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Abstract 

Metal-Organic Frameworks (MOFs) are porous coordination networks assembled through 

metal complexes with organic linkers. Due to their chemical versatility, these materials are 

being investigated for various applications including gas storage and separation, 

biomedicine and catalysis. The aim of this work is the encapsulation of the model β-alanine 

amino-acid in the nanostructured zirconium-based MOF (UiO-66) which contains the ligand 

H2BDC (1,4-benzenedicaboxylic acid). Additionally, ligand functionalization (by using 

H2doBDC (2,5-dihydroxy-1,4-benzenedicarboxylic acid) and defect engineering have been 
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carried out to produce UiO-66 derivatives, in order to modify the host-guest interactions, 

and hence study their influence on the β-alanine loading capacity and release kinetics. The 

as-obtained materials have been characterized by X-ray diffraction (XRD), X-ray thermo 

diffraction (TDX), infrared (IR) spectroscopy, thermogravimetric analysis-differential 

scanning calorimetry (TG-DSC) and elemental analysis (EA). Morphology of nanoscale MOFs 

has been explored by transition electron microscopy (TEM). Adsorption isotherms have 

been constructed, and the concentration of β-alanine in the post-adsorption solution 

(supernatant) has been quantified by high performance liquid chromatography coupled 

with mass spectroscopy (HPLC-MS) and EA. Adsorption capacity values indicate that the 

presence of hydroxyl groups at the organic linker H2doBDC enhances the host-guess affinity 

between the framework and the adsorbate β-alanine. The influence of defect engineering, 

on the adsorption however, is not that obvious. On the other hand, desorption experiments 

show similar behaviour for H2doBDC-based derivatives. An adsortion mechanism has been 

proposed consisting of a combination of host-guest interaction at low concentrations, and 

covalent anchoring/ligand displacement by β-alanine at the inorganic clusters. 

 

1. INTRODUCTION  

Metal-Organic Frameworks (MOFs) consist of metal or cluster nodes linked by organic 

molecules (ligands) which crystallize of pores and cavities with adjustable size, shape and 

chemistry [1]. Depending on the connectivity of the inorganic and organic units, some of 

these coordination compounds exhibit a combination of high surface area, small pore 

windows and specific pore´s surface chemistry, which enables them to perform as host 

structures for specific guest molecules [2]. In consequence, MOFs can be used as bio-active 

low molecular weight molecules reservoirs, paving the way to the design of controllable 

Drug Delivery Systems (DDSs) [3].  
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Encapsulation and controlled release of organic molecules from MOF carriers not only 

depend on the surface area or pore window apertures, but also on the affinity between 

host and guest species, which is mainly controlled by parameters such as electrostatic 

forces, the nature of the metal nodes, hydrogen bonds, and π-π, acid-base and hydrophobic 

interactions [4-9].  

Taking into account all of the characteristics previously mentioned for the design of MOF-

based drug delivery systems (DDSs) [10-12], MOF with 1) high chemical stability, 2) 

tuneable porosity, 3) capacity for pre and post functionalization, and 4) demonstrated bio-

compatibility are required. These are characteristics attached to zirconium terephthalate 

MOF materials (also known as UiO-66, where UiO stands for Universitet i Oslo) and this is 

the reason why it has been selected for this work. 

UiO-66 has an ideal formula of [Zr6O4(OH)4(BDC)6]; in which H2BDC is 1,4-

benzenedicarboxylic acid or terephthalic acid (Figure 1), and its structure is assembled from 

zirconium(IV) hexanuclear clusters inorganic building units widely present in zirconium 

MOFs (Figure 2 (a.1.) and (b.1)) [13].  

 

Figure 1. Organic linkers H2BDC (1,4-benzenedicaboxylic acid) and H2doBDC (2,5-

dihydroxy-1,4-benzenedicarboxylic acid) 

 

The inorganic node consists of an inner Zr6O4(OH)4 cluster in which the triangular faces of 

the Zr6-octaedra are alternatively capped by µ3-O and µ3-OH groups. All of the polyhedron 
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edges are bridged ideally by twelve carboxylate groups (Figure 2 (a.2)). Each BDC ligand is 

shared by two of them giving rise to a face-centred cubic net showing an fcu 12-connected 

topology (Figure 2 (a.1)). 

The ortho position of hydroxyl and carboxyl groups in H2doBDC also occurs in the lighter 

molecule salicylic acid (IUPAC name is 2-hydroxybenzoic acid). When coordinated to metal 

ions, salicylate binding modes occur frequently, like in the iron transport systems in 

microbes and the coordination chemistry of siderophores. Most notable siderophores 

include enterobactin, desferrioxamine B, alcaligin and bacillibactin, and significant studies 

on the matter have been carried out by Prof. K. N. Raymond and co-workers during decades 

[14, 15]. 

The combination of a highly connected nodes and chemical stable Zr-O-C-benzene moieties 

within the framework confers to UiO-66 materials and its derivatives the initially required 

chemical stability. Regarding the porosity of ideal UiO-66 structure, there are four 

octahedral and eight tetrahedral pores per unit cell. On the other hand, the BET specific 

surface area of materials has been calculated (BET stands for Brunauer-Emmett-Teller 

theory) leading to a value of 1067 cm2g-1, while porous volume is 680 Å3 per formula unit. 

Furthermore, thanks to the chemical versatility of UiO-66, different isoreticular frameworks 

can be obtained by pre-synthetic functionalization of H2BDC ligand or applying post-

synthetic modification strategies.  

The chemical lability of Zr-based frameworks goes beyond the defect engineering during 

the synthesis, since these defective positions have been used as post-synthesis anchoring 

points for carboxyl bearing molecules [16]. Even more, post-synthetic ligand displacements 

within the MOF frameworks is also possible when immersing the material in a high 

concentrated solutions of specific molecules containing bridging motifs that can displace 

the Zr-Carboxylate bonds [17]. The above describes chemical malleability of MOF materials 
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offer an additional drug adsorption mechanisms on MOFs, apart from the organic 

molecules adsorption based on host-guest interactions. 

 

 

Figure 2. (a.1) and (a.2) Ideal UiO-66 crystal structure and 12-c zirconium hexameric 

clusters. Detail of (b.1) Ligand defect and (c.1) cluster defects within the UiO-66 

framework. (b.2) Representation of possible local structures for nearly ideal 11/12 

connected non defective and (c.2) 8/12 defective zirconium clusters. Zirconium atoms are 

coloured in dark blue, oxygen in light blue and carbon in grey. Red spheres indicate 

coordinated species for charge neutrality and saturation of coordination environment. 

 

Experimentally, synthesis conditions such as temperature, solvents and inorganic or organic 

modulators, among others, influence drastically the particle size, morphology, surface area 

and porosity, as well as the local structure of UiO-66 and derivative materials. Indeed, 

particle size and morphology of UiO-66 and iso-reticular derivatives have been modulated 
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between 20 nm and micron scale. Diverse crystal morphologies have been also obtained, 

from spheres, truncated cubes or cuboctahedron. Internal surface area and external 

particle size and morphology have a great impact on the surface chemistry and chemical 

stability of zirconium terephthalate based materials; being also relevant characteristics for 

the bio-active molecules uptake and release processes in DDSs systems. Besides the easy 

modifiable porosity or particle size, one of the most fascinating characteristics of zirconium 

terephthalate is their defect crystal chemistry. The use of co-crystallization organic (formic 

acid, acetic acid, benzoic acid) and inorganic agents (HCl, HNO3, H2SO4) during the 

crystallization can generate linker (Figure 2 (b.1)) and cluster (Figure 2 (b.2)) point defects 

within the framework. Defect engineering also induces surface area to increase from values 

close to 1000 m2·g-1, reported for nearly non-defective compound (11/12 connectivity of 

the clusters), to values close to 1450 m2·g-1 in the higher defect density UiO-66 frameworks 

(8/12 connectivity). Porous structure is also altered with defect inclusion within UiO-66. 

Defective samples usually exhibit pores with higher diameters, and more spread pore size 

distribution than nearly non-defective samples. Depending on the nature of the modulator, 

local structure and chemistry of zirconium clusters at defective positions is also altered [18-

20]. Terephthalate linkers of UiO-66 frameworks are partially replaced at defective 

positions when mono-carboxylate acids are used within the synthesis media [21]. When 

inorganic acids are applied as defect engineering tool, the organic linker is replaced by an 

hydroxyl and a water molecule per defective position [22, 23]. Regardless the synthesis 

conditions, it is foreseen certain degree of defects density within the UiO-66 materials, 

being 8/12 the minimum coordination number for zirconium clusters induced by defect 

generation (Figure 2 (c.2)) [24, 25]. 

Finally, even achieving the best performance for a DDSs in terms of uptake and release 

capacity and kinetics, the biocompatibility of UiO-66 and its derivatives is also a crucial 
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factor. Indeed, non-functionalized UiO-66, with particle size within the micron scale 

(produced by solvo-thermal synthesis in DMF), was determined non-toxic due to its 

biologically inert metal cluster and organic ligand [26]. 

The chemical and structural versatility of UiO-66 materials, added to its biocompatibility, 

has triggered their use in a wide range of DDSs applications. In fact, DDSs based on UiO-66 

have been designed for multiple bioactive molecules, such as alendronate (osteoporosis 

treatment) [27], fluorouracil (cancer treatment) [28], chloramphenicol and ibuprofen 

(antibiotic and anti-inflammatory) [29], and zidovudine (antiretroviral) [30], among others. 

Despite the wide range of studies tackling the encapsulation or adsorption of bio-active 

guest species on MOF materials, none of these previously published works has been 

focused on one of the most important group of biologically relevant molecules: the amino 

acids. 

With the goal of designing a DSSs, this works has been focused on the synthesis of UiO-66 

and its di-hydroxyl derivative compound UiO-66-(OH)2, which is iso-reticular with the 

original UiO-66 [29, 31]. Taking into account the chemical structure of amino acids, we have 

considered that the incorporation of di-hydroxyl motifs within the UiO-66-(OH)2 framework, 

will act as hydrogen bonding points for amino-acids encapsulation. In addition, porous 

structure of UiO-66 and UiO-66-(OH)2 materials have been modified including different 

defect degrees within the frameworks; which is foreseen to modify the amino acid 

molecules uptake capacity and release kinetics. Furthermore, all the materials have been 

crystallized in the nano-range size suitable for their incorporation into cells. In summary, 

the following four samples: UiO-66|10/12, UiO-66|8,2/12 and UiO-66-(OH)2|11/12 and UiO-66-

(OH)2|8,2/12 have been fully characterized and studied over β-alanine adsorption. These 

samples go from original to functionalized material (from UiO-66|10/12 to UiO-66-(OH)2|11/12) 
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and from non defective to defective material (from UiO-66|10/12 to UiO-66|8,2/12 and from 

UiO-66-(OH)2|11/12 to UiO-66-(OH)2|8,2/12). 

varying the functionalization motifs at the organic linkers (i.e. without and with hydroxyl 

groups) and the defect degree of the compound  

From the adsorbate point of view, β-alanine (IUPAC name is 3-aminopropanoic acid) has 

been selected as a model amino acid to be encapsulated within UiO-66 and its derivative di-

hydroxyl UiO-66-(OH)2 (figure 3) The selection of β-alanine as adsorbate in this work is 

explained because of its low molecular weight (C3H7NO2, 89.09318 g·mol-1). In addition, its 

carboxylic and amine groups are thought to be appropriate for interaction with UiO-66 and 

its derivatives. It is worth mentioning that β-alanine has been also used in sports to improve 

the performance of high-intensity exercises [32] because it is the rate-limiting precursor of 

the dipeptide carnosine. Recent studies confirm that carnosine and anserine homeostasis in 

skeletal muscle and heart is controlled by β-alanine transamination [33].This is the reason 

why the stability of β-alanine has been studied to conclude that most of the β-alanine is 

degraded and used as an energy source [34]. In fact, in 1955 Pihl and Fritzson reported that 

more than 90% of the injected C14-labeled β-alanine in rats was recovered in the expired 

CO2, suggesting that β-alanine was used as a carbon source for energy provision through 

oxidation [35]. As a result of this, β-alanine supplementation has been concluded to be a 

rather impractical process for sport objectives [36]. 

 

Figure 3. Structure of β-alanine. 
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In summary, this work explores the relationship between both the generation of defects 

and the presence of hydroxyl groups with the β-alanine loading capacity of and release 

kinetics of UiO-66-based-nanoparticles. 

 

2. EXPERIMENTAL 

The following nomenclature has been used for the materials: UiO-66|X/12 and UiO-66-

(OH)2|X/12 where UiO-66 is [Zr6O4(OH)4(BDC)6], UiO-66-(OH)2 is [Zr6O4(OH)4(doBDC)6] and X is 

the number of carboxyl groups anchored per inorganic cluster (X=12 for the ideal cluster 

(Figure (a.2)). As it has been schematically depicted in the Figures 1 (a.2), (b.2) and (c.2) the 

inner structure of the cluster, as well as this for UiO-66 materials (Figure (a.1), (b.1) and 

(c.1)) remains the same independently on the linker defect degree. In this UiO-66 and UiO-

66-(OH)2 defective compounds have been generated through the incorporation of HCl in 

the synthesis media. The average number of linkers, and hence the linkers defect density 

within the compounds, have been described by the X values in the compounds short-

names, e.g. UiO-66|X/12 and UiO-66-(OH)2|X/12. All reagents were purchased from Sigma-

Aldrich, and used without further purification. 

Synthesis of raw materials: Four materials were prepared: UiO-66|10/12, UiO-66|8,2/12 and 

UiO-66-(OH)2|11/12 and UiO-66-(OH)2|8,2/12. Synthesis of UiO-66|10/12 was carried out by 

mixing ZrCl4 and H2BDC in DMF and water. The mixture was stirred at room temperature 

until a white dispersion was obtained. Then, the suspension was transferred into a close 

vessel and it was incubated for 24 h at 80 oC. After letting the vessel cooling down a white 

gel of UiO-66|10/12 was obtained. The synthesised compound was washed with DMF (2 x 10 

mL) and MeOH (2 x 10 mL) and dried at 80 oC for 24 h, achieving a dried monolith. To obtain 

UiO-66|8,2/12, 1mL of concentrated HCl was added to the ZrCl4 and H2BDC mixture. The rest 
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of the procedure is similar to the one used to obtain UiO-66|10/12. In order to prepare UiO-

66-(OH)2|11/12, the procedure is similar to that previously described for UiO-66|10/12 but 

using H2doBDC as an organic linker, yielding a yellow gel. Similarly, to obtain UiO-66-

(OH)2|8,2/12 1mL concentrated HCl was added to the reaction media after mixing ZrCl4 and 

H2doBDC. Additional details of synthesis conditions are available in the supplementary 

material (Table S1). 

Activation of raw materials: Activation of the samples consists of the elimination of solvent 

molecules to produce empty pores to favour the encapsulation of β-alanine. With this aim, 

a second heating process was performed under vacuum. Solid samples were grinded and 

dried under vacuum at 120 oC (for UiO-66|x/12 samples) or at 100 oC (for UiO-66-(OH)2|x/12 

samples) for 24 h. Activation temperatures were chosen based on XRD, TG and TDX 

analyses (Results and Discussion Section). Activation temperature in vacuum was set at 120 

oC for UiO-66|10/12 and UiO-66|8,2/12  samples  and at 100 oC for UiO-66-(OH)2|11/12 and UiO-

66-(OH)2|8,2/12. 

β-alanine adsorption and desorption batch experiments: For the assays of β-alanine 

adsorption, samples of UiO-66|10/12, UiO-66|8,2/12, UiO-66-(OH)2|11/12 and UiO-66-(OH)2|8,2/12. 

(≈ 40 mg) were dispersed in 5 mL of different β-alanine aqueous solutions (pH= 7.11). The 

samples were stirred over 5 days at room temperature and at 1000 rmp. Afterwards, the 

loaded samples were centrifuged and the supernatant recovered by filtration. Samples 

were dried at 80oC for 2 days and β-alanine aqueous supernatants were kept frozen until 

HPLC/MS analyses were performed, to prevent β-alanine degradation. For high 

concentration points, triplicate analyses were carried out to quantify the maximum error 

expected within the obtained adsorption isotherms. β-alanine desorption tests were carried 

out on 100 mg of UiO-66-(OH)2|11/12  and UiO-66-(OH)2|8,2/12. materials previously charged 

in 5000 ppm solution. Desorption processes were performed in 100 mL of aqueous 
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solutions at neutral (pH=7) and slightly acidic media (pH=4). pH value was adjusted with HCl 

and NaOH 0.1M and 0.01M solutions. 

Structural and thermal characterization: X-ray diffraction was performed on polycrystalline 

samples. All diffractograms were obtained by a Philips PW1710, with a Bragg-Brentano 

geometry copper anticathode and a primary monochromator (CuKα). The measurements 

were executed between 5 and 70˚ in 2θ, with a step of 0.02˚. X-ray thermo diffraction (TDX) 

measurements were performed with a Bruker D8 Advance Vantec diffractometer for 

polycrystalline samples (theta-theta geometry with temperature chambers, CuKα, solid 

stated detector SoIX with a discrimination window). Measurements were performed from 

30˚C to 400˚C. Patterns were acquired each 15˚C. Infrared spectra were registered in a 

range wavenumber between 4000 and 400 cm-1 by means of a spectrophotometer with 

Fourier transformation JASCO FT/IR-6100. Thermogravimetric analysis and differential 

scanning calorimetry (TG-DSC) were performed by using a NETZSCH STA 449 F3 

Simultaneous DSC-TGA thermobalance, under a synthetic air atmosphere (60% N2 + 40% 

O2). Heating rate was 5 ˚C/min and data were registered between 30 and 600 ˚C. Non-

loaded samples were dried in order to avoid water adsorption during manipulation 

processes. Elemental analyses were performed by an Euro AE Elemental Analyzer /CHNS). 

Transmission electron microscopy (TEM) studies were conducted using a Philips Supertwin 

CM200 transmission microscope operated at 200 kV and equipped with a LaB6 filament and 

EDAX-DX-4 microanalysis system.  

High performance liquid chromatography coupled with mass spectroscopy (HPLC-MS): 

Concentration of β-alanine in the post-adsorption solution (supernatant) was determined 

by means of chromatographic separation in a high performance liquid chromatograph 

(HPLC, Alliance e2695) coupled to a triple quadrupole mass spectrometer (QqQ, Quattro 

Micro Micromass) by an electrospray ionization source in positive mode (ESI+). All the data 
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were obtained from Waters Cromatografia S.A. The optimization for β-alanine 

determination was based in the optimization of cones’ voltage (CV) and collision energy 

(CE); in order to establish suitable transitions for the quantification and confirmation (MRM 

mode). For that a β-alanine aqueous solution of 20 ppm was used and injected multiple 

times in different conditions. Optimum conditions are shown in table S2. The 

chromatographic separation was achieved using a Kinetex C18 column (2.6 μm, 2.1 × 50 

mm i.d.) with an in-line filter (0.1 mm i.d.) from Phenomenex and a binary A/B gradient 

(solvent A: water with 0.1 % formic acid and solvent B: acetonitrile with 0.1 % formic acid). 

The gradient program was established as follows: initial conditions were 1 % B, held at 1 % 

B for 5 min, raised to 99 % B over 1 min, held at 100 % B until 8 min, decreased to 1 % B 

over the next 1 min and held at 1 % B until 19 min for re-equilibration of the system prior to 

the next injection. A flow rate of 0.2 mL/min was used, the column temperature was 30 °C, 

the autosampler temperature 4 °C and the injection volume 10 μL. Regarding the mass 

spectrometer conditions, the source temperature was set to 120 °C and the desolvation 

temperature to 350 °C. The capillary voltage was 3.2 kV and the cone voltage 15 V. Nitrogen 

was used as the desolvation gas at a flow rate of 600 L/h. Mass data were acquired in the 

multiple reaction mode (MRM) using two transitions, one for the quantification (90  72 u) 

and the other for the qualification (90  30 u). The quantification of β-alanine was 

performed with an external calibration containing target compound at concentrations 

ranging from 0.25 to 10 ppm in water. The samples were diluted in water for the analysis 

(final theoretical concentration around 1-2 ppm). 

As studied samples’ supernatants were diluted until the final concentration was comprised 

between 0.25 and 10 ppm of target compound. It is worth mentioning that the higher the 

concentration of the supernatant, the higher the dilution of the solution to be measurable 

by HPLC/MS is, and the higher the methodological error included in the analysis. For 
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example, 3000 times dilution of the most concentrated samples (5300 ppm) has to be 

carried out the final supernatant solution to be measurable. Due to this process, the 

obtained results in the high concentration region should be analysed carefully. 

3. RESULTS AND DISCUSSION 

Synthesis and characterization of the raw materials 

Synthesis of UiO-66|10/12, UiO-66|8,2/12, UiO-66-(OH)2|11/12 and UiO-66-(OH)2|8,2/12 was 

carried out as explained above, and X-ray diffraction was performed over the 

polycrystalline samples in order to confirm the purity of the products. As observed in figure 

S1, samples UiO-66|8,2/12 and UiO-66-(OH)2|8,2/12 exhibit higher crystallinity, and this can be 

attributed to the addition of HCl. Pattern matching analyses [37] were carried out (figure 

S1), confirming that the four samples are iso-reticular with UiO-66 framework (cubic space 

group, Fm-3c). Crystal data of UiO-66 [13] were used as starting values for pattern 

matching. Cell parameters and values for the adjustment are shown in table S3. 

X-ray diffraction data produces average structural information of the synthesised 

compounds, without the possibility to going more in deep in the defects density generated 

during the crystallization process. Defect density quantification for each phase, and hence 

the estimation of its chemical formula is not straightforward, and has been approached by 

using data coming from elemental and thermogravimetric analysis. It is worth mentioning 

that all the samples have been dried before the measurements to minimize the 

experimental uncertainties on weigh and chemical percentage changes coming from water 

adsorption. 

Thermogravimetric analyses for all the samples were carried out and the results are shown 

in figure S2. A similar tendency is observed for all the compounds; in a first step a mass loss 

is associated to the removal of crystallization water molecules. The second mass loss is 
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ascribed to the loss of hydroxyl and water species coordinated to the zirconium clusters 

and solvent molecules interacting more strongly with the structure. Finally, in a third step, 

the calcination of the BDC and doBDC occurs. The experimental and calculated mass losses, 

as well as the molecules lost during the processes for all the studied compounds are 

summarized in table S4. Table 1 summarizes the chemical formula proposed for UiO-

66|10/12, UiO-66|8,2/12, UiO-66-(OH)2|11/12 and UiO-66-(OH)2|8,2/12 

 

Table 1. Chemical formula for raw materials 

Compound Chemical formula 

UiO-66|10/12 [Zr6O4(OH)6(H2O)2(BDC)5]·1.5DMF·6.5H2O 

UiO-66|8,2/12 [Zr6O4(OH)7,8(H2O)3,8(BDC)4,1]·0.75DMF·5H2O 

UiO-66-(OH)2|11/12 [Zr6O4(OH)5(H2O)(doBDC)5,5]·3.25DMF·2H2O 

UiO-66-(OH)2|8,2/12 [Zr6O4(OH)7,8(H2O)3,8(doBDC)4,1]·2DMF 

 

Thermal stability of the samples was studied by powder X-ray thermo diffraction. According 

to the obtained thermo diffractograms (Figure S3), in samples UiO-66|10/12 and UiO-66|8,2/12 

no evidence of degradation or phase transition is observed up to 450 °C and 375 °C, 

respectively, apart from a slightly shift of peak of UiO-66|8,2/12 to higher 2θ angles (o) 

starting from 220 °C, which can be related to a contraction of the crystallographic structure 

due to the coordinated species release. However, in samples UiO-66-(OH)2|11/12 and UiO-

66-(OH)2|8,2/12 thermal degradation was detected at 230 °C in case of UiO-66-(OH)2|11/12 and 

at 250 °C in case of UiO-66-(OH)2|8,2/12, by a decrease of peaks intensities and increase in 

their width. Moreover, an interesting phase transition was detected in sample UiO-66-
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(OH)2|8,2/12  from 200 °C to 250 °C, which was not studied along the present work, as those 

temperatures were not reached during the experimental work. 

In order to study the morphology of synthetized samples transmission electron microscopy 

(TEM) was performed (figure 4). TEM micrographs reveal that all samples consist of 

spherical particles. The particle size distribution depends on the synthetic procedure. Non 

defective samples (UiO-66|10/12 and UiO-66-(OH)2|11/12) are obtained as MOF-gels consisting 

of small particles (average size are 10 nm and 15 nm, respectively). Several approaches 

were applied to disperse the nanoparticles of these gels form materials in order to study in 

more detail the particle size distribution. Nevertheless, due to this small size, the number of 

isolated particles identified by TEM was not enough to stablish a relevant particle size 

histogram. For defective samples, the incorporation of HCl modulator in the synthesis 

media induces particle growth. Thus, samples UiO-66|8.2/12 and UiO-66-(OH)2|8.2/12 are 

formed by bigger and aggregated particles. Size range are 92(7) nm for sample UiO-66|8.1/12 

and 50(10) nm for UiO-66-(OH)2|8.2/12. 

 

 

a b 

c d 

e 
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Figure 4. TEM micrographs of (a and b) UiO-66|10/12, (c and d) UiO-66|8.2/12, (e and f) UiO-

66-(OH)2|11/12 and (g and h) UiO-66-(OH)2|8.2/12  

 

β-alanine adsorption 

Before performing the β-alanine adsorption tests, the total capacity of β-alanine in non-

defective classical UiO-66 was calculated in order to set a reference for next assays. With 

that aim, the volume of β-alanine and pore volume of UiO-66|12/12 was determined by 

Voronoi-Dirichlet polyhedral (VDP) approach [38] from the crystallographic information 

data of compounds (figure 5). Even if the VDP approach just gives information about the 

geometric volume of the cavities and target molecules, it has been used as it is a very 

effective approach to estimate molecular volumes from X-ray diffraction data. [39, 40] 

 

Figure  5. (a) Voronoi-Dirichlet polyhedral approach applied on β-alanine and view of the 

octahedral (blue) and tetrahedral (red) pores for UiO-66|12/12  

 

Based on Voronoi-Dirichlet polyhedral approach, the volume of β-alanine was estimated to 

be 100 Å3; and the estimated volume of tetrahedral and octahedral cavities of UiO-66|12/12 

were 214 Å3 and 421 Å3, respectively. Moreover, as each cell unit presents 8 tetrahedral 

and 4 octahedral pores, the total volume of UiO-66|12/12 per unit cell was estimated to be 

3395 Å3 per unit cell. Along this calculations the presence of any solvent was not taken into 

account; thus, the maximum capacity of UiO-66|12/12 being less than 34 molecules per unit 
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cell or 6 molecules per formula units. That leads to a maximum theoretical adsorption 

capacity of 244 mgβ-Ala/gUiO-66 in a non-defective standard UiO-66|12/12 sample. Furthermore, 

if defects are introduced in the crystal structure (like in UiO-66|8,1/12), bigger cavities are 

expected to be created, increasing the maximum β-alanine loading per unit cell. On the 

contrary, for UiO-66-(OH)2|12/12 the introduction of two hydroxyl groups is expected to have 

two opposite effects: 1) decrease of the volume of the octahedral and tetrahedral pores, 

and 2) increase of the host-guest interactions through hydrogen bonds.  

In order to analyse the adsorption of β-alanine, MOF samples were dispersed in adsorbate 

aqueous solution and stirred. Afterwards, supernatant of the samples were analysed by 

HPLC-MS (figure 6).  

 

Figure 6. (a) Calibration curve and (b) chromatograph example of adsorption experiments 

supernatant for β-alanine obtained by HPLC/MS.  

Quantification was performed with an external calibration (as it is explained in 

experimental section) containing target compound at concentrations ranging from 0.25 to 

10 ppm in water. The samples were diluted in water for the analysis (final theoretical 

concentration around 1-2 ppm). The loaded β-alanine quantity (qe) was calculated 

(equation 1) and adsorption isotherms was built (figure 7 (a)). 
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𝑞𝑞 �
𝑚𝑚𝑚𝑚𝛽𝛽−𝑎𝑎𝑎𝑎
𝑔𝑔𝑈𝑈𝑈𝑈𝑈𝑈−66

� =
Δ[𝛽𝛽 − 𝑎𝑎𝑎𝑎] · 𝑉𝑉𝛽𝛽−𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈−66
 

 

(equation 1) 

where q= adsorption capacity of samples, Δ[𝛽𝛽 − 𝑎𝑎𝑎𝑎]= difference between initial and final 

concentration of adsorbate in supernatant, 𝑉𝑉𝛽𝛽−𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠= volume of adsorbate solution 

used and 𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈−66= used sample mass. 

 

Figure 7. Adsorption and desortion of β-alanine (a) Adsorption values and Freundlich-

simulated isotherms (doted lines) for samples UiO-66|10/12, UiO-66|8,2/12, UiO-66-

(OH)2|11/12 and UiO-66-(OH)2|8,2/12 and (b) desorption values for UiO-66-(OH)2|11/12 and 
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UiO-66-(OH)2|8,2/12 samples at pH=7 and pH=4. Inset in b corresponds to the first 250 

minutes. 

As observed in figure 7(a), UiO-66-(OH)2|11/12 shows the higher capacity for β-alanine 

uptake, and UiO-66-(OH)2|10/12 the lower. The fact that the highest adsorption corresponds 

to UiO-66-(OH)2|11/12 confirms that the effect of the number of hydroxyl groups is more 

important than the pore volume. As mentioned before, the higher density of hydroxyl 

group, the better potential host-guest interaction through hydrogen bonds. Indeed, if the 

surface area was governing the adsorption capacity, it would be expected a higher  

β-alanine uptake for UiO-66|11/12 (1067 cm2/g) than for UiO-66-(OH)2|11/12 (397 m2/g), but 

the opposite effect is observed in the obtained results [41]. Thus, this hypothesis was 

confirmed by the fact that adsorption capacity is higher for UiO-66-(OH)2|11/12 than for UiO-

66-(OH)2|8.2/12. On the other hand, β-alanine uptake is higher for UiO-66|8.2/12 than for UiO-

66|10/12. In the absence of further variables, this confirms that defective engineering 

promotes the adsorption by increasing the pore volume. 

In order to study the affinity and adsorption capacity of the samples in a more precisely 

way, the isotherm data could be fitted according to Langmuir (equation 2) [42] and 

Freundlich models (equation 3) [43]. The main difference between them is that according 

to Langmuir model there is no chemical interaction between adsorbate and the adsorbent 

while according to Freundlich there is a chemical host-guest interaction.  

[𝛽𝛽 − 𝑎𝑎𝑎𝑎]
𝑞𝑞

=
1

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 · 𝐾𝐾𝐿𝐿
+

[𝛽𝛽 − 𝑎𝑎𝑎𝑎]
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

 (equation 2) 

ln 𝑞𝑞 = ln𝐾𝐾𝐹𝐹 +
1
𝑛𝑛

· ln [𝛽𝛽 − 𝑎𝑎𝑎𝑎] (equation 3) 
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where [β-al] is the initial concentration of β-alanine in the solution; 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 is the capacity of 

adsorption, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum capacity of adsorption, and KL is the Langmuir constant, 

and KF and n are the Freundlich constant and exponent, respectively. 

The attempts to fit the experimental data to Langmuir model were unsuccessful. However, 

Freundlich model was applied to the four compounds (figure S4). Even if the goodness of 

the fit for UiO-66-(OH)2|8,2/12 is lower than for the rest of the samples, the fitting confirms 

the occurrence of chemical host-guest interactions. The as-obtained values for Kf and n can 

be seen in table 2.  

Table 2. Freundlich constant (KF in mg of adsorbate per g of host framemork) and 

exponent inverse (1/n) for the adsorption of β-alanine.  

MOF KF (mg·g-1) 1/n 

UiO-66|10/12 0.6725 0.5197 

UiO-66|8,2/12 0.3327 0.6859 

UiO-66-(OH)2|11/12 5.2677 0.4354 

UiO-66-(OH)2|8,2/12 4.8187 0.4207 

 

Comparison of KF values shows that the absorption capacity increases significantly with the 

presence of hydroxyl groups. All the 1/n values are lower than 1 conforming chemisorption 

process. According to Foo and Hameed [44], a little percentage of β-alanine could be 

covalently bonded to the defective positions of the zirconium hexanuclear clusters, while 

most of it is expected tobe anchored through weak interactions such as hydrogen bonding. 

On the hand, the n values show that in all the cases affinity for β-alanine is quite similar, but 

a slightly higher for compounds exhibiting doBDC ligands, which again confirms the 

favourable effect of the hydroxyl groups as anchoring points. KF and n values are expected 
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to be higher for UiO-66|8.2/12 than for UiO-66|10/12 but they are not. The reason can be 

found in the fact that, as previously mentioned, Freundlich fitting for UiO-66|8.2/12. is poor 

(R2=0.8915).  

Characterization of β-alanine-loaded samples 

XRD was performed over β-alanine-loaded samples (Figure S5) in order to study its 

structural stability after the adsorption process. With that aim, samples loaded with a high 

β-alanine concentration (≈ 10000 ppm) were centrifuged after the adsorption process and 

dried at 80 oC for 2 days. The results confirm that structural integrity is kept.  

In order to verify the presence of β-alanine, IR spectroscopy was also performed over the 

loaded samples, and compared with the data obtained from activated samples. With this 

aim, KBr pellet of loaded samples were prepared (1% (w/w) concentration) and dried in the 

oven at 100 °C for 48 h, to ensure that adsorbed water was eliminated, obtaining clearer IR 

spectra. Moreover, IR spectra was also performed (KBr pellet concentration 0.5% (w/w)) on 

pure β-alanine (Figure S6 and table S6). The most significant signal confirming the presence 

of β-alanine corresponds to the amine group (-NH2). In addition, the removal of DMF in the 

activated samples was confirmed by the absence of the band at approximately 1660 cm-1 

assigned to ν(C=O)Stretch. 

The amount of adsorbed β-alanine was determined by combining data from elemental 

(figure S7) and thermogravimetric analysis (figure S8). The total amount of nitrogen 

detected by EA was ascribed to the β-alanine uptake, and the fact that it is lower for loaded 

structures in the case of UiO-66-(OH)2|11/12 and (d) UiO-66-(OH)2|8,2/12 is explained by 

considering that, during the β-alanine adsorption, water is also adsorbed. Despite special 

care was taken to dry the samples after the EA analyses, samples are able to capture 

moisture from the environment. So, as the hydration degree in the formulae affects the 
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calculated C, N and H percentages, the discrepancies found for the amount of the β-alanine 

calculated from adsorption and EA-TGA combined analyses are explained. 

Figure S8 reveals clear differences in the mass loss associated to the coordinated ligands 

and the crystallisation molecules (150 oC-350 oC), and during the ligand calcination stage 

(above 350 oC). The total mass loss is clearly higher for the β-alanine loaded samples, as 

expected. The mass loss at intermediate temperatures clearly indicates that the β-alanine 

molecules are of crystallisation-type. Thus, table 3 summarizes the calculated number of 

crystallisation molecules per cluster for unloaded and loaded samples [41, 45, 46].  

 

Table 3. Description of main chemical characteristics of the unloaded and β-alanine 

loaded samples: Number of crystallisation molecules per cluster for unloaded (before 

activation) and alanine and water molecules for loaded samples obtaind from the 

combination of TGA and EA analyses. Surface area, particle size, and alanine adsorption 

capacities determined by adsorption isotherms (q(IT)) and elemental analyses (q(FA)). 

MOF 

Before 

activation 

Surface 

Area 

Particle 

Size 
Loaded samples 

β-alanine 

loading 

(mg/g) 

DMF H2O (m2/g) (nm) β-alanine H2O q(IT) q(FA) 

UiO-66|10/12 1.5 6.5 1067 < 20 2.2 12 51 99 

UiO-66|8.2/12 0.75 5 1400 92(7) 2.1 20 116 92 

UiO-66-(OH)2|11/12 3.25 2 396 < 20 3.7 8 181 149 

UiO-66-(OH)2|8.2/12 2 0 550 50(10) 3.2 6.5 128 142 

Particle size has been calculated from TEM 
Data not corresponding to this work have been obtained for references [41, 45, 46]. 
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As mentioned before, the calculated maximum capacity per cluster has been calculated to 

be six molecules of β-alanine for ideal UiO-66|12/12. Therefore, values higher than 35% of 

the ideal one must be positively considered. In general, the results are in good agreement 

with the conclusions made from adsorption isotherms (figure 7 (a)), showing a higher 

alanine uptake by the hydroxyl samples, and lower affinity for the non-functionalized 

materials. Despite the adsorption isotherms suggest qualitative difference between the β-

alanine uptake of non-defective and defective samples; this tendency does not agree 

completely with the data obtained from elemental analyses. It is worth considering that in 

addition to the added to the experimental uncertainty for high concentrations, the 

hydration produce further uncertainty. Therefore, the obtained results need to be 

interpreted carefully. 

Table 4 shows several adsorption capacity values for MOF-type UiO-66 and derivatives 

corresponding to different adsorbates. From the studied data, the highest value is 408 mg 

of sulfachloropyridazine per g of UiO-66 [47]. In relation to the derivatives, UiO-66-COOH-1 

MOF has been reported to adsorb 476.4 mg of congo red per g [48]. Comparison of data in 

tables 3 and 4 indicate similar adsorption capacity for β-alanine and ibuprofen. However, 

values for naproxen are slightly lower [49]. Ibuprofen (206.285 g·mol-1) and naproxen 

(230.263 g·mol-1) have similar size but the latter is less polar. 
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Table 4. Adsorption capacity values for MOF-type UiO-66 and derivatives corresponding 

to different adsorbates 

 

*adsorption capacity in mg of adsorbate per g of UiO-66 or derivative MOF 
**SCP is sulfachloropyridazine 

 

Adsorbate 

adsorption 

capacity 

(mg/g) 

MOF reference 

SCP**, 5 mg/L 50 UiO-66 

[47] 

SCP**, 25 mg/L 221 UiO-66 

SCP**, 45 mg/L 408 UiO-66 

SCP** 403 UiO-66, 273 K 

SCP** 339 UiO-66, 283 K 

SCP** 312 UiO-66, 293 K 

methylene blue 165.9 UiO-66-COOH-1 

[48] 

methylene blue 197.7 UiO-66-COOH-2 

methylene blue 157.5 UiO-66-COOH-3 

congo red 476.4 UiO-66-COOH-1 

congo red 401.1 UiO-66-COOH-2 

congo red 395.9 UiO-66-COOH-3 

ibuprofen 127.1 UiO-66 

[49] 
ibuprofen 50.69 UiO-66-NH2 

naproxen 88.51. UiO-66 

naproxen 40.10 UiO-66-NH2 

methyl orange  84.8 UiO-66 

[50] 
congo red  13.2 UiO-66 

methylene blue  70.4 UiO-66 

rhodamine 67.5 UiO-66 

rhodamine, 273K 53.307 UiO-66 
[51] 

rhodamine, 303K 70.679 UiO-66 
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Desorption of β-alanine 

Figure 7 (b) shows the amount of β-alanine released after 7 days from 100 mg of UiO-66-

(OH)2|11/12  and UiO-66-(OH)2|8,2/12. Samples were charged in 5000 ppm adsorbate solution 

(100 mL of water). Experiments were carried out at pH values of 4 and 7. As observed, the 

majority of the β-alanine is released in the first 200 minutes of the experiment. Afterwards 

a slight increase of the adsorbate`s concentration is detected. 

Acidity of the media has a negligible effect on the β-alanine release for defective samples 

UiO-66-(OH)2|11/12  and UiO-66-(OH)2|8,2/12 Despite the initial β-alanine loading is higher on 

the non-defective hydroxylated material, the amount and kinetics of alanine release is 

similar for defective and non-defective samples. Therefore, the maximum adsorption 

capacity is not the unique parameter driven the desorption efficiency.  

More interesting is that the release of loaded β-alanine molecules is not complete in any of 

the studies cases, since starting from loading values of 180 mg/g to 120 mg/g for UiO-66-

(OH)2|11/12  and UiO-66-(OH)2|8,2/12 materials, only 60 to 50 mg/g are released to the 

aqueous media. Even taking into consideration the uncertainties of the experimental 

procedures, between 140 and 60 mg/g of β-alanine could remain within the UiO-66-

(OH)2|11/12  and UiO-66-(OH)2|8,2/12 structures after the desorption process.  

Considering all the experimental evidences jointly, it can be concluded that, at low β-

alanine concentrations, hydroxyl derivative samples exhibit a greater affinity for the amino 

acid; being this affinity ascribed to weak interactions between the host and guest 

structures. The most probable interactions ascribed to hydrogen bonding between hydroxyl 

– carboxyl and hydroxyl – amine bridges. For higher β-alanine concentrations, a second 

type of adsorbate chemisorption could take place, such as the alanine covalent anchoring 

to the defect positions of the zirconium hexa-nuclear clusters [52]. This strong bonding 
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could explain the resistance of β-alanine to be desorbed in the conditions that have been 

explored during this work. Nevertheless, the β-alanine loading on UiO66-(OH)2 frameworks 

after the desorption means that between 2.0 (UiO-66-(OH)2|8,2/12) to 3.0 (UiO-66-

(OH)2|11/12) molecules are capping the defective position of the clusters, which is possible 

for the defective UiO-66-(OH)2|8,2/12 material, but not for the UiO-66-(OH)2|11/12; since its 

structure only exhibits one functionalizable position. Nevertheless, the chemical lability of 

these materials can explain the fact that linker exchange occurs without disturbing their 

crystal structure [53]. Therefore, adsorption and desorption capacity of UiO-66-(OH)2|11/12 

material could be explained based on a combination of adsorption, defect position capping 

and H2doBDC organic linker displacement by β-alanine.  

 

5. CONCLUSIONS 

Taking into consideration the experimental uncertainties of the experimental 

methodologies, it can be clearly stated that the hydroxyl functionalized frameworks have 

more chemical affinity and capacity to adsorb β-alanine than non-functionalized UiO-66 

frameworks. Adsorption isotherms suggest that defect engineering could provoke 

enhancing or detrimental effect on β-alanine uptake in UiO66-(OH)2 and UiO66 materials, 

respectively. Nevertheless, the uncertainty of the adsorption isotherm data at high 

concentration, and the mismatch with the β-alanine loading obtained from elemental 

analysis, makes this tendency not conclusive. Desorption tests on UiO66-(OH)2 materials 

indicate that an important percentage of the β-alanine (from one to three molecules) 

remain in the material after the process; which clearly points toward a two types of host-

guess interactions, weak interacting β-alanine species located at the pores, and covalently 

bonded amino acid molecules bonded to the zirconium clusters of the materials. Further 
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work is ongoing to clarify if a combination of cluster capping and ligand displacement is 

responsible of this effect. 
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Figure 1. Organic linkers H2BDC (1,4-benzenedicaboxylic acid) and H2doBDC (2,5-

dihydroxy-1,4-benzenedicarboxylic acid) 
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Figure 2. (a.1) and (a.2) Ideal UiO-66 crystal structure and 12-c zirconium hexameric 

clusters. Detail of (b.1) Ligand defect and (c.1) cluster defects within the UiO-66 

framework. (b.2) Representation of possible local structures for nearly ideal 11/12 

connected non defective and (c.2) 8/12 defective zirconium clusters. Zirconium atoms are 

coloured in dark blue, oxygen in light blue and carbon in grey. Red spheres indicate 

coordinated species for charge neutrality and saturation of coordination environment. 
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Figure 3. Structure of β-alanine. 
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Figure 4. TEM micrographs of (a and b) UiO-66|10/12, (c and d) UiO-66|8’2/12, (e and f), UiO-

66-(OH)2|11/12 and (g and h) UiO-66-(OH)2|8’2/12  
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Figure 5. (a) Voronoi-Dirichlet polyhedral approach applied on β-alanine and view of the 

octahedral (blue) and tetrahedral (red) pores for UiO-66|12/12  
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Figure 6. (a) Calibration curve and (b) chromatograph example of adsorption experiments 

supernatant for β-alanine obtained by HPLC/MS.  
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Figure 7. Adsorption and desortion of β-alanine (a) Adsorption values and Freundlich-

simulated isotherms (doted lines) for samples UiO-66|10/12, UiO-66|8,2/12, UiO-66-

(OH)2|11/12 and UiO-66-(OH)2|8,2/12 and (b) desorption values for UiO-66-(OH)2|11/12 and 

UiO-66-(OH)2|8,2/12 samples at pH=7 and pH=4. Inset in b corresponds to the first 250 

minutes. 
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Table 1. Chemical formula for raw materials 

Compound Chemical formula 

UiO-66|10/12 [Zr6O4(OH)6(H2O)2(BDC)5]·1.5DMF·6.5H2O 

UiO-66|8,2/12 [Zr6O4(OH)7,8(H2O)3,8(BDC)4,1]·0.75DMF·5H2O 

UiO-66-(OH)2|11/12 [Zr6O4(OH)5(H2O)(doBDC)5,5]·3.25DMF·2H2O 

UiO-66-(OH)2|8,2/12 [Zr6O4(OH)7,8(H2O)3,8(doBDC)4,1]·2DMF 
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Table 2. Freundlich constant (KF in mg of adsorbate per g of host framemork) and 

exponent inverse (1/n) for the adsorption of β-alanine.  

MOF KF (mg·g-1) 1/n 

UiO-66|10/12 0.6725 0.5197 

UiO-66|8,2/12 0.3327 0.6859 

UiO-66-(OH)2|11/12 5.2677 0.4354 

UiO-66-(OH)2|8,2/12 4.8187 0.4207 
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Table 3. Description of main chemical characteristics of the unloaded and β-alanine 

loaded samples: Number of crystallisation molecules per cluster for unloaded (before 

activation) and alanine and water molecules for loaded samples obtaind from the 

combination of TGA and EA analyses. Surface area, particle size, and alanine adsorption 

capacities determined by adsorption isotherms (q(IT)) and elemental analyses (q(FA)). 

MOF 

Before 

activation 

Surface 

Area 

Particle 

Size 
Loaded samples 

β-alanine 

loading 

(mg/g) 

DMF H2O (m2/g) (nm) β-alanine H2O q(IT) q(FA) 

UiO-66|10/12 1.5 6.5 1067 < 20 2.2 12 51 99 

UiO-66|8.2/12 0.75 5 1400 92(7) 2.1 20 116 92 

UiO-66-(OH)2|11/12 3.25 2 396 < 20 3.7 8 181 149 

UiO-66-(OH)2|8.2/12 2 0 550 50(10) 3.2 6.5 128 142 

Particle size has been calculated from TEM 
Data not corresponding to this work have been obtained for references [39, 43-44]. 
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Table 4. Adsorption capacity values for MOF-type UiO-66 and derivatives corresponding 

to different adsorbates 

Adsorbate 

adsorption 

capacity 

(mg/g) 

MOF reference 

SCP**, 5 mg/L 50 UiO-66 

[45] 

SCP**, 25 mg/L 221 UiO-66 

SCP**, 45 mg/L 408 UiO-66 

SCP** 403 UiO-66, 273 K 

SCP** 339 UiO-66, 283 K 

SCP** 312 UiO-66, 293 K 

methylene blue 165.9 UiO-66-COOH-1 

[46] 

methylene blue 197.7 UiO-66-COOH-2 

methylene blue 157.5 UiO-66-COOH-3 

congo red 476.4 UiO-66-COOH-1 

congo red 401.1 UiO-66-COOH-2 

congo red 395.9 UiO-66-COOH-3 

ibuprofen 127.1 UiO-66 

[47] 
ibuprofen 50.69 UiO-66-NH2 

naproxen 88.51. UiO-66 

naproxen 40.10 UiO-66-NH2 

methyl orange  84.8 UiO-66 

[48] congo red  13.2 UiO-66 

methylene blue  70.4 UiO-66 
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*adsorption capacity in mg of adsorbate per g of UiO-66 or derivative MOF 
**SCP is sulfachloropyridazine 

 

rhodamine 67.5 UiO-66 

rhodamine, 273K 53.307 UiO-66 
[49] 

rhodamine, 303K 70.679 UiO-66 


