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Binge drinking (BD), especially during adolescence, is a leading public health concern. 

Research within the past decade has made it clear that the ethanol (EtOH) consumption and 

the endocannabinoid (eCB) system reciprocally interact to modify neural activity and 

behavior. However, the long-lasting impact of adolescent EtOH intake on the localization 

and function of the Type I Cannabinoid (CB1) receptor in adult brain and, ultimately, on 

neurobehavior, remains unknown. 

In this doctoral study, adult male C57BL/6J mice were used to investigate the localization 

and function of the CB1 receptor at the excitatory medial perforant path (MPP) synapses in 

the dentate molecular layer of the hippocampus.  We focused on these synapses because: 

first, they integrate the hippocampal excitatory tri-synaptic circuit involved in learning and 

memory; second, MPP synapses show high efficiency in neuronal activation; and third, but 

not least, the persistent EtOH intake during the adolescence damages the entorhinal cortex 

and dentate gyrus and impairs synaptic transmission and plasticity. In particular, we studied 

the involvement of CB1 receptors and the eCB system in long-term depression of the 

excitatory MPP-granule cell synapses (CB1-eLTD), a form of synaptic plasticity. Then, the 

consequences of the adolescent EtOH intake on MPP synaptic transmission and plasticity 

were examined in adulthood after exposure of adolescent male C57BL/6J mice (postnatal 

day 32) to a 4 day binge drinking in the dark procedure over a period of 4 weeks (from 

postnatal day 32 to 56) followed by two weeks of EtOH-withdrawal. 

To reach the proposed objectives, we conducted a multidisciplinary experimental approach 

based on electrophysiology, immunohistochemistry, behavior and molecular biology 

techniques. The main results of the Doctoral Thesis are:  

First, low frequency stimulation (10 min, 10 Hz) of the medial perforant path triggers CB1-

eLTD at the MPP synapses. This eLTD is group I metabotropic glutamate receptor 
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(mGluR)-dependent, requires intracellular calcium influx and 2-arachydonoyl-glycerol (2-

AG) synthesis.  

Second, the CB1-eLTD at MPP synapses is absent in adult mice after adolescent EtOH 

consumption. Furthermore, CB1 receptor activation inhibits field excitatory postsynaptic 

potentials (fEPSPs) evoked after MPP stimulation in adult shams, but not in EtOH-exposed 

mice. 

Third, adolescent EtOH intake significantly reduces the CB1 receptor expression in 

excitatory synaptic terminals localized in the dentate MPP termination zone, decreases the 

[35S]guanosine-5*-O-(3-thiotriphosphate) ([35S] GTPγS) basal binding and Gαi2 subunit 

and significantly increases the monoacylglycerol lipase (MAGL) mRNA and protein in 

adult hippocampus.  

Fourth, mice exposed to EtOH display a significant lower recognition memory, spatial 

memory and associative memory, as well as a significant reduction in motor coordination 

and balance after two weeks of the last session of EtOH. However, no significant permanent 

anxiety or depressive-like behaviors are detected.  

Fifth, the increase of endogenous 2-AG by the MAGL inhibitor JZL184 rescues the CB1-

eLTD and reverses the significant loss of recognition memory observed in EtOH-treated 

mice.  

In conclusion, adolescent binge drinking leads to deficits in CB1 receptor-dependent 

excitatory transmission and plasticity at the MPP-granule cell synapses that correlate with 

memory loss and motor disturbance in adult mice. Furthermore, both the CB1-eLTD and 

memory can be recovered in EtOH mice by increasing the endogenous levels of 2-AG.  
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2. INTRODUCTION



 

 

 

2.1 ETHANOL AS A DRUG OF ABUSE 

Addictive drugs have short–reward effects but also long-lasting effects on brain circuitry 

leading the pattern of repetitive drug intake to tolerance, dependence, withdrawal and 

sensitization and, ultimately, addiction. There are two levels in drug addiction, the first is 

related to drug use seeking for hedonic feelings eliciting pleasure and reward, bringing 

individuals to benefit for repetition. This regular consume produces molecular changes in 

the brain that alters brain function and, as a consequence, behavior leading to drug seeking 

evolving to addiction in which drug seeking and compulsive consumption set as the center 

and only meaning in life. The behavioral changes are guided by dopamine release in the 

reward system, independently of how frequent the drug is taken.  Furthermore, dopamine 

acting in the hippocampus and cerebral cortex potentiates associative memories linked to 

drug-related cues leading to drug seeking. Long-term potentiation (LTP) and long-term 

depression (LTD) of synaptic transmission are thought to be at the basis of the 

physiological mechanisms of different types of learning and memory. Thus, changes in 

synaptic plasticity by drug use are thought to rule addictive behaviors.  

Ethyl alcohol or ethanol (EtOH) (CH3-CH2-OH) is probably the most commonly consumed 

addictive drug in the world (SAMHSA, 2011) and is an important health and social problem 

worldwide (WHO, 2014). EtOH is a weak drug; a quantity of grams is needed to produce a 

pharmacological effect. Unlike other substances of abuse, EtOH is able to modify the 

permeability of some ion channels, the functionality of several receptors particularly 

sensitive to the action of EtOH, the organization of aqueous molecules in the extracellular 

matrix, and the solubility of ligands or ions that interact with membrane receptors (Franks 

and Lieb, 1994; Peoples and Weight, 1995). Nevertheless, this type of interactions produces 

small effects and only occurs at high concentrations of EtOH (> 100 mM). In contrast, 

interactions at specific sites of proteins, which are critical for its function, seem to be much 



 

 

 

more important (Yamakura et al., 2001), since they occur at lower concentrations of EtOH 

(10-50 mM). These changes can be short- or long-lasting, but reversible, or permanent and 

associated with degenerative processes in specific brain areas (Fadda and Rossetti, 1998).  

2.1.1 Adolescent ethanol consumption  

EtOH has become the most widely used toxic substance during adolescence (Pautassi et al., 

2009). EtOH heavily impacts on the structure and function of the brain, particularly during 

adolescence (Pascual et al., 2007; Clark et al., 2012; Keshavan et al., 2014; Liu and Crews, 

2015; Montesinos et al., 2015; Vetreno and Crews, 2015; Adermark and Bowers, 2016; 

Spear, 2016a). Because EtOH modifies brain maturation, adolescent EtOH drinking 

associates with deficits in attention, learning, memory, intellectual development or visual-

spatial functions (Brown and Tapert, 2004; Nagel et al., 2005; Zeigler et al., 2005; Lacaille 

et al., 2015) that correlate with a loss in hippocampal, prefrontal cortex and cerebellar 

volumes and a ventricular expansion in young people drinking at early age (Shear et al., 

1992; De Bellis et al., 2000, 2005; Nagel et al., 2005; Medina et al., 2008; Lisdahl et al., 

2013). 

Binge drinking (BD) is the typical pattern of alcohol consumption in adolescents and youth. 

It is characterized by an intermittent consumption of large amounts of EtOH in short 

periods of time (3 or more drinks in 1-2 hours) followed by a period of abstinence 

(Courtney and Polich, 2009). This intake pattern causes large and rapid spikes in blood 

EtOH concentration (BEC) that brings serious consequences in terms of acute toxicity but 

also leads to vulnerability for later EtOH abuse and dependence (Amodeo et al., 2017). BD 

correlates with cognitive damage as abusive EtOH consumption has deleterious effects on 

the adolescent brain (Lacaille et al., 2015). The neocortex, limbic system and cerebellum 

are brain regions particularly sensitive to the neurotoxic effects of EtOH during early life 

(Crews et al., 2000; Squeglia et al., 2009; Karanikas et al., 2013). EtOH causes a significant 



 

 

 

loss of hippocampal neurons, astrocytes and microglia (Oliveira et al., 2015), hippocampal 

shrinkage (De Bellis et al., 2000) and mitochondrial dysfunction that leads to brain 

inflammation, synaptic dysfunction and memory loss (Crews et al., 2000). Furthermore, 

EtOH intake during adolescence causes damage to the perirhinal cortex, entorhinal cortex 

and dentate gyrus (Crews et al., 2000) that play a key role in memory tasks and mood, as 

well as to cerebellar Purkinje cells (Sarna and Hawkes, 2003; Jaatinen and Rintala, 2008) 

which are essential in the cerebellar motor control (Lamont and Weber, 2012). Moreover, 

all these effects are long lasting (Coleman et al., 2011, 2014; Forbes et al., 2013). Actually, 

BD alters brain volume in animal models and mimics the alteration found in young drinkers 

(Crews et al., 2000; Coleman et al., 2011, 2014; Forbes et al., 2013; Vetreno et al., 2016) 

and EtOH-exposed adolescent animals are more sensitive and show memory and learning 

dysfunctions (Markwiese et al., 1998; White and Swartzwelder, 2005) which can extend 

into adulthood (Sircar and Sircar, 2005; Pascual et al., 2007). 

Given the incidence of BD in adolescents and young adults and the lesion effects of EtOH 

in the central nervous system (CNS), it is critical to understand both the long-term 

consequences of this exposure and methods by which this damage can be overcome by 

therapeutic interventions. The persistent behavioral effects of EtOH in adolescence are 

accompanied by disturbance of synaptic plasticity and neurotransmission. Thus, numerous 

studies have shown that EtOH alters several neurotransmitter and neuromodulatory systems, 

in particular, the endocannabinoid (eCB) (Hungund et al., 2003; Basavarajappa, 2007; 

Mitrirattanakul et al., 2007; Adermark et al., 2011; Talani and Lovinger, 2015; Varodayan 

et al., 2017), glutamatergic (Hoffman and Tabakoff, 1996; Fadda and Rossetti, 1998; Alele 

and Devaud, 2005; Heinz et al., 2005; Larsson et al., 2005), Gamma-Aminobutyric acid 

(GABA) (Mehta and Ticku, 2005; Fleming et al., 2007, 2012, 2013; Centanni et al., 2014), 

or dopaminergic system (Coleman et al., 2011; Boutros et al., 2014; Shnitko et al., 2014; 

Vetreno et al., 2014; Spoelder et al., 2015) in many brain areas. Moreover, it is well 



 

 

 

documented that the eCB system regulates the EtOH-induced changes in excitatory and 

inhibitory transmission and participates in EtOH addictive behaviors of consumption, 

motivation, reinforcing and dependence (Rimondini et al. 2002; Colombo et al., 2005; 

Thanos et al., 2005; Economidou et al., 2006; Mitrirattanakul et al. 2007; Basavarajappa et 

al., 2008; Kelm et al., 2008; Vinod et al., 2008, 2012; Roberto et al., 2010; Pava et al., 

2012; Pava and Woodward 2012; Talani and Lovinger, 2015) and, reciprocally, EtOH 

modulates the behavioral and neural eCB-dependent effects (Pava et al., 2012; Talani and 

Lovinger, 2015).  

2.2 THE ENDOCANNABINOID SYSTEM 

The eCB system is a complex neuromodulatory endogenous signalling system widely 

distributed throughout the mammalian organism that participates in multiple metabolic 

pathways regulating cell physiology. This system is composed of cannabinoid receptors, 

endogenous ligands (endocannabinoids) and their synthesizing and degrading enzymes, 

intracellular signalling pathways regulated by endocannabinoids as well as transport 

systems (Piomelli, 2003, 2014; De Petrocellis et al., 2004; Marsicano and Lutz, 2006; Kano 

et al., 2009; Katona and Freund, 2012; Pertwee, 2015; Lu and Mackie, 2016). The eCB 

system is widely distributed in the central and peripheral nervous system (Katona and 

Freund, 2012; Lu and Mackie, 2016), and also in many other organs (Piazza et al., 2017), 

where it regulates brain functions by acting on different cell types and cellular 

compartments (Katona and Freund, 2012; Lu and Mackie, 2016; Gutiérrez-Rodríguez et al., 

2017; Busquets-Garcia et al., 2018). The alteration of the eCB system participates in the 

pathogenesis of multiple neurological and neuropsychiatric disorders (Pertwee, 2009). 



 

 

 

2.2.1 Cannabinoid receptors 

Cannabinoid receptors are known to be present in many vertebrate species, including 

rodents, monkeys and humans (Elphick and Egertová, 2005). The first classical receptor 

characterized by radiometric methods was the type 1 cannabinoid receptor (CB1 receptor; 

CB1) (Devane et al., 1988); its molecular structure was identified first in rat (Matsuda et al., 

1990), then in human (Gérard et al., 1991) and later in mouse (Akinshola et al., 1999). The 

second classical receptor characterized was the type 2 cannabinoid receptor (CB2 receptor), 

which was characterized from rat spleen myeloid cells (Munro et al., 1993). Both receptors 

are members of the G-protein-coupled receptors (GPCRs) superfamily. GPCRs are widely 

distributed in the CNS and immune system and are characterized by seven hydrophobic 

transmembrane segments connected by intracellular and extracellular loops, an N-terminal 

extracellular domain that possesses glycosylation sites and a C-terminal intracellular 

domain coupled to a Gi/o protein (Howlett et al., 2002). 

 

Figure 1. Structure of classical cannabinoid receptors 

(Modified from Ramos et al., 2011). 

 

 CB1 Receptor 

The CB1 receptor is one of the most abundant GPCR in the brain (Herkenham et al., 1991; 

Tsou et al., 1998; Moldrich and Wenger, 2000). Its expression is widespread, heterogeneous 



 

 

 

and has crucial roles in the brain during prenatal and postnatal development and participates 

in many brain functions ranging from food intake to cognition through the modulation of 

synaptic transmission and plasticity (Marsicano et al., 2002; Monory et al., 2006; 

Marsicano and Kuner, 2008; Bellocchio et al., 2010; Puente et al., 2011; Castillo, 2012; 

Katona and Freund, 2012; Steindel et al., 2013; Ruehle et al., 2013; Soria-Gómez et al., 

2014, 2015; Hu and Mackie, 2015; Katona, 2015; Martín-García et al., 2016; Bonilla-Del 

Rίo et al., 2017; Gutiérrez-Rodríguez et al., 2017, 2018).  

The CB1 receptor is the target of (−)-trans-Δ9-tetrahydrocannabinol (THC), the main 

psychoactive compound of Cannabis plants. Hence, the CB1 receptor distribution in the 

brain closely fits into the deleterious effects of cannabinoids on locomotion, perception, 

learning, memory or the cannabinoid-positive effects as anti-convulsant or food intake 

enhancers, and its low amount in the brainstem correlates with the low toxicity and lethality 

of marijuana (Bellocchio et al., 2010; Han et al., 2012; Katona and Freund, 2012; Hebert-

Chatelain et al., 2014a,b, 2016; Soria-Gómez et al., 2014; Martín-García et al., 2016; Lu 

and Mackie, 2016; Mechoulam, 2016).  CB1 receptors are abundant in the basal ganglia 

(substantia nigra reticulata, globus pallidus, striatum, entopeduncular nucleus), cortex, 

nucleus accumbens, cerebellum, hippocampus (Howlett et al., 1990; Tsou et al., 1998; Hu 

and Mackie, 2015; Martín-García et al., 2016), and poorly expressed in the hypothalamus, 

brainstem and spinal cord (Herkenham et al., 1990; 1991; Mailleux and Vanderhaeghen, 

1992; Tsou et al., 1998; Hu and Mackie, 2015). 



 

 

 

 

Figure 2. Distribution of CB1 receptors in a parasagittal section of the adult mouse brain. AON: anterior 

olfactory nucleus, Cb: cerebellar cortex, CPu: caudate putamen, DG: dentate gyrus, Hi: hippocampus, M1: primary 

motor cortex, Mid: midbrain, MO: medulla oblongata, NAc: nucleus accumbens, Po: pons, S1: primary 

somatosensory cortex, SNR: substantia nigra pars reticulata, Th: thalamus, V1: primary visual cortex, VP: ventral 

pallidum. (Modified from Kano et al., 2009). 

 

Mice with CB1 receptor gene deletion (CB1-KO) lack CB1 receptor protein expression 

(Steiner et al., 1999; Zimmer et al., 1999; Marsicano et al., 2002; for review: Zimmer, 

2015) and, therefore, only unspecific CB1 receptor immunolabelling is observed in mutant 

tissue. Conditional mutant mice lacking CB1 receptor mainly from cortical glutamatergic 

neurons (Glu-CB1-KO) and from GABAergic neurons (GABA-CB1-KO) (Monory et al., 

2006, 2007) show a selective decrease in the brain pattern of CB1 receptor staining but not 

in the same degree as in CB1-KO; in particular, the CB1 receptor immunoreactivity is 

greatly reduced in the GABA-CB1-KO and less in the Glu-CB1-KO compared with the wild 

type (Monory et al., 2006, 2007; Marsicano and Kuner, 2008; Steindel et al., 2013; Martín-

García et al., 2016) indicating  that CB1 receptors are more abundantly expressed in 

GABAergic neurons than in glutamatergic neurons. An exception would be the great 

reduction in CB1 receptor staining observed in the granule cell layer of the Glu-CB1-KO 

olfactory bulb (Soria-Gómez et al., 2014). Substantia nigra pars reticulata lacks CB1 

receptor immunoreactivity in GABA-CB1-KO, and a large decrease in CB1 receptor staining 

is observed in the GABA-CB1-KO hippocampus but not at the zone of the glutamatergic 

commissural/associational synapses in the inner 1/3 of the dentate ML (Monory et al., 2006, 



 

 

 

2007; Marsicano and Kuner, 2008; Martín-García et al., 2016). Conversely, the weak 

pattern of CB1 receptor immunostaining in genetic rescue mice expressing CB1 receptors 

only in dorsal telencephalic glutamatergic neurons (Glu-CB1-RS) (de Salas-Quiroga et al., 

2015; Lange et al., 2017; Ruehle et al., 2013; Soria-Gómez et al., 2014; Gutiérrez-

Rodríguez et al., 2017, 2018) relative to the rescue mice expressing CB1 receptors only in 

GABAergic neurons (GABA-CB1-RS) (de Salas-Quiroga et al., 2015; Lange et al., 2017; 

Remmers et al., 2017; Gutiérrez-Rodríguez et al., 2017, 2018) correlates with the low CB1 

receptor distribution in glutamatergic neurons and high in GABAergic cells, respectively. 

However, a conspicuous CB1 receptor staining in Glu-CB1-RS is observed in the striatum, 

cortex, olfactory tubercle, amygdala, hippocampus (strata oriens and radiatum of the 

hippocampal Ammon’s horn) and, remarkably, in the inner 1/3 of the dentate ML of Glu-

CB1-RS (Monory et al., 2006; Ruehle et al., 2013; Gutiérrez-Rodríguez et al., 2017). In 

GABA-CB1-RS, strong CB1 receptor immunoreactivity is seen in the cortex, anterior 

olfactory nucleus, piriform cortex, globus pallidus, entopeduncular nucleus, amygdala, and 

substantia nigra, and moderate to strong in the striatum (Gutiérrez-Rodríguez et al., 2017). 

In the hippocampus, heavy CB1 receptor immunoreaction is present throughout the 

hippocampus, particularly in the Ammon’s horn pyramidal cell layer, at the limit between 

the strata radiatum and the lacunosum-moleculare and in the inner one-third of the dentate 

ML (Gutiérrez-Rodríguez et al., 2017, Remmers et al., 2017).  

One critical aspect in the understanding and discovery of new cannabinoid-based drugs to 

treat addiction, and also other brain and organic diseases, is to elucidate where the main 

players of the eCB system, and particularly the CB1 receptor, is localized subcellularly in 

the brain. Then, this knowledge will provide the anatomical substrate for the development 

of innovative strategies oriented towards the selective hit of specific CB1 receptor 

populations at defined subcellular compartments and cell organelles by pharmacological or 

genetic tools. Brain CB1 receptors are mostly localized in axon terminals and preterminals 



 

 

 

away from the presynaptic active zones (Kawamura et al., 2006; Uchigashima et al., 2007; 

Katona and Freund, 2012).  

Under normal conditions, CB1 receptor expression is very high in inhibitory GABAergic 

synaptic terminals mostly in cortical and hippocampal cholecystokinin (CCK)-positive 

GABAergic interneurons (Kawamura et al., 2006; Ludányi et al., 2008; Marsicano and 

Kuner, 2008; Katona and Freund, 2012; De-May and Ali, 2013; Steindel et al., 2013; Hu 

and Mackie, 2015; Lu and Mackie, 2016; Gutiérrez-Rodríguez et al., 2017), low in 

excitatory glutamatergic synapses (Marsicano et al., 2003; Domenici et al., 2006; Takahashi 

and Castillo, 2006; Katona et al., 2006; Monory et al., 2006; Kamprath et al., 2009; 

Bellocchio et al., 2010; Puente et al., 2011; Reguero et al., 2011; Ruehle et al., 2013; Soria-

Gómez et al., 2014; Gutiérrez-Rodríguez et al., 2017) and very low in brain astrocytes 

(Rodriguez et al., 2001; Navarrete and Araque, 2008, 2010; Stella, 2010; Han et al., 2012; 

Bosier et al., 2013; Metna-Laurent and Marsicano, 2015; Viader et al., 2015; Oliveira da 

Cruz et al., 2016; Kovács et al., 2017; Gutiérrez-Rodríguez et al., 2018). The activation of 

the scarce CB1 receptors expressed in astrocytes promotes astroglial differentiation and 

regulates synaptic transmission and plasticity through the modulation of neuron-astrocyte 

crosstalk. Furthermore, astroglial CB1 receptors activation by acute cannabinoids impairs 

working memory (Han et al., 2012); also, CB1 receptors in astrocytes control the leptin 

receptor expression in cultured cortical and hypothalamic astrocytes needed for energy 

supply to the brain (Bosier et al., 2013). CB1 receptors are expressed in oligodendrocytes 

and neural precursors too (Molina-Holgado et al., 2002; Aguado et al., 2005; Benito et al., 

2007; Garcia-Ovejero et al., 2009; Mato et al., 2009; Gomez et al., 2010) and intracellular 

CB1 receptors have been unequivocally localized to neuronal mitochondria (Bénard et al., 

2012; Hebert-Chatelain et al., 2014a; 2014b; Koch et al., 2015) where they regulate 

memory through the modulation of energy metabolism (Hebert-Chatelain et al., 2016) as 

well as to astroglial mitochondria (Gutiérrez-Rodríguez et al., 2018). 



 

 

 

We assessed the CB1 receptor distribution in subcellular compartments of the CA1 of the Hi 

as the proportion of CB1 receptor-dependent silver-intensified gold particles in GABAergic 

terminals (~56%), glutamatergic terminals (~12%), astrocytes (~6%) and mitochondria 

(~15%) (Bonilla-Del Río et al., 2017; Gutiérrez-Rodríguez et al., 2018). Noticeably, 11% of 

the immunoparticles were localized to other compartments, and, importantly, the labeling 

disappeared in the CB1-KO (Bonilla-Del Río et al., 2017; Gutiérrez-Rodríguez et al., 2018). 

Other brain cells constitutively expressing CB1 receptors are oligodendrocytes (Molina-

Holgado et al., 2002; Benito et al., 2007; Garcia-Ovejero et al., 2009; Mato et al., 2009; 

Gomez et al., 2010) and probably microglia (Bonilla-Del Río et al., unpublished 

observations). 

CB1 receptors also localize in adipose tissue, muscle, liver, heart, gastrointestinal tract, 

pancreas, spleen, tonsils, prostate, testicle, uterus, ovary, skin, eye, or presynaptic 

sympathetic nerve terminals (Galiègue et al., 1995; Ishac et al., 1996; Pertwee, 2001; 

Maccarone et al., 2016; Zou and Kumar, 2018). They are also present at mitochondria of 

skeletal (gastrocnemius and rectus abdominis) and myocardial muscles (Mendizabal-

Zubiaga et al., 2016) whose activation by THC reduces mitochondria coupled respiration 

(Mendizabal-Zubiaga et al., 2016).  

 CB2 Receptor 

The CB2 receptor was first described in spleen (Munro et al., 1993) and, in addition to this 

organ, it was believed to be only present in the immune system (tonsils, B and T 

lymphocytes, natural killer cells, macrophages and CD8 and CD4 T-lymphocytes)  

(Galiègue et al., 1995; Ameri, 1999; Cabral et al., 2015). However, CB2 receptors are also 

expressed in heart, endothelium, bone, liver, pancreas, testicle (Zou and Kumar, 2018). The 

localization of CB2 receptors in the CNS is a controversial issue as not specific CB2 

receptor antibodies are available so far (Atwood and Mackie, 2010; Lu and Mackie, 2016). 



 

 

 

CB2 receptors are expressed in reactive microglia and also astrocytes (Fernández-Ruiz et 

al., 2007; López et al., 2018).  

 Other Cannabinoid Receptors 

There are also other receptors that mediate the effects of endocannabinoids (Pertwee, 2015). 

For instance, the transient receptor potential vanilloid 1 (TRPV1) activated by anandamide 

and other molecules (Maccarrone et al., 2008; De Petrocellis and Di Marzo, 2009; Tóth et 

al., 2009; Alhouayek et al., 2014; Rossi et al., 2015); the transient receptor potential 

ankyrin 1 (TRPA1) receptors (De Petrocellis et al., 2008), peroxisome proliferator-activated 

receptors, namely PPAR-α (Sun et al., 2006; Alhouayek et al., 2014) and non-CB1/CB2 

GPCRs such as G protein-coupled receptor 55 (GPR55) (Ryberg et al., 2007). 

2.2.2 Signal transduction mechanism 

The analysis of [35S]guanosine-5*-O-(3-thiotriphosphate) ([35S] GTPγS) binding 

demonstrated that CB1 receptors at glutamatergic synapses are more efficiently coupled to 

G protein signaling than GABAergic CB1 receptors (Steindel et al., 2013). Signal 

transduction through CB1 and CB2 receptors occurs mainly by their interaction with G 

proteins of the Gi/o subtype which leads, among other effects, to adenylyl cyclase inhibition 

with the consequent decrease of cyclic adenosine monophosphate (cAMP), and transient 

blockade of protein kinase type A (PKA)-mediated short-term effects. Gi/o also stimulates 

the pathways of several intracellular kinases, such as mitogen-activated protein kinase 

(MAPK) or extracellular signal–regulated kinase (ERK) (Pertwee, 1997; Galve-Roperh et 

al., 2002). In addition, CB1 receptors (but not CB2) are coupled, via Gi/o proteins, to ion 

channels of different types, so that activation of CB1 receptors leads to a negative regulation 

of  -N, -L and -P / Q, calcium channels and positive currents of potassium rectifiers 

(Pertwee, 1997; de Fonseca et al., 2005). Finally, the activation of CB1 receptors (and not 

CB2) stimulates other kinases, such as phosphatidyl-inositol 3 kinase and protein kinase B 



 

 

 

(Galve-Roperh et al., 2002). All these effects are related to the control of neuronal 

excitability and to the inhibitory influence of cannabinoid agonists on neurotransmitter 

release (Di Marzo et al., 1998; Ohno-Shosaku et al., 2002; De Petrocellis, et al., 2004). 

2.2.3 Endocannabinoids in the central nervous system 

The endocannabinoids are lipid messengers considered as promiscuous molecules since 

they activate CB1 and CB2 receptors and other receptors (Piomelli, 2003; Kano et al., 2009; 

Pertwee et al., 2010; Katona and Freund, 2012; Lutz et al., 2015; Lu and Mackie, 2016; 

Zou and Kumar, 2018). The physiology and pharmacology of the endocannabinoids are 

complex due to both the vast distribution of the numerous components and the features of 

the system. The endocannabinoids exert their influence in a paracrine and autocrine manner, 

and probably even in endocrine mode, because their lipid nature allows them to diffuse and 

cross membranes. They are cannabinoid receptor agonists that constitute a family of 

molecules that are not accumulated in secretory vesicles but rather synthesized on demand 

and released right after to the extracellular space following physiological and pathological 

stimuli (Piomelli, 2003; Kano et al., 2009; Pertwee et al., 2010; Katona and Freund, 2012; 

Lutz et al., 2015; Lu and Mackie, 2016; Zou and Kumar, 2018). 

The two main endocannabinoids are derivatives of polyunsatured fatty acids, N-

arachidonoylethanolamine (anandamide, AEA) (Devane et al., 1992) and 2-

arachidonoylglycerol (2-AG) (Mechoulam et al., 1995). AEA produces the “tetrad” effects 

of cannabinoids (i.e., catalepsy, antinociception, hypolocomotion, and hypothermia) in 

rodents (Fride and Mechoulam, 1993) whereas 2-AG plays a key role in most of the CB1 

receptor-dependent modulation of synaptic transmission and plasticity (Kano et al., 2009). 

2-AG concentration in brain tissue is about 200-fold higher than AEA (Bisogno et al., 

1999) and correlates well with the cannabinoid receptor density in the brain (Sugiura et al., 

2006).  However, this is not the case for AEA that accumulates in brain regions with high 



 

 

 

cannabinoid receptor density (hippocampus, cortex, striatum) and also in regions with low 

receptor expression (thalamus, brainstem) (Felder and Glass, 1998). 2-AG is an agonist with 

high efficacy on both CB1 and CB2 receptors (Lynn and Herkenham, 1994; Slipetz et al., 

1995; Gonsiorek et al., 2000; Sugiura et al., 2000), while the AEA efficacy is low at CB1 

(partial agonist) and very low at CB2 receptors (weak partial agonist/antagonist) (Showalter 

et al., 1996; Gonsiorek et al., 2000; Sugiura et al., 2000; Luk et al., 2004).  

There is a great variety of biochemical pathways for the synthesis, transport, release and 

degradation of endocannabinoids. Thus, the biosynthetic enzymes phospholipase D 

selective N-acylphosphatidylethanolamine (NAPE-PLD) for AEA and diacylglycerol 

lipases (DAGL) α and β for 2-AG, as well as the hydrolytic enzymes fatty acid amide 

hydrolase (FAAH) for AEA inactivation and monoacylglycerol lipase (MAGL) for 2-AG, 

among others, are responsible for the distinctive physiological and pathophysiological roles 

of both endocannabinoids (Kano et al., 2009; Fezza et al., 2014; Piomelli, 2014; Lu and 

Mackie, 2016; Zou and Kumar, 2018). 

The AEA precursor N-arachidonoyl phosphatidylethanolamine (NAPE) is generated by the 

transfer of arachidonic acid (AA) from phosphatidylcholine to phosphatidylethanolamine by 

the Ca2+ dependent N-acyltransferase (NAT) (Cadas et al., 1996; Kano et al., 2009; Fezza et 

al., 2014). Then, AEA is synthesized by the N-acylphosphatidylethanolamine specific 

phospholipase D (NAPE-PLD) that hydrolyses NAPE localized in cell membranes 

(Okamoto et al., 2004; Kano et al., 2009). The AEA half-life is very short because of its 

quick uptake by a high affinity transporter (AMT, anandamide membrane transporter) 

distributed in neurons and glia (Di Marzo et al., 2015). AEA is inactivated by FAAH 

present in many organs and also in the brain (Dinh et al., 2002; Ueda, 2002; Kano et al., 

2009) where its postsynaptic localization meets with presynaptic CB1 receptors (Egertová et 

al., 2003; Kano et al., 2009; Hu and Mackie, 2015). FAAH is serine-hydrolase bound to 



 

 

 

intracellular membranes that catalyzes AEA into arachidonic acid and ethanolamine (Fezza 

et al., 2014). There are two more hydrolases for AEA degradation: FAAH-2 and the 

lysosomal N-acylethanolamine cisteine-amidohydrolase (NAAA). 

 

Figure 3. Chemical structures of the main endocannabinoids. Arachidonoyl ethanolamide (anandamide; AEA) 

and 2-arachidonoyl glycerol (2-AG) (Modified from Mechoulam et al., 2014). 

 

2-AG participates in the CB1-dependent retrograde signalling and is an intermediate 

metabolite for lipid synthesis providing AA for prostaglandin synthesis (Kano et al., 2009; 

Fezza et al., 2014; Lu and Mackie, 2016). Neuronal membrane depolarization or the 

activation of Gq-coupled GPCRs triggers the synthesis of 2-AG (Kano et al., 2009). The 

diacylglycerol (DAG) precursors come from the hydrolysis of membrane 

phosphatidylinositol by phospholipase C, β or δ. The degradation of these precursors by 

DAGL-α and DAGL-β drives 2-AG synthesis (Kano et al., 2009; Gao et al., 2010; 

Tanimura et al., 2010; Lu and Mackie, 2016; Zou and Kumar, 2018). The DAGLα isoform 

synthesizes the greatest amount of 2-AG; DAGLβ synthesizes 2-AG under certain 

circumstances (Di Marzo et al, 2015). MAGL is a serine-hydrolase that catalyzes 2-AG into 

AA and glycerol (Dinh et al., 2002; Ueda, 2002; Kano et al., 2009); this enzyme is mainly 

found in presynaptic terminals (Kano et al., 2009; Straiker et al., 2009; Hu and Mackie, 

2015; Lu and Mackie, 2016). Also, the α/β-hydrolase domain 6 (ABHD6) and domain 12 

(ABHD12) degrade 2-AG (Blankman et al., 2007; Kano et al., 2009; Fezza et al., 2014). 

AEA and 2-AG are also metabolized by lipooxygenases and cyclooxygenase-2 (COX-2) 

(Kano et al., 2009; Lu and Mackie, 2016). 



 

 

 

 

Figure 4. Major pathways for synthesis and degradation of anandamide and 2-AG (Modified from Lee et al., 

2015). 

 

2.3 ETHANOL CONSUMPTION, ADOLESCENCE AND 

CANNABINOID SYSTEM 

Several preclinical approaches have been developed in order to study the effects of EtOH 

consumption. The drinking in the dark (DID) procedure has emerged as a valuable tool in 

both mouse (Crabbe et al., 2011) and rat (Holgate et al., 2017) to investigate the effects of 

alcohol administration during adolescence. In rodents, adolescence runs between postnatal 

day (pnd) 28 and 42 but neurobehavioral signs can persist in male rats up to 55-60 pnd 

(Spear, 2000). In this model, the animals are given access to EtOH (or tap water) for 2-h 

sessions during 3 days, and for an additional 4-h session on the 4th day. We have chosen the 

DID method because: (1) EtOH self-administration is closer to voluntary alcohol intake in 

humans; (2) intermittent access to EtOH provides a cycle of consumption-withdrawal that 

relates to escalating EtOH consumption patterns;  (3) it has been adapted to the adolescent 

period (see Carnicella et al., 2014; Crews et al., 2016; Spear, 2016b).   



 

 

 

The CB1 receptor has a crucial role in the EtOH behaviors, as receptor agonists stimulate 

EtOH intake and antagonists reduce voluntary EtOH consumption, preference and craving 

(Colombo et al., 2002; Economidou et al., 2006). Likewise, preference and EtOH intake are 

reduced in mice lacking CB1 receptors (Hungund et al., 2003) and chronic EtOH exposure 

decreases CB1 receptor mRNA expression, receptor density and functionality 

(Basavarajappa et al., 1998; Ortiz et al., 2004; Mitrirattanakul et al., 2007; Vinod et al., 

2006; 2008; 2010) which associate with a long-lasting increase in endocannabinoids in the 

hippocampus after withdrawal (Mitrirattanakul et al., 2007; Rubio et al. 2009). So, the 

interaction of the eCB system with EtOH was thought to be a good target candidate for 

treatment of EtOH addiction. 

We have recently tested the effect of EtOH consumption during adolescence on the 

expression of the CB1 receptor in the adult hippocampus. The model applied was the DID 

procedure in which adolescent male mice were subjected to a 4-day DID (Rhodes et al., 

2007) over a period of 4 weeks. Accordingly, we assessed the CB1 receptor expression in 

the CA1 hippocampus as the proportion of silver-intensified 1.4 nm gold particles bound to 

Fab’ fragments of rabbit anti-goat immunoglobulin G antibodies (1:100, Nanoprobes Inc.) 

directed to goat polyclonal anti-CB1 receptor antibodies (2 μg/ml corresponding to a 1:100 

dilution, #CB1-Go-Af450, Frontier Institute Co.; RRID: AB_257130). The pattern of CB1 

receptor distribution was altered under conditions of EtOH (Bonilla-Del Río et al., 2017). 

Interestingly, there were not detected differences between the proportion of CB1 receptor 

particles localized to inhibitory terminals, mitochondria and other membrane compartments. 

Furthermore, there was a striking decrease in CB1 receptor labeling in astrocytes as well as 

in the CB1 receptor immunopositive astrocytic processes and in the density of receptor 

labeling of the adult hippocampus after EtOH intake during adolescence (Bonilla-Del Río et 

al., 2017). Furthermore, the astrocytes were swollen much like after exposure to acute 

EtOH (Adermark and Bowers, 2016; Allansson et al., 2001; Othman et al., 2002; Pava and 



 

 

 

Woodward, 2012). Chronic EtOH exposure alters the glial fibrillary acidic protein and, 

consequently, the astrocyte morphology (Renau-Piqueras et al., 1989). In the last years, 

astroglial CB1 receptors have been shown to play a role in brain function, cognition and 

behavior (Navarrete and Araque, 2008, 2010; Han et al., 2012; Min and Nevian, 2012; 

Araque et al., 2014; Navarrete et al., 2014; Gómez-Gonzalo et al., 2015; Metna-Laurent and 

Marsicano, 2015; Oliveira da Cruz, et al., 2016). The reduced CB1 receptor expression in 

astrocytes and their morphological changes observed after adolescent EtOH consumption 

should have consequences on the molecular architecture and synaptic plasticity mechanisms 

at the tripartite synapse (Dzyubenko et al., 2016). Furthermore, altered astrocytes upon 

EtOH consumption associate with an increase in the glutamate transporter GLAST 

(EAAT1) (Flatscher-Bader et al., 2006; Rimondini et al., 2002); however, GLAST-null 

mice with functional CB1 receptors synapses have less EtOH consumption, motivation and 

reward (Karlsson et al., 2012). Thus, GLAST expression and consequently the regulation of 

the extracellular glutamate, seems to be a key piece in the EtOH addictive behaviors. 

Whether the drastic reduction of astroglial CB1 receptors observed in the mature 

hippocampus after adolescent EtOH intake affects GLAST expression in astrocytes is still 

an unanswered question. If there were an interaction between CB1 receptors and GLAST in 

astrocytes, it would have clinical implications as to selective astroglial CB1 receptor 

modulation might impact on GLAST. 

Another purview to be considered is the neuroinflammatory mechanisms turned on by BD 

in adolescence that entails impaired synaptic plasticity, long-term behavioral and cognitive 

deficits, and late alcohol abuse and addiction (Nestler, 2001; Montesinos et al., 2016). 

Astrocytes are able to release pro-inflammatory molecules (Farina et al., 2007) and 

astroglial CB1 receptors are involved in anti-inflammatory responses in reactive astrocytes 

(Metna-Laurent and Marsicano, 2015; Ortega-Gutiérrez et al., 2005; Sheng et al., 2005). 

Hence, the drastic reduction in CB1 receptors in astrocytes upon adolescent EtOH intake 



 

 

 

might be accompanied by an impairment of the astrocyte-mediated anti-inflammatory 

reaction. Thus, depending on the pattern of EtOH intake, therapeutic strategies based on the 

use of anti-inflammatory drugs could be designed in order to treat EtOH addiction and the 

perturbed behavior and cognition associated. Furthermore, the drastic decrease in CB1 

receptors in astrocytes and their morphological changes observed in the adult brain after 

EtOH intake during adolescence, represent a novel pharmacological target to palliate the 

structural, functional and behavioral consequences of the adolescent BD in adulthood. 

We also observed that the CB1 receptor expression on glutamatergic synapses in the adult 

CA1 hippocampus was lower after EtOH exposure during adolescence (Bonilla-Del Río et 

al., 2017) with no effect on the expression and localization of CB1 receptors in GABAergic 

synapses (Bonilla-Del Río et al., 2017; Gutiérrez-Rodríguez et al., 2017). As already 

mentioned, CB1 receptors have been recently shown to localize to mitochondria (mtCB1 

receptors) of neurons and astrocytes. The mtCB1 receptors modulate mitochondrial 

respiration having important functional impact on synaptic transmission, behavior and 

memory. Thus, the decrease in cellular respiration yielded by the exposure to acute 

cannabinoids relates to mtCB1 receptors activation that turns on intramitochondrial Gαi 

protein signaling with the consequent soluble-adenylyl cyclase inhibition and shutdown of 

the PKA-dependent phosphorylation of specific subunits of he mitochondrial electron 

transport system (Hebert-Chatelain et al., 2016). This effect of cannabinoids on 

bioenergetic production through mtCB1 receptors impacts on memory formation, as mutant 

mice lacking CB1 receptors in hippocampal mitochondria do not exhibit amnesia after 

cannabinoid administration (Hebert-Chatelain et al., 2016) in the NOR task (Puighermanal 

et al., 2009). Furthermore, cannabinoids reduce mitochondrial mobility (Boesmans et al., 

2009) needed for energy support (Sheng and Cai, 2012). The potential role of mtCB1 

receptors in addictive behaviors remains to be elucidated. However, there are anatomical 

indications showing that the proportion of CB1 receptor particles on mitochondria in sham 



 

 

 

and EtOH hippocampus of adult brain in mice exposed to the model of adolescent BD 

(Bonilla-Del Río et al., 2017) was similar to our previous findings (Bénard et al., 2012; 

Hebert-Chatelain et al., 2016). Hence, no changes in the CB1 receptor expression on this 

organelle could be detected upon BD during adolescence. Furthermore, an increase in AEA 

was detected in EtOH animal models (Vinod et al., 2006) and ventral striatum of 

postmortem human alcoholics (Vinod et al., 2010) together with a decrease in the AEA 

degrading enzyme fatty acid amide hydrolase (FAAH) and CB1 receptor expression (Vinod 

et al., 2010). A decrease in CB1 receptor expression and a reduced G protein coupling of the 

receptor was also observed in the striatum, hippocampus, nucleus accumbens and amygdala 

of FAAH knockout mice (Vinod et al., 2008).  

Altogether, the investigations have firmly established a role for the eCB system in 

mediating the reinforcing properties of EtOH and EtOH dependence. So, the reciprocal 

interaction between the eCB system and EtOH has been thought as a good target candidate 

for treating EtOH addiction. Accordingly, how the manipulation of the eCB system 

interferes positively with the long-term changes induced by EtOH is one of the main goals 

of this Doctoral Thesis. 

2.4 HIPPOCAMPAL FORMATION 

The hippocampal formation (HF) is part of the limbic system. Its C-shaped structure 

contains 3 subregions: Dentate Gyrus, CA of the Hippocampus (which is subdivided into 

CA1, CA2, CA3 and CA4 areas) and the subiculum. The adjoining area is the 

parahippocampal region which is divided into 5 subregions: perirhinal, entorhinal, and 

postrhinal cortex, presubiculum and parasubiculum. 

 



 

 

 

 

 

Figure 5. Schematic drawing of the hippocampal 

formation and the parahippocampal gyrus. A 

dorsal plane section from the right cerebral 

hemisphere (rostral toward the left and medial 

toward the bottom). The HF consists of the dentate 

gyrus (dark orange), hippocampus (pale orange), 

and subiculum (yellow). The latter is continuous 

with the entorhinal cortex covering the 

parahippocampal gyrus (green). The hippocampus 

(Ammon´s horn) is divided into four regions (CA1-

CA4). Output axons (blue) from the HF run 

superficially in the alveus and then in the fimbria. 

(Modified from Ranson and Clark, 1959).  

 

 

The HF plays an essential role in spatial and contextual memory, as well as in learning and 

mood regulation. In addition, disorders such as anxiety, depression, neurodegenerative 

diseases and addiction, including EtOH addiction, are related to alterations in regions of the 

HF. 

2.4.1 Dentate gyrus 

The DG is involved in the formation of episodic memory (Aimone et al., 2011). Thus, 

behavioral studies have shown that animals with damaged DG are not able to distinguish 

between similar events or objects, without any other behavioral deficit (anxiety, depression, 

etc.) (Gilbert et al., 2001).  

The DG has three layers: the molecular layer (ML) which contains the perforant path fibers 

that connect the entorhinal cortex (EC) with the DG; the granule cell layer mainly 

constituted by glutamatergic excitatory granule cells; and the polymorphic layer or hilus 



 

 

 

that contains the mossy cells and many other cell types (Amaral and Witter, 1989; Amaral 

et al., 2007). 

There is a high connectivity between the HF regions and other regions of the brain. The 

progression of synaptic activation is unidirectional in the HF (Amaral et al., 1990): the 

entry point is the ML of DG that receives sensory information of the EC through the 

perforant path. An additional component of the perforant path originates in layer III and 

terminates in the CA1 field of the hippocampus and the subiculum. Then, the granule cells 

of the DG give rise to the mossy fibers that terminate both within the polymorphic layer of 

the DG and within stratum lucidum of the CA3 field of the hippocampus. They give rise to 

the ipsilateral Schaffer collaterals that terminate on the dendritic spines of the pyramidal 

cells in the CA1 stratum radiatum. These CA1 pyramidal cells project in turn into the 

subicular complex, which completes the local trisynaptic circuit and subsequently projects 

back into the EC. This trisynaptic circuit is the main route of activity flow through the 

hippocampus (Nicoll and Schmitz, 2005; Nakashiba et al., 2008). 

 

Figure 6. Diagram of the hippocampal trisynaptic circuit. Sensory information comes from the perforant pathway 

(blue arrows) to the granule cells. Their axons, the mossy fibers, project onto the CA3 pyramidal cells (orange arrow) 

which through Schaffer collaterals (green arrow) connect with the CA1 pyramidal cells which return projections to 

the neuronal layer of EC (red arrow)  (Modified from Hernández et al., 2015). 
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2.5 WORKING HYPOTHESIS 

The adolescent brain is characterized by continuous maturation and structural development 

processes (Kyzar et al., 2016). Alcohol abuse during this critical period causes long-term 

alterations in neurotransmitter synthesis and release, signaling cascades, neuronal 

morphology, gene expression, axonal outgrowth, dendritic pruning or synaptic transmission 

and plasticity (Keshavan et al., 2014). EtOH intake profoundly impairs neural transmission 

in reward pathways, and the long-term structural changes and synaptic plasticity deficits in 

these circuits over time likely underlie the brain dysfunction observed after chronic EtOH 

consumption (Pava and Woodward, 2012; Lovinger and Roberto, 2013; Lovinger and 

Alvarez, 2017) that are thought to be at the basis of addictive behaviors (Vetreno and 

Crews, 2015). The eCB system is one of the main neuromodulatory systems of the brain 

that play important roles in the regulation of EtOH intake. Alterations of the eCB 

metabolism and signaling pathways during critical periods of brain development cause 

long-lasting behavioral abnormalities in adulthood (Subbanna et al., 2013, 2015). 

Moreover, EtOH consumption alters eCB-dependent synaptic plasticity leading to long-

term cognitive impairments (DePoy et al., 2015; Crews et al., 2016; Nimitvilai et al., 2016; 

Lovinger, 2017; Bonilla del Río et al., 2017; Marco et al., 2017; Rico-Barrio et al., 2018) 

and, reciprocally, the eCB system plays a pivotal role in the EtOH drinking behavior and 

the development of alcoholism (Basavarajappa and Hungund, 2002; Lovinger, 2017). 

In spite of the ample information on the reciprocal interaction between EtOH and the eCB 

system, the long-lasting effects of EtOH exposure during adolescence on the eCB system 

and, ultimately, on behavior are only beginning to be uncovered (Bonilla-Del Río, et al., 

2017; Marco et al., 2017; Rico-Barrio et al., 2018). Based on this, we hypothesized that 

excessive EtOH consumption during the adolescence should elicit important molecular, 



 

 

 

anatomical and physiological alterations of the eCB system disrupting brain functions in 

which this system plays key roles, such as synaptic plasticity and memory. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. OBJECTIVES 
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The general goal of this Doctoral Thesis was to investigate the existence of eCB-dependent 

synaptic plasticity in the MPP of the adult mouse hippocampus in healthy conditions and 

after chronic EtOH intake during adolescence. In particular, we studied the molecular 

organization of the eCB system and the CB1 receptor function at excitatory synapses of the 

dentate molecular layer. For this investigation, we developed an interdisciplinary strategy 

that combined molecular biology, biochemistry, anatomy, electrophysiology and behavior. 

The specific objectives of the Doctoral Thesis were to: 

1. Characterize the excitatory synaptic transmission after CB1 receptor activation in 

the dentate medial perforant path (MPP) under normal conditions and in adult mice 

exposed to EtOH during adolescence.  

2. Investigate the intrinsic mechanisms of the excitatory long-term depression 

mediated by activation of CB1 receptors in the MPP in sham and adult mice 

chronically exposed to EtOH during adolescence.  

3. Compare the CB1 receptor expression and efficiency of the receptor in hippocampi 

from sham and EtOH mice. 

4. Determine the anatomical distribution of the CB1 receptor in the MPP of DG in 

sham and EtOH mice. 

5. Quantify 2-AG and arachidonic acid in sham and EtOH mice.   

6. Study the cognitive consequences in adult mice after adolescence EtOH exposure. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. MATERIALS AND METHODS 
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4.1 ANIMALS 

Experiments were performed on male C57BL/6J (Janvier Labs, Le Genest-Saint-Isle, 

France) and CB1-KO mice and their wild-type (CB1-WT) littermates (3 weeks old). They 

were housed in pairs of littermates in standard Plexiglas cages (17 cm x 14.3 cm x 36.3 cm) 

and allowed to habituate to the environment for at least 1 week before experimental 

procedures were initiated. All animals were maintained at approximately 22 °C with a 12:12 

h light:dark cycle (red light on at 9:00 h). Mice had ad libitum access to food throughout all 

experiments and water except during EtOH access, as noted later. The protocols for animal 

care and use were approved by the Committee of Ethics for Animal Welfare of the 

University of the Basque Country (CEEA/M20/2016/073; CEIAB/2016/074) and were in 

accordance to the European Communities Council Directive of 22nd September 2010 

(2010/63/EU) and Spanish regulations (Real Decreto 53/2013, BOE 08-02-2013). Great 

efforts were made in order to minimize the number and suffering of the animals used. 

4.2 DRINKING IN THE DARK PROCEDURE 

Adolescent male mice (pnd 32-56) were randomly assigned to either the water (sham) or 

EtOH experimental group. Mice were treated with a 4-day DID procedure (Bonilla-Del Rίo 

et al., 2017; Marco et al., 2017) for a total of 4 weeks. Each week, animals were weighed 1 

h before lights out on days 1, 2, 3 and 4. On days 1-4, starting 3 h into the dark cycle, all 

animals were housed individually in standard Plexiglas cages (17 cm x 14.3 cm x 36.3 cm) 

and were exposed to a single bottle of EtOH [20% EtOH (v/v) prepared from EtOH 96% 

(Alcoholes Aroca S.L., Madrid, Spain)] or tap water for 2 h on days 1-3, and for additional 

2 h on day 4. The EtOH exposure was followed by 3 days respite (see Figure 7 for details). 

To ensure that the effects were the result of voluntary EtOH intake, the amount of EtOH 
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ingested by animals throughout the treatment was measured as TEI = [EtOH consumption x 

EtOH % (v/v) x EtOH density/Body Weight]/2 or 4 h, as required. TEI is the average of the 

quantity of total EtOH intake (in grams of EtOH, per kilogram of the animal, per hour) 

thorough adolescence of the EtOH exposed mice. EtOH consumption corresponds to the 

average of the quantity of the liquid in milliliters ingested for each animal in each session. 

EtOH % (v/v) is equivalent to graduation of EtOH used (20% (v/v)) and EtOH density to 

0.78 grams of EtOH per milliliter, and finally it is divided by body weight of each animal in 

kilograms. 

 

Figure 7. Experimental timeline. EtOH mice had free EtOH access (20% (v / v)) during 4 weeks in adolescence 

(pnd 32-56). Each week, the mice were exposed to 2 or 4 h of free EtOH access. In the remaining 3 days of the week, 

animals were kept resting in their respective cages. After two weeks of withdrawal (adulthood), mice (5-13 per 

experimental group) were treated with subchronic monoacilglicerol lipase (MAGL) inhibitor (JZL184) or vehicle 

during 5 consecutive days (pnd 67-71). The novel object recognition (NOR) test was run the last 3 days of JZL184 

treatment (pnd 69-71). The remaining mice were subjected to spatial and associative recognition memory tests as well 

as rotarod, beam walking balance, tail suspension and light-dark box tests, during adulthood (pnd 69-71) and then 

sacrificed to process the brain tissue for different techniques in adulthood (pnd 74-78).  

4.3 IN VITRO ELECTROPHYSIOLOGY 

4.3.1 Slice preparation  

Adult male C57BL/6J and CB1-KO mice (pnd 74 – 78) were anesthetized by inhalation of 

isoflurane and the brains were rapidly removed and placed in a sucrose-based solution at 4 

°C that contained: 87 mM NaCl, 75 mM sucrose, 25 mM glucose, 7 mM MgCl2, 2.5 mM 

KCl, 0.5 mM CaCl2 and 1.25 mM NaH2PO4.  
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Coronal sections (300 μm-thick) were obtained with a vibratome (Leica Microsistemas 

S.L.U.), then were recovered at 32-35 °C and superfused (2 mL/min) in the recording 

chamber with artificial cerebrospinal fluid (ACSF) containing: 130 mM NaCl, 11 mM 

glucose, 1.2 mM MgCl2, 2.5 mM KCl, 2.4 mM CaCl2, 1.2 mM NaH2PO4 and 23 mM 

NaHCO3, equilibrated with 95% O2/5% CO2. All experiments were carried out at 32-35 °C. 

The superfusion medium contained picrotoxin (100 μM) to block type A Gamma-

Aminobutyric acid (GABAA) receptors. All drugs were added at the final concentration to 

the superfusion medium. 

4.3.2 Extracellular field recordings 

For extracellular field recordings, a glass recording pipette was filled with ACSF. The 

stimulation electrode was placed in the MPP and the recording pipette in the inner 1/3 of the 

ML of the DG (see Figure 8 for details).   

  

To evoke field excitatory postsynaptic potential responses (fEPSPs), repetitive control 

stimuli were delivered at 0.1 Hz (Stimulus isolater ISU 165, Cibertec, Spain; controlled by a 

Master-8, A.M.P.I.). An Axopatch-200B (Axon Instruments/Molecular Devices, Union 

City, CA, USA) was used to record the data, which were filtered at 1–2 kHz, digitized at 5 

kHz on a DigiData 1440A interface (Axon Instruments/Molecular Devices, Union City, 

CA, USA) and collected on a computer using Clampex 10.0 (Axon Instruments/Molecular 

Figure 8. Image of sagittal section of the 

mouse dentate gyrus. 

Stim: stimulation electrode. 

REC: Recording electrode. 

GCL: granule cell layer. 

Inner ML: inner molecular layer. 

MPP: medial perforant path. 

LPP: lateral perforant path. 
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Devices, Union City, CA, USA) and analyzed using Clampfit 10.2 (Axon 

Instruments/Molecular Devices, Union City, CA, USA). At the start of each experiment an 

input-output curve was constructed. Stimulation intensity was selected for baseline 

measurements that yielded between 40–60% of the maximal amplitude response. We used a 

stimulation protocol that Manzoni’s group first introduced (Robbe et al., 2002) and that is 

based on naturally occurring frequencies. So, low frequency stimulation (LFS, 10 min, 10 

Hz) protocol was used to induce LTD of glutamatergic inputs that can be reliably observed 

when recording extracellular fEPSPs (Puente et al., 2011). 

4.3.3 Data analysis 

Slope, area and amplitude of fEPSPs were measured (graphs depict area). The magnitude of 

the LTD after tetanic stimulation was calculated as the percentage change between baseline 

(averaged excitatory responses for 10 min before tetanus) and last 10 min of stable 

responses, normally at 30 min after the end of the tetanus. The slices used for each 

experimental condition (n) were obtained from at least 3 mice. 

For the estimation of the paired-pulse ratio (PPR), 30 pairs of pulses were delivered with a 

50 ms interval between individual pulses that composed the pair. The PPR of the evoked 

excitatory field recordings was calculated by dividing the mean of all 30 fEPSP2 (2nd 

evoked responses) slopes by the mean of all 30 corresponding fEPSP1 (1st evoked 

responses). 

4.4 ELECTRON MICROSCOPY 

4.4.1 Pre-embedding immunogold method 

A pre-embedding silver-intensified immunogold method was used for the localization of the 

CB1 receptor at the MPP termination zone in the middle 1/3 of the dentate ML (Gutierrez-
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Rodriguez et al., 2017). Adult C57BL/6J and CB1-KO animals (n = 3, pnd 76) were deeply 

anesthetized with ketamine/xylazine (80/10 mg/kg body weight) and transcardially perfused 

at room temperature (RT, 20-25 ºC) with phosphate buffered saline (PBS, 0.1 M, pH 7.4) 

and fixed with 300 ml of 4% formaldehyde (freshly depolymerized from 

paraformaldehyde), 0.2% picric acid, and 0.1% glutaraldehyde in phosphate buffer (PB) 

(0.1 M, pH 7.4) prepared at 4 ºC. Coronal hippocampal vibrosections were cut at 50 µm and 

collected in a 0.1 M PB (pH 7.4) at RT. Sections were pre-incubated in a blocking solution 

of 10% bovine serum albumin (BSA), 0.1% sodium azide, and 0.02% saponin prepared in 

Tris-HCl buffered saline (TBS, pH 7.4) for 30 min at RT. Then hippocampal sections were 

incubated with the primary goat polyclonal anti-CB1 receptor antibody (2 μg/ml, #CB1-Go-

Af450, Frontier Science Co.;RRID: AB_257130) in 10% BSA/TBS containing 0.1% 

sodium azide and 0.004% saponin on a shaker for 2 days at 4 ºC. After several washes in 

1% BSA/TBS, tissue sections were incubated in a secondary 1.4 nm gold-labeled rabbit 

anti-goat Immunoglobulin-G (Fab’ fragment, 1:100, Nanoprobes Inc., Yaphank, NY, USA) 

in 1% BSA/TBS with 0.004% saponine on a shaker for 4 h at RT. Thereafter, after washing 

hippocampal sections in 1% BSA/TBS overnight at 4 °C, they were postfixed in 1% 

glutaraldehyde in TBS for 10 min and washed in double-distilled water. Following washes 

in double-distilled water, gold particles were silver-intensified with a HQ Silver kit 

(Nanoprobes Inc., Yaphank, NY, USA) for about 12 min in the dark and then washed in 

0.1M PB. Stained sections were osmicated (1% OsO4 (v/v) in 0.1M PB, 20 min), 

dehydrated in graded alcohols to propylene oxide and plastic-embedded in Epon resin 812. 

Ultrathin sections of 50 nm were collected on mesh nickel grids, stained with 2.5% lead 

citrate for 20 min, and examined them in a Philips EM208S electron microscope. Tissue 

preparations were photographed by using a digital camera (Digital Morada Camera, 

Olympus) coupled to the electron microscope. Adjustments in contrast and brightness were 

made to the figures using Adobe Photoshop (Adobe Systems, San Jose, CA, USA). 
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4.4.2 Semi-quantification analysis 

The pre-embedding immunogold method was applied simultaneously to the sections 

collected from all animals (n = 3 each condition). Immunogold-labeled hippocampal 

sections were visualized under a light microscope in order to select portions of the middle 

1/3 of the dentate ML with good and reproducible CB1 receptor immunolabeling. All 

electron micrographs were taken at 18,000x magnification and showed similar labeling 

intensity indicating that the selected areas were at the same depth. Furthermore, to avoid 

false negatives, only ultrathin sections within the first 1.5 μm from the surface of the tissue 

block were examined. Metal particles on presynaptic membranes were visualized and 

counted. Positive labeling was considered if at least one immunogold particle was on the 

presynaptic membrane or within approximately 30 nm of the membranes. Image-J (NIH, 

USA; RRID:SCR_003070) was used to measure the membrane length. Sampling was 

always carefully and accurately carried out in the same way for all the animals studied and 

experimenters were blinded to the condition of the subject during CB1 receptor 

quantification. 

328 excitatory synapses in sham and 313 in EtOH-treated mice were measured. Percentages 

of CB1 receptor positive profiles, density (particles/µm membrane) of CB1 receptor 

immunoparticles in terminals and proportion of CB1 receptor immunoparticles in different 

compartments versus total CB1 receptor expression in cellular membranes were determined 

and displayed as mean ± standard error mean (SEM) using a statistical software package 

(GraphPad Prism, GraphPad Software Inc, San Diego, USA; RRID:SCR_002798). The 

Kolmogorov-Smirnov normality test was applied before running statistical tests, and 

subsequently data were analyzed using the nonparametric Kruskal-Wallis test. Since there 

were no differences between them, all data within each line were pooled. 
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To study the molecular effects of EtOH intake during adolescence, the following techniques 

were performed in collaboration. The laboratory of Dr. Joan Sallés (Department of 

Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-

Gasteiz, Spain, CIBERSAM, Spain) performed Western blotting of Gαi/o subunits, [35S] 

GTPγS binding assays and measurements of 2-AG and arachidonic acid by liquid 

chromatography tandem mass spectrometry (LC-MS/MS). The laboratory of Dr. Fernando 

Rodríguez de Fonseca (Hospital Regional Universitario de Málaga, Instituto de 

Investigación Biomédica de Málaga, IBIMA, Málaga, Spain) carried out the quantitative 

real-time PCR (qRT-PCR) and Western blotting of components of the eCB and 

glutamatergic systems. 

I describe these techniques and the results obtained with them as a part of this thesis with 

the permission and approval of Dr. Joan Sallés, Dr. Gontzal García del Caño, Dr. Sergio 

Barrondo, Dr. Xabier Aretxabala, Dr. Fernando Rodríguez de Fonseca and Dr. Juan Suárez. 

4.5 RNA ISOLATION AND qRT-PCR ANALYSIS 

Total RNA was extracted from the mouse hippocampus (∼25-50 mg) from sham and EtOH 

adult mice (n = 16) by using the Trizol method, as previously described (Serrano et al., 

2012). Purified RNA (1 µg) and random hexamers were used to generate first strand cDNA 

using transcriptor reverse transcriptase. cDNA was used as a template for qRT-PCR. The 

relative quantification was normalized to the expression of the housekeeping gene Actb and 

calculated by using the ΔΔCt method. Primers used for the qRT-PCR reaction were 

obtained based on TaqMan® Gene Expression Assays (ThermoFisher) (Table 1). 
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Table 1. Primers used in qRT-PCR analyses (ThermoFisher). 

Gene ID 
GenBank accession 

numbers 
ID 

Product size 

(bp) 

Actb NM_007393.3 Mm00607939_s1 115 

Cnr1 NM_007726.3 Mm01212171_s1 66 

Dagla Mm00813830_m1 NM_198114.2 69 

Daglb Mm00523381_m1 NM_144915.3 72 

Mgll NM_001166249.1 Mm00449274_m1 78 

Napepld NM_178728.5 Mm00724596_m1 85 

Faah NM_010173.4 Mm00515684_m1 62 

Grm5 Mm00690332_m1 NM_001081414.2 97 

Abbreviations: Actb, beta actin; Cnr1, cannabinoid receptor type 1, brain; Dagla, diacylglycerol lipase, alpha; Daglb, 

diacylglycerol lipase, beta; Mgll, monoacylglycerol lipase; Napepld, N-acyl phosphatidylethanolamine phospholipase 

D; Faah, fatty acid amide hydrolase; Grm5, glutamate receptor metabotropic 5. 

4.6 HIPPOCAMPAL MEMBRANE PREPARATION  

Western blots of Gαi/o subunits and [35S] GTPγS binding assays were performed using 

mouse hippocampal membranes (P2 fraction) from sham and EtOH adult mice (n = 6-7). 

Hippocampal sections were thawed in ice-cold 20 mM TBS, pH 7.4, containing 1 mM 

EGTA (TBS/EGTA buffer) prior to homogenization, and then homogenized in 20 times the 

volume of the same hypotonic buffer using a glass homogenizer. First, cell debris was 

discarded by centrifugation at 1,000 g (10 min, 4 ºC) and then membranes were obtained by 

centrifugation at 40,000 g (30 min, 4 ºC). Finally, the pellet was re-suspended and re-

centrifuged under the same conditions. Membranes were aliquoted in microcentrifuge tubes, 

centrifuged again (40,000 g, 30 min, 4 ºC), and the pellets were stored at -75 ºC prior to use. 

Protein content was determined using the Bio-Rad dye reagent with bovine γ-globulin as a 

standard. 
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4.7 PROTEIN DETERMINATION BY WESTERN BLOT 

ASSAYS 

4.7.1 Gαi/o subunits 

Western blot experiments of Gαi/o subunits were performed as previously described with 

minor modifications (Montaña et al., 2012). Briefly, hippocampal membranes (P2 fractions) 

from sham and EtOH adult mice (n = 2-3) were boiled in urea-denaturing buffer [20 mM 

TBS, pH 8.0, 12% glycerol, 12% Urea, 5% dithiothreitol, 2% sodium dodecyl sulfate 

(SDS), 0.01% bromophenol blue] for 5 min. Increasing amounts of denatured proteins were 

resolved by electrophoresis on SDS–polyacrylamide (SDS–PAGE) gels (10%) using the 

Mini Protean II gel apparatus (Bio-Rad, Hercules, CA, USA). Proteins were transferred to 

polyvinylidene fluoride membranes (Amersham Bioscience, Buckinghamshire, UK) using 

the Mini TransBlot transfer unit (Bio-Rad, Hercules, CA, USA) at 90 V constant voltage for 

1 h at 4 ºC. Blots were blocked in 5% non-fat dry milk/PBS containing 0.5% BSA and 0.2% 

Tween for 1 h, and incubated overnight at 4 ºC with antibodies against specific antibodies 

against different Gαi/o subunits subtypes, Gαo, Gαi1, Gαi2 and Gαi3 (Table 2). Blots were 

washed and incubated with specific horseradish peroxidase (HRP) conjugated secondary 

antibodies diluted to 1:10,000 in blocking buffer for 2 h at RT. Immunoreactive bands were 

incubated with the ECL system according to the manufacturer instructions (Amersham 

Bioscience, Buckinghamshire, UK). 

4.7.2 Endocannabinoid and glutamatergic systems 

Protein extracts (~15 µg) from the whole hippocampus of the sham and EtOH adult mice (n 

= 5-8) were separated in gradient SDS-PAGE gels and electroblotted onto nitrocellulose 

membranes (Crespillo et al., 2011). Then, CB1 receptor, MAGL and mGluR5 proteins were 

detected by overnight incubation in the corresponding primary antibodies (Table 2). Then, 
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HRP-conjugated anti-rabbit IgG (H+L) or anti-mouse secondary antibodies (Promega) 

diluted 1:10,000 was added for 1 h at RT. After the enhanced chemiluminiscence detection 

(Santa Cruz) in an Autochemi-UVP Bioimaging System, bands were quantified with 

ImageJ software (Rasband, W.S., ImageJ, U.S; RRID:SCR_003070). 

Table 2. Primary antibodies used in Western blot analyses. 

Protein ID RRID 
Molecular 

mass (KDa) 

Source of 

antibody 
Ref. nº. 

Antibody 

dilution 

β-actin AB_47674 45 Sigma A5316 1:1,000 

CB1 

Receptor 
AB_447623 52 Abcam Ab23703 1:200 

MAGL AB_327809 35 Cayman 100035 1:100 

mGluR5 AB_2571804 132 Frontier GO47 1:200 

Gαo AB_2111641 40 Santa Cruz sc-387 1:5,000 

Gαi1 AB_2247692 41 Santa Cruz sc-391 1:5,000 

Gαi2 AB_2111472 41 Santa Cruz sc-7276 1:1,000 

Gαi3 AB_2279066 45 Santa Cruz sc-262 1:50,000 

Abbreviations: β-actin, beta actin; CB1 Receptor, cannabinoid receptor type 1, brain; MAGL, monoacylglycerol 

lipase; mGluR5, glutamate receptor metabotropic 5; Gαo, Gαi-1, Gαi-2 and Gαi-3 are Gαi/o subunits subtypes. 

4.8 [35S] GTPƔS BINDING ASSAYS 

The [35S] GTPγS binding assays were performed following the procedure described 

elsewhere (Barrondo and Sallés, 2009). Hippocampal membranes (P2 fraction; 25 μg 

protein) from sham and EtOH adult mice (n = 4) were thawed, and incubated at 30 ºC for 2 

h in [35S] GTPγS-incubation buffer (0.5 nM [35S] GTPγS, 1 mM EGTA, 3 mM MgCl2, 100 

mM NaCl, 0,2 mM DTT, 50 μM GDP, and 50 mM TBS, pH 7.4). The CB1 receptor agonist 

CP 55.940 (10-11 – 10-5 M, eight concentrations) was added to determine receptor-

stimulated [35S] GTPγS binding. Nonspecific binding was defined in the presence of 10 μM 

unlabelled GTPγS. Basal binding was assumed to be the specific [35S] GTPγS binding in the 
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absence of agonist. The reactions were terminated by rapid vacuum and filtration through 

Whatman GF/C glass fibre filters and the remaining bound radioactivity was measured by 

liquid scintillation spectrophotometry.  

For analysis of data from [35S] GTPγS binding assays, individual CP 55.940 concentration-

response curves were fitted by nonlinear regression to the four parameter Hill equation, 

which is the following: E = Basal + Emax-Basal/1 + 10 (LogEC50-Log [A])nH. Where E 

denotes effect, log [A] the logarithm of the concentration of agonist, nH the midpoint slope, 

LogEC50 the logarithm of the midpoint location parameter, and Emax and basal the upper 

and lower asymptotes, respectively. When required, simultaneous model-fitting with 

parameter-sharing across datasets was performed using GraphPad Prism (GraphPad Prism 

5, GraphPad Software Inc, San Diego, USA; RRID:SCR_002798). 

4.9 MEASUREMENT OF ENDOGENOUS 2-AG AND 

ARACHIDONIC ACID BY LIQUID CHROMATOGRAPHY 

TANDEM MASS SPECTROMETRY 

The determination of the endogenous 2-AG levels was carried out as described by Schulte 

et al. (2012) with minor modifications (García del Caño et al., 2015). Samples of 

hippocampus from sham and EtOH adult mice (n = 5) were stored at -80 ºC until extraction. 

Samples (25 mg wet weight) were weighed into borosilicate tubes containing 0.5 mL ice-

cold 0.1 M formic acid and were homogenized with the aid of a 5 mm-steel ball using the 

Digital Sonifier (Model S250 Branson, USA) for 1 cycle of 10 seconds at 10% amplitude. 

Aliquots (50 μL) of the homogenate were placed into silanized microcentrifuge tubes 

containing ice-cold 0.1 M formic acid, and were spiked with 20 μL acetonitrile containing 

the internal standards [deuterated 2-AG-d5 (final concentration 100 nM), deuterated 1-AG-
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d5 (final concentration 100 nM), and deuterated AA-d8 (final concentration 500 nM)] and 

with 10 μL of the appropriate concentration of 2-AG and AA in its natural form, to give a 

final volume of 500 μL. Ethylacetate/hexane (1,000 μL; 9:1, v/v) were added to extract the 

cortical homogenate, again with the aid of the Digital Sonifier for 1 cycle of 10 s at 10% 

amplitude. Then the tubes were centrifuged for 10 min at 10,000 g at 4 ºC, and the upper 

(organic) phase was removed, evaporated to dryness under a gentle stream of nitrogen at 37 

ºC and re-dissolved in 500 μL acetonitrile. 

Analysis was performed as previously described (Schulte et al., 2012; García del Caño et 

al., 2015) on a LC-MS/MS system based on Agilent technologies (Wilmington) consisting 

of a 6410 Triple Quad mass spectrometer equipped with an electrospray ionization source 

operating in positive ion mode, and a 1200-series binary pump system. 2-AG and AA were 

separated with a Phenomenex Luna 2.5 μm C18(2)-HST column, 100 x 2 mm, combined 

with a Security Guard pre-column (C18, 4x2 mm; Phenomenex) with solvents A (0.1% 

formic acid in 20:80 acetonitrile/water, v/v) and B (0.1% formic acid in acetonitrile), using 

the following gradient: 55-90% B (0-2 min), then held at 90% B (2-7.5 min) and re-

equilibrated at 55% B (7.5-10 min). The column temperature was 25 ºC, the flow rate was 

0.3 mL/min, the injection volume was 10 μL and the needle was rinsed for 60 s using a 

flushport with Water/Acetonitrile (80:20) as the eluent. The electrospray ionization 

interface was operated using nitrogen as a nebulizer and desolvation gas, and using the 

following settings: temperature 350 ºC, nebulizer pressure 40 psi, and capillary voltage + 

4800 V. The following precursor-to-product ion transitions were used for multiple-reaction 

monitoring: 2-AG and 1-AG m/z 379.4→287; 2-AG-d5 and 1-AG-d5 m/z 384→287; AA-

d8 and AA m/z 313→126 and 305→93, respectively. Dwell times were 20 milliseconds and 

the pause between multiple-reaction monitoring transitions was 5 ms. Data acquisition and 



 

 

64 

 

analysis were performed using Agilent Masshunter Quantitative Analysis software (Agilent, 

Santa Clara, CA, USA; RRID:SCR_015040). 

4.10 BEHAVIORAL STUDIES 

All behavioral experiments were performed in the last days of the withdrawal (see Figure 7 

for details) period under the same light and temperature conditions. Adult male C57BL/6J 

mice were kept into a temperature-controlled (22 °C) behavioral room 1 h before each test 

and kept there under red light to acclimatize to this new environment before starting with 

each test. All behavioral tests were monitored by two blinded observers to the treatment 

who used at least one stopwatch. To remove olfactory cues, all apparatus and objects were 

cleaned with EtOH (70% v / v) and then rinsed with water between each animal tested.  

4.10.1 Novel object recognition 

Non-spatial recognition memory was assessed by novel object recognition (NOR) test 

(Rico-Barrio et al., 2018) based on the spontaneous tendency of rodents to explore a novel 

object rather than a familiar one. This test was performed in a square-shape open field box 

made of non-transparent plexi-glass (dimensions: 40 cm length x 40 cm height x 40 cm 

width) under red 10 lux lighting conditions. On the first 2 days of the behavioral test (pnd 

69-70) sham and EtOH adult mice (n = 13) were habituated to the apparatus and allowed to 

explore the empty arena for 10 min each day.  On the third day, (pnd 71) an acquisition 

session was carried out. In this session two identical familiar objects were placed at an 

equal distance in two adjacent corners of the arena, at 7 cm from the walls. A mouse was 

placed in the middle of the square keeping the head opposite to both objects and allowed to 

investigate and explore them for 10 min. After 2 h, the mouse returned to the apparatus and 

test session was performed where one of two familiar well-known objects was replaced by a 

novel one (see Figure 9A for more details).  In this way, animals were allowed to freely 
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explore familiar and novel objects for 10 min. The time exploring each object (sniffed, 

whisked or looked at no more than 2 cm away) during acquisition and test sessions was 

manually recorded. Animals who did not reach in the acquisition phase a total exploration 

time of 20 s were excluded from the data analysis. Total exploration time and 

discrimination index (DI) during test session were calculated and represented. 

Discrimination index was calculated as DI = (TN − TF) / (TN + TF). Where TN indicates 

the time spent on novel object and TF the time spent on familiar object. 

 

Figure 9. Schematic diagram illustrating the three memory tests assessed. (A) Novel object recognition test, (B) 

Object-in-place test and (C) Object location test. Objects and cues used in these behavioral tests.   

 MAGL inhibitor treatment combined with novel object-recognition test 

A total of 37 adult C57BL/6J mice (5-13 animals per experimental group) were treated 

subchronically with MAGL inhibitor (JZL184) or vehicle (8 mg/kg, intraperitoneally) 
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during 4 days before and the day of the test session (pnd 67-71) (see Figure 9 for details). 

JZL184 or vehicle was injected 1 h before all sessions of the NOR test, time in which the 

animals kept resting in the behavior room. Then, short-term memory was tested with NOR 

2 h after the training session (see Figure 9A for more details). Animals who did not reach in 

the acquisition phase a total exploration time of 20 s were excluded from the data analysis. 

Total exploratory time and DI during testing phase were calculated and represented. 

4.10.2 Object-in-place test 

Associative recognition memory was analyzed by object-in-place (OiP) test in the same 

apparatus and conditions used for NOR test (Rico-Barrio et al., 2018). On the first 2 days of 

the behavioral test (pnd 69-70) sham and EtOH adult mice (n = 12-10) had 2 days of 

habituation (10 min each day). In the acquisition phase (pnd 71), each mouse was placed in 

the center of the arena with one different object in each of the 4 corners at about 7 cm from 

the walls, and were allowed to explore them for 10 min. In the test phase 30 min later, two 

of the objects exchanged positions while the other two remained in the same location (see 

Figure 9B for more details). Different combinations of the objects were considered in order 

to avoid place preferences. Animals not reaching a total exploration time of 20 s in the 

acquisition phase were excluded from the analysis. Total exploratory time and DI during 

test session were calculated and represented.  

4.10.3 Object location test 

Spatial recognition memory was assessed by the object location (OL) test in the same 

apparatus and conditions as for NOR and OiP tests (Rico-Barrio et al., 2018). In this test, 

visual cues fixed on the walls were constantly visible from the arena to help spatial 

orientation of the mice (see Figure 9C for more details). On the first 2 days of the 

behavioral test (pnd 69-70) sham and EtOH adult mice (n = 9-10) were habituated to the 
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Figure 10. Rotarod apparatus 
(Picture courtesy of German Mouse 

Clinic, Múnich) 

apparatus and allowed to explore the empty arena with cues for 10 min each day. During the 

acquisition session on the third day (pnd 71), each animal was placed in the center of the 

quadrate and was allowed to explore for 10 min two identical parallel objects placed at 7 cm 

from the walls. The animals were then transferred to their home cages for 30 min. In the test 

session, one of the two identical objects was moved to a new location while the other object 

remained in the same position as in the acquisition phase. The mice were allowed for 10 

min to freely investigate and explore the apparatus with one of the objects in a novel 

location (see Figure 9C for more details). All combinations of the objects were considered 

to avoid preferences for a particular location. Mice that were not able to explore more than 

20 s were excluded from the study. Total exploratory time and DI during test phase were 

calculated and represented. 

4.10.4 Rotarod   

Rotarod equipment (Panlab, Spain) is widely used to 

evaluate motor coordination of rodents. It consists on a 

horizontal rotating spindle (see Figure 10) with a padded 

surface under the apparatus.  To achieve the necessary 

skills to perform the test properly, all animals were trained 

over 3 days before the test phase (Rico-Barrio et al., 

2018). The first 2 days (pnd 68-69) of the training phase, 

sham and EtOH adult mice (n = 11) were placed on the rotating rod (5 min at 30 min 

intervals, thrice a day) at a constant rotation speed of 4 rpm (pnd 68) and 20 rpm (pnd 69). 

They were put back on the rod each time a mouse fell off until the 5 min session was 

completed. On the third day (pnd 70), mice experienced a progressive speed increase from 4 

rpm up to 40 rpm over a period of 5 min. They were trained for 3 sessions with 30 min-

resting intervals. The final test was performed on the fourth day (pnd 71) with the same 
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accelerating protocol as in the third day. The rotarod was controlled by an advanced 

microprocessor which provided precise timing control and accurate speed regulation. When 

an animal dropped onto the individual sensing platform underneath, the latency to fall and 

the falling speed were recorded digitally. To represent graphically, only two of the three 

measures recorded were taken into account. 

4.10.5 Beam walking balance test 

This test detects subtle balance deficits. The apparatus consists of a 120 cm-long beam 

supported by two pillars suspended 60 cm above foam pads and the home cage was placed 

at the end of the beam (see Figure 11) (Rico-Barrio et al., 2018). It is based on the mouse´s 

ability to cross a graded series of beams. Two circular (2 cm- and 1 cm-diameter) wood 

beams were used. On the first day of training phase (pnd 69), sham and EtOH adult mice (n 

= 10) were trained to traverse the largest diameter beam for three consecutive times. On the 

second training day (pnd 70), they have to cross both the wide and the narrow beam each 

for three consecutive times. The test session was performed likewise the following day (pnd 

71). The time taken to cross the wide and the narrow beam and the number of foot slips off 

was determined. Only two of the three measures obtained in each parameter were taken into 

account. 

  

Figure 11. Beam Walking Balance apparatus. 
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Figure 12. Tail suspension apparatus. 

Figure 13. Light-Dark Box apparatus. 

(Picture courtesy of Stoelting Co, USA) 

 

 

 

 

 

4.10.6 Tail suspension test 

The tail suspension test analyzes depressive-related 

behaviors in rodents by using a horizontally suspended 

solid metal bar (See Figure 12) (Rico-Barrio et al., 2018). 

Sham and EtOH adult mice (n = 10-12 respectively) (pnd 

71) were individually suspended (60 cm above a padded 

floor) by means of a tape wrapped around the tail (1 cm 

from the tail tip). Each mouse was tested for 6 min and the immobility time during the last 4 

min was recorded. Immobility was considered when the animal was passively suspended in 

full motionless.  

4.10.7 Light-dark box 

The light-dark box test is one of the most useful 

tools to evaluate unconditioned anxiety in 

rodents. It is based on their spontaneous 

exploratory behavior in response to a novel 

environment and light. The light-dark box 

apparatus has an illuminated (40 Watios light 

lamp) open compartment and a dark cover 

compartment both connected by a restricted opening, so the mouse move freely between 

them (See Figure 13). On the testing day (pnd 71), the mouse was placed in the dark box for 

10 s and the gate remained open for 10 min. The percentage of time spent in the light 

compartment was manually recorded. 
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4.10.8 Open field 

Thigmotaxis refers to the tendency of rodents to avoid open areas remaining close to the 

walls (no more than 6 cm from them) during exploration. This parameter is used as a 

general measure of anxiety-related behavior (Rico-Barrio et al., 2018). Sham and EtOH 

adult mice (pnd 69; n = 12) were individually taken from the home cage and placed for 5 

min in the middle of a square (40 cm x 40 cm x 40 cm) opaque arena which was subdivided 

into a 30 cm-inner zone and a 10 cm-outer zone. Each animal was allowed to explore it 

freely and then was returned to the home cage. (i) The time spent exploring the outer zone 

(6 x 6 cm from the wall) and (ii) the time spent exploring the center of the apparatus (28 x 

28 cm) was manually recorded. 

4.11 STATISTICAL ANALYSIS 

All values are given as mean ± S.E.M with p values and sample size (n). Shapiro-Wilk test 

and Kolmogorov-Smirnov was used to confirm normality of the data. Electrophysiological 

data was analyzed by using parametric or non-parametric two-tailed Student’s t-test and 

two-way analysis of variance (ANOVA) to compare the effects of CB1 agonist and LFS in 

sham and EtOH mice, comparing baseline and post-manipulation fEPSPs between the two 

groups. Subsequent post hoc analysis (Bonferroni post-test) was used when required. 

Electron microscopy data was analyzed by parametric or non-parametric two-tailed 

Student’s t-test or one-way ANOVA with subsequent post hoc analysis (Bonferroni post-

test) when compared the percentage of CB1 receptor immunopositive excitatory terminals in 

sham, EtOH-treated and CB1-KO mice. qRT-PCR, western blot, [35S] GTPγS binding and 

LC-MS/MS assays were analyzed by parametric or non-parametric two-tailed Student’s t-

test, as required. Data obtained from NOR test was analyzed using two-way ANOVA with 

subsequent post hoc analysis (Bonferroni post-test) to evaluate the long term DID effect, 
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JZL184 treatment and the interaction between DID effect and JZL184 treatment. The 

Pearson correlation coefficient was used to analyze the relation between EtOH intake and 

BEC. The significance level was set at p < .05 for all comparisons. All statistical tests were 

performed with GraphPad Prism (GraphPad Prism 5, GraphPad Software Inc, San Diego, 

USA; RRID:SCR_002798).  

4.12 DRUGS 

All drugs used in the electrophysiological experiments were dissolved in dimethyl sulfoxide 

(DMSO; Sigma-Aldrich) and added at the final concentration to the superfusion medium 

(see Table 3 for drugs information).  

JZL184 was administered intraperitoneally in a volume of 10 mL/Kg, dissolved in 15% 

DMSO (Sigma-Aldrich): 4.25% polyethylene glycol 400 (Sigma-Aldrich): 4.25% Tween-

80 (Sigma-Aldrich): 76.5% saline. 

2-AG and AA and their deuterated analogs 2-AG-d5 and AA-d8, used for LC/MS 

determinations, were obtained from Cayman Chemical Company.
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Table 3. Drugs used in Electrophysiology recordings. 

Drug* Description Concentration 
of use 

Incubated Time Supplier 

Picrotoxin 
GABAA receptor 

antagonist 
[100 µM] All recording 

Tocris BioScience 
(Bristol, 

United Kingdom) 

CP 55.940 
Potent, non-selective 
cannabinoid receptor 

agonist 
[10 µM] All recording 

WIN 55.212-2 (Win-2) 
Highly potent 

cannabinoid receptor 
agonist 

[5 µM] All recording 

AM251 
Potent CB1 antagonist; 

also GPR55 agonist 
[4 µM] All recording 

D-APV 
Potent, selective NMDA 
antagonist; more active 

form of DL-AP5 
[50 µM] All recording 

3.5-DHPG 
Selective group I mGluR 

agonist 
[50 µM] All recording 

MPEP 
mGluR5 antagonist and 

positive allosteric 
modulator at mGluR4 

[10 µM] All recording 

CPCCoEt 
Selective non-

competitive mGluR1 
receptor antagonist 

[50 µM] All recording 

U73122 Pospholipase C inhibitor [5 µM] 
1 h of additional pre-

incubation 

URB 597 
Potent and selective 

FAAH inhibitor 
[2 µM] 

20 min of additional 
pre-incubation 
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JZL184 MAGL inhibitor [50 µM] 
1 h of additional pre-

incubation 
AM404 AEA transport inhibitor [30 µM] All recording 

Nimodipine 
Ca2+ channel blocker (L-

type) 
[1 µM] All recording 

Thapsigargin 
Potent inhibitor of 
SERCA ATPase 

[2 µM] 
1 h of additional pre-

incubation 

RHC-80267 DAG inhibitor [100 µM] All recording Santa Cruz 
Biotechnology Inc 

(Spain) 
THL Lipase Inhibitor [10 µM] All recording 

* All drugs were dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich). 
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5. RESULTS 
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5.1 CB1 RECEPTOR-DEPENDENT EXCITATORY 

SYNAPTIC TRANSMISSION AND PLASTICITY AT MPP-

GRANULE CELL SYNAPSES IN SHAM MICE  

Exogenous CB1 receptor activation by either CP 55.940 [10µM] or Win-2 [5µM] depressed 

excitatory synaptic transmission at MPP-granule cell synapses in sham mice as shown by 

Mann-Whitney test (*p < .05; ***p < .001 versus (vs.) baseline, respectively) (Figure 14A, 

C, CP 55.940: (n = 7) 16.97 ± 5.67% of inhibition; Win-2: (n = 6) 33.45 ± 7.53% of 

inhibition). This suppression was prevented by co-perfusion with the selective CB1 receptor 

antagonist AM251 [4µM] (p > .05 vs. baseline) (Figure 14B, C (n = 4) 1.53 ± 12.15% of 

inhibition). 

Figure 14. Endocannabinoid excitatory synaptic transmission at MPP synapses in sham mice. For 

representation, the experiments were normalized to its baseline. A, Time course plot of average fEPSP areas are 

represented. The CB1 receptor agonist, CP 55.940 [10 μM] (light blue circles) and Win-2 [5 μM] (blue circles) 

reduces fEPSP. B, Simultaneous application of a selective CB1 receptor antagonist (AM251) [4μM] and agonist (CP 

55.940) [10 μM] (dark blue circles) blocks the synaptic depression observed in A. Black horizontal bars on the top 

show the exposition time of the drugs. C, Summary bar histogram of the experiments performed: CP 55.940 [10 µM], 

Win-2 [5µM], CP 55.940 + AM251 cocktail [10 µM + 4 µM, respectively]. Baseline is represented by the dotted line. 

Numbers in the bars are individual experiments. Data are expressed as mean ± SEM. Mann Whitney test (*p < .05; 

***p < .001; p > .05 versus (vs.) baseline, respectively). 
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On the other hand, LFS at 10 Hz for 10 min is known to induce CB1-eLTD in other 

synapses (Chiu and Castillo, 2008). In our experiments, 10 Hz for 10 min triggered a novel 

CB1-eLTD at MPP-granule cell synapses (**p < .01 vs. baseline), which was blocked by 

AM251 (p > .05 vs. baseline) (Figure 15A, F sham: (n = 20) 16.50 ± 5.75% of inhibition; 

AM251: (n = 8) -8.27 ± 6.26% of inhibition) but not by perfusion of the N-methyl-d-

aspartate receptor (NMDA) antagonist D-APV [50µM] (*p < .05 vs. baseline) (Figure 15A, 

F (n = 9) 11.33 ± 4.19% of inhibition). The CB1-eLTD was absent in global CB1 receptor 

knockout (CB1-KO) mice (Figure 15B, F CB1-WT: (n = 5) 12.77 ± 5.75% of inhibition; 

CB1-KO: (n = 8) -13.14 ± 4.81% of inhibition). In addition, the slight potentiation in the 

fEPSP (***p < .001 vs. baseline) was suppressed by D-APV (p > .05 vs. baseline) (Figure 

15B, F CB1-KO + D-APV: (n = 8) -1.74 ± 3.72% of inhibition). This novel CB1-eLTD was 

accompanied by an increase in the paired pulse ratio (PPR) slope (*p < .05 vs. Pre-LFS) 

(Figure 15C (n = 10)), indicating the presynaptic locus of the CB1-eLTD in agreement with 

the CB1 receptor location in axon terminals. Noticeably, another low frequency stimulation 

protocol, 1Hz stimulation for 10 min also induced LTD in sham mice (***p < .001 vs. 

baseline) (Figure 15D, F (n = 5) 25.98 ± 4.08% of inhibition). Furthermore, the 10 Hz 10 

min LFS did not induce CB1-eLTD at mossy cell fiber (MCF) synapses (*p < .05 vs. 

baseline), as previously shown (Chiu and Castillo, 2008) (Figure 15E, F (n = 11) -11.8 ± 

1.00% of inhibition) and D-APV blocked the small potentiation observed (p > .05 vs. 

baseline) (Figure 15E, F (n = 11) -3.1 ± 4.14% of inhibition). Altogether, these results 

demonstrate that LFS is able to induce a novel CB1-eLTD at MPP granule cell synapses in 

untreated mice. 
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Figure 15. CB1 receptor-dependent excitatory long-term depression (CB1-eLTD) at medial perforant path 

(MPP) synapses in sham mice. For representation, each section of the experiment was normalized to its baseline 

before CB1-eLTD induction at the time marked by the X-axis break. The average of the fEPSP areas is shown. A, 

Low frequency synaptic stimulation (LFS, 10 min, 10 Hz) triggers CB1-eLTD at MPP in sham (light blue circles; 

Student’s t test, two tailed, t38 = 2.89; **p < .01 versus (vs.) baseline). AM251 [4μM] blocks CB1-eLTD in sham 

(dark blue circles; Student’s t test, two tailed, t14 = 1.39; p > .05 vs. baseline) and D-APV [50 μM] does not cause any 

change of CB1-eLTD in sham (blue circles; Student’s t test, two tailed, t16 = 2.68; *p < .05 vs. baseline). B, CB1-

eLTD is induced in CB1 receptor wild-type (CB1-WT) littermate mice (light red circles; Mann Whitney test; **p < 

.01 vs. baseline) but not in global CB1 knock out (CB1-KO) (dark red circles; Mann Whitney test; ***p < .001 vs. 

baseline). The slight but significant long-term potentiation (LTP) in CB1-KO (dark red circles) was suppressed after 

application of the N-methyl-d-aspartate receptor (NMDA) antagonist D-APV (red circles; Mann Whitney test; p > .05 

vs. baseline). C, Paired-pulse ratio (PPR) was calculated with slope of 30 sweeps i.e. 10 min before and 20 min after 

stimulation protocol. PPR augments after LFS. Student’s t test, two tailed, t20 = 2.63; *p < .05 vs. Pre-LFS. Numbers 

in the bars are individual experiments. D, LFS (10 min, 10 Hz) triggers CB1-eLTD at MPP (light blue circles; 

Student’s t test, two tailed, t38 = 2.89; **p < .01 vs. baseline), and LFS (10 min, 1 Hz) also triggers CB1-eLTD at 

MPP (blue circles; Student’s t test, two tailed, t8 = 6.32; ***p < .001 vs. baseline). E, Unlike the CB1-eLTD observed 

in MPP of sham mice (light blue circles; Student’s t test, two tailed, t38 = 2.89; **p < .01 vs. baseline), LFS induces a 

slight LTP at Mossy Cell Fiber (MCF) (brown circles; Student’s t test, two tailed, t20 = 2.31; *p < .05 vs. baseline) 

which is absent under D-APV [50 μM] application (light brown circles; Student’s t test, two tailed, t20 = 0.73; p > .05 

vs. baseline). F, Summary bar histogram of the experiments performed: sham, sham + AM251 [4μM], sham + D-

APV [50 μM], CB1-WT, CB1-KO and CB1-KO + D-APV [50 μM] in MPP and, sham and sham + D-APV [50 μM] in 

MCF. Mann Whitney test (p > .05; *p < .05; **p < .01 vs. sham in MPP). Numbers in the bars are individual 

experiments. Data are expressed as mean ± SEM. 
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Finally, at more physiological conditions without picrotoxin (PTX), 10 min, 10 Hz LFS 

triggered long-term potentiation (LTP) (**p < .01 vs. baseline) (Figure 16A, D (n = 5) -

49.79 ± 11.28% of inhibition) that was unaffected by D-APV [50 μM] (*p < .05 vs. 

baseline) (Figure 16B, D (n = 5) -34.41 ± 16.81% of inhibition) but blocked by AM251 

[4μM] (p > .05 vs. baseline) (Figure 16C, D (n = 4) -2.26 ± 13.84% of inhibition) 

suggesting that CB1 receptor-modulation of GABAergic transmission might be involved 

independently of NMDA receptors.  
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Figure 16. Endocannabinoid synaptic plasticity at physiological conditions in medial perforant path (MPP) 

synapses of sham mice. For representation, each section of the experiment was normalized to its baseline before LFS 

(10 min, 10 Hz) protocol at the time marked by the X-axis break. The average of the local field potentials (LFPs) 

areas is shown. A, As shown in figure 15, regular experiments with picrotoxin (PTX) [100 μM] trigger CB1-eLTD in 

MPP after LFS (blue circles; Student’s t test, two tailed, t38 = 2.89; **p < .01 versus (vs.) baseline); however, without 

PTX, LFS triggers a long-term potentiation (LTP) in the MPP (dark green circles; Mann Whitney test; **p < .01 vs. 

baseline). B, This LTP (dark green circles; Mann Whitney test; **p < .01 vs. baseline) is unaffected by D-APV [50 

μM] application (green circles; Student’s t test, two tailed, t8 = 2.08; p > .05 vs. baseline). C, CB1 receptor antagonist 

AM251 [4μM] blocks LTP (light green circles; Mann Whitney test; *p < .05 vs. baseline). D, Summary bar histogram 

of the experiments performed with PTX [100 μM]: sham, and without PTX: sham, sham + D-APV [50 μM], sham + 

AM251 [4μM]. Mann Whitney test (p > .05; *p < .05; **p < .01 vs. sham). Numbers in the bars are individual 

experiments. Data are expressed as mean ± SEM. 
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5.2 CB1-eLTD MECHANISMS AT MPP-GRANULE CELL 

SYNAPSES IN SHAM MICE 

5.2.1 Role of Group I mGluRs and intracellular Ca2+ 

The group I metabotropic glutamate receptor (mGluR) agonist 3.5-DHPG [50 μM] 

significantly decreased fEPSP in sham mice (*p < .05 vs. baseline) (Figure 17A (n = 4) 

26.68 ± 10.22% of inhibition). Conversely, 3.5-DHPG [50 μM] occluded subsequent CB1-

eLTD induced by LFS (p > .05 vs. baseline) (Figure 17B, D (n = 11) -4.8 ± 6.43% of 

inhibition). Indeed, the CB1-eLTD was abolished by application of either the mGluR5 

antagonist MPEP (p > .05 vs. baseline) (Figure 17C, D (n = 13) -4.8 ± 6.43% of inhibition) 

or the mGluR1 antagonist CPCCoEt (p > .05 vs. baseline) (Figure 17C, D (n = 10) -9.49 ± 

6.70% of inhibition), indicating that group I mGluRs activation and CB1-eLTD share 

common mechanisms. Furthermore, the L-type Ca2+ channel blocker, nimodipine [1 μM], 

was ineffective at blocking CB1-eLTD of the fEPSP, suggesting that this calcium channel is 

not involved in the CB1-eLTD induced by MPP stimulation (Figure 17D, (n = 8) 25.65 ± 

10.20% of inhibition). However, thapsigargin [2 μM, >1 h], a sarco/endoplasmic reticulum 

Ca2+-ATPase pump blocker, prevented CB1-eLTD at the MPP synapses (Figure 17D, (n = 

12) -17.88 ± 7.35% of inhibition). Altogether, these results indicate that activation of group 

I mGluRs, and release from intracellular Ca2+ stores are necessary for the induction of CB1-

eLTD at the MPP-granule cell synapses. 



 

 

82 

 

 

Figure 17. CB1 receptor-dependent excitatory long-term depression (CB1-eLTD) is mediated by group I 

mGluRs and rise of Ca2+ from intracellular stores in sham. For representation, the experiments were normalized 

to its baseline. The average of fEPSP areas is shown. A, The group I mGluR agonist, 3.5-DHPG [50 μM] reduces 

fEPSPs (dark blue circles; Mann Whitney test; *p < .05 versus (vs.) baseline). Black horizontal bar on the top shows 

the exposition time of the drug. B, Co-application of 3.5-DHPG [50 μM] with LFS protocol (blue circles; Student’s t 

test, two tailed, t20 = 0.74; p > .05 vs. baseline) prevents the CB1-eLTD observed in MPP (light green circles; 

Student’s t test, two tailed, t38 = 2.89; **p < .01 vs. baseline). C, MPEP [10 μm], the antagonist of mGluR5 (dark 

green circles; Mann Whitney test; p > .05 vs. baseline) and CPCCoEt [50 μM], the antagonist of mGluR1 (green 

circles; Mann Whitney test; p > .05 vs. baseline) block CB1-eLTD (blue circles; Student’s t test, two tailed, t38 = 2.89; 

**p < .01 vs. baseline). D, Summary bar histogram of the experiments performed: sham, MPEP [10 μM], CPCCoEt 

[50 μM], nimodipine [1 μM] and thapsigargin [2 μM, >1 h]. Numbers in the bars are individual experiments. Mann 

Whitney test; p > .05; *p < .05; **p < .01 vs. sham. All data are expressed as mean ± SEM. 
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5.2.2 2-AG underlies the novel CB1-LTD at MPP-synapses  

The LFS stimulation was unable to elicit CB1-eLTD at MPP synapses in the presence of the 

DAGL inhibitors THL [10 μM] or RHC-80267 [100 μM] (p > .05 vs. baseline) (Figure 18A, 

C, THL: (n = 7) -14.17 ± 7.31% of inhibition; RHC-80267: (n = 4) -11.12 ± 6.16% of 

inhibition). Also, LFS was unable to elicit CB1-eLTD in the presence of the phospholipase 

C (PLC) inhibitor U73122 [5 μM, >1 h] (Figure 18C, (n = 6) - 18.56 ± 6.15% of inhibition). 

Thus, PLC activity is also required for the synthesis of 2-AG. Furthermore, the MAGL 

inhibitor, JZL184 [50 μM, >1 h], also blocked the CB1-eLTD observed in sham mice after 

LFS (Figure 18C, (n = 12) -6.93 ± 3.54% of inhibition) suggesting that 2-AG degradation 

may be a limiting factor for CB1-eLTD induction. By contrast, bath application of URB597 

[2 μM, >20 min], a potent and selective inhibitor of FAAH, did not affect CB1-eLTD (*p < 

.05 vs. baseline) (Figure 18B, C, (n = 10) 18.14 ± 8.52% of inhibition) supporting the idea 

that AEA is not involved in the CB1-eLTD at the MPP-granule cell synapses. 

 

Figure 18. The 2-arachydonoyl-glycerol (2-AG) production is required to induce CB1 receptor-dependent 

excitatory long-term depression (CB1-eLTD) at MPP synapses in sham. A, DAGL inhibitors (THL [10 μM] and 

RHC-80267 [100 μM]) block CB1-eLTD (dark blue circles; Student’s t test, two tailed, t12 = 1.93; p > .05 versus (vs.) 

baseline and blue circles; Mann Whitney test; p > .05 vs. baseline, respectively) in sham mice (light blue circles; 

Student’s t test, two tailed, t38 = 2.89; **p < .01 vs. baseline). B, The fatty acid amide hydrolase (FAAH) inhibitor 

URB597 [2 μM, >20 min] does not affect CB1-eLTD (orange circles; Student’s t test, two tailed, t18 = 2.12; *p < .05 

vs. baseline) observed in sham (blue circles; Student’s t test, two tailed, t38 = 2.89; **p < .01 vs. baseline). C, 

Summary bar histogram of the experiments performed: sham, THL [10 μM], RHC-80267 [100 μM], U73122 [5 μM, 

>1 h], JZL184 [50 μM, >1 h] and URB597 [2 μM, >20 min]. Numbers in the bars are individual experiments. Mann 

Whitney test; p > .05; p < .05*; p < 0.01** vs. sham. All data are expressed as mean ± SEM.  



 

 

84 

 

5.3 VOLUNTARY ORAL ETHANOL CONSUMPTION 

AND BLOOD ETHANOL CONCENTRATION 

To ensure that the following effects were the result of voluntary alcohol intake, the amount 

of alcohol ingested by animals throughout the treatment was measured (Figure 19A, (n = 

30) 2.19 ± 0.10 g/Kg/h). In addition, a blood sample at the end of the 4-h session of the last 

week of treatment was analyzed and yielded an average of 62.67 ± 2.67 mg/dl (Figure 19B, 

(n = 12)). Indeed, a significant correlation between EtOH intake and BEC was observed 

(Figure 19C, (n = 12)). 

 

Figure 19. Voluntary oral ethanol (EtOH) consumption and Blood EtOH Concentration (BEC). A, Average of 

Total EtOH intake (g/kg/h) throughout adolescence period (Postnatal day, pnd 32 - 56). B, BEC (mg/dl) of C57BL/6J 

mice at the last day of EtOH treatment (pnd 56). Student’s t test, two tailed, t22 = 23.15; ***p < .0001 versus sham. C, 

Correlation between Total EtOH Intake throughout adolescence period and BEC measured at the end of the EtOH 

access. ***p < .001. All data are expressed as mean ± SEM. 

 

 

 



 

 

85 

 

5.4 ADOLESCENT ETHANOL INTAKE IMPAIRS 

ADULT CB1 RECEPTOR-MEDIATED EXCITATORY 

TRANSMISSION AND CB1-eLTD AT MPP-GRANULE 

CELL SYNAPSES 

The input–output relationships between fEPSPs slope relative to stimulus intensity in sham 

and EtOH-treated mice revealed significant differences (*p < .05 vs. sham) (Figure 20A) 

suggesting that adolescent EtOH consumption affects basal synaptic transmission in the 

adult. Besides, the CB1 receptor-induced suppression of the fEPSP in sham was not 

observed in the EtOH group after withdrawal (p > .05 vs. baseline) (Figure 20B, C (n = 10) 

CP 55.940 [10 μM]: (n = 10) -0.34 ± 8.96% of inhibition; Win-2 [5 μM]: (n = 7) -4.67 ± 

7.08% of inhibition). Furthermore, the CB1-eLTD elicited by MPP stimulation (10 min, 10 

Hz) was absent in EtOH-treated mice (p > .05 vs. baseline) (Figure 20D, E, (n = 16) -3.07 ± 

2.77 of inhibition). These findings demonstrate that chronic exposure to EtOH during 

adolescence has long-term impacts on the CB1-receptor-mediated excitatory synaptic 

transmission and CB1-eLTD at the MPP-granule cell synapses in the mature brain.  
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Figure 20. EtOH intake during adolescence impairs adult CB1 receptor-mediated excitatory transmission and 

CB1 receptor-dependent excitatory long-term depression (CB1-eLTD) at medial perforant pathway (MPP) 

synapses. A, Input-output curves where mean fEPSP slopes (mv/ms) are plotted against the stimulation intensities in 

hippocampal slices of sham (blue circles) and EtOH (purple circles). To analyze these data the area under the curve 

of each condition was calculated. Mann Whitney test; *p < 0.05 versus (vs.) sham. B, Time course plot of average of 

fEPSP areas are represented. CP 55.940 [10 μM] reduces fEPSPs in sham (blue circles; Student’s t test, two tailed, t12 

= 2.98; *p < .05 vs. baseline) but not in EtOH (purple circles; Mann Whitney test; p > 0.05 vs. baseline). Black 

horizontal bar on the top shows the exposition time of the drug. C, Summary bar histogram of the transmission 

experiments: sham + CP 55.940 [10 μM], sham + Win-2 [5 μM], EtOH + CP 55.940 [10 μM], EtOH + Win-2 [5 μM]. 

Baseline is represented by the dotted line. Two-way ANOVA (overall EtOH-treatment effect: F1,24 = 23.00; ***p < 

.001 and Bonferroni post-test *p < .05; **p < .01). Numbers in the bars are individual transmission experiments. D, 

Low frequency stimulation (LFS, 10 min, 10 Hz) triggers CB1-eLTD in sham (blue circles; Student’s t test, two 

tailed, t38 = 2.89; **p < .01 vs. baseline) but not in EtOH group (purple circles; Mann Whitney test; p > 0.05 vs. 

baseline). Above traces represent the average of 30 consecutive fEPSPs taken at the times indicated on the time-

course graph. E, Summary bar histogram of CB1-eLTD experiments performed: sham and EtOH. Mann Whitney test; 

**p < 0.01 vs. sham. Numbers in the bars are individual experiments. All data are expressed as mean ± SEM. 
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5.5 ADOLESCENT ETHANOL INTAKE INDUCES 

SIGNIFICANT CHANGES IN SOME ENDOCANNABINOID 

GENES AND PROTEINS IN THE MATURE 

HIPPOCAMPUS  

The expression of both the CB1 receptor gene, Cnr1 and its protein was significantly 

reduced after EtOH exposure during adolescence followed by 2 weeks of EtOH withdrawal 

(**p < .01; *p < .05 vs. sham, respectively) (Figure 21A, B). In contrast, a significant 

increase in the MAGL gene, Mgll and its protein relative to sham was detected (**p < .01; 

**p < .01 vs. sham, respectively) (Figure 21C, D). In addition, mGluR5 mRNA was slightly 

but significantly decreased upon adolescent exposure to EtOH but no significant changes 

were observed in protein levels (*p < .05; p > .05 vs. sham, respectively) (Figure 21E, F). 

Furthermore, the Dagla and Daglb genes encoding for DAGL-α and DAGL-β enzymes, the 

2-AG synthesizing enzymes, and Napepld and Faah genes encoding for the AEA 

synthesizing and degradation enzymes respectively, did not show any significant change as 

a result of the adolescent EtOH exposure (p > .05 vs. sham) (Figure 21G-J). 
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Figure 21. Molecular changes on endocannabinoid and glutamatergyc systems after EtOH intake during 

adolescence. A, B, Relative Cnr1 mRNA and CB1 receptor protein levels in adult hippocampus (Hi) of sham and 

EtOH-treated mice during adolescence. Student’s t test, two tailed, t30 = 3.01; **p < .01 versus (vs.) sham and 

Student’s t test, two tailed, t14 = 2.34; *p < .05 vs. sham, respectively. C, D, Relative Mgll mRNA and MAGL protein 

levels in adult Hi of sham and EtOH-treated mice during adolescence. Student’s t test, two tailed, t30 = 3.30; **p < 

.01 vs. sham and Student’s t test, two tailed, t14 = 4.03; **p < .01 vs. sham, respectively. E, F, Relative Grm5 mRNA 

and mGluR5 protein levels in adult Hi of sham and EtOH-treated mice during adolescence. Student’s t test, two 

tailed, t14 = 2.35; *p < .05 vs. sham and Mann Whitney test; p > .05 vs. sham, respectively G, H, Relative mRNA 

levels of Dagla and Daglb in adult Hi of sham and EtOH-treated mice during adolescence. Student’s t test, two tailed, 

t29 = 0.31; p > .05 vs. sham and Student’s t test, two tailed, t30 = 0.78; p > .05 vs. sham, respectively. I, J, Relative 

Napepld and Faah mRNA levels in adult hippocampus of sham and EtOH-treated mice during adolescence. Student’s 

t test, two tailed, t29 = 1.32; p > .05 vs. sham and Student’s t test, two tailed, t29 = 2.02; p > .05 vs. sham, respectively. 

Numbers in the bars are the samples analyzed. All data are expressed as mean ± SEM. 
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5.6 ADOLESCENT EXPOSURE TO ETHANOL ALTERS 

ARACHIDONIC ACID BUT NOT 2-AG IN THE MATURE 

BRAIN  

The endogenous 2-AG and AA were assessed by liquid chromatography and mass 

spectrometry. Basal 2-AG in sham (6.92 ± 0.42 nmol/g) and EtOH (6.65 ± 0.84 nmol/g) 

were not significantly different (p > .05 vs. sham) (Figure 22A). However, AA levels were 

significantly lower in sham (21.18 ± 1.79 nmol/g) than in EtOH-treated mice (76.30 ± 4.61 

nmol/g) (**p < .01 vs. sham) (Figure 22B). 

 

Figure 22. Measurement of 2-arachidonoyl-glycerol (2-AG) and arachidonic acid (AA) levels. A, 2-AG levels in 

individual P2 fractions from hippocampal brain samples of adult sham (n = 5, blue circles) and EtOH-treated mice (n 

= 5, purple squares) during adolescence. Mann Whitney test; p > 0.05 versus (vs.) sham.  B, AA levels in individual 

P2 fractions from hippocampal brain samples of adult sham (n = 5, blue circles) and EtOH-treated mice (n = 5, purple 

squares) throughout adolescence. Mann Whitney test; **p < .01 vs. sham. All data are expressed as mean ± SEM. 
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5.7 SUBCELLULAR LOCALIZATION OF CB1 

RECEPTORS IN THE ADULT DENTATE MPP 

TERMINATION ZONE AFTER CHRONIC ETHANOL 

EXPOSURE DURING ADOLESCENCE 

CB1 receptor immunogold particles in the middle 1/3 of the dentate ML of sham and EtOH 

mice were mainly localized on inhibitory and excitatory axon terminals forming synapses 

with dendrites and dendritic spines, respectively (Figure 23A-D). The CB1 receptor 

immunolabeling was absent in the global CB1-KO mice (***p < .001 vs. sham) (Figure 23E, 

G, 2.83 ± 1.51%), demonstrating the specificity of the anti-CB1 receptor antibody used.  

To determine whether adolescent EtOH intake caused a global change in CB1 receptor 

expression in the mature hippocampus the proportion of the total CB1 receptor gold particle 

distribution was examined in excitatory terminals (14.68% ± 1.93% particles), inhibitory 

terminals (45.25% ± 3.97% particles), mitochondria (11.91% ± 1.13% particles), dendrites 

(11.84% ± 1.19% particles) and other membranes (16.32% ± 1.83% particles) of sham and 

EtOH-treated mice (excitatory terminals: 9.52% ± 0.93% particles (*p < .05 vs. sham); 

inhibitory terminals: 49.70% ± 5.08% particles (p > .05 vs. sham); mitochondria: 11.80% ± 

1.38% particles (p > .05 vs. sham); dendrites: 12.84% ± 1.54% particles (p > .05 vs. sham); 

other membranes: 17.19% ± 2.08% particles (p > .05 vs. sham)) (Figure 23F, (n = 3)). In 

addition, the proportion of CB1 receptor-labeled excitatory terminals dropped significantly 

after EtOH exposure (Figure 23G, (n = 3) 17.78% ± 1.95% in EtOH vs. 26.31% ± 2.93 in 

sham). Finally, no statistical differences were found in CB1 receptor immunoparticle density 

(particles/µm) between excitatory boutons of sham (0.64 ± 0.03) and EtOH treated mice 

(0.58 ± 0.03) (Figure 23H).  
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Figure 23. Ultrastructural location of CB1 receptors in the middle 1/3 of the dentate molecular layer. A-D, CB1 

receptor immunogold labeling (black arrows) is observed on both excitatory terminals (ter) forming asymmetric 

synapses (white arrowheads) with dendritic spines (sp) and on inhibitory preterminals (preter) in sham and EtOH-

exposed mice. Scale bars: 0.5µm. E, No CB1 receptor immunolabeling is detected in global CB1-KO mice. Scale 

bars: 0.5µm.  F, Proportion of CB1 receptor labeling in different compartments normalized to the total CB1 receptor 

signal in sham and EtOH mice. Student’s t test, two tailed, t40 = 2.26; *p < .05 for excitatory terminals and Student’s t 

test, two tailed, t40 = 0.70, t40 = 0.06, t40 = 0.52 and t40 = 0.32 for the rest of compartments respectively. G, Percentage 

of CB1 receptor-immunopositive excitatory synaptic terminals in sham, EtOH and CB1-KO mice. One-way ANOVA 

(F2,58 = 18.64, ***p < .001) and Bonferroni post hoc comparisons (*p < .05; ***p < .001 vs. sham, respectively). The 

number of synaptic terminals analyzed is in parentheses on the top of each column. H, CB1 receptor density 

(particles/µm) in CB1 receptor positive excitatory terminals in sham and EtOH-treated mice. Mann Whitney test; p > 

.05. The number of synaptic terminals assessed is in parentheses on the top of each column. All data are expressed as 

mean ± SEM. 
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5.8 CP 55.940 STIMULATED [35S] GTPγS BINDING 

ASSAYS 

[35S] GTPγS binding assays were performed with the CB1 receptor agonist CP 55.940 in 

hippocampal membranes obtained from both sham and EtOH-treated mice. As shown in 

Figure 24A, CP 55.940 was able to stimulate [35S] GTPγS binding in a concentration 

dependent manner in both cases without significant differences in efficacy (Emax) (Figure 

24A, sham: (n = 4) 103.7 ± 4.2; EtOH: (n = 4) 95.3 ± 5.7). However, the potency of CP 

55.940 stimulated [35S] GTPγS binding was 3-4 fold higher in sham than in EtOH-treated 

mice (EC50) (Figure 24A, sham: (n = 4) 45.7 ± 13.2 nM; EtOH: 148.5 ± 24.1 nM). 

Furthermore, a significant reduction (~18%) in [35S] GTPγS basal binding was observed in 

hippocampal membranes of EtOH mice (inset of the figure 24A, sham: (n = 4) 99.9 ± 1.6; 

EtOH: 82.9 ± 2.1).  

 

Figure 24. Effect of ethanol (EtOH) intake during adolescence on CB1 receptor functionality. A, CP 55.940-

stimulated [35S]guanosine-5*-O-(3-thiotriphosphate) ([35S] GTPγS) binding in hippocampal membranes from sham 

and EtOH-treated mice. Concentration curves were constructed using mean values ± SEM from four different 

experiments performed in duplicate. Mann Whitney test; p > .05, ns; *p < .05; **p < .01 versus (vs.) sham. Bar 

graphs in the inset depict the relative percentage of [35S] GTPγS basal binding levels in sham and EtOH. Mann 

Whitney test; *p < .05 vs. sham. Numbers in the bars are the samples analyzed.  Data in the inset are mean ± SEM. 
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5.9 EXPRESSION OF Gαi/o SUBUNIT IN 

HIPPOCAMPAL MEMBRANES FROM ADULT SHAM 

AND ETHANOL-TREATED MICE DURING 

ADOLESCENCE 

In order to evaluate whether the changes observed in [35S] GTPγS binding assays were 

related to any alteration in G-protein expression, the relative expression levels of different 

Gαi/o subunits were determined by western blotting. To this aim, increasing amounts of 

hippocampal membranes were loaded, and the linear relationship between the amount of 

protein and the relative optical density (OD) was established in the range of 2-16 μg for all 

the proteins evaluated.  No differences in the Gαo, (n = 2), Gαi1 (n = 2) and Gαi3, (n = 3) 

subunits were found between sham and EtOH-treated mice (p > .05 vs. sham) (Figure 25A-

C). However, the Gαi2 subunit showed a small but significant (16%) decrease in 

hippocampal membranes of EtOH mice relative to sham (Figure 25D, (n = 3)). 
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Figure 25. Regression analysis of A, Gαo (n = 2); B, Gαi-1 (n = 2); C, Gαi-2 (n = 3) and D, Gαi-3 (n = 3) G-protein 

subunits in hippocampal membrane samples from adult sham and EtOH-treated mice during adolescence. t test with 

Welch’s correction; p > .05; *p < .05. All data are expressed as mean ± SEM. 
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5.10 2-AG ENHANCEMENT NORMALIZES CB1-LTD IN 

ETHANOL-TREATED MICE 

Bath application of JZL184 [50 μM, >1 h] rescued CB1-eLTD in EtOH-treated mice (Figure 

26A, C, (n = 14) 15.02 ± 4.61% of inhibition), indicating that the endogenous 2-AG tone is 

affecting CB1-eLTD at MPP following EtOH exposure. Furthermore, the eLTD restored by 

JZL184 was CB1 receptor dependent since AM251 [4 μM] blocked CB1-eLTD (Figure 26C, 

(n = 8) -3.57 ± 6.37% of inhibition). However, URB597 [2 μM, 20 min] did not produce 

any change on the evoked fEPSP (Figure 26B, C, (n = 5) -2.86 ± 3.95% of inhibition). Also, 

the AEA transporter inhibitor, AM404 [30 μM] did not elicit CB1-eLTD (Figure 26C, (n = 

5) -14.75 ± 4.23%). These findings reveal that the pharmacological blockade of 2-AG 

degradation rescues CB1-eLTD in adult MPP-granule cell synapses after adolescent EtOH 

exposure. 

 

Figure 26. Enhancement of 2-AG signaling normalizes CB1 receptor-dependent excitatory long-term 

depression (CB1-eLTD) in ethanol (EtOH) mice. A, Time course plot of average fEPSP areas upon application of 

the low frequency stimulation (LFS, 10 min, 10 Hz) in sham (light blue circles: Student’s t test, two tailed, t38 = 2.89; 

**p < .01 versus (vs.) baseline), EtOH (dark purple circles; Mann Whitney test; p >.05 vs. baseline) and EtOH mice 

with Monoacylglicerol lipase (MAGL) inhibitor (JZL184, pink circles; Mann Whitney test; *p < .05 vs. baseline). 

JZL184 recovers CB1-eLTD in EtOH-treated mice. B, Time course plot of average fEPSP areas upon application of 

the LFS protocol in sham (light blue circles; Student’s t test, two tailed, t38 = 2.89; **p < .01 versus (vs.) baseline), 

EtOH (dark purple circles; Mann Whitney test; p >.05 vs. baseline) and EtOH mice with the fatty acid amide 

hydrolase (FAAH) inhibitor URB597 (light pink circles; Mann Whitney test; p > 0.05 vs. baseline). URB597 has no 

effect on the loss CB1-eLTD after EtOH exposure. C, Summary bar histogram of the experiments performed: sham, 

EtOH, EtOH + JZL184 [50 μM, >1 h], EtOH + (JZL184 + AM251) cocktail [JZL184: 50 μM, >1 h; AM251: 4 μM, 

>30 min], EtOH + URB 597 [2 μM, >20 min] and EtOH + AM404 [30 μM]. Mann Whitney test; **p < .01; p >.05 

vs. EtOH. Numbers in the bars are individual experiments. All data are expressed as mean ± SEM. 
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5.11 BEHAVIORAL TESTING 

5.11.1 Memory evaluation 

Adult mice exposed to EtOH during adolescence showed a statistically lower short-term 

recognition, spatial and associative memory. In particular, a significant decrease in the DI in 

the NOR (***p < .001 vs. sham) (Figure 27A, sham: (n = 13) 0.45 ± 0.05; EtOH: (n = 13) 

0.03 ± 0.03), OiP (***p < .001 vs. sham) (Figure 27C, sham: (n = 12) 0.30 ± 0.04; EtOH: (n 

= 10) 0.003 ± 0.035) and OL tests (**p < .01 vs. sham) (Figure 27E, sham: (n = 9) 0.17 ± 

0.04; EtOH: (n = 10) -0.01 ± 0.04) was observed in EtOH compared to sham adult mice. 

However, their total exploration time between the familiar and the new object or location 

was similar between sham and EtOH groups in all tasks: NOR (Figure 27B, sham: (n = 13) 

34.78 ± 4.01; EtOH: (n = 13) 31.14 ± 3.87), OiP (Figure 27D, sham: (n = 12) 75.71 ± 5.50 

and EtOH: (n = 10) 64.90 ± 9.45) and OL test (Figure 27F, sham: (n = 9) 41.73 ± 4.16; 

EtOH: (n = 10) 31.10 ± 6.77). Taken together, all these results suggest that chronic 

consumption of EtOH during adolescence alters memory processes dependent, at least in 

part, on the hippocampal circuits. 
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Figure 27. Ethanol (EtOH) intake during adolescence leads cognitive impairment on memory. A, Recognition 

memory was affected in adult mice after EtOH exposure during adolescence. Unpaired t test, ***p < .001 B, Object 

exploration time (sec) during test phase of NOR was unaffected between experimental groups. Student’s t test, two 

tailed, t25 = 2.36; p > .05. C, Associative memory was altered in adult mice after EtOH exposure during adolescence. 

Unpaired t test, ***p < .001. D, Object exploration time (sec) during test phase of OiP test was unaffected between 

experimental groups. Student’s t test, two tailed, t20 = 1.03; p > .05. E, Spatial memory was disrupted in adult mice 

after EtOH exposure during adolescence. Student’s t test, two tailed, t17 = 3.46; **p < .01. F, Object exploration time 

(sec) during test phase of OL was unaffected between experimental groups. Student’s t test, two tailed, t17 = 1.30; p > 

.05.  The number of mice used in each test is in parentheses on the top of each column. All data are expressed as 

mean ± SEM. 
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 JZL184 reverses cognitive impairment induced by EtOH treatment  

In the NOR test, adult mice treated with EtOH during adolescence showed a much lower 

short-term memory discrimination index than the sham, as we have shown above. However, 

systemic JZL184 administration (8 mg/kg ip) abolished the memory impairment associated 

with EtOH intake (Figure 28A, (n = 5-13)). Additionally, no differences in the total 

exploration time were observed among the experimental groups (Figure 28B, (n = 5-13)).  

 

Figure 28. JZL184 reverses adult cognitive impairment after adolescent EtOH intake. A, Short-term memory 

was tested 2 h after the training session. Discrimination index of each experimental group in 10 min testing session of 

the novel object recognition test.  Two-way ANOVA (EtOH treatment versus (vs.) JZL184 treatment interaction: F1,33 

= 16.75; ***p < .001 and Bonferroni post-test (***p < .001). B, Total exploration time (sec) of objects in the 10 min 

test session. Two-way ANOVA (EtOH treatment vs. JZL184 treatment interaction: F1,33 = 0.03; p > .05. Numbers in 

the bars are individual experiments. Each bar represents the mean ± SEM. 
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5.11.2 Long-term effects on motor coordination and balance 

after chronic ethanol consumption during adolescence 

Rotarod test showed a significant lower latency to fall off (*p < .05) (Figure 29A, sham: (n 

= 11) 127.4 ± 13.12; EtOH: (n = 11) 87.41 ± 12.65) and a lower rotating speed at falling (*p 

< .05) (Figure 29B, sham: (n = 11) 19.27 ± 1.61; EtOH: (n = 11) 14.27 ± 1.54) in mature 

mice after EtOH exposure during adolescence. On the other hand, mature EtOH mice spent 

more time to cross the narrow beam (*p < .05) (Figure 29C, sham: (n = 10) 22.77 ± 4.93; 

EtOH: (n = 10) 43.63 ± 5.71) and exhibited a higher number of foot slips (**p < .01) 

(Figure 29D, sham: (n = 10) 5.91 ± 0.32; EtOH: (n = 10) 8.61 ± 0.62) during walking 

balance test. However, no significant changes in time to cross the broad beam were detected 

(p > .05) (Figure 29E, sham: (n = 10) 12.14 ± 2.40; EtOH: (n = 10) 17.96 ± 2.37). These 

results show that adolescence BD leads to motor incoordination and imbalance both 

controlled by the cerebellum.  
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Figure 29. Ethanol (EtOH) intake during adolescence leads motor incoordination and imbalance in mature 

mice. A, Latency to fall (sec) in adult sham and EtOH mice during test phase of rotarod task. Student’s t test, two 

tailed, t20 = 2.19; *p < .05 versus (vs.) sham. B, Rotating speed at falling (rpm) during test phase of rotarod task in 

sham and EtOH mice. Student’s t test, two tailed, t20 = 2.24; *p < .05 vs. sham. C, Latency to traverse the narrow 

beam (sec) in sham and EtOH-treated mice during test phase of beam walking balance task. Mann Whitney test; *p < 

.05 vs. sham. D, Number of foodslips in sham and EtOH mice during test phase of beam walking balance task. Mann 

Whitney test; **p <.01 vs. sham. E, Time spent to cross de broad beam in sham and EtOH-treated mice during 

training phase of beam walking balance task. Unpaired t test; p > .05 vs. sham. Numbers in the bars indicate the 

animals used in each behavioral test. All data are expressed as mean ± SEM. 
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5.11.3 Depressive and anxiety-like behaviors in adulthood 

after ethanol consumption throughout adolescence 

Tail suspension test showed no significant changes in depressive-like behaviors in adult 

mice after chronic EtOH exposure during adolescence (p > .05) (Figure 30A, sham: (n = 10) 

95.18 ± 12.90; EtOH: (n = 12) 119.7 ± 11.73). In addition, anxiety-like behavior was 

measured by open field and light dark box tests. The opend field task did not show any 

difference of the time spent in center (p > .05) (Figure 30B, sham: (n = 12) 105.2 ± 6.46; 

EtOH: (n = 12) 101.8 ± 11.53) and peripheral zone (p > .05) (Figure 30B, sham: (n = 12) 

194.8 ± 6.46; EtOH: (n = 12) 198.2 ± 11.53) between experimental groups. Further, the 

light-dark box did not show statistically significant changes in any of the four parameters 

measured in adult mice after adolescence EtOH exposure (p > .05): time spent in light 

compartment (Figure 30C, sham: (n = 12) 222.9 ± 19.56; EtOH: (n = 12) 165.5 ± 22.59); 

time spent in dark compartment (Figure 30C, sham: (n = 12) 377.1 ± 19.56; EtOH: 434.5 ± 

22.59); latency to enter the light compartment for the first time (Figure 30D, sham: (n = 12) 

16.36 ± 3.34; EtOH: (n = 12) 14.45 ± 2.76) and number of transition events between 

compartments (Figure 30E, sham: (n = 12) 37 ± 2.42; EtOH: (n = 12) 30.36 ± 2.33).  
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Figure 30. No persistent depressive- and anxiety-like behaviors are observed after chronic ethanol (EtOH) 

exposure during adolescence. A, Immobility time (sec) of adult sham and EtOH-treated mice during tail suspension 

trial. Student’s t test, two tailed, t20 = 1.41; p > .05 versus (vs.) sham. B, Time spent in the center (sec) and peripheral 

(sec) zone of adult sham and EtOH mice during open field test. Mann Whitney test; p > .05 vs. sham and Student’s t 

test, two tailed, t22 = 0.26; p > .05 vs. sham. C, Time spent in light box (sec) and dark box (sec) of sham and EtOH 

mice during light-dark box task. Student’s t test, two tailed, t22 = 1.92; p > .05 vs. sham and Student’s t test, two 

tailed, t21 = 1.58; p > .05 vs. sham, respectively. D, Time of both experimental groups to enter in light box (sec) 

during the light-dark box task. Student’s t test, two tailed, t22 = 0.44; p > .05 vs. sham.  E, Number of transitions 

events of sham and EtOH-treated mice during light-dark box task. Student’s t test, two tailed, t22 = 1.97; p > .05 vs. 

sham. Numbers in the bars indicate the animals used in each behavioral test. All data are expressed as mean ± SEM. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. DISCUSSION 
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The main findings of this Doctoral Thesis have shown that chronic EtOH intake during 

adolescence severely disrupts CB1 receptor-mediated excitatory transmission and long-term 

depression of the excitatory synaptic transmission in adult MPP-granule cell synapses that 

results in recognition memory impairment. Moreover, the adolescent binge consumption 

also alters motor coordination and balance but not triggers depression or anxiety-like 

behaviors. Finally, both the loss of the CB1-eLTD at MPP and the NOR memory 

impairment were reversed by the selective MAGL antagonist, JZL184. 

The endocannabinoids play a crucial role in the induction of long-term synaptic plasticity in 

the brain (Chevaleyre and Castillo, 2004; Kreitzer and Malenka, 2005; Chiu and Castillo, 

2008; Huang et al., 2008; Yasuda et al., 2008; Lafourcade and Alger, 2008; Carey et al., 

2011; Puente et al., 2011; Cachope, 2012; Araque et al., 2017). In addition, alterations of 

the eCB metabolism and signaling pathways during critical periods of brain development 

cause long-lasting behavioral abnormalities that can be observed into adulthood (Subbanna 

et al., 2013, 2015). EtOH consumption alters eCB-dependent synaptic plasticity leading to 

long-term cognitive impairments (DePoy et al., 2015; Crews et al., 2016; Nimitvilai et al., 

2016; Lovinger, 2017; Bonilla-Del Río et al., 2017; Marco et al., 2017) and, reciprocally, 

the endocannabinoids play a pivotal role in the EtOH drinking behavior and in the 

development of alcoholism (Basavarajappa and Hungund, 2002; Lovinger, 2017).  

6.1 MECHANISMS UNDERLYING A NOVEL CB1-eLTD AT 

MPP-GRANULE CELL SYNAPSES 

We found a CB1 receptor-dependent inhibition of MPP-granule cell excitatory synaptic 

transmission, and a novel CB1-eLTD induced by MPP LFS (10 min, 10 Hz) that has been 

previously used to consistently induce eCB-dependent LTD in other brain regions 

(Lafourcade et al., 2007; Puente et al., 2011). Other protocols of LFS (10 min, 1 Hz) known 
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to trigger LTD, also induced LTD in the MPP-granule cell synapses. We found that the 

magnitude of CB1-eLTD was unaffected by the NMDA receptor antagonist D-APV 

suggesting that NMDA receptors were not involved in the CB1-eLTD, despite the fact that 

CB1-eLTD may require NMDA receptor activity at other synapses (Sjöström et al., 2003; 

Bender et al., 2006). However, the slight potentiation observed in CB1-KO mice after LFS 

could be triggered by an increase in glutamate release and NMDA receptor activation 

(Errington et al., 1987) since the potentiation disappeared after bath perfusion of D-APV. 

Interestingly, the potentiation was not observed after EtOH consumption, suggesting that 

NMDA receptor signaling may also be impaired by this drinking pattern (Carpenter-Hyland 

et al., 2004, Carpenter-Hyland and Chandler, 2007). Consistent with a previous report (Chiu 

and Castillo, 2008), the 10 min 10 Hz protocol did not induce LTD at the excitatory mossy 

cell fiber synapses in the innermost 1/3 dentate ML highly expressing CB1 receptors (Tsou 

et al., 1998; Katona et al., 2006; Kawamura et al., 2006; Monory et al., 2006), but rather a 

small D-APV-sensitive LTP. 

Another relevant finding was that the LFS used to induce CB1-LTD (Lafourcade et al., 

2007; Puente et al., 2011) triggers a CB1 receptor-dependent, but NMDA receptor-

independent, LTP. These results indicate that the eCB synthesis elicited by LFS enhances 

excitability probably due to a predominant inhibition of GABA release over glutamate 

release. These results are in agreement with previous studies showing that both 2-AG and 

CB1 receptor signaling are required for LTP at the lateral perforant path synapses (Wang et 

al., 2016). Also, CA1 LTP was facilitated by 2-AG and CB1 receptor signaling (Silva-Cruz 

et al., 2017). Moreover, Chevaleyre and Castillo (2003; 2004) suggested that the eCB-

mediated I-LTD (LTD at inhibitory synapses) underlie changes in CA1 pyramidal 

excitability and exert long-lasting modulatory effects on excitatory LTP. Altogether, these 
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previous studies and the present work indicate that neuronal excitability and long-term 

synaptic plasticity at excitatory synapses are critically dependent on the level of inhibition. 

Mouse age (pnd 74-80), temperature of the in vitro experiments (32-35 ºC) and/or the 

stimulation paradigm could be critical factors for the novel CB1-eLTD induction at the 

MPP-granule cell synapses in the DG. For instance, the eCB production by 3-sec 

postsynaptic depolarization of DG granule cells suppresses glutamatergic inputs in the 

innermost 1/3 dentate ML but not of the entorhinal-dentate pathway (Chiu and Castillo, 

2008). Yet, postsynaptic transient receptor potential vanilloid 1 (TRPV1) activation at 

MPP-granule cell synapses suppresses excitatory transmission, and brief postsynaptic 

depolarizations (1 Hz) induce AEA-mediated TRPV1-LTD in a CB1 receptor independent 

manner (Chávez et al., 2010). In fact, TRPV1 is highly concentrated in postsynaptic 

dendritic spines to asymmetric perforant path synapses in the outer 2/3 of the ML (Puente et 

al., 2015). Furthermore, TRPV1-LTD required mGluR5 activation, but not mGluR1, and 

involved postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) 

receptor internalization (Chávez et al., 2010). In our study, LFS of MPP inputs activated 

both mGluR1 and mGluR5 leading to an increase in intracellular Ca2+ released from the 

sarco/endoplasmic reticulum. The TRPV1-LTD induced by a similar LFS (10 min, 10 Hz) 

in the bed nucleus of the stria terminalis (BNST) was mediated by postsynaptic mGluR5-

dependent release of AEA acting on postsynaptic TRPV1 receptors, and was strongly 

inhibited by depletion of intracellular Ca2+ stores (Puente et al., 2011). 

We found that the 2-AG-dependent CB1-eLTD at MPP synapses activates presynaptic CB1 

receptors distributed on excitatory synaptic terminals in the middle 1/3 of the dentate ML. 

In the BNST, however, dendritic L-type Ca2+ channels and the subsequent release of 2-AG 

acting on presynaptic CB1 receptors triggered retrograde short-term depression (Puente et 

al., 2011). Hence, the eCB-LTD can be induced at either presynaptic or postsynaptic loci of 
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the BNST synapses depending on the stimulation paradigm, and that it recruits either 

presynaptic CB1 receptors or postsynaptic TRPV1 activated by 2-AG or AEA, respectively 

(Puente et al., 2011). Together, these findings further suggest that the precise subcelullar 

localization of the eCB components in specific cell types and synapses are key players for 

the induction of diverse forms of synaptic plasticity through distinct signaling mechanisms. 

6.2 LONG-TERM EFFECTS OF ETHANOL INTAKE DURING 

ADOLESCENCE 

The disruption of the adult CB1 receptor-mediated excitatory transmission and CB1-eLTD 

after adolescent EtOH intake is similar to previous findings (Guerri and Pascual, 2010; 

Adermark et al., 2011; Renteria et al., 2014, 2017). Furthermore, the absence of CB1-eLTD 

was accompanied by a defect in recognition memory in adulthood. This could be explained 

by several mechanisms, such as reduction in neurogenesis (Anderson et al., 2012; Vetreno 

and Crews, 2015), increase in neuroinflammation (Blanco and Guerri 2007; Pascual et al., 

2011) or increase in neurodegeneration (Obernier et al., 2002). However, the impairments 

detected in the mature mouse after adolescent EtOH consumption seem to be correlated 

with the disturbance of cannabinoid signaling, as both the loss of excitatory synaptic 

plasticity and the NOR deficits were reversible by the selective MAGL antagonist. 

Moreover, the adolescent EtOH intake caused a significant decrease in the relative CB1 

receptor protein and mRNA, as previously shown (Basavarajappa et al., 1998; 

Mitrirattanakul et al., 2007; Rubio et al., 2009).  

We have recently demonstrated that the amount of CB1 receptor immunoparticles in 

excitatory terminals in the hippocampal CA1 subregion was lower in EtOH-treated than in 

sham mice, in addition to a significant reduction in CB1 receptor labeling in astrocytic 

processes (Bonilla-del Río et al., 2017). In the present Doctoral Thesis, a ~35% decrease in 
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the CB1 receptor particle distribution was found in excitatory terminals of the medial 

dentate ML and no changes in the CB1 receptor distribution were detected in other cellular 

compartments. Furthermore, the CB1 receptor immunopositive excitatory terminals 

decreased by 32% in EtOH-treated vs. sham. Hence, the reduction in CB1 receptors in 

excitatory terminals could account for at least part of the deficits in the adult CB1 receptor-

dependent LTD after adolescent EtOH intake. However, whether there are also any glial 

cell-associated changes in CB1 receptor expression in the medial dentate ML is unknown, as 

we have previously shown to occur in the CA1 hippocampus (Bonilla-Del Río et al., 2017). 

Adolescent mice subjected to a 4-day model of BD had a 40% decrease in astroglial 

processes expressing CB1 receptors and a 30% drop in receptor density in adult CA1 

stratum radiatum astrocytes relative to sham (Bonilla-Del Río et al., 2017). In addition, the 

proportion of total CB1 receptor particles found on astrocytes in EtOH was much lower than 

in sham. Also, astrocytes were swollen in adult CA1 upon cessation of EtOH intake in 

adolescence (Bonilla-Del Río et al., 2017). Because of the disrupted cell morphology, the 

astroglial CB1 receptor expression was analyzed on a similar number of astroglial processes 

that were counted up in about 30% larger area in EtOH than in sham. Astrocytic swelling 

seems to be a phenomenon associated with EtOH consumption that leads to astroglial 

dysfunction (Adermark and Bowers, 2016) upon disruption of the glial fibrillary acidic 

protein found in the astrocyte intermediate filaments (Renau-Piqueras et al. 1989). 

Furthermore, long-term behavioral and cognitive impairments, synaptic plasticity 

disturbance, late alcohol abuse and addiction related to BD during the adolescence have 

been associated with neuroinflammatory mechanisms (Nestler 2001; Montesinos et al. 

2016) as mentioned already (see below for further discussion).    

Another possibility is that the function of CB1 receptor signaling was affected during the 

adolescent EtOH intake. We have reported that EtOH treated mice did not show CB1 
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receptor agonist-induced decrease in glutamate release as observed in sham mice, 

suggesting a reduced CB1 receptor function in the MPP-granule cell synapses upon EtOH 

treatment, as previously shown in other brain regions (Pava and Woodward, 2012; Pava, 

2014; Basavarajappa and Hungund, 1999; Mitrirattanakul et al., 2007; Vinod et al., 2006). 

CB1 receptors signal in neurons through coupling to Gαi/o proteins (Kano et al. 2009) and 

mitochondrial CB1 receptors have been shown to signal through Gαi proteins, as pertussis 

toxin blocks the decrease in mitochondrial cAMP, protein kinase A, complex I activity and 

respiration induced by cannabinoids (Hebert-Chatelain et al. 2016). Interestingly, no 

changes in the mitochondrial CB1 receptors in adult upon adolescent intermittent EtOH 

intake were observed in our study. In astrocytes, there are pieces of evidence indicating that 

CB1 receptors, in addition to Gαi/o proteins, also signal through Gαq proteins enabling 

astroglial CB1 receptors to couple to different intracellular signaling pathways (Metna-

Laurent and Marsicano, 2015). These biochemical differences might also have 

consequences on CB1 receptor-binding proteins, like the G-protein-associated sorting 

protein 1 (GASP1) responsible for linking CB1 receptors to degradation, or the cannabinoid 

receptor associated protein 1a (CRIP1a) involved in the CB1 receptor function modulated 

by antagonists (Vinod et al. 2012).  

CB1 receptors located in glutamatergic synapses are more efficiently coupled to G protein 

signaling cascades (Steindel et al., 2013); hence, the remaining CB1 receptors at the MPP 

synapses could compensate for the CB1 receptor reduction elicited by the adolescent EtOH 

consumption. We found a significant reduction in CP 55.940 potency for stimulating [35S] 

GTPγS binding and [35S] GTPγS basal binding that agrees with the decrease in CB1 receptor 

binding (Basavarajappa et al., 1998; Vinod et al., 2006) and G-protein cycling after EtOH 

(Basavarajappa and Hungund, 1999). Furthermore, we also detected a specific reduction in 

Gαi2 subunit that may be responsible for the observed reduction in [35S] GTPγS basal 
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binding and also for the impairment in CB1 receptor signaling, which may be related to the 

absence of CB1-eLTD and deficits in the NOR test in the EtOH-treated mice. Actually, a 

lack of Gαi2 subunit leads to abnormalities in learning efficiency, sociability and social 

recognition (Hamada et al., 2017). As a compensatory mechanism, there was an increase in 

MAGL in our EtOH model as shown by others (Subbanna et al., 2015), but no changes in 

the mRNA expression for the 2-AG biosynthetic enzymes were detected. Consequently, 2-

AG levels would be expected to decrease in animals exposed to EtOH during adolescence. 

Curiously, there were no changes in 2-AG levels after withdrawal. However, a substantial 

increase in AA was found, suggesting a 2-AG increase during or after EtOH exposure 

(Basavarajappa et al., 2000) that could eventually be normalized by further 2-AG 

degradation caused by the observed MAGL increase.  

Adolescent EtOH impairs NOR memory after cessation of consumption, as previously 

shown (García-Moreno et al., 2002; Farr et al., 2005; García-Moreno and Cimadevilla, 

2012) which may be due to its effects on hippocampal, parahippocampal and neocortical 

structures leading to a deficit in recognition memory formation (Tanimizu et al., 2017), as 

discussed later. Interestingly, MAGL inhibition was able to overcome the functional and 

behavioral disturbances induced by EtOH, most likely due to the increase in 2-AG. 

Actually, pharmacological or genetic ablation of MAGL was shown to enhance long-term 

synaptic plasticity, improve cognitive performance through CB1 receptor-mediated 

mechanisms, suppress neuroinflammation and prevent neurodegeneration after harmful 

insults (Long et al., 2009; Chen et al., 2012). Thus, upon agonist (2-AG)-induced 

stimulation of Gai/o subunits, inhibition of MAGL could overcome the loss of CB1 

receptors in glutamatergic terminals due to the high coupling efficiency of this CB1 receptor 

population (Basavarajappa and Hungund, 1999), leading to functional (CB1-eLTD) and 

behavioral (recognition memory) recovery in adult mice after EtOH treatment during 
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adolescence. As noted earlier, there is a growing body of literature demonstrating that 

adolescent EtOH exposure has more profound behavioral and neurobiological effects than 

similar treatments in adulthood (Beaudet et al., 2016; Spear, 2016b; Wolstenholme et al., 

2017), however further research is needed to study whether the deficit in eCB plasticity and 

the NOR observed here are also observed if the EtOH intake occurs in adulthood.   

Taken together, the increase in MAGL, the decrease in CB1 receptors in excitatory 

terminals and their loss of efficacy could be underlying the loss of CB1-eLTD at the MPP-

granule cell synapses and the memory impairment observed in mature mice after EtOH 

exposure during adolescence (Figure 31). The present results can be taken into account for 

future investigations oriented to the search of new therapies to minimizing the potential 

consequences in adulthood of the irresponsible EtOH intake during early periods of life. 

 

 

Figure 31. Schematic representation of the mechanisms involved in the novel CB1-eLTD plasticity at MPP 

synapses, the long-lasting effects of EtOH exposure during adolescence on plasticity and behavior (recognition 

memory) and after treatment with a MAGL inhibitor. In sham mice, the activation of group I metabotropic 

glutamate receptors (mGluRs), phospolipase C and intracellular Ca2+ channels with the subsequent 2-AG production 

leads to the CB1 receptor mediated LTD at excitatory synapses. Adolescent EtOH decreases in the adult 

hippocampus: CB1 receptors in excitatory synaptic terminals and proportion of CB1 receptor immunopositive 
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excitatory synaptic terminals in MPP termination zone (middle 1/3 of the dentate molecular layer); [35S] GTPγS basal 

binding; Gαi2 subunit; mGluR5 mRNA. Adolescent EtOH increases in the adult hippocampus: MAGL mRNA and 

protein; arachidonic acid (AA). These changes abolish CB1-eLTD and impair recognition memory. The MAGL 

inhibitor JZL184 recovers CB1-eLTD and recognition memory. Figure design is adapted from Servier Medical Art. 

6.3 LONG-TERM BEHAVIORAL EFFECTS OF ETHANOL 

INTAKE DURING ADOLESCENCE  

The brain undergoes important structural and functional changes along the adolescent 

period that makes it more vulnerable to the deleterious effects of EtOH (Bonilla-Del Río et 

al., 2017) that can persist long after the end of EtOH consumption. The effects of 

adolescent EtOH intake on NOR memory have been widely studied (García-Moreno et al., 

2002; Farr et al., 2005; García-Moreno and Cimadevilla, 2012; Swartzwelder et al., 2015; 

Beaudet et al., 2016; Sanchez-Marin et al., 2017). However, more studies were necessary to 

check the long-term impact of the adolescent pattern of EtOH intake on associative and 

spatial recognition memory.  

The impairment in recognition, spatial and associative memory detected in early adulthood 

after chronic EtOH intake during adolescence in our study, is consistent with recent 

findings showing cognitive and behavioral deficits (Sanchez-Marin et al., 2017) as well as 

previous observations demonstrating that adolescent BD causes a decrease in hippocampal 

neurogenesis that persists into adulthood, altering brain plasticity and perturbing cognitive 

function (Pascual et al., 2007; Rodríguez-Arias et al., 2011; Vetreno and Crews, 2015). 

Newborn neuronal generation is directly related to hippocampal-dependent cognitive 

processes (Shors et al., 2001) and is highly sensitive to dysregulation by EtOH (Crews et 

al., 2006; Patten et al., 2016). In fact, adolescent rats subjected to intermittent exposure to 

alcohol exhibit a reduction in dentate neurogenesis lasting into adulthood (Vetreno and 

Crews, 2015). Also, white matter volume deficits, selective gray matter damage, changes in 
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neuroprogenitor proliferation (by Ki-67 immunopositivity) and caspase-3 expression in the 

dentate gyrus have been shown to be involved in the EtOH cognitive impairment (Crews et 

al., 2016). All these alterations can culminate in reduced hippocampal volume and brain-

derived neurotrophic factor (BDNF) in the adult hippocampus (De Bellis et al., 2000; 

Sakharkar et al., 2016). Interestingly, these evidences seem to be exclusively related to 

EtOH intake during adolescence because they were not observed after EtOH drinking in 

adulthood (Broadwater et al., 2014).  

In line with this, recent studies have demonstrated the importance of the immune system in 

the neuropathological consequences of adolescent EtOH. BD activates the inflammatory 

TLR4/NFκB signaling response in glial cells, which leads to the release of 

cytokines/chemokines and free radicals that correlates with neurophysiological, cognitive, 

and behavioral dysfunctions (Pascual et al., 2018). Actually, the EtOH effect on 

hippocampal, parahippocampal and neocortical structures leading to a deficit in recognition 

memory formation (Tanimizu et al., 2017) might be explained by an increase in 

neuroinflammation (Blanco and Guerri, 2007; Pascual et al., 2011; see Crews and Vetreno, 

2015). Astrocytes participate in the inflammatory response through their capacity to release 

pro-inflammatory molecules (Farina et al. 2007) that can be diminished by anti-

inflammatory reactions mediated by endocannabinoids acting on astroglial CB1 receptors 

(Metna-Laurent and Marsicano 2015). Hence, because of the drastic reduction in CB1 

receptors in adult astrocytes that we have recently demonstrated in the CA1 hippocampus 

(Bonilla-Del Río et al., 2017), it is reasonable to expect an impairment of the astroglial anti-

inflammatory reaction in response to adolescent EtOH intake. Furthermore, the altered 

astroglial morphology should affect the extracellular matrix components and the 

perineuronal nets sat between the astrocytes and the synapses, so impairing the homeostasis 

at the tripartite synapse. The supposedly resulting disturbance of neurotransmitter clearance 
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and gliotransmission may lead to deficits in synaptic plasticity (Dzyubenko et al. 2016) that 

ought to underlie the brain dysfunction observed after chronic EtOH consumption 

(Lovinger and Roberto 2013; Lovinger and Alvarez 2017; Pava and Woodward 2012). The 

astroglial glutamate aspartate transporter GLAST (EAAT1) appears to be up-regulated upon 

EtOH exposure (Rimondini et al. 2002) which should favor glutamate clearance from the 

synaptic cleft. However, this compensation seems not to be relevant for the EtOH effects, as 

mice lacking GLAST but equipped with functional presynaptic CB1 receptors show less 

alcohol consumption, motivation, and reward (Karlsson et al. 2012).  

Other possible mechanisms implicated in the recognition memory deficit by EtOH might be 

the increase in neurodegeneration (Obernier et al., 2002; Broadwater et al., 2014) or a 

reduction in neurogenesis (Anderson et al., 2012; Broadwater et al., 2014; Vetreno and 

Crews, 2015), that both persist into adulthood (Vetreno and Crews, 2015), leading to 

alterations in brain plasticity (Eisch and Harburg, 2006; Fontaine et al., 2016) and cognitive 

functions (Nixon and Crews, 2002; Vetreno and Crews, 2015).  

We have observed that chronic EtOH exposure in adolescence leads to long-term 

impairment of motor coordination and balance as shown in the rotarod and the beam 

walking balance test usually associated with cerebellar functions (Yamamoto et al., 2003). 

These results are consistent with previous reports (Forbes et al., 2013) showing that early 

EtOH consumption alters cerebellar function (Lamont and Weber, 2012) indicating Purkinje 

cell vulnerability to EtOH (Sarna and Hawkes, 2003; Jaatinen and Rintala, 2008; Pierce et 

al., 2011) that leads to loss of these cells (Forbes et al., 2013), cerebellar atrophy  

(Andersen, 2004; Jaatinen and Rintala, 2008) and motor deficits (Forbes et al., 2013). Also, 

a loss of prefrontal grey matter is correlated with motor, emotional and memory 

impairments in human alcoholics (West et al, 2018). Importantly, prefrontal development 

persists into adolescence and may be particularly vulnerable to EtOH-induced damage.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670762/#R28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670762/#R28


 

 

115 

 

Significant differences in long-term anxiety and depressive-like behaviors between sham 

and EtOH groups were not found in our study probably due to the use of male mice in the 

experimental sampling. Evidences from human and animal studies suggest that the female 

brain is more affected by EtOH than the male brain (Marco et al., 2017; West et al, 2018). 

Besides, females are at greater risk of EtOH-induced brain injury (Prendergast, 2004) and 

exhibited higher rates of anxiety and depression than males (Harris et al., 2017). 

Furthermore, longer EtOH withdrawal, like in our study, could lead to adaptations that may 

reduce the long-term anxiety and depression-like behaviors, since other investigations 

reported that EtOH-exposed mice have abnormal plasticity in amygdala and prefrontal 

cortex (Stephens and Duka, 2008; Kroener et al., 2012; Burgos-Robles et al., 2013) as well 

as anxiety at shorter withdrawal periods (Sanchez-Marin et al., 2017). Interestingly, 

exposure to an enriched environment yields a significant recovery of memory, motor 

coordination and balance impaired after adolescent EtOH drinking (Rico-Barrio et al., 

2018).  

The long-lasting effects of the adolescent binge drinking on the CB1 receptors localized 

in glutamatergic synapses, demonstrated in the present Doctoral Thesis, as well as on 

the astroglial CB1 receptors and astroglial morphology shown in our previous study 

(Bonilla-Del Río et al., 2017), suggest the existence of an architectural stumble of the 

neuron-astrocyte crosstalk at the tripartite synapse that has a severe impact on synaptic 

function and behavior in the adult brain. Lastly, the reciprocal interactions between the 

eCB system and the acute and chronic effects of EtOH have been taken as targets for 

treatment of alcohol addiction. Therefore, the changes in CB1 receptors in glutamatergic 

neurons described in this Thesis and in astrocytes (Bonilla-Del Río et al., 2017) together 

with the disturbance of the cannabinoid system in the hippocampus illustrated here, 
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might represent novel targets of interest to palliate the structural, functional and 

behavioral consequences of the adolescent bing drinking at later periods of life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. CONCLUSIONS 
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The conclusions of this Doctoral Thesis are the following: 

1. Field excitatory postsynaptic potentials evoked by medial perforant path stimulation 

in the dentate molecular layer were inhibited upon CB1 receptor activation in adult 

sham, but not in EtOH-exposed mice.  

2.  Low frequency stimulation (10 min, 10 Hz) of the medial perforant path triggered a 

novel CB1 receptor-dependent long-term depression (CB1-eLTD) at the excitatory 

medial perforant path-granule cell synapses that was absent in adult mice after 

adolescent EtOH consumption.  

3.  The CB1-eLTD was group I metabotropic glutamate receptor (mGluR)-dependent, 

required intracellular calcium influx from the sarco/endoplasmic reticulum and 2-

arachydonoyl-glycerol (2-AG) synthesis. 

4. Adolescent EtOH intake significantly decreased CB1 receptor mRNA and protein, 

reduced CB1 receptor distribution and proportion of immunopositive excitatory 

synaptic terminals in the medial perforant path, decreased [35S]guanosine-5*-O-(3-

thiotriphosphate) ([35S] GTPγS) basal binding and guanine nucleotide-binding (G) 

protein Gαi2 subunit, significantly increased monoacylglycerol lipase (MAGL) 

mRNA and protein and increased arachidonic acid, all in the adult hippocampus.  

5. The absence of CB1-eLTD in adulthood after adolescent EtOH consumption 

associated with impaired recognition, spatial and associative memory. 

6. Adolescent EtOH intake caused persistent motor coordination and balance deficits, 

but not anxiety or depressive-like behaviors in adulthood.  

7. Monoacylglycerol lipase inhibition recovered the CB1 receptor-dependent eLTD 

and recognition memory in EtOH-treated mice.  

8. Altogether, 2-AG recovers the long-term deficit in CB1-eLTD and memory 

disturbance after repeated adolescent exposure to EtOH. 
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8. ABBREVIATIONS 
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- AA: Arachidonic acid. 

- ABHD6: α/β-hydrolase domain containing 6. 

- ABHD12: α/β-hydrolase domain containing 12. 

- ACSF: Artificial cerebrospinal fluid. 

- Actb: beta actin gene. 

- AEA: Arachidonoyl-ethanolamine or anandamide. 

- AMPA: α-amino-3-hydroxy-5-methyl-isoxazole propionic acid. 

- AMT: Anandamide membrane transporter. 

- ANOVA: Analysis of variance. 

- AON: Anterior olfactory nucleus. 

 

- BD: Binge drinking. 

- BDNF: Brain-derived neurotrophic factor. 

- BEC: Blood ethanol concentration. 

- BNST: Bed nucleus of the stria terminalis. 

- BSA: Bovine serum albumin. 

 

- cAMP: Cyclic adenosine monophosphate. 

- Cb: Cerebellar Cortex. 

- CB1-eLTD: CB1 receptor-dependent excitatory long-term depression. 

- CB1: Type I Cannabinoid receptor. 

- CB2: Type II Cannabinoid receptor. 

- CB1-KO: Cannabinoid type-1 receptor knock-out mouse. 

- CB1-WT: Cannabinoid type-1 receptor wild type mouse. 

- CCK: cholecystokinin. 

- Cnr1: cannabinoid receptor type 1 gene. 

- CNS: Central Nervous System. 

- CPu: Caudate Putamen. 

- CRIP1a: Cannabinoid receptor associated protein 1a. 

 

- DAG: Diacylglycerol. 

- DAGL: Diacylglycerol lipase. 

- Dagla:  Diacylglycerol lipase alpha gene. 

- Daglb: Diacylglycerol lipase beta gene. 

- DG: Dentate Gyrus. 

- DI: Discrimination index. 

- DID: Drinking in the dark. 

- DMSO: Dimethyl sulfoxide. 
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- EC: Entorhinal Cortex. 

- EC50: Half maximal effective concentration 

- eCB: endocannabinoid. 

- Emax: Efficacy maximum. 

- ERK: Extracellular signal–regulated kinase. 

- EtOH: Ethyl alcohol or ethanol. 

 

- FAAH: Fatty acid amide hydrolase. 

- Faah: Fatty acid amide hydrolase gene. 

- fEPSPs: Field excitatory postsynaptic potentials. 

 

- GABA: Gamma-Aminobutyric acid. 

- GABAA: Type A Gamma-Aminobutyric acid. 

- GABA-CB1-KO: GABA-CB1 knock-out mouse. 

- GABA-CB1-RS: GABA-CB1 knock-out rescue mouse. 

- GASP1: G-protein-associated sorting protein 1. 

- GCL: Granule cell layer. 

- GLAST: Glutamate aspartate transporter. 

- Glu-CB1-KO: Glutamatergic CB1 knock-out mouse. 

- Glu-CB1-RS: Glutamatergic CB1 knock-out rescue mouse. 

- GPCRs: G-protein-coupled receptors. 

- GPR55: G protein-coupled receptor 55. 

- Grm5: glutamate receptor metabotropic 5. 

 

- HF: Hippocampal Formation.  

- Hi: Hippocampus. 

- HRP: Horseradish peroxidase. 

 

- I-LTD: Long term depression at inhibitory synapses. 

 

- LC-MS/MS: Liquid chromatography tandem mass spectrometry. 

- LFS: Low-frequency stimulation. 

- LPP: Lateral perforant pathway. 

- LTD: Long-Term Depression. 

- LTP: Long-Term Potentiation.  
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- M1: Primary Motor Cortex. 

- MAGL: Monoacylglicerol lipase. 

- MAPK: Mitogen-activated protein kinase. 

- MCF: Mossy Cell Fiber.  

- Mgll: Monoacylglycerol lipase gene. 

- mGluR: Group I metabotropic glutamate receptor. 

- mGluR5: Metabotropic glutamate receptor 5. 

- mGluR1: Metabotropic glutamate receptor 1. 

- Mid: Midbrain. 

- ML: Molecular layer. 

- MO: Medulla Oblongata. 

- MPP: Medial perforant pathway. 

 

- NAAA: N-acylethanolamine cisteine-amidohydrolase. 

- NAc: Nucleus Accumbens. 

- NAPE: N-arachidonoyl phosphatidylethanolamine. 

- NAPE-PLD: N-acyl phosphatidylethanolamine phospholipase D. 

- Napepld: N-acyl phosphatidylethanolamine phospholipase D gene. 

- NAT: N-acyltransferase. 

- NMDA: N-methyl-d-aspartate receptor. 

- NOR: Novel object recognition. 

 

- OD: Optical density. 

- OiP: Object-in-place. 

- OL: Objct location. 

 

- PB: Phospate buffer. 

- PBS: Phosphate buffered saline. 

- PKA: Protein kinase type A. 

- PLC: Phospholipase C. 

- Pnd: Postnatal day. 

- Po: Pons. 

- PPAR-α: Peroxisome Proliferator-Activated Receptors. 

- PPR: Paired pulse ratio. 

- Preter: Preterminal. 

- PTX: Picrotoxin.  

 

 

- REC: Recording electrode. 

- RT: Room temperature. 
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- S1: Primary Somatosensory Cortex. 

- SDS: Sodium dodecyl sulfate. 

- SDS-PAGE: SDS–polyacrylamide. 

- SEM: Standard error mean. 

- SNR: Substantia Nigra pars Reticulate. 

- Sp: Dendritic spine. 

- Stim: stimulation electrode. 

 

- TBS: Tris-HCl buffered saline. 

- TEI: Total ethanol intake. 

- Ter: Terminal. 

- TF: Time spent in familiar object. 

- Th: Thalamus. 

- THC: (−)-trans-Δ9-tetrahydrocannabinol 

- TN: Time spent in novel object. 

- TRPA1: Transient receptor potential ankyrin 1. 

- TRPV1: Transient potential receptors of vanilloid type 1 

- TRPV1-LTD: Long term depression mediated by TRPV1 receptor. 

 

- V1: Primary Visual Cortex. 

- VP: Ventral Pallidum. 

 

- 2-AG: 2-Arachidonoyl-Glycerol. 

- [35S] GTPγS: [35S]guanosine-5*-O-(3-thiotriphosphate). 

- β-actin: beta actin protein. 
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