentrations were activated with 5 μg/ml of plate-bound 
anti-CD3ε and 1 μg/ml of soluble anti-CD28 (BD Biosciences, San Diego, CA) in the presence of the indicated 
concentration of Salp15 or Salp15ΔP11. Cells were incubated at 37 °C in TexMACS Medium (Miltenyi Biotec).

Flow cytometry.  Blood was extracted from the saphenous vein in the presence of EDTA and depleted of 
erythrocytes by hypotonic lysis. Whole splenocytes were isolated from immunized or GvHD mice by mechan-
ical disruption followed by lysis of erythrocytes. The cells (106/ml) were incubated with Fc Block (anti-CD16/
CD32; BD BioSciences) and labelled with fluorochrome-labeled antibodies against CD4, CD8, B220, CD69, 
Ly6C, F4/80, GR-1, CD25, CD11b, CD44, CD73, FR4, NRP1, Foxp3, CD93, IgM, CD23 (Miltenyi Biotec). To 

Blood B cell populations* Control

ΔO SO

Average SD Average SD

B cells (B220+) 45,10 43,50 1,87 40,07 4,43

B220+CD69+ 28,50 12,41 4,15 11,50 4,76

Anergic B cells (B220+CD93+IgM+CD23+) 3,85 2,28 0,40 1,80 0,76

Mature B cells (B220+CD93−CD23+) 27,87 28,77 0,56 27,80 1,50

Spleen populations* Control
ΔOO SOO

Average SD Average SD

CD4+ 11,60 11,02 2,31 10,77 2,08

CD8+ 7,84 6,10 0,98 6,38 0,87

CD4+CD25+ 12,90 8,47 1,33 5,60 2,34

CD4+CD44+ 28,10 7,48 2,43 7,55 4,21

Anergic T cells (CD4+CD44highCD73highFR4high) 3,60 0,92 0,35 0,86 0,39

Tregs (CD4+NRP1+) 2,02 1,54 0,20 1,46 0,16

Macrophages (F4/80+GR-1−) 2,15 2,08 0,09 2,44 1,30

Neutrophils (F4/80−GR-1+) 1,30 1,52 0,21 2,73 0,71

Monocytic myeloid suppressor cells 
(CD11bhighGR-1highLy6C+) 1,01 0,56 0,24 0,82 0,36

Inflammatory macrophages (F4/80+GR-
1intLy6Chigh) 1,97 2,42 0,38 2,52 0,64

n = 5 n = 5

Table 2.  Cell populations in blood and spleen of mice immunized with ovalbumin (O) and treated with Salp15 
(S) or the control protein (Δ). All comparisons between ΔO vs. SO, p > 0.05. *The gating strategies are shown 
in Supplementary Fig. 3.
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detect Salp15 binding to CD4 T cells, splenic purified CD4 T cells were labeled with Salp15-Alexa Fluor488 or 
Salp15ΔP11-Alexa Fluor488.

Immunizations.  Groups of C57Bl/6 mice were immunized subcutaneously with 50 μg of ovalbumin in alu-
minum hydroxide (50% Hydrogel, Invivogene. Tolouse, France) containing 50 mg of Salp15 or PBS (conbtrol). 
The mice were boosted under the same conditions 7 days later. At day 14, each group of mice was subdivided 
into 2 groups and immunized with either 50 μg of ovalbumin or keyhole lympet hemocyanin (KLH). The mice 
were sacrificed 7 days later and the spleens and sera were analyzed for cellular composition and antigen-specific 
immunoglobulin titers, respectively.

Graft versus host disease murine model.  Splenocytes were extracted from 8-week old C57BL/6 (H-2b) 
mice and 60 × 106/mouse were injected intraperitoneally into CB6F1 (H-2b,d) mice (Envigo, Gannat, France). The 
mice were treated with 50 μg of Salp15 by intraperitoneal injection starting the day of cell transfer and every other 
day until day 10. Blood was extracted from day 10 to day 80 at 10-days intervals. Erythrocytes were removed by 
hypotonic lysis and the cells were analyzed by flow cytometry. At sacrifice, kidneys were processed for histochem-
ical evaluation.

Renal deposited IgG detection, PAS and HE.  Kidneys were fixed in 10% neutral buffered formalin, 
dehydrated, embedded in paraffin and cut into 5 μm thick sections. For histopathology, sections were hydrated 
and stained with hematoxylin – eosin (HE) or periodic acid-Schiff (PAS) according to standard protocols. For 
immunohistochemical analysis, tissue sections were subjected to antigen retrieval using protease K for 20 min at 
37 °C. After blocking, sections were incubated with primary antibody overnight. The slides were then sequentially 
incubated with DAB chromogen for 5 min, counterstained with Mayer’s hematoxylin and mounted for micros-
copy. Goat Anti-Mouse IgG-HRP Light chain specific (Jackson ImmunoResearch Laboratories) was used at 1/250 
concentration as the primary antibody. Photographs were taken with an Axioimager A1 microscope and analyzed 
with Frida software40.

RNAseq.  Purified CD4 T cells from three mice were activated independently with 5 μg/ml of plate-bound 
anti-CD3 and 1 μg/ml of soluble anti-CD28 (BD Bioscience) in the presence of 25 μg/ml of Salp15 or Salp15ΔP11 
(control). Cells were incubated at 37 °C in TexMACS Medium (Miltenyi Biotec) for 48 and 96 h. RNA extraction was 
performed using the PureLink RNA Micro Scale Kit (Thermo Fisher Scientific) according to the manufacturerʼs  
protocol. The quantity and quality of the RNAs were evaluated using the Qubit RNA Assay Kit (Invitrogen, 
Eugene, OR) and RNA Nano Chips in a 2100 Bioanalyzer (Agilent Technologies, Waldbronn, GE), respectively. 
Libraries for sequencing were prepared using the TruSeq RNA Sample Preparation Kit v2 (Illumina Inc, San 
Diego, CA) following the protocol provided by the manufacturer. Single-read, 50 nt sequencing of pooled librar-
ies was carried out in a HiScanSQ platform (Illumina Inc.).

The quality control of the sequenced samples was performed with FASTQC software (www.bioinformatics.
babraham.ac.uk/projects/fastq). Reads were mapped against the mouse (mm10) reference genome by using the 
program Tophat41 to account for spliced junctions. The resulting BAM alignment files for the samples were the 
input for the Differential Expression (DE) analysis, carried out by DESeq. 242, to detect differentially expressed 
genes among the different conditions. GO enrichment was tested using the ClusterProfiler43 Bioconductor pack-
age and the Panther Database44. Transcriptomics data were also analyzed using QIAGENʼs Ingenuity Pathway 
Analysis (IPA, QIAGEN, Red Wood city, CA).

Real-time RT-PCR.  RNA was reverse transcribed using M-MLV reverse transcriptase (Thermo Fisher 
Scientific) and random hexamers. Real-time PCR was then performed using SYBR Green PCR Master Mix 
(Quanta Biosciences, Beverly, MA) on a QuantStudio 6 real-time PCR System (Thermo Fisher Scientific). Fold 
induction of the genes was calculated using the 2−ΔΔCt method relative to the reference, previously validated 
genes, Rpl19 and Actb, as indicated. The primers used are listed in Table 4.

Determination of adenosine levels.  The levels of adenosine were determined in the culture supernatants 
of activated CD4 T cells using the fluorometric adenosine assay kit (Abnova, Walnut, CA) following the methods 
provided by the manufacturer.

Statistical analysis.  Results are presented as means ± SE, unless otherwise stated. The differences in means 
between groups were tested using the Studentʼs T-test. Differences in antibody titers were assessed by a 2-way 
ANOVA. All calculations were made in GraphPad Prism, version 7. A p-value < 0.05 was considered statistically 

Blood cell populations

Day 20 Day 30 Day 40 Day 60 Day 80

Control Salp15 Control Salp15 Control Salp15 Control Salp15 Control Salp15

CD4+ T cells 26.1 ± 0.7 26.5 ± 0.5 33.5 ± 1.6 30.0 ± 1.2 34.9 ± 2.2 38.4 ± 2.7 30.9 ± 1.6 28.5 ± 1.8 21.0 ± 1.8 25.2 ± 2.7

CD8+ T cells 12.8 ± 1.2 13.8 ± 0.4 17.6 ± 1.0 18.0 ± 0.9 18.5 ± 1.1 17.4 ± 0.8 15.6 ± 0.8 16.2 ± 0.4 15.9 ± 1.4 18.4 ± 1.6

Tregs (CD4+FoxP3+) 7.1 ± 0.4 6.2 ± 0.3 7.3 ± 0.3 7.1 ± 0.2 4.7 ± 0.4 3.9 ± 0.7 6.8 ± 0.4 7.2 ± 0.5 7.7 ± 0.6 7.7 ± 1.2

Anergic T cells 
(CD4+CD44highCD73highFR4high) 6.2 ± 1.8 3.9 ± 0.9 20.0 ± 2.7 16.5 ± 1.9 13.4 ± 1.1 12.3 ± 1.1 4.4 ± 0.9 5.4 ± 0.5 7.0 ± 1.4 5.9 ± 1.0

Table 3.  Cell populations (average ± SD) in blood upon B6 splenocyte transplant into CB6 F1 mice. All 
comparisons between Control vs. Salp15, p > 0.05. n = 5 mice per group.

http://www.bioinformatics.babraham.ac.uk/projects/fastq
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significant. All experiments were performed at least 3 times. In vivo experiments consisted of groups of 5 mice 
and were performed at least twice.

Ethics statement.  All work involving animals was approved by the Institutional Animal Care and Use 
Committee (IACUC) at CIC bioGUNE and the competent authority (Diputación de Bizkaia). CIC bioGUNE 
animal facility is accredited by AAALAC Intl. All experiments were performed in accordance with European and 
Spanish guidelines and regulations.

Data availability.  The transcriptomic data are deposited under GEO accession number GSE98700.
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mTORC1-dependent AMD1 regulation sustains 
polyamine metabolism in prostate cancer
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Activation of the PTEN–PI3K–mTORC1 pathway consolidates 
metabolic programs that sustain cancer cell growth and 
proliferation1,2. Here we show that mechanistic target of rapamycin 
complex 1 (mTORC1) regulates polyamine dynamics, a metabolic 
route that is essential for oncogenicity. By using integrative 
metabolomics in a mouse model3 and human biopsies4 of prostate 
cancer, we identify alterations in tumours affecting the production 
of decarboxylated S-adenosylmethionine (dcSAM) and polyamine 
synthesis. Mechanistically, this metabolic rewiring stems from 
mTORC1-dependent regulation of S-adenosylmethionine 
decarboxylase 1 (AMD1) stability. This novel molecular regulation 
is validated in mouse and human cancer specimens. AMD1 is 
upregulated in human prostate cancer with activated mTORC1. 
Conversely, samples from a clinical trial with the mTORC1 
inhibitor everolimus5 exhibit a predominant decrease in AMD1 
immunoreactivity that is associated with a decrease in proliferation, 
in line with the requirement of dcSAM production for oncogenicity. 
These findings provide fundamental information about the complex 
regulatory landscape controlled by mTORC1 to integrate and 
translate growth signals into an oncogenic metabolic program.

Alterations in the phosphoinositide 3-kinase (PI3K) pathway have 
been reported in a high percentage of human cancers6,7. We sought 
to identify metabolic requirements of prostate cancer taking advan-
tage of a faithful genetically engineered mouse model of this disease 
driven by loss of Pten3, a negative regulator of the PI3K pathway 
that is frequently downregulated in this tumour type6,8. First, we 
performed high-throughput quadrupole time-of-flight mass spec-
trometry (q-TOF-MS) to examine metabolic alterations at two time 
points (3 and 6 months, onset of prostate intraepithelial neoplasia 
(PIN) and invasive prostate carcinoma, respectively) (Extended Data 
Fig. 1a, b) in two different prostate lobes (Extended Data Fig. 1c).  

From 7,722 ions, we assigned metabolite identification (Human 
Metabolome Database score ≥​ 40) to 632 (Supplementary Table 1).  
We did not observe significant influence of the prostate lobe or the 
time point of analysis, and after precluding significant alterations in 
candidate metabolic pathways, we focused on metabolites consistently 
and significantly altered in all conditions (Extended Data Fig. 1d, e 
and Supplementary Table 2). We identified 72 unique metabolites  
(73 assigned ions) fulfilling the criteria (Fig. 1a and Supplementary 
Table 1). Pathway enrichment analysis in this set did not show 
significantly altered pathways including a considerable number of 
metabolites (Supplementary Table 3). Strikingly, representation in 
waterfall plot revealed an increase in polyamine-synthesis-related 
metabolites in Ptenpc−/− mice (Fig. 1b). These results were validated 
in this genetically engineered mouse model and human prostate can-
cer tissues by quantitative liquid chromatography (LC)/MS (Extended 
Data Fig. 1f, g and Supplementary Table 4).

To determine how metabolic rewiring affects polyamine dynamics, we 
set up 13C-labelling metabolic analysis to trace the fate of l-methionine- 
derived carbons in vivo (Extended Data Fig. 2a). Next, we injected 
[U-13C5]l-methionine intravenously in Ptenpc+/+ and Ptenpc−/− mice 
(Extended Data Fig. 2b). Prostate tissue analysis revealed an eleva-
tion in 13C-labelled decarboxylated S-adenosylmethionine (dcSAM), 
together with increased synthesis and fractional labelling of polyam-
ines (Fig. 1c, Extended Data Fig. 2c, d and Supplementary Table 5).  
Importantly, the increase of SAM decarboxylation (elevated 
dcSAM/SAM ratio) in both mouse and human pathological  
tissues strongly suggested that the enzyme that catalyses this reaction 
(S-adenosylmethionine decarboxylase 1, AMD1) is potentially respon-
sible for the metabolic changes observed in prostate cancer (Fig. 1d–f).

To address the contribution of dcSAM production to cell oncogenicity  
in prostate cancer, we ectopically expressed AMD1 in cell lines from 
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Figure 2 | Genetic and pharmacological AMD1 modulation affects 
prostate cancer oncogenicity. a–c, Impact of ectopic Myc-AMD1–HA 
expression (a, representative of three independent experiments) on 
dcSAM abundance (b, n =​ 5 independent experiments) and anchorage-
independent growth (c, n =​ 4 independent experiments) in DU145 cells 
in vitro. Mock, empty vector. Myc-AMD1–HA, Myc and haemagglutinin 
(HA)-tagged AMD1 ectopic expression. Mean ±​ s.e.m. d, Impact 
of ectopic Myc-AMD1–HA expression on tumour mass in DU145 
xenografts grown for 43 days (mock, n =​ 8 tumours; Myc-AMD1–HA, 
n =​ 7 tumours). Box-and-whisker plot. e–g, Effect of doxycycline (dox)-
inducible (100 ng ml−1; a minimum of 72 h) AMD1 silencing (sh3–sh5) 
on AMD1 protein expression (e, representative of three independent 
experiments), dcSAM abundance (f, n =​ 3 independent experiments), 
and anchorage-independent growth (g, n =​ 4 independent experiments) 
in DU145 cells. Dashed line in g indicates relative cell number of non-
induced cells. No dox, without doxycycline treatment; Dox, doxycycline-
induced (100 ng ml−1) condition; sh, short hairpin RNA. Mean ±​ s.e.m.  
h, Impact of inducible AMD1 silencing on tumour growth rate of 

established DU145 xenografts (tumour numbers: sh3 no dox, n =​ 12; sh3 
dox, n =​ 14; sh4 no dox, n =​ 10; sh4 dox, n =​ 7; sh5 no dox, n =​ 10; sh5 dox, 
n =​ 11). Growth rate was inferred from the linear regression calculated 
for the progressive change in tumour volume of each individual tumour 
during the period depicted in Extended Data Fig. 3q–s. Box-and-whisker 
plot. i, j, Effect of pharmacological AMD1 inhibition with SAM486A 
on anchorage-independent growth (i, n =​ 3 independent experiments) 
and dcSAM abundance (j, n =​ 3 independent experiments) in DU145 
cells. Mean ±​ s.e.m. k, Impact of SAM486A treatment for 14 days (5 mg 
per kg (body weight) per day, 5 days per week) on tumour growth rate 
of established DU145 xenografts (vehicle, n =​ 11 tumours; SAM4856A, 
n =​ 10 tumours). Growth rate was inferred from the linear regression 
calculated for the progressive change in tumour volume of each individual 
tumour during the period depicted in Extended Data Fig. 4i. Box-and-
whisker plot. *​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001. One-tailed Student’s  
t-test was used for cell line data analysis (b, c, f, g, i, j) and one-tailed 
Mann–Whitney U-test for xenografts (d, h, k).
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this tumour type. AMD1 is produced as a pro-enzyme (proAMD1), 
which is subject to self-cleavage and heterotetramerization, resulting 
in the active enzyme9. After validation of a polyclonal antibody for 
the detection of proAMD1 and AMD1 (Extended Data Fig. 3a, b), we 
generated prostate cancer cells over-expressing AMD1, which resulted 
in increased dcSAM abundance (Fig. 2a, b). Interestingly, this per-
turbation increased foci formation, anchorage-independent growth, 
and in vivo tumour growth (Fig. 2c, d and Extended Data Fig. 3c–f).

If AMD1 activity is essential for prostate cancer cell function, tar-
geting this enzyme would represent an attractive therapeutic strategy. 
To test this notion, we generated and validated three AMD1-targeting  
doxycycline-inducible and two constitutive short hairpin RNAs  
(shRNAs) (Fig. 2e and Extended Data Fig. 3g–j), which resulted in a pro-
found reduction in dcSAM levels, the inhibition of two-imensional and 
anchorage-independent growth, and tumour growth in vivo (Fig. 2f–h 
and Extended Data Fig. 3k–t). We excluded doxycycline-dependent 
(Extended Data Fig. 3u, v) and off-target effects of the shRNA (by 
ectopic expression of shRNA-resistant wild type and non-processable 
(S229A10) AMD1 mutants) (Extended Data Fig. 4a–c). Of note, we did 
not observe a contribution of MTAP11–14 or 5′​-methylthioadenosine 
(MTA, a product of dcSAM metabolism to produce polyamines) to the 
effect of AMD1 inhibition (Extended Data Fig. 4d–f).

A pharmacological inhibitor of AMD1, SAM486A, has been 
designed and evaluated in pre-clinical and clinical settings15–18. 
Pharmacological AMD1 inhibition recapitulated the biological 
consequences of genetic silencing, in the absence of overt toxicity  
in vivo (Fig. 2i–k, Extended Data Fig. 4g–k and Supplementary Table 6).  
Our results collectively demonstrate that AMD1 activity is required for 
prostate cancer oncogenicity.

We next sought to elucidate the mechanism underlying the 
production of dcSAM. Interestingly, AMD1 protein levels were 
increased in prostate tissue from Ptenpc−/− mice in the absence of 
transcriptional modulation, consistent with messenger RNA (mRNA) 
analysis in human prostate cancer data sets (Fig. 3a and Extended 
Data Fig. 5a–c). To ascertain whether this phenotype was a direct con-
sequence of the loss of PTEN, we analysed PTEN-deficient prostate 
cancer cells (LNCaP). Re-expression of yellow fluorescent protein 
(YFP)–PTENWT, but not catalytically inactive YFP–PTENC124S, 
in these cells resulted in the reduction in AMD1 protein levels 
(Extended Data Fig. 5d)19. Further dissection of the PI3K–mTORC1 
pathway revealed that only mTORC1 blockers among various signal
ling inhibitors decreased proAMD1 and AMD1 protein abun-
dance (without consistent effects on mRNA expression; Fig. 3b and  
Extended Data Fig. 5e–h). The regulation of this enzyme by mTORC1 
was validated upon genetic modulation of positive and negative regula-
tors of the complex, RAPTOR and TSC2, respectively (Extended Data 
Fig. 5e, i, j). Importantly, mTORC1 inhibitor-elicited AMD1 down-
regulation was accompanied by a decrease in dcSAM production and 
polyamine synthesis (Fig. 3c, d). Of interest, spermidine supplementa-
tion in rapamycin-treated PC3 cells (PTEN-deficient) elicited a signi
ficant (albeit small) increase in cell number (Extended Data Fig. 6a).

To ascertain the requirement of mTORC1 activation for 
dcSAM accumulation in vivo, we treated Ptenpc−/− mice with the 
rapamycin-derivative RAD001 and found that Amd1 and dcSAM 
abundance was reduced in line with the inhibition of mTORC1 in 
prostate tissue (Fig. 3e, f and Extended Data Fig. 6b, c). Of note, a 
second genetically engineered mouse model of prostate cancer based 
on the expression of the TRAMP transgene20, which presented low 
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Figure 3 | mTORC1 regulates AMD1 expression, dcSAM production, 
and polyamine dynamics. a, Amd1 protein abundance in Ptenpc−/− and 
Ptenpc+/+ prostate tissue from mice of the indicated age (n =​ 3 mice). 
AKTS473 is shown as control of PI3K pathway over-activation. 3 months, 
3-month-old mouse prostate analysis; 6 months, 6-month-old prostate 
analysis. b, Representative western blot (out of three) depicting the 
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of PC3, DU145, and LNCaP cells with vehicle (V, dimethylsulfoxide 
(DMSO)), rapamycin (R, 20 nM), and Torin-1 (T, 250 nM for PC3 and 
DU145, 125 nM for LNCaP). c, dcSAM abundance in PC3, LNCaP, and 
DU145 (n =​ 4 or 5 independent experiments as indicated by dots), upon 
24 h treatment with vehicle (DMSO), rapamycin (20 nM), and Torin-1 

(250 nM for PC3 and DU145, 125 nM for LNCaP). Mean ±​ s.e.m.  
d, Incorporation of carbon-13 (13C) from [U-13C5]l-methionine  
(2 h pulse) into the indicated metabolites after 30 h treatment with 
vehicle (DMSO) or rapamycin (20 nM) in DU145 cells (n =​ 3 independent 
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from Ptenpc−/− mice. Data in f are mean ±​ s.e.m. *​P <​ 0.05; *​*​P <​ 0.01;  
*​*​*​P <​ 0.001. Asterisks in western blots indicate non-specific bands; arrows 
indicate specific bands. One-tailed Student’s t-test (c, d, f) was used.
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mTORC1 activation, did not exhibit an increase in Amd1 or dcSAM 
abundance, in support of our postulated mTORC1–AMD1 regulation 
(Extended Data Fig. 6d, e and Supplementary Table 7).

Mechanistically, we excluded the contribution of ornithine decar-
boxylase 1 (ref. 21) (ODC1; Extended Data Fig. 7a–e) and canonical 
mTORC1 downstream effectors and pathways1,22,23, including trans-
lation initiation, p70S6K, 4EBP, and macro-autophagy (since DU145 
cells lack functional ATG5 (ref. 24) but retain the mTORC1-depend-
ent regulation of AMD1) (Extended Data Fig. 7f–i). Interestingly, we 
found that mTORC1 inhibition-dependent decrease in AMD1 (wild 
type and S229A) protein levels was rescued by the proteasome inhib-
itor MG132 (Fig. 4a and Extended Data Fig. 8a, b). To elucidate the 
molecular link between mTORC1 activity and proAMD1 stability, 
we performed a phosphoproteomic analysis on ectopic proAMD1/
AMD1 and identified a single phosphorylated residue (S298) on the 
pro-enzyme and enzyme (TVLApSPQKIEGFK) (Extended Data Fig. 
8c) that was compatible with a consensus mTORC1 site25. Importantly, 
treatment for 6 h with rapamycin or Torin-1 reduced the phosphoryl-
ation of S298 in the pro-enzyme (and the ratio phospho-proAMD1/
total proAMD1) but not the enzyme, leading us to hypothesize that 
S298 phosphorylation could be controlled by mTORC1 and promote 
proAMD1 stability (Fig. 4b and Extended Data Fig. 8d–f). We eval-
uated the stability of proAMD1 after treatment for 2 h with Torin-1 
(before the detection of any effect on pro-enzyme abundance) and 
found reduced half-life upon mTORC1 inhibition (Extended Data 
Fig. 8g–k). To establish the contribution of S298 phosphorylation  
in the regulation of proAMD1 stability, we inactivated this 

phosphorylation site (S298A). As predicted, non-phosphorylated 
proAMD1S298A exhibited decreased half-life, and this parameter 
was augmented upon inhibition of the proteasome (Extended Data  
Fig. 9a–c). These results support the notion that mTORC1 activity 
promotes proAMD1 stability, at least in part, through the regulation 
of its phosphorylation in S298, hence allowing enzyme processing and 
activity. In vitro mTORC1 kinase assay with glutathione S-transferase 
(GST)–proAMD1S229A did not show significant activity towards 
proAMD1 phosphorylation in these conditions, suggesting either that 
mTORC1 does not directly phosphorylate S298, or that additional 
cellular conditions (for example, biochemical conditions, adaptor or 
intermediary proteins, subcellular compartments) are required for 
mTORC1 to phosphorylate proAMD1 (Extended Data Fig. 9d). It is 
worth noting that our data do not rule out additional mechanisms 
downstream of mTORC1 regulating proteasome-mediated protein  
degradation23,26. To extend this mechanistic link to human prostate 
cancer, we extracted protein from well-diagnosed benign prostate 
hyperplasia (BPH) and prostate cancer specimens4 (Supplementary 
Table 4). The results revealed that AMD1 was selectively more abun-
dant in prostate cancer specimens exhibiting high mTORC1 activity, 
and that the phosphorylation of p70S6K significantly correlated with 
the levels of AMD1 (correlation coefficient R =​ 0.81; Fig. 4c and 
Extended Data Fig. 9e).

mTORC1 inhibitors are currently used to treat certain tumours 
(despite the unpredicted inefficacy in many others)27, and previous 
work by us has contributed to defining the pharmaco-dynamic prop-
erties of everolimus in individuals with advanced cancers of different 

Figure 4 | mTORC1 regulates AMD1 stability and this molecular 
regulation is recapitulated in vivo. a, Representative western blot  
(out of three) of DU145 cells expressing Myc-AMD1–HA treated with 
vehicle or Torin-1 (250 nM, 6 h) in the presence or absence of MG132 
(5 μ​M, 6 h). b, Extracted ion chromatogram of the TVLASPQKIEGFK 
phosphorylated proAMD1 peptide upon 6 h treatment with vehicle  
(V, DMSO), rapamycin (R, 20 nM), and Torin-1 (T, 250 nM) in DU145 
cells. c, Western blot analysis (individual tissue specimens are presented) 
of AMD1 and p70S6KT389 in prostate tissue samples of BPH and prostate 
cancer. Densitometry values of AMD1 and p70S6KT389are provided  
below the scans (corrected by HSP90 immunoreactivity). p70S6KT389 
prostate cancer status was defined as normal (Nor; PCaS6K Nor) when  
the densitometry values of the prostate cancer sample were lower  

than (mean ±​ s.d.) of the BPH specimens, and high (Hi, PCaS6K Hi)  
when greater. The statistical analysis related to differential AMD1 
immunoreactivity was done by analysing PCaS6K Nor (n =​ 7) and PCaS6K Hi  
(n =​ 8) versus the BPH specimens (n =​ 6) separately. d, Representative 
AMD1 immunoreactivity images of three specimens from patients before 
(Pre-treatment) or after (On treatment) therapy with everolimus (n =​ 14 
specimen pairs). e, Box-and-whisker plot of the immunoreactivity of 
KI67 and AMD1 in cancer patients with (Δ​H score for KI67 <​ 0) or 
without (Δ​H score for KI67 ≥​ 0) anti-proliferative tumour response upon 
treatment with everolimus. *​P <​ 0.05; *​*​P <​ 0.01. Arrows indicate specific 
immunoreactive bands. Red asterisk in western blot indicates non-specific 
band. Mann–Whitney U-test (c, e).
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origin5,28,29. Strikingly, we observed a predominant decrease (64% of 
cases) in AMD1 immunoreactivity in 14 biopsies obtained from patients 
treated with this drug relative to a biopsy of the same lesion before 
treatment (Fig. 4d, Extended Data Fig. 9f and Supplementary Table 8).  
When we stratified patients on the basis of the anti-proliferative 
response achieved after everolimus therapy (responders: differential 
KI67 H score, Δ​H <​ 0, n =​ 6 specimen pairs; non-responders: differ-
ential KI67 H score, Δ​H ≥​ 0, n =​ 4 specimen pairs; where Δ​H =​ (H 
score on therapy) – (H score pre-therapy)), we found that only AMD1 
(among all targets analysed) presented significantly decreased immu-
noreactivity in responders (Fig. 4e and Extended Data Fig. 9g).

Polyamine production is a hallmark of highly proliferating cells30, 
but their regulation by oncogenic signals remains largely unknown. 
Our results demonstrate that increased polyamine synthesis is asso-
ciated with oncogenic signalling in prostate cancer. The regulation of 
AMD1 production and dcSAM synthesis downstream of mTORC1 
described herein provides a mechanistic explanation for the control 
of this metabolic program (Extended Data Fig. 9h). AMD1 is an 
unprecedented metabolic target of this protein complex and supports 
its role in cancer cell proliferation. Importantly, the control of dcSAM 
and polyamine synthesis is relevant beyond the cancer scenario, and 
suggests that physiological and developmental processes that require 
active cell proliferation might be tightly associated with the regulation 
of AMD1 and polyamine synthesis downstream of mTORC1.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Patient samples. All prostate specimens were obtained upon informed consent and 
with evaluation and approval from the corresponding ethics committee (Comité de 
Ética en Investigación Clínica (CEIC) codes OHEUN11-12 and OHEUN14-14)4. 
Clinico-pathological information is included as Supplementary Table 4. The details of 
the clinical trial with everolimus are described in ref. 5 and in Supplementary Table 8.
Animals. All mouse experiments were performed following the ethical guidelines 
established by the Biosafety and Animal Welfare Committee at CIC bioGUNE, 
Derio, Spain (under protocol P-CBG-CBBA-0715). The procedures used followed 
the recommendations from the Association for Assessment and Accreditation 
of Laboratory Animal Care International (AAALAC). Xenograft experiments 
were performed as previously described (maximum total tumour volume per 
mouse 1.5 cm3)31, injecting 4 ×​ 106 (AMD1 silencing) or 4 ×​ 106 (AMD1 ectopic 
expression) cells with Matrigel (BD Biosciences) per condition in two flanks per 
mouse. Doxycycline was administered in vivo in the food pellets (Research diets, 
D12100402). Genetically engineered mouse model experiments were performed 
in a mixed background as reported32. The Ptenlox conditional knockout allele has 
been described elsewhere3. Prostate epithelium-specific deletion was effected by 
the Pb-Cre4 (ref. 3). Mice were fasted for 6 h before tissue harvest (9:00–15:00) to 
prevent metabolic alterations due to immediate food intake. The TRAMP mice 
strain was originally obtained from The Jackson Laboratory repository. Animals 
were maintained at the Animal Facility (awarded with AAALAC accreditation) 
of the Spanish National Cancer Research Centre (CNIO) in accordance with the 
guidelines stated in the International Guiding Principles for Biomedical Research 
Involving Animals, developed by the Council for International Organizations 
of Medical Sciences. All animal experiments were approved by the Competent 
Authority of the Comunidad de Madrid. The generation and characterization of 
TRAMP mice have been previously described20. At CNIO, TRAMP mice originally 
provided in FVB/NJ genetic background were backcrossed to a C57BL/6 back-
ground by successive mating of (T/+​) male-mice to (+​/+​) C57BL/6 female-mice 
and then maintained in a C57BL/6 background.

To address the potential undesirable effects of systemic AMD1 inhibition, we 
administered SAM486A intraperitoneally (5 mg per kg (body weight) per day,  
5 days per week) for 17 days in immunocompetent C57BL/6 mice. We meas-
ured body and organ weight, blood biochemistry, haematocrit, and white blood 
cell count (information provided in Supplementary Table 6). Terminal blood 
harvest was performed intracardially after CO2inhalation-based euthanasia. 
For non-terminal harvest, a facial vein blood sample was obtained by puncture 
with a sterile 4 mm lancet (MEDIpoint, USA). For plasma preparation, blood 
was deposited in tubes with dipotassium EDTA (Microtainer, Becton Dickinson, 
Franklin, New Jersey, USA) (for haematocrit and FACS analysis) or heparinized 
tubes (10 μ​l, 1 U μ​l−1) (for plasma metabolomics). For haematocrit analysis, blood 
samples were analysed using an Abacus Junior Vet analyser (Diatron, Hungary) 
according to the manufacturer’s guidelines. For blood biochemistry, a Selectra 
Junior Spinlab 100 analyser (Vital Scientific, Dieren, The Netherlands) was used. 
A calibrated control was run before each use and was within established ranges 
before analysing samples. For white blood cell analysis, the spleen of SAM486A 
or saline-treated mice was grinded by using a syringe plunger and passing the 
cells through a 70 μ​m cell strainer; cellular composition was evaluated by flow 
cytometry, using the following antibodies: CD4, CD8, B220, Ly6C, F4/80, GR-1, 
CD25, CD11b, CD44, CD73, FR4, Nrp-1 (Miltenyi Biotec).
Purification and activation of mouse splenic CD4+ T cells. To address the 
toxicity of SAM486A, we purified CD4 T cells from the spleen of C57BL/6 mice 
by negative selection using a CD4 purification kit following the manufacturer’s 
instructions (Miltenyi Biotec, Auburn, California, USA). Five hundred thousand 
CD4 T cells were activated in TexMACS Medium (Miltenyi Biotec) with plate-
bound anti-CD3 (5 μ​g ml−1) and soluble anti-CD28 (1 μ​g ml−1) in the presence 
of vehicle or SAM486A (1 μ​M) for 16 and 96 h and assessed for interleukin(IL)-2 
production by capture enzyme-linked immunosorbent assay (ELISA) (R&D 
Systems, MAB702). To analyse the effect of SAM486A on T-cell proliferation, 
purified CD4 T cells were recovered 4 days after activation and treatment and 
counted in a haemocytometer chamber.
Immunization with ovalbumin. To address the effect of SAM486A on immune 
cell proliferation in vivo, we administered SAM486A intraperitoneally (5 mg per kg 
(body weight) per day, 5 days per week) for 17 days in immunocompetent C57BL/6 
mice, and then immunized them subcutaneously with 50 μ​g ovalbumin in complete 
Freund’s adjuvant and kept on treatment. After 2 weeks, the mice were analysed for 
ovalbumin-specific serum immunoglobulin-G(IgG) andimmunoglobulin-M(IgM) 
levels by ELISA33.
Reagents. Cell lines were purchased from Leibniz-Institut Deutsche Sammlung 
von Mikroorganismen und Zellkulturen (DSMZ) and tested negative for 
mycoplasma. An authentication certificate was provided by DSMZ for cell lines. 
Rapamycin (prepared in DMSO, final concentration 20 nM), Torin-1 (prepared 

in DMSO, final concentration 125–250 nM), dimethylfluorornithine (DFMO, 
prepared in water, final concentration 50 μ​M), PF-4708671 (PF47, prepared in 
DMSO, final concentration 10 μ​M), hydroxychloroquine (HCQ, prepared in water, 
final concentration 30 ng ml−1), MG132 (5 μ​M, prepared in DMSO), PD0325901 
(100 nM, prepared in DMSO), SB203580 (5 μ​M, prepared in DMSO), SP600125 
(10 μ​M, prepared in DMSO), spermidine (0.5–1 μ​M, prepared in water), 5′-deoxy-
5′-(methylthio)adenosine (MTA, final concentration 25 μM), and cycloheximide 
(CHX, prepared in ethanol, final concentration 5 μ​g ml−1) were purchased from 
LC Laboratories (rapamycin, PD0325901), Sigma (CHX, PF47, HCQ, spermidine, 
MTA), Calbiochem (SB203580), and Tocris (Torin-1, DFMO, SP600125). RAD001 
was purchased from Selleckchem and administered 6 days per week by oral gavage 
(prepared in 1.5% NMP/98.5% PEG) at 10 mg per kg (body weight). SAM486A was 
provided by Novartis and prepared in water (in vitro) or saline solution (in vivo, 
5 mg per kg (body weight) per day intraperitoneally Monday–Friday). [U-13C5]
l-methionine was purchased from Cambridge Isotope Laboratories and admin-
istered intravenously at a final concentration of 100 mg kg−1in vivo and at 30 μ​
g ml−1in vitro (with dialysed FBS). Doxycycline was purchased from Sigma and 
used at 500 ng ml−1 for overexpression of YFP–PTEN, 100 ng ml−1 for silencing 
of AMD1, and 250 ng ml−1 for silencing of RAPTOR and TSC2. shRNAs against 
AMD1 were purchased from Sigma (TRCN0000078462: sh3; TRCN0000078460: 
sh4, TRCN0000078461: sh5) and the control shRNA sequence included (CCGGC
AACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTG)34.  
shRNAs against 4EBP1 and 4EBP2 were provided by N. Sonenberg35. Sub-cloning 
of shRNA AMD1 into pLKO-Tet-On vector was done by introducing AgeI and 
EcoRI in the 5′​ end of top and bottom shRNA oligonucleotides respectively 
(TET-pLKO puro was a gift from D. Wiederschain36, Addgene plasmid 21915). 
Myc-AMD1–HA-expressing vector was generated starting from the open read-
ing frame obtained from PlasmID Harvard (https://plasmid.med.harvard.edu/
PLASMID/Home.xhtml) and cloned into a modified retroviral pLNCX vector 
harbouring BglII–SalI sites (cloned with BamHI–SalI). RNA interference (RNAi)-
resistant versions of AMD1 were generated using overlap extension PCR and 
cloned into a lentiviral backbone derived from vector pLenti-Cas9-blast (Cas9 
removed; lentiCas9-Blast was a gift from F. Zhang, Addgene 52962; ref. 37)  
using a HiFi Assembly Kit (NEB). The resulting vectors expressed AMD1–HA-
2A-blast (wild type or S229A) with the AMD1–HA portion being excisable using 
BshT1–BamH1. The target of AMD1 shRNA3 (5′-gtctccaagagacgtttcatt-3′​)  
was changed to an RNAi-resistant version (5′-gtGAGcaaACGTAGAttTatCtt-3′​).  
Cloning details are available upon request. All clones were sequence-validated. 
Site-directed mutagenesis for generation of AMD1S229A and AMD1S298A was 
performed using an Agilent QuikChange II Site-Directed Mutagenesis Kit.  
YFP–PTEN-expressing lentiviral constructs were described in ref. 19.
Cellular and molecular assays. Cell number quantification was done with crystal 
violet29. Doxycycline-mediated inducible shRNA expression was performed by 
treating cell cultures for 72–96 h with the antibiotic (100–250 ng ml−1) and then 
seeding for cellular or molecular assays in the presence of doxycycline. Western blot 
was performed as previously described38 and run in Nupage gradient precast gels 
(Life Technologies) in MOPS or MES buffer (depending on the proteins analysed; 
note that the migration pattern of molecular mass markers varies in these two 
buffers). Anti-AMD1 was from Proteintech (11052-1-AP). Anti-RpS6S240/244, 
anti-RpS6, anti-p70S6KT389, anti-p70S6K, anti-LC3B, anti-HSP90, anti-PTEN, 
anti-AKTS473, anti-AKT, anti-4EBP1, and anti-RAPTOR antibodies were from Cell 
Signalling Technologies. Anti-β​-actin antibody was from Sigma and anti-TSC2 
from Thermo Scientific (MA5-15004). Densitometry-based quantification was 
performed using ImageJ software. For half-life assays, DU145 cells stably expressing 
the indicated constructs were challenged with CHX (5 μ​g ml−1) and protein was 
extracted at the indicated time points (cells were treated with vehicle (DMSO), 
MG132 (5 μ​M), or Torin-1 (250 nM) 120 min before CHX challenges when 
indicated). Anchorage-independent growth assays were performed as previously 
described39, seeding 3000 (PC3) or 5000 (DU145) cells per well. RNA was extracted 
using a NucleoSpin RNA isolation kit from Macherey-Nagel (740955.240C). One 
microgram of total RNA was used for complementary DNA (cDNA) synthesis 
using qScript cDNA Supermix from Quanta (95048). Quantitative PCR (qPCR) 
was performed as previously described38. Applied Biosystems TaqMan probes 
were as follows: Amd1/AMD1 (Mm04207265, Hs00750876s1), β-ACTIN/β- 
Actin (Hs99999903_m1/Mm00607939_s1), and GAPDH/Gapdh (Hs02758991_
g1/Mm99999915_g1). Universal Probe Library (UPL, Roche) probes were as 
follows: AMD1 (probe 72, primer F: CAGACCTCCTATGATGACCTGA; primer  
R: TCAGGTCACGAATTCCACTCT), Odc1 (probe 80, primer F: GCTAAGTCG 
ACCTTGTGAGGA; primer R: AGCTGCTCATGGTTCTCGAT), ODC1  
(probe 34, primer F: AAAACATGGGCGCTTACACT; primer R: TGGAATTGC 
TGCATGAGTTG), and Mtap (probe 12, primer F: CCATGGCAACCGACT 
ATGAT; primer R: AAACCCCATCCACTGACACT). Foci assays were performed 
seeding 500 cells per well (six-well plate) and staining and counting them by crystal 
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violet after 10 days. Lentiviral and retroviral transductions were performed as 
previously described34,38.
Kinase assay. Human AMD1 variants (carboxy-terminal HA tag, non-processing 
mutant S229A; S298 (wild type) or S298A; details available upon request) were 
prepared by overlapping PCR and cloned as BamH1–Not1 into pGEX-6P-1 
(GE Healthcare). Sequence-confirmed clones were induced with 1 mM IPTG 
(isopropyl-β​-d-thiogalactoside) for 16 h at 20 °C in C41 (DE3) pLysS (Lucigen). 
GST fusion proteins were purified first by glutathione affinity chromatography 
(eluted in 40 mM reduced glutathione; 25 mM HEPES pH 8; 50 mM KCl; 0.1% 
BME buffer) and then separated by gel filtration chromatography. Proteins were 
concentrated by ultrafiltration (Vivaspin 5K MWCO cut-off; Sartorius) and used 
for kinase assays.

Endogenous mTORC1 complex was immunoprecipitated from HEK293 
cells using anti-Raptor antibody (S682B, fourth bleed, https://mrcppureagents.
dundee.ac.uk/) coupled to Protein G Sepharose beads (Amersham). The cells 
were stimulated with IGF (50 ng ml−1) for 20 min before lysis in mTORC1 lysis 
buffer (40 mM HEPES pH 7.4, 120 mMNaCl, 1 mM EDTA, 0.3% (w/v), CHAPS, 
10 mM Na-pyrophosphate, 10 mM Na-glycerophosphate, 1 mM Na-orthovanadate, 
protease inhibitor cocktail (Roche)). The immunoprecipitate was washed twice 
with mTORC1 lysis buffer, containing 0.5 M NaCl, twice with mTORC1 lysis buffer, 
and twice with mTORC1 kinase assay buffer (25 mM HEPES pH 7.4, 50 mMKCl). 
The substrates were added to immunoprecipitate in kinase assay buffer (15 μ​l) 
before adding the 10 μ​l of the ATP mixture (10 mM MnCl2, 100 μ​M ATP, 1 μ​Ci  
[γ​-32P]ATP in kinase buffer). The reaction was performed in a thermomixer at 
30 °C for 30 min and was terminated by adding the 4×​ sample buffer (NuPAGE 
LDS sample buffer, Life Technologies). The reaction mixture was loaded on gel. 
Dried gel was exposed to X-ray films (Amersham). One microlitre of reaction 
mixture was loaded on gel for immunoblot analysis. GST–S6KD236A (DU32609, 
https://mrcppureagents.dundee.ac.uk/) was purified from HEK293 cells pre-
treated with 0.1 μ​M AZD-8055. The protein was purified using GST–Sepharose 
beads (Amersham) according to the manufacturer’s instructions. Anti-Raptor 
(S682B, fourth bleed, https://mrcppureagents.dundee.ac.uk/), anti-phospho-
S6K1 T389 (9205, Cell Signaling Technology), anti-GST (S902A, third bleed,  
https://mrcppureagents.dundee.ac.uk/).
Immunohistochemical analysis. Histochemical analysis by haematoxylin  
and eosin, anti-RpS6S235/6, anti-AktS473 (Cell Signaling Technology), and 
Pten (51-2400) immunostaining was performed as previously described40,41. 
Immunohistochemical analysis of AMD1 (Proteintech, dilution 1/100) was 
performed using DAKO EnVision FLEX High pH (DAKO). The scoring system 
was based on the quantification of the percentage of cells’ negative, low (1+​), 
medium (2+​), or high (3+​) immunoreactivity. Subsequently, the H score was 
calculated as follows: H =​ (percentage of cells 1+​) +​ (2 ×​ (percentage of cells  
2+​)] +​ [3 ×​ (percentage of cells 3+​)). Differential H score was calculated as  
Δ​H =​ Hon treatment −​ Hpre-treatment.
Metabolomic analysis. For in vitro metabolomic analysis, growing cells were 
washed with ammonium carbonate pH 7.4 and snap-frozen in liquid nitrogen. 
Metabolites were extracted from cells or tissues with cold 80/20 (v/v) methanol/
water. Samples were then dried and stored at −​80 °C until MS analysis. High-
throughput time-of-flight analysis was conducted using flow injection analysis 
as previously described42. In short, samples were re-suspended and injected on 
an Agilent 1100 coupled with an Agilent 6520 QToF mass spectrometer with an 
electrospray ionization source. The mobile phase consisted of 60/40 methanol/
water with 0.1% formic acid and was used to deliver 2 μ​l of each sample to the MS, 
flowing at 150 μ​l min−1. Data were collected in positive mode with 4 GHz HiRes 
resolving power with internal lock masses. Data processing was conducted with 
Matlab R2010b. Relative cell number or protein amount was used for normalization.

Quantitative LC/MS was conducted as previously described43. A ThermoAccela 
1250 pump delivered a gradient of 0.025% heptafluorobutyric acid, 0.1% formic 
acid in water and acetonitrile at 400 μ​l min−1. The stationary phase was an Atlantis 
T3, 3 μ​m, 2.1 mm ×​ 150 mm column. A QExactive mass spectrometer was used 
at 70,000 resolving power to acquire data in full-scan mode. Data analysis was 
conducted in MAVEN44 and Spotfire. Peak areas derived from stable isotope 
labelling experiments were corrected for naturally occurring isotope abundance.

For plasma [13C]methionine analysis, blood samples from mice were extracted 
at the indicated times, transferred at room temperature to heparinized collection 
tubes, and centrifuged at 13,000 r.p.m. and 4 °C for 10 min. Plasma was transferred 
to fresh tubes and processed for ultra-high-performance LC coupled to mass 
spectrometry (UPLC–MS) analysis. Briefly, to 40 μ​l aliquots of mouse plasma, 40 μ​l  
of water/0.15% formic acid was added. Subsequently, proteins were precipitated 
by addition of 120 μ​l of acetonitrile. To optimize extraction, after addition 
of acetonitrile, the samples were sonicated for 10 min at 4 °C and agitated at 
1,400 r.p.m. for 30 min at 4 °C. Next, the samples were centrifuged at 14,000 r.p.m. 
for 30 min at 4 °C. The supernatant was transferred to a fresh vial and measured 

with a UPLC system (Acquity, Waters, Manchester, UK) coupled to a time-of-
flight mass spectrometer (SYNAPT G2, Waters). A 2.1 mm ×​ 100 mm, 1.7 μ​m BEH 
AMIDE column (Waters), thermostated at 40 °C was used for the assay. Solvent A 
(aqueous phase) consisted of 99.5% water, 0.5% formic acid, and 20 mM ammo-
nium formate, while solvent B (organic phase) consisted of 29.5% water, 70% 
MeCN, 0.5% formic acid, and 1 mM ammonium formate. To obtain a good sep-
aration of the analytes, the following gradient was used: from 5% A to 50% A in 
2.4 min in curved gradient (number 8, as defined by Waters), from 50% A to 99.9% 
A in 0.2 min constant at 99.9% A for 1.2 min, back to 5% A in 0.2 min. The flow rate 
was 0.250 ml min−1 and the injection volume was 2 μ​l. All samples were injected 
randomly and analytes were measured in enhanced duty cycle mode, optimized 
for the mass of the analyte in question. Methionine and [13C5]l-methionine were 
measured in scan function 1 (enhanced duty cycle at 152), SAH and 13C4-SAH 
were measured in scan function 2 (enhanced duty cycle at 387), and SAM and 13C5-
SAM were measured in scan function 3 (enhanced duty cycle at 402). Extracted 
ion traces were obtained for methionine (m/z =​ 150.0589), [13C5]l-methionine 
(m/z =​ 155.0756), SAH (m/z =​ 385.1294), [13C4]SAH (m/z =​ 389.1428), SAM 
(m/z =​ 399.145), and [13C5]SAM (m/z =​ 404.1618) in a 20 mDa window and sub-
sequently smoothed (two points, two iterations) and integrated with QuanLynx 
software (Waters). For quantitation, stock solutions of 10 mM in water for each of 
the analytes were prepared. Stock solutions were pooled and diluted to obtain a 
mixture including all analytes. The mixture was further diluted in water to obtain 
the concentrations as used in the calibration curve. The calibration range for all 
analytes included the following concentrations: 100, 50, 25, 10, 5, 2.5, 1, 0.5, 0.25, 
0.1, 0.05, and 0.025 μ​M.
Targeted metabolomics. Levels of dcSAM in cell cultures and tissues were analysed 
by UPLC–MS. Briefly, extraction and homogenization were done in methanol/
acetic acid (80/20% v/v). Speed-vacuum-dried metabolites were solubilized in 100 μ​l  
of a mixture of water/acetonitrile (40/60% v/v) and injected onto the UPLC–MS 
system (Acquity and SYNAPT G2, Waters). The extracted ion traces were obtained 
for dcSAM (retention time =​ 3.0minutes, m/z 355.16). Corrected signals were 
normalized to relative cell number.
Polysome profiling. Distribution of mRNAs across sucrose gradients was 
performed as described earlier45, except for minor modifications.
Phosphoproteomic analysis of AMD1. DU145 cells stably expressing Myc-
AMD1–HA were plated in two or three 150 mm plates per condition to ensure 
a final density no higher than 50–60% and sufficient protein amounts to immu-
noprecipitate ectopic AMD1 (using agarose HA-beads, Sigma, according to the 
manufacturer’s instructions). Cells were treated for 6 h with rapamycin (20 nM) 
and Torin-1 (250 nM) before immunoprecipitation. Protein eluates from the immu-
noprecipitated samples were separated by SDS–PAGE. The bands corresponding 
to AMD1 and the pro-enzyme were visualized using Sypro-Ruby (Invitrogen), 
excised, and in-gel digested with trypsin. The resulting peptides were analysed 
by LC–MS/MS using an LTQ Orbitrap Velos mass spectrometer (Thermo 
Scientific). Raw files were searched against a Uniprot Homo sapiens database 
(20,187 sequences) using Sequest-HT as the search engine through the Proteome 
Discoverer 1.4 (Thermo Scientific) software. Peptide identifications were filtered by 
Percolator at a false discovery rate of 1% using the target-decoy strategy. Label-free 
quantification was performed with MaxQuant, and extracted ion chromatograms 
for AMD1 phosphopeptides were manually validated in Xcalibur 2.2 (Thermo).
Bioinformatic analysis. All the data sets used for the data mining analysis46–49 were 
downloaded from the Gene Expression Omnibus, and subjected to background 
correction, log2 transformation, and quartile normalization. In the case of using a 
pre-processed data set, this normalization was reviewed and corrected if required.
Statistical analysis. No statistics were applied to determine sample size. The 
experiments were not randomized. The investigators were not blinded to allocation 
during experiments and outcome assessment. Data analysed by parametric tests 
are represented by the mean ±​ s.e.m. of pooled experiments; for non-parametric  
tests, the median with interquartile range is depicted, unless otherwise stated. 
Values of n represent the number of independent experiments performed or the 
number of individual mice or patient specimens. For each independent in vitro 
experiment, at least three technical replicates were used and a minimum number 
of three experiments were performed to ensure adequate statistical power. Analysis 
of variance was used for multi-component comparisons and Student’s t-test for 
two-component comparisons. In the in vitro experiments, normal distribution was 
confirmed or assumed (for n <​ 5). Two-tailed statistical analysis was applied for 
experimental design without predicted result, and one-tailed analysis for validation 
or hypothesis-driven experiments. The confidence level used for all the statistical 
analyses was 0.95 (α =​ 0.05).
Data availability. The authors declare that data supporting the findings of this 
study are available within the paper and its supplementary information files. Source 
data for unprocessed scans and Fig. 2d and Extended Data Figs 3d, q–s and 4i are 
provided with the paper.
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Extended Data Figure 1 | See next page for caption.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterRESEARCH

Extended Data Figure 1 | Metabolomics characterization of mouse and 
human prostate cancer. a, Incidence of pathological alterations observed 
in Ptenpc+/+ and Ptenpc−/− mice. Number of mice as indicated. LG-PIN, 
low-grade prostatic intraepithelial neoplasia; HG-PIN: high-grade 
prostatic intraepithelial neoplasia; Focal Adc, focal adenocarcinoma.  
b, Representative immunohistochemical images of prostate tissue stained 
with haematoxylin and eosin (H&E), Pten, AktS473, and RpS6S235/6 
from mice at 3 and 6 months of age (representative of three mice per 
condition). c, Experimental design of the TOF-MS metabolomics analysis. 
AP, anterior prostate; DLP, dorsolateral prostate. d, e, Volcano plot (d) 
and principal component analysis (PCA, e) from altered metabolites in 
TOF-MS metabolomic analysis performed in Ptenpc−/− and Ptenpc+/+ 

mouse prostate samples at the indicated age (6 months Ptenpc+/+anterior 
prostate, n =​ 4 mice; remainder of conditions, n =​ 5 mice). Grey dots: not 
significantly altered; red dots: significantly increased in Ptenpc−/− prostate 
extracts; blue dots: significantly decreased in Ptenpc−/− prostate extracts.  
f, LC/MS analysis of methionine cycle and polyamine pathway metabolites 
from Ptenpc−/− versus Ptenpc+/+ mouse prostate samples at the indicated 
age (anterior prostate 3 months, n =​ 5 mice; 6 months, n =​ 4 mice). 
Median ±​ interquartile range. g, LC/MS analysis of methionine cycle and 
polyamine pathway metabolites from prostate cancer versus BPH human 
specimens (six prostate specimens per condition). Median ±​ interquartile 
range. *​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001. One-tailed Mann–Whitney  
U-test (f, g) was used for data analysis.
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Extended Data Figure 2 | Metabolic tracing of [13C]l-methionine in 
Pten-prostate specific knockout mice. a, Plasma LC/MS analysis of the 
indicated metabolite concentration after intravenous injection of [U-13C5]
l-methionine (100 mg kg−1) in C57BL/6 mice at 3 months of age (time 
0 min, n =​ 7 mice; time 10 min/60 min, n =​ 6 mice). The unlabelled (M +​ 0, 
12C) and major labelled (13C, M +​ 4 or M +​ 5) metabolite concentration is 
presented in the histogram. Error bars, s.e.m. b, Experimental design of 
the [U-13C5]l-methionine (100 mg kg−1) in vivo. U-13C5-Met,  
l-methionine labelled with13C in five carbons;1 h, prostate samples 

extracted after 1 h pulse with [U-13C5]l-methionine; 10 h, prostate  
samples extracted after 10 h pulse with [U-13C5]l-methionine;  
c, Summary schematic of the alterations observed in the metabolomic 
analysis in Ptenpc−/− versus Ptenpc+/+. Spm, spermine; spd, spermidine; 
ODC1, ornithine decarboxylase 1; SpdS, spermidine synthase; SpmS, 
spermine synthase. d, Fractional labelling of the indicated metabolites 
from Fig. 1c. Median ±​ interquartile range (1 h (top), n =​ 4; 10 h (bottom), 
n =​ 3). FC, fold change. One-tailed Mann–Whitney U-test (d) was used for  
data analysis.
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Extended Data Figure 3 | See next page for caption.
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Extended Data Figure 3 | Genetic modulation of AMD1 in prostate 
cancer cells. a, Technical setup of anti-AMD1 antibody using the indicated 
constructs or shRNAs in DU145 cells. AMD1S229A mutant lacks processing 
ability and is expressed exclusively as a pro-enzyme (representative 
western blot out of three independent experiments). b, Schematic 
representation of tagged ectopic AMD1 processing. c, Impact of ectopic 
Myc-AMD1–HA expression on foci number in DU145 cells in vitro  
(n =​ 3 independent experiments). d–f, Impact of ectopic Myc-AMD1–HA 
expression on tumour volume (d, n =​ 8 tumours per condition), AMD1 
protein levels (e, n =​ 3 tumours per condition), and dcSAM abundance 
(f, n =​ 5 tumours per condition) in DU145 xenografts grown for 43 days. 
Data in d are represented as box-and-whisker plot. f, Dot plot with the 
median and the interquartile range. g–o, Effect of constitutive silencing of 
AMD1 (g, i, mRNA levels; h–j, protein expression) on cell number (k, n), 
anchorage-independent growth (l, o), and dcSAM abundance (m) with 
two different hairpins in DU145 (g, h, k, l, m) and PC3 (i, j, n, o) cells 
(n =​ 3 or 4 independent experiments as indicated by dots). shSC, scramble 

short hairpin; sh3 and sh4, two different short-hairpins targeting AMD1. 
Mean ±​ s.e.m. p, Effect of doxycycline-inducible (100 ng ml−1) AMD1 
silencing on cell number in DU145 cells (sh3, n =​ 4; sh4 and sh5, n =​ 3 
independent experiments as indicated by dots). q–s, Impact of AMD1-
inducible silencing in tumour volume from DU145 xenografts (tumours 
analysed: sh3 no doxycycline, n =​ 12; sh3 doxycycline, n =​ 14; sh4  
no doxycycline, n =​ 10; sh4 doxycycline, n =​ 7; sh5 no doxycycline, n =​ 10; 
sh5 doxycycline, n =​ 11). Box-and-whisker plot. t, Impact of AMD1-
inducible silencing in dcSAM abundance in DU145 xenografts from  
q to s (n =​ 5 tumours). Median ±​ interquartile range. u, v, Dose-dependent 
effect of doxycycline on cell number in DU145 (u) and PC3 (v) cells (cell 
number measured at day 6) (n =​ 3 independent experiments as indicated 
by dots). *​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001. Error bars, mean ±​ s.e.m. 
Red asterisk in western blots indicates non-specific band. Dashed lines 
indicate cell numbers in scramble short-hairpin-transduced cells.  
One-tailed t-test (c, g, i, k–p, u, v), and one-tailed Mann–Whitney  
U-test (d, f, q–t).
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Extended Data Figure 4 | Genetic and pharmacological manipulation 
of AMD1 in prostate cancer cells. a–c, DU145 cells carrying doxycycline-
inducible shRNA against AMD1 (sh3) were transduced with empty 
(Mock), sh3-resistant wild type (AMD1sh3R), or processing-deficient 
(AMD1sh3R/S229A) AMD1 constructs. AMD1 protein (a, representative 
experiment out of four), dcSAM abundance (b), and cell number 
expression (c) in the aforementioned cells (n =​ 4 independent experiments 
as indicated by dots). Asterisks indicate significant differences compared 
with the corresponding DU145 cells in the absence of doxycycline, and 
hash symbol indicates significant differences in the indicated comparison. 
Mean ±​ s.e.m. d, Effect of MTA (25 μ​M) on AMD1 silencing (sh3)-
elicited anti-proliferative activity. MTA was administered at day 0 and 
cells were analysed at day 3 (n =​ 3 independent experiments as indicated 
by dots). e, Mtap gene expression levels in Ptenpc+/+and Ptenpc−/− mice 
at the indicated time points (see Extended Data Fig. 1a) (3 months, n =​ 3 
mice; 6 months, n =​ 6 mice). Median ±​ interquartile range. f, MTAP gene 
expression analysis in publicly available data sets (see Methods;  

N, normal; number of patients analysed: ref. 48, normal n =​ 29, prostate 
cancer n =​ 150; ref. 46, normal n =​ 12, prostate cancer n =​ 76; ref. 47, 
normal, n =​ 9, prostate cancer, n =​ 17). g, h, Effect of pharmacological 
AMD1 inhibition with SAM486A on cell number (g and left h; DU145, 
n =​ 5; PC3, n =​ 4 independent experiments as indicated by dots), and 
anchorage-independent growth (right h, n =​ 3 independent experiments 
as indicated by dots) in PC3 or DU145 cells as indicated. Mean ±​ s.e.m.  
i, Effect of pharmacological AMD1 inhibition with SAM486A in 
established DU145 xenograft tumour volume (vehicle, n =​ 11 tumours; 
SAM486A, n =​ 10 tumours). Box-and-whisker plot. j, k, Effect of 
pharmacological AMD1 inhibition with SAM486A in activated T CD4 
cell number (96 h (j), n =​ 3 independent experiments as indicated by dots) 
or IL-2 production (k, n =​ 3–6 independent experiments as indicated 
by dots). *​/#P <​ 0.05; *​*​/##P <​ 0.01; *​*​*​P <​ 0.001. Dashed line indicates 
cell number (g, h left) or IL-2 abundance (j, k) in vehicle-treated cells. 
Student’s t-test (b–d, f–h, j, k) and one-tailed Mann–Whitney test (e, i).
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Extended Data Figure 5 | See next page for caption.
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Extended Data Figure 5 | PTEN–PI3K–mTORC1-dependent regulation 
of AMD1 in prostate cancer. a, b, Amd1 protein quantification from 
Fig. 3a (a, n =​ 3 mice) and mRNA expression (b, n =​ 5 or 6 mice as 
indicated by dots) in Ptenpc−/− and Ptenpc+/+ mice of the indicated age. 
Median ±​ interquartile range. c, AMD1 gene expression analysis in 
publicly available data sets (see Methods; number of patients analysed: 
ref. 48, normal n =​ 29, prostate cancer n =​ 150; ref. 46, normal n =​ 12, 
prostate cancer n =​ 76; ref. 47, normal n =​ 9, prostate cancer n =​ 17). 
d, Representative western blot showing the expression of the indicated 
proteins upon doxycycline-inducible expression (24 h) of YFP–PTENWT or 
catalytically inactive YFP–PTENC124S in PTEN-deficient LNCaP prostate 
cancer cells (n =​ 3 independent experiments). e, Schematic representation 
of the PI3K signalling pathway and the pharmacological/genetic tools 
used in this study. f, ProAMD1 and AMD1 protein quantification from 
Fig. 3b (sample number as indicated by dots). g, AMD1 gene expression 
upon treatment (24 h) with vehicle (V, DMSO), rapamycin (R, 20nM) and 

Torin-1 (T, 250 nM for PC3 and DU145, 125 nM for LNCaP)  
(LNCaP, n =​ 8 for Torin-1 and n =​ 6 for rapamycin; PC3 and DU145,  
n =​ 6 independent experiments as indicated by dots). Mean ±​ s.e.m.  
h, Representative western blot analysis of AMD1 levels upon 24-h 
treatment of DU145 cells with vehicle, Torin-1 (mTORC1/2 inhibitor; 
250 nM), PD032901 (ERK-MAPK inhibitor, PD; 100 nM), SP600125  
(JNK-SAPK inhibitor, SP; 10 μ​M), and SB203580 (p38-MAPK inhibitor, 
SB; 5 μ​M) (n =​ 3 independent experiments). i, Impact of inducible 
RAPTOR silencing in DU145 cells on proAMD1 protein levels 
(doxycycline-induced, 250 ng ml−1) (representative experiment out of 
n =​ 6). j, Impact of inducible TSC2 silencing in DU145 cells on proAMD1 
protein levels (doxycycline-induced, 250 ng ml−1) (representative 
experiment out of n =​ 6). *​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001. Red asterisk 
in western blots indicates non-specific band. Arrows indicate specific 
immunoreactive bands. Student’s t-test (c, f, g) and Mann–Whitney  
test (a, b).
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Extended Data Figure 6 | mTORC1-dependent AMD1 regulation  
in vivo. a, Effect of spermidine (Spd, 0.75 μ​M) on PC3 cell number upon 
rapamycin treatment (1 nM, outcome measured 72 h after treatment). 
Drugs were administered at day 0 and only spermidine was additionally 
administered at day 1 (n =​ 4 independent experiments as indicated by 
dots). b, Effect of RAD001 treatment on prostate pathological features 
and mTORC1 activity (haematoxylin and eosin and RpS6S235/6 staining 
by immunohistochemistry) (n =​ 3 mice). c, ProAmd1 and Amd1 protein 
abundance quantification from Fig. 3e (left; number of mice as indicated 

by dots). d, Representative immunohistochemical images of prostate 
tissue from wild-type or TRAMP mice (+​/T, 28–32 weeks old) stained 
with haematoxylin and eosin (top) and RpS6S235/6 (bottom, Ptenpc+/+ 
and Ptenpc−/− prostate tissues are presented as a comparison of the RpS6 
phosphorylation levels) (n =​ 3 mice). e, Evaluation of AMD1 expression  
by western blot in prostate tissues from wild-type or TRAMP mice  
(+​/T, 28–32 weeks old) (n =​ 4 mice). *​P <​ 0.05; *​*​P <​ 0.01. Error bars, 
mean ±​ s.e.m. Arrows indicate specific immunoreactive bands. Student’s 
t-test (a) and Mann–Whitney test (c, e).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterRESEARCH

Extended Data Figure 7 | Contribution of mTORC1 effector pathways 
and targets on the regulation of AMD1. a, ODC1 gene expression upon 
treatment (24 h) of vehicle (DMSO), rapamycin (20 nM) and Torin-1 
(250 nM for PC3 and DU145, 125 nM for LNCaP) in PC3, LNCaP, and 
DU145 cells (n =​ 5 independent experiments as indicated by dots). 
Mean ±​ s.e.m. b, Putrescine abundance upon treatment (24 h) of vehicle 
(DMSO), rapamycin (20 nM), and Torin-1 (250 nM) in DU145 and PC3 
cells (n =​ 3 independent experiments as indicated by dots). Mean ±​ s.e.m. 
c, Odc1 gene expression in 3- and 6-month-old Ptenpc+/+ and Ptenpc−/− 
mice (n =​ 3–6 as indicated by dots). Median ±​ interquartile range.  
d, Putrescine abundance in 12-week-old Ptenpc−/− mice upon treatment 
with vehicle or RAD001 (10 mg per kg (body weight), 6 days per week) 
for 4 weeks (n =​ 5 mice). Mean ±​ s.e.m. e, Representative western blot 
(n =​ 3 independent experiments) depicting the changes in expression 
of the indicated proteins upon 24 h treatment of DU145 cells with 
rapamycin (20 nM) and/or DFMO (an inhibitor of ODC1, 50 μ​M) with 

the corresponding vehicles. f, Representative western blot showing LC3 
lipidation in HCQ-treated (6 h) DU145 and PC3 cells, as a readout of 
macro-autophagy (n =​ 3 independent experiments). Arrow indicates 
LC3-II. g, For the analysis of translation initiation, polysome profiling 
analysis of AMD1 and L11 as positive control in DU145 cells treated with 
vehicle or rapamycin (20 nM, 8 h) is shown. Error bars, s.d. from technical 
replicates. h, Effect of pharmacological p70S6K inhibition with PF4708671 
(10 μ​M) on AMD1 protein expression in DU145 cells (representative 
experiment out of five). i, Effect of 4EBP1/2 silencing on proAMD1 and 
AMD1 protein expression (upper panels) (representative experiment out 
of three). Lower panels show 4EBP1 (n =​ 5 independent experiments) 
and 4EBP2 (n =​ 4 independent experiments) gene expression in shRNA-
transduced DU145 cells. *​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001. Red asterisks 
in western blots indicate non-specific band. Arrows indicate specific 
immunoreactive bands. Student’s t-test (a, b, d, i) and Mann–Whitney  
U-test (c).
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Extended Data Figure 8 | See next page for caption.
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Extended Data Figure 8 | Regulation of proAMD1 stability by 
mTORC1. a, ProAmd1 (left) and Amd1 (right) protein abundance 
quantification from Fig. 4a (n =​ 3 independent experiments as indicated 
by dots). Error bars, mean ±​ s.e.m. b, Representative western blot of 
DU145 cells expressing Ser-229-Ala (S229A) mutant Myc-AMD1–HA 
treated with vehicle or Torin-1 (250 nM, 6 h) in the presence or absence 
of MG132 (5 μ​M, 6 h) (n =​ 3 independent experiments). Quantification 
is provided in the right panel. c, Representative MS/MS spectrum of 
the TVLASPQKIEGFK peptide in proAMD1 and AMD1, in which 
phosphorylation was unambiguously assigned to the S298 residue.  
d, Calculated areas under the curves from extracted ion chromatogram  
in Fig. 4b of the TVLASPQKIEGFK peptide for phosphorylated 
(highlighted in red in the sequence, left) and total (right) proAMD1.  
e, Calculated areas under the curves from extracted ion chromatogram of 
the TVLASPQKIEGFK peptide for phosphorylated (highlighted in brown 
in the sequence, left) and total (right) AMD1. f, Schematic representation 

of the working hypothesis of proAMD1 regulation by mTORC1-dependent 
phosphorylation. g, Effect of Torin (250 nM) on proAMD1 and AMD1 
protein at different time points in Myc-AMD1–HA-expressing DU145 
cells (representative western blot out of three independent experiments; 
right, densitometric quantification). Error bars, s.e.m. h, i, Representative 
western blot depicting the stability of ectopic proAMD1 and AMD1 in 
DU145 cells challenged with vehicle or Torin-1 (250 nM, 2 h) upon CHX 
treatment (densitometry of proAMD1 and AMD1 levels is represented in 
right panels (h) and half-life reduction in proAMD1 (i) (n =​ 4 independent 
experiments). j, k, Representative western blot depicting the stability of 
S229A mutant Myc-AMD1-HA construct in DU145 cells challenged with 
vehicle or Torin-1 (250 nM, 2 h) upon CHX treatment (densitometry of 
proAMD1 is represented in the right panel (j) and half-life reduction in 
proAMD1 (k) (n =​ 3 independent experiments). Mean ±​ s.e.m. NS, not 
significant. *​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001. Student’s t-test.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | Contribution of proAMD1 phosphorylation 
downstream mTORC1 to the stability of the enzyme. a, b, Representative 
western blot depicting the stability of wild type and S298A phospho-
mutant Myc-AMD1-HA constructs in DU145 cells upon cycloheximide 
treatment (densitometry of proAMD1 and AMD1 is represented in right 
panels (a) and half-life reduction in proAMD1 (b) (n =​ 3 independent 
experiments). Mean ±​ s.e.m. c, Representative western blot depicting 
the stability of S298A phospho-mutant Myc-AMD1-HA construct in 
DU145 cells challenged with vehicle (V) or MG132 (5 μ​M) upon CHX 
treatment (densitometry of proAMD1 is represented in right panel, n =​ 3 
independent experiments). Mean ±​ s.e.m. d, mTORC1 kinase activity 
(by means of RAPTOR immunoprecipitation from HEK293 cells) on 
GST–proAMD1S229A or GST–proAMD1S229A/S298A, using bacteria-purified 
proteins. GST–p70S6K is presented as positive control. AZD8055 is 
used as control of mTORC1 inhibition. e, Correlation analysis between 

p70S6KpT389 and AMD1 densitometry values in prostate cancer specimens 
from Fig. 4c (n = 15 patient specimens). f, Quantification of AMD1 
immunoreactivity in response to everolimus in tumour biopsies, on 
the basis of the Δ​H score (n =​ 14 specimen pairs). g, Box-and-whisker 
plot of the immunoreactivity of mTOR downstream effectors (AKTS473, 
RpS6pS240/244, 4EBP1/2pT70, eIF4GpS1108) in cancer patients with (Δ​H score 
for KI67 <​ 0; n =​ 6 specimen pairs) or without (Δ​H score for KI67 ≥​ 0; 
n =​ 4 specimen pairs) anti-proliferative tumour response upon treatment 
with everolimus. h, Schematic representation of the main findings of 
this study. Orn, ornithine; Put, putrescine; Spm, spermine; ODC1, 
ornithine decarboxylase 1; PIP2, phosphatidyl inositol bisphosphate; 
PIP3, phosphatidyl inositol triphosphate; *​P <​ 0.05; *​*​P <​ 0.01; NS, not 
significant. Arrows indicate specific immunoreactive/autoradiographic 
bands. One-tailed Student’s t-test (a–c), two-tailed Mann–Whitney test 
(g), and Spearman’s correlation analysis (e).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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SUMMARY

Mitochondrial respiration is regulated in CD8+ T cells
during the transition from naive to effector and
memory cells, but mechanisms controlling this pro-
cess have not been defined. Here we show that
MCJ (methylation-controlled J protein) acted as an
endogenous break for mitochondrial respiration in
CD8+ T cells by interfering with the formation of elec-
tron transport chain respiratory supercomplexes.
Metabolic profiling revealed enhancedmitochondrial
metabolism in MCJ-deficient CD8+ T cells. Increased
oxidative phosphorylation and subcellular ATP accu-
mulation caused by MCJ deficiency selectively
increased the secretion, but not expression, of inter-
feron-g. MCJ also adapted effector CD8+ T cell meta-
bolism during the contraction phase. Consequently,
memory CD8+ T cells lacking MCJ provided superior
protection against influenza virus infection. Thus,
MCJ offers a mechanism for fine-tuning CD8+ T cell
mitochondrial metabolism as an alternative to modu-
lating mitochondrial mass, an energetically expen-
sive process. MCJ could be a therapeutic target to
enhance CD8+ T cell responses.

INTRODUCTION

Metabolism is emerging as amajor factor that regulates the func-

tion and differentiation of immune cells and influences the course

of an immune response (Pearce et al., 2013; van der Windt and

Pearce, 2012; Wang and Green, 2012). Naive, effector, and

memory T cell subsets have distinct metabolic profiles to provide

the energy and bioenergetic precursors required for cell growth

and expansion. Naive cells use glucose and free fatty acids (FFA)

as sources of ATP throughmitochondrial oxidative phosphoryla-

tion (OXPHOS) (van der Windt et al., 2012; Wang et al., 2011).
After activation, CD8+ T cells undergo a metabolic reprograming

and switch to glycolysis as a source of ATP. Effector T cells can

also use glutamine to generate ATP through glutaminolysis,

which can further fuel OXPHOS (Carr et al., 2010; Wang et al.,

2011). Proliferation of effector CD8+ T cells appears to be more

dependent on glucose than effector CD4+ T cells (Frauwirth

et al., 2002; Macintyre et al., 2011). In contrast, production of

some cytokines by effector CD8+ T cells is not affected by a

strong inhibition of glycolysis (Cham et al., 2008), and cytotoxic

activity can occur in the absence of glucose (MacDonald and

Koch, 1977).

Effector CD8+ T cells further reprogram metabolism during

memory cell generation in response to antigen and cytokine

withdrawal. Memory CD8+ T cells primarily use FFA oxidation

in mitochondria as the main energy pathway (Araki et al., 2009;

Pearce et al., 2009; van der Windt et al., 2012). Additionally,

memory CD8+ T cells manifest a greater increase in both

OXPHOS and aerobic glycolysis following activation compared

with naive cells, and the induction of glycolysis is dependent

on mitochondrial ATP (van der Windt et al., 2013). Importantly,

intervention of metabolism with metformin (AMPK activator) or

rapamycin (mTOR inhibitor) to promote FFA oxidation enhances

the generation of memory CD8+ T cells and protection against

viral infection (Araki et al., 2009; Pearce et al., 2009). A recent

study revealed that memory CD8+ T cells have developed their

own intrinsic pathways to mobilize fatty acids for oxidation

(Pearce et al., 2009). Considering this highly dynamic metabolic

reprogramming, CD8+ T cells likely utilize specific checkpoints to

regulate these transitions and their effector functions. However,

while a number of studies have addressed the effect of different

metabolic substrates that fuel the mitochondrial electron trans-

port chain (ETC), little is known about endogenous mechanisms

that control mitochondrial respiration and, thereby, the immune

response.

Methylation-controlled J protein (MCJ), a protein encoded by

theDnajc15 gene, is amember of the DnaJ family of chaperones.

MCJ is a small protein with features that distinguish it from other

DnaJ family members. While most DnaJ family members are sol-

uble proteins, MCJ contains a transmembrane domain and has a
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Figure 1. MCJ Restrains Mitochondrial Respiration in Naive CD8+ T Cells

WT (blue) and MCJ-deficient CD8+ T cells (MCJ def, red).

(A) Baseline OCR, (B) ECAR, and (C) OCR linked tomitochondrial ATP production (baselineOCRminusOCR in the presence of oligomycin) of freshly isolated cells

as determined by MitoStress (A and C) or Glycolysis Stress assays (B).

(D and F) Metabolic profiles of cells were determined by UPLC-MS analysis. Relative amounts of (D) amino acids and (F) TCA cycle metabolites.

(E) Equal numbers of cells were incubated in culture medium for 16 hr, and metabolic profiles of the culture supernatants were determined.

(G) Complex II activity was determined by examining OCR at baseline and in the response to succinate with rotenone (Succ+Rote) and malonate.

(H) Cells were cultured with 13C- and 15N-labeled amino acids, and metabolic flux was determined by UPLC-MS analysis. 13C-succinate and 13C-fumarate peak

areas shown.

(legend continued on next page)

1300 Immunity 44, 1299–1311, June 21, 2016



unique N-terminal domain that shares no significant sequence

similarity with any other known protein. MCJ was first reported

in ovarian cancer cells as a gene negatively regulated by methyl-

ation (Shridhar et al., 2001; Strathdee et al., 2004). Loss ofMCJ is

associated with chemoresistance of human breast and ovarian

cancer cell lines (Hatle et al., 2007; Shridhar et al., 2001; Strath-

dee et al., 2005). We recently showed that MCJ is abundantly ex-

pressed primarily in tissues with a highly active mitochondrial

metabolism, including heart and liver (Hatle et al., 2013). Within

the immune system, MCJ is highly expressed in CD8+ T cells,

but not in CD4+ T and B cells (Hatle et al., 2013), and less in mac-

rophages (Navasa et al., 2015a). Importantly, MCJ localizes to

the inner membrane of mitochondria (Hatle et al., 2013; Schusd-

ziarra et al., 2013) and acts as a negative regulator of the ETC.

MCJ deficiency in vivo results in increased complex I activity

and mitochondrial membrane potential (MMP) without affecting

mitochondrial mass (Hatle et al., 2013). Endogenous MCJ in pri-

mary tissues associates with complex I and acts as a natural in-

hibitor, making MCJ one of the first described endogenous

negative regulators of complex I. The activity of complex I is

enhanced by assembly in ‘‘respirasomes,’’ which are mitochon-

drial ETC supercomplexes containing complexes I, III, and IV

(Acı́n-Pérez et al., 2008). Supercomplexes facilitate efficient

transfer of electrons to enhance complex I activity and minimize

electron ‘‘leak’’ that results in ROS production (Moreno-Lastres

et al., 2012). We have shown that MCJ interferes with the forma-

tion of these supercomplexes in heart (Hatle et al., 2013), a

mechanism to inhibit complex I activity and MMP.

Although MCJ is abundantly present in CD8+ T cells, its role in

regulating mitochondrial metabolism and function of these cells

is unknown. Here, we show that MCJ acts a negative regulator of

mitochondrial respiration in CD8+ T cells. MCJ deficiency did not

affect proliferation of naive CD8+ T cells upon activation, nor acti-

vation marker or cytokine gene expression. However, increased

OXPHOS in MCJ-deficient CD8+ T cells enhanced the secretion

of cytokines and sustained the metabolic state of effector CD8+

T cells during the contraction phase. MCJ-deficient memory

CD8+ T cells had greater protective capacity against influenza vi-

rus infection. Therefore, MCJ is emerging as an important nega-

tive regulator of mitochondrial activity of CD8+ T cells.

RESULTS

Loss ofMCJPromotes Respiratory Supercomplexes and
Mitochondrial Metabolism in Naive CD8+ T Cells
To investigate the role of MCJ in CD8+ T cell development and

function, we used MCJ-deficient mice previously described to

have no obvious phenotypic alterations under physiological con-

ditions (Hatle et al., 2013). Although CD8+ T cells freshly isolated

from MCJ-deficient mice display higher mitochondrial mem-

brane potential (MMP) (Figure S1A), there was no difference in

the percentage (Figure S1B) or number (data not shown) of

CD8+ or CD4+ T cells in the spleen and lymph nodes (LN) of
(I and J) Mitochondrial extracts were resolved by BNE. (I) Bands corresponding

SDS-PAGE, and examined by Western blot analysis for NDUFA9 (complex I) and

(J) Proteins separated by BNE were examined by Western blot analysis for NDUF

monomeric complexes I (CI) and III (CIII) regions of theWestern blot shown. *p < 0.

experiments. See also Figure S1 and Table S1.
WT and MCJ-deficient mice. No difference in the expression

of activation markers such as CD44 was observed (Figure S1C).

The percentage (Figure S1B) and number (data not shown) of

single-positive, double-positive (DP), or double-negative (DN)

populations in the thymus were also comparable. Thus, MCJ

deficiency does not affect the development of CD8+ and CD4+

T cells in the thymus or homeostasis in the periphery.

MMP is the driver for oxidative phosphorylation (OXPHOS),

generation of ATP, and oxygen consumption. To investigate

the impact that increased MMP in MCJ-deficient CD8+ T cells

has on mitochondrial respiration, we examined the oxygen con-

sumption rate (OCR) in freshly isolated CD8+ T cells using the

Seahorse MitoStress assay. Correlating with the increased

MMP, OCR was also elevated in MCJ-deficient CD8+ T cells

compared with WT CD8+ T cells (Figure 1A). In contrast, the

extracellular acidification rate (ECAR), a parameter for glycolysis,

was not affected inMCJ-deficient CD8+ T cells (Figure 1B). Mito-

chondrial ATP production, determined by subtracting the OCR in

the presence of oligomycin (Complex V/ATP Synthase inhibitor)

from theOCR at baseline, was also higher inMCJ-deficient CD8+

T cells (Figure 1C). Thus, MCJ is a negative regulator of mito-

chondrial respiration in CD8+ T cells.

To identify the impact of MCJ on the overall metabolism of

naive CD8+ T cells, we performed nonbiased high-throughput

metabolic profiling. Metabolome analysis of CD8+ T cells freshly

isolated from WT and MCJ-deficient mice showed a large num-

ber of metabolic intermediates from different pathways equally

present in both (Table S1). However, there was a significant in-

crease in the amounts of several amino acids in MCJ-deficient

CD8+ T cells (Figure 1D). Most of the amino acids that were

significantly elevated belonged to the essential amino acid group

(Figure 1D). In contrast, only tyrosine in the conditionally essen-

tial amino acid group and asparagine in the non-essential group

were significantly increased (Figure 1D).

The preferential accumulation of amino acids that need to be

imported suggested a greater amino acid transport occurred in

the absence of MCJ. Since amino acid transport is highly depen-

dent on ATP, increasedmitochondrial OXPHOSdue toMCJ defi-

ciency could be responsible for this transport. To investigate

this, we incubated freshly isolated CD8+ T cells in culture

medium. After 16 hr, the metabolic profile of the culture

supernatants was analyzed to determine the amino acid con-

sumption. The amounts of amino acids were significantly

reduced in the culture supernatant of MCJ-deficient CD8+

T cells (Figure 1E). In addition, metabolic flux analyses with 13C

and 15N labeled amino acids showed increased uptake of extra-

cellular [13C, 15N]-glutamine (Figure S1D). Thus, the increased

mitochondrial respiration resulting from MCJ deficiency in naive

CD8+ T cells in vivo promotes amino acid uptake.

The other metabolite significantly increased in MCJ-deficient

CD8+ T cells was succinate (Table S1 and Figure 1F), which

is oxidized to fumarate by succinate dehydrogenase (ETC com-

plex II) in the TCA cycle. However, the amounts of fumarate and
to supercomplexes (SC) or monomeric complex IV were excised, resolved by

CoxIV (complex IV).

A9 and Core1 (complex III). Bands corresponding to supercomplexes (SC) and

05 by unpaired t test. Avg ± SD (nR 3) shown. Results are representative of 2–3
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the other components of the TCA cycle were not different (Fig-

ure 1F). These results suggested that elevated succinate in

MCJ-deficient CD8+ T cells was the result of impaired

complex II activity. Indeed, reduced complex II activity was

found in freshly isolated MCJ-deficient CD8+ T cells as

measured by OCR in response to succinate using a Seahorse

Extracellular Flux analyzer (Figure 1G). In addition, metabolic

flux analyses of freshly isolated CD8+ T cells incubated with
13C- and 15N-labeled amino acids revealed an increase in

newly synthesized succinate, but not fumarate (the product of

complex II), in MCJ-deficient CD8+ T cells (Figure 1H). Thus,

complex II appears to be uncoupled from the rest of the ETC in

MCJ-deficient CD8+ T cells.

We have shown that the absence of MCJ in heart favors the

accumulation of mitochondrial respiratory supercomplexes

(Hatle et al., 2013), composed of complexes I, III, and IV but

not complex II. To investigate whether supercomplexes were

increased in naive MCJ-deficient CD8+ T cells, we generated

mitochondrial extracts with digitonin to preserve supercom-

plexes and resolved them by blue native electrophoresis (BNE)

as previously described (Yang et al., 2015). The supercomplex

region was excised, resolved by SDS-PAGE, and analyzed by

Western blot for subunits of complexes I (NDUFA9) and IV

(CoxIV). The amounts of supercomplexes were higher in MCJ-

deficient CD8+ T cells (Figure 1I). Monomeric complex IV

analyzed as a control and was not different (Figure 1I). To further

support the accumulation of supercomplexes in MCJ-deficient

CD8+ T cells, we resolved mitochondrial extracts by BNE, fol-

lowed by immunoblot analysis for subunits of complexes I

(NDUFA9) and III (Core1). Increased NDUFA9 amounts were pre-

sent in the supercomplex region in MCJ-deficient CD8+ T cells,

while the amounts of NDUFA9 in the monomeric complex I re-

gion were comparable between MCJ-deficient and WT cells

(Figure 1J). Similar results were obtained for Core1 (Figure 1J).

Thus, loss of MCJ promotes the formation of respiratory super-

complexes in naive CD8+ T cells. Uncoupling complex III from

complex II could compromise complex II activity and cause the

observed accumulation of succinate. Together, these results

indicate that the function of MCJ in naive CD8+ T cells is to

restrict mitochondrial metabolism, and a deficiency inMCJ alters

normal mitochondrial metabolism.

MCJ Deficiency Does Not Affect Proliferation, but
Enhances the Secretion of Cytokines in Activated CD8+

T Cells
We investigated whether the enhanced mitochondrial meta-

bolism found in MCJ-deficient CD8+ T cells could alter prolifera-

tion. Freshly isolated CD8+ T cells were stained with CFSE and

activated with anti-CD3 and anti-CD28 antibodies (Abs), and

proliferation was analyzed by flow cytometry. No differences

were observed in the frequency of proliferating cells or number

of cell divisions (Figure 2A), the survival of cells after 2 days

of activation (Figure 2B), or expression of the cell surface activa-

tion markers CD69 and CD25 (Figure 2C). In contrast, greater

IFN-g (Figure 2D) and IL-2 (Figure 2E) production was detected

in activated MCJ-deficient CD8+ T cells as determined by

ELISA. Thus, loss of MCJ does not interfere with activation or

expansion of CD8+ T cells, but results in a greater production

of cytokines.
1302 Immunity 44, 1299–1311, June 21, 2016
Production of cytokines by CD8+ T cells upon activation is pri-

marily regulated at the level of gene expression either by tran-

scription or mRNA stability. However, analysis of cytokine

mRNA by quantitative RT-PCR showed no difference in the

amounts of IFN-g and IL-2 mRNA between activated MCJ-defi-

cient and WT CD8+ T cells (Figure 2F). Thus, MCJ had no effect

on cytokine gene expression in CD8+ T cells. A recent study re-

ported that aerobic glycolysis promotes IFN-g production at the

translational level in effector CD4+ T cells (Chang et al., 2013).

However, intracellular staining analysis for IFN-g showed no dif-

ference betweenWTandMCJ-deficient CD8+ T cells (Figure 2G).

Similarly, there was no difference in IL-2 intracellular staining

(Figure 2G). Thus, the increased amounts of cytokines in MCJ-

deficient CD8+ T cell supernatants were not due to increased

gene or protein expression.

Secretion of cytokines is another mechanism that regulates

the overall amount of cytokines being produced, although little

is known about the pathways involved. To investigate whether

the increased IFN-g in the supernatants of MCJ-deficient CD8+

T cells was caused by enhanced secretion, we activated CD8+

T cells with anti-CD3 and anti-CD28 Abs for 2 days, washed,

and equal numbers of cells were incubated in medium alone

without any additional stimuli for different periods of time.

IFN-g in the supernatants from MCJ-deficient CD8+ T cells after

2 hr was higher than WT CD8+ T cells (Figure 2H). IFN-g in MCJ-

deficient CD8+ T cell supernatants continued increasing for at

least 4 hr and then remained constant, while the amount

secreted by WT CD8+ T cells did not increase (Figure 2H). Treat-

ment with cycloheximide (CHX), an inhibitor of protein synthesis,

did not affect the IFN-g produced during this period (Figure S2A),

although CHX prevented new protein synthesis triggered by the

activation of naive CD8+ T cells (Figure S2B). These results

further support the conclusion that increased protein translation

was most likely not the primary cause of enhanced IFN-g pro-

duction by MCJ-deficient CD8+ T cells. IL-2 and GM-CSF were

also elevated in the supernatant of MCJ-deficient CD8+ T cells

after 4 hr (Figure S2C), indicating that the effect of MCJ on secre-

tion is not restricted to IFN-g. To further confirm the enhanced

capacity of secretion by MCJ-deficient CD8+ T cells, we per-

formed ELISpot assays for IFN-g. The number of spots with a

larger area (high IFN-g producers) was increased in MCJ-defi-

cient CD8+ T cells (Figure 2I). Enhanced secretion should result

in lower accumulation of intracellular IFN-g if no additional syn-

thesis takes place. Intracellular staining for IFN-g after activated

cells were washed and incubated inmedium alone showed lower

IFN-g in MCJ-deficient CD8+ T cells after 1 hr (Figure S2D).

Together these results indicate that MCJ deficiency augments

cytokine production primarily by promoting the cytokine secre-

tion capacity of effector CD8+ T cells.

Localized Mitochondrial Production of ATP in the
Absence of MCJ Promotes Cytokine Secretion
We used an unbiased metabolomics approach to investigate

which metabolic pathways were regulated by MCJ in effector

CD8+ T cells. Metabolic profiling was obtained from equal

numbers of WT and MCJ-deficient CD8+ T cells after 2 days of

activation and 4 hr of resting. Although no obvious phenotypic

differences in terms of size or activation markers could be

detected between the cell types, MCJ deficiency caused
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Figure 2. MCJ Deficiency Does Not Affect Effector CD8+ T Cell Proliferation but Increases the Secretion of Cytokines

WT (blue) and MCJ-deficient CD8+ T cells (MCJ def, red) were activated for 2 days with anti-CD3 and anti-CD28.

(A) Proliferation determined by CFSE staining. Grey histograms show unstimulated cells.

(B) Cell survival determined by Live Dead staining.

(C) Cell surface expression of CD69 and CD25. Grey histograms show unstained cells.

(D-E) Culture supernatants of activated cells were examined for (D) IFN-g and (E) IL-2 by ELISA.

(F) IL-2 and IFN-g mRNA expression determined by qRT-PCR.

(G) Intracellular staining for IFN-g and IL-2. Grey histograms show unstained cells.

(H) Activated cells were washed and replated at equal numbers in medium alone. IFN-g in the culture supernatants over time was determined by ELISA.

(I) Number of IFN-g-producing cells determined by ELISpot assay. *p < 0.05 by unpaired t test. Avg ± SD (n R 3) shown. Results are representative of 2–3

experiments. See also Figure S2.
well-defined metabolic changes (Table S2). Similar to naive

CD8+ T cells, the absence of MCJ in activated CD8+ T cells re-

sulted in increased amounts of amino acids, but this increase

was not restricted to essential amino acids (Figure 3A). In addi-

tion, a number of intermediate metabolites of the TCA and urea

cycle pathways, two of the main mitochondrial pathways, were

among the most elevated components in activated MCJ-defi-

cient CD8+ T cells relative to WT CD8+ T cells (Table S2). Similar

to naive CD8+ T cells, succinate was also drastically increased in

activated MCJ-deficient CD8+ T cells, but fumarate, malate, and
2-hydroxyglutarate were also higher (Figure 3B). Citrulline and

arginosuccinate, components of the urea cycle, were also

increased (Figure 3C). Although there was no difference in prolif-

eration, nucleotide pathways were also upregulated in the

absence of MCJ (Figure 3D). Nucleotide synthesis is primarily

cytosolic, however mitochondrial metabolic pathways feed into

these pathways, as purine salvage reactions consume aspartate

to produce fumarate and recover AMP upon deamination to IMP.

Thus, an unbiasedmetabolic screening revealed increasedmito-

chondrial activity in MCJ-deficient effector CD8+ T cells.
Immunity 44, 1299–1311, June 21, 2016 1303
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Figure 3. MCJ Deficiency Enhances Mito-

chondrial Metabolism in Effector CD8+ T Cells

(A–D) WT (blue) and MCJ-deficient (MCJ def, red)

CD8+ T cells were activated for 2 days with anti-CD3

and anti-CD28, and metabolic profiles were deter-

mined by UPLC-MS. Relative peak areas of (A)

amino acids andmetabolites of the (B) TCA cycle, (C)

urea cycle, and (D) nucleotide pathways shown.

*p < 0.05 by unpaired t test. Avg ± SD (n = 3 mice)

shown. See also Table S2.
Effector CD8+ T cells are primarily glycolytic and use ATP from

glycolysis instead of mitochondrial OXPHOS as themajor source

of energy. Because the absence of MCJ enhances overall mito-

chondrial activity, we examined intracellular ATP. Higher

amounts of total ATP were present in MCJ-deficient CD8+

T cells that were activated for 2 days and rested for 4 hr (Fig-

ure 4A). To determine whether this increased production of

ATP resulted from increased mitochondrial respiration, we per-

formed Seahorse MitoStress analysis. OCR was higher in acti-

vated MCJ-deficient CD8+ T cells, as shown by the effect of

oligomycin on baseline OCR (Figure 4B). These data indicate

that the rate of ATP synthesis by mitochondria was increased

in the absence of MCJ. In contrast, analysis of ECAR in response

to glucose showed no difference between the two cell types (Fig-

ure 4C). Thus, loss of MCJ promotes mitochondrial respiration

without altering the glycolytic rate of effector CD8+ T cells.

The normal rate of glycolysis as determined by ECAR analysis

correlated with the normal rate of proliferation and gene expres-

sion observed in MCJ-deficient CD8+ T cells. While glycolysis-

derived ATP represents the predominant source of energy and

is sufficient for these processes in activated cells, mitochon-

drial-derived ATP could be essential for other CD8+ T cell

functions such as cytokine secretion. Due to the dynamic char-

acteristics of mitochondria, this organelle could provide a sub-

cellular microenvironment rich in ATP without the need to raise

total cytosolic ATP. We investigated the presence of ATP-rich

microdomains within activated CD8+ T cells using a fluorescent

probe used to identify ATP and ADP intracellular accumulation.

Confocal microscopy of live cells showed only a few punctate

ATP probe accumulations in activated WT CD8+ T cells, while

ATP puncta were abundant and prominent in MCJ-deficient

CD8+ T cells (Figure 4D). The subcellular ATP accumulation in

MCJ-deficient CD8+ T cells represented the mitochondrial-

derived ATP pool since treatment with oligomycin prevented

their formation (Figure S3A). Moreover, co-staining with the
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ATP probe and Mitotracker, a mitochon-

drial marker, revealed colocalization of the

ATP puncta with mitochondria in activated

MCJ-deficient CD8+ T cells (Figure 4E).

Thus, MCJ deficiency facilitates the forma-

tion of ATP-rich microdomains within acti-

vated CD8+ T cells.

To address whether the increased secre-

tion of IFN-g found in MCJ-deficient CD8+

T cells was mediated by increased mito-

chondrial ATP production, we activated

CD8+ T cells for 2 days and treated them
with oligomycin during the last 4 hr of activation. Cells were

then washed and incubated at equal numbers in medium alone

for 4 hr. IFN-g in the supernatants was determined by ELISA. In-

hibition of mitochondrial ATP synthesis by oligomycin sup-

pressed the enhanced secretion of IFN-g by MCJ-deficient

CD8+ T cells (Figure 4F). In contrast, oligomycin did not reduce

intracellular IFN-g (Figure S3B). Thus, MCJ acts as an endoge-

nous negative regulator of mitochondrial respiration, restricting

the production of mitochondrial ATP and secretion of cytokines

such as IFN-g.

MCJ Attenuates Mitochondrial Metabolism during the
Contraction Phase of Effector CD8+ T Cells In Vivo
CD8+ T cells reprogram their mitochondrial metabolism during

the differentiation from naive to effector and from effector to

memory stages. Memory CD8+ T cells also have greater mito-

chondrial mass and maximum respiratory capacity (van der

Windt et al., 2012). Because MCJ acts as an internal break for

mitochondrial function in tissues with a high content of active

mitochondria, we investigated MCJ expression during the

contraction phase of effector CD8+ T cells. To examine MCJ

expression in individual cells, we used MCJ-deficient mice

because they contain the b-galactosidase reporter gene inserted

in the MCJ locus, and WT CD8+ T cells served as negative con-

trols (Figure S3C).We performed b-galactosidase activity assays

by flow cytometry analysis in CD8+ T cells that were freshly iso-

lated, activated (effector), and rested in medium alone after acti-

vation (rested effector) tomimic the contraction phase of effector

cells and development of memory cells. The frequency of MCJ-

expressing cells was dramatically decreased in effector cells

relative to naive cells (Figure 5A). We recently showed that

Ikaros, a transcriptional repressor known to attenuate gene

expression (John and Ward, 2011), binds the Dnajc15 gene (en-

codes MCJ) promoter in macrophages to silence MCJ expres-

sion (Navasa et al., 2015b). Because Ikaros has been previously
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D E F

B C Figure 4. Increased Oxidative Phosphoryla-

tion in MCJ-Deficient Effector CD8+ T Cells

Facilitates IFN-g Secretion

WT (blue) andMCJ-deficient CD8+ T cells (MCJ def,

red) were activated with anti-CD3 and anti-CD28 for

2 days.

(A) ATP concentration in cells rested in medium

without stimuli for 4 hr.

(B) OCR of cells rested for 12 hr at baseline and in

response to oligomycin (O), FCCP (F), and rotenone

withantimycim (R+A)bySeahorseMitoStressassay.

(C) ECAR in cells after addition of glucose by Sea-

horse Glycolysis Stress assay.

(D) Live cells stained with ATP-probe (green) were

visualized by confocal microscopy. Right panels

show a magnification of the cells indicated by the

white arrows.

(E) Live cells co-stained with ATP-probe (green) and

Mitotracker (red) were visualized by confocal mi-

croscopy.

(F) Cells were incubated with oligomycin during the

last 4 hr of activation and then rested for 4 hr. IFN-g

in the supernatants was determined by ELISA. *p <

0.05 by unpaired t test. Avg ± SD (n R 3) shown.

Scale bar represents 10 nm. Results are represen-

tative of 2–3 experiments. See also Figure S3.
reported in CD8+ T cells (O’Brien et al., 2014), we performed

chromatin immunoprecipitation analysis (ChIP) to determine

whether Ikaros also binds the Dnajc15 promoter in CD8+

T cells. Relative to naive CD8+ T cells, greater Ikaros binding to

the Dnajc15 promoter was found in activated CD8+ T cells (Fig-

ure 5B). Thus, MCJ is present in naive CD8+ T cells as an addi-

tional checkpoint to restrict potential effector function.

The frequency of CD8+ T cells expressing MCJ increased

again when effector cells were rested in the presence of medium

without additional stimuli (Figure 5A). During the contraction

phase, effector CD8+ T cells modulate their metabolism, become

smaller and less active, and most die except for a few that sur-

vive to becomememory cells (D’Cruz et al., 2009). We examined

whether the observed re-acquisition of MCJ in resting effector

CD8+ T cells contributed to the attenuation of metabolism or

cell survival in vitro during the contraction phase. CD8+ T cells

were activated for 2 days, washed, and then incubated in me-

dium alone (without addition of cytokines). After 24 hr of resting,

most WT and MCJ-deficient CD8+ T cells remained alive (Fig-

ure 5C). However, after 48 hr only a few WT CD8+ T cells re-

mained alive, whereas many MCJ-deficient CD8+ T cells were

still viable even at 72 hr (Figure 5C). In addition, the surviving

MCJ-deficient CD8+ T cells maintain the ‘‘blastic cell stage’’

(large) reminiscent of effector cells (data not shown). Analysis

of MMP in live cells after 48 hr of resting showed that a high pro-

portion of WT CD8+ T cells had low MMP (Figure 5D), similar to

naive CD8+ T cells (Figure S1A). In contrast, a large fraction of

rested effector MCJ-deficient CD8+ T cells displayed high

MMP (Figure 5D). To determine whether the increased survival

in rested MCJ-deficient CD8+ T cells in vitro was due to their

intrinsicmetabolic state (highMMP) or due to increased IL-2 pro-

duction that can promote cell expansion, a blocking anti-IL2 anti-

body was added during the resting period. No differences were

detected in the survival of MCJ-deficient CD8+ T cells after

blocking IL-2 (Figure S3D). Furthermore, the addition of small
amounts of recombinant IL-2 during the resting period resulted

in increased expansion of both WT and MCJ-deficient CD8+

T cells (Figure S3E). Thus, re-acquisition of MCJ in rested

effector CD8+ T cells contributes to the reduction of mitochon-

drial activity, restoration of a quiescent metabolic state and

fitness impairment of effector CD8+ T cells during the contraction

phase in vitro.

To address the role of MCJ in the contraction phase of anti-

gen-specific effector CD8+ T cells in vivo, we crossed MCJ-defi-

cient mice with OT-I TCR transgenic mice, which express a TCR

that recognizes ovalbumin. MCJ deficiency did not affect the

development of OT-I CD8+ T cells (Figure S4A). Similar to poly-

clonal CD8+ T cells, naive MCJ-deficient OT-I CD8+ T cells

also displayed high MMP relative to WT CD8+ T cells (Figure 5E).

CD8+ T cells were purified from OT-I and MCJ-deficient OT-I

mice, activated for 2 days in vitro, and then further expanded

for 3 days. An equal number of cells from each genotype were

combined and co-transferred into the same WT recipient mice

(Figure 5F). After 2 weeks, donor cells present in LN and spleen

of hostmicewere examined by flow cytometry using CD90.1 and

CD90.2 markers (Figures S4B and S4C). Phenotypic character-

ization of the cells based on CD44 and CD62L (memory and

homing markers) as well as KLRG1 and CD127 (markers that

define subsets of long-lived effector and memory T cells;

Jameson and Masopust, 2009; Kaech and Wherry, 2007; Sarkar

et al., 2008) did not show differences betweenWT andMCJ-defi-

cient CD8+ OT-I T cells (Figures S4B and S4C). The overall per-

centage of cell recovery in both donors was comparable (data

not shown). However, as determined by forward scatter (Fig-

ure 5G), only a few WT OT-I CD8+ T cells showed a large blastic

phenotype (Figure 5H). In contrast, a greater fraction of MCJ-

deficient OT-I CD8+ T cells displayed the large blastic phenotype

(Figure 5H). Thus, in vivoMCJ does not seem to contribute to cell

survival but does participate in the attenuation of metabolism

during the transition from effector to rested effector cells.
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Figure 5. MCJ Deficiency Sustains the Metabolic Activity of Effector CD8+ T Cells during the Contraction Phase

WT (blue) and MCJ-deficient CD8+ T cells (MCJ def, red).

(A) Frequency of b-galactosidase+ MCJ-deficient CD8+ T cells that were naive, activated for 2 days with anti-CD3 and anti-CD28, or activated for 2 days and then

rested in medium without stimuli for 48 hr (2 days + 48 hr) or 72 hr (2 days +72 hr) as determined by flow cytometry analysis.

(B) Ikaros binding to the Dnajc15 gene (encodes MCJ) promoter in naive and activated (2 days) cells by ChIP assay. Fold increase over rabbit IgG immuno-

precipitates relative to input shown.

(C) Cells were activated for 2 days, washed, and rested in medium. The number of live cells recovered relative to the initial number is shown.

(D) MMP was examined by TMRE staining in cells activated for 2 days and rested for 48 hr.

(E) MMP in freshly isolated OT-I and MCJ-deficient OT-I CD8+ T cells.

(F–H) OT-I (CD90.1+) andMCJ-deficient OT-I (CD90.1+ CD90.2+) CD8+ T cells were activated for 2 days and then expandedwith IL-2 for 3 days. Equal numbers of

each cell typewere then adoptively transferred intoWT (CD90.2+) recipientmice. LN and spleen of recipients were harvested after 2 weeks and analyzed for donor

cells.

(G and H) Forward scatter of CD8+ OT-I T cells as determined by flow cytometry analysis. *p < 0.05 by unpaired t test. Avg ± SD (n R 3) shown. Results are

representative of 2–3 experiments. See also Figures S3 and S4.
MCJ Deficiency Enhances the Antiviral Protective
Activity of Memory CD8+ T Cells
Memory CD8+ T cells are believed to play an important role in

protection against influenza viral infection (La Gruta and Turner,

2014). Recent studies indicate that increased mitochondrial
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respiration in CD8+ T cells results in increased memory activity

(van der Windt et al., 2013). We investigated the role of MCJ in

protective memory CD8+ T cell responses using an influenza

virus infection model. WT and MCJ-deficient mice were

intranasally infected with a sublethal dose of influenza A/Puerto
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Figure 6. Loss of MCJ Confers Viral Protective Activity to Memory CD8+ T Cells

WT (blue) and MCJ-deficient CD8+ T cells (MCJ def, red).

(A–D) Mice were infected with a sublethal dose of PR8 virus (primary infection). (A) Percent weight loss over time. (B) Percentage of NP-tetramer+ cells in the

spleen 2 weeks post infection. (C) Ex vivo IFN-g production of cells isolated from the spleen and MLN 2 weeks post infection by ELISA. (D) Percentage of NP-

tetramer+ cells from the spleen and MLN of mice 5 weeks post infection.

(E–K) Mice were infected with a sublethal dose of PR8 virus (primary infections). CD8+ T cells were isolated 5 weeks post infection and adoptively transferred into

naive WT recipients, which were then infected with a lethal dose of PR8 virus. (E) Survival and (F) percent weight loss over time. (G–K) Recipients were sacrificed

6 days post lethal infection. (G) BALF cytokines and chemokines. (H) Lung PR8 virus titer by qRT-PCR. (I) Ex vivo production of IFN-g by MLN-CD8+ T cells by

ELISA. (J) IFN-g secretion by lung CD8+ T cells by ELISpot assay. (K) CD107a mobilization assay of MLN CD8+ T cells cultured with (Iono) or without (Med)

ionomycin. *p < 0.05 by log-rank test for Kaplan-Meier survival curve and by unpaired t test for all others. Avg ± SD (nR 3) shown. Results are representative of

2–3 experiments. See also Figures S5 and S6.
Rico/8/34 (PR8) H1N1 virus. As expected, based on the predom-

inant role of innate immunity in primary infection with influenza vi-

rus, no significant differences were observed in weight loss and

recovery or survival between infected WT and MCJ-deficient

mice during primary infection (Figure 6A). Analysis of influenza

NP-tetramer+ CD8+ T cells 2 weeks post-infection also showed

a similar frequency between infected WT and MCJ-deficient

mice (Figure 6B), indicating that the loss of MCJ did not affect

the expansion of effector CD8+ T cells in vivo, consistent with

the in vitro studies. However, ex vivo analysis of IFN-g produc-

tion by CD8+ T cells showed higher IFN-g in the supernatants

of MCJ-deficient CD8+ T cells (Figure 6C). Thus, MCJ deficiency
results in increased IFN-g production by effector CD8+ T cells

in vivo during virus infection.

We then addressed whether the lack of MCJ could affect

memory CD8+ T cell development. Analysis of influenza NP-

tetramer+ CD8+ T cells 3 and 5 weeks post-infection showed a

lower percentage relative to 2 weeks post-infection as expected,

but there was no difference in the frequency between WT and

MCJ-deficient mice (Figures S5A and 6B). This further supported

the finding that lack of MCJ does not affect cell survival during

the generation of memory CD8+ T cells from effector cells in vivo.

Phenotypic analysis of NP-tetramer+ CD8+ T cells for CD44,

CD62L, KLRG1, and CD127 showed no substantial difference
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between WT and MCJ-deficient CD8+ T cells (Figure S5B and

data not shown). Lower CD27 expression was found in the

MCJ-deficient CD8+ T cell memory population (Figure S5B).

CD27low memory cells mediate rapid protective immunity

against acute infection andmanifest high cytolytic activity (Olson

et al., 2013).

To investigate the protective capacity of memory MCJ-defi-

cient CD8+ T cells, we performed adoptive transfer of equal

numbers WT and MCJ-deficient CD8+ T cells obtained five

weeks post-infection separately into WT recipient mice. Recip-

ient mice were then infected with a lethal dose of PR8 virus. As

expected, recipient mice that received cells from infected WT

mice were not protected, did not recover their weight, and

died between 8 and 9 days post lethal infection (Figures 6E

and 6F). In contrast, most recipient mice that received cells

from infected MCJ-deficient mice were protected and survived

(Figure 6E). Mice receiving MCJ-deficient CD8+ T cells lost

weight initially, indicating that they had been infected, but they

recovered to a healthy state (Figure 6F). Thus, the absence of

MCJ in memory CD8+ T cells confers greater protective capacity

against influenza virus infection.

Death caused by some of the highly pathogenic influenza vi-

ruses (such as H5N1 influenza) is often associated with a strong

systemic immune response and cytokine storm. To rule out that

the death of the recipients of WT CD8+ T cells was caused by an

exuberant immune response, we examined cytokine production

6 days post-infection with the lethal dose. The concentration of

inflammatory cytokines (IL-6, KC) and chemokines (CXCL10) in

brochoalveolar lavage fluid (BALF) (Figure 6G) and serum (sys-

temic) (Figure S6A) were comparable. These results indicate

that the protection found in mice that received MCJ-deficient

CD8+ T cells was not due to an attenuated immune response

relative to mice that received WT CD8+ T cells.

To investigate whether the protective capacity of memory

MCJ-deficient CD8+ T cells was due to an improved effector

function to clear virus, we examined PR8 virus titers in the lung

of recipient mice 6 days post-infection with the lethal dose.

Higher virus titers were present in host mice that received WT

CD8+ T cells (Figure 6H), indicating that memory MCJ-deficient

CD8+ T cells were more efficient in clearing influenza virus. To

examine the effector function of memory MCJ-deficient CD8+

T cells, we isolated CD8+ T cells from the mediastinal LN

(MLN) 6 days after the lethal infection and determined ex vivo

IFN-g production by culturing cells in medium without stimuli.

IFN-g was higher in MCJ-deficient CD8+ T cells (Figure 6I); how-

ever, the NP-tetramer+ cell frequency was not different (Fig-

ure S6B). Ex vivo IFN-g production by MCJ-deficient CD8+

T cells isolated from the lung was also increased (Figure S6C),

as was the number of IFN-g-secreting cells as determined by

ELISpot assay (Figure 6J). However, the frequency of NP-

tetramer+ CD8+ T cells in the lung was comparable (Figure S6D),

showing a great secretory capacity of memory MCJ-deficient

CD8+ T cells.

Secretion of granules by exocytosis is dependent on both

Ca2+ and ATP.We investigated whether increasedmitochondrial

ATP production in MCJ-deficient CD8+ T cells could also facili-

tate an increase in exocytosis of cytotoxic granules present in

effector cells by CD107a mobilization assay. CD8+ T cells were

isolated from the MLN 6 days after lethal infection and incubated
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in medium containing monensin with or without ionomycin to

provide the Ca2+ signal. The frequency of CD107a+ MCJ-defi-

cient CD8+ T cells treated with ionomycin was significantly

higher than WT CD8+ T cells (Figure 6K), indicating that MCJ-

deficient CD8+ T cells have a greater capacity to function

as cytotoxic cells. Thus, increased mitochondrial respiration

caused by the loss of MCJ in CD8+ T cells results in increased

antiviral protective activity during memory responses by

enhancing the secretion both of effector cytokines as well as

cytotoxic granules.

DISCUSSION

Mitochondria play a key role in balancing cellular metabolism pri-

marily as the site for OXPHOS through the ETC and as a source

of ATP. Recently, it has become clear that tight regulation of

mitochondrial metabolism occurs during the reprograming of

CD8+ T cells. A number of molecules have been shown to be

required for maximum efficiency of the ETC and OXPHOS. How-

ever, very little is known about negative regulatory mechanisms

that restrict mitochondrial respiration. We have recently identi-

fied MCJ as one of the first known negative regulators of com-

plex I activity through its effect on the formation of respiratory

supercomplexes (Hatle et al., 2013). Our earlier studies demon-

strated that the absence of MCJ prevents the development of

steatosis by accelerating fatty-acid metabolism within the liver

(Hatle et al., 2013). Here we have shown that MCJ restrains mito-

chondrial respiration in CD8+ T cells. In the absence of this nat-

ural break, CD8+ T cells have enhanced OXPHOS leading to

increased secretion of cytokines by effector CD8+ T cells. In

addition, MCJ deficiency interferes with the metabolic adapta-

tion during the contraction phase of effector CD8+ T cells and re-

sults in greater antiviral protective activity of memory CD8+

T cells.

Effector and memory CD8+ T cells need ATP for effector func-

tions in addition to cell growth and expansion.While CD8+ T cells

primarily use glycolysis instead of OXPHOS for proliferation

(Frauwirth et al., 2002; Macintyre et al., 2011) other sources

might provide the ATP required for processes with high ATP con-

sumption. Production of some cytokines by effector CD8+ T cells

is not affected by strong inhibition of glycolysis (Cham et al.,

2008), and cytotoxic activity can take place in the absence of

glucose (MacDonald and Koch, 1977). Considering the dynamic

aspect of mitochondria as organelles that can rapidly relocate in

the cytosol, it is quite possible that mitochondria can create a

microenvironment that is highly rich in ATP in specific locations

without elevating overall cytosolic ATP. Mitochondria have

been shown to relocate to the edge of lamellipodia and are crit-

ical for providing the energy for migration of cells (Morlino et al.,

2014). Our studies revealed the presence of microenvironments

where ATP and ADP accumulate in CD8+ T cells located in the

proximity of mitochondria. Here we have shown that increased

mitochondrial respiration in CD8+ T cells lacking MCJ had no ef-

fect on CD8+ T cell proliferation or cytokine gene expression, but

it enhanced the secretion of cytokines such as IFN-g. Little is

known about the mechanisms of cytokine secretion in T cells;

however, secretion of intracellular components often is depen-

dent on ATP (Jena, 2013;Monteleone et al., 2015) and the source

of this ATP, whether mitochondrial or cytosolic, has yet to be



determined. Secretion of IFN-g by CD8+ T cells in the absence of

MCJ is dependent on ATP derived from mitochondria. Thus,

through OXPHOS mitochondria can regulate effector function

of CD8+ T cells independently of cell expansion.

The presence of respiratory supercomplexes in mammalian

cells has been demonstrated in tissues such as heart. Respira-

somes bring the individual complexes together to facilitate the

efficient transfer of electrons between complexes while prevent-

ing electron leak and, thereby, production of ROS. Here we re-

vealed the presence of supercomplexes in naive CD8+ T cells

and increased supercomplex formation in the absence of MCJ.

Naive CD8+ T cells primarily use mitochondria and OXPHOS

relative to activated CD8+ T cells; however, mitochondrial ROS

are almost undetectable (Hatle et al., 2013). It is possible that

the presence of supercomplexes prevents the formation of

ROS and enhances survival of naive cells. Although increased

MMP is normally associated with increased ROS, in MCJ-

deficient CD8+ T cells MMP is higher but ROS is not (Hatle

et al., 2013). This is most likely due to abundance of supercom-

plexes in these cells. To date, there is no clear evidence that

complex II (succinate dehydrogenase) is also recruited to super-

complexes. Because complex III receives electrons from both

complex I and complex II, the recruitment of complex III to super-

complexes might cause an uncoupling of complex III from com-

plex II. Therefore, the attenuation of complex II activity in the

absence of MCJ could be a mechanism to prevent electron

leakage since its corresponding acceptor, complex III, is

sequestered, explaining the accumulation of succinate in MCJ-

deficient CD8+ T cells.

Memory CD8+ T cells utilize mitochondrial respiration for both

their generation and effector function. However, instead of using

glucose to feed mitochondrial respiration through pyruvate,

memory CD8+ T cells perform b-oxidation of fatty acids.

Recently, it has been shown that these cells utilize lipolysis to

generate their own fuel (O’Sullivan et al., 2014). Pathways lead-

ing to increased mitochondrial respiration are associated with

a superior memory CD8+ T cell response. In our study, we

have identified MCJ as an endogenous negative regulator of

OXPHOS in CD8+ T cells. Lack of MCJ sustained the active

metabolism of effector CD8+ T cells during the contraction phase

and resulted in greater effector memory CD8+ T cell responses to

influenza virus. Although MCJ deficiency had an impact in the

metabolic adaptation during the contraction phase of effector

CD8+ T cells, it did not seem to have a substantial effect on

overall survival of those effector cells in vivo. MCJ deficiency ap-

peared to provide a survival advantage to effector cells when

these cells were rested in medium alone without additional

cytokines in vitro. This is most likely due to the fact that during

in vitro resting effector WT CD8+ T cells undergo cytokine with-

drawal. We also show here that WT memory CD8+ T cells alone

failed to provide protection against a lethal dose of influenza

virus. Strikingly, MCJ-deficient memory CD8+ T cells were highly

protective against lethal infection with influenza. Using the

LCMV infection model, it has been shown that CD4+ T cells

can rescue exhausted CD8+ T cells during chronic viral infection

(Aubert et al., 2011). We also observed that a small frequency

of CD4+ T cells was sufficient for WT memory CD8+ T cells to

provide protection against influenza virus infection (data not

shown). Because MCJ deficiency results in enhanced CD8+
T cell responses, it is not evolutionarily clear why MCJ is ex-

pressed in CD8+ T cells. While CD8+ T cells are key for protec-

tion, an exaggerated cytotoxic CD8+ T cell response could

cause non-specific tissue damage. We propose that MCJ was

acquired in CD8+ T cells as a strategy to restrain their meta-

bolism and prevent a prolonged effector function that could be

harmful.

EXPERIMENTAL PROCEDURES

Mice

Mouse strains used were C57BL/6J (WT), MCJ-deficient C57BL/6 (Hatle et al.,

2013), OT-I TCR transgenic, andMCJ-deficient OT-I. All mice were maintained

at the University of Vermont animal care facility and used under procedures

approved by the University of Vermont Institutional Animal Care and Use Com-

mittee (IACUC).

Cell Preparation and Culture

Cells were purified by negative selection or positive selection using the MACS

Cell Separation System (Miltenyi). Cytokine production was determined by

ELISA. Detailed protocols are described in Supplemental Experimental

Procedures.

Extracellular Flux Analysis

Oxygen consumption (OCR) and extracellular acidification rates (ECAR) were

analyzed using a XF24 Extracellular Flux analyzer (Seahorse Bioscience).

Detailed protocols are described in Supplemental Experimental Procedures.

Intracellular ATP Concentration

ATP concentration was determined using the ATPlite Luminescence Assay

System and a TD-20/20 Luminometer. Detailed protocols are described in

Supplemental Experimental Procedures.

Flow Cytometry Analyses

Flow cytometry analyses were performed using an LSRII Flow Cytometer (BD

Biosciences). Cell proliferation, survival, and MMP were determined using

CFSE, Live Dead Cell Viability Assay, and TMRE (Molecular Probes). b-galac-

tosidase activity was determined using the FACS Fluorescent Blue lacZ

b-Galactosidase Detection Kit (Marker Gene Technologies). Intracellular cyto-

kine staining was performed without brefeldin A or monensin. CD107a mobili-

zation assay was performed using monensin and anti-CD107a-PE (Biolegend)

with or without ionomycin. Detailed protocols are described in Supplemental

Experimental Procedures.

Chromatin Immunoprecipitation

ChIP assayswere performed using the SimpleChip Enzymatic Chromatin IP Kit

(Cell Signaling) with anti-Ikaros or rabbit IgG. Detailed protocols are described

in Supplemental Experimental Procedures.

Influenza Infection and Analyses

Mice were infected intranasally with a sublethal dose of PR8 virus. CD8+ T cells

were isolated after 5 weeks, equal numbers of NP tetramer+ cells were trans-

ferred to naive WTmice. Recipients were infected with a lethal dose and sacri-

ficed 6 days later. CD8+ T cells from the MLN and lung were examined for

ex vivo IFN-g production by ELISA and/or ELISpot and for effector and mem-

ory cell surface markers, NP-tetramer+ cell frequency, and/or CD107a mobili-

zation by flow cytometry. BALF and serum were analyzed by Luminex assay

(Millipore). Lung was examined for PR8 virus titer by qRT-PCR for acid poly-

merase. Detailed protocols are described in Supplemental Experimental

Procedures.

Confocal Microscopy

Cells were examined by confocal microscopy using ATP probe and/or Mito-

tracker and a Zeiss LSM 510 Meta Confocal Laser Scanning microscope

(Carl Zeiss Microscopy). Detailed protocols are described in Supplemental

Experimental Procedures.
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Statistical Analyses

Statistical significance was determined by t test or long-rank test. Bars repre-

sent avg ± SD or SEM as indicated. p < 0.05 was considered statistically

significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.immuni.2016.02.018.

AUTHOR CONTRIBUTIONS

D.P.C., K.A.F., A.D., T.M.T., R.Y., and J.A. conceived and designed experi-

ments, acquired and interpreted data, and drafted and revised themanuscript.

K.M.H., D.T., J.T.-C., and L.H. conceived and designed experiments and

acquired and interpreted data. Y.W.J., K.H.A., and K.C.H. conceived and de-

signed experiments. M.R. conceived and designed the study, acquired and in-

terpreted data, and drafted and revised the manuscript.

ACKNOWLEDGMENTS

We thank the University of Vermont DNA Analysis Facility, Flow Cytometry and

Cell Sorting Facility and Microscopy Imaging Center. We thank E. Atondo,

I. Martı́n-Ruiz, P. Gummadidala, and B. Silverstrim for technical support.

This work was supported by NIH grants AI110016 (M.R.) and GM103496

(M.R. and K.M.H.). J.A. was partially funded by the Spanish Ministry of Econ-

omy Plan Nacional grant SAF2012-34610. R.Y. was supported by an AAI Ca-

reers in Immunology Fellowship.

Received: September 4, 2015

Revised: February 18, 2016

Accepted: February 18, 2016

Published: May 24, 2016

REFERENCES
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Abstract

Currently there are a dozen or so of new vaccine candidates in clinical trials for prevention of

tuberculosis (TB) and each formulation attempts to elicit protection by enhancement of cell-

mediated immunity (CMI). In contrast, most approved vaccines against other bacterial path-

ogens are believed to mediate protection by eliciting antibody responses. However, it has

been difficult to apply this formula to TB because of the difficulty in reliably eliciting protective

antibodies. Here, we developed capsular polysaccharide conjugates by linking mycobacte-

rial capsular arabinomannan (AM) to either Mtb Ag85b or B. anthracis protective antigen

(PA). Further, we studied their immunogenicity by ELISA and AM glycan microarrays and

protection efficacy in mice. Immunization with either Abg85b-AM or PA-AM conjugates elic-

ited an AM-specific antibody response in mice. AM binding antibodies stimulated transcrip-

tional changes in Mtb. Sera from AM conjugate immunized mice reacted against a broad

spectrum of AM structural variants and specifically recognized arabinan fragments. Conju-

gate vaccine immunized mice infected with Mtb had lower bacterial numbers in lungs and

spleen, and lived longer than control mice. These findings provide additional evidence that

humoral immunity can contribute to protection against Mtb.
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Author summary

Vaccine design in the TB field has been driven by the imperative of attempting to elicit

strong cell-mediated responses. However, in recent decades evidence has accumulated

that humoral immunity can protect against many intracellular pathogens through numer-

ous mechanisms. In this work, we demonstrate that immunization with mycobacterial

capsular arabinomannan (AM) conjugates elicited responses that contributed to protec-

tion against Mtb infection. We developed two different conjugates including capsular AM

linked to the Mtb related protein Ag85b or the Mtb unrelated PA from B. anthracis and

found that immunization with AM conjugates elicited antibody populations with different

specificities. These surface-specific antibodies could directly modify the transcriptional

profile and metabolism of mycobacteria. In addition, we observed a prolonged survival

and a reduction in bacterial numbers in lungs and spleen in mice immunized with Ag85b-

AM conjugates after infection with Mtb and that the presence of AM-binding antibodies

was associated with modest prolongation in survival and a marked reduction in mycobac-

terial dissemination. Finally, we show that AM is antigenically variable and could poten-

tially form the basis for a serological characterization of mycobacteria based on serotypes.

Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of TB, can establish latent or progressive

infection despite the presence of a fully functioning immune system. The capacity of Mtb to

avoid immune-mediated clearance reflects a necessary association with the human host that

has led to an evolved and coordinated program of immune evasion strategies, including inter-

ference with antigen presentation to prevent and/or alter the quality of T-cell responses [1].

There is strong evidence to suggest that the mycobacterial cell envelope is of key importance

for survival in the host [2]. The mycobacterial envelope consists of three major components:

the plasma membrane, the cell wall, and an outermost capsule [2]. Bacterial capsules are pro-

tective structures important for the interaction with and successful colonization of the host [3].

Toxic substances have recently been found in the mycobacterial capsule, suggesting the contri-

bution of this compartment to mycobacterial pathogenesis [4].

The mycobacterial capsule is loosely attached to the surface and is mainly composed of pro-

teins and polysaccharides [2]. The major surface exposed capsule polysaccharides are a 120

kDa glycogen-like α-glucan, a 15 kDa arabinomannan (AM) and a 4 kDa mannan [5]. Both

AM and mannan are structurally related to lipoarabinomannan (LAM), the major lipopolysac-

charide of the mycobacterial cell wall. LAM is also known for having biological effects during

its interaction with host cells, including immunosuppression of T cell responses or interfer-

ence with macrophage activation [6]. LAM and AM can each elicit high antibody responses in

infected hosts [7]. A low antibody to LAM response in children with TB was associated with

disseminated mycobacterial disease [8]. That report concluded that a weak antibody response

to LAM and other mycobacterial antigens increased the likelihood of dissemination [8]. Pre-

sumably, antibodies can also contribute to the host defense against Mtb by promoting the

clearance of LAM [9]. In fact, several reports on AM or LAM-binding monoclonal antibodies

have established their capacity to contribute to the clearance of mycobacteria from the host

[10, 11].

In 2014, there were an estimated 9.4 million new cases of TB and 1.5 million people died

from TB, including 1.1 million deaths among HIV-negative individuals and 0.4 million among
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people who were HIV-positive [12]. Efforts to control the disease include the development of

“point-of-care” tests, new TB drugs, the use of the Bacille Calmette-Guerin (BCG) vaccine and

the development of new vaccines. Most of the new vaccine candidates against TB that have

entered in clinical trials fall into one of the following groups: (I) live attenuated vaccines to

replace BCG; (II) subunit vaccines to be given after initial BCG vaccination [13]; and (III) sin-

gle immunodominant antigens, usually secreted, such as ESAT-6, Cfp10 and Ag85b along

with other adjuvants [13]. These vaccine candidates were developed with the working assump-

tion that immunity against TB relied solely on cellular defense mechanisms [14]. While there

is no doubt that cell-mediated immunity is a major arm in the control of mycobacterial infec-

tion, there are now compelling data that certain antibodies are active against mycobacteria [9–

11, 15].

In this study, we have generated two different polysaccharide conjugates made of capsular

Mtb AM and proteins Ag85b (Ag85b-AM) from Mtb H37Rv and protective antigen (PA)

(PA-AM) from Bacillus anthracis, aiming to create AM-specific humoral immunity prior to chal-

lenging mice with virulent mycobacteria via aerosol. Previous studies using similar approaches

have shown that secreted AM or delipidated LAM-containing conjugates provided some protec-

tion against Mtb infection in mice, rabbit or guinea pigs [15, 16]. Here we report that capsular

AM conjugates promote an AM-binding antibody response in mice that is associated with

reduced bacterial numbers in lungs and spleen, and prolonged survival in immunized mice. Our

study provides additional evidence for an important role for antibodies in protection against

Mtb and suggests that polysaccharide antigens could be useful components of future vaccines to

fight TB.

Results

Capsular arabinomannan conjugates

Mtb H37Rv was grown in minimal media without Tyloxapol, which is known to release cap-

sule [4]. After 14 d cultures were harvested and an aliquot was submitted to transmission elec-

tron microscopy (TEM) analysis to examine bacterial cells for the presence of the capsule. An

electron transparent zone was clearly visible surrounding Mtb cells (S1 Fig). Visualization of

Mtb cells under the scanning electron microscope revealed that the capsule is a matrix com-

posed of small spherical units of approximately 50 nm in diameter [17] (S1 Fig). Arabinoman-

nan (AM) is a low molecular weight polysaccharide that can be recovered from the upper

phase of a chloroform-methanol-water extraction step [18] and separated from the other low

molecular weight polysaccharides after proteinase K treatment by size exclusion chromatogra-

phy (S1 Fig). Three major peaks were obtained of molecular mass 20 kDa (peak a), 10 kDa

(peak b) and 4 kDa (peak c). According to the glycosyl composition analysis of the pooled

peaks, peak a consisted of two main glycosides, arabinose and mannose in a ratio (2:1). This

result is consistent with mycobacterial capsular AM and other reported analysis in mycobacte-

ria [5, 18]. In addition, only peak “a” showed binding to 9d8 an AM-specific monoclonal

antibody (Mab) and not to 24c5, recognizing α-glucan (S1 Fig). AM, as many other polysac-

charides are poorly immunogenic because they are T cell independent antigens; therefore,

immunization with polysaccharides generally does not elicit IgG immune responses. We

hypothesized that vaccine-induced AM antibodies had value in protecting against TB. For this,

we conjugated Mtb capsular AM, corresponding to the purify fraction (peak a) to different

protein carriers. We did not make conjugates to other fractions that did not correspond to

AM, as that was not the scope of this work. We selected Ag85b as Mtb-related protein carrier

to test whether inclusion of AM would boost its recognized protective properties as an immu-

nogen. In addition, we also linked Mtb capsular AM to the protective antigen (PA) from
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Bacillus anthracis as non-Mtb related antigen to set up a system where AM-binding immunity

could be evaluated in an exclusive way. We developed Ag85b-AM and PA-AM conjugates

using the cyanylating reagent CDAP as previously described [19, 20]. The conjugate products

were separated by size exclusion chromatography on a Sephacryl S-200 (GE healthcare) (S2

Fig) in PBS. Ag85b-AM and PA-AM conjugates showed a protein-polysaccharide molar ratio

of 1:8 and 1:7, respectively, as determined by Bradford and the phenol-sulphuric acid assays.

Antibody response of AM conjugates in mice

To test the immunological response of the different AM conjugates, mice were immunized

with different amounts of Ag85b-AM or PA-AM conjugates (1, 5 and 10 μg) in 1% Alum.

Alternatively, three different groups of mice received 1 μg of either Ag85b, PA or 10 μg of AM,

also in 1% Alum. Each mouse was boosted twice every two weeks and serum samples were

taken to determine the kinetics of specific antibodies (S3 Fig). No antibody response was

detected in PBS, AM or 1% Alum alone-immunized mice. We determined that immunization

with three doses of 10 ug of Ag85b-AM conjugate provided elevated levels of AM-specific Abs

(1:3000) (S3 Fig). We believe that our regime of immunization provided sufficient and stable

levels of Ag85b-specific T cells as it has been previously shown using similar immunization

approaches [21].

We further analysed the IgG subclasses and IgM in sera isolated at day 45 after initial

immunization (Fig 1A and 1B). Immunization with either Ag85b or PA induced high levels of

protein-specific antibodies (1:6000, 1:4000) and no polysaccharide-specific antibodies as

expected. Immunization with conjugates promoted an antibody response to both the protein

and polysaccharide components of the conjugates, being the response to proteins very similar

to that the immunization with protein alone. Ag85b-specific Ab response consisted on a mix

of all subclasses being IgG2c the most prevalent with a three fold increase relative to the other

groups. Immunization with PA alone induced a mix of IgM, IgG1 and IgG2c (Fig 1A and 1B).

The AM-binding antibody response was very similar between the two conjugates in terms of

diversity. A mix IgM, IgG1 and IgG2b was observed in AM-Ag85b immunized mice versus an

exclusive IgG2b in AM-PA immunized mice.

Since AM is a mycobacterial capsular polysaccharide we considered whether AM polyclonal

sera would recognize the outermost compartment of Mtb. However, any interpretation of the

data needs to take into account the fact that AM and LAM share epitopes, suggesting that AM-

immune serum might also label LAM. In fact, analysis of the specificity of AM-serum for bind-

ing to other Mtb cell wall components by ELISA revealed a cross reactivity with LAM, Man-

LAM and LM and absence of binding to arabinogalactan (AG), mycolyl-arabinogalactan-

peptidoglycan complex (mAGP) or trehalose deoxy mycolate (TDM) (S4 Fig). Notably, there

is no Ab available to distinguish between AM and LAM. To explore the location of Ab binding

we utilized immunogold TEM with AM-binding sera (Fig 1C and 1D and S5 Fig). We used

encapsulated Mtb cells that were generated by growing mycobacteria in the absence of deter-

gent. It is known that supplementation of the culture with detergent strips the mycobacterial

capsule [22]. Grids containing sections of Mtb cells were labelled without any primary anti-

body (NP) as controls and no immunogold was detected. Similarly, no labelling was observed

when the experiment was performed with a PA-binding serum, confirming the lack of cross

reactivity of PA-binding antibodies to Mtb. We observed labelling in all conditions where

AM-binding sera were used. The location of the immunogold particles in cells labelled with

Ag85b-AM serum was not restricted to the surface but distributed all over the bacterial cell

(Fig 1C). On the contrary, most of the immunogold labelling observed in grids treated with

AM-PA serum was restricted to the bacterial surface. Since both conjugates were generated
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Fig 1. Antibody response to conjugate immunization in mice. (A) Titers of AM (Mtb) (top graph) or Ag85b (bottom graph)-specific antibodies

measured by ELISA in serum from C57BL/6 mice (n = 3 per group) immunized with 10 μg of AM-Ag85b conjugate, 1 μg of Ag85b, 10 μg of AM or PBS.
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with the same AM molecule, surface labelling is most probably due to AM or LAM. However,

in the case of Ag85b-AM-immune serum, Abs to Ag85b could also be labelling this protein

throughout the mycobacterial cell, explaining the broad distribution of the labelling that we

observed.

When immunolabeling was performed on grids containing unencapsulated mycobacteria

(grown in the presence of detergent) we observed a reduction on labelling, indicating that

most of the material being recognized in encapsulated Mtb is not present in unencapsulated

Mtb (Fig 1C and 1D). These results indicate that immunization with AM-conjugates induces a

potent and specific antibody response primarily directed to the mycobacterial surface and spe-

cifically to the capsule.

Dissection of the AM-binding antibody response by glycan microarrays

AM is a neutral and heterogeneous capsular polysaccharide comprised of a mannan backbone

substituted by a branched arabinan, further modified by mannose residues at the non-reduc-

ing end [23]. To gain insight into the specific differences in serum reactivity provided by the

conjugates, we analyzed immune sera on glycan microarrays including 30 synthetic AM frag-

ments (Fig 2 and S6 Fig). The synthetic AM fragments included on the array are representative

of the motifs present in all three of these domains (S6 Fig). Selection of compounds for synthe-

sis was based on the reported structure of AM.

Further, AM-arrays were probed with diluted sera from either AM-PA or AM-Ag85b con-

jugate-immunized mice. PA and Ag85b-immunized mice and the AM-binding monoclonal

antibody (mAb) 9d8 were used as controls. We observed a more diverse repertoire of AM frag-

ment recognized by conjugate sera relative to the control mAb 9d8 (Fig 2A). This is consistent

with the response expected from a polyclonal serum versus a mAb. A reduced response was

detected in arrays probed with the PA or Ag85b-serum for the majority of the epitopes. Nota-

bly, we observed a common reactivity profile between sera from both conjugate-immunize

mice, indicating that the conjugated PS might have been modified similarly. More specifically,

we observed a prevalent recognition for epitopes ranging from linear arabinose fragments

including 4 to 8 sugar units (#24) to highly branched arabinose polysaccharides (#16, #17, #20,

#23 and #24). (Fig 2A and 2B). The highest reactivity in AM-PA serum was observed for frag-

ments 23, 24 and 22, whereas in AM-Ag85b serum was observed for fragments 16, 23, 24 and

20. All fragments represented linear or branched arabinose polysaccharides, except for frag-

ment 22, which included the arabinan core of fragment 14 but highly mannosylated (three

mannose residues) at both reducing ends. Fragments 5 and 6 were preferentially recognized by

the mAb 9d8 and included structures with a short-branched arabinan core manosylated at

both ends. Both conjugate sera shared reactivity of fragments 1, 10 and 12 with 9d8. These

fragments included short and linear arabinose glycans (#1), short and branched arabinan mol-

ecules with low mannosylation (#12) and xylose-substituted at the mannose reducing end

(#10). These results suggest that AM-binding antibody response is directed to a diverse set of

glycans, mostly associated to the arabinan core and that the protective mAb 9d8 reacts to a

reduced set of glycans including a less complex repertoire.

(B) Titers of AM (Mtb) (top graph) or PA (bottom graph)-specific antibodies measured by ELISA in serum from C57BL/6 mice (n = 3 per group)

immunized with 10 μg of AM-PA conjugate, 1 μg of PA, 10 μg of AM or PBS. The results are representative of three independent experiments

performed in the same manner. (C) Immunogold electron microscopy of thin sections of Mtb H37Rv cells treated with immune sera specific for the

indicated antigens and detected with a 6-nm IgG gold-labeled anti-mouse antibody. Immunolabeling was tested in Mtb grown in minimal medium with

(MM-T) and without tyloxapol (MM). Scale bars: 100 nm. (D) Quantitative analysis of the immunobeling of immune sera by determining the number of

gold particles per cell. Bars are mean +/- sem. NP, denotes No Primary antibody. **P < 0.01 using one-way ANOVA. Data are mean +/- sem. ns, not

significant.

https://doi.org/10.1371/journal.ppat.1006250.g001
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Fig 2. Assessment of the relative IgG-binding of AM immune sera the 29 printed AM fragments. (A) Heat map of AM glycan microarray data obtained

after incubation with pooled murine sera diluted 1:400 followed by labeled anti-IgG. Data are mean of three independent spots. Values are relative fluorescence

units. (B) AM fragments included in the glycan microarray representing the AM molecule recognized by the indicated serum. The numbers correspond to those

in A and S6 Fig.

https://doi.org/10.1371/journal.ppat.1006250.g002
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Transcriptional response of Mtb during AM-binding antibody interaction

Recently a new function for humoral immunity was described whereby the binding of specific

antibodies to microbes triggered transcriptional responses that were associated with physiolog-

ical changes [24, 25]. Consequently, we investigated whether capsular AM-binding antibodies

elicited transcriptional changes in Mtb by incubating encapsulated Mtb with AM-PA serum

for 4 h and comparing the changes in transcription with a condition including PA immune

serum using microarrays (Fig 3). Microarray data was deposited with the GEO NCBI database

with the accession number GSE77711.

We observed a consistent and significant upregulation of most of the mce1 operon (Fig

3A and 3B), consisting of 13 genes encoding a putative ABC lipid transport system special-

ized in mycolic acids [26]. Upregulation of the mce1 operon was also observed when Mtb is

inside host cells [27]. Moreover, an Mtb mutant defective in the mce1 operon was shown to

be hypervirulent in mice and produce more mycolic acids [28, 29]. The fact that umA, a

mycolic acid synthase, was downregulated lead us to hypothesize that upregulation of mce1
operon could result in a reduction in the mycolic acid content of Mtb cells upon interac-

tion with AM-binding immune serum. Indeed, when we measured fatty acids by TLC, we

observed reduction in alpha, keto and methoxy mycolic acids levels (Fig 3C), establishing

that antibody-induced transcriptional changes resulted in mycobacterial biochemistry

changes.

We also observed upregulation in some of the nuo genes, which are involved in aerobic res-

piration (Fig 3A). Of note, the gene encoding for isocytrate lyase (aceA, icl1), which is known

to be required for persistence in the mouse model, was downregulated in Mtb treated with

AM-binding serum. Similarly, transcript levels of cysD, which encode a sulfate adenylyltrans-

ferase involved in sulphate metabolism, were reduced in AM-treated Mtb (Fig 3A and 3B). We

could not explain why lipF, encoding a lipid esterase, appeared as downregulated in the micro-

array while this transcript showed a four-fold upregulation relative to untreated Mtb (Fig 3B).

These results indicate that antiserum including antibodies with specificities for Mtb capsular

AM can alter the lipid metabolism and the fitness of mycobacteria.

Protective efficacy of AM conjugates in mice

To separately test the ability of the two conjugates (Ag85b-AM and PA-AM) to modify the

course of Mtb infection, mice were immunized three times with 10 μg of each conjugate and

challenged with virulent tubercle bacilli by the respiratory route 4 weeks after the last immuni-

zation. Immunization controls included AM, PBS (1% Alum), and 1 x 106 BCG. At 4 weeks

after challenge mice were sacrificed and bacterial loads were assessed in lung and spleen (Fig

4A and 4B). As Ag85b is a well known immunogenic and protective Mtb antigen [30], we ini-

tially tested whether AM-Ag85b conjugate could control bacterial replication more efficiently

than Ag85b alone. An immunizing dose of Ag85b equivalent to that of included in the conjugate

was used to generate Ag85b-immunized mice. Both conjugate and Ag85b-immunized mice

showed similar reduction in mycobacterial numbers in the lung at 4 weeks (Fig 4A). Conversely,

we noticed a more significant reduction in bacterial counts in spleen in AM-Ag85b immunized

mice, similar to BCG-immunized mice (Fig 4B). Histological analysis revealed marked differ-

ences in tissue inflammation in mice immunized with AM, and adjuvant relative to those immu-

nized with AM-Ag85b and Ag85b mice (Fig 4C), with the latter groups manifesting more intact

lung morphology with less inflammation. We observed a major difference in the gross pathology

of lungs from the AM-Ag85b-immunized mice compared to Ag85b-immunized mice, as evident

by less diseased tissue. AM-Ag85b immunized mice showed a reduction in both the number of

infiltrates and the percentage of diseased tissue, although these differences were not significant
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Fig 3. Effect of AM immune serum on the transcriptional profile of M. tuberculosis. (A) Transcriptomic profile of Mtb during

treatment with AM-PA murine serum (1:400) compared to PA murine serum (1:400) for 4 h. The heat map shows transcriptional

changes from three biologically independent replicates labelled as A, B and C. (B) Expression ratio of the indicated Mtb genes

measured as the average relative expression of AM-PA serum vs PA serum-treated Mtb by quantitative real time PCR (qRT-PCR).

(*P < 0.05, **P<0.01 ***P < 0.001, one-way ANOVA with Tukey post-test). (C) Analysis of fatty acid methyl esters (FAMEs) and

mycolic acid methyl esters (MAMEs) in M. tuberculosis H37Rv labelled with 14C-acetate for 22h prior to treatment with the indicated

serum preparations for 5 h. Lipids were extracted and analyzed by TLC as described in Methods. The same amount of cpm was

spotted for each sample.

https://doi.org/10.1371/journal.ppat.1006250.g003
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Fig 4. Immunization with conjugates protect against Mtb infection. (A,B) Bacterial load (CFUs) in the lungs (A) and spleen (B) of

individual C57BL/6 mice, immunized with the indicated preparations was determined at 4 weeks after infection with a low dose of Mtb

H37Rv via aerosol (approx. 100 CFUs). The results are pooled values from two similar and independent experiments. Experimental

groups used 5 mice. (*P < 0.05, **P<0.01 ***P < 0.001, one-way ANOVA with Tukey post-test). (C) Representative H&E staining

images from lungs of C57BL/6 mice immunized with the indicated preparations and aerosol infected with Mtb H37Rv for 4 weeks. A

representative lung section for each treatment is shown. (D) Survival of mice immunized with PBS (n = 10), 1 × 106 CFU of BCG

(n = 10), 10 μg of AM (Mtb)-Ag85b (n = 10), 10 μg of AM (Mtb)-PA conjugate (n = 10) or 1 μg of Ag85b (n = 10) and challenged with

~100 CFU of aerosolized Mtb H37Rv. All the immunized mice were significantly different from that of PBS-treated mice (P < 0.001, log-

rank test for AM-Ag85b and BCG; P = 0.0064, log-rank test for Ag85b). No differences between the immunized groups were found

except for Ag85b vs AM-Ag85b immunized mice (P = 0.0166). The survival curve for AM(Mtb)-PA was significantly different from that

of PBS (P = 0.049, Gehan-Breslow-Wilcoxon test; P = 0.057, log-rank test). Survival studies were performed twice with similar results.

https://doi.org/10.1371/journal.ppat.1006250.g004
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(S7 Fig). Next, we tested for the ability of these conjugate to influence the survival of mice chal-

lenged with a low dose of virulent tubercle bacilli via aerosol (Fig 4D). As a positive control, we

included mice immunized with 1 x 106 BCG. All immunized mice, including BCG, Ag85b and

conjugate immunized mice significantly lived longer than the non-immunized mice injected

with adjuvant. No differences were observed between BCG and conjugate immunized mice.

Mice immunized with AM-Ag85b lived significantly longer than Ag85b immunized mice

(P = 0.0166) indicating that AM-binding antibodies contributed to prolonging the survival of

infected mice. These results suggested that antibodies to Ag85b were also protective and could

be masking any protective contribution of AM-binding immunity against Mtb whereas the lon-

ger survival in AM-Ag85b immunized mice suggested that AM-binding antibodies contributed

to protection. Consequently, we analyzed the protective efficacy of AM-PA conjugates to assess

the exclusive contribution of AM-binding immunity. Of note, a 0.42 log reduction (P = 0.04) in

lung CFUs was observed in mice immunized with AM-PA conjugates (Fig 4A). Immunization

with either AM and PA alone did not provide any protection and similar CFUs numbers as in

1% Alum-treated mice were counted in the lungs. When we analyzed bacterial loads in spleen

we observed a significant reduction in CFUs in AM-PA immunized mice, similar to AM-Ag85b

and BCG immunized mice, followed by Ag85b (Fig 4B). Consistent with the relatively weak abil-

ity of AM-PA conjugates to control bacterial replication in the lungs, we observed comparable

lung pathology to non-immunized or PA and adjuvant-immunized mice (Fig 4C). Although we

measured a mean of 5 infiltrates in lungs of PA-AM immunized mice versus 8 infiltrates in adju-

vant-immunized mice, these differences were not significant. However we did measure a signifi-

cant reduction in the percentage of diseased tissue (S7 Fig). AM-PA conjugate-immunized mice

lived longer than adjuvant-treated mice (median survival 337 days vs 297; log-rank P = 0.057,

GBW P = 0.049) and mice receiving BCG as a vaccine showed a survival mean time of 479 days

(p>0.001) (Fig 4D). These results suggest that immunity directed to AM can contribute to

reduced bacterial dissemination and lung inflammation, which in turn translated into prolonged

survival of infected mice.

AM-binding antibodies contribute to control bacterial dissemination

To establish that the protection observed following conjugate immunization was due to

humoral immunity we carried out a passive antibody transfer experiment using sera from

immunized mice. Mtb bacterial counts were enumerated in lungs and spleens 4 weeks

after challenge with a low dose of Mtb via aerosol (Fig 5A and 5B). We found that passive

administration of sera from Ag85b and AM-Ag85b-immunized mice was associated with

reduced bacterial CFUs in lung, as compared to adjuvant and naïve (PBS) mice (Fig 5A).

In mice that received AM-PA-immune serum, there was a significant reduction in lung

CFU of 0.4 log relative to PBS and adjuvant. Of note, although we observed a greater re-

duction in lung CFUs in mice that received Ag85b, this did not reach statistical signifi-

cance relative to mice transferred with PA-AM-serum. Consistent with the ability of AM-

PA and AM-Ag85b conjugates to control bacterial dissemination (Fig 4B), we observed

that sera from conjugate-immunized mice significantly reduced the bacterial CFUs in

spleen, with AM-Ag85b-immune serum being superior to AM-PA-immune serum (no

statistically significant differences, P = 0.054) (Fig 5B). We observed no benefit from the

transfer of serum from BCG immunized mice. These results strongly indicate that specific

antibodies to AM and Ag85b contribute to control bacterial dissemination. The greater

protective efficacy achieved by AM-Ag85b immune serum might be due to either syner-

gistic or additive effects of antibodies to these two antigens.
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Fig 5. Passive transfer of immune serum and adoptive T cell transfer modify the course of mycobacterial infection.

(A,B) Bacterial burden (CFUs) in the lungs (A) and spleen (B) at 4 weeks after infection with a low dose of Mtb H37Rv via

aerosol (approx. 100 CFUs) of individual naïve C57BL/6 mice that previously received passively serum preparations. Results

are representative of two similar and independent experiments. Experimental groups used 5 mice. (*P < 0.05, **P<0.01, one-

way ANOVA with Tukey post-test). (C,D) Bacterial load (CFUs) in the lungs (C) and spleen (D) of individual naïve C57BL/6

mice adoptively transferred with 4 x 106 T cells from the indicated immunized mice were determined at 4 weeks after infection

with a low dose of Mtb H37Rv via aerosol (approx. 100 CFUs). The results are representative of two similar and independent

experiments. Experimental groups used 5 mice. (*P < 0.05, **P<0.01, one-way ANOVA with Tukey post-test).

https://doi.org/10.1371/journal.ppat.1006250.g005
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T cells from AM-Ag85b mice mediate protection against M. tuberculosis

We next tested the ability of memory T cells from long-term immunized mice (S8 Fig) to pro-

tect naïve recipient mice against virulent Mtb by using a T-cell adoptive transfer protocol. Bac-

terial counts were enumerated in lungs and spleens 4 weeks after challenge with a low dose of

Mtb via aerosol (Fig 5C and 5D). Remarkably, mice transferred with T cells from AM-Ag85b

or Ag85b immunized mice showed significant reduction in CFU in the lung (Fig 5C) and

spleen (Fig 5D), relative to PBS and Alum-mice. Mice receiving AM-PA-specific T cells did

not show any capacity to control bacterial replication in lung and spleen (Fig 5C and 5D). The

transfer of T cells from Alum or BCG-vaccinated mice did not translate into any protection.

The later result is consistent with reports that transfer of BCG-induced immunity requires sub-

lethal irradiation of recipients [31]. These data strongly suggests that the superior protection

provided by AM-Ag85b conjugates is a combination of both AM and Ag85b-binding antibod-

ies and Ag85b-specific T cells.

Antigenic variability of capsular AM

Some encapsulated variants of many bacterial clinical isolates are associated with higher rates

of mortality and morbidity and consequently vaccine development is focused on the these ser-

ogroups [32]. Carbohydrate antigens exhibit tremendous structural variation that can translate

into antigenic variation as demonstrated by the 13 different serogroups of Neisseria meningiti-
dis, over 90 different serotypes in Streptococcus pneumoniae or the more than 80 serotypes in

Klebsiella sp [33]. However, for Mycobacterial spp. the question of polysaccharide-related anti-

genic differences on the bacterial surface has not been investigated. We hypothesized that AM

presents antigenic variability among Mtb isolates given that it is a variable structure compris-

ing a mannan backbone substituted by a branched arabinan, which is further modified by

mannose residues at the non-reducing end. To investigate AM antigenic variability we ana-

lyzed a panel of 17 strains, including Mtb H37Rv, representing the 6 known lineages of Mtb

strains globally distributed [34] and tested for AM and α-glucan reactivity to the 9d8 mAb

(AM) and 24c5 mAb (α-glucan), respectively (Fig 6). We could measure some statistically dif-

ferences in Ab recognition between isolates form the same lineage. However, we also could

establish some correlates. We observed that AM of isolates from L1, L5 and some from L3

showed the highest binding to 9d8 mAb. L6 showed the lowest binding with a reduction of an

80% relative to Mtb H37Rv. Isolates from L4 showed a 50% reduction in AM binding to 9d8.

Of note, we did not find as much variability in the binding of α-glucan to mAb among the dif-

ferent isolates. Most of the isolates showed a reduction in binding relative to Mtb H37Rv, in

the range of 50–60%. Only isolates from L4 and L5 showed a similar reactivity. These results

suggest that AM is the main source of antigenic variability in the mycobacterial capsule and

establish different antigenic groups among Mtb clinical isolates. However, we cannot rule out

that the relative distribution of capsular polysaccharides may be relevant for their binding to

specific Abs. To understand the antigenic variability contributed by AM would require a more

extensive analysis, including more Mtb isolates.

AM-conjugate specific serum is opsonic to unencapsulated bacteria

Standard protocols for murine infection with Mtb use inoculum as a homogeneous bacterial

suspension after growth in detergent. However, the generation of single cell suspensions using

detergent to avoid clumping also can remove the capsular layer [2, 35]. Indeed, a recent study

using Cryo-Electron microscopy (Cryo-EM) revealed that this layer is removed when cells are

grown in the presence of detergent or agitation [4]. Since AM is part of the capsule we rea-

soned that capsular polysaccharide conjugate vaccines may be even more effective when the
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capsule is present and were concerned whether the bacteria in the inoculum would bind anti-

body since these had been treated with detergent. To test whether there was antigen on the sur-

face of such cells we performed macrophage infections with Mtb previously opsonized with

conjugate (AM-PA) serum and a preimmune mouse serum. Bacterial counts were enumerated

2 h after infection (S9 Fig). The percentage of bacterial uptake by macrophage was significantly

higher when bacteria were previously treated with conjugate serum relative to an untreated

control or bacteria treated with a preimmune serum. Notably, we could measure a statistically

significant difference in the macrophage uptake of encapsulated Mtb relative to unencapsu-

lated Mtb. This result indicates that the conjugate-specific serum still retain the opsonic prop-

erties even though the capsule may have been removed, at least in part, by growth in media

with detergent.

Discussion

Here, we demonstrate that immunization with mycobacterial capsular arabinomannan (AM)

conjugates elicited responses that contribute to protection against Mtb infection. In this study

we, (i) isolated capsular AM from the H37Rv strain of Mtb and developed conjugates with the

Mtb related protein Ag85b and Mtb unrelated PA from B. anthracis; (ii) found that immuniza-

tion with different AM conjugates elicited antibody populations with different specificities;

Fig 6. Antigenic variability of AM among Mtb isolates. Relative reactivity of Mtb isolates representing 6 of known lineages. The binding is

shown as the percentage of reactivity compared to Mtb H37Rv. Data are mean +/- sem. Results are representative of two independent

experiments. (ns, non significant, *P < 0.05, **P<0.01, one-way ANOVA with Tukey post-test).

https://doi.org/10.1371/journal.ppat.1006250.g006
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(iii) showed that surface-specific antibodies could directly modify the transcriptional profile

and metabolism of mycobacteria; (iv) observed a prolonged survival and a reduction in bacte-

rial numbers in lungs and spleen in mice immunized with Ag85b-AM conjugates after infec-

tion with Mtb; (v) observed that the presence of AM-binding antibodies was associated with

modest prolongation in survival and a marked reduction in mycobacterial dissemination; (vi)

and demonstrated that AM is antigenically variable and could potentially form the basis for a

serological characterization of mycobacteria based on serotypes.

Our conjugates generated antibodies to cell-surface AM and LAM, given the overlapping

structural motifs in these glycoconjugates. It is noteworthy that the vaccinated mice were chal-

lenged with bacteria grown in the presence of detergent, a condition that strips the mycobacte-

rial polysaccharide capsule [22], and thus reduces AM epitopes. Consequently, the efficacy of

these conjugates may be greater against encapsulated bacteria.

To our knowledge, this study represents the first effort to investigate a native mycobacterial

capsular polysaccharide in a vaccine against pulmonary Mtb infection. Prior studies evaluating

AM antigens in experimental conjugate vaccines have used either secreted AM [16] or delipi-

dated LAM [15]. In the former report, mice were immunized with extracellular AM conjugates

including the recombinant Pseudomonas aeruginosa exoprotein A (rEPA), with no adjuvant,

and challenged intravenously with M. tuberculosis Erdman. A moderate reduction in lung CFU

was observed early in the course of infection [16]. In the latter, AM oligosaccharides (AMOs)

derived from LAM of Mtb H37Rv were isolated and covalently conjugated to tetanus toxoid

(TT) or to Ag85b from Mtb. Ag85b conjugates were given to mice in Alum providing significant

protection compared to sham immunized mice as estimated by long term survival against an

intravenous challenge Mtb H37Rv [15]. AMOs-TT conjugates were given subcutaneously fol-

lowed by nasal boost in the Eurocine L3 adjuvant providing a similar level of protection after a

similar challenge with virulent M. tuberculosis. Remarkably, the protective efficacy was compara-

ble to that of BCG vaccine. In guinea pigs, immunization with AMOs-Ag85b in Eurocine L3

adjuvant followed by an aerosol challenge with Mtb H37Rv showed an increased in survival and

reduced pathology in lungs and spleens relative to non-immunized animals [15]. It is difficult to

compare the efficacy of these vaccines as each was tested using different conditions that included

the route of immunization, mode of infective challenge or animal model. In fact, only the study

using AMOs-Ag85b immunization followed by an aerosol challenge [15] can be compared to

our study even though it differs in the mouse strain used as experimental host. Nevertheless,

each of these studies provide the consistent result that antibodies to AM modified the course of

Mtb infection to the benefit of the host.

Animals immunized with the AM-Ag85b conjugate lived significantly longer than Ag85b-

immunized mice, indicating that AM-specific immunity contributes to the protection. Also,

we found a similar reduction in CFUs between AM-Ag85b conjugate- and Ag85b-immunized

mice. Because Ag85b is a highly immunogenic antigen from Mtb that can elicit protective

responses, it is difficult to assess the contribution of AM-specific immunity to the overall pro-

tection. Consequently, we also developed AM conjugates including the Mtb unrelated protein

PA to study the specific contribution of antibodies to AM to the overall protection and found

that circulating antibodies against AM reduced mycobacterial extrapulmonary dissemination

in mice, as significant fewer CFUs were detected in spleens. Moreover, mice immunized with

AM-PA conjugates manifested only a modest prolongation in survival compared to adjuvant-

immunized mice. That the effect on CFU was antibody mediated was confirmed by passively

transferring AM-specific serum to naïve mice and showing a similar reduction in CFUs in

spleen after infection.

Considering that only zwtterionic polysaccharides can elicit T cell responses [36] and that

AM is a neutral polysaccharide, it is extremely unlikely that a polysaccharide-specific T cell
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response was responsible for the protective efficacy of the AM-PA conjugate. This fact is con-

sistent with the finding that the transfer of AM-PA T cells does not confer any protection. We

observed a trend to a superior protection of AM-Ag85b T cells relative to Ag85b-T cells.

Although we do not have a clear explanation for this result we cannot rule out the possibility

that the covalent conjugation of AM to Ag85b altered the processing of T cell epitopes in

Ag85b to elicit enhanced T cell responses that could be translated into a better protection. A

precedent for such an effect was reported in pneumococcal polysaccharide-protein conjugates

where the type of polysaccharide altered the T cell response to protein epitopes [37]. Further-

more, conjugation of a PstS1 synthetic peptide to a branched polysaccharide, including a poly-

lysine backbone and DL-alanine side chains elongated by glutamic acid, enhanced human T

cell proliferation to peptide [38]. Cross-protection form heterologous unrelated antigen (heter-

ologous immunity) has been reported in viral infection [39]. Experiments addressing the qual-

ity of Ag85b-specific responses, possibly involving tetramer analysis, will be of paramount

importance to gain insight into this finding.

Our findings are consistent with and supportive of the view that antibodies can play a sig-

nificant role in the overall protection against Mtb. In addition to the effects observed with anti-

bodies to AM, we obtained evidence that Ag85b-specific antibodies contributed to the control

of bacterial replication in lung and spleen as demonstrated by passive transfer experiments.

The fact that bacterial numbers in spleens of mice transferred with AM-Ag85b-specific serum

were lower relative to mice transferred with Ag85b-specific serum or AM-PA-specific serum,

suggests a synergistic effect of antibodies to both the mycobacterial polysaccharide and protein

conjugate components. It is noteworthy that Ag85b immunization was previously shown to

induce protective responses against Mtb that were believed to be dependent only on cell-medi-

ated immunity [40–44]. Our observations suggest that humoral responses to Ag85b could have

also contributed to protection in those vaccine studies.

The specificity of antibodies elicited by AM conjugates was characterized using an array

including a set of 30 fragments representing the AM molecule. The AM glycan microarray

revealed an enhanced and more diverse response in mice immunized with Mtb AM conjugates

than the AM-specific mAb 9d8. Surprisingly, the most reactive fragments included non-manno-

sylated arabinnan structures with variable grades of branching, indicating that the glycosydic

determinant of AM antigenicity is the arabinnan and not mannose part. We observed weak

binding of pooled sera from PA and Ag85b-immunized mice to some fragments. Although this

binding was low and close to the limit of detection, we cannot rule out that these antigens elicited

some weak cross-reactive antibody responses. The fact that AM might be antigenically variable

suggests that the abundance or the features of this polysaccharide may be different from strain to

strain. In fact, our finding that the reactivity of AM containing sera differed from strain to strain

suggests a previously unknown antigenic variation at the mycobacterial surface. This result

could have very important implications for vaccine design because it suggests the possibility that

some of the variability of BCG and live vaccine candidates may have been the result of antigenic

differences between immunizing and infecting strains. Furthermore, this antigenic variation

implies that any vaccine attempting to target mycobacterial polysaccharides should include cock-

tails of polysaccharide or oligosaccharides to cover likely epitopes. In fact, such an approach has

proven very successful in vaccination against pneumococcus.

Incubation of AM with mycobacteria resulted in altered metabolism of Mtb implying a

direct effect of antibody on bacterial cells. This phenomenon was previously reported with

fungi [24] and Gram positive bacteria [25] and is now extended here to mycobacteria. Upregu-

lation of almost the entire mce1 operon upon AM-specific antibody indicates a very specific

response to immunoglobulin binding on the surface. This operon is highly induced when Mtb

is inside the host and a mce1 mutant has more intracellular fatty acids, including mycolic acids
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[26, 27]. We found that upon upregulation of mce1 operon, Mtb reduces the synthesis of

mycolic acids. This finding raises the possibility that Mtb may become more susceptible to

macrophages after interaction with AM-binding antibodies since mycolic acids strongly con-

tribute to Mtb cell wall permeability and rigidity. The ability of AM-binding antibodies to

modify Mtb metabolism opens a new door in our understanding of the potential of humoral

immunity against mycobacteria. In addition, we have recently demonstrated that increased

human serum IgG titers to capsular AM were associated with enhanced mycobacterial opsono-

phagocytosis, increased phagolysosomal fusion and intracellular growth reduction in human

macrophages; data suggesting that these effects of antibodies to AM are FcR-mediated [45].

We thus hypothesize that some of the effects of the Abs induced by the AM conjugate vaccine

are FcR-mediated, while some of the Mtb transcriptional changes could reflect a more direct

growth reducing effect on Mtb. Functional in vitro and in vivo studies with monoclonal Abs

are needed to further elucidate the specific effects by which Abs to AM and its oligosaccharide

epitopes contribute to the defense against Mtb infection.

Vaccine design in the TB field has been driven by the imperative of attempting to elicit

strong cell-mediated responsive while disregarding humoral immunity against Mtb. This view

was fueled by overwhelming evidence for an important role for cell-mediated immunity while

the role for humoral immunity was considered inconsistent at best. Further fueling this

emphasis was the notion that since Mtb is an intracellular pathogen, immunoglobulins as

extracellular molecules cannot reach this pathogen. However, that two-dimensional view has

been supplanted by the realization that humoral immunity can protect against many intracel-

lular pathogens through numerous mechanisms [46, 47]. Moreover, recent studies have shown

that immunoglobulins can have direct effects on microbes including triggering signal trans-

duction and modulating their physiology [48]. The difficulty of assigning a functional role for

Abs against Mtb was recently uncovered as being due to the heterogeneity of the Ab response

[49]. In addition, human Mtb-specific IgAs have superior capacity to inhibit Mtb growth than

IgG antibodies [50], indicating that mucosal immunity should be highly considered. In this

regard, we could not measure AM and Ag85b-specific IgAs in serum and BALs, suggesting

that the lack of protection provided by the PA-AM conjugate in the lung might be due to the

absence of this Isotype.

Although the mechanism of action of antibodies to AM has not been determined,

there are a number of possibilities by which these antibodies can mediate protection

based on precedents from other systems. AM-binding antibodies could: (i) promote the

ingestion by phagocytic cells and increased intracellular killing through FcR-mediated

phagocytosis [45, 51]; (ii) alter the inflammatory response thus reducing host-damaging

effects on the immune response [52]; iii) promote the clearance of polysaccharide anti-

gens from tissues thus removing immunomodulatory antigens with deleterious effects on

the immune response; and/or iv) modulate the metabolism of Mtb to make it more sus-

ceptible to host defense mechanisms [53]. Vaccines that elicit AM-binding antibodies

may have the potential to recruit humoral immunity for host defense, which could

achieve synergy with cellular immune mechanisms.

In summary, our findings are consistent with role of AM-binding antibodies in defense

against Mtb infection and suggest that vaccines that elicit both humoral and cell-mediated

immunity may be more protective than those that elicit either. These data suggest that anti-

body-mediated immunity can make an important contribution to the outcome of mycobacte-

rial infection and provide a new impetus for developing vaccines that harness this arm of the

immune system.
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Methods

Strains and reagents

M. bovis BCG Pasteur and Mtb H37Rv were grown in minimal medium (MM) [KH2PO4 1 g/l,

Na2HPO4 2.5 g/l, asparagine 0.5 g/l, ferric ammonium citrate 50 mg/l, MgSO4×7 H2O 0.5 g/l,

CaCl2 0.5 mg/l, ZnSO4 0.1 mg/l, 0.1% (v/v) glycerol, and with or without Tyloxapol 0.05% (v/v;

Sigma), pH 7.0] or in Middlebrook 7H9 supplemented with 10% (v/v) OADC enrichment (Bec-

ton Dickinson Microbiology Systems, Spark, MD), 0.5% (v/v) glycerol and with or without

Tyloxapol 0.05% (v/v) for 14 days in a 5% CO2 incubator at 37˚C. Mtb lineages were a gift from

Sebastien Gagneux. Mtb lineages were systematically grown in MM supplemented with 30 mM

pyruvate.

Recombinant Ag85b was obtained from AERAS Tb vaccine Foundation (Rockville, MD).

Recombinant PA (Protective Antigen from Bacillus anthracis) was obtained from David Axel-

rod Institute, Albany, NY). The 1-cyano-4-dimethylaminopyridinium tetrafluoroborate

(CDAP) and the other reagents used during the conjugation reaction were purchased from

Sigma. The CS-35 monoclonal antibody recognizing LAM and AM, was obtained from BEI

resources (Manassas, VA). The monoclonal antibody 9d8 specifically recognizes mycobacterial

capsular AM [10, 54]. The monoclonal antibody 24c5 specifically recognizes mycobacterial

capsular α-glucan [55]. Alhydrogel was purchased from InvivoGen (San Diego, US).

Polysaccharide isolation

Capsular polysaccharides were isolated as described, with some modifications [5, 18]. Briefly,

cells were pelleted from cultures at 3,450 x g for 15 min at 4˚C. Five mg of glass beads (4 mm,

Fisher) per g of cells were added and the mixture was gently shaken by vortex for 1 min. A vol-

ume of 50 ml of distilled water was added per g of disrupted cells and centrifuged at 8000 x g

for 10 min at 4˚C. The supernatant was recovered, clarified in a 0.22 μm filter unit (Millipore)

and lyophilized. To separate the capsular arabinomannan (AM) from the rest of capsular poly-

saccharides, the capsule residue was resuspended in 4 ml of distilled water and subjected to a

chloroform:methanol:water extraction (1:1:0.9). The upper phase was recovered and incubated

in a rotavapor at 40˚C overnight. Proteinase K (Sigma) was added at 10 mg/ml in a 50 mM

Tris-HCl pH 7.5, 10 mM CaCl2 buffer and incubated overnight at 37˚C. The deproteinated

solution was dialyzed for 3 d at 4˚C in distilled water, lyophilized and chromatographed on a

column (90 cm x 1.8 cm) of Bio-Gel P-10 (Bio-Rad) using 0.1 M NaCl in 0.1% acetic acid. Col-

lected fractions of 4 ml were assayed for carbohydrate content by the phenol-sulfuric acid

assay. Pooled fractions were dialyzed in water and lyophilized. The concentration of protein

was determined on each isolation step by Bradford.

Conjugates

Mycobacterial AM-PA and AM-Ag85b conjugates were prepared as described [19, 56]. Briefly,

6 mg of AM was dissolved in 1 ml of borate buffer pH 9.0 and 60 μl of 100 mg/ml 1-cyano-

4-dimethylaminopyridinium tetrafluoroborate (CDAP) was added and mixed with agitation

for 10 min at room temperature. Then 6 mg of recombinant PA or Ag85b was added in 0.5 ml

of 0.15 M HEPES pH 7.5, and the mixture was incubated for 1 h. The reaction was stopped

with 100 μl of 0.15 M ethanolamine and incubated for 1 h. The mixture was then dialyzed in

PBS for 2 days. To isolate the conjugates from the non-bound AM and PA or Ag85b, the dia-

lyzed conjugated reaction was separated by FPLC on a Sephacryl SH200 (GE Healthcare) in

PBS. Each fraction was then assayed for polysaccharide and protein content by the phenol-sul-

furic acid assay and Bradford assay, respectively.
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Immunization

C57BL/6 female mice between 6 to 8 weeks old were purchased from Jackson Laboratories

(Bar Harbor, MN). Animals were maintained in a specific pathogen-free animal facility under

animal biosafety level-2 conditions for all experiments except for those involving infection

with virulent Mtb for which animal biosafety level-3 conditions were used. Animals were

immunized intraperitoneally (i.p) three times with 10 μg of Ag85b-AM or PA-AM conjugates

including 1% (w/v) Alum, 1 μg of Ag85b or PA alone including 1% (w/v) Alum. Immuniza-

tions were given every two weeks. Control mice received i.p. injections of PBS or 10 μg of AM

including 1(w/v) Alum. Alternatively, mice were vaccinated subcutaneously with 1 million

BCG as a positive control in protection efficacy experiments or survival studies.

Murine infections

Aerogenic challenge was done using a whole-body exposure aerosol chamber (Mechanical

Engineering Workshop) custom fitted to a class III biosafety cabinet (Baker) to deliver approx-

imately 100 CFU per animal of Mtb (H37Rv). Immunized mice were infected four weeks after

the last immunization and eight weeks after BCG immunization. Mice were euthanized at 15

and 30 d after challenge. Lungs of individual mice were aseptically removed and homogenized

separately in 5 ml normal saline plus 0.05% Tyloxapol using a Seward Stomacher 80 blender

(Tekmar). The homogenates were diluted serially and plated on Middlebrook 7H11 agar to

determine CFU of Mtb. Dilutions 10−2 and 10−3, and 10−2 and 10−1 were platted when count-

ing CFUs in lungs and spleens, respectively.

In bacterial loads studies, animals infected with Mtb H37Rv were observed at least twice

daily until they died or became moribund and were euthanized.

Macrophage infection

J774 macrophages (ATCC TIB 67) were plated in 96-well plates in complete DMEM. The cells

were washed with DMEM and infected with Mtb, previously grown in MM with or without

Tyloxapol, at an MOI of 10:1 for 2 h at 37˚C. Before infection bacteria were opsonized with

20 μg/ml of pre-immune serum or H37Rv-conjugate serum for 30 min. Cell lysates were pre-

pared by removing the medium and lysing with 0.05% SDS. Serial dilutions of the lysate were

plated on 7H11 agar, and incubated at 37˚C for 21 days before counting CFUs.

Transmission electron microscopy

Cells of M. bovis BCG Pasteur and M. tuberculosis H37Rv were grown in minimal medium

and fixed with 2% glutaraldehyde in 0.1 M cacodylate at room temperature for 2 h, and then

incubated overnight in 4% formaldehyde, 1% glutaraldehyde, and 0.1% PBS. After fixation the

samples were stained for 90 min in 2% osmium tetraoxide, then serially dehydrated in ethanol

and embedded in Spurrs epoxy resin. Thin sections were obtained on an Ultracut UCT (Reich-

ert) and stained with 0.5% uranyl acetate and 0.5% lead citrate (Reichart, Depew, NY, USA).

Immunogold TEM (IEM) was performed as previously described with a polyclonal murine

immune serum diluted 1:300 or monoclonal murine IgG2a 9d8 antibody (10 μg ml-1) and

then immunogold stained using 6 nm goat α-mouse gold (Electron Microscopy Sciences).

Samples were viewed on a JEOL 100CXII or JEOL 1200EX at 80kV.

Scanning electron microscopy

Cells of M . bovis BCG Pasteur and M. tuberculosis H37Rv were fixed with 2.5% glutaraldehyde,

0.1 M sodium cacodylate, 0.2 M sucrose, 5 mM MgCl2 pH 7.4 and dehydrated through a
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graded series of ethanol solutions. Critical point dry was accessed using liquid carbon dioxide

in a Toumisis Samdri 795 Critical Point drier (Rockville,MD, USA). Sputter was coated with

gold-palladium in a Denton Vacuum Desk-2 Sputter Coater (Cherry Hill, NJ, USA). Samples

were examined in a Zeiss Supra Field Emission Scanning Electron Microscope (Carl Zeiss

Microscopy, LLC North America), using an accelerating voltage of 5 kV.

ELISA

Two types of ELISA were used in this study. In one assay polystyrene microtiter plate wells

were coated with 50 μl of AM (5 μg/ml) in carbonate buffer (0.015 M Na2CO3, 0.035 M

NaHCO3, 0.003 M NaN3; pH 9.8) or with 1 μg of recombinant proteins (PA or Ag85b) in PBS

by incubating the plates 2 h at room temperature. The wells were then blocked by adding

200 μl of 2% BSA in TBS and incubated at 37˚C for 1 h. Serum from conjugate-immunized

mice, PBS-injected mice or recombinant Ag85b or PA-injected mice were added to the wells

and incubated for 1 h at 37˚C. The plates were then washed and 50 μl of a 1 μg/ml solution of

Goat anti-mouse-alkaline phosphatase (GAM-AP) IgG1, IgG2b, IgG2c, IgG3 or IgM antibody

(Southern Biotechnologies) for 1 h at 37˚C. The ELISA plates were washed and developed by

using p-nitrophenylphosphate substrate. Results are presented as inverse titers, what means

the inverse of the greatest dilution that still gives a positive result, after removing the back-

ground (2 times OD from control serum). Isolated AM from KZN clinical isolates was also

tested for reactivity to mAb 9d8 and AM-immune serum following the above protocol.

Whole cell ELISA was used to measure the relative reactivity of monoclonals Ab 9d8

and 24c5 to different clinical isolates. For this ELISA, mycobacterial cells were killed by

heating to 80˚C for 2 h. Bacterial cells were dispersed by drawing up and expelling the bac-

terial suspension 10 times through a 25-gauge needle attached to a 1-ml syringe. The sus-

pension was then allowed to settle in a transparent 1.5-ml microcentrifuge tube, and the

supernatant was removed, leaving 100 μl of settled bacteria. The number of bacteria used was

standardized according to the amount of protein in a 100-μl volume of sedimented bacteria.

Coated plates were blocked as above and incubated with either a-glucan-specific mAb 24c5

or AM-specific mAb 9d8. The plates were then washed and 50 μl of a 1 μg/ml solution of goat

anti-mouse-alkaline phosphatase (GAM-AP) IgG antibody was added to each well for 1 h

at 37˚C. The ELISA plates were washed and developed by using p-nitrophenylphosphate

substrate.

AM microarray

A panel of 30 AM fragments (corresponding to motifs at the non-reducing terminus of the

molecule, which have previously been shown to be recognized by anti-AM/LAM Abs) [57–59]

were synthesized, and coupled to BSA via a squarate-linker [60]. Arrays were printed and used

as described [61]. Briefly, after blocking with 3% BSA/PBS, AM microarrays were incubated

with diluted mouse sera (1:400), or the murine IgG2a mAb 9d8 (known to recognize only Mtb

AM) [62], followed by incubation with goat anti-mouse biotin-labeled IgG (Southern Biotech,

AL; Jackson Immunoresearch, PA) and incubation with a Streptavidin probe tagged with Sure-

Light-P3 Cy5 (Cayman Chemicals, MI). The slides were scanned using the GenePix 4000

Microarray scanner system (Molecular Devices, CA). Images were analyzed by the image-pro-

cessing software Spotfinder (http://www.tm4.org/spotfinder.html), which measured median

pixel intensity (MPI) and neighboring background pixel intensity (BPI) of individual spots.

The median fluorescent reactivity (MFI), representing AM-epitope specific Ab responses, was

the MPI subtracted by the BPI. The minimum value of pixel intensity was determined by the

MFI of the spots with low quality, which was determined by the software quality control score
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for each spot depending on signal-to-noise ratio and spot shape. The final MFI was averaged

from the triplicates. The symbolic nomenclature used is that recommended by the Consortium

for Functional Glycomics. Green circles = mannose; Green stars = arabinose; orange stars =

5-thiomethyl-xylose; white ovals = inositol. The linkage position and stereochemistry between

the monosaccharides is indicated over the line connecting them. 3P5 = a phosphate linkage

between O3 of the inositol and O5 of an arabinose residue [63].

Microarray analysis

M. tuberculosis was grown in MM with detergent for 6 days and then subcultured in fresh MM

without detergent for 5 days. Cultures were harvested and submitted to a syringe and gentle

sonication to breakdown the clumps. Bacterial cells were further incubated with AM-PA and

PA immune sera (1:200 dilution) for 4 h. After treatment cell were washed once on PBS and

resuspended in Trizol (Ambion, Carlsbad, CA). Cells were disrupted by mechanical lysis in a

FastPrep-24 instrument (MP Biomedicals, Santa Ana, CA) in Lysing Matrix B tubes and RNA

was purified with the Direct-zol RNA miniprep kit (Zymo Research, Irvine, CA). cDNA

probes were prepared and hybridized to DNA microarrays (Microarrays, Inc. Huntsville, AL),

which were scanned and analyzed as described previously [64]. Briefly, slides were scanned on

a GenePix 4000A scanner (Molecular Devices, Sunnyvale, CA) and processed with the TM4

software suite (http://www.TM4.org). TIGR Spotfinder was used to grid and quantify spots.

TIGR MIDAS was used for Lowess normalization, standard deviation regularization and in-

slide replicate analysis, with all quality control flags on and one bad channel tolerance policy

set to generous. Results were analysed in MeV with Significance Analysis of Microarrays

(SAM) and hierarchical clustering algorithms. Microarray data was deposited with the GEO

NCBI database with the accession number GSE77711.

For quantitative PCR (qPCR) experiments, diluted cDNA was used as a template at 50 ng

per reaction for real-time PCR reactions containing primer sets designed by Primer 3 and

SYBR Green PCR Master Mix (Applied Biosystems) in accordance with the manufacturers’

instructions. qRT-PCR reactions were performed on an ABI 9700HT real-time PCR cycler

(Applied Biosystems).

Fatty acid analysis

M. tuberculosis was grown in MM with detergent for 6 days and then subcultured in fresh MM

without detergent for 5 days. Cultures were harvested and submitted to a syringe and gentle

sonication to breakdown the clumps. Bacterial cells were further labeled with 14C-acetate

(10μCi in 10ml culture) for 22h and incubated with AM-PA and PA immune sera (1:400 dilu-

tion) for 10 h. Bacterial pellets were treated with 20% tetrabutylammonium hydroxide at

100˚C overnight. Cell suspensions were further methylated with methyl iodide (0.1ml) in

dichloromethane (2ml) for 1h and the organic phase was washed twice and dried [65]. Fatty

acids were analyzed by TLC (hexane/ethyl acetate; 95/5; 3 elutions).

Histology

Lungs were removed and fixed in 10% neutral buffered formalin (Fisher Scientific, Fair Lawn,

NJ). Tissues were embedded with paraffin, sectioned at 5 μm thickness, and stained with hae-

matoxylin and eosin stain. Five different lung sections per mouse were analyzed. Slides were

scanned with a Perkin Elmer P250 High Capacity Slide Scanner (Waltham, Massachusetts) at

2,000 dots per inch (dpi). Digitized images were then analyzed using ImageJ software to calcu-

late the total disease area occupied by granuloma and the percentage of lung surface affected

by pneumonia as well as the number of infiltrates per lung. The total disease area for the entire
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lung section was calculated by adding the values for each lesion. The total percentage of dis-

eased tissue was calculated by dividing the total disease area by the entire lung section and

multiplying by 100, using image J software.

Passive serum transfer experiments

Blood was collected from the retro-orbital plexus from C57BL/6 mice immunized three times

with either 10 μg of Ag85b-AM conjugate, 1 μg of Ag85b, 10 μg of PA-AM conjugate, 1 μg of

PA in 200 μl of 1% (w/v) Alum. Vaccines were administered at two weeks intervals. Control

sera were obtained from mice that received i.p. injections of PBS, 1% (w/v) Alum or 1 million

of bacteria of BCG (subcutaneously). Sera were collected after clarification by centrifugation of

clotted blood and stored at −80˚C until use. Two hundred μl of immune and control sera were

administered i.p. 4h before infection with 100 CFU of M. tuberculosis H37Rv. Four weeks after

infection mice CFUs were assessed in lung and spleen.

Adoptive T cell transfer experiments

Total T cell populations were isolated from spleens from C57BL/6 mice immunized three times

with 10 μg of Ag85b-AM conjugate, 1 μg of Ag85b, 10 μg of PA-AM conjugate, 1 μg of PA in

200 μl of 1% (w/v) Alum. Control T cells were obtained from mice that received i.p. injections of

PBS, 1% (w/v) Alum or 1 million of bacteria of BCG (subcutaneously). Spleens were homogenized

and treated with RBC lysis buffer (Sigma–Aldrich, St. Louis, MO). Splenic T cells were purified

using the Pan T cell isolation kit (Miltenyi Biotec, Germany). An aliquot of isolated T cells was

stimulated with 1 μg ml−1 of the synthetic peptide antigens (Invitrogen): FQDAYNAAGGH-

NAVF (Ag85B-P25; residues 240–254 of MTb/BCG Ag85B, I-Ab restricted); and 5 μg ml-1 of PA

from Bacilllus anthracis to assess their specificity. Unstimulated wells served as negative controls

in naive mice. Samples were combined with 1 μg ml−1 soluble antibody to mouse CD28 (clone

37.51; eBioscience) and 1 μg ml−1 soluble antibody to mouse CD49d (clone 9F10; eBioscience).

After 2 h at 37˚C, 10 μg ml−1 of brefeldin A (Sigma) 10 μg ml−1 of monensin (Sigma) were added

to all samples, followed by incubation for 6 h at 37˚C. Cells were stained with blue LIVE/DEAD

viability dye (Invitrogen) followed by antibody to FcγRII/III (clone 2.4G2; American Type Cul-

ture Collection), with fluorochrome-conjugated monoclonal antibodies for surface staining: anti-

body to CD3ε (clone 145-2C11; eBioscience), antibody to CD8α (clone 53–6.7; BD Bioscience),

antibody to CD4 (clone GK1.5; BD Bioscience), and antibody to CD45R (B220) (clone RA3-6B2;

BD Bioscience). Cells were fixed with 2% (vol/vol) paraformaldehyde, washed with permeabiliza-

tion buffer (PBS with 1 mM Ca2+, 1 mM Mg2+, 1 mM HEPES [N-2-hydroxyethylpiperazine-N0-

2-ethanesulfonic acid], 2% [vol/vol] FCS, and 0.1% [wt/vol] saponin) and then blocked in per-

meabilization buffer plus 5% (vol/vol) normal mouse serum (Jackson ImmunoResearch Labora-

tories). Intracellular cytokines were detected with fluorochrome-conjugated antibodies to IL-2

(clone JES6-5H4; eBioscience), IFN-γ (clone XMG1.2), TNF-α (MP6-XT22) (both from BD Bio-

sciences). Data were acquired on an LSR II flow cytometer (BD Biosciences), and data analysis

was performed using FlowJo software v.10 (Tree Star).

C57BL/6 mice were injected i.p with 4 mg/mouse of cyclophosphamide to partially deplete

lymphocytes and promote engraftment of transferred cells [66], and 2 days later received adop-

tive transfer of 4 × 106 isolated total T cells. Twenty-four h later the recipient mice were sub-

jected to a low dose (50–100 CFU) aerosol challenge with Mtb H37Rv. Lungs and spleens were

harvested for CFU counts 4 weeks after infection.
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Statistical analysis

Standard one-way ANOVA followed by Tukey’s multiple comparison test of the means was

used to determine statistical significance of immune responses and protective efficacies of the

conjugates. P<0.05 was considered statistically significant.

Survival data were analyzed by comparing Kaplan-Meier survival curves with a log-rank

test (GraphPad Prism); after the log-rank test, a Grehan-Breslow-Wilcoxon modification of

the log-rank test was used in an exploratory manner to apply more weight to early events in

experiments where larger differences in early survival were observed.

Ethics statement

Mouse studies were performed in accordance to National Institutes of Health guidelines using

recommendations in the Guide for the Care and Use of Laboratory Animals. The protocols

used in this study were approved by the Institutional Animal Care and Use Committee of

Albert Einstein College of Medicine (Protocols #20120110; #20150110).

Supporting information

S1 Fig. Isolation of capsular AM. (A) Electron micrograph of Mtb H37Rv cells grown in min-

imal media without detergent. Notice the capsule surrounding the cells. Scale bar is 100 nm.

(B) Scanning electron micrograph of Mtb H37Rv cells grown in minimal media without deter-

gent. Arrow denotes the polysaccharide capsule. Scale bar 1 μm. (C) Gel chromatography of

light Mtb capsular polysaccharides on a PD-10 size exclusion column. Fractions of 4 ml were

taken and the carbohydrate content was estimated by phenol-sulphuric acid method. “Vo”

means void volume. The pooled fractions are indicated by letters. (D) Binding of 9d8 (anti-

AM) (top graph) and 24c5 (anti-α-glucan) (bottom graph) monoclonal antibodies at various

concentrations of the indicated PD-10 fractions. The diagram indicates the ELISA configura-

tion. PS, Polysaccharide fraction; AP, alkaline phosphatase; GAM, goat anti-mouse. Capsular

polysaccharide isolation was performed up to four times using the same experimental condi-

tions. The results are representative of three independent experiments.

(PDF)

S2 Fig. Purification of AM-conjugates. (A,B) Separation of the conjugate reactions AM-Ag85b

(A) or AM-PA (B) on Sephacryl S-200 size exclusion column in PBS. Fractions were monitored

by on-line measurements of protein content at 280 nm (dotted line) and post-column by mea-

surement of carbohydrate content (straight line) by phenol sulphuric acid method.

(PDF)

S3 Fig. Kinetics of AM-binding antibodies after immunization with AM-Ag85b conjugates.

Inverse titers (total IgG) of AM-binding antibodies measured by ELISA in serum from C57BL/

6 mice (n = 3 per group) immunized with different amounts of AM-Ag85b conjugate. Mice

were immunized every two weeks twice after initial immunization. Measurements were per-

formed at 2, 4 and 8 weeks after the initial immunization.

(PDF)

S4 Fig. Specificity of AM-immune serum. Inverse titers of Abs from AM-Ag85b conjugate

serum for binding to different components of mycobacterial cell surface measured by ELISA in

serum from C57BL/6 mice (n = 3 per group). Mice were immunized three times with 10 μg of

AM-Ag85b conjugate. The results are representative of three independent experiments performed

in the same manner. AM, arabinomannan; AG, arabinogalactan; LAM, lipoarabinomannan; LM,

lipomannan; ManLAM, mannose capped LAM; TDM, trehalose deoxy mycolate; mAGP,

Polysaccharide conjugate vaccine against Mycobacterium tuberculosis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006250 March 9, 2017 23 / 28

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006250.s001
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006250.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006250.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006250.s004
https://doi.org/10.1371/journal.ppat.1006250


mycolate arabinogalactan peptidoglycan. complex

(PDF)

S5 Fig. Immunogold electron microscopy of thin sections of Mtb H37Rv cells treated with

immune sera specific for the indicated antigens and detected with a 6-nm IgG gold-labeled

anti-mouse antibody. Mtb cells were grown in the presence (MMT) or in the absence of deter-

gent (MM). Scale bar 100 nm.

(PDF)

S6 Fig. AM fragments included in the glycan microarray representing the AM molecule.

The symbolic nomenclature used is that recommended by the Consortium for Functional Gly-

comics. Green circles = mannose; Green stars = arabinose; orange stars = 5-thiomethyl-xylose;

white ovals = inositol. The linkage position and stereochemistry between the monosaccharides

is indicated over the line connecting them. 3P5 = a phosphate linkage between O3 of the inosi-

tol and O5 of an arabinose residue [63].

(PDF)

S7 Fig. Morphometric analysis of lung histopathology by assessing the number of infiltrates

per lung (bottom graph) and the percentage of diseased tissue (top graph) (�P< 0.05,
��P<0.01 ���P< 0.001, one-way ANOVA with Tukey post-test); ns, not significant.

(PDF)

S8 Fig. Specificity of the isolated T cells. Mice were immunized with AM conjugates, PA and

Ag85b in Alum and after 4 weeks T cells were isolated. Specificity of CD4+ T cells was assessed

by intracellular cytokine staining after stimulation with the indicated antigens (PA, p25). Data

are mean +/- sem. Results are representative of two independent experiments.

(PDF)

S9 Fig. Phagocytosis of opsonized Mtb by J774 macrophages. J774 macrophages were

infected with unencapsulated (uncap) or encapsulated (encap) M. tuberculosis H37Rv, which

were previously opsonized with conjugate (H37Rv) serum (CS), pre-immune mouse serum or

untreated at an MOI of 10:1, and CFU counts were obtained 2 h after infection. Data shown

are representative of 2 independent and similar experiments (�p< 0.05).

(PDF)
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Ikaros mediates the DNA 
methylation-independent silencing 
of MCJ/DNAJC15 gene expression 
in macrophages
Nicolás Navasa1,2, Itziar Martin-Ruiz2, Estíbaliz Atondo2, James D. Sutherland2, 
Miguel Angel Pascual-Itoiz2, Ana Carreras-González2, Hooman Izadi1, Julen Tomás-
Cortázar2, Furkan Ayaz1, Natalia Martin-Martin2, Iviana M. Torres1,†, Rosa Barrio2, 
Arkaitz Carracedo2,3,4, Elias R. Olivera5, Mercedes Rincón6 & Juan Anguita1,2,3

MCJ (DNAJC15) is a mitochondrial protein that regulates the mitochondrial metabolic status of 
macrophages and their response to inflammatory stimuli. CpG island methylation in cancer cells 
constitutes the only mechanism identified for the regulation of MCJ gene expression. However, 
whether DNA methylation or transcriptional regulation mechanisms are involved in the physiological 
control of this gene expression in non-tumor cells remains unknown. We now demonstrate a 
mechanism of regulation of MCJ expression that is independent of DNA methylation. IFNγ, a 
protective cytokine against cardiac inflammation during Lyme borreliosis, represses MCJ transcription 
in macrophages. The transcriptional regulator, Ikaros, binds to the MCJ promoter in a Casein kinase 
II-dependent manner, and mediates the repression of MCJ expression. These results identify the MCJ 
gene as a transcriptional target of IFNγ and provide evidence of the dynamic adaptation of normal 
tissues to changes in the environment as a way to adapt metabolically to new conditions.

MCJ (Methylation-Controlled J protein), also known as DNAJC15, is a small protein (147 aa) that con-
tains a highly conserved 70 aa J domain at the C-terminus, an unusual transmembrane domain, and 
an N-terminal region with no homology to any other known protein1–3. The MCJ gene originated as a 
gene-duplication from the related gene DnaJC19, already present in flies2. MCJ is located in the inner 
mitochondrial membrane where it interacts with Complex I of the electron transport chain (ETC), inter-
fering with the formation of supercomplexes composed of complexes I, III and IV4,5. MCJ is the first 
described endogenous negative regulator of Complex I that has also been associated with the TIM23 
translocase and the import of pre-proteins to the mitochondria3. Silencing MCJ expression does not 
affect cell survival or proliferation5. However, loss of MCJ results in augmented mitochondrial mem-
brane potential, increased oxidative respiration and mitochondrial ATP5. Although MCJ deficiency has 
no harmful effects under physiological conditions, increased mitochondrial metabolism in the absence 
of MCJ in vivo prevents the pathological accumulation of lipids in the liver during starvation or high 
cholesterol diet, and the development of liver steatosis5. MCJ is thus a modulator of mitochondrial 
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metabolism that acts as a break to attenuate mitochondrial metabolism during adaptation to metabolic 
stress conditions.

MCJ was initially identified as a gene expressed in some but not all ovarian cancer cell lines and 
primary ovarian cancer tumors6. MCJ is expressed in breast and uterine cancer cells that are sensitive to 
different chemotherapeutic drugs, but not in those that are multidrug resistant2,6. In normal human and 
murine tissues, MCJ is highly expressed in heart, liver and kidney and within the immune system, in 
CD8+ T cells and macrophages2,7. DNA methylation constitutes the only mechanism associated with the 
regulation of MCJ expression. In ovarian cancer cells, the presence of high levels of CpG island meth-
ylation within the first exon of the MCJ gene is associated with loss of expression and correlates with a 
diminished response to chemotherapy and poor survival1,6,8–10. However, the mechanisms that regulate 
MCJ expression in normal tissues and cells are not known.

We have shown that MCJ modulates macrophage responses to a variety of proinflammatory insults7. 
Short-term induction of inflammation by infection with Staphylococcus aureus or injection with LPS pre-
vented TNF production in vivo and the development of acute fulminant hepatitis in mice in the absence 
of MCJ7. MCJ is therefore, a potential therapeutic target under conditions of persistent inflammation. 
Here, we report that IFNγ  regulates the expression of MCJ in macrophages through a mechanism that 
involves the transcriptional regulator, Ikaros. These data demonstrate a novel mechanism of MCJ gene 
expression regulation that is independent of DNA methylation.

Results and Discussion
Loss of MCJ expression in heart-infiltrating macrophages during infection with B. burgdor-
feri.  During short-term in vivo inflammatory conditions, MCJ regulates the response of macrophages 
to Staphylococcus aureus as well as LPS treatment in mice sensitized with galactosamine 7. In order to 
determine the role of MCJ on the local macrophage response during an infectious process that requires 
a more complex and long lasting interaction between the pathogen and the host, we infected MCJ KO 
and WT mice with Borrelia burgdorferi. After 3 weeks of infection, macrophage infiltration was not 
significantly different in infected MCJ KO mice and WT animals (Fig. 1A). In addition, the amount of 
TNF expressed in the cardiac tissue upon infection was not altered in the absence or presence of MCJ 
(Fig. 1B). We also assessed the level of expression of MCJ in heart-infiltrating macrophages at the peak 
of infection with the spirochete. Surprisingly, in contrast to bone marrow-derived macrophages (BMMs), 
real time RT-PCR failed to detect appreciable levels of MCJ mRNA in macrophages infiltrating the hearts 
(Fig.  1C). The downregulation of MCJ expression during infection was selective of macrophages since 
total heart MCJ expression levels were readily detected in the infected mice (Fig. 1C). The histological 
analysis of infected joint and heart tissue showed that the degree of cardiac inflammation was not affected 
by the lack of the MCJ gene (Fig. S1A,B). Furthermore, the levels of spirochetal DNA were similar in 

Figure 1.  Heart-infiltrating macrophages do not express MCJ upon infection with B. burgdorferi. 
The base of the hearts of 3 week infected and uninfected (UI) mice were used to extract RNA and assess 
macrophage infiltration and TNF expression levels by qRT-PCR using primers specific for F4/80 (A) or 
TNF (B). NS; Not significant. (C) Macrophages were purified from the hearts of 3-week infected B6 mice 
and used to extract RNA. qRT-PCR was then performed to detect MCJ mRNA levels, compared to bone 
marrow-derived macrophages (BMM). As a control, MCJ mRNA levels were also determined in whole heart 
tissue of 3-week infected mice. The data shown correspond to 5 mice per group and are presented as the 
mean ±  SE. *; Student´s t test, p <  0.05.
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WT and MCJ KO mice (Fig. S1C). These results suggested that upon infection with B. burgdorferi, MCJ 
expression is repressed specifically in macrophages infiltrating the heart.

MCJ expression in macrophages is selectively downregulated by IFNγ.  In order to determine 
whether the interaction of macrophages with bacterial products results in reduced levels of MCJ, we 
stimulated RAW cells and BMMs with live B. burgdorferi and assessed the levels of MCJ. Stimulation with 
the spirochete did not affect MCJ protein (Fig. 2A) or mRNA (Fig. 2B) levels. LPS stimulation also failed 
to alter the levels of MCJ in macrophages (Fig. 2A). These data indicate that the regulation of the expres-
sion of MCJ occurs independently of pattern-recognition receptor (PRR) stimulation, including TLR4, 
TLR1/2 and other PRRs stimulated by the interaction of live B. burgdorferi with macrophages11–15. Since 
IFNγ  is a major contributor to macrophage function during cardiac infection with B. burgdorferi16,17, 
we stimulated macrophages with IFNγ . Treatment with IFNγ  resulted in lower levels of MCJ protein in 
both RAW cells and BMMs (Fig.  2C,D). Because MCJ is localized in mitochondria, we examined the 
effect of IFNγ  on mitochondrial mass; however, no difference was observed as determined by levels of 
the mitochondrial protein, VDAC1 (Fig. 2E). The effect of IFNγ  was selective of macrophages, because 
it did not affect MCJ levels in the murine tumor cell line, Hepa 1–6 or primary CD8+ T cells (Fig. 2C). 
IL-6 has been shown to downregulate MCJ levels in breast cancer cell lines2. Similarly, we found that 
IL-6 induced the downregulation of MCJ in Hepa liver cancer cells (Fig.  2F). However, IL-6 failed to 
downregulate MCJ expression in RAW cells or BMMs (Fig. 2F). These results show that MCJ expression 
in macrophages is selectively silenced by IFNγ .

Figure 2.  IFNγ induces the repression of MCJ in macrophages. (A) RAW cells were stimulated with 
live B. burgdorferi (m.o.i =  25) or 100 ng/mL of LPS for 16 h and analyzed by immunoblotting for MCJ 
protein levels. Actin levels were determined to ensure equal loads. (B) BMMs were stimulated with live B. 
burgdorferi for 16 h and analyzed for MCJ mRNA levels by qRT-PCR. The data shown correspond to the 
mean ±  SE of 3 points per group. (C) RAW cells (RAW), BMMs, Hepa 2–7 cells (Hepa) or CD8+ T cells 
(CD8) were stimulated with 100 ng/mL of IFNγ  for 24–48 h, followed by the analysis of MCJ protein levels 
by immunoblotting. GAPDH levels were determined to ensure equal protein loads. (D) RAW cells were 
stimulated for 72 h with 100 ng/mL of IFNγ  in 8-well chamber slides, washed and stained for intracellular 
MCJ. The slides were analyzed by ApoTome fluorescence microscopy. (E) RAW cells stimulated with IFNγ  
were analyzed for the levels of the mitochondrial protein, VDAC1, by immunoblotting. (F) RAW, BMMs 
and Hepa cells were stimulated with 100 ng/mL of IL-6 for 24 h, followed by their analysis for MCJ protein 
content by immunoblotting.
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IFNγ inhibits MCJ gene transcription independently of DNA methylation.  To determine if the 
downregulation of MCJ protein levels by IFNγ  in macrophages was due to an effect on MCJ gene expres-
sion, we assessed MCJ mRNA levels in macrophages stimulated with IFNγ . The treatment with IFNγ  
resulted in a significant decrease in MCJ mRNA levels in RAW cells and BMMs (Fig. 3A). No previous 
studies have characterized the human or mouse MCJ gene promoter region and addressed transcriptional 
regulation. We identified a 1 kb region upstream of the start initiation site of the murine MCJ gene (Fig. 
S2A), that was capable to mediate high levels of transcription in RAW cells in luciferase reporter assays 
(Fig.  3B). Treatment with IFNγ  caused a pronounced decrease in the transcriptional activity of this 
region of the MCJ promoter (Fig. 3B).

The only described mechanism of regulation of MCJ involves the methylation of CpG rich regions of 
the gene9. Thus, we addressed whether IFNγ  could silence MCJ expression through DNA methylation. 
BMMs were treated with IFNγ  in the presence of the methylation inhibitors, decitabine (DEC) and 
5-azacitidine (Aza). Both DEC and Aza failed to prevent the downregulation of MCJ expression by IFNγ  
(Fig. 3C). We also analyzed by bisulfite sequencing the methylation status of CpG residues present in the 
gene region identified as distinctively methylated between CD8+ T and B cells18 and that correlates with 
the level of expression of MCJ in these cells5,7. Six CpG residues were identified in this region (Fig. 3D). 
Of these, the first two were methylated in 100% of the BMMs samples analyzed (Fig. 3D). Importantly, 
the stimulation of BMMs with IFNγ  did not affect the methylation of these CpG residues (Fig.  3D), 
indicating that IFNγ  effect is independent of DNA methylation mechanisms. We further analyzed the 

Figure 3.  IFNγ represses MCJ gene expression independently of DNA methylation. (A) RAW cells and 
BMMs were stimulated for 20 h with IFNγ  and analyzed by qRT-PCR for MCJ mRNA levels. The results 
correspond to the average of 3 independent experiments. *; Student´s t test, p <  0.05. (B) RAW cells were 
co-transfected with plasmids containing the luciferase gene under the influence of the 1 kb proximal 
promoter region of the MCJ gene or the Renilla luciferase gene under the influence of the SV40 promoter. 
After 4 h, the cells were stimulated with 100 ng/mL of IFNγ  or left unstimulated. Dual luciferase activity was 
assessed after 16 h of incubation. The promoterless vector, pGL3 was used as a control. *; Student´s t test, 
p <  0.05. (C) BMMs were left unstimulated or stimulated with 100 ng/mL of IFNγ  in the absence or presence 
of 1 μ M of decitabine (DEC) or Azacitidine (Aza). After 48 h, the cells were tested by Western blotting for 
the presence of MCJ. GAPDH levels were determined to ensure equal loading. (D) CpG-rich region in the 
MCJ gene analyzed by bisulfite sequencing. The primers used for amplification are noted in lower case. The 
percentage of methylated CpG residues in BMMs stimulated with 100 ng/mL of IFNγ  or left untreated is 
marked in each of the 6 CpG residues. Black circles indicate 100% of the samples contained these residues 
methylated, while white circles represent 0%. The analysis corresponds to BMMs isolated from 6 mice. (E) 
CHIP analysis of BMM DNA immunoprecipitated with antibodies against the H3 marks corresponding to 
trimethylation of Lys 4 (H3K4m3) and 27 (H3K27m3) or H3 pan-acetylation (Pan Ac-H3). The binding 
leves are relative to total H3. The results correspond to the average ±  SE of 3 independent experiments.
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effect of IFNγ  treatment on histone H3 marks associated with the activation and repression of gene 
expression (ref. 31). The treatment of BMMs with IFNγ  did not affect the binding of thrimethylated H3 
at Lys 4 and Lys 27 or acetylated H3 to the MCJ promoter (Fig. 3E). These data revealed that transcrip-
tional regulation is an alternative mechanism of MCJ expression modulation that is independent of DNA 
methylation or alteration on histone marks.

Ikaros is an inducible repressor of MCJ gene transcription.  To identify the specific mechanism 
by which IFNγ  represses MCJ gene transcription, we performed a search for potential transcription fac-
tor binding sites within the 1kb region of the mouse MCJ gene promoter using the tool TFSearch19. Two 
consensus binding sites for Ikaros (− 350 to − 361 and − 706 to − 717) were identified (Fig. S2A). Ikaros 
is known to act primarily as a repressor of gene expression20. To demonstrate whether Ikaros binds to 
these putative binding sites in the MCJ promoter and address whether binding was regulated by IFNγ , we 
performed chromatin immunoprecipitation (ChIP) assays in BMMs. Binding of Ikaros to both sites was 
almost undetectable in untreated BMMs (Fig. 4A). However, Ikaros binding to Site 1 (the most proximal 

Figure 4.  IFNγ induces the binding of Ikaros to the MCJ promoter through the activation of CK2. 
(A) Chromatin immunoprecipitation using an antibody specific for Ikaros. BMMs were stimulated with 
100 ng/mL of IFNγ  for 16 h or left unstimulated. Chromatin was processed and immunoprecipitated as 
described in Experimental Procedures. The values presented correspond to one experiment of 2 with similar 
results. (B) Luciferase activity driven by the 1 kb MCJ proximal promoter (MCJ-luc) and deletion mutants 
corresponding to Site 1 (Δ Ik#1), Site 2 (Δ Ik#2) or double mutants (Δ IK#1/2). The values correspond to 
the mean ±  SE of triplicates and represent at least 3 independent experiments. *; Student´s T test, p <  0.05; 
NS; not significant. (C) Western blot showing silencing of Ikaros in RAW cells stably transduced with 
lentiviral particles containing a short hairpin (sh) specific for the Ikaros gene (shIkzf1). GAPDH levels were 
determined to ensure equal loads. (D) shIkaros cells and pLK0-transduced control cells were stimulated with 
100 ng/mL of IFNγ  or left stimulated for 24 h. The levels of MCJ were then determined by immunoblotting. 
(E) Levels of Ikaros in BMMs unstimulated or stimulated with 100 ng/mL of IFNγ  for 24 h. The cells were 
l tested by immunoblotting using specific Ikaros antibodies. GAPDH levels were determined to ensure 
equal loads. (F) BMMs were stimulated with IFNγ  in the presence or absence of TBB as before, and Ikaros 
binding was determined by chromatin immunoprecipitation. The values correspond to 1 of 2 experiments 
performed with similar results. (G) RAW cells and BMMs were stimulated with 100 ng/mL of IFNγ  in 
the presence or absence of 50 μ M of the CK2 inhibitor, 4,5,6,7-Tetrabromobenzotriazole (TBB), for 24 h, 
followed by MCJ protein level determination by immunoblotting. (G) RAW cells were co-transfected with 
the plasmids pGL3-MCJ-Luc plus pSV40-RenillaLuc. Four h later, the cells were stimulated with 100 ng/mL 
of IFNγ  in the presence or absence of 50 μ M TBB and 16 h later, assessed for luciferase levels. The values 
correspond to luciferase activity relative to Renilla luciferase in triplicate (mean ±  SE) and represent one of 
at least 4 experiments performed. *; Student´s T test, p <  0.05; NS; not significant.
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to the transcription start site; Fig. S2A) was highly induced in cells treated with IFNγ  (Fig. 4A). Ikaros 
binding to Site 2 (Fig. S2A), however, was not induced by IFNγ  (Fig. 4A).

To further analyze the contribution of both putative Ikaros binding sites to the regulation of MCJ gene 
expression, we generated deletion mutants of both binding sites, as well as a double deletion mutant lack-
ing both binding sites. The deletion of Site 1 resulted in significantly increased transcriptional activation 
in reporter assays (Fig. 4B) suggesting that this site is bound under basal conditions to a negative gene 
expression regulator. However, the deletion of Site 2 did not affect the expression activity of the promoter 
(Fig. 4B). Furthermore, the deletion of both sites resulted in transcriptional activity that was equivalent 
to that observed with the deletion of Site 1 (Fig. 4B). Overall, these data suggest that Ikaros binds to Site 
1 upon induction with IFNγ  and displaces a weaker negative regulator of gene expression.

To demonstrate the role of Ikaros in the IFNγ -dependent repression of MCJ gene expression, we 
generated stable lentiviral transductants containing a short hairpin sequence (shRNA) specific for the 
IKFZ1 gene encoding Ikaros. Transduction with shIKFZ1 in RAW cells caused a prominent reduction 
of Ikaros levels (Fig. 4C). Importantly, while IFNγ  downregulated MCJ levels in control cells, it did not 
affect MCJ levels in shIKFZ1-transduced cells (Fig. 4D). These results demonstrate that silencing of MCJ 
expression by IFNγ  is mediated by Ikaros and reveal this repressor as a key factor in the alternative 
mechanism regulating MCJ expression.

We then assessed whether IFNγ  upregulates Ikaros expression. The stimulation with IFNγ  did not 
affect Ikaros levels in macrophages (Fig. 4E), suggesting that the increased binding to the MCJ promoter 
region was due to post-translational modifications induced by IFNγ . Ikaros activity is regulated by phos-
phorylation mediated by Casein Kinase 2 (CK2)21. It has also been reported that IFNγ  regulates the 
expression of a subset of genes through the activation of CK221,22. To investigate whether IFNγ  promotes 
Ikaros binding through CK2, cells were treated with IFNγ  in the presence of a CK2 specific inhibitor, 
4,5,6,7-tetrabromobenzotriazole (TBB)23. CHIP analysis demonstrated that the pretreatment with TBB 
abrogated IFNγ -induced binding of Ikaros to the MCJ promoter (Fig. 4F).

We then investigated whether silencing of MCJ expression by IFNγ  was mediated by CK2. Pretreatment 
of macrophages with the CK2 inhibitor prevented downregulation of MCJ expression by IFNγ  (Fig. 4G). 
In addition, inhibition of CK2 also prevented IFNγ  from suppressing MCJ promoter transcriptional activ-
ity (Fig. 4H). Together, these results show that IFNγ  represses MCJ gene transcription in macrophages by 
promoting CK2-dependent DNA binding of Ikaros to the proximal region of the MCJ promoter.

Our studies identify a novel mechanism of regulation of MCJ gene expression that is independent of 
the well-established DNA methylation pathway described in several tumors. MCJ/DnaJC15 is emerging 
as an important regulator of mitochondrial activity and cellular function in vitro and in vivo5,7. Therefore, 
the control of MCJ transcription constitutes a mechanism to regulate cellular responses to environmental 
changes. As opposed to DNA methylation, which is considered a long-term mechanism to silence gene 
expression24, the transcriptional control of MCJ gene expression by Ikaros may allow normal tissues to 
adapt dynamically to a changing environment. Here, we demonstrate that Ikaros represses MCJ expres-
sion in response to IFNγ  in macrophages. Similar mechanisms could be used to alter MCJ levels in 
other cells or tissues in response to changes in the environment as a way to adapt metabolically to new 
conditions.

Our results identify MCJ gene expression as a transcriptional target of the cytokine IFNγ , contrib-
uting to the regulation of their inflammatory output7. Our data also reinforces the role of IFNγ  as a 
cytokine that exerts a protective effect during infection with B. burgdorferi16,17,25. Overall, we hypothesize 
that the combined effect of IFNγ , including the regulation of MCJ expression, results in a more efficient 
elimination of the bacteria from the infected tissue without a concomitant increase in the inflammatory 
damage.

Methods
Mice.  MCJ-deficient mice in a C57Bl/6 (B6) background5 and wild type B6 mice were bred at UMass 
Amherst and CIC bioGUNE. The Institutional Animal Care and Use Committees at UMass Amherst and 
CIC bioGUNE approved all procedures involving animals.

Infections.  Groups of WT and KO mice were infected by subcutaneous injection with 105 Borrelia 
burgdorferi 297 in the midline of the back. The mice were sacrificed after 3 weeks of infection and 
analyzed for inflammatory symptoms in joints and hearts stained with hematoxilin and eosin. Signs of 
arthritis and carditis were determined blindly as described26. The number of spirochetes in heart tissue 
was determined by real-time PCR, using primers specific for the recA gene (Table S1) standardized to 
μg of total DNA with primers corresponding to Glyceraldehyde 3-Phosphate Dehydrogenase, GAPDH, 
(Table S1)17.

Cells.  Infiltrating cardiac macrophages were isolated from 3-week infected B6 mice. Hearts were per-
fused with cold Hank´s balanced salt solution (HBSS, Lonza, Anaheim, CA) and cut into small pieces, 
followed by digestion with 1 mg/mL of collagenase/dispase (Roche) and homogenization in a Dounce 
homogenizer. The digest was passaged through a 16” gauge syringe to obtain single cell suspensions. 
The cellular suspension was layered on top of a 3 mL layer of Ficoll (GE Healthcare, Piscataway, NJ) and 
centrifuged at 400 ×  g for 40 min without brakes. Monocytes were then purified from the interphasic 
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cellular fraction using a one-step discontinuous Percoll gradient (46%) under isosmotic conditions27. 
Monocytes were used for RNA extraction.

Bone marrow-derived macrophages were generated as described17 using 30 ng/mL of M-CSF (Miltenyi 
Biotec, Bergisch Gladbach, GE). Macrophages were allowed to differentiate in 100 mm ×  15 mm petri 
dishes (Fisher Scientific, Pittsburgh, PA) for 8 days. Non-adherent cells were then eliminated and adher-
ent macrophages were scraped, counted and resuspended in serum-free RPMI medium 2 h prior to use.

CD8+ T cells were purified by positive selection from the spleens of B6 mice using biotinylated 
anti-CD8 (BD Biosciences, San Diego, CA), anti-biotin microbeads and the MACS system (Miltenyi 
Biotec, Auburn, CA).

Lentiviral particles containing shRNA targeting Ikaros (Ikzf1 gene, Sigma Chemical Co, St. Louis, 
MO) were produced as described28. Supernatants containing the virus were used to infect RAW 264.7 
cells, followed by incubation with puromycin at 2 μ g/mL to generate stable lines. Cells containing the 
empty vector, pLK0.1, were used as a control.

In vitro stimulation.  Cells were incubated with 100 ng/mL of murine IFNγ  or human IL-6 for the 
indicated time periods. In some instances, the following inhibitors were used 1 h prior to stimulation: 
decitabine (DEC, 1mM), 4,5,6,7-tetrabromobenzotriazole (TBB, 1 μ M; Tocris Bioscience, Bristol, UK), 
5-Aza-2-Deoxycytidine (Aza, 1 μ M; Sigma Chemical Co.). Stimulations with B. burgdorferi (m.o.i. =  25) 
or LPS (100 ng/mL) were performed for 4–6 h.

Real-time RT-PCR.  RNA from isolated cells or cardiac tissue was extracted by the thioisocyanate 
method (Amresco, Solon, OH), treated with DNase I (Qiagen), and reverse transcribed using the 
SuperScript VILO cDNA synthesis kit (Life Technologies). Real-time PCR was then performed using 
SYBR Green PCR Master Mix (Life Technologies) on a BioRad CFX96 Real-Time System (Bio-Rad, 
Hercules, CA). Fold induction of the genes was calculated relative to actin, using the 2−ΔΔCt method. 
The primers used are listed in Table S1.

Western blot.  Five to 20 μ g of protein were run on SDS-PAGE, transferred to nitrocellulose mem-
branes and tested with antibodies specific for MCJ5, VDAC1 (D-16) and Ikaros (M-20, Santa Cruz 
Biotechnology, Dallas, TX). Equal loading was determined using antibodies against GAPDH (6C5) or 
actin (I-19) from Santa Cruz Biotechnology.

Epifluorescence (Apotome) microscopy.  Cells were grown in 8-well chamber slides (Nunc Thermo 
Scientific, Waltham, MA). Upon incubation with 100 ng/mL of IFNγ  (eBioScience, San Diego, CA) for 
3 days, the cells were processed as described29 using anti-MCJ Abs, followed by an anti-rabbit IgG con-
jugated to Alexa Fluor 594.

Cloning of the proximal 1 kb MCJ promoter and luciferase assays.  The proximal 1 kb promoter 
of the murine MCJ gene was cloned into pGL3 using the primers in Table S1. Deletion mutants corre-
sponding to the putative Ikaros binding sites of the MCJ promoter (Fig. S2) were generated using the 
QuickChange Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA) and the primers listed in Table 
S1. 1.9 μ g of these constructs plus 0.1 μ g of pSVL40 plasmid were cotransfected into RAW cells using 
the X-TremeGene HP DNA tranfection reagent (Roche). After 6h, the cells were treated with IFNγ  in 
the presence or absence of the specific inhibitor, TBB. After 20 hr incubation, the cells were lysed in lysis 
buffer (Promega, Madison, WI) and Firefly and Renilla luciferase activities were determined by the Dual 
Luciferase reporter system (Promega).

Bisulfite sequencing.  DNA was extracted from BMMs treated with IFNγ  and controls, denatured 
and subjected to bisulphite conversion as described by Clark and colleagues30. The resultant product was 
PCR amplified using the primers in Table S1, corresponding to the region in the MCJ gene described by 
Meissner and colleagues18.

Chromatin immunoprecipitation.  Fifteen million BMMs were stimulated with 100 ng/mL of IFNγ  
in the presence or absence of TBB for 16h. CHIP assays were performed using the SimpleChip Enzymatic 
Chromatin IP kit-Magnetic beads (Cell Signaling, Beverly, MA) following the manufacturer´s instruc-
tions using anti-Ikaros, anti-H3K4m3, anti-H3K27m3, anti-pan acetylated H3 antibodies and anti-H3 
(Cell Signaling) or normal rabbit IgG as negative control. The immunoprecipitated DNA was subjected 
to q-PCR using primers encompassing the two putative Ikaros binding sites (Table S1). The results are 
presented as fold induction over rabbit IgG immunoprecipitates or total H3 relative to input (percent 
input method), following the formula: = ,( )

( )
− −( − )

−
2x

x

Ct Ct100 2

100 2

Adjinput CtTEST

Adjinput CtIgG
TEST IgG  where AdjInput =  Adjusted 

input to 100%; CtTEST =  Ct of test samples; CtIgG =  Ct of samples control.

Statistical Analysis.  Results are presented as means ±  SE. Significant differences between means were 
calculated with the Student’s t test. P values of 0.05 or less were considered statistically significant.
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