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Abstract 27 

Bayesian accounts of autism suggest that this disorder may be rooted in an impaired ability to 28 

estimate the probability of future events, possibly due to reduced priors. Here, we tested this 29 

hypothesis within the action domain in children with and without autism using a behavioural 30 

paradigm comprising a familiarization and a testing phase. During familiarization, children 31 

observed videos depicting a child model performing actions in diverse contexts. Crucially, 32 

within this phase, we implicitly biased action-context associations in terms of their 33 

probability of co-occurrence. During testing, children observed the same videos but 34 

drastically shortened (i.e., reduced amount of kinematics information) and were asked to infer 35 

action unfolding. Since during the testing phase movement kinematics became ambiguous, 36 

we expected children’s responses to be biased to contextual priors, thus compensating for 37 

perceptual uncertainty. While this probabilistic effect was present in controls no such 38 

modulation was observed in autistic children, suggesting an impairment in using prior 39 

information when anticipating others’ actions under situations of perceptual uncertainty.  40 

 41 

Introduction 42 

Understanding what others are doing and what they are going to do next constitutes a major 43 

hallmark of social cognition achievement (Sebanz and Knoblich, 2009).  44 

Current prediction theories in the action domain suggest that the motor system plays a key 45 

role in the anticipation of others’ actions (Aglioti et al., 2008; Jeannerod, 2001; Rizzolatti and 46 

Craighero, 2004; Wolpert and Flanagan, 2001). Central to these theories is the concept of 47 

motor simulation, which assumes that anticipatory mechanisms rely on the covert re-48 

enactment of the motor programs used to perform the observed movements. On this view, 49 

prediction would be accomplished by using our motor system as an internal forward model. 50 

However, there is evidence challenging this approach by showing that motor experience is 51 
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not necessarily required to anticipate action unfolding (Vannuscorps and Caramazza, 2015, 52 

2016) and that similar predictive performance can be achieved possibly by relying on 53 

previous observational experience with others’ actions (de Klerk et al., 2016). Nevertheless, 54 

despite differences on the role of motor experience in action prediction, most of these views 55 

collectively assume that the motor system or, at least, some related structures (i.e., the ventral 56 

premotor cortex) are critically involved in predictive processing (Schubotz, 2007). 57 

A critical challenge for action prediction accounts in general is explaining how the motor 58 

system allows action prediction under situations of perceptual uncertainty (Brass et al., 2007; 59 

Kilner et al., 2007). Indeed, similar movement kinematic patterns can be associated with 60 

different actions, making it difficult to move backwards from observed data to hidden motor 61 

representations about possible underlying causes. 62 

Current predictive coding models based on Bayesian inference provide a solution to this 63 

“inverse problem” by suggesting that, particularly when visual evidence is ambiguous, the 64 

motor system benefits from top-down expectations about others’ likely behaviours given 65 

previous similar experiences (Friston et al., 2011; Kilner et al., 2007).  66 

Top-down predictions, however, are not only based on past visual or motor experience with 67 

others movements (Aglioti et al., 2008; Amoruso et al., 2014; Calvo-Merino et al., 2005) but 68 

also on prior knowledge about the context in which actions are typically observed (Amoruso 69 

et al., 2016; Wurm and Schubotz, 2012). Furthermore, it has been shown (Wurm and 70 

Schubotz, 2016) that, when perceptual information is impoverished, context plays a key role 71 

in aiding action recognition. Indeed, specific environmental scenarios are often indicative of 72 

which actions are likely to occur in them (e.g., we typically crack eggs in the kitchen), thus 73 

constraining predictive processing. In Bayesian terms:  74 

P (Action|Kinematics, Context) ∝ P (Kinematics|Action, Context) P (Action|Context)  75 
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where P (Action|Kinematics, Context) is the posterior probability of an action conditioned on 76 

observed kinematics and context, P (Kinematics|Action, Context) is the likelihood of the 77 

action given observed kinematics and context, and P (Action|Context) is the prior probability 78 

of the action given the context.  79 

In other words, the prior defines a hypothesis space of what actions are feasible in that 80 

context (Baker et al., 2009). In particular, it has been suggested that priors can be classified in 81 

structural and contextual ones (Series and Seitz, 2013). Structural priors reflect default 82 

expectations, which may be innate or acquired through long-term learning and, thus, not 83 

easily malleable. A common example is given by the expectation that light comes from 84 

above. Contextual priors, conversely, are expectations acquired through short-term learning 85 

and bound to a specific spatio-temporal framework, cue, or task instruction.  86 

Socio-motor impairments, including difficulties in action comprehension, are considered to 87 

be among the core deficits associated with Autism Spectrum Disorders (ASD, American 88 

Psychiatric Association, 2013). It has been recently proposed that this deficit might be related 89 

to atypical predictive processing (Lawson et al., 2014; Pellicano and Burr, 2012; Sinha et al., 90 

2014). Interestingly, these accounts root their explanations in Bayesian inference and suggest 91 

that the integration between prior knowledge and sensory evidence may be affected in ASD. 92 

Central to some of these accounts is the hypothesis that ASD individuals are less influenced 93 

by prior knowledge, leading to a greater reliance on bottom-up sensory signals.  94 

Despite the explanatory power of Bayesian approaches on ASD and the great attention they 95 

have received in the last years, only a few empirical studies (Chambon et al., 2017) have 96 

attempted to test its core assumptions within the action domain (i.e. individuals with ASD do 97 

not rely on contextual priors to explain away movement kinematics). Thus, experimental 98 

testing is necessary to advance comprehension in the field (Palmer et al., 2017). 99 



5 
 

Here, we aimed to directly test this hypothesis by comparing the ability to predict others’ 100 

actions in children with and without autism. To this aim, we developed a behavioural 101 

paradigm consisting of a probabilistic learning task (familiarization) followed by an action 102 

prediction task (testing). During familiarization, children observed videos depicting a child 103 

grasping different objects to either interact or not with another child and were asked to 104 

predict action unfolding. Crucially, within this phase, we implicitly biased the association 105 

between the action and the context in terms of their probability of co-occurrence to induce 106 

contextual priors with different weights. During testing, children observed the same videos 107 

but these were shortened so that the amount of visual kinematics information was drastically 108 

reduced and were asked again to predict action unfolding.  109 

Based on Bayesian models, we hypothesized that during testing, where movement kinematics 110 

become ambiguous, typically developing (TD) children would be biased toward contextual 111 

priors learned during familiarization, compensating for perceptual uncertainty. Conversely, 112 

since individuals with autism may be less influenced by prior knowledge, we expected not 113 

such compensation in ASD children.  114 

 115 

Methods  116 

Participants 117 

Twenty-four high-functioning ASD children (mean age = 8.66, SD = 1.63 years) and twenty-118 

four TD children (mean age = 9.04, SD = 1.08 years) took part in the current study. We 119 

determined the sample size for our mixed within- and between-subject 4 × 2 design 120 

(probability × group) through the G* power software (Faul, Erdfelder, Buchner, & Lang, 121 

2009) by expecting a large effect size (f = 0.4) based on a previous study showing a large- 122 

association effect (r = 0.46) between autistic traits and contextual modulation of action 123 
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perception (Amoruso et al., 2018), and setting the significance level at 0.05, and the desired 124 

power (1−β) at 0.95. 125 

Children with ASD were recruited at the IRCCS Stella Maris Foundation, Pisa, Italy and at 126 

the Scientific Institute IRCCS E. Medea, Polo Friuli Venezia Giulia, and had previously 127 

received a diagnosis of ASD according to the DSM-5 criteria by independent clinicians and 128 

confirmed by a score above the threshold for ASD on the Autism Diagnostic Observation 129 

Schedule (ADOS, Lord, Rutter, DiLavore, Risi, Gotham, & Bishop 2012). We controlled also 130 

that all patients had no history of neurological or medical problems. TD children were 131 

recruited at primary schools in Udine (Italy). The two groups were 1:1 matched for age (ASD 132 

= 8.66 ± 1.63; TD = 9.04 ± 1.08; t (46) = -0.937, p = 0.353), gender (male: female ratio 22:2), 133 

and non-verbal IQ as measured by the Raven’s Colored Progressive Matrices (ASD = 107.91 134 

± 10.62; TD = 102.5 ± 10.32; t (46) = 1.791, p = 0.079). See Table 1 for participant’s 135 

characteristics.  136 

The study was approved by the local Ethics Committee (Comitato Etico Regionale Unico, 137 

Friuli Venezia Giulia, Italy) and was carried out in accordance with the ethical standards of 138 

the 1964 Declaration of Helsinki. All participants were naive to the aims and hypothesis of 139 

the experiment. Parents/guardians of all participants provided their informed written consent, 140 

and children gave their verbal assent to participate. 141 

Stimuli 142 

The videos were recorded in color at 25 frames per second with a Sony Alpha ILCE-7K 143 

camera and were further edited with the Adobe Premiere Pro CS3 3.0 Software. Length was 144 

matched across videos so that they had an equivalent duration: 25 frames for a total of 1,000 145 

ms in the familiarization phase and 15 frames for a total of 600 ms in the testing phase. All 146 

videos depicted a male child (10 years-old) performing reach-to-grasp movements on two 147 

different objects (i.e., an apple or a glass) with his right hand in front of another child (10 148 
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years-old). Depending on the kinematics, each object could be grasped to perform either an 149 

individual or an interpersonal action (i.e., grasping-to-eat or drink vs. grasping-to-offer). 150 

Kinematics differences between individual and interpersonal actions were mainly provided 151 

by the type of power grip used: either from the side with a spherical grasp or from the top 152 

with a cylindrical grasp, respectively. Crucially, each of these actions was recorded 153 

associated with different contextual cues. In the case of the object “apple”, the two possible 154 

contextual cues were an orange or a violet dish. In the case of the object “glass”, the two 155 

possible cues were a blue or a white tablecloth.  156 

Stimuli validation 157 

A total of 80 videos (Object [5] x Action type [2] x Contextual-cue [2] x Versions [4]) were 158 

originally recorded. Please note that by “Versions” we mean different video recordings of the 159 

same action. Apart from the apple and the glass videos that were selected for the final 160 

experimental design; a cup, a pair of scissors and a spray-cleaner were also used in this initial 161 

phase. All the objects could be manipulated by the actor in order to perform either individual 162 

(i.e., eating, drinking, cutting or spraying, respectively) or interpersonal actions (i.e., offering 163 

it to another child) in the presence of two different contextual cues (i.e., a dish, a tablecloth, a 164 

tray, a notebook, or a cloth with different colours, respectively). In order to validate the 165 

stimuli, we conducted a preliminary rating study on the 80 videos by asking 10 TD children 166 

(4 females; mean age = 9 ± 1.24 years) to watch the first 25 snapshots (i.e., 2 frames before 167 

the child made fully contact with the object) and to recognize the action.  168 

Overall, the rationale behind this preliminary study was selecting those actions that had 169 

comparable discriminability in order to rule out any cofounding effect related to intrinsic 170 

objects’ properties (e.g., affordance). The Friedman ANOVA yielded an effect of object (X
2
 171 

= 10.37, p = 0.03). Pairwise comparisons with the Wilcoxon matched-pairs test indicated that 172 

those objects that elicited the most similar levels of accuracy and were far from being 173 
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significantly different from each other (p = 0.918) were the apple (M = 86.3; SD = 12.7) and 174 

the glass (M = 86.6; SD = 16.3), while the other objects led to an accuracy level of: cup (M= 175 

93.8; SD = 12.67), scissors (M=85.9; SD = 13.22) and spry cleaner (M=91.6; SD = 9.74). 176 

Thus, actions directed to the apple and the glass were selected for the final experiment.  177 

Task and procedure 178 

To test whether children with ASD benefit of prior probabilistic information to predict action 179 

unfolding, we developed a friendly paradigm consisting of a familiarization and a testing 180 

phase (see Fig. 1 and supplementary Videos 1–8 for examples).  181 

During familiarization, videos depicted a child grasping either an apple from a plate or a glass 182 

from a tablecloth to perform individual or interpersonal actions (i.e., eating/drinking and 183 

giving the object to the other child, respectively). Videos were stopped 2 frames before the 184 

child model made full contact with the object. Thus, even though participants observed the 185 

pre-shaping of the hand during the reaching phase of the movement and not the grasping 186 

movement itself, the amount of visual information given was high. In a two-alternative forced 187 

choice (2AFC) task, participants were asked to watch the videos and predict action unfolding. 188 

Importantly, during the familiarization, we implicitly manipulated prior expectations by 189 

setting the probability of co-occurrence between actions and contextual-cues (i.e., the colour 190 

of the plate and the tablecloth) to 10%, 40%, 60% or 90% (see Fig. 1A-B). 191 

During the testing phase (Fig.1C), children observed the same videos and were asked again to 192 

predict action unfolding. However, in this case, the amount of sensory evidence was 193 

drastically reduced by shortening the videos so to occlude the last 400ms (i.e., last 10 194 

frames). We reasoned that during this phase, where movement kinematics became 195 

ambiguous, children’s responses would be biased toward contextual priors acquired during 196 

familiarization, thus compensating for perceptual uncertainty. Of note, even though 197 

participants observed only the initial part of the videos (i.e., either the initial 25 or 15 frames 198 
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depending on the phase), when these were originally recorded, the child actor was asked to 199 

perform the full action to provide veridical kinematics information. 200 

Each participant performed the full experimental session in the same day. Before the 201 

experimental session, children were initially introduced to the objects and received 202 

demonstrations about the different possible ways of manipulating them. More specifically, 203 

we gave children specific examples by showing the overall action with the original objects 204 

used in the videos and explicitly named the associated labels (e.g., “This is how we grasp an 205 

apple when we want to eat it”). Furthermore, children were asked to grasp the objects and 206 

perform the complete action themselves to promote simulation. 207 

The experimental session consisted of two blocks and lasted ~40min. Each of these blocks 208 

comprised a familiarization phase (80 trials) immediately followed by a testing phase (40 209 

trials). Thus, the overall experiment consisted of 240 trials, 160 of familiarization and 80 of 210 

testing. Short breaks were allowed between blocks and phases. Neither explicit information 211 

about the associations between contextual-cues and actions nor trial-by-trial feedback was 212 

provided. Thus, participants were completely naïve to the existence of underlying statistical 213 

regularities. This was further confirmed after the experiment during the debriefing session, in 214 

which participants were explicitly informed about the existence of action-color associations. 215 

Interestingly, some children reported to have noticed a relationship between them but, 216 

critically, only two TD children reported the exact content of the abstract rule (e.g., “every 217 

time an orange plate appeared it was more likely to see the child grasping the apple for 218 

eating”). This ensures that, overall, no explicit knowledge about the underlying associations 219 

was evident for either TD or ASD children and that observed effects are unlikely to stem 220 

from attentional aspects regarding the ability or inability to attend to a contextual cue.  221 

It is worth noting that half of the overall trials involved the object “apple” and the other half 222 

the object “glass”. While for one object we biased 10-90% the action-cue association (i.e., in 223 
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90% of the trials the action “eat” was combined with the presence of the orange plate, and in 224 

the other 10% of the trials it was combined with a violate plate), for the other object we 225 

biased 60-40% (i.e., in 60% of the trials the action “drink” was combined with the presence 226 

of the blue tablecloth, and in the other 40% it was combined with a white tablecloth). 227 

Importantly, this probabilistic structure was kept identical within participants in the two 228 

consecutive experimental blocks but the actions associated to high or low probabilities were 229 

counterbalanced between participants. Importantly, during the testing phase, all possible 230 

action-contextual cues associations were equally presented (10 trials for each action); for a 231 

total of 20 trials for each of the 4 probabilities of context-action associations established in 232 

the familiarization phase. 233 

Trial structure  234 

The trial structure was the same in the familiarization and testing phase, with the exception of 235 

video duration. Trials started with a fixation cross lasting 3,000 ms and it was followed by the 236 

video-clip presentation lasting 1,000 ms in the familiarization and 600 ms in the testing 237 

blocks. After the video-clip, a frame was presented with the verbal descriptors of the two 238 

possible actions (e.g., “mangiare” or “bere” and “offrire”, in English “to eat” or “to drink” 239 

and “to give”, respectively; one located on the right and the other on the left) written in white 240 

on a black background. This frame remained on the screen until a response was recorded. 241 

Participants were requested to give their responses by pressing with the index finger the 242 

computer keys “z” (for left choices) or “m” (for right choices). The keys were covered with 243 

white stickers in order to facilitate localizing their position on a QWERTY keyboard. The 244 

location of the two descriptors was counterbalanced, ensuring that in half of the trials a 245 

descriptor was presented on the left and, in the other half, on the right. This procedure 246 

enabled us to prevent participants from planning their response in advance on the basis of the 247 

spatial location of the descriptors. 248 
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 249 

Results 250 

Neuropsychological results 251 

Before the experiment, we assessed social perception abilities in all children using the Italian 252 

Version of the NEPSY-II (Urgesi et al., 2011). This battery includes two tests that evaluate 253 

theory of mind (ToM, i.e., the capacity to interpret other’s intentions, desires and beliefs), and 254 

affect recognition (i.e., identification of emotional facial expressions). In addition, the ToM 255 

test can be divided in a verbal (ToM A) and a contextual (ToM B) part, with the former one 256 

evaluating intention understanding of social situations from verbal or pictorial descriptions; 257 

and the latter one, assessing the capacity to understand how certain emotions are linked to 258 

specific contexts (see Table 1). As in Narzisi et al. (2013), the scores obtained for each 259 

participant at each test were expressed as scaled scores with respect to the normative values 260 

for the corresponding chronological ages, thus improving the approximation of the data to the 261 

normal distribution.  262 

We compared social perceptual abilities between groups by means of independent sample t-263 

tests. A significant difference between groups was observed in ToM A [t (46) = - 4.22, p = 264 

0.0001; ASD children, M = 6.27, SD = 4.66; TD children, M = 11.12, SD = 3.13], with ASD 265 

children scoring lower than the TD ones. However, no significant differences between groups 266 

were observed for the ToM B [t (46) = - 0.54, p = 0.58; ASD children, M = 9.42, SD = 3.08; 267 

TD children, M = 9.87, SD = 2.63] or for the affect recognition test [t (46) = 1.50, p = 0.13; 268 

ASD children, M = 6.77 ± 1.95, TD children, M = 7.76 ± 2.57], even though the ASD group 269 

tended to have lower scores than the TD one.  270 

Action prediction results  271 
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Behavioral reaction time (RT) performance was acquired during the testing phase. RT were 272 

trimmed at 2.5 standard deviations (SD) above their mean. In addition, RTs < 100ms were 273 

considered accidental button presses and removed from the analysis. We run a repeated-274 

measures analysis of variance (RM-ANOVA) considering group (ASD, TD) as between-275 

subjects variable and the different probability conditions (10%, 40%, 60%, 90%) and blocks 276 

(1, 2) as within-subjects variables. The analysis yielded a main effect of group (F1, 46 = 6.98, p 277 

= 0.011, = 0.13), indicating that TD children (mean = 1608.13; SD = 571.05) were faster 278 

than the ASD ones (mean = 1969.95; SD = 491.57); and a main effect of block (F1, 46 = 11.52, 279 

p = 0.001, = 0.20), showing an overall learning effect with reduced RT in the second block 280 

(mean = 1709.17; SD = 540.3) as compared to the first one (mean = 1868.92; SD = 573.4). 281 

No other effects were observed (all ps > 0.32). 282 

Accuracy data from the familiarization and testing phases were converted into d prime values 283 

(d′), a bias-corrected measure of sensitivity in discriminating between 2 categories 284 

(Macmillan and Kaplan, 1985), in this case, between individual vs. interpersonal actions. We 285 

also calculated a measure of response criterion (c), which reflects the existence of a bias in 286 

providing a specific response.  287 

We run an exploratory RM-ANOVA in the familiarization phase considering group (ASD, 288 

TD) as between-subjects variable and the different probability conditions (10%, 40%, 60%, 289 

90%) and blocks (1, 2) as within-subjects variables. This analysis yielded non-significant 290 

differences (all ps > 0.22). Nevertheless, we decided to collapse the 4 probability conditions 291 

during familiarization due to their unequal number of trials resultant from the probabilistic 292 

manipulation. An independent t-test comparing the overall d′ scores obtained during the 293 

familiarization revealed no differences (t (46) = -1.305, p = 0.198) between the TD (M = 294 

1.414, SD = 0.37) and ASD (M = 1.239, SD = 0.53) groups (see Fig. 2). Furthermore, non-295 

significant differences were observed for the c values (t (46) = -1.683, p = 0.099), suggesting 296 

2

p

2

p
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that predictive performance in both groups was comparable when the amount of visual 297 

kinematics information was high and that their responses were not biased in terms of 298 

identifying individual or interpersonal actions.  299 

Then we run the RM-ANOVA on the d′ responses obtained during the testing phase. Here, 300 

we find a main effect of probability (F3, 138 = 5.212, p = 0.001, = 0.10) and an interaction 301 

between probability and group (F3, 138 = 3.271, p = 0.023, = 0.06). No effects or 302 

interactions including the factor block were found (all ps > 0.13). Post-hoc comparisons 303 

performed with the Newman-Keuls test on the interaction (MSE = 0.41039, df = 119.67) 304 

indicated that, within the ASD group, performance under the different probability conditions 305 

did not differ (all ps > 0.55). Conversely, TD children were better at predicting others’ 306 

actions under the highest probability condition as compared to the low and intermediate ones 307 

(90% vs. 10%, p = 0.0001; 90% vs. 40%, p = 0.002; 90% vs. 60%, p = 0.04). Moreover, the 308 

performance of the TD and ASD groups only differed for the highest probability condition 309 

(90%). Specifically, the 90% condition in the TD group significantly differed from the 90% 310 

(p = 0.04), 60% (p = 0.01), 40% (p = 0.01), and 10% (p = 0.02) conditions of the ASD group, 311 

with larger d’ values in the TD than in the ASD group (see Fig. 2). 312 

Again, no significant main effects or interactions were observed for response criterion c 313 

values (all ps > 0.11). 314 

Correlations results 315 

Finally, we examined the relationship between the probabilistic effect and measures of social 316 

perception, symptomatology and psychopathology. In order to account for the probabilistic 317 

effect, we calculated a beta index for each participant based on their performance on the 318 

familiarization and the testing phases, separately. Briefly, standardized beta coefficients were 319 

estimated across trials at the individual participant level by running a regression analysis with 320 

2

p

2

p
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accuracy and probability as the dependent and independent variables, respectively. Thus, this 321 

measure provides an estimate of the strength of the probabilistic effect on children’s 322 

performance. Since responses were coded on the basis of movement kinematics, positive 323 

betas indicate that, as the probability of action-context association increases, the prediction of 324 

action unfolding increases, in keeping with the use of contextual priors to disambiguate 325 

action kinematics. In contrast, negative betas reflect the inverse relationship, that is, as 326 

probability increases, action prediction decreases, pointing to a tendency to respond 327 

counterintuitively with respect to the context. Betas close to zero reflect that children mostly 328 

relied on body kinematics and were less influenced by the context. Thus, a negative 329 

relationship between symptom severity and individual beta value would point to weaker use 330 

of contextual prior in more impaired children. 331 

The Pearson correlations between the beta index and the neuropsychological measures run 332 

separately for each group yielded non-significant effects neither in ASD (ToM A: r = - 0.16, 333 

p = 0.42; ToM B: r = - 0.001, p = 0.99; emotion recognition: r = 0.05, p = 0.78) nor TD 334 

children (ToM A: r = - 0.16, p = 0.42; ToM B: r = - 0.35, p = 0.08; emotion recognition: r = 335 

0.11, p = 0.60).  336 

Then, within the ASD group, we correlated the beta index with the ADOS calibrated severity 337 

scores (Gotham et al., 2009) to check if autism severity explained the observed effect. 338 

However, no association was found between the ADOS CSS and the beta indexes 339 

(familiarization phase: r = - 0.01, p = 0.94; testing phase: r = - 0.02, p = 0.91). 340 

Finally, we correlated the beta index with the Child Behaviour Checklist (CBCL) subscales 341 

(see Table 2). The CBCL (Achenbach and Ruffle, 2000), constitutes a parent report for the 342 

screening of emotional and behavioural problems in childhood. Of note, one of the CBCL 343 

subscales measures children´s anxiety. This is of particular interest since a series of recent 344 

studies indicate the existence of a strong negative association between anxiety levels and 345 
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unpredictability in ASD (Boulter et al., 2014; Chamberlain et al., 2013). In other words, 346 

unexpected events constitute a potential stressor that triggers increase levels of anxiety in 347 

ASD individuals. Indeed, all the constellation of symptoms characterized as “restricted and 348 

repetitive behaviours” (e.g., insistence on sameness, rituals and difficulty in tolerating 349 

change) are thought to represent compensatory strategies to mitigate uncertainty and make 350 

life as much predictable as possible. 351 

The analysis involving the CBCL subscales showed a significant negative correlation 352 

between the beta index obtained during the testing phase and anxiety (r = - 0.559, p = 0.036, 353 

one-tailed; Bonferroni corrected). See Fig. 3. Importantly, no correlation between anxiety and 354 

beta was found for the familiarization (r = 0.058, p = 0.79), suggesting that the association 355 

was specifically related to atypical predictive processing in uncertain environments.  356 

 357 

Discussion 358 

Bayesian models postulate that human observers optimize sensory processing by combining 359 

perceptual information with previous knowledge about the statistical regularities of the world 360 

(Knill and Pouget, 2004). An appealing Bayesian approach to ASD suggests that autistic 361 

impairments might be related to a reduced influence of prior probabilistic knowledge when 362 

interpreting variations in incoming inputs (Pellicano and Burr, 2012). Furthermore, since 363 

priors can be operationalized as expectations in predictive coding models (Kording and 364 

Wolpert, 2004), this deficit can also be interpreted in terms of poor predictive abilities 365 

(Schuwerk et al., 2016; Sinha et al., 2014).  366 

Here, we tested this hypothesis by examining how ASD and TD children tracked the 367 

probabilities of action-context co-occurrence and used this knowledge to predict others’ 368 

actions under situations of perceptual uncertainty (i.e., low amount of movement kinematics 369 

information). Overall, we found that both groups were able to accurately predict action 370 
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unfolding when perceptual information about kinematics was high (i.e., during 371 

familiarization). However, during testing, where movement kinematics became ambiguous, 372 

only TD children were able to capitalize on priors (i.e. probabilistic distribution of the action-373 

context associations) to help disambiguation and accurately predict action unfolding. 374 

Conversely, ASD children were able to predict the correct action above chance level, but 375 

their responses were not biased by the prior probabilistic distributions. Pearson analysis 376 

correlating task performance with social cognition and symptom severity found no evidence 377 

that ASD-related differences in these domains could account for the pattern of observed 378 

responses. Interestingly, however, the anxiety subscale of the CBCL negatively correlated 379 

with ASD performance during testing but not during familiarization, suggesting that higher 380 

levels of anxiety were associated with the reduced effect of probabilistic knowledge during 381 

action prediction only in uncertain environments.  382 

It has been proposed that social impairments in ASD may be linked to difficulties in 383 

perceiving and recognizing other people’ actions (Fecteau et al., 2006; Iacoboni and 384 

Dapretto, 2006). According to this theory, this might be due to deficits in processing 385 

biological motion (Blake et al., 2003) or, more broadly, to aberrant activity in the action 386 

observation network (AON) that prevents from properly coding others’ movement kinematics 387 

(Theoret et al., 2005). However, this theory has been recently challenged by evidence 388 

showing that individuals with ASD exhibit functionally intact perceptual signals for 389 

interpreting others' behaviours (Cusack et al., 2015) as well as comparable activity in the 390 

AON (Dinstein et al., 2010). For a systematic review see (Hamilton, 2013). In line with these 391 

latter studies, we found no differences between ASD and TD children either during 392 

familiarization or during testing in the weakly associated condition (i.e., 10%), suggesting 393 

that both groups were able to correctly identify observed actions on the basis of perceptual 394 

movement kinematics. This is also in keeping with previous studies investigating action 395 
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prediction in adults with ASD and showing normal bottom-up sensory processing (Chambon 396 

et al., 2017) and with Bayesian accounts, suggesting that it is not sensory processing itself 397 

what is compromised in ASD but its interpretation.  398 

While no differences between groups were observed during familiarization, the testing phase 399 

revealed different patterns of behavioural performance. TD children showed a clear bias 400 

towards priors learnt during familiarization that was completely absent in the ASD group. 401 

Specifically, when the amount of perceptual evidence was drastically reduced (i.e., shortened 402 

videos), TD children were better at predicting others’ actions in the high-probability 403 

condition as compared to those with lower probability. This is in accordance with Bayesian 404 

proposals suggesting that ambiguous visual evidence leads to an increased reliance on 405 

contextual priors and greater perceptual bias. It can be argued, however, that children were 406 

not interpreting diminished movement kinematics by using learnt priors but rather ignoring 407 

them and solely responding based on the contextual cues. In other words, an alternative 408 

explanation to our findings could be phrased in terms of general learning of cue-response 409 

pairings rather than Bayesian inference. Nevertheless, this seems unlikely. Indeed, both ASD 410 

and TD children performed above chance level (~68 % and ~66 %, respectively) in the 411 

testing phase for the low-probability condition (i.e., 10%), namely, when contextual cues 412 

violated the expectations triggered by the high-probability condition (e.g., observing the 413 

action “give” in the context of an orange plate when this cue was strongly associated with the 414 

action “eat”). In these “incongruent” testing trials, children still tended to predict the action 415 

signalled by movement kinematics rather than that expected from the context (i.e., answer 416 

“give” instead of “eat”), thus indicating they were using  kinematics to predict action 417 

unfolding when contextual priors were not reliable. Accordingly, it has been shown that when 418 

contextual cues are not available, information from observed movement kinematics forms the 419 

basis for action inference (Soriano et al., 2018). It is worth noting, however, that the current 420 
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design does not allow to determine whether contextual modulations occurred directly on the 421 

kinematics level or on other higher levels of action representation (i.e., intention), which 422 

remains an open question for future studies. 423 

Interestingly, performance in the testing phase remained stable in the ASD group 424 

irrespectively of the probabilistic condition (i.e., ~68 %), suggesting that they mainly based 425 

their responses on movement kinematics and did not benefit from using contextual priors. It 426 

is unlikely that this pattern of results reflects a greater ability of ASD children to ignore the 427 

color cue and to focus on the task at hand (i.e., anticipating action unfolding based on 428 

kinematics). Indeed, were this the case, better performance of ASD as compared to TD 429 

children would be expected in the 10% probability condition, where context and movement 430 

kinematics pointed to incongruent predictions. Conversely, performance of ASD and TD 431 

children was comparable when context was unreliable and only differed, with better 432 

predictive performance in the TD group, when context provided reliable cues. Accordingly, 433 

previous studies have shown that ASD individuals typically exhibit enhanced access to the 434 

details of a scene, which reflects a general bias toward processing local features and elements 435 

(Dakin and Frith, 2005). On this view, what would be actually expected is a higher ASD 436 

attentional bias directed toward the color feature (Wang et al., 2015). Indeed, there is 437 

evidence (Maule et al., 2017) showing that ASD individuals are better than TD controls at 438 

recognizing whether colors were part of an original set or not. Furthermore, no differences 439 

were observed between ASD and TD children in the non-verbal contextual task of the 440 

NEPSY-II (see also Narzisi et al., 2013), which evaluates the capacity to interpret how 441 

others’ intentions can be linked to specific contexts, making it unlikely that the observed 442 

results could be explained by a deficit in contextual integration. Thus, the overall pattern of 443 

results suggests that, even though ASD children perceive and recognize action kinematics to 444 

the same extent as TD children when enough perceptual information is provided (i.e., in the 445 
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familiarization phase) or when context provides unreliable cues (i.e., 10% condition during 446 

testing), they do not benefit of prior probabilistic information to predict action unfolding. 447 

A limitation of the current study, however, is that it cannot disentangle whether ASD children 448 

were unable to track regularities and learn the action-context associations or learnt them but 449 

did not use them to predict others’ actions. Previous evidence seems to support the former 450 

option by showing that ASD children exhibit a general deficit in using arbitrary cues to make 451 

inferences (Ames and Jarrold, 2007) as well as impairments in tracking implicit regularities 452 

and form action predictions (Schuwerk et al., 2016).  453 

However, it is worth mentioning that other studies have shown that ASD children are able to 454 

use statistical information from the environment to a similar extent as TD children. For 455 

instance, Manning et al. (2017) tested how ASD and TD children used reward probabilities in 456 

a decision-making task under stable or volatile contexts (i.e., fixed vs. fluctuating 457 

probabilities). Based on the Bayesian proposal suggesting that autistic observers are less 458 

biased to prior information (Pellicano and Burr, 2012), they hypothesized that ASD children 459 

would assign more weight to recent trials and would not flexibly update their behaviour in 460 

response to uncertainty in volatile contexts. In contrast, they found similar learning rates and 461 

updating profiles in both groups, suggesting that, at least under some situations, ASD 462 

children can use contextual priors to interpret sensory information.  463 

Yet, difficulties may arise when ASD individuals are presented with more complex tasks in 464 

which uncertainty is linked to social information. Indeed, in our task, uncertainty was tightly 465 

related to the possibility of an agent interacting –or not- with another. Thus, it is likely that 466 

the differences between groups detected by our paradigm may have arisen from the social 467 

setting of the task.  468 

Finally, our finding of a negative correlation between anxiety and task performance in the 469 

testing phase is in line with current proposals suggesting that atypical predictive abilities in 470 
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ASD are associated to increased levels of anxiety (Sinha et al., 2014). In particular, the non-471 

relying on prior knowledge to explain away sensory information makes the world to appear 472 

more unstable and unpredictable and this is sufficient to trigger a stress response (Boulter et 473 

al., 2014; Chamberlain et al., 2013). This might explain a wide range of ASD symptoms, 474 

such as insistence on sameness and repetitive behaviors, which can be conceived as coping 475 

strategies to reduce anxiety. Notably, no correlation was observed during familiarization, thus 476 

highlighting to a specific link between anxiety traits and poor predictive processing only 477 

under situations of perceptual uncertainty.  478 

Interestingly, Manning et al. (2017) also explored the possible link between children's anxiety 479 

and task performance. However, they did not find correlations between these aspects. 480 

Nevertheless, the task used by Manning et al. did not comprise social situations and this may 481 

explain their negative result. Thus, our findings point to the fact that the link between anxiety 482 

and prediction abilities in ASD might be particularly related to handling uncertainty in social 483 

environments. While here we provide preliminary support for this suggestion, we 484 

acknowledge that our current design does not allow to establish, whether ASD predictive 485 

deficits are specific for the social domain or can also be extended to the non-social one. Of 486 

note, recent evidence (Ego et al., 2016; Tewolde et al., 2018) seems to point to the fact that 487 

ASD children can actually predict non-social/physical events such as the trajectory of a flying 488 

bird or the movement of a car. Nevertheless, future studies directly comparing the differential 489 

role of social vs. non-social cues within the same sample of participants are necessary to shed 490 

light on this aspect. 491 

 492 

 493 

 494 
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 614 

Figure Legends 615 

Fig.1. Experimental design. (A) Full schema of probabilities allocation during a 616 

familiarization block (80 trials) in a hypothetical participant. In the example, low and high 617 

probabilities are assigned to actions performed with the object “apple”, while intermediate 618 

probabilities are assigned to the object “glass”. This distribution was counterbalanced across 619 

participants. The experiment included 2 blocks of familiarization (80 trials each) and 2 of 620 

testing (40 trials each). During the familiarization (B) children observed videos depicting a 621 

child performing individual or interpersonal actions and predicted action unfolding. During 622 

this phase, we implicitly manipulated action-context associations in terms of their probability 623 

of co-occurrence to 10%, 40%, 60% and 90%. During testing (C), participants performed the 624 
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same task but in this case the amount of perceptual information was drastically reduced (i.e., 625 

videos lasted 600ms).  626 

Fig. 2. Action prediction results. Participants' performance (d′) in predicting the course of 627 

the observed actions during the familiarization and the testing phases for action-context 628 

“weak association” (10%), “intermediate associations” (40/60%) and “strong association” 629 

(90%). Asterisks indicate significant comparison (p < 0.05). Error bars represent SEM.  630 

 631 

Fig. 3. Pearson correlation. Relationship between beta coefficients for ASD participants 632 

based on their performance on the prediction task and the parent-report anxiety scores. CBCL 633 

questionnaires were returned by 23 out of the 24 ASD children’s parents. In addition, one 634 

child was removed from the analysis since the anxiety score had a Cook distance of 2.5. 635 

Thus, the analysis was performed on a reduced sample (n = 22). 636 

 637 

Table 1 638 

 ASD 

 

TD 

 

N (male:female ratio) 22:2 22:2 

Age mean (SD) 8.66 (1.63) 9.04 (1.04) 

Age range 7-12 7-11 

IQ mean (SD) 107.91 (10.62) 102.08 (10.2) 

IQ range 80-130 80-120 

ToM A 6.27 (4.66) 11.12 (3.13) 

ToM B 9.42 (3.08) 9.87 (2.63) 

Emotion Recognition 6.77 (1.95) 7.76 (2.57) 

ADOS CSS mean (SD) 5.75 (1.29)  

ADOS CSS range 4-9  
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Table 2. 639 

Syndrome 
Mean t scores 

(SD) 

 

range 

 

Anxious/depressed 56.31 (6.17) 50-69 

Withdrawn/depressed 61.5 (7.07) 50-79 

Somatic complaints 53.27 (4.38) 50-64 

Social problems 62.4 (7.04) 50-78 

Thought problems 61.27 (7.76) 50-74 

Attention problems 61.22 (9.12) 52-92 

Rule breaking behaviour 56.13 (5.68) 50-72 

Aggressive behaviour 56.09 (4.83) 50-67 
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