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Economic impacts of climate mitigation: Health co-benefits and agricultural 

impacts/Impactos económicos de la mitigación del cambio climático: co-beneficios 
en términos de salud y efectos en los sistemas agrícolas 

Jon Sampedro Martínez de Estívariz 

 

En los últimos años la comunidad científica ha demostrado los efectos negativos del cambio 

climático, evidenciando una necesidad urgente de acción. El Acuerdo de París, aprobado en 2015 

por la comunidad internacional, establece un límite en el aumento de la temperatura por debajo 

de los 2°C para final de siglo y hace un llamamiento a limitar este aumento a 1.5°C. Sin embargo, 

los planes de mitigación presentados por cada país (Nationally Determined Contributions), no 

alcanzarían los objetivos establecidos, por lo que, durante los próximos años, deberán 

incrementar la ambición. Además, existen maneras muy diversas de alcanzar los objetivos 

mencionados con implicaciones significativas en distintas esferas (economía, energía, uso de 

suelo…), generándose unos co-efectos que no suelen integrarse en el diseño de las políticas 

climáticas. Esta tesis doctoral se centra en los efectos en términos de salud pública y en los 

impactos en los sistemas agrícolas derivados de la contaminación atmosférica en el contexto del 

cambio climático. 

La contaminación atmosférica es uno de los principales factores de riesgo sobre la salud a nivel 

mundial, especialmente en los países en desarrollo. De acuerdo con la Organización Mundial de 

la Salud (OMS), las muertes prematuras derivadas de la contaminación alcanzan los 7.2 millones, 

de las cuales 3-4 millones se atribuyen a la contaminación ambiental. Los contaminantes más 

perjudiciales para la salud humana son las partículas finas (PM2.5) y el ozono (O3), causando 

enfermedades relacionadas con los sistemas respiratorio y cardiovascular. La emisión de estos 

contaminantes suele estar relacionada con la emisión de gases de efecto invernadero (GEI) por 

lo que las acciones para combatir el cambio climático reducirían los impactos sobre la salud y 

los sistemas agrícolas derivados de la contaminación.    

En este contexto, el primer objetivo de esta tesis es el desarrollo de un marco integrado de 

modelización que permita comparar los co-efectos de distintos escenarios climáticos, mediante 

la conexión de un modelo de análisis integrado (Global Change Assessment Model, GCAM) con 

un modelo de contaminación atmosférica (TM5-FASST) y con distintos métodos de valoración 

económica. Esta combinación de herramientas permite estimar los impactos de la 

contaminación sobre la salud y los sistemas agrícolas hasta final de siglo de distintos escenarios 

climáticos, lo que añade una dimensión adicional al análisis de coste-eficiencia de las políticas 

de mitigación que podría ser de interés para los distintos tomadores de decisiones. 

El segundo objetivo de esta tesis doctoral es aplicar dicho marco integrado de modelización en 

diferentes casos de estudio, con diferentes políticas climáticas. Primero, el capítulo 2 muestra 

los impactos de la contaminación atmosférica en los sistemas agrícolas en un escenario en el 

que no se establece ninguna política climática. Después, el objetivo del capítulo 3 es analizar los 

resultados de aplicar una política que consiste en la eliminación de los subsidios a las energías 

fósiles en la Unión Europea y la utilización posterior de estos recursos para financiar las energías 

renovables (solar fotovoltaica). Esta política es necesaria para la transición dado que los 
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subsidios a las energías fósiles hacen que disminuya la inversión en energías renovables y 

además distorsiona la competencia. Sin embargo, debido a la magnitud de los subsidios en 

Europa, los resultados muestran que las implicaciones en términos de contaminación 

atmosférica son reducidas. Por lo tanto, partiendo de la idea de que serán necesarias políticas 

más restrictivas de mitigación para generar importantes efectos sobre la contaminación 

atmosférica, los siguientes capítulos analizan los co-beneficios en términos de salud de 

escenarios de mitigación basados en el cumplimiento de Acuerdo de París (2°C y 1.5°C). En este 

sentido, se analizan diferentes opciones tecnológicas y de reparto de los esfuerzos de mitigación 

entre países para alcanzar los objetivos climáticos. Estos análisis demuestran que, a nivel global, 

en cualquiera de los escenarios de mitigación propuestos, los co-beneficios en términos de salud 

superan los costes de implementación de la política climática, especialmente en países en 

desarrollo. Estos resultados tienen una implicación directa en el análisis coste-beneficio de 

cualquier política climática y en el diseño de las estrategias de mitigación. A continuación, los 

siguientes sub-apartados muestran un resumen de los capítulos desarrollados durante esta tesis 

doctoral. 

Estimación de los daños en los sistemas agrícolas derivados del ozono 

El ozono troposférico, formado por la reacción de los gases precursores (metano u óxidos 

nitrosos) con la radiación solar, es el contaminante más perjudicial para los sistemas agrícolas. 

La exposición de la vegetación a altos niveles de este contaminante genera distintos daños como 

necrosis, clorosis, alteraciones en el genoma o reducción en la fotosíntesis. El segundo capítulo 

de esta tesis doctoral estima los daños en la productividad agrícola y los efectos económicos 

derivados del ozono para un escenario en el que no existe ninguna política climática. 

Los niveles actuales de concentración de ozono exceden en muchos lugares los valores límite, lo 

que genera pérdidas significativas en la productividad. Este análisis muestra los daños 

económicos, actuales y futuros, para distintos cultivos, utilizando precios regionales y dinámicos 

en el tiempo. Además, la re-incorporación de los coeficientes de daño en el modelo de análisis 

integrado (GCAM) permite estimar efectos a futuro en los mercados agrícolas.  

Para la proyección de los daños, dentro del marco de modelización desarrollado, se ha asumido 

que el progreso tecnológico implícitamente hará que las emisiones de gases precursores 

disminuyan en el futuro, también en un escenario en el que no se especifica ninguna política 

climática. Se estima que los niveles de ozono en el futuro serán inferiores a los actuales en la 

mayoría de regiones del mundo, con alguna excepción como India, donde el incremento 

esperado de emisiones de metano (relacionadas con el aumento poblacional) hace que los 

niveles de ozono en el futuro sean superiores a los actuales con efectos más notables en las 

cosechas. Los resultados muestran que, a nivel global, los daños económicos en los sistemas 

agrícolas derivados del ozono podrían alcanzar los 5041-5987, 9780-18830, 6726-10536 y 

10421-12461 millones de euros anuales para el maíz, la soja, el arroz y el trigo, respectivamente, 

durante el horizonte temporal analizado. Estos efectos tendrían implicaciones directas en los 

precios y en los niveles de producción, e indirectas en los usos de suelo y en la seguridad 

alimentaria, especialmente en los países en desarrollo. 

Además, los daños en la productividad calculados tendrían efectos significativos en los mercados 

agrícolas ya que las demandas de cada región y cultivo responden de manera distinta a dichos 



iii 

daños. Esto supondría una re-distribución de la producción de cultivos entre las distintas 

regiones, con sus correspondientes cambios en usos de suelo. Así, los niveles globales de 

producción de ciertos cultivos podrían aumentar hasta casi el 1% (soja), mientras que el daño 

económico podría variar hasta un 3.84% (arroz). Desde un punto de vista regional, India 

mostraría la mayor variación en la producción (arroz, 6%) y en los daños económicos 1.67% 

(trigo). Estas variaciones demuestran la importancia de incorporar los impactos del ozono en los 

distintos ejercicios de modelización y en los escenarios utilizados.  

Implicaciones del reciclado de los subsidios a las energías fósiles a la promoción de energía 

solar: Un caso de estudio para la Unión Europea 

La eliminación de los subsidios a las energías fósiles y su posterior “reciclado” para la promoción 

de energías renovables como la solar es una política necesaria para la mitigación del cambio 

climático, ya que los subsidios distorsionan la inversión en energías limpias. Es por esto que 

debería considerarse una medida prioritaria en cualquier estrategia de mitigación.  

El objetivo del capítulo 3 de esta tesis doctoral es examinar las implicaciones de la 

implementación de esta política en la Unión Europa en términos de contaminación atmosférica 

y otros efectos adicionales como la reducción de emisiones de CO2 o penetración de las energías 

renovables. Los resultados muestran que el reciclado de los subsidios desplazaría el carbón del 

sistema energético, contribuyendo a la reducción de las emisiones tanto de CO2 como de 

contaminantes atmosféricos. Sin embargo, los posibles co-beneficios derivados de la 

contaminación estarían directamente relacionados con el tipo de tecnología que sustituya al 

carbón. 

Concretamente, el estudio muestra que la eliminación de subsidios a las energías fósiles, 

reduciría las emisiones de CO2 hasta un 1.8% en 2030 y, además, si estos subsidios se reinvierten 

en la promoción de la energía solar fotovoltaica, la reducción aumentaría hasta un 2.2%. Por 

otro lado, habría una reducción de algunos contaminantes como el SO2 (3%). Sin embargo, los 

co-beneficios en la salud no serían significativos, principalmente por dos razones. Por un lado, 

las variaciones absolutas de los contaminantes no son suficientemente importantes, siendo 

todas inferiores al -5%. Por otro lado, dado que el carbón desplazado sería sustituido en parte 

por biomasa (sobre todo fuera del sector eléctrico), la reducción de algunos contaminantes 

podría compensarse con el incremento de otras sustancias como el monóxido de carbono (CO) 

o el carbono orgánico (OC), directamente relacionadas con el uso de biomasa. 

La principal conclusión de este análisis es que, a pesar de ser una política necesaria y con efectos 

positivos en algunos ámbitos, los efectos que podemos esperar en términos de salud y sistemas 

agrícolas no son significativos por la baja variación en las emisiones de los contaminantes 

atmosféricos. Para poder obtener co-beneficios significativos, se necesitan políticas más 

restrictivas y con objetivos climáticos más ambiciosos, como se analiza en los siguientes 

capítulos de la tesis doctoral. 
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Co-beneficios en términos de salud y costes de mitigación del Acuerdo de París: un ejercicio 

de modelización 

La contaminación atmosférica y el cambio climático son dos problemas que están directamente 

relacionados ya que las políticas para reducir las emisiones de gases de efecto invernadero 

suelen reducir las emisiones de contaminantes locales. Por lo tanto, los objetivos de mitigación 

definidos en el Acuerdo de París generarían importantes co-beneficios para la salud. Sin 

embargo, uno de los principales desafíos de este acuerdo es la distribución de los esfuerzos de 

mitigación entre los distintos países, ya que la literatura muestra que la ambición del objetivo 

está directamente relacionada con la dificultad para la distribución de esfuerzos. Además, 

también se ha evidenciado que los planes de mitigación presentados por los distintos países no 

van a ser suficientes para alcanzar los objetivos establecidos. En este contexto, el capítulo 4 de 

la tesis doctoral compara los co-beneficios en términos de salud y los costes de mitigación 

relacionados con alcanzar los distintos objetivos de temperatura establecidos en el Acuerdo de 

París (2°C y 1.5°C) aplicando distintos criterios de distribución del esfuerzo de mitigación. Estos 

criterios están basados en principios como la capacidad de mitigación o la equidad. 

A pesar de que la relación entre cambio climático y contaminación atmosférica queda bien 

demostrada en la literatura científica, no existen muchos estudios que, utilizando un marco 

integrado de modelización, comparen los costes de la mitigación con los beneficios económicos 

de la reducción de la contaminación en diferentes escenarios de mitigación del cambio climático. 

Este capítulo demuestra que, independientemente del método de reparto del esfuerzo, la 

implementación de los objetivos climáticos va a generar importantes co-beneficios en términos 

de salud ya que, bajo ciertos supuestos, doblarían los costes de mitigación a nivel mundial. 

Además, se han realizado análisis de sensibilidad para distintas variables que demuestran la 

robustez de los resultados. 

Concretamente, en valores acumulados hasta el año 2050, el ratio co-beneficios/costes de 

mitigación oscilaría entre 1.4 y 2.45 a nivel global, dependiendo del escenario. A nivel regional, 

en países como China o India los co-beneficios en términos de salud serían muy superiores a los 

costes de mitigación, mientras que en otras regiones como la Unión Europea o EEUU cubrirían 

alrededor de un 7-84% y 10-41% de los costes de mitigación respectivamente, dependiendo del 

criterio de distribución aplicado. Además, los co-beneficios harían que el esfuerzo extra de 

alcanzar el objetivo de 1.5°C fuese económicamente rentable en India y en China, ya que, 

durante el periodo analizado, se generaría un beneficio marginal acumulado neto de 3.28-8.4 y 

0.27-2.31 trillones de dólares respectivamente.  

Co-beneficios en términos de salud y costes asociados a escenarios de mitigación con distintos 

niveles de desarrollo tecnológico 

En la misma línea que el capítulo anterior, este estudio compara los co-beneficios en términos 

de salud a nivel global y regional con los costes de mitigación relacionados con el objetivo de 

incremento de la temperatura de 2°C en distintos escenarios basados en diferentes niveles de 

desarrollo de tecnologías claves para la mitigación del cambio climático. Estos escenarios 

tecnológicos están basados en el quinto informe de valoración del Panel Intergubernamental 

del Cambio Climático (IPCC AR5) y asumen distintos niveles de desarrollo de tecnologías como 

la bioenergía, la generación nuclear o la captura y almacenamiento de CO2 (CCS). 
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El análisis demuestra que los co-beneficios en términos de salud serían significativos 

independientemente del escenario tecnológico escogido. Las muertes prematuras derivadas de 

la contaminación atmosférica en los escenarios de mitigación se reducirían entre un 17% y un 

23% comparado con un escenario sin política climática. Por otro lado, el ratio de co-

beneficios/costes de mitigación varía significativamente dependiendo del escenario 

tecnológico. Así, si el objetivo se alcanzase con todas las tecnologías disponibles (sin establecer 

explícitamente ninguna limitación), los co-beneficios doblarían el valor de los costes (ratio de 

2.19), mientras que en el caso de establecer un límite en el uso de la biomasa de 100 exajulios a 

nivel mundial, el mismo ratio se reduciría hasta 1.45. En cuanto a resultados regionales, India y 

China, debido a su grado de desarrollo y a su densidad de población obtendrían los beneficios 

más significativos. Por último, cabe destacar que los resultados a medio plazo (2030) serían 

mayores que los obtenidos a largo plazo, lo que hace aún más atractiva la acción temprana. 

Conclusiones  

El objetivo de esta tesis doctoral ha consistido en evaluar los impactos en la salud y la agricultura 

derivados de la contaminación atmosférica en diferentes escenarios climáticos. Para ello, se ha 

desarrollado una innovadora metodología que conecta secuencialmente un modelo de análisis 

integrado, un modelo de calidad de aire y distintos métodos de valoración económica. La 

aplicación del marco integrado de modelización desarrollado a diferentes escenarios ha 

demostrado la importancia de incorporar estos co-efectos en el análisis de las políticas 

climáticas. 

Sin embargo, las estimaciones basadas en modelos tienen una serie de limitaciones y supuestos. 

La tesis doctoral también muestra que la definición de los escenarios de mitigación va ser un 

factor que afecte directamente a los resultados obtenidos. Por este motivo, este análisis tiene 

un grado de incertidumbre que es necesario considerar para poder interpretar correctamente 

los resultados. Aun así, los modelos de análisis integrados son herramientas extremadamente 

útiles, pues permiten comprender mejor la complejidad del reto climático, proporcionando 

información relevante para los diferentes agentes involucrados en la lucha contra el cambio 

climático. Es por esto que organismos como el Panel Intergubernamental del Cambio Climático, 

la Agencia Internacional de la Energía, la Comisión Europea o la Organización Mundial de la Salud 

utilizan este tipo de herramientas de manera habitual en los procesos de toma de decisiones. 

Además, la comunidad científica trabaja asiduamente en el desarrollo y refinamiento de estas 

herramientas desde un enfoque trans-disciplinar, habiendo conseguido avances significativos 

en los últimos años. 

En definitiva, el análisis de los co-beneficios desarrollado en esta tesis doctoral muestra la 

importancia de abordar de una forma integrada las políticas y estrategias para el cambio 

climático y la contaminación atmosférica. 
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ABSTRACT 

 

The transition to low carbon economies is one of the most urgent challenges society needs to 

face in order to prevent and reduce the harmful effects of climate change. Every mitigation 

strategy requires the energy system to be substantially transformed. Additionally, changing the 

energy systems has a diverse range of associated co-benefits and side effects, with substantial 

economic implications, that are not usually integrated in policy design.  

The aim of this PhD thesis is to analyze air pollution driven co-effects of different climate change 

scenarios and mitigation options, with a special focus on health and agriculture by developing 

an innovative methodology which combines the use of an integrated assessment model (GCAM), 

an air quality model (TM5-FASST) and economic valuation methods. 

Chapter 2 analyzes air pollution driven damages in crop yields and the resulting effects on 

agricultural markets of a scenario where there is no climate policy established. Afterward, 

Chapter 3 examines which are the implications of reverting current fossil fuels subsidies into 

clean solar technologies in terms of air pollution. Then, the subsequent chapters analyze health 

co-benefits associated to different transition pathways. While Chapter 4 estimates the potential 

co-benefits of achieving both the 2°C and the 1.5°C objectives following different burden-sharing 

criteria, Chapter 5 focuses on co-benefits associated to achieving the 2°C target under different 

technological scenarios. 
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Motivation 
There is widespread agreement in the scientific community as to the harmful effects of climate 

change (Cook et al., 2016), and as to the need for urgent action. The Paris Agreement1, approved 

by most countries around the world in 2015, seeks to limit global temperature increase in this 

century to less than 2°C, with “efforts to limit the temperature increase even further to 1.5°C”. 

To that end, countries were required to define their efforts to reduce national emissions and 

adapt to the impacts of climate change. These efforts are known as “Nationally Determined 

Contributions” (NDCs), and must be updated every 5 years.  

Nevertheless, the application of current NDCs is not ambitious enough to achieve the 2°C target, 

and the increase by the end of the century is likely to be between 2.6 and 3.1°C (Rogelj et al., 

2016). Furthermore, there are several different ways to achieve long-term climate objectives 

with implications in many different spheres (economic, social, energy, environmental, etc.). In 

particular, each transition pathway has a broad range of side effects in the form of co-benefits 

and drawbacks that are not always integrated into climate policy design. Specifically, air 

pollution-driven impacts on health and agricultural systems are relevant side-effects which have 

not so far been addressed in an integrated framework. These effects are not usually explored by 

research communities, so they are not always considered by policy makers and stakeholders. It 

is very important to explore the extent of health and agricultural side-effects as they could be a 

game-changer for the cost-benefit analysis of mitigation strategies for different countries. 

However, assessing such side-effects is a complex challenge, as it requires the interconnection 

of very diverse systems such as the economy, the energy system and the composition of the 

atmosphere. The quantification and assessment of these side-effects in a consistent global 

framework lies at the heart of this PhD thesis. 

According to the Global Burden of Disease study (Forouzanfar et al., 2016), air pollution is a 

leading risk factor to health, especially in low and middle income countries (Cohen et al., 2017). 

A recent report from the World Health Organization (WHO, 2018) estimates that current air 

pollution-driven premature deaths total around 7.2 million, of which 3-4 million are attributable 

to ambient (outdoor) air pollution. Furthermore, recent studies conclude that the number of 

deaths attributable to this cause may be substantially underestimated (Burnett et al., 2018; 

Lelieveld et al., 2019). Most ambient air pollution driven premature deaths can be attributed to 

ischemic heart disease (40%) and stroke (40%), but a significant number are also caused by 

chronic obstructive pulmonary disease (11%), lung cancer (6%), and respiratory infections in 

children (3%).  

In terms of human health, the most harmful pollutants are particulate matter (PM2.5
2) and ozone 

(O3) which are significantly determined by the emissions of various precursors3. The effect of 

these pollutants on human health has been widely evidenced in numerous studies (Apte et al., 

2015 and Brauer et al., 2016 for PM2.5; Turner et al., 2016 for O3). Moreover, recent literature 

shows that air pollution has effects in previously unexplored fields such as mental health 

(Newbury et al., 2019) and diabetes (Bowe et al., 2018). PM2.5 and O3 are closely related to the 

use of fossil fuels, so actions to fight climate change significantly affect air pollution since they 

are two related hazards that usually (but not always) come from similar sources (Haines et al., 

                                                           
1 https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement 
2 PM2.5 are particles of 2.5 microns or less in width 
3 Sulfur dioxide (SO2) and nitrogen oxides (NOx), ammonia (NH3) black carbon (BC) and organic carbon 
(OC) are the main precursors for the formation of PM2.5, and methane (CH4) and NOx for O3, but not the 
only ones. 

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
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2010) and sectors (Crippa et al., 2019). In recent years, a number of scientific studies have 

estimated current and future health costs of air pollution. For example, OECD (2016) shows that 

the cost of air pollution-driven health damage may range from US$18-25 trillion in 2060.  

Certain inefficient policies also distort the transition and can significantly increase damage, such 

as fossil fuel subsidies (FFS). Even though the penetration level of renewable energy is increasing 

due to active political support and a substantial reduction in costs (IRENA, 2017), both developed 

and developing countries still subsidize fossil fuel technologies, which is inconsistent with the 

climate objectives defined in the Paris Agreement. A report from the International Monetary 

Fund (IMF, 2013) shows that FFS totaled $233 billion globally in 2013 (0.41% of global GDP), 

more than four times the amount of subsidies awarded to promote renewable energy. The same 

report states that the externalities4 produced by the implementation of those subsidies may 

represent up to 5 US$ trillion, 52% of which is accounted for by air pollution-driven health 

impacts. Not only are FFS a regressive mechanism according to the IMF, but their phasing out 

and potential recycling into cleaner energy sources could entail additional benefits in terms of 

pollutant reduction. 

Similarly, several studies focused on the health co-benefits of climate change mitigation 

(Vandyck et al., 2018; West et al., 2017) estimate the scale of co-benefits and evidence the need 

to incorporate them into policy design. However, as pointed out in the IPCC’s 5th Assessment 

Report (IPCC, 2014), there are “large methodological differences in, for example, the type of 

pollutants analyzed, sectoral focus, and the treatment of existing air pollution policy regimes”. 

Moreover, there is a gap with regard to mitigation strategies, as they do not capture the 

implications of different temperature targets (2°C or 1.5°C as per the Paris Agreement), 

technological developments or the distribution of mitigation efforts.  

O3 driven agricultural impacts are also linked to climate change mitigation strategies, since 

emissions of O3 precursors are usually linked to non-renewable energy sources (Fiore et al., 

2009). Actions to fight climate change usually entail significant reductions in air pollutant 

emissions, and thus have substantial co-benefits in terms of improvements of agricultural yield 

and productivity. O3 has been identified as the most harmful element for crop yields (within the 

expected environmental changes), with soybeans and wheat being the crops most sensitive to 

it. One of the most widespread models for estimating O3 driven crop damage is that of exposure-

response functions (ERFs). ERFs calculate the relative yield losses for each crop given a preset 

O3 level. Several studies analyze RYLs using ERFs at both global and regional levels (Avnery et al., 

2011; Van Dingenen et al., 2009). They show that O3 driven RYLs could be as great as 20%, 

depending on the crop and the region, with all the economic damage that this entails. 

 

 

  

                                                           
4 The IMF report referenced above calls such externalities “post-tax subsidies” 
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Objectives 
The aim of this PhD thesis is to assess air pollution-driven health and agricultural impacts and 

analyze their role in different climate change mitigation strategies. To that end, the first 

objective is to develop an integrated modelling framework to estimate health and agricultural 

impacts and their trends under different climate mitigation scenarios. In order to provide a wide 

perspective to policy analysis, this thesis develops a framework that combines an integrated 

assessment model, an air quality model, and economic valuation methods. On the one hand, 

integrated assessment models are used in general to compare different mitigation scenarios in 

terms of mitigation costs, energy mix, land use change, emissions of greenhouse gases and air 

pollutants, and temperature change. On the other hand, air quality models are applied to 

analyze the implications in terms of air quality and health and agricultural impacts of emissions 

of air pollutants. The combination of the two types of model enables an integrated assessment 

to be drawn up of the health and agricultural impacts of different mitigation scenarios. This 

matter needs more research effort, given its significance. Furthermore, the combination of these 

models with economic valuation methods enables the economic co-benefits of climate 

mitigation to be assessed. The Methodology subsection below provides a detailed description 

of this novel assessment framework. 

The second objective of the thesis is to use the integrated modeling framework drawn up to 

explore the co-effects of a number of climate change scenarios, and in particular to analyze 

health and agricultural implications for different pathways. First, the framework is used in 

Chapter 2 to analyze current and future air pollution-driven effects on crop yield and agricultural 

markets of a scenario where no climate policy is set. Then Chapter 3 explores the potential co-

benefits of a mitigation policy consisting of removing fossil fuel subsidies and recycling them to 

promote renewables (rooftop solar). The framework is subsequently used to analyze health co-

benefits of different mitigation scenarios with more stringent climate policies. Chapters 4 and 5 

explore the health co-benefits of different climate objectives (1.5°C and 2°C) under different 

technological scenarios and burden sharing criteria. These analyses show the extent to which 

side effects could play a significant role in any climate mitigation strategy set up for certain key 

countries. 
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Methodology 
In order to analyze health and agricultural impacts of different climate policies, most of the 

studies developed during the PhD Thesis have been based on the subsequent use of two 

different models: The Global Change Assessment Model (GCAM) and the Fast Scenario 

Screening Tool (TM5-FASST)5. The soft-link of these two models is original and has been fully 

developed during this PhD Thesis. The aim of this innovative methodology is to analyze different 

(policy and no policy) scenarios from now to 2100, and to identify the effects of different climate 

policies in different areas with a focus on air pollution driven health and agricultural effects. 

In this context, first, GCAM is used to quantify the greenhouse gas emissions pathways and the 

related mitigation costs of different scenarios. GCAM also reports, for each scenario, the 

emissions of air pollutants in the different regions covered by the model; this information is 

passed on to the TM5-FASST air quality source-receptor model, which translates emission levels 

into concentrations and, subsequently, into premature deaths and relative yield losses (RYLs). 

For health co-benefits analysis, those premature deaths are monetized using the Value of 

Statistical Life (VSL) approach. This method has been extended in order to incorporate morbidity 

effects. The details of this approach are presented in a following subsection (economic valuation 

approach). 

Regarding the estimation of agricultural damages, the obtained regional, period by period 

emissions are fed into the TM5-FASST model, in order to measure O3 concentration levels. To 

estimate the economic impacts, projected crop losses are multiplied by the agricultural market 

prices, obtained from GCAM for every region and period6. Finally, the obtained O3 damage 

coefficients (per period and region) are re-set into GCAM, as exogenous yield shocks. So, it is 

possible to compare the outcomes of a default GCAM baseline (no O3 effects) with the scenario 

where the estimated yield changes per period and region are incorporated. This innovative 

procedure enables to see the most important impacts in agricultural systems by including the 

O3 damages into future projections. As the model is calibrated for 2010, the damages are 

included as yield shocks relative to that base year. However, the TM5-FASST model only 

calculates damage coefficients for certain categories (wheat, corn, rice and soybeans) so to omit 

the impacts in some other crops would distort the market. In order to avoid that inconsistency, 

and to expand the losses to all of the crops, a crop mapping has been developed based on their 

carbon fixation pathway7.  

In order to consistently develop the inter-model connection, GCAM regions and crop categories 

have been re-scaled so they match with TM5-FASST input requirements. Annex I shows detailed 

information about regional disaggregation of the two models used. In addition, Annex II 

describes the crop mapping followed by GCAM. The following subsections provide detailed 

information about these models. 

                                                           
5 Except for the analysis on Chapter 3, in which uniquely GCAM has been applied 
6 Literature has demonstrated that applying a current price could result in significant underestimation of 
economic losses (Heck et al., 1987). 
7 C3 and C4 plant species present differences in stomatal conductance and transpiration rates, which 
determine their sensitivity to O3 damage (Ainsworth, 2017; Knapp, 1993). Based on this criterion, the corn 
damage coefficient is applied to C4 classified commodities, while for C3 crops, the average damage of rice 
and wheat (or rice, wheat and soybean) is considered depending on the crop type classification This 
average includes damage coefficient from soybean for those crop groups that include legumes (f.e. 
MiscCrop). 
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Figure 1.1: Integrated modelling framework developed 

 

Global Change Assessment Model (GCAM) 
GCAM is an integrated assessment model originally developed by the Joint Global Change 

Research Institute (JGCRI). It is one of the four models chosen to develop the Representative 

Concentration Pathways (RCPs) of the IPCC’s 5th Assessment Report and has participated in 

almost all of major climate/energy assessment over the last 20 years.  

GCAM is a global dynamic-recursive partial equilibrium model with technology-rich 

representations of the economy, energy sector and land use linked to a climate model that can 

be used to explore climate change mitigation policies. The model is disaggregated into 32 

geopolitical regions and operates in 5-year time steps from 1990 to 2100.  

The GCAM energy system includes primary energy resource production, energy transformation 

to final fuels, and the use of final energy forms to deliver energy services. The model 

distinguishes between two different types of resources: depletable and renewable. Depletable 

resources include fossil fuels (coal, gas and conventional and unconventional oil) and uranium 

(for nuclear power); renewable resources include biomass, wind, hydropower, geothermal 

energy, rooftop areas for solar photovoltaic equipment and non-rooftop solar (PV and CSP). 

Another important feature of the GCAM architecture is that the GCAM terrestrial carbon cycle 

model is embedded in the agriculture-land-use system model. Thus, all land uses and land 

covers, including non-commercial land, are fully integrated into the economic modelling in 

GCAM. This feature enables the model to include agricultural, forest, and land use (AFOLU) 

activities in the modelling and solving process. Moreover, this module allows the user to obtain 

the emissions derived from changes in land use. 

Economic land use decisions in GCAM are based on a logit model of sharing (McFadden 1974) 

based on relative inherent profitability of using land for competing purposes. The interpretation 

of this sharing system in GCAM is that there is a distribution of profit behind each competing 

land use within a region, rather than a single point value. Each competing land use option has a 

potential average profit over its entire distribution. The share of land allocated to any given use 
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is based on the probability that that use has a highest profit among the competing uses. The 

relative potential average profits are used in the logit formulation, where an option with a higher 

average profit will get a higher share than one with a lower average profit. The profit rate is the 

difference between the market price of the commodity on the production costs, which depend 

on land rent, fertilizer costs, other non-land costs and the crop yield. Crop yields in the base year 

(2010) are taken from a blend of FAO (2013) and GTAP (2011) data and are calibrated for each 

of the Agro-Ecological zones within each of the 32 regions. For the estimation of future yields 

per AEZ GCAM uses data from the Food and Agriculture Organization (FAO)8. 

GCAM also provides the mitigation cost of different energy and climate policies for each specific 

region. These costs are calculated by the model as the area below the marginal abatement cost 

curve. Additionally, the model reports the emissions of greenhouse gases such as carbon dioxide 

(CO2), methane (CH4) or nitrogen dioxide (N2O) and the main air pollutants including OC, BC, 

nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOCs), carbon monoxide 

(CO) and sulfur dioxide (SO2) which are the main precursor gases of PM2.5 and O3.  

While emissions of air pollutants in GCAM are closely related to activity levels and fuel 

consumption, some level of pollution control is assumed. The emission factors decrease with 

GDP growth, based on the “Environmental Kuznets Curve” hypothesis, which postulates that 

pollution levels decline as a country becomes richer. Consequently, even if there is no climate 

policy, economic growth will result in a reduction of air pollution per unit of activity. 

TM5-FASST Model 
TM5-FASST is a global air quality source-receptor model developed by the European 

Commission’s Joint Research Centre (JRC) that enables users to analyze different scenarios or 

emission pathways and their effects in terms of human health impacts and agricultural damages. 

Based on meteorological and chemical information, the model analyzes how the emissions of a 

‘source’ affect the ‘receptor points’ established (grid cells) in terms of concentrations, exposure 

and, subsequently, of premature deaths. 

Following the TM5-FASST User Guide (JRC 2016), the concentrations of a given pollutant are set 

by a linear equation as follows: 

Cij(x, y) = cj(y) + Aij(x, y)Ei(x)  (1.1) 

This equation defines the concentration of pollutant j at receptor (cell grid) y formed from the 

precursor i emitted in the source x (Cij(x, y)), as the sum of a spatial constant (cj) plus the 

emission rate (Ei(x)) of precursor i in source x multiplied by the source-receptor coefficient (Aij) 

between the source (x) and the receptor (y). 

The source-receptor coefficient representing the different links between sources and receptors 

are previously calculated by applying an emission perturbation of 20% to a reference scenario 

in the full chemistry model (TM5) and calculating the resulting concentrations as for equation 

(1.1). Although the model covers the entire world in a resolution of 1 x 1 grids (100 km2), the 

procedure is shown here for 56 source regions. Thus, the source-receptor coefficient for each 

cell is defined as: 

                                                           
8 All countries are assumed to have the same yield improvement rates in all AEZs. Single-country regions 
therefore have the same yield improvement rates in all AEZs for all crops. However, multi-country 
regions do have differential, AEZ-specific growth rates for each crop, as the yield improvement rates are 
downscaled to the AEZs prior to aggregating by GCAM regions and AEZs. 
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Aij(x, y) = ∆Cj(y) ∆Ei(x)⁄   (1.2) 

Where ∆Ei(x) = 0.2 ∗ ei(x), with ei(x) being the emissions in the reference scenario. 

It is important to note that each precursor emitted might indirectly affect the concentration of 

different pollutants. For example, emissions of the precursor NOx entail not only the creation of 

PM2.5 in the atmosphere but also the formation O3. For this reason, the total concentration of 

pollutant j at receptor y resulting from the emissions of all its precursors (i) from all sources (x) 

is:  

Cj(x, y) = cj(y) + ∑ ∑ Aij(x, y)[Ei(x) − ei(x)]ix   (1.3) 

Once the concentration levels for each region are obtained, the model calculates different 

effects such as air pollution direct impacts on human health and agricultural damages. The 

calculations of the health effects are based on the Burnett exposure-response functions (Burnett 

et al., 2014). The model includes the potential premature deaths derived from five sources: 

ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), stroke, lung cancer, 

and acute lower respiratory infection (ALRI). The first four are driven by PM2.5 exposures, while 

ALRI is also a consequence of high concentrations of O3. More technical features of TM5-FASST 

model are described in Van Dingenen et al., 2018. Regarding agricultural impacts, TM5-FASST 

model analyzes crop exposures to O3 based on two different metrics: “the accumulated daytime 

hourly ozone concentration above a threshold of 40 ppbV (AOT40) 9”, and the seasonal mean 

daytime ozone concentration, M7 for the 7-hour mean and M12 for the 12-hour mean (Van 

Dingenen et al., 2009)10. Once the O3 exposure is calculated, the model applies ERF damage 

functions in order to estimate the regional crop damages (for every region and period) for four 

significate crops: wheat, corn, rice and soybeans. Further information about the methodology 

can be found in Van Dingenen et al., 2009. 

Economic valuation approach 
Once the health and agricultural impacts are calculated, their monetization allows to develop a 

cost-benefit analysis that provides substantial information about the cost-effectiveness of any 

mitigation strategy. For the agricultural impacts, as GCAM calculates the regional agricultural 

prices per period, with the combined use of the models allows to estimate the economic damage 

by multiplying the relative yield losses (RYL) of a determined region and period with the 

projected production and price levels of that region and period, as summarized in the following 

equation: 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐷𝑎𝑚𝑎𝑔𝑒𝑡,𝑖,𝑗 = 𝑅𝑌𝐿𝑡,𝑖,𝑗 ∗ 𝑃𝑟𝑖𝑐𝑒𝑡,𝑖,𝑗 ∗ 𝑃𝑟𝑜𝑑𝑡,𝑖,𝑗        (1.4) 

On the other hand, there are different methods and metrics for monetizing the health impacts 

of air pollution. Most of the existing work focuses on mortality costs, but there is an emerging 

literature that covers other indirect effects such as illness and productivity losses. The VSL is the 

monetary value of a relative change in mortality risk reduction. It is generally estimated using 

indirect methods (e.g. surveys or hedonic models linking wages to risks of premature death). 

                                                           
9 The AOT40 indicator represents the accumulated ozone exposure over a threshold of 40 ppb, measured 
as (µg/m3) *hour (from 08:00 to 20:00) 
10 The calculations are developed using the AOT40 indicator, as cumulative indices would be more robust 

indicators for estimating yield losses (Avnery et al., 2011). However, this metric omits O3 concentration 

below 40 ppbv which may have additional effects (Emberson et al., 2009). 
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Since there is a lack of empirical studies for directly estimating the VSL for all countries in the 

world, some procedures have been developed to transfer the results of existing studies to other 

regions, aiming to overcome this limitation. The “Unit Value Transfer Approach”, which is based 

on adjusting the VSL to all countries according to GDP and GDP growth rates, takes as a reference 

the widely-accepted VSL of the OECD for 2005. Following this method, the VSL of a country c in 

the year t is defined as: 

VSLc,t = VSLOECD,2005 ∗ (
Yc,2005

YOECD,2005
)

b

∗ (1 + %∆Y)b  (1.5) 

Where VSLc,t is the VSL for country c in year t; VSLOECD,2005 is the base value; Y is the GDP per 

capita; b is the income elasticity11 of the VSL and %∆Y is the income growth rate. Results for 

OECD countries present a consistent range of base values ranging from 1.8 to 4.5 M$(2005) 

(OECD 2012). These lower and upper bounds will be incorporated in sensitivity analysis, with the 

default value used taken to be the median of this range. Once the VSL is obtained for each region 

defined (and updated to $2015) the associated morbidity costs are included. According to Narain 

and Sall (2016), morbidity includes a wide range of effects covering direct market costs related 

to the health system (e.g. treatments or ambulances) and other indirect implications like 

disability or opportunity costs. Searl et al. (2016) gather some reference endpoints in order to 

create a core set of effects to be covered when estimating the cost of morbidity. However, there 

is not a well-accepted methodology to directly estimate these effects, so, following OECD’s 

guidelines (OECD 2014), morbidity costs are considered as 10% of the mortality costs. 

Annex III gives the estimated VSL for each region, including the additional 10% for morbidity. 

The regional units are adjusted every ten years from 2020 to 2050 to account for real income 

growth. In order to capture the level of uncertainty, an estimation range is included based on 

the literature lower and upper bounds. Having obtained the regional value for each time period, 

multiplying these values by the number of premature deaths reported by TM5-FASST gives the 

total monetarized health impacts for each region. Both co-benefits and mitigation costs have to 

be transformed to net present value (hereinafter NPV). This PhD Thesis uses a discount rate of 

3%, with other discounting values considered for sensitivity analysis. Given that it is GDP based, 

there are clearly some ethical aspects to consider. One implication is that human life is more 

valued in developed countries than in developing ones. Although it may suffer from moral 

problems of this kind, it is a well-known and widely used methodology that enables users to 

undertake climate policy analysis to cover health costs in each region in a way that reflects the 

way such costs are covered within the region.   

                                                           
11 The income elasticity generally used for the VSL ranges from 0.8 to 1.2. This study applies the value of 
0.8 proposed by the OECD for all countries. However, there are some studies that suggest the income 
elasticity value should be modified based on the regional average income levels, which will be explored 
in further research (Masterman and Viscusi, 2018; Viscusi and Masterman, 2017) 
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Structure 
The rest of the thesis is organized as follows. Chapter 2 examines ozone (O3) driven yield damage 

its effects on agricultural markets in a baseline scenario, i.e. with no climate policy set. Current 

O3 concentration levels entail significant damage to crop yields around the world. The reaction 

of the precursors emitted (mostly methane and nitrogen oxides) with solar radiation raises O3 

levels to above the thresholds established. The chapter shows current and predicted (up to 

2080) relative yield losses driven by O3 exposure for different crops, and the associated 

economic damage, using temporally and regionally adjusted prices. The RYLs are also re-set into 

an integrated assessment model (GCAM) to estimate the projected dynamics of agricultural 

markets. The predicted decrease in emissions of O3 precursors could reduce agricultural damage 

over time for most regions, with the exception of some countries such as India, where higher 

future O3 concentrations have significant impacts on crop yields. Wheat and soybeans are the 

crops most sensitive to O3 exposure, while effects on corn and rice are smaller all over the world. 

The economic impacts of O3 driven losses for the time frame analyzed total $M5041-5987 for 

corn, 9780-18830 for soybeans, 6726-10536 for rice, and 10421-12461 for wheat at 2015 values. 

When O3 effects are taken into consideration, the estimated decrease in O3 levels and the 

subsequent improvement in yields can be expected to change regional agricultural markets. 

Therefore, global production levels of crops could change by up to 0.9% (soybeans) from 2020 

to 2080, while economic damage could be as great as 3.84% (rice). However, zooming in to a 

regional level, changes could be as great as 6% in production levels (India, rice) and 1.67% in 

economic damage (India, wheat).  

Chapter 3 then analyzes the potential effects in terms of reduction of emissions of CO2 and air 

pollutants of eliminating fossil fuel subsidies (FFS) in the European Union, and recycling them to 

promote rooftop solar energy. The results show that this policy could displace coal from the 

energy mix and help to reduce emissions of CO2 and air pollutants. However, the net benefits in 

terms of health-related emissions would depend on the type of energy used to replace coal. In 

particular eliminating FFS in the European Union by 2030 would help to reduce CO2 emissions 

by 1.8% due to fuel-switching. If the revenues are recycled to promote solar energy, the CO2 

reduction could increase to 2.2%. In addition, the reduction in coal consumption due to the 

elimination of FFS could help to reduce emissions of other pollutants such as SO2 (-3%). 

However, in the absence of additional policies, the health co-benefit would be negligible, first 

because the absolute changes are small, and second because the reduction of some pollutants 

would be offset by increases in emissions of carbon monoxide (CO) and organic carbon (OC), 

due to the expansion of bioenergy. 

Next, setting aside the idea of the potential health co-benefits and drawbacks of mitigation, 

Chapter 4 analyzes the extent to which health co-benefits could offset the mitigation cost of 

achieving the targets set in the Paris climate agreement (2°C and 1.5°C) under different scenarios 

in which the emission abatement efforts are shared between countries in accordance with three 

preset equity criteria. Although the co-benefits of addressing problems related to both climate 

change and air pollution are recognized, there is little evidence comparing the mitigation costs 

and economic benefits of air pollution reduction for alternative approaches to meeting 

greenhouse gas targets. The conclusion reached is that substantial health gains can be achieved 

by taking action to prevent climate change. Some countries, such as China and India, could justify 

stringent mitigation efforts just by factoring health co-benefits into the analysis. The results also 

suggest that the intention expressed in the Paris Agreement of pursuing efforts to limit 
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temperature increase to 1.5°C could make economic sense in some scenarios and countries if 

health co-benefits are taken into account.  

Chapter 5 also explores the health co-benefits of meeting the 2°C target, but under different 

technological pathways. The chapter shows that significant co-benefits can be found for a range 

of technological options, such as introducing a limitation on biomass, carbon capture and 

storage (CCS), and nuclear power. Cumulative premature deaths may be reduced by 17-23% up 

to 2050 compared to the baseline, depending on the scenarios. However, the ratio of health co-

benefits to mitigation costs varies substantially, from 1.45 when a bioenergy limitation is set to 

2.19 when all technologies are available. A breakdown by regions shows that some, such as India 

and China, obtain far greater co-benefits than others. These co-benefits are even greater in the 

mid-term (2030) than over the whole horizon. 

Finally, Chapter 6 gives some insights into potential future research lines and sets out  

conclusions. 
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Introduction 
Tropospheric ozone (O3) is the most hazardous pollutant for crop yields (Emberson et al., 2018). 

When the crop is exposed to high O3 concentration levels, it penetrates through the stomata 

during plant  gas exchange and, as a strong oxidant, it induces different harmful effects, such as 

visible foliar injuries (necrosis and chlorosis), reduced photosynthesis, gene alteration,  and a 

reduction in yields (Avnery et al., 2011; Emberson et al., 2018). Even though there are some 

other climate variables that affect significantly to crop yield variations such as temperature, 

precipitation or carbon fertilization effect (CFE), exposure to O3 has the largest effect ,within 

expected environmental changes (Shindell, 2016). Consequently, the decrease in crop yields 

would entail severe problems related with food security (Long et al., 2005; Mills et al., 2011). 

The main driver for the formation of O3 is the reaction of the emitted precursors with solar 

radiation. Literature has extensively analyzed the effect of both greenhouse gases (GHG) 

(methane (CH4)) and non-GHG air pollutants such as nitrogen oxides (NOx), carbon monoxide 

(CO) and non-Methane-Volatile Organic Compounds (NMVOC) on O3 formation (Burney and 

Ramanathan, 2014). Dentener et al. (2005) proof that the possible reduction of these pollutants 

coming from implemented climate policies would result in significant decrease of O3 

concentration levels. Furthermore, the transportation of those species entails significant inter-

regional effects, what means that the emission of a certain precursor in a determined region 

would influence in the O3 formation of another one (Fiore et al., 2009). There are also several 

studies concluding that the individual effect of each precursor is different. While O3 would 

respond linearly to reductions in CO or NMVOC emissions (Fiore et al., 2009), the O3 decrease 

would be larger with NOx reductions (Wu et al., 2009). In this context, it has been demonstrated 

that actions against NOx or CH4 would be the most effective ones in order to reduce O3 

concentration levels (Shindell et al., 2019; West et al., 2007). Furthermore, the side reduction of 

precursors resulting from the implementation of long term climate objectives (RCP or 

temperature) would have demonstrated effect on projected O3 concentration levels (Sicard et 

al., 2017). 

Different studies have analyzed the O3 driven current crop damages using exposure-response 

functions (hereinafter ERF) (Avnery et al., 2011; Ghosh et al., 2018; Van Dingenen et al., 2009). 

They show that soybeans and wheat are the most O3 sensitive crops, as their global losses would 

range from 6% to 16% and from 4% to 15%, respectively. Rice and corn would be less affected, 

as their potential crop damages would account for 3-4% and 2.5-5.5%, respectively. Wang and 

Mauzerall, (2004) showed that some Asian regions (China, Japan and South Korea), would have 

significantly higher O3 damages on crops. According to this study, in those regions in 1990, the 

yield losses range from 1% to 9% for wheat, corn and rice, while, for soybeans, the damages 

would represent between 23% and 27%. Those losses would increase for 2020, when wheat, 

corn and rice would lose 2-16% of the yield, and soybeans between 28% and 35%. 

Moreover, some literature estimates future O3 effects on crops. Van Dingenen et al. (2009) 

shows the potential crop losses for 2030, following the “current legislation” scenario (CLE)12. 

They apply the TM5-FASST air quality model and demonstrate that the present-day effects 

would deteriorate significantly, mostly for wheat and rice. The additional yield losses for these 

crops would account for 2-6% and 1-6%, respectively, due to the increase on future O3 

concentration levels. In this line, Chuwah et al. (2015) combined an integrated assessment 

model (IMAGE) with  TM5-FASST, and they reported that crop losses would reach up to 20% in 

                                                           
12 Details of the scenario can be found in Stohl et al., 2015 
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2050. In addition, by implementing stringent climate policies (RCP2.6), those yield losses would 

be significantly limited, as they would not exceed the 10% over the world. 

Nevertheless, the aforementioned literature does not analyze future dynamics on agricultural 

markets. Projected reductions in yield productivity would modify the production of each 

commodity both globally and regionally. So, these changes in production levels would 

consequently affect the price of each crop. Moreover, there are many factors affecting the 

demand of each crop, which does not directly respond to productivity changes. The aim of this 

chapter is not only to estimate future O3 driven RYLs and the subsequent economic impact, but 

to analyze the impacts on regional agricultural markets. For that purpose, an innovative 

approach has been applied that subsequently connects an integrated assessment model (GCAM) 

with an air quality tool (TM5-FASST) which has been explained in detail in the introduction. 

Furthermore, the application of this approach allows to calculate future economic damages by 

using temporal and spatially dynamic price estimations, giving a more accurate estimation of 

the damages than using the current prices, as has been done in the analyzed literature. In this 

study GCAM 4.4 is used with regional agricultural markets and food demand split into staple and 

non-staple categories13, as the response of consumers to changes in prices and income are less 

elastic for staple crops than for non-staple crops. To meet global demand for agricultural 

products, farmers in different Agro-Ecological Zones (Monfreda et al 2007) of each region 

compete on prices for their share in the regional market, and subsequently, regional markets 

compete with each other for their share in the global market for agricultural commodities. Table 

2.1 summarizes the methodology step by step, while Table 2.2 details the crop mapping 

developed. More information about the methods and models can be found in the methodology 

subsection. 

Table 2.1: Synthesis of the developed methodology 

Procedure Description 

1- GCAM baseline 
 

GCAM baseline scenario (no policy scenario) 
is run in order to get the regional emissions 
O3 precursor for short, medium and long 
terms. 

2- O3 damage coefficients 

Those regional precursors are fed into TM5-
FASST period by period, and we obtain the 
different O3 concentration levels and, 
therefore, the current and future O3 driven 
yield losses. 

3-Economic impact impacts 
The calculated agricultural losses are 
multiplied with the regional prices by period 
and commodity that we extract from GCAM. 

4-Analysis of the damages on global and 
regional crop markets 

Yield losses into are re-set into GCAM in 
order to see potential impacts on different 
crop markets 

 

                                                           
13 Staple crops refer to grains, roots and tubers. All other crops and animal products are represented as 
non-staple. See Annex II for a full list of crop commodities used in GCAM. 
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Table 2.2: GCAM crop mapping 

GCAM crop Commodity Category Mapped crop 

Root_Tuber 
cassava C4 maize 

others C3 Avg (rice,wheat) 

FiberCrop cotton C3 Avg (rice,wheat) 

Corn maize C4 maize 

Rice rice C3 rice 

OtherGrain 
sorghum C4 maize 

others C3 Avg (rice,wheat) 

OilCrop soybean C3 soybean 

SugarCrop 
sugarcane C4 maize 

sugarbeet C3 Avg (rice,wheat) 

Wheat wheat C3 wheat 

MiscCrop All MiscCrop C3 Avg (rice,wheat,soybeans) 

Pasture All Pasture C4 maize 

biomass All biomass C4 maize 

UnmanagedLand All UnmanagedLand C3 Avg (rice,wheat,soybeans) 

FodderGrass All FodderGrass C4 maize 

FodderHerb All FodderHerb C3 Avg (rice,wheat,soybeans) 

PalmFruit PalmFruit C3 soybeans 

  

Results 

Air pollutant emissions and O3 concentration levels 
Figure 2.1 shows CH4 and NOx emissions per region and period, as they are the most significant 

factors for O3 formation (Shindell et al., 2019; West et al., 2007). Note that the results are 

presented for 32 GCAM regions. Annex I details the information about countries and regions. 
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Figure 2.1: O3 main precursor emissions (CH4 and NOx) per region and period (Tg) 

 

In absolute terms, China, India, Russia and USA have the largest emissions. However, future CH4 

and NOx emission pathways have different trends. On the one hand, Figure 2.1 shows that 

emissions of CH4, with no climate policy established, would increase in almost all of the regions. 

Nonetheless, NOx emissions would be flat or decrease all around the world. The reason is that 

GCAM implicitly incorporates some measures against air pollutants, based on planned emission 

control policies or future technological developments, which, despite the uncertainties, would 

better estimate future emissions (Smith et al., 2005). The emissions of other O3 precursors such 

as CO or NMVOCs are summarized in Figure 2.2 and Figure 2.3. 
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Figure 2.2: CO emissions per period and region (Tg) 

 

Figure 2.3: NMVOC emissions by period and region (Tg) 
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These emission pathways would result in different O3 levels for every period. Figure 2.4 shows 

the gridded highest 3-monthly mean of daily maximum O3 level (M3M) for the medium term 

(2050), which is a representative indicator for O3 exposure. 

Figure 2.4: Maximal 3-monthly mean of daily maximum hourly ozone (log ppbv) in 2050 

  

This figure shows that there are two main factors affecting O3 distribution. First, the highest O3 

levels are formed around the equator. This happens because regions that are closer to the 

equator belt present the largest solar radiation level, as the reaction of O3 precursors with solar 

radiation is essential for O3 formation. On the other hand, there is a clear correlation between 

precursor emissions and O3 concentration levels. Regions such as India, China or USA, which are 

the largest emitters of precursors (see Figure 2.1) have the highest M3M levels, resulting in 

larger agricultural damages. These M3M results are aligned with previous studies.(Brauer et al., 

2016).  

Relative yield losses (RYLs) 
The resulting yield losses due to these O3 concentration levels for the mentioned crops (corn, 

rice, wheat and soybeans) are summarized in Figure 2.5. 
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Figure 2.5: Relative Yield Lost (RYL) driven by O3 exposure per period, crop and region (%) 

 

This figure shows that, corn and rice crops are less sensitive to O3 than wheat and soybeans, 

which is consistent with the aforementioned literature. The regions where corn present the 

largest yield losses during the analyzed time horizon (2020-2080) are Africa Northern (5-6%), 

India (4-6%), Canada (4-5%), USA (3-5%) and China (2.5-4.5%). Similar trends can be found for 

rice, as the most significant RYLs are located at Africa Northern (6-7.5%) and India (5-7.5%). 

Wheat damages are relatively larger, accounting for 15-19% in South Korea, 14-17% in Europe 

Non EU14, 10-15% in USA, 7-12% in China, 8-10% in EU-15 and Middle East and 7.5-8.5% in Africa 

Northern. Likewise, soybeans suffer substantial RYLs in this time horizon, with largest effects in 

India (11-17%), Canada (13-14%), Middle East (12-15%) and USA (9-13%).   

Regarding the timing, Figure 2.5 demonstrates that most of the regions have decreasing RYLs 

for each crop up to 2080 compared to current damages, due to the reduction of future O3 

concentration levels. However, some regions show larger RYLs over time, driven by significant 

increases of some precursors. For example, in India, future crop damages would increase with 

respect to current levels. In 2050, the relative increments (with respect to the base year) would 

range from 47% (soybeans) to 56% (rice). The main reason is the substantial increase in CH4 

emissions up to 2050 (see Figure 2.1), which more than double with respect to 2010 (127%). As 

the O3 exposure metric is a key factor for the results (Lefohn et al., 2018), Table 2.3 includes a 

detailed description of the RYL per region, crop and period applying both AOT40 and Mi metrics. 

                                                           
14 This region includes, Albania, Bosnia-Herzegovina, Croatia, Macedonia and Turkey 
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Table 2.3: RYL per period and region, using both AOT40 (first number) and Mi (second number) as ozone 
exposure metric 

GCAM region Crop 2010 2020 2030 2040 2050 2060 2070 2080 

Africa_Eastern MAIZE 0.1-
0.4% 

0.1-
0.4% 

0.1-
0.4% 

0.2-
0.4% 

0.2-
0.5% 

0.2-
0.5% 

0.2-
0.5% 

0.2-
0.5% 

Africa_Eastern RICE #N/A 0.3-
0.2% 

0.3-
0.2% 

0.4-
0.3% 

0.4-
0.3% 

0.4-
0.3% 

0.5-
0.3% 

0.5-
0.3% 

Africa_Eastern SOY 1.3-
2.8% 

1.5-
3.0% 

1.8-
3.3% 

1.9-
3.4% 

2.1-
3.5% 

2.2-
3.7% 

2.3-
3.8% 

2.3-
3.8% 

Africa_Eastern WHEAT 0.6-
1.1% 

0.8-
1.2% 

0.9-
1.3% 

1.0-
1.4% 

1.1-
1.5% 

1.3-
1.5% 

1.4-
1.6% 

1.3-
1.5% 

Africa_Northern MAIZE 5.1-
8.8% 

5.3-
9.1% 

5.2-
8.9% 

5.2-
9.0% 

5.4-
9.3% 

6.2-
10.6% 

6.2-
10.6% 

5.7-
9.9% 

Africa_Northern RICE #N/A 6.7-
3.7% 

6.4-
3.6% 

6.3-
3.6% 

6.6-
3.7% 

7.5-
4.3% 

7.5-
4.3% 

6.9-
3.9% 

Africa_Northern SOY 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Africa_Northern WHEAT 7.8-
3.2% 

7.8-
3.3% 

7.6-
3.3% 

7.6-
3.3% 

7.8-
3.4% 

8.3-
3.7% 

8.3-
3.7% 

7.9-
3.5% 

Africa_Southern MAIZE 0.2-
0.6% 

0.2-
0.7% 

0.3-
0.7% 

0.3-
0.7% 

0.3-
0.8% 

0.4-
0.8% 

0.4-
0.8% 

0.4-
0.8% 

Africa_Southern RICE #N/A 0.6-
0.3% 

0.7-
0.4% 

0.7-
0.4% 

0.8-
0.4% 

0.8-
0.4% 

0.8-
0.4% 

0.8-
0.4% 

Africa_Southern SOY 3.4-
5.6% 

3.8-
5.9% 

4.1-
6.1% 

4.3-
6.2% 

4.5-
6.4% 

4.6-
6.4% 

4.7-
6.5% 

4.6-
6.4% 

Africa_Southern WHEAT 0.2-
0.2% 

0.3-
0.3% 

0.4-
0.3% 

0.4-
0.3% 

0.4-
0.3% 

0.5-
0.3% 

0.5-
0.3% 

0.4-
0.3% 

Africa_Western MAIZE 0.2-
0.7% 

0.3-
0.7% 

0.3-
0.8% 

0.4-
0.9% 

0.5-
1.1% 

0.6-
1.2% 

0.6-
1.2% 

0.6-
1.2% 

Africa_Western RICE #N/A 0.2-
0.2% 

0.3-
0.2% 

0.3-
0.2% 

0.4-
0.2% 

0.4-
0.3% 

0.5-
0.3% 

0.5-
0.3% 

Africa_Western SOY 0.2-
2.6% 

0.4-
2.9% 

0.6-
3.3% 

0.9-
3.7% 

1.1-
4.1% 

1.2-
4.4% 

1.3-
4.6% 

1.3-
4.6% 

Africa_Western WHEAT 0.5-
1.2% 

0.7-
1.3% 

0.9-
1.4% 

1.1-
1.5% 

1.3-
1.6% 

1.5-
1.7% 

1.5-
1.8% 

1.5-
1.7% 

Argentina MAIZE 0.1-
1.5% 

0.1-
1.5% 

0.1-
1.3% 

0.1-
1.2% 

0.1-
1.2% 

0.1-
1.2% 

0.1-
1.2% 

0.1-
1.1% 

Argentina RICE #N/A 0.0-
0.2% 

0.0-
0.2% 

0.0-
0.2% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

Argentina SOY 0.3-
6.5% 

0.3-
6.6% 

0.3-
6.0% 

0.2-
5.7% 

0.2-
5.7% 

0.2-
5.6% 

0.2-
5.4% 

0.2-
5.3% 

Argentina WHEAT 0.9-
1.3% 

0.9-
1.3% 

0.9-
1.1% 

0.8-
1.1% 

0.8-
1.0% 

0.7-
1.0% 

0.7-
1.0% 

0.6-
0.9% 

Australia_NZ MAIZE 0.0-
0.7% 

0.0-
0.6% 

0.0-
0.6% 

0.0-
0.7% 

0.0-
0.7% 

0.0-
0.7% 

0.0-
0.7% 

0.0-
0.7% 

Australia_NZ RICE #N/A 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Australia_NZ SOY 0.1-
4.1% 

0.1-
4.0% 

0.2-
4.1% 

0.2-
4.1% 

0.2-
4.2% 

0.2-
4.1% 

0.2-
4.1% 

0.2-
3.9% 

Australia_NZ WHEAT 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.1% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Brazil MAIZE 0.5-
2.3% 

0.5-
2.4% 

0.5-
2.2% 

0.5-
2.2% 

0.5-
2.2% 

0.5-
2.1% 

0.5-
2.1% 

0.4-
2.0% 

Brazil RICE #N/A 0.8-
0.8% 

0.6-
0.7% 

0.6-
0.7% 

0.6-
0.7% 

0.5-
0.6% 

0.5-
0.6% 

0.5-
0.6% 

Brazil SOY 4.1-
11.9% 

4.4-
12.1% 

3.8-
11.4% 

3.5-
11.0% 

3.5-
10.9% 

3.3-
10.7% 

3.2-
10.5% 

2.9-
10.2% 

Brazil WHEAT 4.6-
3.3% 

4.9-
3.4% 

4.2-
3.0% 

3.9-
2.8% 

3.8-
2.7% 

3.6-
2.6% 

3.4-
2.5% 

3.1-
2.3% 

Canada MAIZE 4.9-
8.0% 

4.5-
7.6% 

4.4-
7.5% 

4.3-
7.5% 

4.5-
7.7% 

4.6-
7.8% 

4.6-
7.9% 

4.7-
7.9% 

Canada SOY 14.3-
17.3% 

13.5-
17.1% 

13.2-
17.2% 

13.1-
17.1% 

13.4-
17.4% 

13.7-
17.6% 

13.8-
17.7% 

13.9-
17.8% 

Canada WHEAT 5.7-
4.3% 

4.1-
3.8% 

3.5-
3.5% 

3.3-
3.5% 

3.3-
3.5% 

3.3-
3.5% 

3.2-
3.5% 

3.0-
3.4% 

CAC MAIZE 0.3-
0.8% 

0.3-
0.8% 

0.3-
0.8% 

0.3-
0.7% 

0.2-
0.7% 

0.2-
0.6% 

0.2-
0.6% 

0.2-
0.5% 
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CAC RICE #N/A 0.2-
0.2% 

0.1-
0.2% 

0.1-
0.2% 

0.1-
0.2% 

0.1-
0.2% 

0.1-
0.2% 

0.1-
0.1% 

CAC SOY 1.0-
4.9% 

1.1-
4.9% 

1.1-
4.9% 

1.1-
4.8% 

1.1-
4.8% 

1.1-
4.7% 

1.1-
4.7% 

1.0-
4.5% 

CAC WHEAT 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Central Asia MAIZE 0.8-
1.7% 

0.8-
1.7% 

0.7-
1.7% 

0.7-
1.6% 

0.7-
1.7% 

0.7-
1.7% 

0.7-
1.7% 

0.7-
1.6% 

Central Asia RICE #N/A 2.0-
1.4% 

1.9-
1.3% 

1.8-
1.3% 

1.9-
1.3% 

1.9-
1.3% 

1.9-
1.3% 

1.8-
1.3% 

Central Asia SOY 4.3-
13.0% 

4.1-
12.6% 

3.7-
12.2% 

3.6-
12.1% 

3.7-
12.2% 

3.7-
12.2% 

3.7-
12.2% 

3.5-
12.0% 

Central Asia WHEAT 4.0-
2.5% 

3.9-
2.4% 

3.6-
2.2% 

3.5-
2.2% 

3.6-
2.2% 

3.6-
2.2% 

3.5-
2.2% 

3.4-
2.1% 

China MAIZE 4.5-
7.1% 

3.7-
6.1% 

3.2-
5.4% 

3.0-
5.2% 

2.9-
5.0% 

2.7-
4.9% 

2.6-
4.7% 

2.4-
4.4% 

China RICE #N/A 3.3-
2.0% 

2.7-
1.7% 

2.4-
1.5% 

2.2-
1.4% 

2.0-
1.3% 

1.9-
1.2% 

1.6-
1.1% 

China SOY 6.9-
12.2% 

5.6-
11.0% 

4.8-
10.2% 

4.4-
9.8% 

4.2-
9.6% 

4.0-
9.4% 

3.7-
9.2% 

3.3-
8.7% 

China WHEAT 12.3-
4.6% 

10.4-
4.1% 

9.1-
3.8% 

8.5-
3.7% 

8.2-
3.7% 

7.9-
3.7% 

7.5-
3.6% 

6.9-
3.4% 

Colombia MAIZE 0.0-
0.2% 

0.0-
0.2% 

0.0-
0.2% 

0.0-
0.2% 

0.0-
0.2% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

Colombia RICE #N/A 0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Colombia SOY 0.0-
0.1% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Colombia WHEAT 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

EU-12 MAIZE 1.6-
3.3% 

1.4-
3.1% 

1.3-
3.0% 

1.3-
3.0% 

1.3-
3.0% 

1.3-
3.0% 

1.3-
3.0% 

1.3-
3.0% 

EU-12 RICE #N/A 3.8-
2.2% 

3.5-
2.0% 

3.4-
2.0% 

3.3-
1.9% 

3.3-
1.9% 

3.3-
1.9% 

3.2-
1.9% 

EU-12 SOY 0.6-
1.3% 

0.5-
1.4% 

0.5-
1.5% 

0.5-
1.5% 

0.5-
1.5% 

0.5-
1.5% 

0.5-
1.6% 

0.5-
1.5% 

EU-12 WHEAT 4.4-
2.5% 

4.0-
2.4% 

3.9-
2.3% 

3.8-
2.3% 

3.8-
2.3% 

3.8-
2.3% 

3.8-
2.3% 

3.7-
2.3% 

EU-15 MAIZE 3.4-
6.2% 

2.9-
5.8% 

2.7-
5.6% 

2.6-
5.5% 

2.6-
5.6% 

2.6-
5.6% 

2.6-
5.6% 

2.5-
5.5% 

EU-15 RICE #N/A 4.9-
2.7% 

4.7-
2.6% 

4.6-
2.6% 

4.7-
2.6% 

4.8-
2.7% 

4.8-
2.7% 

4.7-
2.7% 

EU-15 SOY 10.3-
14.8% 

9.3-
14.8% 

8.9-
14.9% 

8.8-
14.9% 

8.9-
15.1% 

9.0-
15.2% 

9.0-
15.3% 

8.9-
15.2% 

EU-15 WHEAT 9.9-
4.9% 

9.2-
4.8% 

8.7-
4.7% 

8.6-
4.8% 

8.8-
4.9% 

8.9-
4.9% 

8.8-
4.9% 

8.6-
4.8% 

Europe_Eastern MAIZE 1.2-
2.7% 

1.2-
2.6% 

1.2-
2.5% 

1.1-
2.5% 

1.1-
2.5% 

1.1-
2.5% 

1.1-
2.5% 

1.1-
2.4% 

Europe_Eastern RICE 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Europe_Eastern SOY 1.8-
5.4% 

1.8-
5.9% 

1.8-
6.2% 

1.8-
6.4% 

1.8-
6.6% 

1.8-
6.6% 

1.8-
6.7% 

1.8-
6.7% 

Europe_Eastern WHEAT 5.7-
3.0% 

5.4-
2.8% 

5.1-
2.7% 

4.9-
2.6% 

4.9-
2.6% 

4.9-
2.6% 

4.8-
2.6% 

4.7-
2.5% 

Europe_Non_EU MAIZE 3.1-
5.2% 

3.0-
5.0% 

2.8-
4.8% 

2.7-
4.7% 

2.7-
4.7% 

2.7-
4.6% 

2.6-
4.6% 

2.5-
4.5% 

Europe_Non_EU RICE #N/A 4.9-
2.6% 

4.7-
2.5% 

4.6-
2.5% 

4.5-
2.5% 

4.5-
2.5% 

4.5-
2.4% 

4.4-
2.4% 

Europe_Non_EU SOY 6.8-
9.8% 

6.5-
10.0% 

6.2-
10.0% 

6.1-
10.1% 

6.1-
10.3% 

6.0-
10.3% 

6.0-
10.3% 

5.9-
10.2% 

Europe_Non_EU WHEAT 17.3-
7.0% 

16.4-
6.6% 

15.3-
6.3% 

14.8-
6.1% 

14.8-
6.1% 

14.7-
6.1% 

14.4-
6.0% 

13.8-
5.8% 

Europe FTA MAIZE 0.7-
1.5% 

0.6-
1.7% 

0.5-
1.7% 

0.5-
1.8% 

0.5-
1.9% 

0.5-
2.0% 

0.5-
2.0% 

0.5-
2.0% 

Europe FTA SOY 0.1-
2.8% 

0.1-
4.1% 

0.1-
4.6% 

0.1-
5.0% 

0.1-
5.5% 

0.1-
5.8% 

0.2-
5.9% 

0.1-
5.9% 

Europe FTA WHEAT 9.5-
5.0% 

8.2-
4.5% 

7.6-
4.3% 

7.4-
4.3% 

7.5-
4.3% 

7.5-
4.3% 

7.4-
4.3% 

7.2-
4.2% 
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India MAIZE 3.8-
7.2% 

4.8-
8.7% 

5.4-
9.7% 

5.7-
10.2% 

5.8-
10.4% 

5.7-
10.2% 

5.5-
9.9% 

5.0-
9.1% 

India RICE #N/A 6.0-
3.8% 

6.9-
4.4% 

7.3-
4.7% 

7.3-
4.7% 

7.2-
4.6% 

6.9-
4.4% 

6.3-
4.0% 

India SOY 11.3-
18.9% 

14.1-
21.1% 

15.8-
22.4% 

16.7-
23.1% 

16.7-
23.1% 

16.4-
22.9% 

15.8-
22.4% 

14.5-
21.4% 

India WHEAT 4.2-
2.5% 

5.5-
3.1% 

6.2-
3.5% 

6.6-
3.8% 

6.6-
3.8% 

6.4-
3.7% 

6.2-
3.6% 

5.7-
3.4% 

Indonesia MAIZE 0.3-
2.1% 

0.4-
2.2% 

0.4-
2.3% 

0.4-
2.3% 

0.5-
2.3% 

0.4-
2.3% 

0.4-
2.2% 

0.4-
2.1% 

Indonesia RICE #N/A 0.5-
0.7% 

0.5-
0.8% 

0.5-
0.8% 

0.5-
0.8% 

0.5-
0.7% 

0.4-
0.7% 

0.4-
0.7% 

Indonesia SOY 1.2-
5.4% 

1.3-
5.9% 

1.3-
6.0% 

1.2-
5.8% 

1.1-
5.7% 

1.0-
5.5% 

0.9-
5.2% 

0.8-
4.8% 

Japan MAIZE 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Japan RICE #N/A 2.9-
1.6% 

2.4-
1.5% 

2.7-
1.7% 

2.8-
1.8% 

2.8-
1.9% 

2.8-
1.9% 

2.7-
1.8% 

Japan SOY 5.8-
11.5% 

4.8-
11.4% 

4.1-
11.3% 

4.4-
11.9% 

4.5-
12.2% 

4.6-
12.4% 

4.6-
12.5% 

4.4-
12.3% 

Japan WHEAT 9.8-
4.2% 

8.5-
4.1% 

7.3-
4.0% 

7.6-
4.4% 

7.7-
4.5% 

7.8-
4.6% 

7.6-
4.7% 

7.3-
4.6% 

Mexico MAIZE 3.5-
7.0% 

3.2-
6.5% 

2.9-
6.1% 

2.6-
5.8% 

2.5-
5.6% 

2.4-
5.5% 

2.3-
5.4% 

2.1-
5.2% 

Mexico RICE #N/A 3.9-
2.5% 

3.5-
2.3% 

3.1-
2.1% 

2.9-
2.0% 

2.7-
1.9% 

2.6-
1.9% 

2.4-
1.8% 

Mexico SOY 8.6-
16.7% 

7.8-
16.1% 

7.3-
15.7% 

7.0-
15.4% 

7.0-
15.3% 

6.8-
15.2% 

6.7-
15.0% 

6.3-
14.7% 

Mexico WHEAT 9.9-
6.1% 

9.1-
5.7% 

8.4-
5.4% 

8.2-
5.3% 

8.2-
5.2% 

8.1-
5.2% 

7.9-
5.1% 

7.5-
5.0% 

Middle East MAIZE 1.8-
3.4% 

1.8-
3.3% 

1.7-
3.2% 

1.6-
3.1% 

1.6-
3.1% 

1.6-
3.1% 

1.6-
3.1% 

1.5-
2.9% 

Middle East RICE #N/A 5.2-
3.0% 

4.8-
2.8% 

4.6-
2.7% 

4.6-
2.7% 

4.5-
2.6% 

4.4-
2.6% 

4.1-
2.4% 

Middle East SOY 15.6-
21.5% 

15.2-
21.2% 

14.2-
20.6% 

13.8-
20.3% 

13.7-
20.3% 

13.5-
20.2% 

13.2-
20.0% 

12.3-
19.3% 

Middle East WHEAT 10.7-
4.7% 

10.3-
4.5% 

9.5-
4.2% 

9.2-
4.1% 

9.0-
4.0% 

8.9-
4.0% 

8.7-
3.9% 

8.1-
3.6% 

Pakistan MAIZE 1.7-
3.1% 

1.8-
3.4% 

1.9-
3.5% 

2.0-
3.6% 

2.0-
3.7% 

2.0-
3.7% 

1.9-
3.6% 

1.8-
3.4% 

Pakistan RICE #N/A 0.7-
0.5% 

0.8-
0.6% 

0.9-
0.7% 

0.9-
0.7% 

0.9-
0.7% 

0.8-
0.6% 

0.7-
0.6% 

Pakistan SOY 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

Pakistan WHEAT 4.4-
2.5% 

5.2-
2.9% 

5.7-
3.1% 

6.0-
3.2% 

6.1-
3.3% 

6.1-
3.3% 

6.0-
3.2% 

5.7-
3.1% 

Russia MAIZE 0.6-
1.4% 

0.6-
1.4% 

0.6-
1.4% 

0.5-
1.5% 

0.6-
1.5% 

0.6-
1.5% 

0.6-
1.5% 

0.5-
1.5% 

Russia RICE #N/A 3.5-
2.2% 

3.3-
2.1% 

3.2-
2.1% 

3.3-
2.1% 

3.3-
2.1% 

3.3-
2.1% 

3.2-
2.0% 

Russia SOY 4.2-
8.4% 

4.2-
8.8% 

4.0-
9.0% 

4.0-
9.1% 

4.1-
9.3% 

4.1-
9.4% 

4.1-
9.4% 

4.0-
9.3% 

Russia WHEAT 6.1-
3.3% 

5.9-
3.2% 

5.5-
3.1% 

5.3-
3.0% 

5.4-
3.0% 

5.3-
3.0% 

5.3-
3.0% 

5.0-
2.9% 

South Africa MAIZE 0.8-
2.5% 

0.9-
2.6% 

0.9-
2.7% 

1.0-
2.8% 

1.0-
2.9% 

1.0-
2.9% 

1.0-
2.9% 

1.0-
2.8% 

South Africa RICE 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

South Africa SOY 0.6-
6.4% 

0.7-
6.7% 

0.7-
6.8% 

0.8-
6.9% 

0.8-
7.1% 

0.8-
7.1% 

0.8-
7.1% 

0.8-
7.0% 

South Africa WHEAT 4.1-
3.1% 

4.4-
3.3% 

4.7-
3.4% 

4.8-
3.4% 

5.0-
3.5% 

5.1-
3.5% 

5.1-
3.5% 

4.9-
3.4% 

South America_Northern MAIZE 0.0-
0.2% 

0.0-
0.2% 

0.0-
0.2% 

0.0-
0.2% 

0.0-
0.2% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

South America_Northern RICE #N/A 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

South America_Northern SOY 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 
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South America_Northern WHEAT 0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

0.0-
0.0% 

South America_Southern MAIZE 0.1-
0.6% 

0.1-
0.6% 

0.1-
0.5% 

0.1-
0.5% 

0.1-
0.5% 

0.1-
0.4% 

0.1-
0.4% 

0.1-
0.4% 

South America_Southern RICE #N/A 0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

0.0-
0.1% 

South America_Southern SOY 0.8-
3.1% 

0.8-
3.0% 

0.7-
2.7% 

0.6-
2.5% 

0.5-
2.4% 

0.4-
2.3% 

0.4-
2.2% 

0.3-
2.0% 

South America_Southern WHEAT 2.0-
1.6% 

1.9-
1.6% 

1.8-
1.5% 

1.6-
1.4% 

1.5-
1.3% 

1.3-
1.2% 

1.3-
1.1% 

1.1-
1.1% 

South Asia MAIZE 1.0-
1.9% 

1.1-
2.1% 

1.2-
2.2% 

1.2-
2.2% 

1.2-
2.2% 

1.2-
2.2% 

1.2-
2.2% 

1.1-
2.1% 

South Asia RICE #N/A 2.5-
1.9% 

2.9-
2.2% 

3.0-
2.3% 

3.0-
2.3% 

3.0-
2.3% 

2.9-
2.2% 

2.6-
2.0% 

South Asia SOY 4.1-
8.4% 

5.2-
9.4% 

5.9-
10.1% 

6.2-
10.4% 

6.3-
10.4% 

6.2-
10.3% 

5.9-
10.1% 

5.4-
9.6% 

South Asia WHEAT 0.9-
0.5% 

1.1-
0.6% 

1.2-
0.6% 

1.3-
0.7% 

1.3-
0.7% 

1.3-
0.7% 

1.3-
0.7% 

1.2-
0.6% 

South Korea MAIZE 4.0-
5.3% 

4.0-
6.6% 

3.5-
6.1% 

3.4-
6.1% 

3.3-
6.2% 

3.2-
6.1% 

3.1-
6.0% 

3.0-
5.8% 

South Korea RICE #N/A 3.5-
1.7% 

3.1-
1.6% 

3.1-
1.7% 

3.1-
1.8% 

3.1-
1.8% 

3.0-
1.8% 

2.8-
1.7% 

South Korea SOY 9.9-
14.7% 

9.6-
16.2% 

8.1-
15.4% 

7.9-
15.4% 

7.8-
15.4% 

7.5-
15.3% 

7.3-
15.1% 

6.8-
14.8% 

South Korea WHEAT 19.8-
8.0% 

19.7-
8.5% 

16.9-
7.5% 

16.6-
7.3% 

16.4-
7.3% 

16.0-
7.2% 

15.5-
7.0% 

14.7-
6.7% 

Southeast Asia MAIZE 0.6-
3.3% 

0.5-
3.1% 

0.5-
2.9% 

0.5-
2.7% 

0.4-
2.5% 

0.4-
2.3% 

0.4-
2.1% 

0.3-
1.8% 

Southeast Asia RICE #N/A 1.4-
1.4% 

1.3-
1.4% 

1.3-
1.3% 

1.3-
1.2% 

1.2-
1.2% 

1.1-
1.1% 

1.0-
0.9% 

Southeast Asia SOY 4.4-
11.7% 

4.2-
11.4% 

4.0-
11.1% 

3.9-
10.6% 

3.8-
10.2% 

3.5-
9.7% 

3.3-
9.3% 

2.9-
8.5% 

Southeast Asia WHEAT 3.7-
3.1% 

4.0-
3.4% 

4.0-
3.6% 

4.0-
3.7% 

3.8-
3.6% 

3.6-
3.4% 

3.4-
3.3% 

3.0-
2.8% 

Taiwan MAIZE 1.6-
2.8% 

1.5-
3.0% 

1.4-
3.0% 

1.4-
3.1% 

1.4-
3.2% 

1.3-
3.0% 

1.2-
2.9% 

1.0-
2.7% 

Taiwan RICE #N/A 1.4-
0.9% 

1.2-
0.8% 

1.3-
0.9% 

1.2-
0.9% 

1.1-
0.8% 

1.0-
0.7% 

0.8-
0.7% 

Taiwan SOY 3.6-
8.5% 

2.6-
9.4% 

2.1-
9.6% 

2.1-
9.9% 

2.0-
10.0% 

1.8-
9.8% 

1.5-
9.6% 

1.3-
9.3% 

USA MAIZE 4.9-
9.0% 

3.8-
7.6% 

3.5-
7.3% 

3.5-
7.2% 

3.5-
7.3% 

3.6-
7.4% 

3.5-
7.4% 

3.4-
7.2% 

USA RICE #N/A 3.9-
2.6% 

3.4-
2.4% 

3.3-
2.3% 

3.3-
2.3% 

3.3-
2.3% 

3.3-
2.3% 

3.1-
2.3% 

USA SOY 13.8-
20.4% 

10.7-
18.5% 

9.8-
18.0% 

9.6-
17.9% 

9.7-
18.0% 

9.8-
18.0% 

9.8-
18.0% 

9.5-
17.8% 

USA WHEAT 15.3-
7.0% 

12.3-
6.1% 

11.4-
5.9% 

11.2-
5.8% 

11.3-
5.9% 

11.4-
5.9% 

11.3-
5.9% 

10.8-
5.7% 

 

Economic Damages 
The estimated yield losses have an associated economic impact, as presented in Figure 2.615.  

                                                           
15 In GCAM, soybeans are included the OilCrop category. Economic damages have therefore been 
estimated for the whole category. See Annex II for a full list of commodities included in this category. 
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Figure 2.6: Economic damage driven by O3 exposure per region, period and crop (M$(2015)) 

 

Figure 2.6 shows that corn driven economic losses decrease in the short term, and then they 

remain relatively unaltered, ranging from 5000 to 6000 M$(2015). USA, which is the largest corn 

producer (33-38%), suffers the majority of damages, accounting for 44-55% of global corn 

damages, depending on the period. China, which produces between 18% and 23% of the corn, 

also puts up with a significant part of the damages (18-31%). Oilcrops, the category that includes 

soybeans, suffer a large increase in economic damages mostly driven by global production 

volume, doubling between 2010 and 2050. So, while the economic damages account for 9780 

M$(2015) in 2010, they increase up to 18341 M$(2015) in 2080. In regional terms, USA suffers 

the largest damage (38-54%) being the largest producer (18-22%), followed up by India, which 

suffered only the 7% of the economic damage in 2010, but increasing significantly to 24% of 

global oilcrop damages by 2080. Economic damages of rice crops also increase during most of 

the 21th century (from 6788 M$(2015) in 2010 to 10132 M$(2015) in 2070), whereas global 

production changes during the analyzed period are smaller than 10%. China, India and South-

East Asia are the larger producers; however, economic damages in South-East Asia are limited 

due to relatively low O3 concentration levels. Therefore, India (in the long term) and China bear 

most of the damages. Concretely, these regions suffer between 37-72% and 5-30% of the total 

rice damages, respectively. Finally, the figure shows that economic damages of wheat follow a 

relatively unaltered pattern, as they range from 10421 M$(2015) to 12461 M$(2015) during the 

analyzed time period. The regional allocation of the damages varies significantly depending on 

the time horizon, but the cost is principally born by four of the larger producers which are China, 

EU-15, India and USA. In the short term (2020) China suffers the largest damages (19-24%), 

followed by EU-15 (20-21%), USA (16-18%) and India (7-12%). However, in the long term (2080) 

damages in China (7% of the total) drop drastically and increase in India. Therefore, in 2080, the 
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largest impacts are located in EU-15, USA and India, representing the 21%, 19% and 17% of the 

total wheat damages, respectively.  

Impacts on agricultural markets 
As explained, to re-set the yield losses into GCAM allows to analyze which would be the effects 

of including future O3 driven crop damages in the agricultural systems. For that purpose, the 

default GCAM baseline scenario is compared with a scenario where the estimated O3 damages 

are incorporated (baseline+O3). Then, differences in production levels and the subsequent 

changes in economic impact are examined, both globally and regionally. 

In terms of production, the implications of considering the O3 effects are analyzed, by identifying 

three different effects. First, it is examined which would be the changes in production per region 

and commodity driven by changes on yield productivities (O3 impact). However, the demand of 

each crop would also affect to total production, since it would not directly respond to changes 

in productivity, so there would also be a substitution effect. Finally, the consumption effect is 

also isolated. While globally the consumption of each commodity will be equal to the 

production, there are significant regional divergences due to the market dynamics. 

For the analysis of the O3 implications for economic damages, the total results are decomposed 

in three different effects. Initially, economic damages depend on future changes in O3 

concentration levels and how they alter total crop production (O3 impact). Such impacts on crop 

productivity translate to changes in crop prices, affecting total economic damage (Price effect). 

Finally, regional crop price changes modify regional distribution of crop production. So, there is 

a substitution effect, which directly affects production levels and, therefore, economic damages 

per region.  
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Figure 2.7: O3 implications for production levels (A) and for economic damages (B) per period, region 
and commodity 

 

 

Figure 2.7 shows that both production and economic impacts significantly vary per region, 

period and commodity when considering O3 driven yield losses. Corn production, at a global 

level, does not suffer large changes. Even though there is a considerable increase on yield 

productivity driven by smaller O3 concentration levels (mostly in USA and China), this does not 

translate to a large increase in demand. This implies a reduction on corn land requirement, 

which may produce positive side effects. However, the economic damages would be reduced by 

A) differences in production (Mt) B) differences in economic damage (M$2015) 
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83 M$(2015) up to 2080, due to the reduction in O3 concentration levels. Taking into account 

that economic damages range from 5000 to 6000 M$(2015), this reduction represents between 

1.33% and 1.66% of total economic damage. The figure also shows that some regions such as 

USA would reduce their corn consumption, which would be compensated with an increase in 

some other countries (f.e. China). On the contrary, oilcrop production increases by almost 8 Mt 

up to 2080, due to the positive yield changes in some regions such as Brazil, China and USA that 

outweigh the yield decreases in countries like India. However, economic damages of oilcrops 

increase up to 203 M$(2015) (around 1.16%) because, even though there is a reduction in O3 

levels, there is an increase in demand (substitution effect) that compensates that reduction. 

Oilcrops are not limited to food demand as they are often used for energy purposes, for which 

the price elasticity is significantly higher, explaining the unique effect we observe for oilcrops. 

O3 effects on rice production are largely explained by the results for India. This region is one of 

the main producers of rice, and it presents a large increment in O3 concentration levels driven 

by a positive trend of CH4 emissions (see Figure 2.1). Consequently, there is a significant 

decrease in yield productivity, but as the demand does not respond in the same way, the 

decrease in total rice production is softened, accounting for 1-1.7 Mt during the analyzed period, 

with an increase in the amount of land required for rice production. Global production of wheat 

increases from 1.03 (2020) to 2.55 (2080) megatons, driven primarily by positive increments in 

yield productivity for some of the larger wheat producers such as EU-15, China and USA. In India, 

wheat productivity diminishes during the analyzed time horizon but it does not translate to a 

modification in the demand so the production remains relatively unaltered. Variations in 

economic damages show a variable trend: the decrease in the short term between -33 and -14 

M$2015 (-0.32% and -0.13%) is followed by an increment between 2040 and 2065 of 3-29 

M$2015(up to 0.23%). In the long term, the economic damages decrease 82 M$2015 (-0.71%) 

by 2080. The following figures provide a regional description of the changes in both production 

and economic damages. 
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Figure 2.8: O3 implications in production levels per region, crop, period and effect (Mt) 
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Figure 2.9: O3 implications in economic damages per region, crop, period and effect (M$2015) 

 

 



CHAPTER 2: Future impacts of ozone driven damages on agricultural systems 

33 
 

 

 
 

 



CHAPTER 2: Future impacts of ozone driven damages on agricultural systems 

34 
 

Discussion 
The obtained results are in line with the aforementioned literature (Avnery et al., 2011; Van 

Dingenen et al., 2009), but there are some significant divergences, as GCAM has an internal land-

use module, which is the one that determines the regional production levels. In terms of RYLs, 

USA shows the largest differences, as the damage coefficients estimated in this study are far 

greater than the values published in literature. The main reason is the overestimation of O3 

precursor emissions in GCAM. For example, GCAM NOx emissions in USA significantly outweigh 

the EPA-inventory emissions, as demonstrated in Shi et al., (2017). On the other hand, the 

largest divergences in economic damages is found for oilcrops, which almost triples the values 

from previous studies. There are two factors which explain this significant difference: the RYLs 

overestimation in some regions (such as USA and India) and the larger production levels16 (both 

globally and regionally) for this crop. 

In terms of future projections, results are not directly comparable since there exist significant 

differences in the model used, the scenario definition or assumptions in future development 

levels. However, there are some similarities. First, Van Dingenen et al. (2009) shows that future 

changes in RYLs up to 2030 would vary depending on the region: they would increase in South-

Asia (India or Bangladesh) while decrease in Europe or China. Similarly, Chuwah et al. (2015) 

conclude that that larger O3 levels in Asian regions would imply a substantial increment of crop-

oriented land requirement (up to 9%). As shown in Figure 2.5 , those results are similar to the 

ones obtained in this chapter for South Asia, In those studies, O3 impacts are calculated using 

exposure-response functions (ERF). These ERF models have some limitations. On the one hand, 

they do not capture vegetation dynamics, so they do not take into consideration physiological 

factors such as soil particularities, vapor pressure, transpiration or evaporation, as described in  

Schauberger et al., 2019. That study concludes that, in places with water scarcity, the O3 impacts 

on crops would be overestimated, while underestimated in water abundant regions. 

Consequently, the estimation of regional RYLs would also differ depending on the applied 

methodology. For example, the developed study shows significantly smaller RYLs values for 

wheat in both China and India, compared to results in Schauberger et al., 2019; however, the 

RYLs for soybeans are notably larger when applying ERF models than when considering the 

whole vegetation system.    

On the other hand, the ERFs are based on European and North American information. The lack 

of data for calculating the ERFs in other regions would result in a significant underestimation of 

the O3 driven crop losses in Asian regions (Emberson et al., 2009). Recent studies are focusing 

on regional and national emission data in order to more accurately estimate the O3 impacts on 

crops (Feng et al., 2017).  

Additionally, ERFs have only been to four crops and then extend the damages to further 

commodities based on their carbon fixation pathway (see methodology). Although there are 

well-accepted ERF functions for other crops (Mills et al., 2007), the structure of the GCAM 

model, which combines commodities in aggregated groups, does not allow to apply those 

individualized functions. This is planned to be explored in further research. Furthermore, other 

harmful effects such as climate impacts are not captured, measured as temperature or 

precipitation changes, or carbon fertilization effects, that have demonstrated implications on 

yields (Shindell et al 2019). Those variables would produce some feedbacks that are not possible 

                                                           
16 Previous studies analyze soybean damages while this study oilcrops. This GCAM category includes 
soybeans but some other commodities (see Annex II), therefore the differences in production would be 
even larger. 
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to be considered with the applied methodology. Further research will combine those effects in 

order to provide a wider perspective of the potential crop damages. 

Conclusion 
This chapter analyzes the implications of O3 on different crops both globally and regionally. First, 

it is examined which would be the distribution of O3 concentration levels up to 2080. For that 

purpose, the emission pathways of its main precursors are estimated, which are NOx and CH4. 

CH4 emissions would significantly increase in the baseline scenario (with the exception of some 

countries such as Brazil or China), while NOx emissions follow a stable or decreasing trends due 

to the implicit implementation of emission-control policies. However, the absolute future 

emissions per region vary substantially, resulting in significantly different O3 formation per 

region. Additionally, in those regions that are closer to the equator belt, O3 levels would be even 

larger, as solar radiation is a key factor for the formation of this pollutant.  

In a next step, the estimated O3 concentration levels are set into ERFs in order to calculate the 

potential crop damages for four representative commodities such as corn, oilcrop (soybeans), 

rice and wheat. Wheat and soybeans are the most sensitive crops while corn and rice present 

smaller RYLs. Regions such as India, USA, Europe or Africa Northern suffer the largest RYL values, 

depending on the crop. 

Finally, the obtained O3 damage coefficients are introduced into the GCAM model, in order to 

compare the obtained results with the ones from a default baseline (no O3 effects) scenario, so 

the implications in agricultural market dynamics are observed. Production of corn and wheat 

remains relatively unaltered as the estimated increases in yield productivities are softened by a 

smaller demand response. Moreover, reduced O3 effects decrease economic damages for both 

corn and wheat by 2080. Oilcrop production would significantly increase due to the smaller 

future O3 levels, and due to an increased use of these crops for energy purposes. Regarding rice 

crops, the differences are driven by results in India. While there is a decrease in yield 

productivity, it does not translate to demand and the production remains relatively unaltered, 

with a subsequent increase on the amount of land for rice production. In terms of economic 

damages, the increase in O3 concentration levels, driven by the positive trend of CH4 emissions, 

would increase the estimated economic damages.  
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Introduction 
The main goal of the Paris Climate Agreement (UNFCC) is to ensure that the average global 

temperature increase does not exceed the threshold of 2°C or 1.5°C above preindustrial levels. 

To that end, greenhouse gas (GHG) emissions need to peak “as soon as possible” and then be 

reduced practically to zero in the second half of this century (IPCC., 2014). Currently, fossil 

sources account for 80% of the global total primary energy supply and 60% of global greenhouse 

gas (GHG) emissions (IEA 2016). Therefore, an urgent and far-reaching transformation in the 

energy system will be required, where fossil fuels are gradually phased out of the energy mix, 

especially coal, which is the most CO2-emission-intensive fuel of all in terms of energy content. 

There are many different regulatory and economic instruments that can be used to boost this 

transition towards a low-carbon economy. From the economic perspective, one of the most 

urgent measures should be the elimination of fossil fuel subsidies (FFS), since they encourage 

inefficient energy consumption and divert investment away from clean energy sources. 

According to the International Monetary Fund (IMF) (Coady et al., 2017) FFS amounted globally 

to $233 billion in 2015.The elimination of FFS would not only be beneficial from the climate 

change perspective (these subsidies work in practice as a negative carbon price) but would also 

help to eliminate a significant market distortion that encourages inefficient consumption and 

does not, as it is sometimes perceived to do, benefit the poorest. According to the IMF, these 

subsidies tend to be regressive as only 7% of subsidies in developing countries actually reach the 

poorest 20% of households, while 43% end up in the hands of the richest 20%. For all these 

reasons, the International Energy Agency (IEA) has proposed a phase-out of FFS as one of the 

key elements for enabling society to move to a low carbon economy. In this regard, at their 

meeting in Ishe-Shima (G7 Leaders, 2016) the G7 leaders pledged to phase out fossil fuel 

subsidies by 2025. 

In this context, there is emerging interest among the scientific community in the potential 

environmental, economic and social implications of phasing-out FFS. Ellis (2010) provides a 

survey of the literature that has sought to quantify the economic and environmental 

consequences of fossil fuel subsidies at global level. These studies conclude that a phase-out of 

FFS would reduce world GHG emissions in the longer term, although the magnitude differs 

greatly from one study to another, ranging from 0.6% (Schwanitz et al., 2014) to 10% (Burniaux 

and Chateau, 2014; WEO 2017). In general, studies based on economic models (partial or 

general equilibrium models) tend to obtain higher emission reductions than integrated 

assessment models of the energy-system and the economy, as they tend to be more optimistic 

in terms of fuel-switching possibilities17. Schwanitz et al. (2014) use the REMIND integrated 

assessment model and show that in the long-term the removal of fossil fuel subsidies would only 

result in emission reductions of around 0.6%. Most remarkably, they show that if it is not 

supplemented by other policies, the removal of fossil fuel subsidies may actually increase 

emissions in some countries. The reason is that the induced change in global energy prices and 

the lack of alternatives in many countries may eventually lead to an increase of coal 

consumption and the use of coal-to-liquids conversion technologies. Therefore, the phase-out 

of fossil fuel subsidies needs to be designed and implemented carefully and must take into 

                                                           
17 For example, CGE models typically use a highly aggregated constant elasticity substitution (CES) function 
to capture the elasticity substitution between fossil fuels. Although some models include more detail in 
the electricity sector this is rarely the case in the transport sector. 
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consideration the substitution possibilities available in each specific region/country (Burniaux 

and Chateau, 2014).  

This study uses GCAM to analyze the CO2 reduction potential when the revenues from the 

elimination of FFS are used to promote renewables, and more specifically solar technologies. 

Although there are some studies that suggest that IAMs are not the most accurate tool to 

analyze short-term changes or shocks (Pietzcker et al., 2017), this work focuses on which would 

be the global (including energy, land use or climate systems) situation in 2030, so to use such an 

integrated instrument provides insights to the framework. The methodology subsection 

provides detailed information about the features of the applied GCAM. 

The analysis focuses on the European Union (EU), which is a relevant case study for two reasons. 

First, the EU has already committed (see Council Decision, 2010/787/EU) to eliminating coal 

subsidies in all Member States by 201818. In fact, coal subsidies are large in the EU, accounting 

for around 81% of global subsidies. Second, the EU has also set a specific target for renewables 

(at least 27% of final energy should come from renewable sources by 2030, (EC SWD, 2014), 

which also justifies the “recycling” of the revenues from FFS to renewables. 

The chapter is organized as follows: the following subsection presents the materials used in the 

study (including the data on FFS, and the scenarios); then, the results are shown and finally the 

subsequent subsections discuss the obtained results and conclude, respectively.  

 

Study Design 

Data 
This subsection presents an overview of FFS at global level and for the EU as estimated by the 

IMF (Koplow, 2009). The estimations by the IMF follow a price-gap approach19 (Clements et al., 

2013; Coady et al., 2017) that calculates subsidies by multiplying fuel consumption by the 

difference between end-user prices and supply costs20 (or private costs). This gives the so-called 

“pre-tax” subsidies or FFS which have to be financed directly from government budgets. On the 

IMF database there are two main approaches reported: on the one hand, the mentioned “pre-

tax” or direct monetized subsidies that account for US$233 billion in 2015 for FFS. On the other 

hand, “post-tax” subsidies, which also include the negative externalities from energy 

consumption, would account for around $5 trillion. This work focuses on the pre-tax subsidies. 

                                                           
18 Although there are some doubts whether all Member States will implement this directive (for example 
some countries such as Germany or Spain are introducing new mechanisms that provide payment to coal-
fired plants to provide a supply of electricity with domestic coal), this directive focuses on the elimination 
of “inefficient coal mine” subsidies. 
19The International Energy Agency follows the same approach (IEA 2015) and obtains similar results. 
However, the Organization for Economic Co-operation and Development (OECD) follows the so-called 
“inventory approach”, which captures the direct budgetary support and tax expenditures on fossil fuel 
production or consumption. The OECD database applies only to 34 OECD countries. 
20 The IMF methodology also includes shipping costs and margins, plus value added taxes. The IEA also 
includes some tax subsidies, which is one reason for the difference between IEA and IMF estimations for 
pre-tax subsidies. 
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The data reported here and used in the study are based on FFS estimated for coal, petroleum 

and gas21.  

In 2015, FFS amounted globally to US$233 billion, which is 37% down on the figure for 2011. 

This reduction in FFS reflects the fall in international energy prices and the reduction in FFS 

already undertaken in some countries such as Saudi Arabia, the United Arab Emirates and 

Indonesia (Davis, 2016; Durand-Lasserve et al., 2015). It should be mentioned that the historical 

trend in FFS may not be a suitable indicator for showing government attitudes towards 

promoting fossil fuels, as it is also affected by changes in energy prices and other 

macroeconomic conditions. However, FFS accounted for 0.41% of global GDP, which is still an 

economically significant figure, and in many countries they represent a major share of the 

government budget.  

Figure 3.1 shows the breakdown of FFS by regions and fuels. Most subsidies are concentrated in 

energy-exporting countries. The OPEC22 (Organization of the Petroleum Exporting Countries) 

and CIS23 (Commonwealth of Independent States) countries account for 73% of the world’s FFS. 

Adding the USA, India and the EU, the proportion of world FFS accounted for rises to 87%. As far 

as fuel sources are concerned, by far the most heavily subsidized fuel is oil (US$127 billion), 

followed by natural gas (US$89 billion) and coal (US$5.09 billion). In terms of FFS relative to GDP, 

the highest average absolute figure is that of OPEC countries with 3.17%, followed by the CIS 

countries (1.3%) and India (0.6%). 

 

 

                                                           
21 Subsidies for electricity consumption are not considered in this study. The IMF database does not break 
down subsidies for electricity into different sources, so it is not possible to allocate those subsidies to 
fossil or nom-fossil fuel sources such as renewables or nuclear. 
22 OPEC comprises Algeria, Angola, Ecuador, Gabon, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, 
Saudi Arabia, the United Arab Emirates and Venezuela 
23 The CIS (Commonwealth of Independent States) comprises Russia, Armenia, Azerbaijan, Belarus, 
Kazakhstan, Kyrgyzstan, Moldova, Tajikistan and Uzbekistan, with Turkmenistan and Ukraine as associate 
members. 
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Figure 3.1: World fossil fuel subsidies by regions and fuels (US$ billion and %GDP). Source: IMF 

 

In the EU, FFS are not as high as elsewhere. In 2015, FFS in the EU amounted to US$8.63 billion 

(3.69 % of global subsidies). The EU has comparatively low subsidies on oil (US$4.3 billion) and 

gas (US$0.3 billions), but its subsidies on coal (the most intensive fuel in terms of CO2) are very 

high (US$4.1 billions) and account for a striking 81% of world coal subsidies. As a member of the 

G7 group, the EU has agreed to eliminate all forms of support for fossil fuels by 2025.  
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Scenario Schemes 
The main purpose of the chapter is to explore the impacts of removing FFS in the EU and 

“recycling” the savings to subsidize solar energy. This subsection presents the scenarios of the 

different fossil fuel subsidy reforms. The three scenarios are summarized as follows: 

Table 3.1: Scenario description 

Scenario Description 

Baseline 

This is the reference scenario in which there is no climate policy in place. 
In this scenario subsidies on fossil fuel are included in the base year 
(2015) as a negative cost in unitary terms ($ per GJ). Unitary subsidies are 
assumed to remain constant throughout the simulation period. The 
amount of money spent on subsidies can then be obtained in each period 
by multiplying by the consumption of fossil fuel. 

Phase-out 
This scenario phases out subsidies on fossil fuels in the EU. However, the 
revenues are not reinvested in promoting low carbon technologies. 

Recycling 

This scenario phases out FFS and reinvests them in renewables, more 
specifically in solar rooftop photovoltaic24 (hereinafter, rooftop PV). The 
rooftop PV option is selected for three main reasons. First, the 
government can directly promote this technology without interfering in 
other policies such as in the new renewable energy capacity auction-
based system (EC, 2014) or the EU emission trading system (EU-ETS) 
(Böhringer et al., 2008).On the other hand, investments in rooftop PV 
also enable small actors to participate, such as municipalities, small 
business and individuals25. Finally, the other main renewable alternative, 
wind energy, is starting to bid at zero26 subsidy cost, which means that 
some renewable technologies are closer to competing with other 
technologies at market prices. In any case, a sensitivity analysis is shown 
to demonstrate the CO2 mitigation potential of using other renewable 
technology options. 
 

 

As the renewable energy system has been supported by different financing mechanisms over 

the last years, it is important to reflect the important magnitude of this mentioned “recycling” 

process. Latest estimation on subsidies to renewable power sector accounts for US$120 billion 

(Clements et al., 2013), so taking into account that the used number for FFS subsidies is US$233 

billion, it would almost double that amount. 

  

                                                           
24 The subsidized rooftop PV technology is an off-grid electricity system, which is directly competing with 
grid-based electricity. The industrial photovoltaics are not taken into consideration in these results. 
25 Although there are more technological options that allow small participants (micro-wind installations), 
rooftop PV presents the highest level of development. 
26 In a recent auction of 500MW of wind energy in Spain all the capacity was acquired at bids of zero – 
meaning that no financial support is required.  
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Results 
This subsection presents implications of eliminating FFS in the different scenarios by 2030 for 

the energy system, CO2 emissions and mitigation costs and air pollution, scenarios with and 

without recycling of revenues from subsidies. The results include a sensitivity analysis for 

different FFS recycling options. 

Energy and electricity system 
Figure 3.2 shows the absolute variations in primary energy consumption of the scenarios with 

respect to the baseline. 

Figure 3.2: Differences in primary energy consumption in 2030 in EU (EJ) with respect to the baseline 
scenario 

 

The most important reduction observed in both scenarios is in coal consumption, with drops of 

6.3% and 7% by 2030 respectively. This is because coal, which is mainly used in electricity 

generation and industrial processes, can easily be replaced by other fuel sources. Indeed, natural 

gas consumption increases by 1.5 and 1.3% by 2030 with the elimination of the subsidies. This 

happens because the subsidies for natural gas are relatively smaller than the ones for coal, so, 

according to the model assumptions, gas would become comparatively more competitive and 

may replace coal in some sectors.  

The effect on oil consumption is however very limited, with reductions of 0.16 and 0.19%. Oil is 

mainly used in the transport sector and, according to the model, the use of alternatives such as 

biofuels and electric vehicles due to the elimination of oil subsidies is limited, given the high 

costs for these alternatives. Another consequence is that in the recycling scenario, where 

rooftop PV penetrates the market strongly, other technologies such as nuclear and wind energy 

decrease. 
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Figure 3.3: Differences in electricity mix in EU in 2030 (EJ) with respect to baseline scenario 

 

In order to provide a better understanding of the changes in the energy system, Figure 3.3 shows 

the change in the electricity mix with respect to the baseline scenario. The results are consistent 

with those already explained for the primary energy mix. However, there are some aspects that 

deserve closer attention. First, the use of biomass in the electricity sector is not substantially 

modified. Similarly, the electricity generated from gas-fired plants does not increase despite the 

major deployment of gas as an energy source (see Figure 3.2). This is because the subsidized 

rooftop PV replaces fossil fuels (mostly coal) in the electricity sector, whereas biomass and gas 

replace coal and oil in other sectors (such as industry, buildings or to a lesser extent transport). 

Additionally, wind and solar are considered as intermittent technologies, so to ensure that 

electricity demand can be met at any time (including “peak loads”) the expansion of solar would 

replace some use of wind energy. This effect would be ameliorated if the cost of storage 

batteries were lower. Finally, there is a decrease of nuclear power that can be explained with 

the need for backup support that solar energy requires (due to the intermittency). Since the 

recycling scenario presents an energy mix with a higher share of renewable energy and nuclear 

energy cannot be used as backup for the increased solar power (nuclear power stations cannot 

be switched on-off easily), it is less extended than in the baseline scenario. The deployment of 

rooftop PV is quite limited in both the baseline and FFS phase-out scenarios. However, in the 

scenario where all FFS are switched to rooftop PV the production of rooftop solar electricity 

increases with 0.17 EJ by 2030, which represents a doubling of rooftop solar electricity 

production compared to production in 2015. 

Finally, the elimination of FFS would also help meet the EU’s targets on renewables. Figure 3.4 

shows what the share of renewable sources would be in each scenario. In the baseline scenario 

the projected share of renewables in the electricity mix in the EU by 2030 is 20.23%. This share 

is greater in both the Phase-out (20.51%) and Recycling (21.11%) scenarios. These results are 

still far from the target for renewable energy (27% of the energy mix), but it is worth mentioning 

that the increase is being achieved at zero extra cost for the government. 
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Figure 3.4: Share of renewable energy sources in the EU electricity mix per period 

 

CO2 emissions and mitigation costs 
This subsection shows the implications of the different scenarios in terms of CO2 emissions, 

taking into consideration both emission reduction and mitigation costs. A sensitivity analysis is 

also presented here to assess the effect of recycling FFS to promote other renewable 

technologies. 

Figure 3.5 analyzes CO2 emissions per period in each scenario up to 2030 as percentage 

variations with respect to the baseline scenario. If FFS are merely eliminated (“Phase-out” 

scenario), emissions decrease by up to 1.8% by 2030. However, when the subsidies are taken 

and reinvested in rooftop PV emissions decrease by 2.2% by 2030, a relative increase of 21%. 

Figure 3.5: Percentage reduction of CO2 emissions per period (%) 

 

Due to variations in the penetration of the technologies, the abatement cost differs from one 

scenario to another. To put the numbers in context, the abatement cost of the recycling scenario 

is compared with the current EU policy, which is to achieve a 40% CO2 reduction by 2030. Indeed, 

16,5%

17,0%

17,5%

18,0%

18,5%

19,0%

19,5%

20,0%

20,5%

21,0%

21,5%

2020 2025 2030

Baseline

Phase-out

Recycling

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

2020 2025 2030

Phase-out

Recycling



CHAPTER 3: Implications of switching fossil fuel subsidies to solar: A case study for the EU 

 

47 
 

it is estimated that the FFS reform would cover 3% of the mitigation cost needed to meet the 

European target of a 40% CO2 emission reduction by 203027. 

Lastly, to show the mitigation potential of recycling the revenues to promote other renewable 

options, and following the same methodology and assumptions, Table 3.2 shows the CO2 

mitigation achieved with different technologies relative to the baseline scenario. It can be seen 

that reinvesting FFS to promote other renewable sources can increase CO2 mitigation by 3-3.5%. 

These figures result from the lower costs of other renewable technologies compared to rooftop 

PV. However, our focus on rooftop PV is based on the advantages that this technology has for 

implementation reasons. As shown, direct investments in rooftop PV help to avoid certain 

regulatory problems such as market distortions (EU-ETS) and facilitate the entry of other, smaller 

participants (municipalities or individuals). 

Table 3.2:Sensitivity analysis on CO2 mitigation potential using different renewable technologies (%) 

TOTAL PROJECTED 

REDUCTIONS (%) 
2020 2025 2030 

Rooftop PV 1.5% 1.8% 2.2% 

Other solar (CSP and utility-

scale PV) 
1.9% 2.2% 2.6% 

Wind 2.6% 3.1% 3.4% 

 

Air Pollution 
The implications of other air pollutants have become a key element in the analysis of climate 

policies (West et al., 2013a). In this study some of the main air pollutants have been considered: 

black carbon (BC)28 carbon monoxide (CO), ammonia (NH3), nitrogen oxides (NOx), organic 

carbon (OC) and sulfur dioxide (SO2). 

Figure 3.6:Differences in air pollutants in EU-27 in 2030 (%) 

 

                                                           
27 The cost of the EU policy is also calculated by setting the mitigation target in GCAM.GCAM provides the 
cost of the simulated policy and, according to the model assumptions, the average abatement cost 
($/tCO2) increases with the stringency of the policy established. In the recycling scenario the cost is 
around $96.7/tCO2 in 2030, while when simulating the mentioned EU policy, it is $419/tCO2 
28 Although BC has a demonstrated greenhouse effect (Shindell et al., 2012) it is also a PM2.5 precursor, so 
it is considered an air pollutant. 
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Figure 3.6 shows the variation with respect to the baseline in some of the main pollutants for 

the different scenarios. In the “Phase-out” scenario SO2 emissions show the biggest reduction (-

2.8%). In Recycling, SO2 emissions show an additional effect and drop by 3.1%. More and more 

studies are analyzing the implications of climate and energy policies for SO2 (Nemet et al., 2010), 

as it is one of the main contributors to the damage associated with air pollution. On the one 

hand, exposure to SO2 has implications for health due to its effect on circulatory and respiratory 

systems, especially among children and older people. On the other hand, BC and SO2 have both 

direct and indirect effects: after being emitted they are among the main precursors for the 

formation of particulate matter (both PM10 and PM2.5). As shown, exposure to high 

concentrations of PM is considered as a major risk factor in terms of health impacts.  

However, when FFS are reinvested the increase in biomass consumption results in an increment 

of CO and OC. Although the figures show not very high increments (0.32 and 1.47% respectively), 

it is important to realize that they could entail some indirect damage. For instance, CO is a 

precursor for the formation of tropospheric ozone (O3), which has been proven to have impacts 

on health (Jerrett et al., 2009; Turner et al., 2016) and agricultural systems (Chuwah et al., 2015). 

Moreover, OC emissions are also a key element for the deposition of PM2.5 in the atmosphere.  

Therefore, this policy would not achieve significant health co-benefits: first, the absolute 

changes in pollutant reductions are relatively small and, second, the decrease in some pollutants 

(f.e. SO2, -3%), which would reduce health damages, would be compensated by the increase in 

the emissions of carbon monoxide (CO) or organic carbon (OC), related to the expansion of 

bioenergy technologies.   

Discussion  
This simulation exercise has certain limitations but it also opens up further research questions, 

which are discussed in this subsection. The most important one is that the results depend on 

the projections of the baseline scenario. As shown, CO2 emission reduction could be between 

1.5% and 3.5% if there is no other climate policy in place in the region, but this result could 

change if there is a climate policy already in place. In any event, it has been shown that FFS 

recycling always has a positive impact in terms of renewable energy penetration and emission 

reduction. 

Another important issue is that in Europe there are sectors where there is already a mechanism 

in place to reduce CO2 emissions. The “EU-ETS” cap and trade system is the most important such 

mechanism, covering around 45% of all GHG emissions in the region. FFS recycling could 

therefore lead to overlapping regulation problems. However, as presented, this limitation could 

be reduced by switching subsidies to renewable technologies that do not affect the system, such 

as directly subsidising rooftop photovoltaic facilities. 

On the other hand, most previous studies in this field have used General Equilibrium Models 

(Arze del Granado et al., 2010; Davis, 2016). Such models focus on welfare or distributional 

analysis or price implications of removing FFS. Among their results, it can be highlighted that FFS 

are inefficient as a policy instrument for protecting poor households from fuel price increases. 

It would be interesting to see if removing FFS proves to be a regressive policy due to the possible 

increase in electricity prices. Additionally, using GCAM instead of another type of model, makes 

it impossible to analyze macroeconomic indicators such as possible industrial losses, 

employment effects or welfare variations. 
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Work has also been done in relation to investing FFS savings (Jakob and Hilaire, 2015), and some 

authors suggest creating an international fund in order to reallocate possible revenues. 

According to these authors, if the global savings (of oil importers) were reinvested a positive 

economic transformation would be achieved. This paper analyzes only the case of the EU: the 

amount of money saved from subsidies is directly reinvested in cleaner energy sources with the 

EU. However, an interesting line for further research would be to check the implications of using 

that money to promote mitigation options outside the EU. 

Finally, there could be several barriers to applying the policy proposed here. The study focuses 

on reinvesting Member State subsidies at an EU region level, but the differences between the 

27 European countries would make such an agreement complicated given the concentration of 

subsidies in specific countries (such as Germany and Poland).  

Conclusion  
This chapter estimates potential impacts of removing fossil fuel subsidies (FFS) in the EU and 

“recycling” the savings to subsidize solar energy directly (rooftop PV). Although removing FFS in 

EU does not suffice in itself to achieve major emission reductions - which is also an important 

result - the recycling of these subsidies to promote low-carbon technologies can generate 

additional positive effects. The most interesting is related to the additional penetration of 

renewable technologies: it is shown that if FFS is reinvested in rooftop PV, the installed capacity 

of this technology could present a significant increase according to the assumptions of the 

model. 

As shown, if no additional climate policy is established FFS recycling could result in a CO2 

emission reduction of between 1.5 and 3.5%. Therefore, taking into consideration that this is 

only a first step towards meeting European CO2 targets, FFS recycling should be considered as a 

valuable policy. Even though there are other climate policies that may entail higher CO2 

decreases, they could require substantial investments and long implementation periods, while 

the elimination and recycling of FFS is budget neutral and can be implemented very fast and at 

zero-cost.  

It is also clear that deploying such a policy around the world would need hard cooperation and 

negotiation processes. Nevertheless, many countries have started taking measures in this area 

(Clements et al., 2013), so existing results and experiences could help in the implementation 

processes.



 



CHAPTER 4: Health co-benefits from air pollution and mitigation costs of the Paris Agreement  

 

51 
 

Chapter 4  
 

 

 

 

Health co-benefits from air 

pollution and mitigation costs 

of the Paris Agreement: a 

modelling study 



  



CHAPTER 4: Health co-benefits from air pollution and mitigation costs of the Paris Agreement  

 

53 
 

Introduction 

The two main health-harmful air pollutants linked to fossil fuel combustion and greenhouse gas 

(GHG) emissions are fine particulate matter (PM2.5)(Burnett et al., 2014; Klimont et al., 2017; 

Silva et al., 2017); and ozone, (O3)(Jerrett et al., 2009; Turner et al., 2016).  In this context, the 

Paris agreement, which aims to significantly reduce fossil fuel use, has major health implications. 

The agreement aims at a long term stabilization target of 2°C and agrees to pursue efforts to 

limit the increase to 1.5°C.(Rogelj et al., 2016). 

Concrete measures to achieve these targets have not yet been agreed. A key concern when 

evaluating different climate policies is their net cost29, with a key component of overall policy 

cost being the associated co-benefits.(Radu et al., 2016; Chowdhury et al., 2018; Landrigan et 

al., 2017; West et al., 2017, 2013)  Co-benefits are defined as additional benefits related to the 

reduction of greenhouse gas emissions that are not directly related to climate change, such as 

air quality improvement, technological innovation or employment creation.(Bollen, 2015)   

One of the key challenges related to the Paris goals is how to share the mitigation efforts for 

meeting the target. The higher the ambition of the mitigation objectives the more difficult the 

distribution of targets across countries.(Jacoby et al., 2008; Raupach et al., 2014) It is well known 

that the current national mitigation targets reported by the different countries to the United 

Nations in their Nationally Determined Contributions are not enough,(Fawcett et al., 2015) and, 

if they are not raised, one can expect a temperature increase by the end of the century of 

between 2.9-3.4°C. 

Health co-benefits of mitigation have been explored in the literature. The major gaps in the 

current literature are a failure to look at co-benefits by region given the range of different 

allocations of mitigation burdens; and an evaluation of the co-benefits relative to mitigation 

costs for the 1.5°C target. This chapter compares, both at the global and regional level, a range 

of climate mitigation scenarios in terms of air pollution and health impacts, and determines to 

what extent the extra cost of achieving a more restrictive mitigation target could be 

compensated with the obtained additional health co-benefits, both global and regionally.  

As detailed in methodology, the analysis consists of three steps. First, GCAM is used to quantify 

the GHG pathways and the related mitigation costs of the different scenarios. GCAM also reports 

the emissions of air pollutants in the different regions. This information is fed to the TM5-FASST 

air quality source-receptor model, which translates emission levels into pollutant 

concentrations, exposure and premature deaths. These deaths are then monetized using the 

Value of Statistical Life (VSL) with the valuation extended to incorporate morbidity effects. 

Scenarios 
The scenarios have three main components:1) a general socioeconomic storyline represented 

by the Shared Socioeconomic Pathways of the IPCC framework,(O’Neill et al., 2014; van Vuuren 

et al., 2017) 2) a model quantification of that storyline, and, 3) a set of mitigation strategies 

based on du Pont et al. (2016) where current national mitigation targets are extended based on 

different equity criteria to allocate the carbon budgets for different temperature stabilization 

objectives. 

                                                           
29 This chapter uses the term mitigation cost to refer to the direct costs of reducing GHGs and policy costs 
to refer to the overall costs when any co-benefits have been taken into account. Avoided climate damages 
are not calculated by the models used here. 
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The background socioeconomic conditions are a key element of the analysis giving baseline 

values for population and GDP in each country over time.  The socioeconomic scenario chosen 

here (SSP2) is considered a “middle of the road” framework (van Vuuren et al., 2017).  A 

complete description about the features and implementation of this scenario can be found in 

Annex IV. The SSP database30, hosted by IIASA, provides the country-level population figures 

used by TM5-FASST and the GDP figures, which are inputs to estimate monetarized damage by 

VSL. Both population and GDP are also used by the GCAM model in combination with additional 

assumptions regarding the economic structure, and energy and agricultural systems.(Rao et al., 

2017; Riahi et al., 2016). The study takes the SSP2 emission factors for calculating the air 

pollutant emission trajectories as released with GCAM v4.3. While updated versions were used 

in published GCAM scenarios,(Calvin et al., 2017) the changes do not impact the overall 

conclusions of the paper (Annex IV). Moreover, the annex also examines the impact of 

alternative socioeconomic pathways on emission trajectories.  

The mitigation strategies are divided following two criteria: the global temperature target and 

the regional distribution of the mitigation effort associated with each target.  Regarding the 

temperature target, in addition to a baseline scenario where no climate policy is set, three 

scenarios have been chosen: (a) the Nationally Determined Contributions (hereinafter NDCs), 

(b) 2°C stabilization target and (c) 1.5°C stabilization target (both objectives for the year 2100).  

Regarding the regional distribution of mitigation effort, du Pont et al (2016) suggests five 

distributional approaches, of which three have been selected. They are summarized in Table 

4.131. 

Table 4.1: Mitigation equity criteria. Source: http://paris-equity-check.org 

Allocation 
name 

Code IPCC Category Allocation characteristics 

Constant 
emission ratios 

CER Staged approach 

Maintains current emission ratios, 
preserves status quo. This approach also 

referred to as grandfathering, is not 
considered as an equitable option in 

climate justice and is not supported as 
such by any Party. 

Capability CAP Capability 
Countries with high GDP per capita have 

low emissions allocations 

Equal per capita EPC Equality 
Convergence towards equal annual 

emissions per person by 2040 
 

Following du Pont et al (2016), the world is divided into five regions: China, EU-27, India, USA 

(which covers 60% of global emissions in 2015) and the rest of the world (ROW). Also, following 

the same literature, the results are presented until 2050.  

Although each scenario has a similar global carbon budget to 2100 the carbon budgets to 2050 

are different as the criteria selected affect also the timing of mitigation. Figure 4.1 shows notable 

differences in CO2 emissions pathways. In the NDCs scenario the emissions are reduced by 

around 25% with respect to the baseline by 2050. Although significant, it is not sufficient to 

achieve the Paris climate target. Compared to the NDCs scenario, the 2°C scenarios require a 

                                                           
30 https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about 
31 The two excluded allocations are ones involving very unequal allocations to developed countries. 
Moreover, they require huge negative emissions to be realized, which is unrealistic. 

http://paris-equity-check.org/
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
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reduction in CO2 emissions across the five regions ranging from -71% to +57%. Logically, the 

reduction in the 1.5°C scenarios is greater, ranging from -79% to +8%, depending on the criterion 

for sharing the mitigation effort. 

While the restrictiveness of the climate target is an important factor in explaining the variations, 

the distributional criterion is also important. As Figure 4.1 shows, the reduction in emissions out 

to 2050 is greatest under the CAP scenario and least under the CER scenario.  These differences 

translate into different mitigation efforts for the regions. Table 4.2 shows the cumulative 

emissions reductions for different regions relative to their commitments under the NDC.   

Table 4.2: Variation in 2020-2050 cumulative emissions relative to the NDC scenario (%) 

 2C_CAP 2C_CER 2C_EPC 1.5C_CAP 1.5C_CER 1.5C_EPC 

China -69% -35% -52% -75% -54% -65% 

USA -40% 57% -16% -52% 8% -37% 

EU-27 -43% 35% -4% -55% -7% -31% 

India -60% -71% -36% -72% -79% -58% 

ROW -50% -47% -46% -64% -63% -62% 

Total -55% -35% -42% -67% -55% -59% 

 

It is notable that China has to make a further 69% reduction under the CAP scenario, but only 
35% under the CER scenario. The CER scenario imposes the greatest burden on India, and allows 
the USA and the EU-27 to reduce emissions by 57% and 34% less than they have committed to 
under the NDCs. 

Figure 4.1:Total CO2 emissions per period and scenario (GtCO2) 

 

 

Results 

Energy and electricity system 
The differences on the stringency and the effort sharing among the scenarios result in different 

energy mixes for 2050.  The main difference between the scenarios is the share of fossil fuels, 

which decreases as the mitigation target becomes more stringent. While in the baseline scenario 
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the fossil fuels account for around 82% of the energy mix in 2050, this falls to 37-45% in the 2°C 

scenarios and to 32-36% in the 1.5°C. 

This reduction is compensated with a higher development of low-carbon technologies. First, the 

implementation of mitigation policies increases the share of biomass in the energy mix (Biomass 

and Biomass+CCS). From 9% in the baseline scenario, to 15% in the NDC’s, to 24-28% in the 2°C 

and to 28-30% in the 1.5°C. The share of other renewable technologies (solar, wind and 

geothermal) also increases, though the differences between 2°C and 1.5°C scenarios are not so 

high: renewals go from around 5% in the baseline to 6.4% in the NDCs scenarios and to 11-12% 

and 12-13% in the 2°C and 1.5°C scenarios respectively. Finally, there is also a smaller increase 

in nuclear power, from 2% to around 5-6% in the more restrictive mitigation scenarios. 

The changes in the electricity mix are even more significant, with a huge drop in the use of fossil 

fuels for electricity from 65% in the baseline to 6-12% in the 2°C scenarios and 3-5% in the 1.5°C. 

There is also a relevant expansion of renewables (from around 10% in the baseline to more than 

40%) and CCS (representing between 25 and 32% in the 2°C and 1.5°C scenarios). 

Figure 4.2:Energy and electricity mix per scenario in 2050 (%) 

 

CCS: Carbon Capture and Storage. 

Premature deaths 
Figure 4.3 reports the cumulative premature deaths for each scenario.  Globally, this cumulative 

number shows a significant decrease in going from the reference scenario to the 2°C and 1.5°C.  

In the NDC scenario the number of deaths decreases around 5% relative to the reference, while 

the reductions for the mitigation scenarios are 21-27% and 28-32% for the 2°C and 1.5°C 

respectively. 

Each region presents similar relative results regardless of the scenario analyzed. The highest 

number of premature deaths are in China (33-37% of the global deaths) and India (24-32%).  

Around 37% of the global population lives there and most of it is exposed to pollution levels far 

above the recommendations guidelines from World Health Organization.  
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Figure 4.3: Cumulative (2020-2050) premature deaths per region and scenario (million people) 

 

Mitigation and Policy Cost 
The results for the mitigation cost for the defined scenarios32 and regions are given in Table 

4.333. 

The table has some quite contrasting results: 

i. Under “CAP” China bears most of the cost, followed by the rest of the world (ROW). 

India has the lowest cost share. 

ii. The ranking changes significantly under “CER”, with India now having a much higher 

share and China much lower one. 

iii. Compared to what countries have committed to under the NDCs, the increases in costs 

are smallest for the USA and EU-27 and biggest for the ROW, India and China (in that 

order). 

iv. The additional cost of going from a 2°C target to a 1.5°C target is around 20%. 

 

  

                                                           
32 The “baseline” scenario is not included since is not supposed to have any policy cost. 
33 The “baseline” scenario is not included since is not supposed to have any policy cost. 
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Table 4.3:Cumulative (2020-2050) policy cost per region and scenario. The table shows the percentage of 
global mitigation cost borne by each region. The value in parenthesis gives the absolute mitigation cost in 
trillion$. The discount rate used for the calculation is 3%. 

 NDCs 2C_CAP 2C_CER 2C_EPC 1.5C_CAP 1.5C_CER 1.5C_EPC 

USA 66.3% (4.9) 20.2% (8.4) 
9.4% 
(2.1) 

22.5% 
(6.4) 

17.7% (9.9) 
12.4% 
(5.0) 

19.3% 
(7.7) 

EU-27 28.9% (2.2) 11.5% (4.8) 
4.5% 
(1.0) 

9.0% 
(2.5) 

10.4% (5.8) 
6.9%   
(2.8) 

9.4%   
(3.7) 

CHINA 3.2% (0.2) 31.1% (13.0) 
18.6% 
(4.1) 

28.1% 
(8.0) 

27.9% (15.6) 
21.8% 
(8.8) 

26.1% 
(10.4) 

INDIA 1.0% (0.1) 9.4% (3.9) 
23.0% 
(5.1) 

6.2% 
(1.8) 

10.2% (5.7) 
16.0% 
(6.5) 

7.8%   
(3.1) 

ROW 0.6% (0.0) 27.8% (11.6) 
44.5% 
(9.8) 

34.2% 
(9.7) 

33.9% (19.0) 
43.0% 
(17.4) 

37.4% 
(14.9) 

TOTAL 100% (7.5) 100% (41.6) 
100% 
(22.1) 

100% 
(28.3) 

100% (56.1) 
100% 
(40.6) 

100% 
(39.7) 

 

The absolute costs of achieving the NDCs are around 7.5 trillion$, mostly in USA (66%) and EU-

27 (29%).  Mitigation costs are highest under the “capabilities” (CAP) scenario as this requires 

the most near-term emissions reductions: the 2C_CAP scenario cost is 45% and 80% higher than 

the CER and EPC criteria costs respectively. When comparing the 1.5°C scenarios, the 1.5C_CAP 

is around 40% greater than the cost obtained with the other criteria. 

From a macroeconomic perspective, these costs are relatively low.  For the 2°C target the global 

costs range from 0.5% to 1% of global GDP, while for the 1.5°C target the range is 1%-1.3%.  

Between the scenarios the lowest costs emerge under the CER or EPC scenario and the highest 

ones under the CAP scenario. These numbers are in line with the figures in the 5th IPCC 

assessment report (IPCC., 2014), where the values for different years for the 2°C scenario range 

from around 0 to 2%. 

The results presented are based on a discount rate of 3%, which is in the middle of the range 

used in the literature to discount climate impacts.(Interagency Working Group, 2013; Nordhaus, 

1994; Stern, 2006). As a sensitivity test, lower and higher values of 0% and 6% were also taken 

(see next subsection).  The differences between these rates in terms of the shares of costs borne 

by different groups is quite small.  The higher rate means future costs and benefits are given a 

lower value.  As relatively fast growing countries in GDP and population like India and China have 

higher co-benefits and potentially higher costs in the future, these are given a small weight with 

a higher discount rate, making their share of net costs lower at a 6% rate than at a 3% rate.  The 

reverse holds for the US.  The EU is somewhere in between but the difference between the 

discount rates in terms of shares is only 1-2%. 

Health Co-benefits vs Mitigation Costs 
Figure 4.4 shows the health co-benefits and mitigation cost for each scenario. Health co-benefits 

are the difference between the monetized health damage of each policy scenario with respect 

the baseline. The figure includes an uncertainty range based on a sensitivity analysis for VSL -- 

the variable most influential in determining the health benefits – with the lower and the upper 

VSL values drawn from the literature (Holland et al., 2014).  
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Figure 4.4:Cumulative (2020-2050) health co-benefit and mitigation cost by scenario (Trillion$). The 
discount rate used is 3%. The black uncertainty bars represent the range of values with lower and upper 
values of the VSL given in the literature. 

 

The most notable result from this figure is that at the global level the central value of the health 

co-benefit is greater than the cost of achieving the mitigation target for all the scenarios. Some 

mitigation strategies show co-benefits that are more than double the mitigation cost. The health 

co-benefit to mitigation cost ratio ranges from 1.4 (1.5C_CAP) to 2.45 (2C_CER). The sensitivity 

analysis shows that even when taking the lower bound (of VSL), the health co-benefits are very 

close to the mitigation cost, covering between 70-91% of that cost. For the non-equitable 

2C_CER, even the lowest estimate of the health co-benefits is higher than the mitigation cost. 

Note that the higher co-benefits in the CAP scenario do not outweigh the larger policy costs, 

which results in a lower ratio of co-benefit to cost. 

Figure 4.5 show the regional distribution of these co-benefits, with the majority of the co-

benefits located both in China and India. In the NDCs scenario, these countries account for 55% 

and 43% of the co-benefits, respectively. In the 2°C and 1.5°C mitigation scenarios, they 

represent similar shares.  
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Figure 4.5: Cumulative (2020-2050) health co-benefit per region and scenario (Trillion$). The discount 
rate used is 3% 

 

In order to compare co-benefits and mitigation costs for the different mitigation pathways it is 

very useful to see what percentage of the additional effort of setting a more stringent target is 

compensated by the additional health co-benefits. This is especially important for addressing 

the objectives of the Paris Agreement to “pursue efforts” to reduce emissions to limit 

temperature increase to 1.5 °C. 

Concretely it is key to analyze the policies “step by step”, i.e.: 

 The effect of achieving the NDCs or the 2°C target (following the different defined 

criteria) against the baseline (no climate policy) scenario 

 The effect of achieving the extra effort of the 1.5°C instead of 2°C 

 

Table 4.4 compares for each of the intermediate steps the marginal health co-benefits with the 

marginal mitigation for a range of values of the VSL. A green cell indicates that, regardless of the 

VSL value, the marginal health co-benefit is greater than the marginal mitigation cost. An orange 

colour means that whether the health co-benefits exceed the extra mitigation cost depends on 

the VSL value. Finally, if the cell is red, the additional health co-benefits are never sufficient to 

cover the additional mitigation cost. 

For China and India, the mitigation costs are compensated by the co-benefits for a 2°C target, 

regardless the burden sharing criterion. The extra cost of going from the 2°C to the 1.5°C target 

is also always fully compensated for India, while for China it depends on the VSL chosen. The 

results in the other regions suggest that the marginal mitigation cost is often higher than the 

marginal co-benefit. Globally, the marginal health co-benefits outweigh the marginal mitigation 

cost of a 2°C target depending on the VSL value, except in the case of CER when this holds for all 

VSL values. 
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Table 4.4: Net marginal benefits by region and scenario (Trillon$).The discount rate used is 3%. The values 
in brackets show the range of results based on the lower and the upper bounds of the VSL. 

Scenario China EU-27 India ROW USA TOTAL 

       

NDCs 6.36(3.06 ; 9.66) -2.01(-2.08 ; -1.93) 5.12(2.52 ; 7.72) -0.72(-0.38 ; -1.06) -4.42(-4.68 ; -4.16) 4.33(-1.57 ; 10.24) 

2°C       

CAP 14.49(0.77 ; 28.21) -2.70(-3.74 ; -1.67) 26.25(11.18 ; 41.33) -5.01(-8.29 ; -1.73) -7.12(-7.76 ; -6.48) 25.91(-7.84 ; 59.67) 

CER 14.89(5.39 ; 24.39) -0.22(-0.60 ; 0.17) 23.40(9.16 ; 37.64) -4.81(-7.32 ; -2.29) -1.23(-1.65 ; -0.81) 32.03(4.97 ; 59.10) 

EPC 15.22(3.62 ; 26.82) -1.22(-1.88 ; -0.56) 19.21(8.73 ; 29.70) -4.42(-7.05 ; -1.79) -5.33(-5.85 ; -4.81) 23.46(-2.44 ; 49.35) 

1.5°C       

CAP 0.27(-1.21 ; 1.75) -0.27(-0.65 ; 0.12) 3.76(0.98 ; 6.55) -6.21(-6.83 ; -5.59) -1.21(-1.37 ; -1.06) -3.66(-9.08 ; 1.77) 

CER 2.08(-1.32 ; 5.47) -0.60(-1.20 ; -0.01) 3.28(0.93 ; 5.63) -5.92(-6.76 ; -5.08) -2.47(-2.70 ; -2.24) -3.63(-11.05 ; 3.78) 

EPC 2.31(-0.05 ; 4.67) -0.19(-0.68 ; 0.31) 8.40(3.53 ; 13.28) -3.46(-4.32 ; -2.60) -0.93(-1.11 ; -0.76) 6.14(-2.63 ; 14.90) 

 

NOTE: The first rows represent the net marginal result of adopting the NDCs or the 2°C stabilization target 

against a no-climate-policy baseline. The last rows give the net marginal benefits of setting the “extra” 

1.5°C policy against the (already stablished) 2ºC. See text for meaning of the colour scale. 

In the cases where the cells are orange or red the results are not necessarily negative. Although 

the marginal costs are not fully compensated by the co-benefits, they still cover a portion of the 

marginal policy cost, in most cases a significant percentage. Finally, Table 4.5 shows a sensitivity 

analysis on the discount rate values. It demonstrates that the chosen value would not determine 

the results. 
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Table 4.5: Health co-benefit and policy cost per scenario and region for different discount rates (trillion 
$) 

Health co-benefit   Policy cost 

No Discounted   No Discounted 

 NDCs 2C_CAP 2C_CER 2C_EPC 1p5C_CAP 1p5C_CER 1p5C_EPC   NDCs 2C_CAP 2C_CER 2C_EPC 1p5C_CAP 1p5C_CER 1p5C_EPC 

CHINA 12.11 49.05 34.70 41.84 54.16 46.66 50.07   0.46 22.80 7.68 14.40 27.25 16.09 18.99 

EU-27 0.34 3.82 1.60 2.53 5.11 3.66 4.22   3.74 8.33 1.84 4.52 10.02 5.04 6.63 

INDIA 9.16 57.72 53.95 41.23 68.03 63.06 59.56   0.12 7.37 9.33 3.63 10.65 11.88 6.28 

ROW -1.02 12.10 9.37 9.81 14.26 12.40 12.88   0.10 21.70 18.50 18.31 34.78 31.96 27.95 

USA 0.95 2.37 1.59 1.93 2.91 2.42 2.57   8.37 14.45 3.72 10.94 16.89 8.89 13.32 

                  

TOTAL 21.53 125.06 101.21 97.34 144.48 128.21 129.31   12.79 74.65 41.08 51.79 99.59 73.86 73.16 

                  

DR 3%   DR 3% 

 NDCs 2C_CAP 2C_CER 2C_EPC 1p5C_CAP 1p5C_CER 1p5C_EPC   NDCs 2C_CAP 2C_CER 2C_EPC 1p5C_CAP 1p5C_CER 1p5C_EPC 

CHINA 6.60 27.44 19.00 23.20 30.40 25.80 27.92   0.24 12.95 4.11 7.98 15.64 8.83 10.39 

EU-27 0.15 2.08 0.78 1.32 2.85 1.96 2.31   2.16 4.78 0.99 2.54 5.82 2.78 3.72 

INDIA 5.20 30.15 28.48 20.97 35.72 33.18 30.73   0.08 3.89 5.08 1.76 5.70 6.49 3.11 

ROW -0.67 6.56 5.03 5.26 7.80 6.71 6.98   0.05 11.57 9.84 9.68 19.02 17.44 14.86 

USA 0.53 1.28 0.84 1.04 1.59 1.31 1.39   4.95 8.40 2.08 6.37 9.92 5.01 7.65 

                  

TOTAL 11.80 67.51 54.13 51.80 78.36 68.95 69.32   7.47 41.60 22.10 28.34 56.10 40.55 39.73 

                  

DR 6%   DR 6% 

 
NDCs 2C_CAP 2C_CER 2C_EPC 1p5C_CAP 1p5C_CER 1p5C_EPC   NDCs 2C_CAP 2C_CER 2C_EPC 1p5C_CAP 1p5C_CER 1p5C_EPC 

CHINA 
3.88 16.44 11.16 13.79 18.26 15.28 16.67   0.13 7.88 2.36 4.74 9.62 5.20 6.05 

EU-27 
0.06 1.20 0.38 0.72 1.69 1.11 1.34   1.35 2.95 0.58 1.55 3.64 1.66 2.23 

INDIA 
3.16 16.83 16.08 11.38 20.05 18.66 16.92   0.05 2.21 2.97 0.90 3.27 3.81 1.63 

ROW 
-0.47 3.79 2.88 3.01 4.55 3.87 4.03   0.02 6.61 5.61 5.49 11.17 10.22 8.42 

USA 
0.32 0.74 0.48 0.60 0.93 0.76 0.80   3.16 5.26 1.28 4.01 6.27 3.06 4.72 

 
                 

TOTAL 
6.94 39.00 30.98 29.49 45.48 39.68 39.76   4.71 24.91 12.79 16.68 33.96 23.94 23.06 

 

Discussion 
This section presents some caveats that have been divided in methodological and conceptual 

limitations. From the methodological point of view, the GCAM model does not allow for negative 

CO2 emissions as a future projected emission pathway. In this line, it should be mentioned that 

the criteria that have been used in this study are conceptually very diverse so, bearing in mind 

that it has not been possible to display a complete replication, this work allows to identify the 

particularities of a wide range of mitigation strategies. 

Additionally, GCAM contains a highly stylized representation of air pollutant controls that has 

not been tuned in any way to match regional projections or expectations. Overall, because EFs 

in all countries decline with the same function of GDP, in general developed country emissions 

do not fall fast enough, and least developed country emissions fall quite fast. And, overall, the 
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transitions are too gradual compared to history. Since the results are presented for 2050 which 

is medium term, these issues are not so relevant, but still will impact results.  

Another modelling limitation is that population is uncertain for some countries, and projections 

to 2050 are even more uncertain. In the TM5-FASST model, if a given grid cell has no population 

in the base year no population growth takes place inside, which means that no urban land 

expansion can be assumed, due to the data limitations. Population growths are located in 

already populated grid cells. Trying to reduce the level of uncertainty, this study uses the gridded 

SSP2 population, provided by IIASA. 

In terms of regional disaggregation, it is conceptually difficult to establish an aggregated carbon 

tax. Although the country-level particularities have not been analyzed in detail, the aim of this 

study was to see the implications at a global level. Indeed, the literature had already identified 

China and India as the key regions in terms of health co-benefits, regions that have been 

individualized in this study. 

Regarding the economic assessment of the premature deaths, there are some studies that point 

out the moral or ethical barriers of using a GDP based value for monetizing human life (Viscusi 

and Aldy, 2003).  This paper does not go deeply into this issue, it just takes the VSL and the 

associated morbidity costs as a valuable tool for comparing the health co-benefits with the policy 

costs. 

Conclusion 
Climate change and air pollution are important, interrelated problems. This chapter gives a 

comprehensive assessment of the global and regional implications of climate change mitigation 

in terms of (ambient) air pollution in the coming decades. The results show that in all the 

scenarios, global health co-benefits are greater than the mitigation cost of achieving the target.  

The health co-benefit to mitigation cost ratio ranges between 1.4 and 2.45. The staged approach 

(CER) is the most efficient burden sharing approach in terms of net cost. 

Owing to uncertainty over VSL values, a sensitivity analysis was conducted. It shows that, even 

with the lower bound of the VSL the health co-benefit would cover between 70-91% of the policy 

costs, depending on the chosen scenario. There is one strategy (2C_CER), where, even with the 

lower bound VSL, the health co-benefits are greater than the costs. 

To better understand which target might be favorable for each region and under what burden 

sharing criteria a marginal analysis was conducted, comparing the additional benefits of going 

from no target to an NDC based target, from no target to a 2°C target, and from a 2°C to a 1.5°C 

target. The results indicate in China and India the cost of setting any additional policy could be 

compensated just with the health benefits in most cases. Other regions could not compensate 

the costs by the co-benefits alone but the latter would make a valuable contribution to covering 

the mitigation costs – from 7% to 84% in the EU-27 and from 10% to 41% in the USA. In all cases 

one should not forget that attaining the 2°C target has considerable benefits from reduced 

climate change impacts benefits for all regions, including health benefits, and attaining a 1.5°C 

target has even greater climate benefits.
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Introduction 
Air pollution is currently the 5th biggest risk to health and the top environmental risk 

(Forouzanfar et al., 2016; WHO 2016). Air pollution (indoor and outdoor) is the cause of 7.2 

million premature deaths (WHO 2018), of which outdoor (or ambient) air pollution is responsible 

for 3-4 million. The most important pollutants in terms of health impacts are Particulate Matter 

(PM2.5) and Ozone (O3). 

One of the main sources of air pollution is the combustion of fossil fuels, which is also the main 

source of greenhouse gas (GHG) emissions. This means that climate change (IPCC 2014, Cook et 

al. 2016) and air pollution (WHO 2016) are two interrelated environmental risks, and many 

polices (but not all) aimed at limiting GHG emissions reduce air pollution, generating health co-

benefits. Conversely, policies focusing on reducing local pollutants can also reduce GHG 

emissions, although the converse can also occur. 

There is a growing interest in the research and policy communities in quantifying the mitigation 

costs and health co-benefits of climate policy, which depend on many factors such as the global 

temperature target and associated emissions reduction, the temporal allocation of the carbon 

budget (when reductions are made), the spatial distribution of the global mitigation effort (who 

makes the reductions), and the technological pathway associated with the reduction of 

emissions (how the reductions are made). In this regard, West et al. 2013 examine the global 

co-benefits of GHG mitigation by comparing a baseline with an RCP4.5 scenario. They show that 

the monetized co-benefit exceeds the mitigation cost, and they locate the biggest effects in 

South and East Asia, specifically India and China. Similar results can be found in Markandya et 

al., 2018, where the authors demonstrate that global health co-benefits outweigh the mitigation 

cost for both Paris Agreement climate objectives (2°C and 1.5°C stabilization) following different 

“burden sharing” criteria. Baseline assumptions for air pollution control policies will also have 

significant effects on health co-benefits (Rao et al., 2016)  

These results are also confirmed in a recent study (Vandyck et al., 2018), where a wide range of 

co-benefits is explored (mainly health co-benefits). It is also concluded that those co-benefits 

are greater than the mitigation costs, the difference being particularly large in the two regions 

mentioned above. A recent study (Shindell et al., 2018) focuses on the location of and variation 

in these co-benefits depending on the availability of negative-emission-technologies for an RCP 

2.6 scenario, however the methodology used is overly simplified as shown in this chapter. 

Additionally ,Ou et al. 2018 finds that significant co-benefits could also occur in developed 

countries. Finally, there are several articles that review and classify co-benefits studies, showing 

a large increase on studies over recent years (Chang et al., 2017; Deng et al., 2017; Gao et al., 

2018). 

This study estimates global and regional health co-benefits, mitigation costs, and possible trade-

offs of different technological pathways for achieving the 2°C target of the Paris Agreement. The 

pathways are based on the IPCC’s Fifth Assessment Report (IPCC 2014, Anderson and Peters 

2016) and assume different levels of development and use of some critical mitigation 

technologies such as bioenergy, nuclear power, and carbon capture and storage (CCS). For each 

scenario the emission pathways for GHGs (CO2, CH4, N2O, halocarbons) and air pollutants are 

determined, with the associated GHG mitigation costs and health co-benefits.  

It is demonstrated that co-benefits results depend significantly on baseline, scenario 

assumptions and the methodologies used. Effects of climate policies on air pollutant emissions, 

and therefore co-benefits, vary substantially by region and pollutant species. This means it is 
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essential to capture these dynamics by developing a detailed integrated methodology that fully 

captures the evolution of the key technologies. 

In this chapter GCAM is used to generate GHG and air pollutant emissions for each set of 

pathways examined. The air pollutant emissions are then used in TM5-FASST which, based on 

the Burnett exposure-response functions, provides PM2.5 and O3
34 concentration levels and 

estimates health impacts in terms of premature deaths. Finally, the Value of Statistical Life (VSL) 

approach, based on data from the OECD (OECD 2014; 2016), is used to monetize these impacts, 

incorporating into the analysis some additional estimates of morbidity costs. More information 

can be found in methodology. The main innovation of this exercise is the global modelling of 

technology based mitigation scenarios, coupled with an air quality model, in order to obtain 

health co-benefits under different pathways. 

Scenarios 
The scenarios in this study have two main components: a general socioeconomic storyline 

represented by the Shared Socioeconomic Pathways work (SSP) and the technological pathways 

represented by different technology options for achieving the 2°C target defined in the Paris 

Agreement. For the distribution of mitigation across regions, this study adopts a “least cost” 

approach with a global carbon price on energy and industrial CO2 emissions. 

In terms of socioeconomic storylines the authors chose the SSP2 narrative, considered as “the 

middle of the road” (see Annex IV) To implement this scenario, the SSP2 set-up scenario in the 

GCAM 4.3 release is used, which has since been updated recently. This will have some effect in 

terms of emission factors. However, the differences in global air pollutant emissions in the SSP2 

case between the version used here and the updated SSP2 emission factors (Calvin et al., 2017) 

range from 5% (NOx) to -6% (SO2) for 2050, as presented in Annex IV.  

For technological pathways, the study follows the IPCC 5th Assessment Report (Pachauri et al., 

2015), which defines pathways for achieving a 2°C target based on different levels of 

development or unavailability of several technology groups considered critical for achieving low 

emission targets (i.e. bioenergy, carbon capture and storage, and nuclear power). For example, 

a substantial increase in bioenergy has implications for agricultural land, which might lead to 

limits on the amount of cropland used for dedicated bioenergy crops.  CCS technologies have 

not yet been implemented at a large scale, and some implementation projects have experienced 

significant difficulties, so it is useful to consider scenarios where CCS is not widely deployed. The 

scenarios considered here are summarized in Table 5.1. 

All of the GCAM scenarios, with or without a climate policy, have implicit emission controls for 

different air pollutants. This implies that non-GHG emissions would also decrease over time, in 

the baseline scenario. Indeed, as noted in the documentation, the applied GCAM 

implementation of the SSP scenarios incorporates region-, sector-, and fuel-specific pollutant 

emission factor pathways (Rao et al., 2017).  

 

                                                           
34 The CH4 concentrations and their impact on ozone are estimated in TM5-FASST based on (Fiore et al., 
2009) 
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Table 5.1: Scenarios. All the scenarios (except the baseline) are expected to achieve the 2°C temperature 
stabilization target of the Paris Agreement. However, each presents individual features in terms of 
technological development. 

Scenario Description 

Baseline 

There is no long term climate target established. 
This scenario includes region, sector, and fuel-
specific pollutant emission factor pathways, 
based on (Rao et al., 2017). 

All available 

There is a 2°C temperature target for 2100, with 
no explicit technological limit. GCAM model, 
based on prices and preferences determines the 
energy mix following a logit competition.  

Bioenergy limitation 

There is a 2°C temperature target for 2100, with a 
global limitation on bioenergy consumption of 
100 EJ. Bioenergy includes purpose grown 
biomass and crop waste and residues. Biogas is 
implicitly included in the limitation. 

Low CCS 

There is a 2°C temperature target for 2100,  but 
the availability and the cost of CCS technologies 
are limited by multiplying the CCS capital costs 
from the baseline scenario (used by default in the 
GCAM model) by a factor of 10 (Calvin et al., 
2017). 

Nuclear Phase-out 

There is a 2°C temperature target for 2100, with a 
limitation in nuclear energy. There is a gradual 
phase-out of current nuclear power plants, 
according to their lifetime. There is no additional 
installation of new plants.  

 

Regarding the comparison, the outputs of the 2°C35 scenarios have been compared with the 

same reference for simplicity. However, it has been tested if the results of the reference would 

be modified due to technological constraints (bioenergy or nuclear limitations). To establish a 

limit of 100 EJ on bioenergy (with no climate policy) does not affect the results up to 2050, as it 

is only exceeded from 2090 to 2100 in the reference scenario, when the bioenergy consumption 

accounts for 105 EJ. Similarly, the phase-out of nuclear power, without long-term climate 

targets, has no significant effect on the reference air pollutant emission pathways, as they do 

not significantly differ from the reference used (“no constrained”) (<2% of variation in all of the 

species). Carbon capture and storage (CCS) does not come into a reference scenario with no 

carbon price applied, so these assumptions have no impact on the reference scenario. 

                                                           
35 The temperature targets (and results) are calculated from the MAGICC 5.3 model, a reduced-form 
climate model included in the GCAM version used.  For more details, see: Wigley, 2008, and Smith and 
Bond, 2014 for the representation of BC and OC forcing. 
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Results 

Energy and electricity system 
This subsection presents the impacts of the different technological pathways in terms of the 

energy and electricity mix, emission pathways, PM2.5 concentrations, premature deaths, 

mitigation costs, and health co-benefits for 18 World regions up to 2050.  

Each technological pathway results in a different structure of the energy system. Figure 5.1 

summarizes the energy and electricity mix for 2050 under the different technological 

assumptions: 

Figure 5.1: 2050 global energy and electricity mix per scenario (%) 

 

In the baseline scenario, fossil fuels (without CCS) account for 83% of the energy mix in 2050, 

followed by bioenergy (no CCS), renewable energy and nuclear power, which account for 9%, 

4% and 2% of the mix respectively in that scenario. A similar structure can be seen in the 

electricity system, which accounts for between 24 and 36% of final energy consumption. There, 

fossil fuels with no carbon capture and storage account for around 70%, while other 

technologies such as renewables (19%), nuclear (9%), and bioenergy (2%) play a smaller part. 

In the 2°C scenarios, the global energy demand decreases from -6% to -30% depending on the 

scenario and period. In terms of technological changes, the main difference is in the use of fossil 

fuels (FF), with and without carbon capture and storage (CCS), with the share of those FF being 

reduced drastically, in the range of 38% to 46%, depending on the technological pathway.  

Global expansion of renewable energy sources, which demonstrate their importance for 

achieving the temperature target in all the scenarios presented. Focusing on the electricity mix, 

they more than double their share from 19% (baseline) to 44% in the nuclear phase-out scenario 

by 2050. The largest increments occur in wind and solar technologies, increasing from 6 and 3% 

of total electricity in the baseline to 17-23% and 10-12% in the policy scenarios, respectively. 

Additionally, total electricity consumption significantly increases in the policy scenarios (up to 

20%, when bioenergy is limited), which makes the share of renewables relatively even more 

important.  
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As expected, the development of other technologies such as bioenergy, CCS, and nuclear power 

is directly related to the scenario analyzed, but they are always significantly more important 

than in the baseline scenario. Moreover, depending on the technological pathway, they could 

account for large proportions of the total energy mix: CCS technologies around 20% in the bio-

limited scenario, biomass (no CCS) up to 13% in the Low CCS scenario, and nuclear power around 

8% in the scenario with the bioenergy limitation. 

GHG and air pollutant emissions 
These variations consequently result in different emission pathways for each scenario, since the 

emission factors for pollutants are not the same across the technologies. Consequently, even 

though the stabilization target is similar, there are differences in emission levels. Figure 5.2. 

shows some of these differences in the cumulative (2020 - 2050) CO2 reductions in each of the 

regions defined and Figure 5.3 shows the projections for the main air pollutants.  

Figure 5.2: Share of cumulative reduction in fossil CO2 (2020 – 2050) emissions per scenario 
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Figure 5.3: Projection for main air pollutants per period and scenario. Index=2010 

 

These results first show that the time path of CO2 emissions can be quite different from one 

scenario to another. When bioenergy is limited, emissions decrease more rapidly, as the 

possibility of having net negative emissions in future periods will depend entirely on the 

availability of biomass-related technologies. So, while in the other policy scenarios cumulative 

CO2 emissions decrease by around 40% by 2050 compared to the baseline, in the Bioenergy 

limitation scenario the reduction is 55% by 2050, i.e. an extra 23%.  

Regarding the spatial distribution, Figure 5.2 shows that the biggest reduction in cumulative 

emissions is found in China (around 28% of the total reduction), followed by India (15-16%) and 

the USA (10-11%). To achieve the target, the model follows a “least cost” approach, so there are 

larger reductions in those regions where it is more feasible and cost effective to decrease 

emissions. That is why regions such as China and India show the largest reductions. 

It is important to note that, while the stabilization targets are set for 2100, we are focusing on 

results in 2050 (consistent with our focus on air pollutant co-benefits, and the co-benefits 

literature in general). While all the scenarios achieve the 2°C stabilization target set by 2100, 

cumulative emissions (of different pollutant species) up to 2050 differ. Global temperature 

change in the policy scenarios is 2°C in all four scenarios, which is by design. The pathways are 

very similar except for the bioenergy limitation scenario, wherein temperature change has a 

lower overshoot due to larger near-term CO2 reductions as described below. In order to reflect 

that divergences, the following figures present the temperature increase and the CO2 emissions 

pathways and up to 2050.  
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Figure 5.4: CO2 emission pathways per scenario (GtCO2) 

 
 

 

Figure 5.5: Global temperature change per scenario and period (°C) 

 

When bioenergy is limited, CO2 reductions need to be accomplished over a shorter time horizon 

since net negative emissions, through bioenergy with CCS, is not available as an offset. 

Consequently, in the longer term (from 2060 to 2100) the CO2 emissions decrease for achieving 

the 2°C temperature target is smaller. This is consistent with the results presented in the main 

text, where this scenario, up to 2050, has the largest CO2 emission reduction. Another effect of 

this limitation of bioenergy can be seen on the CO2 land use change (hereinafter LUC) emissions, 
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as presented in Figure 5.6. Note that LUC CO2 emissions impact CO2 concentrations in GCAM 

and, therefore, also play a role in the pathway required to meet a temperature target. 

Figure 5.6: CO2 and use change (LUC) emissions per period and scenario(GtCO2) 

 

In the short term, (up to 2030), the bioenergy limited scenario shows larger CO2 LUC emissions, 

since the total biomass consumption is higher than in the other mitigation (and baseline) 

scenarios. However, when the biomass limit (set in the restriction) is achieved, those LUC 

emissions would decrease compared to the other 2°C scenarios, where the biomass 

consumption increases exponentially to achieve the target. In the long term, which is not the 

scope of this study, the higher direct use of crops for energy (such as corn or sugar) in the bio-

limited scenario requires a significant amount of land due to its relative inefficiency. For that 

reason, the LUC emissions are larger in the second half of the century, despite the lower use of 

biomass. 

As explained in the methodology subsection, the gases tracked are the main precursors for the 

formation of both PM2.5 and O3 (Klimont et al., 2017; Turner et al., 2016). Thus, their spatial 

distribution is directly driven by regional emissions from the GCAM model. Since PM2.5 and O3 

are the most hazardous elements in terms of damage to health, figures below compares 

worldwide concentration levels in 2050 for mitigation scenarios relative to the baseline. 
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Figure 5.7: Difference in PM2.5 concentrations between baseline and policy scenarios for 2050 (log( 
µg/m3)) 

 

 

 

Figure 5.8:Difference in O3 concentrations between baseline and policy scenarios for 2050 (log ppb) 
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Figure 5.7 shows that the largest reductions are achieved in South and East Asia, more 

concretely in India and China. As mentioned, the “least cost” approach results in these regions 

showing the largest reductions. 

Premature deaths 
Once the regional concentration levels are calculated, they are converted into health impacts in 

terms of premature deaths using the TM5-FASST model. Figure 5.9 shows the air-pollution 

driven premature deaths per scenario for different time horizons. In the same line, Figure 5.10 

and Figure 5.11 present some additional results such as cumulative (2020-2050) deaths and their 

spatial distribution in 2050 (closely related to the PM2.5 concentration maps) 

Figure 5.9: Worldwide outdoor air pollution driven premature deaths per scenario and period (million) 
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Figure 5.10: Difference in premature deaths between baseline and policy scenarios for 2050 (log of 
deaths) 

 

 

Figure 5.11: Cumulative (2020-2050) premature deaths per scenario (million deaths) 

 

 
Figure 5.10 shows the premature deaths in the medium (2030) and long term (2050). It is clear 

that when no climate policy is set, premature deaths increase continuously. Specifically, they 

reach almost 4 million in 2050, compared to 3.2 million in 2030. These figures are driven by a 

combination of changing air pollutant concentrations and generally increasing population levels.  

The projected premature deaths decrease and stabilize across the 2°C scenarios, with the values 

determined by the technological development pathway chosen: compared to the baseline, 
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these reductions amount to 12-19%, and 27-32% in the medium and long term respectively, 

depending on the scenario.  

In cumulative terms (2020-2050), mortality falls by around 16-17% when a stabilization target is 

applied. Moreover, when a bioenergy limitation is established the effect increases to 23% as the 

GHG and air pollutant emission reductions are larger than in the other 2°C scenarios. As 

expected, taking into consideration the spatial concentration levels, the highest numbers of 

avoided deaths are in India and China. 

Health Co-benefits vs Mitigation Costs 
Figure 5.12 shows cumulative36 (2020-2050) health co-benefits per scenario, using a 3% discount 

rate. 

Figure 5.12: Cumulative (2020 - 2050) health co-benefits and mitigation costs per scenario (US$ trillion). 

The uncertainty bars represent the consistent lower and upper bounds, combining Zcf and VSL values. 

The DR used is 3% 

 

Two key messages can be derived from this figure: First, globally, health co-benefits outweigh 

mitigation costs in almost all cases, irrespective of what technological developments, 

limitations, or VSL values are assumed.  

Second, as expected, there are significant divergences between the different technological 

pathways, which is in line with the aforementioned literature (Ou et al., 2018; Shindell et al., 

2018). The Bioenergy Limitation Scenario has the highest co-benefit, as its net present value 

(NPV) is US$ 50 trillion, while the co-benefits in other mitigation scenarios are in the range of 

US$ 36-37 trillion. However, there is also a significant difference in the cost side: in the scenario 

                                                           
36 To show cumulative results (2020 – 2050), to provide an aggregate measure of results over the time 
frame considered, a discount rate of 3% is used, which is in the middle of the range used in the literature 
to discount climate impacts (Nordhaus, 1994; Stern, 2006). The sensitivity analysis performed in the 
previous chapter has demonstrated that changing this rate does not significantly change the main 
conclusions. 
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with the bioenergy limitation the cost is US$ 34 trillion, almost double the costs of the other 

mitigation scenarios (US$ 16-20 trillion). 

In order to address the uncertainty in these calculations, a sensitivity analysis has been 

performed to assess the extent to which results depend on the two key inputs of the analysis: 

theoretical minimum concentration below which there is considered to be no health impact 

(hereinafter Zcf, see below) for PM2.5, and the VSL. 

In the default TM5-FASST version, for PM2.5 exposures, Zcf for each cause of death ranges from 

6.79 µg/m3 (for ALRI) to 8.8 µg/m3 (for stroke), consistent with the literature37. On the economic 

side, health co-benefits have also been calculated using different values of statistical life. By 

default, the study uses the median value of the range of VSL, but for the sensitivity analysis the 

VSL lower and upper bounds (OECD) are used. By combining these elements (Zcf and VSL),  the 

lowest co-benefits38 are found using the lowest VSL and the highest Zcf (the default TM5-FASST 

values39). By contrast, the highest co-benefits are defined by combining the upper bound of the 

VSL and the lowest Zcf (0 µg/m340). The cost-effectiveness of each scenario may be of interest 

for policy design. It is calculated as the health co-benefit divided by the cost, and can be seen in 

Figure 5.13: 

Figure 5.13: Ratio of health co-benefit to mitigation cost per scenario (health co-benefit/mitigation cost). 
The uncertainty bars represent the consistent lower and upper bounds, combining Zcf and VSL values. 
The DR used is 3% 

 

                                                           
37 For example, Burnett et al. 2014 define the Zcf as a uniform distribution: Zcf ~U[5.8, 8.8](Silva, 2015). 
Similarly, (Lelieveld et al., 2015) set the Zcf at 7.3 µg/m3 for all causes of death. However, these values 
can be considered relatively high compared to the new Global Burden of Disease study (Forouzanfar et 
al., 2016), which defines the lower bound (2.4 µg/m3), median (4.15 µg/m3), and upper bound (5.9 
µg/m3) Zcf values. 
38 Even by applying the lowest VSL and the highest Zcf, the co-benefits exceed a significant amount of the 
global mitigation costs (from 67% to 100% depending on the scenario).   
39 These values are 7.58µg/m3 for COPD, 6.91 µg/m3 for LC, 6.79 µg/m3 for ALRI, 8.80 µg/m3 for Stroke 
and 6.86 µg/m3 for IHD 
40 Some studies suggest that significant damage could be obtained from exposures that are under the 
current GBD thresholds (Di et al., 2017) 
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Health co-benefits outweigh mitigation costs by very different proportions depending on the 

technological development, ranging from 1.45 (Bioenergy limitation) to around 2.19 (all 

available scenario). With no limitation on any particular technology, the “All available” scenario, 

global health co-benefits would be twice as great as the cost of the policy for achieving the 2°C 

target. As shown in Figure 5.12 , even though the bioenergy limited scenario presents higher co-

benefits, it has also significantly larger mitigation cost.  

The regional disaggregation of the costs and co-benefits are also examined, with Figure 5.14 

showing the co-benefit to cost ratio for 18 regions. Regarding burden sharing, a single global CO2 

market has been applied, so the reductions are undertaken where they are cheapest. 

 

Figure 5.14: Ratio of health co-benefit to mitigation cost per scenario (health co-benefit/mitigation cost). 
The DR used is 3% 

 

The figure shows that there are major differences around the world. Even though values are 

different between scenarios, some regional patterns can be identified. First, there are some 

regions where the co-benefits are significantly greater than the mitigation costs, particularly for 

India and China.  These two countries have ratios of 3.75-5.17 and 1.95-3.15 respectively. 

Between them they account for 33-37% and 37-38% of global co-benefits while bearing around 

14 and 24% of global mitigation costs, respectively. Factors such as development stage and high 

population densities mean that all the mitigation strategies considered produce high co-benefits 

in these regions. 

Other regions such as Europe41, Russia or Middle East, also have health co-benefits that are 

larger than mitigation costs, even though they have different national characteristics. These 

results can be explained by the ease (and relative cheapness) with which they can implement 

                                                           
41 Although the results obtained are not similar to those of the previous chapter, in this study there are 
no distributional criteria, so this result is consistent with the “least cost” solving strategy applied.  
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low carbon strategies, present-day air pollution levels, and the assumed improvements in 

pollution controls in the baseline scenario. 

Finally, there are other countries and regions where health co-benefits are not larger than 

mitigation costs, even though co-benefits sometimes are still relatively large. These regions 

include Canada, Australia, South America and the USA, where there are low population densities 

and, in some cases, where significant air pollution policies have already been implemented. 

However, health co-benefits need to be taken into consideration for policy design in these 

regions as well. In addition to the cumulative results shown above provide, Figure 5.15 shows 

the mid-term (2030) co-benefits and costs by region.  

Figure 5.15: Mid-term (2030) health co-benefits and mitigation costs per region and scenario (US$ Billion). 

The uncertainty bars represent the consistent lower and upper bounds, combining Zcf and VSL values. 

 

Globally, cost-effectiveness increases and the ratios of health co-benefits to mitigation costs are 

higher in 2030 than in 2050, ranging from 1.92 (bioenergy limitation) to 3.83 (all available) in 

2030. This result demonstrates that near-term implementation of comprehensive GHG 

mitigation strategies would result in benefits in terms of pollution and human health.  Although 

China and India have similar cumulative health co-benefits, China has larger co-benefits in 2030, 

while India has the greatest co-benefits in 2050. The following tables provide detailed 

information on the cumulative health co-benefits, mitigation costs, and ratios per region and 

scenario. 
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Table 5.2: Health Co-benefit and Mitigation cost per region, period and Scenario (US$ Million) 

 2020 

 Health Co-benefit Mitigation Cost 

 
All 

available 

Bioenergy 

limitation 
Low CCS 

Nuclear 

phase out 

All 

available 

Bioenergy 

limitation 
Low CCS 

Nuclear 

phase 

out 

Africa 6194 8573 6589 5951 3325 8226 4072 3782 

Australia_Nz 354 495 379 376 1060 2678 1309 1211 

Brazil 3860 5078 4036 3997 1346 3007 1597 1499 

Canada 680 870 714 612 793 2061 972 995 

Central 

America 
415 593 446 411 410 1013 503 466 

China 221302 294465 234753 219050 32903 74598 39384 38809 

EU-27 45049 55998 47025 35752 7651 20115 9391 9350 

Other Europe 20488 24842 21362 16993 2454 6202 2989 2894 

India 85639 121806 92089 84597 11811 27629 14277 13720 

Indonesia 2897 4051 3152 3022 1683 4019 2046 1911 

Japan 9370 13176 10161 9491 1928 4741 2351 2184 

Mexico 911 1355 973 910 771 1969 950 886 

Middle East 5343 7912 5861 5179 2383 6293 2960 2739 

Rest of Asia 40481 54444 43223 40689 6391 16202 7838 7304 

Rest of South 

America 
1732 2336 1871 1828 1696 4313 2075 1925 

Russia 41723 51405 43852 40246 3275 8048 3997 3774 

South Korea 14055 18600 14943 14057 1270 3479 1567 1563 

USA 9885 12945 10479 8617 7533 21185 9268 9758 

TOTAL 510377 678943 541907 491779 88683 215778 107545 104771 
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 2030 

 Health Co-benefit Mitigation Cost 

 All 

available 

Bioenergy 

limitation 

LowCCS Nuclear 

phase out 

All 

available 

Bioenergy 

limitation 

Low CCS Nuclear 

phase 

out 

Africa 16798 26075 16924 16650 16991 52633 18362 19500 

Australia_Nz 880 1218 936 912 3852 13782 4888 4500 

Brazil 6985 9497 7384 7198 5717 17440 6932 6555 

Canada 1291 1827 1358 1213 3362 11368 4146 4333 

Central 

America 
1151 1784 1237 1217 2041 6261 2375 2355 

China 566331 838836 601953 558062 108551 305035 128503 123466 

EU-27 84331 129491 86925 74877 27632 87019 30981 33433 

Other Europe 36165 55790 37989 32556 8544 24577 9910 9986 

India 367263 569784 371415 370706 53003 143858 59053 60833 

Indonesia 9654 13855 9905 9991 8065 22275 9028 9201 

Japan 12712 18865 13647 12602 5566 17501 6649 6376 

Mexico 2426 3697 2566 2531 3334 10817 4035 3855 

Middle East 14694 23871 14451 14801 13217 43215 13974 15331 

Rest of Asia 91766 133710 94947 92948 26852 78033 30779 31191 

Rest of South 

America 
4391 6324 4700 4546 7280 22474 8880 8404 

Russia 48578 62628 50667 47566 10868 29598 12959 12925 

South Korea 19797 28298 21371 18168 3984 13213 5071 4370 

USA 16762 26246 17910 15397 31033 118481 39822 37983 

TOTAL 1301974 1951796 1356285 1281942 339889 1017581 396346 394598 

         

         

         

         

         

         



CHAPTER 5: Health co-benefits and mitigation costs under different technological pathways 

 

84 
 

         

 2050 

 Health Co-benefit Mitigation Cost 

 All 

available 

Bioenergy 

limitation 

Low CCS Nuclear 

phase out 

All 

available 

Bioenergy 

limitation 

Low CCS Nuclear 

phase 

out 

Africa 97736 116082 96404 98588 265147 334293 258042 290897 

Australia_Nz 2946 3162 2949 3042 44852 53484 50125 48798 

Brazil 21235 20161 20356 22072 73974 115012 79761 83477 

Canada 4360 3063 4166 4423 42485 57006 42851 55074 

Central 

America 

4586 5536 4579 4724 29766 44573 28677 33701 

China 1513062 1396389 1452189 1531662 825708 1129932 912130 964855 

EU-27 303165 209267 278592 316596 256292 356577 268522 308193 

Other Europe 97212 79222 90402 100283 74682 111307 75821 89049 

India 1882350 2402301 1794067 1921977 482296 743345 555810 529950 

Indonesia 35165 40071 33747 36372 73032 142780 86958 79581 

Japan 22954 20552 21634 23506 84295 107654 78022 97358 

Mexico 11350 10653 10572 11841 62629 80882 61658 70598 

Middle East 57798 67995 55402 59170 210878 270732 184755 238342 

Rest of Asia 311412 364698 298010 317763 270809 424498 290912 303953 

Rest of South 

America 

16566 20425 16607 17199 90001 123831 97894 100432 

Russia 75171 78259 73602 77163 98044 141425 101769 118456 

South Korea 44667 39792 42559 43117 31256 49302 42731 39096 

USA 71782 40773 65793 74347 439427 584744 467073 529572 

TOTAL 4573515 4918399 4361629 4663845 3455573 4871377 3683513 3981381 
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Table 5.3: Cumulative (2020-2050) Health co-benefit and Mitigation cost (US$ trillion) 

 Health co-benefit Mitigation Cost 

 
All 

available 

Bioenergy 

limitation 

Low 

CCS 

Nuclear 

phase 

out 

All 

availabl

e 

Bioenergy 

limitation 
LowCCS 

Nuclear 

phase 

out 

Africa 0.62 0.86 0.62 0.62 1.11 2.01 1.09 1.25 

Australia_Nz 0.02 0.03 0.03 0.03 0.22 0.42 0.26 0.25 

Brazil 0.19 0.23 0.19 0.19 0.32 0.68 0.36 0.37 

Canada 0.04 0.04 0.04 0.04 0.20 0.39 0.21 0.26 

Central America 0.04 0.05 0.04 0.04 0.13 0.26 0.12 0.14 

China 14.15 18.36 14.31 14.06 4.50 9.37 5.09 5.21 

EU-27 2.42 2.84 2.36 2.38 1.38 2.68 1.45 1.69 

Other Europe 0.94 1.18 0.93 0.92 0.39 0.78 0.41 0.47 

India 12.88 18.41 12.40 13.11 2.49 4.91 2.71 2.80 

Indonesia 0.28 0.37 0.28 0.29 0.38 0.84 0.42 0.42 

Japan 0.28 0.38 0.29 0.28 0.37 0.72 0.36 0.43 

Mexico 0.08 0.10 0.08 0.08 0.24 0.47 0.24 0.28 

Middle East 0.44 0.63 0.43 0.45 0.86 1.67 0.78 1.00 

Rest of Asia 2.59 3.51 2.56 2.64 1.32 2.69 1.43 1.52 

Rest of South 

America 
0.13 0.18 0.13 0.14 0.40 0.77 0.44 0.46 

Russia 1.05 1.29 1.07 1.04 0.49 0.97 0.52 0.60 

South Korea 0.47 0.62 0.49 0.44 0.17 0.40 0.23 0.19 

USA 0.53 0.58 0.52 0.52 2.00 4.13 2.25 2.45 

TOTAL 37.16 49.63 36.75 37.26 16.96 34.17 18.38 19.82 

 

In order to see the regional cost-effectiveness (ratio health co-benefit to mitigation cost) of each 

scenario, Figure 5.16  compares the ratio of each scenario with the “All available” pathway for 

each period.  It shows that the bioenergy limited scenario is the less cost-effective in most of the 

cases, although there are some regions where the divergences between scenarios decrease 

significantly in the long term (2050). For the “LowCCS” and “Nuclear phase out” scenarios, the 

cost-effectiveness is closer to the “All available” scenario, but there are some interesting 

differences. First, there are some regions (Canada, Europe and USA) that are much less cost-

effective when nuclear energy is phased out. This effect is larger in the mid-term. The reason is 

that those regions already have a significant amount of non-CO2 emitting nuclear power 
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installed (which is gradually phased out between 2010 and 2060), so the changes they need to 

do to be aligned with the mitigation strategy, are not as large as the changes in other regions in 

the medium term. Therefore, the co-benefits in these regions would be delayed.  Second, when 

there is a limit on the availability of the CCS technologies, the regional allocation of the 

mitigation effort is modified. Therefore, some regions such as Japan and the Middle East have 

smaller CO2 reductions assigned when there is a limit on CCS, reducing the mitigation cost. As 

CCS technologies are not as effective in reducing air pollutants, there is a reduction in policy 

costs in these regions with no significant consequences for health co-benefits.  

Figure 5.16: Difference between the health co-benefit to mitigation cost ratio per region and scenario. 

Each scenario is compared against the “all available”, represented by the dashed red line. 

 

Sensitivity analysis: updated emission factors in China 

Recent studies (Zheng et al., 2018) show that air pollutant emissions in China could be smaller 

than was initially expected due to the effective implementation of clean air policies in recent 

years. This would decrease pollutants in the baseline scenario and, therefore, the required effort 

to avoid pollutants in every policy scenario would also be reduced. Consequently, the calculated 

co-benefit for this region may be smaller than estimated here. While these newer emission 

factors were not included in the SSP assumptions used in this study, this subsection includes an 

additional calculation estimating results for China with these recent policies applied, which 

clearly underlines the importance of the taken assumptions. This comparison focuses on SO2 

because it varies the most when updating the EFs, and as it is the most influential specie for the 

formation of secondary PM2.5. 

Results in Zheng et al., 2018 imply that emission factors over this period would be lower, 

especially for SO2, a major precursor for PM2.5, than assumed in these GCAM scenarios. While, 

from 2010 to 2017, GCAM assumes that SO2 would decrease around 16%, Zheng et al., 2018 

estimates that this reduction was about 65%. For that reason, a sensitivity analysis has been 

performed by using updated EFs in GCAM in order to evaluate how these differences would 

affect to the calculated co-benefit in this region.  
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Air pollution standards outlined in Zheng et al 2018 have been fed into the model, to adjust NOx 

and SO2 emissions factors for China from the electricity, cement, industrial combustion, and 

district heat sectors using GCAMv5.1.2, converting from mg/m3 to Gg/PJ.42 This comparison was 

performed with GCAMv5.1.2 since this version of the model has additional capabilities for 

setting air pollutant emission factor pathways that were not available in previous model 

versions. A linear reduction has been applied to emissions factors across time steps since GCAM 

runs in 5-year time slices to account for emission controls applied to existing industrial boilers 

and power plants.  Air pollution standards have been incorporated as described in Zheng et al 

2018 for China’s NOx and SO2 emissions from any new plants.  

For coal fired power plants built in China in the 2010 and 2015 time periods in GCAM, hybrid 

emissions factors have been applied since 70% of existing plants met the ultra-low emissions 

standards in 2017 according to Zheng et al 2018.  For plants built in 2010, half the plants are 

assumed to meet the existing unit standards (200 mg/m3 for SO2, 100 mg/m3 for NOx), in effect 

from 2012-2015 (China’s standard GB 13223-2011), and half the plants meet the ultra-low 

standards (35 mg/m3 for SO2 and 50 mg/m3 NOx).  For plants built in 2015, half of the plants are 

assumed to meet the new unit standards (100 mg/m3 for SO2 and NOx), in effect from 2012-

2015 (China’s standard GB 13223-2011), and half of the plants meet the ultra-low standards.  

For power plants built after 2015, all plants are assumed to meet the ultra-low standards. Finally, 

the fuel preference elasticity for coal use is adjusted in the residential sector to agree with 1990-

2016 residential coal consumption trends from the China Statistical Yearbook 2017. The SO2 

emissions by sector of the applied and updated references and the ones reported in Zheng et al 

2018 are summarized in Figure 5.17 .There is a reasonable agreement between the Zheng et al 

2018 estimates of anthropogenic emissions from 2010 to 2017 and the 2015-2020 trend in 

China’s SO2 and NOx emissions from GCAM, given differences in base-year emission estimates. 

This additional pollutant emission reduction in the baseline scenario (after updating EFs) will 

decrease reduction in pollutants in the climate policy scenarios, so the estimated health co-

benefits would also be overestimated. Figure 5.18  shows the difference in SO2 emissions for the 

policy scenarios of this study relative to the reference, compared to the difference in SO2 relative 

to the reference with the updated EFs for China. For that, “2°C all available” scenario is 

replicated by running GCAMv5.1.2 with the updated EFs and relevant carbon prices from the 

GCAMv4.3 “All available” simulation. Then obtained SO2 emissions are compared with the 

“reference with updated EFs” (run with GCAM 5.1.2). Therefore, it is possible compare reference 

and policy SO2 emissions in a consistent way, although the GCAM versions used are not the 

same. The co-benefit in terms of reduced SO2 emissions from the “all available” climate policy is 

50-60% lower with updated emission factor pathways as compared to the SSP-based GCAM 

scenarios used in this chapter. 

Finally, these divergences would consequently entail a different amount of premature deaths 

on this region. In order to capture the magnitude of the differences, Figure 5.19 compares the 

reference scenario used and the updated baseline scenario for China. It shows that the health 

co-benefits calculated in this study for this region may be overestimated in the short term 

(2020), with a difference of 181490 premature deaths (around 13%). However, the divergence 

would be reduced over the time horizon analyzed, becoming smaller than 54370 deaths (5%) in 

                                                           
42Data on coal properties from India was used for this conversion since this was readily available. 
Published sources differ substantial on coal properties in China. These assumptions do not significantly 
alter the conclusions since, in any case, current air pollution standards for the sectors above in China will 
result in much lower emissions regardless.  



CHAPTER 5: Health co-benefits and mitigation costs under different technological pathways 

 

88 
 

2050. Given the relatively large difference on SO2 emission between the used and the updated 

reference scenarios, one might expect a larger difference in premature deaths. The reason why 

the difference is relatively small has to do with the PM2.5 atmospheric composition. In the 

reference scenario used, in 2050, from the total atmospheric PM2.5, around 63% are 

anthropogenic, from which 15% and 85% are primary and secondary particles, respectively. The 

secondary particles are composed of NO3 (45%), NH4 (28%) and SO4 (27%), which is a 14% of the 

total atmospheric PM2.5. Consequently, SO2 variations, with other components unaltered, would 

have a significantly smaller impact on health.  

Similarly, recent literature (Shi et al 2017) shows that GCAM estimations for SO2 emissions in 

USA are overestimated compared to EPA projected inventories, mostly due to divergences in 

electric and transport (light duty vehicles) sectors. Concretely, total USA SO2 emissions would 

differ from 22% to 60% relative to the reference scenario used from 2010 to 2025. Therefore, 

the potential SO2 reduction and the associated health co-benefit would be overestimated. This 

confirms that assumptions for the baseline scenario are going to be important for determining 

the results. So, as said in Shi et al 2017, it is important to include national and subnational data 

into IAMs, which is planned to be explored in further research. If other air pollutant emissions 

are also overestimated in the version of GCAM used in this chapter, then this would likely further 

lower co-benefit estimates. Overall, this sensitivity exercise demonstrates that the assumed 

baseline air pollutant emission scenario will have an impact on the magnitude of co-benefit 

estimates.   

Figure 5.17: SO2 emissions per scenario for electricity (left) and industrial combustion (right) sectors (Tg) 
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Figure 5.18: Avoided SO2 (EM(ref)-Em(policy)) per period between policy and reference scenarios (Tg) 

 

Figure 5.19: Difference in premature deaths in China between the current and the “updated EFs” 
reference scenarios by period. The results are shown in absolute (deaths) and relative (%) terms 

 

 

Regional air Pollutant Reductions Relative to CO2 
With regard to the reductions of air pollutants, we highlight here the need for applying an 

integrated methodology since the emission reductions of each specie would have their own 

behavior over time, not necessarily following CO2, as has been assumed in some previous work 

(Shindell et al., 2018). An assumption of proportional reductions among pollutants would not be 

accurate enough to capture these complex dynamics, as it is demonstrated in Figure 5.20. 

-2

0

2

4

6

8

10

1990 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050D
if

fe
re

n
ce

 in
 e

m
is

si
o

n
s 

(T
g)

All available Bioenergy limitation

Low CCS Nuclear Phase-out

All available with updated Efs

13,23%

8,69%

5,99%

4,22%

0%

2%

4%

6%

8%

10%

12%

14%

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2020 2030 2040 2050

D
if

fe
re

n
ce

 in
 C

h
in

a 
p

re
m

at
u

re
 d

ea
th

s 



CHAPTER 5: Health co-benefits and mitigation costs under different technological pathways 

 

90 
 

Figure 5.20: Relative change in global air pollutants compared to CO2, per scenario over the medium 
(2030) and long (2050) term. 

 

Figure 5.20 demonstrates that air pollutant reductions do not follow similar patterns and are 

not proportional to CO2 reductions. Air pollutant reductions are generally smaller than CO2 

reductions, with large differences in the ratio per pollutant. NOx emissions decrease by 52-66% 

of the CO2 reduction. This contrasts to POM emissions, which change relatively little (7-11% of 

CO2). The ratio varies over time for SO2 and BC, because as the century progresses with the 

deployment of emission controls reducing the remaining reduction potential. SO2 reductions in 

the medium term (2030) are similar to those in CO2 (92 – 102%), while in the longer term (2050) 

the change is smaller (64-71%). SO2 reductions show the closest correspondence to CO2 

reductions, as has been noted previously (Van Vuuren et al 2008). 

Similarly, Figure 5.21 disaggregates this information into the regional level. It shows that 

particulate organic matter (POM) and carbon monoxide (CO) have some negative values, what 

means that the emissions of these species would increase while CO2 is decreasing. This effect, 

driven by the higher biomass use, demonstrates one of the possible externalities of the 

expansion of this technology. Second, Figure 5.20 indicates that the decrease in SO2 emissions, 

in relative terms, would be similar to the CO2 decrease in the medium term, while in the long 

term it would not. Figure 5.21 demonstrates that this effect is mainly driven by the USA, as the 

model assumes that this region would have a large potential to rapidly decrease SO2 emissions, 

which may be overestimated as seen in previous subsection. 
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Figure 5.21: Regional relative changes in global air pollutants compared to CO2, per scenario. The figures 
show the mid (2030) and long (2050) terms 
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Conclusions 
The aim of this PhD Thesis is to evaluate air pollution driven health and agricultural impacts 

under different climate change scenarios. For that purpose, an innovative methodology has 

been developed that subsequently connects different models and tools in order to widen the 

perspective of climate policies. The application of this methodology to different climate 

scenarios have demonstrated the need of including these side effect into policy design based on 

the obtained outcomes, which may be of interest to a range of academics and stakeholders.  

However, the use of models for prediction have some limitations, which have been shown 

during the PhD Thesis and reported in different studies (Pindyck, 2017). The large amount of 

assumptions that need to be taken in order to develop model-based climate policy analysis 

entails a certain degree of uncertainty in the results. As shown in Chapter 5, the assumptions of 

the baseline scenario and the definition of mitigation scenarios would directly affect to the final 

results. So, the framework and the taken assumptions should be carefully considered when 

analyzing the outcomes obtained from this kind of studies. 

Nevertheless, integrated assessment models provide substantial insights to policy analysis, as 

they estimate future effects of different climate actions. The most influential institutions such 

as the Intergovernmental Panel on Climate Change (IPCC) or the International Energy Agency 

(IEA) include these modelling studies on their reports. Moreover, model-based research 

communities (such as IAM or “health co-benefit” communities) actively encourage to work on 

the refinement of the tools, in order to reduce the uncertainties. The accuracy of modeling 

results has become a key topic in recent years, with successful results as shown in different 

studies (e.g. Shi et al., 2017). 

Taking this into consideration, some general conclusions can be drawn from this PhD thesis. 

First, Chapter 2 examines future O3 impacts and the predicted effects on agricultural markets 

for a baseline scenario (no climate policy). Projected O3 concentration levels would exceed the 

safe levels, so significant crop losses are expected in future periods, with the economic impacts 

that this would entail. This study draws two different conclusions: On the one hand, urgent 

action is needed to reduce emissions of O3 precursors. The estimated losses will have severe 

effects on production levels and crop prices, which will directly affect land use changes and food 

security in developing countries. On the other hand, O3 impacts should be factored into model 

simulation exercises, as the effects on agricultural markets can regionally modify resource 

allocation and crop production levels, which are significant aspects to be considered when 

estimating future results.   

Moreover, inefficient policies such as fossil fuel subsidies (FFS) distort potential investments in 

clean energy sources, which are an essential element for reducing air pollution driven health 

impacts. The analysis in Chapter 3 shows that the phasing out and recycling of FFS into solar 

technologies would not suffice to meet climate targets, but it would contribute positively to 

efforts to meet certain targets such as CO2 and air pollutant reduction, due to the increase of 

renewable energy in the electricity mix. Nevertheless, reductions in some pollutants (SO2) would 

be offset by increases in others such as CO and OC, which are closely related to the expansion 

of bioenergy. Therefore, the impacts of air pollution driven side effects would not be significant 

and more stringent policies would be required in order to obtain significant health or agricultural 

co-benefits. 

In that framework, the subsequent chapters analyze the health co-benefits associated with 

different transition pathways. Chapter 4 focuses on two different long-term temperature targets 
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(1.5°C and 2°C) where mitigation efforts are shared between countries following three 

established equity criteria. Chapter 5 analyzes the potential co-benefits of meeting the 2°C 

target under different technological scenarios. These chapters conclude that for most scenarios 

health co-benefits would outweigh the mitigation costs of each strategy at global level. In some 

countries, such as India or China, health co-benefits would significantly outweigh costs, while in 

others they would cover a substantial part of the associated cost. Moreover, to address the 

uncertainty of the assumptions (e.g. emission coefficients or VSL), various sensitivity analyses 

are performed which demonstrate the robustness of the results obtained. Consequently, the 

health co-benefits analysis developed in this thesis might encourage policy makers to consider 

these side effects in policy design, given that they might increase the cost-effectiveness of 

different climate strategies. 

Further Research 
The integrated modeling framework developed and the studies carried out in the course of this 

thesis have opened up a wide range of new research questions. First, there are more and more 

studies which analyze health co-benefits at a global level, but with limited information on 

national and regional scales. As many countries are now defining their national climate 

strategies, the addition of potential side-effects can provide valuable insights for policy makers. 

Consequently, there is an emerging need to downscale health co-benefit analysis in order to 

conduct national or regional studies which can encourage stakeholders to consider these effects 

in the design of climate strategies. As an example, the Spanish government has recently 

incorporated the methodology developed here in its Plan Nacional Integrado de Energía y Clima 

(PNIEC) 2021-203043”, on which I had occasion to work. This is the first step towards applying 

this work to national/regional strategies, increasing the possibilities of extending the 

methodology to further specific mitigation plans.  

Another ongoing study in this line arising from this PhD thesis is the estimation of health co-

benefits from air pollutant reduction due to the shutting down of coal-fired power plants, which 

is a key topic in current climate debate. That study compares the co-benefits of phasing out coal 

with those of applying NDCs globally. Preliminary results show that in the medium term some 

regions can obtain greater co-benefits by shutting down coal-fired power plants. I am also 

collaborating with the World Health Organization on a project to analyze the uncertainty in the 

results (from Chapters 4 and 5). Under the project name “A sensitivity analysis of modelling 

health co-benefits of global climate mitigation commitments”, various researchers are expected 

to apply their modelling methods to compare the health outcomes of a single mitigation 

scenario (2°C, “least cost” approach). This study not only reveals the extent to which the results 

of different modelling groups are similar, but also serves to analyze the isolated effect of 

different inputs in order to identify which assumptions/parameters are more (and less) 

uncertain.  

Finally, the study of O3 implications is another contribution to the field, but some limitations 

need to be analyzed. Further research should consider various aspects, such as the fact that the 

isolated analysis of O3 is failing to capture the interaction of this pollutant with other harmful 

effects. A follow-up study will analyze the combined effects of O3, the carbon fertilization effect 

(CFE), and climate variables, measured as changes in temperature and precipitation. Yet another 

                                                           
43 https://www.miteco.gob.es/es/cambio-climatico/participacion-
publica/documentoparticipacionpublicaborradordelplannacionalintegradodeenergiayclima2021-
2030_tcm30-487344.pdf" 

https://www.miteco.gob.es/es/cambio-climatico/participacion-publica/documentoparticipacionpublicaborradordelplannacionalintegradodeenergiayclima2021-2030_tcm30-487344.pdf
https://www.miteco.gob.es/es/cambio-climatico/participacion-publica/documentoparticipacionpublicaborradordelplannacionalintegradodeenergiayclima2021-2030_tcm30-487344.pdf
https://www.miteco.gob.es/es/cambio-climatico/participacion-publica/documentoparticipacionpublicaborradordelplannacionalintegradodeenergiayclima2021-2030_tcm30-487344.pdf
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research line open is the analysis of the marginal effects of different O3 precursors on crop yields. 

Identifying the most harmful pollutants in each region would enable national policy makers to 

determine the most effective policy for reducing potential O3 effects. Finally, another interesting 

line of research would be to explore how O3 effects on agricultural productivity can affect food 

security in different climate scenarios, including those of the Paris Agreement. 
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ANNEX I: GCAM and TM5-FASST regions 

COUNTRY ISO 3 GCAM REGION TM5-FASST REGION 

BURUNDI BDI Africa_Eastern EAF 

COMOROS COM Africa_Eastern EAF 

DJIBOUTI DJI Africa_Eastern EAF 

ERITREA ERI Africa_Eastern EAF 

ETHIOPIA ETH Africa_Eastern EAF 

KENYA KEN Africa_Eastern EAF 

MADAGASCAR MDG Africa_Eastern EAF 

MAURITIUS MUS Africa_Eastern EAF 

REUNION REU Africa_Eastern EAF 

RWANDA RWA Africa_Eastern EAF 

SUDAN SDN Africa_Eastern EAF 

SOMALIA SOM Africa_Eastern EAF 

UGANDA UGA Africa_Eastern EAF 

EGYPT EGY Africa_Northern EGY 

ALGERIA DZA Africa_Northern NOA 

WESTERN SAHARA ESH Africa_Northern NOA 

LIBYAN ARAB JAMAHIRIYA LBY Africa_Northern NOA 

MOROCCO MAR Africa_Northern NOA 

TUNISIA TUN Africa_Northern NOA 

TANZANIA, UNITED REPUBLIC OF TZA Africa_Southern EAF 

LESOTHO LSO Africa_Southern RSA 

SWAZILAND SWZ Africa_Southern RSA 

ANGOLA AGO Africa_Southern SAF 

BOTSWANA BWA Africa_Southern SAF 

MOZAMBIQUE MOZ Africa_Southern SAF 

MALAWI MWI Africa_Southern SAF 

NAMIBIA NAM Africa_Southern SAF 

ZAMBIA ZMB Africa_Southern SAF 

ZIMBABWE ZWE Africa_Southern SAF 

CENTRAL AFRICAN REPUBLIC CAF Africa_Western EAF 

CONGO, Democratic Republic of (was Zaire) COD Africa_Western EAF 

CHAD TCD Africa_Western EAF 

BENIN BEN Africa_Western WAF 

BURKINA FASO BFA Africa_Western WAF 

COTE D'IVOIRE CIV Africa_Western WAF 

CAMEROON CMR Africa_Western WAF 

CONGO, Republic of COG Africa_Western WAF 

CAPE VERDE CPV Africa_Western WAF 

GABON GAB Africa_Western WAF 

GHANA GHA Africa_Western WAF 

GUINEA GIN Africa_Western WAF 

GAMBIA GMB Africa_Western WAF 
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GUINEA-BISSAU GNB Africa_Western WAF 

EQUATORIAL GUINEA GNQ Africa_Western WAF 

LIBERIA LBR Africa_Western WAF 

MALI MLI Africa_Western WAF 

MAURITANIA MRT Africa_Western WAF 

NIGER NER Africa_Western WAF 

NIGERIA NGA Africa_Western WAF 

SENEGAL SEN Africa_Western WAF 

SIERRA LEONE SLE Africa_Western WAF 

SAO TOME AND PRINCIPE STP Africa_Western WAF 

TOGO TGO Africa_Western WAF 

ARGENTINA ARG Argentina ARG 

AUSTRALIA AUS Australia_NZ AUS 

NEW ZEALAND NZL Australia_NZ NZL 

BRAZIL BRA Brazil BRA 

ARUBA ABW CAC RCAM 

ANGUILLA AIA CAC RCAM 

NETHERLANDS ANTILLES ANT CAC RCAM 

ANTIGUA AND BARBUDA ATG CAC RCAM 

BAHAMAS BHS CAC RCAM 

BELIZE BLZ CAC RCAM 

BARBADOS BRB CAC RCAM 

COSTA RICA CRI CAC RCAM 

CUBA CUB CAC RCAM 

CAYMAN ISLANDS CYM CAC RCAM 

DOMINICA DMA CAC RCAM 

DOMINICAN REPUBLIC DOM CAC RCAM 

GUADELOUPE GLP CAC RCAM 

GRENADA GRD CAC RCAM 

GUATEMALA GTM CAC RCAM 

HONDURAS HND CAC RCAM 

HAITI HTI CAC RCAM 

JAMAICA JAM CAC RCAM 

SAINT KITTS AND NEVIS KNA CAC RCAM 

SAINT LUCIA LCA CAC RCAM 

MONTSERRAT MSR CAC RCAM 

MARTINIQUE MTQ CAC RCAM 

NICARAGUA NIC CAC RCAM 

PANAMA PAN CAC RCAM 

EL SALVADOR SLV CAC RCAM 

TRINIDAD AND TOBAGO TTO CAC RCAM 

SAINT VINCENT AND THE GRENADINES VCT CAC RCAM 

BERMUDA BMU CAC USA 

CANADA CAN Canada CAN 
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KAZAKHSTAN KAZ Central Asia KAZ 

MONGOLIA MNG Central Asia MON 

KYRGYZSTAN KGZ Central Asia RIS 

TAJIKISTAN TJK Central Asia RIS 

TURKMENISTAN TKM Central Asia RIS 

UZBEKISTAN UZB Central Asia RIS 

ARMENIA ARM Central Asia RUS 

AZERBAIJAN AZE Central Asia RUS 

GEORGIA GEO Central Asia RUS 

CHINA CHN China CHN 

HONG KONG HKG China CHN 

MACAU MAC China CHN 

COLOMBIA COL Colombia RSAM 

SLOVENIA SVN EU-12 AUT 

BULGARIA BGR EU-12 BGR 

CYPRUS CYP EU-12 GRC 

HUNGARY HUN EU-12 HUN 

MALTA MLT EU-12 ITA 

ESTONIA EST EU-12 POL 

LITHUANIA LTU EU-12 POL 

LATVIA LVA EU-12 POL 

POLAND POL EU-12 POL 

CZECH REPUBLIC CZE EU-12 RCZ 

SLOVAKIA SVK EU-12 RCZ 

ROMANIA ROU EU-12 ROM 

FALKLAND ISLANDS (MALVINAS) FLK EU-15 ARG 

AUSTRIA AUT EU-15 AUT 

BELGIUM BEL EU-15 BLX 

LUXEMBOURG LUX EU-15 BLX 

NETHERLANDS NLD EU-15 BLX 

GREENLAND GRL EU-15 CAN 

SPAIN ESP EU-15 ESP 

GIBRALTAR GIB EU-15 ESP 

PORTUGAL PRT EU-15 ESP 

FINLAND FIN EU-15 FIN 

ANDORRA AND EU-15 FRA 

FRANCE FRA EU-15 FRA 

UNITED KINGDOM GBR EU-15 GBR 

IRELAND IRL EU-15 GBR 

GREECE GRC EU-15 GRC 

ITALY ITA EU-15 ITA 

MONACO MCO EU-15 ITA 

SAN MARINO SMR EU-15 ITA 

VATICAN CITY STATE (HOLY SEE) VAT EU-15 ITA 
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WALLIS AND FUTUNA ISLANDS WLF EU-15 PAC 

TURKS AND CAICOS ISLANDS TCA EU-15 RCAM 

VIRGIN ISLANDS (BRITISH) VGB EU-15 RCAM 

GERMANY DEU EU-15 RFA 

DENMARK DNK EU-15 SWE 

FAROE ISLANDS FRO EU-15 SWE 

SWEDEN SWE EU-15 SWE 

SAINT PIERRE AND MIQUELON SPM EU-15 USA 

SAINT HELENA SHN EU-15 WAF 

LIECHTENSTEIN LIE Europe FTA AUT 

SWITZERLAND CHE Europe FTA CHE 

ICELAND ISL Europe FTA NOR 

NORWAY NOR Europe FTA NOR 

SVALBARD AND JAN MAYEN ISLANDS SJM Europe FTA NOR 

BELARUS BLR Europe_Eastern UKR 

MOLDOVA, REPUBLIC OF MDA Europe_Eastern UKR 

UKRAINE UKR Europe_Eastern UKR 

ALBANIA ALB Europe_Non_EU RCEU 

BOSNIA AND HERZEGOWINA BIH Europe_Non_EU RCEU 

CROATIA (local name: Hrvatska) HRV Europe_Non_EU RCEU 

MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF MKD Europe_Non_EU RCEU 

SERBIA AND MONTENEGRO SCG Europe_Non_EU RCEU 

TURKEY TUR Europe_Non_EU TUR 

INDIA IND India NDE 

INDONESIA IDN Indonesia IDN 

JAPAN JPN Japan JPN 

MEXICO MEX Mexico MEX 

UNITED ARAB EMIRATES ARE Middle East GOLF 

BAHRAIN BHR Middle East GOLF 

IRAN (ISLAMIC REPUBLIC OF) IRN Middle East GOLF 

IRAQ IRQ Middle East GOLF 

KUWAIT KWT Middle East GOLF 

OMAN OMN Middle East GOLF 

QATAR QAT Middle East GOLF 

SAUDI ARABIA SAU Middle East GOLF 

YEMEN YEM Middle East GOLF 

ISRAEL ISR Middle East MEME 

JORDAN JOR Middle East MEME 

LEBANON LBN Middle East MEME 

PALESTINIAN TERRITORY, Occupied PSE Middle East MEME 

SYRIAN ARAB REPUBLIC SYR Middle East MEME 

PAKISTAN PAK Pakistan RSAS 

RUSSIAN FEDERATION RUS Russia RUS 

SOUTH AFRICA ZAF South Africa RSA 
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FRENCH GUIANA GUF South America_Northern RSAM 

GUYANA GUY South America_Northern RSAM 

SURINAME SUR South America_Northern RSAM 

VENEZUELA VEN South America_Northern RSAM 

URUGUAY URY South America_Southern ARG 

CHILE CHL South America_Southern CHL 

BOLIVIA BOL South America_Southern RSAM 

ECUADOR ECU South America_Southern RSAM 

PERU PER South America_Southern RSAM 

PARAGUAY PRY South America_Southern RSAM 

SRI LANKA LKA South Asia NDE 

MALDIVES MDV South Asia NDE 

AFGHANISTAN AFG South Asia RSAS 

BANGLADESH BGD South Asia RSAS 

BHUTAN BTN South Asia RSAS 

NEPAL NPL South Asia RSAS 

KOREA, REPUBLIC OF KOR South Korea COR 

SEYCHELLES SYC Southeast Asia EAF 

TIMOR-LESTE TLS Southeast Asia IDN 

KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF PRK Southeast Asia MON 

BRUNEI DARUSSALAM BRN Southeast Asia MYS 

MALAYSIA MYS Southeast Asia MYS 

SINGAPORE SGP Southeast Asia MYS 

AMERICAN SAMOA ASM Southeast Asia PAC 

COOK ISLANDS COK Southeast Asia PAC 

FIJI FJI Southeast Asia PAC 

MICRONESIA, FEDERATED STATES OF FSM Southeast Asia PAC 

GUAM GUM Southeast Asia PAC 

KIRIBATI KIR Southeast Asia PAC 

MARSHALL ISLANDS MHL Southeast Asia PAC 

NORTHERN MARIANA ISLANDS MNP Southeast Asia PAC 

NEW CALEDONIA NCL Southeast Asia PAC 

NORFOLK ISLAND NFK Southeast Asia PAC 

NIUE NIU Southeast Asia PAC 

NAURU NRU Southeast Asia PAC 

PITCAIRN PCN Southeast Asia PAC 

PALAU PLW Southeast Asia PAC 

PAPUA NEW GUINEA PNG Southeast Asia PAC 

FRENCH POLYNESIA PYF Southeast Asia PAC 

SOLOMON ISLANDS SLB Southeast Asia PAC 

TOKELAU TKL Southeast Asia PAC 

TONGA TON Southeast Asia PAC 

TUVALU TUV Southeast Asia PAC 

VANUATU VUT Southeast Asia PAC 



ANNEX I: GCAM and TM5-FASST regions 

 

104 
 

SAMOA WSM Southeast Asia PAC 

PHILIPPINES PHL Southeast Asia PHL 

CAMBODIA KHM Southeast Asia RSEA 

LAO PEOPLE'S DEMOCRATIC REPUBLIC LAO Southeast Asia RSEA 

MYANMAR MMR Southeast Asia RSEA 

MAYOTTE MYT Southeast Asia SAF 

THAILAND THA Southeast Asia THA 

VIET NAM VNM Southeast Asia VNM 

TAIWAN TWN Taiwan TWN 

PUERTO RICO PRI USA RCAM 

VIRGIN ISLANDS (U.S.) VIR USA RCAM 

UNITED STATES USA USA USA 
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ANNEX II: Crop commodities in GCAM 

Item GCAM commodity GCAM Crop category 

Maize Corn Staple crop 

Maize, green Corn Staple crop 

Popcorn Corn Staple crop 

Agave Fibres Nes FiberCrop Non-staple crop 

Coir FiberCrop Non-staple crop 

Fibre Crops Nes FiberCrop Non-staple crop 

Flax fibre and tow FiberCrop Non-staple crop 

Hemp Tow Waste FiberCrop Non-staple crop 

Jute FiberCrop Non-staple crop 

Manila Fibre (Abaca) FiberCrop Non-staple crop 

Other Bastfibres FiberCrop Non-staple crop 

Ramie FiberCrop Non-staple crop 

Seed cotton FiberCrop Non-staple crop 

Sisal FiberCrop Non-staple crop 

forage Products FodderGrass Feed crop 

Rye grass for forage & silage FodderGrass Feed crop 

Alfalfa for forage and silage FodderHerb Feed crop 

Beets for Fodder FodderHerb Feed crop 

Cabbage for Fodder FodderHerb Feed crop 

Carrots for Fodder FodderHerb Feed crop 

Clover for forage and silage FodderHerb Feed crop 

Green Oilseeds for Silage FodderHerb Feed crop 

Leguminous for Silage FodderHerb Feed crop 

Maize for forage and silage FodderHerb Feed crop 

Sorghum for forage and silage FodderHerb Feed crop 

Swedes for Fodder FodderHerb Feed crop 

Turnips for Fodder FodderHerb Feed crop 

Vegetables Roots Fodder FodderHerb Feed crop 

Vetches FodderHerb Feed crop 

Almonds, with shell MiscCrop Non-staple crop 

Anise, badian, fennel, corian. MiscCrop Non-staple crop 

Apples MiscCrop Non-staple crop 

Apricots MiscCrop Non-staple crop 

Arecanuts MiscCrop Non-staple crop 

Artichokes MiscCrop Non-staple crop 

Asparagus MiscCrop Non-staple crop 

Avocados MiscCrop Non-staple crop 

Bambara beans MiscCrop Non-staple crop 

Bananas MiscCrop Non-staple crop 

Beans, dry MiscCrop Non-staple crop 

Beans, green MiscCrop Non-staple crop 

Berries Nes MiscCrop Non-staple crop 
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Blueberries MiscCrop Non-staple crop 

Brazil nuts, with shell MiscCrop Non-staple crop 

Broad beans, horse beans, dry MiscCrop Non-staple crop 

Cabbages and other brassicas MiscCrop Non-staple crop 

Carobs MiscCrop Non-staple crop 

Carrots and turnips MiscCrop Non-staple crop 

Cashew nuts, with shell MiscCrop Non-staple crop 

Cashewapple MiscCrop Non-staple crop 

Cauliflowers and broccoli MiscCrop Non-staple crop 

Cherries MiscCrop Non-staple crop 

Chestnuts MiscCrop Non-staple crop 

Chick peas MiscCrop Non-staple crop 

Chicory roots MiscCrop Non-staple crop 

Chillies and peppers, dry MiscCrop Non-staple crop 

Chillies and peppers, green MiscCrop Non-staple crop 

Cinnamon (canella) MiscCrop Non-staple crop 

Citrus fruit, nes MiscCrop Non-staple crop 

Cloves MiscCrop Non-staple crop 

Cocoa beans MiscCrop Non-staple crop 

Coffee, green MiscCrop Non-staple crop 

Cow peas, dry MiscCrop Non-staple crop 

Cranberries MiscCrop Non-staple crop 

Cucumbers and gherkins MiscCrop Non-staple crop 

Currants MiscCrop Non-staple crop 

Dates MiscCrop Non-staple crop 

Eggplants (aubergines) MiscCrop Non-staple crop 

Figs MiscCrop Non-staple crop 

Fruit Fresh Nes MiscCrop Non-staple crop 

Fruit, tropical fresh nes MiscCrop Non-staple crop 

Garlic MiscCrop Non-staple crop 

Ginger MiscCrop Non-staple crop 

Gooseberries MiscCrop Non-staple crop 

Grapefruit (inc. pomelos) MiscCrop Non-staple crop 

Grapes MiscCrop Non-staple crop 

Hazelnuts, with shell MiscCrop Non-staple crop 

Hops MiscCrop Non-staple crop 

Kiwi fruit MiscCrop Non-staple crop 

Kolanuts MiscCrop Non-staple crop 

Leeks, other alliaceous veg MiscCrop Non-staple crop 

Leguminous vegetables, nes MiscCrop Non-staple crop 

Lemons and limes MiscCrop Non-staple crop 

Lentils MiscCrop Non-staple crop 

Lettuce and chicory MiscCrop Non-staple crop 

Lupins MiscCrop Non-staple crop 
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Mangoes, mangosteens, guavas MiscCrop Non-staple crop 

Mate MiscCrop Non-staple crop 

Mushrooms and truffles MiscCrop Non-staple crop 

Nutmeg, mace and cardamoms MiscCrop Non-staple crop 

Nuts, nes MiscCrop Non-staple crop 

Okra MiscCrop Non-staple crop 

Onions (inc. shallots), green MiscCrop Non-staple crop 

Onions, dry MiscCrop Non-staple crop 

Oranges MiscCrop Non-staple crop 

Other melons (inc.cantaloupes) MiscCrop Non-staple crop 

Papayas MiscCrop Non-staple crop 

Peaches and nectarines MiscCrop Non-staple crop 

Pears MiscCrop Non-staple crop 

Peas, dry MiscCrop Non-staple crop 

Peas, green MiscCrop Non-staple crop 

Pepper (Piper spp.) MiscCrop Non-staple crop 

Peppermint MiscCrop Non-staple crop 

Persimmons MiscCrop Non-staple crop 

Pigeon peas MiscCrop Non-staple crop 

Pineapples MiscCrop Non-staple crop 

Pistachios MiscCrop Non-staple crop 

Plantains MiscCrop Non-staple crop 

Plums and sloes MiscCrop Non-staple crop 

Pome fruit, nes MiscCrop Non-staple crop 

Pulses, nes MiscCrop Non-staple crop 

Pumpkins, squash and gourds MiscCrop Non-staple crop 

Pyrethrum,Dried MiscCrop Non-staple crop 

Quinces MiscCrop Non-staple crop 

Raspberries MiscCrop Non-staple crop 

Sour cherries MiscCrop Non-staple crop 

Spices, nes MiscCrop Non-staple crop 

Spinach MiscCrop Non-staple crop 

Stone fruit, nes MiscCrop Non-staple crop 

Strawberries MiscCrop Non-staple crop 

String beans MiscCrop Non-staple crop 

Tallowtree Seeds MiscCrop Non-staple crop 

Tangerines, mandarins, clem. MiscCrop Non-staple crop 

Tea MiscCrop Non-staple crop 

Tea Nes MiscCrop Non-staple crop 

Tobacco, unmanufactured MiscCrop Non-staple crop 

Tomatoes MiscCrop Non-staple crop 

Vanilla MiscCrop Non-staple crop 

Vegetables fresh nes MiscCrop Non-staple crop 

Walnuts, with shell MiscCrop Non-staple crop 
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Watermelons MiscCrop Non-staple crop 

Castor oil seed OilCrop Non-staple crop 

Groundnuts, with shell OilCrop Non-staple crop 

Hempseed OilCrop Non-staple crop 

Jojoba Seeds OilCrop Non-staple crop 

Kapok Fruit OilCrop Non-staple crop 

Karite Nuts (Sheanuts) OilCrop Non-staple crop 

Linseed OilCrop Non-staple crop 

Melonseed OilCrop Non-staple crop 

Mustard seed OilCrop Non-staple crop 

Oilseeds, Nes OilCrop Non-staple crop 

Olives OilCrop Non-staple crop 

Poppy seed OilCrop Non-staple crop 

Rapeseed OilCrop Non-staple crop 

Safflower seed OilCrop Non-staple crop 

Sesame seed OilCrop Non-staple crop 

Soybeans OilCrop Non-staple crop 

Sunflower seed OilCrop Non-staple crop 

Tung Nuts OilCrop Non-staple crop 

Barley OtherGrain Staple crop 

Buckwheat OtherGrain Staple crop 

Canary seed OtherGrain Staple crop 

Cereals, nes OtherGrain Staple crop 

Fonio OtherGrain Staple crop 

Millet OtherGrain Staple crop 

Mixed grain OtherGrain Staple crop 

Oats OtherGrain Staple crop 

Quinoa OtherGrain Staple crop 

Rye OtherGrain Staple crop 

Sorghum OtherGrain Staple crop 

Triticale OtherGrain Staple crop 

Coconuts PalmFruit Non-staple crop 

Oil palm fruit PalmFruit Non-staple crop 

Rice, paddy Rice Staple crop 

Cassava Root_Tuber Staple crop 

Potatoes Root_Tuber Staple crop 

Roots and Tubers, nes Root_Tuber Staple crop 

Sweet potatoes Root_Tuber Staple crop 

Taro (cocoyam) Root_Tuber Staple crop 

Yams Root_Tuber Staple crop 

Yautia (cocoyam) Root_Tuber Staple crop 

Sugar beet SugarCrop Non-staple crop 

Sugar cane SugarCrop Non-staple crop 

Sugar crops, nes SugarCrop Non-staple crop 
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Wheat Wheat Staple crop 
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ANNEX III: VSL per region and period 

The following table shows which are the values for the TM5-FASST 56 regions, calculated as 

explained in the methodology subsection. The numbers include the adjusted VSL and the 10% 

increase of the morbidity costs. The values in brackets show the lower and upper bounds. 

  2020 2030 2040 2050 

  MedValue MedValue MedValue MedValue 

ARG  3·04 (1·52;4·57) 3·64 (1·82;5·45) 4·16 (2·08;6·25) 4·79 (2·40;7·19) 

AUS  7.59 (3.79;11.38) 9.02 (4.51;13.52) 10.12 (5.06;15.19) 10.96 (5.48;16.45) 

AUT  5.68 (2.84;8.53) 5.90 (2.95;8.85) 6.34 (3.17;9.51) 6.89 (3.45;10.34) 

BGR 2.98 (1.49;4.47) 3.53 (1.76;5.29) 3.90 (1.95;5.86) 4.26 (2.13;6.39) 

BLX  7.15 (3.58;10.73) 8.66 (4.33;13.00) 9.99 (4.99;14.98) 11.14 (5.57;16.71) 

BRA  2.36 (1.18;3.54) 2.77 (1.38;4.15) 3.19 (1.60;4.79) 3.86 (1.93;5.79) 

CAN  6.26 (3.13;9.38) 7.24 (3.62;10.85) 8.10 (4.05;12.15) 8.79 (4.40;13.19) 

CHE  6.47 (3.23;9.70) 6.94 (3.47;10.41) 7.57 (3.78;11.35) 8.29 (4.15;12.44) 

CHL  2.72 (1.36;4.09) 3.20 (1.60;4.80) 3.77 (1.88;5.65) 4.32 (2.16;6.48) 

CHN 3.13 (1.56;4.69) 4.47 (2.23;6.70) 5.36 (2.68;8.04) 6.04 (3.02;9.06) 

COR  4.48 (2.24;6.72) 4.56 (2.28;6.84) 4.88 (2.44;7.31) 5.24 (2.62;7.87) 

EAF  0.43 (0.21;0.64) 0.58 (0.29;0.86) 0.76 (0.38;1.13) 0.95 (0.47;1.42) 

EGY  1.45 (0.72;2.17) 1.76 (0.88;2.64) 2.17 (1.09;3.26) 2.67 (1.33;4.00) 

ESP  5.22 (2.61;7.83) 6.55 (3.28;9.83) 7.84 (3.92;11.76) 8.94 (4.47;13.41) 

FIN  5.74 (2.87;8.62) 6.61 (3.30;9.91) 7.40 (3.70;11.10) 8.11 (4.05;12.16) 

FRA 5.86 (2.93;8.79) 7.40 (3.70;11.10) 8.82 (4.41;13.22) 10.00 (5.00;15.00) 

GBR  6.26 (3.13;9.40) 7.95 (3.98;11.93) 9.49 (4.75;14.24) 10.75 (5.37;16.12) 

GOLF  3.00 (1.50;4.50) 3.61 (1.80;5.41) 4.20 (2.10;6.30) 4.71 (2.36;7.07) 

GRC  5.31 (2.65;7.96) 6.68 (3.34;10.02) 8.07 (4.04;12.11) 9.29 (4.65;13.94) 

HUN 3.64 (1.82;5.47) 4.41 (2.20;6.61) 5.02 (2.51;7.53) 5.56 (2.78;8.34) 

IDN  1.66 (0.83;2.49) 2.54 (1.27;3.80) 3.24 (1.62;4.85) 3.90 (1.95;5.85) 

ITA  5.52 (2.76;8.29) 7.40 (3.70;11.10) 9.02 (4.51;13.53) 10.28 (5.14;15.41) 

JPN  5.21 (2.61;7.82) 5.63 (2.82;8.45) 6.18 (3.09;9.26) 6.75 (3.38;10.13) 

KAZ 3.69 (1.85;5.54) 4.38 (2.19;6.58) 4.67 (2.33;7.00) 4.96 (2.48;7.44) 

MEME  2.03 (1.01;3.04) 2.29 (1.14;3.43) 2.65 (1.33;3.98) 3.07 (1.53;4.60) 

MEX  2.66 (1.33;4.00) 3.27 (1.64;4.91) 3.91 (1.95;5.86) 4.63 (2.31;6.94) 

MON  0.30 (0.15;0.45) 0.35 (0.18;0.53) 0.41 (0.20;0.61) 0.48 (0.24;0.71) 

MYS  3.50 (1.75;5.25) 3.88 (1.94;5.82) 4.42 (2.21;6.62) 4.97 (2.48;7.45) 

NDE  1.55 (0.78;2.33) 2.44 (1.22;3.66) 3.10 (1.55;4.65) 3.58 (1.79;5.37) 

NOA  1.47 (0.74;2.21) 1.66 (0.83;2.49) 2.05 (1.02;3.07) 2.55 (1.27;3.82) 

NOR  8.15 (4.07;12.22) 9.51 (4.75;14.26) 10.62 (5.31;15.93) 11.54 (5.77;17.31) 

NZL  5.17 (2.59;7.76) 5.91 (2.95;8.86) 6.60 (3.30;9.89) 7.25 (3.62;10.87) 

PAC  1.07 (0.53;1.60) 1.36 (0.68;2.04) 1.77 (0.89;2.66) 2.36 (1.18;3.53) 

PHL  0.93 (0.47;1.40) 1.17 (0.59;1.76) 1.49 (0.75;2.24) 1.87 (0.93;2.80) 

POL  4.09 (2.05;6.14) 4.92 (2.46;7.38) 5.39 (2.70;8.09) 5.82 (2.91;8.73) 

RCAM  2.01 (1.01;3.02) 2.27 (1.14;3.41) 2.60 (1.30;3.89) 2.99 (1.49;4.48) 

RCEU  2.71 (1.36;4.07) 3.57 (1.79;5.36) 4.22 (2.11;6.33) 4.75 (2.38;7.13) 
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RCZ  4.17 (2.09;6.26) 4.28 (2.14;6.42) 4.61 (2.31;6.92) 5.06 (2.53;7.59) 

RFA  5.20 (2.60;7.80) 5.37 (2.69;8.06) 5.81 (2.91;8.72) 6.41 (3.21;9.62) 

RIS  1.80 (0.90;2.70) 3.60 (1.80;5.41) 4.67 (2.34;7.01) 5.14 (2.57;7.71) 

ROM  2.94 (1.47;4.41) 3.84 (1.92;5.76) 4.47 (2.23;6.70) 4.98 (2.49;7.47) 

RSA  1.92 (0.96;2.87) 2.39 (1.19;3.58) 3.03 (1.51;4.54) 3.69 (1.84;5.53) 

RSAM  2.01 (1.00;3.01) 2.48 (1.24;3.72) 2.91 (1.45;4.36) 3.39 (1.69;5.08) 

RSAS  0.61 (0.30;0.91) 0.72 (0.36;1.07) 0.89 (0.45;1.34) 1.15 (0.58;1.73) 

RSEA  0.74 (0.37;1.11) 1.05 (0.52;1.57) 1.34 (0.67;2.01) 1.64 (0.82;2.46) 

RUE  1.17 (0.59;1.76) 1.35 (0.68;2.03) 1.48 (0.74;2.22) 1.61 (0.81;2.42) 

RUS  4.24 (2.12;6.35) 4.94 (2.47;7.41) 5.39 (2.69;8.08) 5.86 (2.93;8.79) 

SAF  0.75 (0.38;1.13) 0.85 (0.43;1.28) 0.95 (0.48;1.43) 1.15 (0.58;1.73) 

SWE  6.18 (3.09;9.26) 7.42 (3.71;11.13) 8.49 (4.24;12.73) 9.34 (4.67;14.01) 

THA  2.04(1.02;3.06) 2.47(1.24;3.71) 3.03(1.51;4.54) 3.79(1.90;5.69) 

TUR  2.37(1.18;3.55) 2.83(1.42;4.25) 3.32(1.66;4.99) 3.85(1.92;5.77) 

TWN  6.83(3.42;10.25) 8.03(4.01;12.04) 8.97(4.48;13.45) 9.52(4.76;14.29) 

UKR  2.64(1.32;3.96) 3.89(1.95;5.84) 4.62(2.31;6.93) 5.06(2.53;7.59) 

USA  6.67(3.34;10.01) 7.46(3.73;11.18) 8.25(4.12;12.37) 9.03(4.52;13.55) 

VNM  1.43(0.72;2.15) 2.23(1.12;3.35) 2.73(1.36;4.09) 3.10(1.55;4.65) 

WAF  0.66(0.33;0.99) 0.84(0.42;1.26) 1.07(0.53;1.60) 1.37(0.69;2.06) 
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ANNEX IV: SSP2 narrative implementation 

SSP2 storyline is defined in van Vuuren et al., (2007): “Current trends continue with some 

progress towards the Millennium Development Goals, lower energy and material intensity 

consumption and lower fossil fuel dependency. There is an unequal development rate between 

low income countries and a persistence of global and in-country inequalities. Low level of 

investment in education prevents low population growth. Global governance achieves an 

intermediate level of environmental protection”. The demographics, energy and land 

parameters are described in Riahi et al. (2016).  

The air pollutant emission trajectories are based on the default GCAM SSP2 emission factors 

(hereinafter EF), which are extensively analyzed in Rao et al (2017). The trend of these EFs will 

be different depending on the GDP of each country: 

 High income countries: The air pollutant emissions will be lower than the current levels. 

The already stablished policy is going to be effectively implemented until 2030, with 

regionally differentiated trajectories from then on. 

 Low income countries: They will need smaller income levels to catch up with the 

developed world, so the emission control strategies would start earlier than in more 

developed regions.  

In all of the regions (high, medium and low income levels), there is a moderated technological 

development assumed. The implementation of these parameters into the model and the source 

database is summarized in Rao et al (2017). The source of each EFs is summarized in the 

following table: 
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Table IV-I: Sources of the applied emission factors. Source: Adapted from Rao et al (2017), supplementary 

material 

Source 
 

Activity 
 

Base year. 

 
Source of base 

year data 
 

End-use energy use (industry, 
transport, residential, services and 

other) 
Energy consumption 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Energy sector (production of power, 
hydrogen, coal, oil, gas, bioenergy) 

Energy production 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Other energy conversion Energy conversion 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Emissions from industrial process Industry value added (IVA) 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Cement and Steel Regional production 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Enteric fermentation, cattle Production of livestock products 2005 EDGAR 4.2 

Animal waste, all animal categories Production of livestock products 2005 EDGAR 4.2 

Landfills Population, GDP 2005 EDGAR 4.2 

Deforestation 
Size of forest OR change in size of 

forest 
2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Agricultural waste burning Agricultural production 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Traditional biomass burning Traditional biomass consumption 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Savannah burning Grassland area 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

Domestic sewage treatment Population, GDP 2005 EDGAR 4.2 

Wetland rice fields Rice production 2005 EDGAR 4.2 

Crops Crop production 2005 EDGAR 4.2 

Managed grassland    

Indirect emissions    

Land use change    

International Shipping Energy consumption 2005 

EDGAR 4.2 
(BC and OC is from 

Van Marle et al 
2017) 

 

Socioeconomic narrative plays an important role in modelling studies. Assumed population will 

determine activity levels, for example energy consumption, which is central for the estimating 
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emissions levels. Additionally, population is also essential for the calculation of premature 

deaths associated with a certain level of PM2.5 and O3 concentration. GDP growth will also be a 

key factor for determining activity levels and also for the calculation of the regional VSL. Emission 

levels would also vary depending on the EFs applied. In order to capture the potential 

differences between SSPs, following figures summarize socioeconomic trends and the 

associated changes in emission projections per narrative.  

Additionally, the SSP scenario air pollutant emission factors used in this PhD Thesis are 

preliminary versions that have been subsequently updated for the official SSP scenario release. 

The difference in terms of global air pollutant emissions for our central SSP2 cases between the 

version used in this PhD Thesis and the updated SSP2 emission factors used in Calvin et al. (2017) 

are presented in Figure IV-III.  On a global basis, emissions change very little except for NOx. 

Given that health co-benefits are dominated by PM2.5 emissions, this update will not materially 

impact the overall conclusions from the developed studies. The slightly larger NOx emissions in 

the official SSP2 scenario release might result in slightly higher O3 co-benefits.  

Figure IV -I: Socioeconomic factors per SSP scenario  
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Figure IV -II: Emission trajectories of pollutants per SSP scenario (Tg) 

 

 

Figure IV -III: Baseline scenario emission trajectories of the used and the updated SSP2 scenarios (Tg) 
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