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ABSTRACT: The paper explores the handling of singular analogy in quantitative induc-

tive logics. It concentrates on two analogical patterns coextensive with the traditional
argument from analogy: perfect and imperfect analogy. Each is examined within Car-
nap's A-continuum, Carnap's and Stegmiiller's A-n continuum, Carnap's Basic System,
Hintikka's -2 continuum, and Hintikka's and Niiniluoto's X-dimensional system. It
is argued that these logics handle perfect analogies with ease, and that imperfect
analogies, while unmanageable in some logics, are quite manageable in others. The
paper concludes with a modification of the K-dimensional system that synthesizes in-
dependent proposals by Kuipers and Niiniluoto.
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1. Introduction
When is it rational to be persuaded by an argument from analogy? One
consideration would have to be logical form. Since arguments from anal-

ogy are not deductively valid, it would seem natural to require that they
satisfy an inductive criterion. But what would the criterion stipulate? As a
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Novel use is made of several formulas, generalizations of an idea of
Carnap, for rapid calculation of the probability of certain analogies. The
formulas emerge in the assessments of Carnap (1952) in Section 3c; of
Hintikka (1966) in Section Gc¢; and of Hintikka and Niiniluoto (1976) in

Section 7c.

2. Types of Analogy

Distinctions are especially wanted when it comes to analogy for, as J.S.
Mill observes, "There is no word (...) which is used more loosely, or in a
greater variety of senses, than Analogy” (1974, p- 554). If we begin with
the obvious divide between general analogies, which include at least one
quantified sentence, and singular analogies, which have no such sentences, we
can focus on the latter, subdividing as necessary in a kind of Porphyrian
tree. Locating the critical joint among singular analogies requires some
attention to the root concept of similarity. Even a cursory review of the
literature on analogy reveals that the relata of the similarity relation are
not all of the same type. What is called analogy in some places features
similarity among individuals, but other analogies are based on similarity
among properties. An example of the former is the traditional argument
from analogy:

Al: Fana Ga.
Fb.
So Gb.

Contrast Al with the following argument, discussed in Pietarinen (1972,

pp. 68-69) and elsewhere:

A2: Faa Ga.
-Fb.
So Gb.

The striking thing about A2 is that its premises show no similarity be-
tween the individuals 2 and 4. It capitalizes instead on the similarity be-

tween 4s property FG and #'s inferred property £ G . One might then be
inclined to posit two types of singular analogy: individual analogy for
arguments like A1 and property analogy for those like A2. This would be

premature, I believe, for two reasons. First of all, there are singular analo-
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Developing the concept of broad analogy requires Carnap's distinction
between analogy by similarity and analogy by proximity (1980, pp. 40-41, 68-
71). As an example of the former, suppose that a small sample discloses
individuals that are FG but none that are FG or FG ; nevertheless, the
similarity relations among these properties would make it seem more

probable that the next individual is FG rather than FG .2 Analogy by
proximity occurs when the order of observation affects probability.3 Sup-
pose that a certain individual is known to instantiate a certain predicate; if
order makes a difference, the probability that the next (most proximate)
individual also has the predicate is assumed to be greater than the prob-
ability that the twentieth individual, say, has it. Both analogy by similar-
ity and analogy by proximity have subspecies; the former is divided into
existential and enumerative types in Niiniluoto (1988), and the latter
branches into proximity in the past and proximity in the future in Kuipers
(1988).

Like broad analogy, narrow analogy comes in more than one form. I
propose to revive and reshape a distinction that appeared early on in the
debate over quantitative inductive logic. Though this distinction was being
drawn by both Hesse (1963, p. 121; 1964, pp. 320, 326) and Achinstein
(1963, p. 216) at about the same time, the terminology I shall adopt is
due to the latter. A perfect analogy, in Achinstein's sense, "attributes to an
individual all of the properties which the observed individual is known to
have" (1963, p. 216). Our Al is an instance. An imperfect analogy, on the
other hand, attributes to an individual only some of the properties of the
observed individual, as in A2 and A3.

Though the imperfect-perfect distinction will be handy here, recasting
it somewhat is necessary. To see why, notice Achinstein's claim that

(...) the usual case of analogy, if not indeed what is meant by a case of analogy, is one
in which an individual /mentioned in the evidence has many, but not all, of the
properties of the individual ¢ mentioned in the hypothesis. (1963, p. 216)

Likewise Hesse, criticizing Carnap on perfect analogy, asserts that

() this type of argument is not what has been traditionally understood by argu-
ment from analogy, since analogical inference has always supposed differences as
well as similarities between the two analogues. (...) That is to say the assumption,
made in Carnap's type of inference, that the evidence ascribes to the individuals
only the same property P, in both cases, and that there are not initially known to be
any differences between them, is at best an idealization of the real situation. It

will generally be the case that, if the total evidence is taken into account, superfi-
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perfect case are not. Hence there is nothing unrealistic or idealized about
perfect analogy; it too takes differences into account.

The preceding typology of singular analogy can be summarized as fol-
lows:

[ existential
— similarity
——  enumerative
broad -
—  in the past
| proximity _
singular analogy | in the future
— perfect
narrow —
| imperfect

Some of these kinds of singular analogy have been more conspicuous than
others, and they will continue to be in this paper. Carnap thought that the
similarity influences registered via analogy by similarity and analogy by
proximity "have only secondary significance” (1980, pp- 41, 66, 70). In
addition, some have expressed doubts "about whether the idea of analogy
by proximity is after all very important as such” (Kuipers 1988, p. 311).
However this may be, analogy by proximity is far removed from our pres-
ent concerns and will be discussed no further here. Moreover, the other type
of broad analogy, analogy by similarity, appears rather late in the litera-
ture on quantitative inductive logics. It seems to have come into focus only
when it was noticed that certain inductive logics are more successful with
some narrow analogies than with others. Pursuing analogy by similarity
was a way of trying to fix that. Historically, then, narrow analogy was
first; it includes the arguments from analogy discussed by Mill (1974, pp-
554-561). We will respect this priority here, concentrating on narrow anal-
ogy and treating broad analogy by similarity only as needed.

3. Carnap'’s A-Continuum

Since the A-continuum is a point of departure for later inductive systems,
the following discussion develops its salient features. There are three sub-
sections: a) contours of the A-continuum; b) applying the A-continuum to
narrow analogy; and c) assessment of narrow analogy in the A-continuum.
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ple to the sample's total number of individuals. For molecular predicates,
this ratio can be expressed as np/7; for Q-predicates, as nq/n. The logical
factor is relative width, the coverage (so to speak) of the instantiated
predicate relative to the total number K of L's Q-predicates. Because mo-
lecular predicates can always be analyzed into some number w of Q-
predicates, their width is w and their relative width is w/K. Q-predicates,
which are a special case. have width of 1 and relative width of 1/X.

The values of the empirical and logical factors thus establish an interval
somewhere between 0 and 1 inclusive, and «(4,¢) is to be located between
or on the interval's endpoints. Exactly where is determined by identifying
c(h,€) in certain key situations with the value of a mathematical function:
the weighted mean of the empirical and logical factors. If the weight of
the empirical factor is conventionally set to #, the total number of indi-
viduals in the sample, then the value of the function is governed by the
weight of the logical factor -a particularly simple form of the mean. Cay-
~nap calls this logical weight "A". A's value, which can be any real number
from 0 to « inclusive, is equal in weight to the observation of the same
number of individuals. Its different values demarcate different inductive
methods within the eponymous continuum.

Suppose now that observation of a determinate number of individuals
yields evidence eq, which states no more than whether each observed indi-
vidual has or does not have a Q-predicate 'Q'7 Suppose also that a hy-
pothesis /q attributes 'Q' to an unobserved individual on the basis of eq. If
it is further assumed tha* A can vary with K'but not with nq and 7, then the
desired degree of confirmation is given by the following expression:

A (K)
R
¢ (bho, = .
(i Q) n+ A\ (K) ()

More generally, let the evidence ey say only which individuals of a
sample instantiate a molecular predicate "M’ and which do not, and let a
hypothesis /sy ascribe M’ to an unobserved individual given ey. Then

wh (K)

K
c (b, em) = T - 2)

nmg +
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IT * (1 * 2 * 1 *
. Q[—]? +—k—)( +E)...(nQ- +?)] 5
mo = AL +2) 2+r) .. (V-1+1) )

for the measure of a state description in .8

The second step is to extend this measure function so as to admit not
just state descriptions but any sentence of L as argument. This is easily
accomplished, however, since any sentence s of L that is not a state descrip-
tion provides less than the full description of the world supplied by a state
description. It is therefore equivalent to a disjunction of more than one
state description or, if it is logically false, to the negation of a disjunction
of all state descriptions (Carnap, 1950, pp. 289-90; 1952, pp. 11, 18).
Moreover, since state descriptions are mutually exclusive, Carnap's addi-
tion axiom (1952, p. 12) stipulates that the p-value of s is equal to the sum
of the p-values of its component state descriptions. (5), therefore, provides
the p-value of any sentence s of L that is not logically false. If 5 is logically
false, its p-value is of course 0.

The final step is the general definition of c(A,¢) in terms of p-values.
For any sentences 4,e where () # 0,

enh
o tlend ©)

i (e

(6) can be viewed as an instantiation of the classical definition of condi-
tional probability. :

b) Applying the A-continuum to narrow analogy

Once c(h,¢) is fully defined, it can be turned to specifics like analogy.
Some extrapolation from earlier works is unavoidable, however, since
Carnap does not treat the topic in (1952). In announcing what was to be-
come the A-continuum's central method, ¢, in (1945), he describes the in-
ference by analogy as follows:

The evidence known to us is the fact thar individuals #and & agree in certain prop-
erties and, in addition, that « has a further property; thereupon we consider the hy-
pothesis that 4 too has this property. (...) The hypothesis / says that & has not only the
properties ascribed to it in the evidence but also the one (or several) ascribed in the
evicéence to zonly, in other words, that & has all known properties of 4. (...) (1945, p.
87)
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Multiple perfect analogies can be treated by adjusting the empirical factor
as in (7).

Nor does Carnap observe that (7) can also be adapted to cases where the
evidence is mixed in the sense that more than one Q-predicate is known to
be instantiated. Care must be taken, however, so that any part of the evi-
dence concerning predicates logically impossible for the partially known
individual of the conclusion to instantiate is excluded from the empirical
part of the formula.1l Consider, for example, the following evidence: «

and bare FG, cis FG ,dis FG ,and eis F In calculating the probabil-
ity of the hypothesis that e is G, the evidence concerning & should be ex-
cluded from the variant of (7) since it is incompatible with what is known
about e. Thus the empirical factor would be 2/3 with FG, not 2/4, as can
be verified with the characteristic function. Adhering to this proviso on
evidence, then, (7) can be stated more generally. Suppose that 7 individu-
als i (= 4,b,..., y) have been examined and that 7; have M, a property of
width w; attributed to the 7 + 1st individual z by the analogy's conclusion.
Suppose also that 7, have My, a property of width w, > w that z is already
known to have. Then where E; is the conjunction of all the evidence about
the individuals 7, the degree of confirmation in ¢ of the analogical hy-
pothesis that zis M) can be calculated via (6) and (2) as:

/
o (M B Myg) - (m+w)/! (n+ K _ ‘ ©)
(m +wy) I (n+ K) m + wy

Just as (7) was generalized as (8) for the entire A-continuum, (9) can be
likewise expanded. Appealing once again to (6) and (2) yields the A-

continuum's version of (9):

A (K)

m + (W ———)

c(Miz, E, n Myz) = " . (10)
m + (un T)

Though (10) holds all across the continuum, it has simpler special forms.
For Carnapian methods of the first kind, 'M(K)' reduces to "A' in both nuw
merator and denominator, and for ¢*, of course, (10) reduces to (9). The
advantages of (10) are the advantages of (9) but magnified: easy yield of
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To introduce the first, let & be a family of Ay primitive predicates,
and let &, be a family with 4, such predicates. The Q-predicates
Qij (i=1,2,., by j= 1, 2,..., k) formed from the predicates of these
families comprise a pseudo-family &, with £ 4, = K members. Say that
each instantiated Q-predicate is true of nij individuals. Then the measure
of a state description #is calculated as in the A-system for a language with
ky ky Q-predicates. Thus the measure is given by (5) adapted to this special

case:

bk,
N0+ Yoy 1.2

. M= (e @) 2l

ThaCE . (11)

AL +2) 2+ .. (V-1 +2)

(11) provides a Q-measure, as I shall say, for it is keyed to state descrip-
tions couched in terms of Q-predicates.

The second candidate is a P-measure, based upon state descriptions
structured by primitive predicates. Here the idea is first to calculate the
measure of each family of k£ primitive predicates with (5) as if it were a
language with # Q-predicates in the A-system, and then to take the product
of the measures for each family. Where the measure of the distribution of

L's individuals relative to the first family is u;, and the measure of the

same individuals' distribution relative to the second family is ui, the

measure of a state description # can be expressed as
1/2 1 2
@ = x (12)

How well do these measure functions deal with imperfect analogies?
Let us see. Consider the three state descriptions:12

(1) FGw A FG x a FGy AFG 2
(n) FGw A FGx A P?_y AFG 2
(3) FGw A FGx A FE}/ AFG 2

For # and #, it should turn out that
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Moreover, she has shown that this generalized measure function satisfies
certain general conditions (1964, pp. 322-23), and that this is sufficient to
ensure reasonable confirmation values for imperfect analogies like Achin-
stein's thodium example (1964, pp. 325-26).

Nevertheless, Hesse has also pointed out that this technique for imper-
fect analogies seems strangely imperfect. She objects to the "somewhat
arbitrary and ad hoc" nature of Carnap's and Stegmiiller's n-solution (1964,
p. 325), and I concur. Although the A-n system is a technically acceptable
patch of the A-continuum, returning satisfactory values for imperfect as
well as perfect analogies, it provides no guidance on the choice of a value
for n. Why one would shift n towards 0 or towards 1 is apparently to be
decided on the spur of the moment.

5. Carnap's Basic System

The tenor of Carnap's posthumously published Basic System (1971, 1980)
is caught by his conjecture that it is sufficient to base inductive logic on
two magnitudes: the width and distance of properties (1980, p. 29).13
Width is the logical width that figures so prominently in the A-continuum.
Distance, which Carnap conceives by "analogy to the dependence of a
physical effect of one body on another upon the distance between the bod-
ies," is similarity among properties (1980, p. 48). Each magnitude receives
a parameter: ¥ for width and n for distance. In addition, A is carried over
from (1952) to represent logical weight. If a definite value has been chosen
for A, say A*, it can be used to determine the value of n, n*:

7\’*
e ——. (15)
A+l

In the latter sections of the Basic System, in fact, A displaces n and thereaf-
ter functions as the "main parameter” (1980, p- 93).

The result is a system which, without abandoning the A-continuum, ex-
hibits a number of critical differences. The axiomatic base has been sim-
plified, first of all (1980, pp. 105-6). Moreover, both the A-continuum's
methods of the first kind and the second kind, including ¢*, are regarded
as inadequate general rules. The reason is that both assign the same A-value
to all predicate families of the same size, but Carnap now prefers to key 4
to distance rather than size (1980, pp. 115-119). In addition, whereas the
carlier system permitted A to take values of 0 and e, the Basic System

THEORIA - Segﬁndzz Epoca 223



J.R. WELCH SINGULAR ANALOGY AND QUANTITATIVE INDUCTIVE LOGICS

the Basic System imposes n-equality: all pairs of distinct predicates
within a family are treated as equally similar (1980, p. 57). Despite Car-
nap's initial successes with perfect analogy, then, his bequest to inductive
logic included analogy as a largely unsolved problem.

6. Hintikka's a-A Continuum

Like the discussion of Carnap (1952), this section will be divided into
three subsections: a) contours of the a-A continuum; b) extending the a-A
continuum to narrow analogy; and c) assessment of narrow analogy in the
oA continuum. :

a) Contours of the a-A continuum

Since the a-A continuum of Hintikka (1966) has Carnap's A-system as a
special case, Hintikka can be said to take up the project of quantitative
inductive logic where Carnap left it in (1963). Even so, there are major
differences of approach. Carnap defends a logical interpretation of prob-
ability, for example, whereas Hintikka is more Bayesian, maintaining that
there is no way to determine the values of inductive parameters like A on
strictly logical grounds (1969, pp. 38-40; 1970, pp. 23-25). Carnap's A-
continuum assigns zero probability to all generalizations in an infinite
domain -a result most have found unacceptable, and which is absent from
Hintikka's systems. Carnap keys on singular inductive inference (1952, p-
13), but Hintikka argues that, to prevent overdependence on domain, the
focus should be on inductive generalization instead (1965b, p. 279).

Consequently, even though the focus of this study is analogy as singular
inductive inference, inductive generalizations cannot be avoided in Hintik-
kan systems, for the values they assign to singular inductions are deter-
mined in part through values for inductive generalizations of a special sort.
As its name indicates, the a-A continuum is structured by two special pa-
rameters. Together, they influence both singular and general induction, but
the parameter A is like Carnap's A, acting first and foremost on singular
induction, whereas o's immediate effects are on inductive generalization.
Although A can be infinite and o cannot, o is comparable to A in that it
represents a priori considerations. Hintikka views it as an index of caution:
the more irregularity we expect in the universe, and hence the slower we are
to jump to lawlike conclusions, the higher o will be (1970, p. 21).
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In the special case of Hintikka's continuum, (&) is therefore:

K¢

S (5 () p el G (18)

where ¢ is the number of Ct-predicates known to be instantiated, and the
range of values for 7 permits the representation of the alternative constitu-
ents compatible with the evidence. Thus what we need are values for 2(Cy)
and p(e G,). In seeing how they are determined, we will follow Hintikka
in assuming an infinite universe.17

Initially, let us consider p(G,). The methods of the a-A continuum fix

the prior probability of an arbitrary constituent of width w as follows.
Where n(2,2) =4¢z- (z+ 1) - ... - (z+ 2-1) ifz= 1,2, 3,..and n(0,2) =4¢ 1,

(@
T (o, —
K

P (G = : (19)
O i, i
X () m o)

If A is a constant, (19) anchors a Hintikkan version of Carnap's methods of
the first kind. But if, as in Carnap's methods of the second kind, A is a func-
tion A(K) of X; then (19) becomes
w - MK)

K
2(G) = . (20)

-\
$ (5 n o, 25
=0

n (o,

When o = 0, all constituents receive equal prior probabilities. When o > 0,
however, constituents of different widths are given unequal prior probabili-

ties, though the (5 ) constituents having the same width all receive the

same a priori weight.18
The second component of p(e) is p(d C,), the.conditional probability

of the evidence given a constituent. These probabilities are based upon the
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instantiation of primitive predicates provided by premises like the sec-
ond.

The fusion of Ct- and Pt-evidence within a-A can be accomplished by
first restating the Pt-evidence in complete disjunctive normal form.21 The
result is a disjunction with the structure

€Q1 V €Q2 V ... V €Qn> ‘ (24)

each clause of which attributes a Ct-predicate to an object. Conjoining
(24) to the Cr-evidence ¢ yields

ecleqr v eqa v ... v €Qn)> : (25)
or, distributing,
(ec A eq1) v (ec A eQ2) v ... v (ec A €Qn)- (26)

Since (26) is Ct-homogeneous, (23) can now be applied. There are two
differences compared to its application to Ct-evidence alone, however.
The major difference is that it has to be applied more than once: once for
cach clause of (26). As these clauses are mutually exclusive, the probability
of (26) is simply the summation of these repeated applications of (23).
The minor difference is an adjustment for the partially observed 7 + 1st
individual. A different Ct-predicate is attributed to this individual in
cach of (26)'s clauses; if the projected predicate is 'Q, the clause states
that 71 + 1 of 7 + 1 individuals, rather than my of n, possess it, which makes
the various nq in (22) sum to 7 + 1. With these differences in mind, let x be
the number of predicate letters needed to transform the Pt-evidence into
complete disjunctive normal form, and 2x the number of disjuncts d of the
evidence (26), cach of which says that g Ct-predicates are instantiated.
Then p(d Gy) for Pt-evidence is

cd ?\‘
H T (ﬂQ, '_Z‘)
2 Q=1 w

d-1 t{n+1,A) @7)

THENRTA = Comessnde Baman Y
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nap's system is a special case of Hintikka's, as remarked. Moreover, and
more important for our purposes, there is a close connection between Car-
nap's ¢ and Hintikka's generalized combined system (GCS), which is the
point along the a-A continuum where A = Mw) = w except in (19) and (20),
where A = A(K) = K for prior probabilities of constituents.22 The connec-
tion is that, as & grows without bound, the values obtained for singular in-
ference in GCS approach those of ¢ (1966, p. 128). For perfect analogies,
this means that (9), the shortcut for perfect analogies in ¢*, provides limit
values for perfect analogies in GCS as o — .

Indeed, there is an extensive subclass of cases for which (9) gives the
exact value in GCS regardless of the value of a. To see what they are, let
us first avail ourselves of some obvious simplifications. We have just seen
that the probability of singular analogical hypotheses is determined in the
- continuum by the quotient (29)/(28). But the denominators of (29) and
(28) cancel immediately. What remains both above and below the line is a
summation over a product of the three factors within brackets: an N-
component, as I will call it, for the number of constituents of a given width
compatible with the evidence; a P-component for the prior probabilities of
these constituents; and an R-component based on the appropriate represen-
tative function. In short, both numerator and denominator consist of a
summation over products NPR. Now since A(K) = K for prior probabili-
ties of constituents in GCS, the P-components in numerator and denomina-
tor simplify to n(o, ¢ + 7). And since elsewhere in GCS A = Mw) = w, the
o-A representative function (21) reduces to

nqg+ 1
clhg e =————— (30)

n+ w

which permits simplification of the R-components. Finally, it will facili-
tate matters below to generalize (30) so that it applies not only to molecu-
lar predicates with w = 1 (Ct-predicates), but also to molecular predicates
with w2 1 such as those that figure in the evidence for analogies. So just as
(2) is (1) generalized in ¢*, the following expression is (30) generalized in
GCS. Let evidence ¢, state that n, of # individuals have a molecular
predicate ‘M, and let A be the hypothesis that the next individual will
also be M. The width of 'M'is wy,, which is distinct from the width w of
the constituent that conditions the representative function as in (21). (30)
then becomes
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Now the last factor in the expansion of any Reh component gives the prob-
ability on the evidence that the individual z of the analogy's conclusion has
the Ct-predicate 'M;'". The numerator of this factor takes the form 7 + wy,
where 7 is the number of individuals known to have M and wy is the
predicate's width. Because this numerator is common to all Reh compo-
nents, it can be factored out of the expression for ple n h). A parallel ar-
gument holds for the last factor in the expansion of any Re component. The
numerator of each such factor is 7 + w;, where 7 is the number of indi-
viduals known to have 'A%, a disjunction of Ct-predicates that includes
'M,', and w;, is its width. Because this numerator is common to all Re
components, it too can be factored out of the expression for p(e). Where
"Reb-" and "Re-' are the R-components diminished by factoring, (33) is then

(m +wy)  NoPoR + NiPLRS & .. + Nig P R 60
3

(nz + LLQ) N()P()Re— + Nllee_ + .+ NK:CP](,CRC-_
0 1 K¢

In these cases, however, the N, P, and diminished R-components of the
numerator are identical to those of the denominator. The result is whole-
sale canceling of the righthand parentheses; all that remains are the paren-
theses on the left. So here all the apparent complications of (29)/(28) boil
down to a simple application of (9). But the condition on the statement of
evidence given above with (9) must be respected as always.

As a quick example, suppose that the Ct-predicates FG'and 'FG 'are
instantiated respectively by 2z and 4, and that a partially known individual
¢ instantiates 7. We want the probability of the analogical hypothesis that
cisalso G. Here both e A 4'and ‘¢’ agree on the number of Ct-predicates
that are instantiated: ¢ = 2. Hence X - ¢ = 2 in both numerator and denomi-
nator of (32), and the N- and P-components are plainly identical. All that
really needs to be shown is that the diminished R-components of the nu-
merator are identical to those of the denominator. The number of factors
in the R-components of both plen h) and p(e) for analogy is always # + 1;
both expressions concern the same series of individuals, though from dif-
ferent points of view. The expanded R-components that follow are ob-

tained through repeated applications of (31), and associated with constitu-
ents of widths 2, 3, and 4:
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A common sort of cuniform analogy merits mention apart. Besides
c-uniformity, these analogies meet two further conditions: ¢ K and
A = AMK). When ¢ = X, all Ct-predicates are known to be instantiated;
hence w= Kin (21), the o-A continuum's representative function. Then pro-
vided & = A(K), the rest of (21) reduces trivially to (1), the comparable
A-continuum function. Here, then, a-A-systems collapse into A-systems, and
(35) is equivalent to (10).

The -4 continuum is also like Carnap's carlier system in its handling
of imperfect analogy. The A-continuum does not deal adequately with
imperfect analogy, as we have seen, nor does Hintikka's successor system.
Hesse points out that the difficulty is the same in both systems: the sym-
metry of Q-predicates, in Carnap's case, or Ct-predicates, in Hinrikka's.
This symmetry ensures that for a confirmation function @

() the prior probabilities are assigned in such a way that o(Ct (@) A Cr(8),
where Cty % Ci, has the same value however similar or different 2 and & may be;
that is, for example, if Cy is PPDs,..., B, it has the same value whether Cy is
PP Ds,.., Px,or A P2Ps,., Pk Now although Hintikka's system is not for-
malized in this paper, it is clear thar his confirmation functions, like Carnap's, are
symmetrical with respect to Cr-predicates, and it therefore follows thar these con.
firmation functions do not satisfy the analogy criterion. (1968, pp. 221-22)

There are at least two strategies for adjusting the o-A system so that it
can cope with imperfect as well as perfect analogies. One, based upon Car-
nap's and Stegmiiller's approach in the A-n continuum, is to define a meas-
ure function parallel to (13) above that uses an analogy constant like n to
mediate between P- and Q-measures. This procedure has been illustrated
by Pietarinen in (1972, pp. 91-94).23 However, we have already noted
Hesse's complaint that the Carnap-Stegmiiller solution is ad hoc, and Ni-
iniluoto makes the same charge against Pietarinen's extension of it to the
o-A system (1981, p. 2).

The other strategy, proposed by Hintikka, is a variant of the o-) contin-
uum in which the primitive predicates are ordered; the Ct-predicates then
turn out to be asymmetrical (1968, p. 228). Hintikka works out this pro-
posal in detail, suggesting three different ways of ordering the primitive
predicates (1969, pp. 28-33). Though his main concern is to show that these
methods can solve Hempel's and Goodman's paradoxes of confirmation,
the extension to analogy has been carried out by Pictarinen (1972, pp. 94-
99).24 This ordering strategy would be applied to Achinstein's rhodium
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inductive generalization. Hintikka and Niiniluoto add a fourth install-
ment, an axiomatic K-dimensional system (hereafter KDS) in (1976).26

The axiomatic base of KDS is slender. Like Carnap, first of all, Hin-
tikka and Niiniluoto require a probability distribution that is symmetric
(de Finetti's exchangeability) and satisfies the probability calculus. But
unlike Carnap, whose characteristic or representative function depends on
the sample only for nq and # (the number of observed individuals with a
given Q-predicate and the total number of observed individuals), KDS's
representative function relies on the sample for nQ, n, and ¢ (the number of
instantiated Ct-predicates). Hintikka and Niiniluoto express this second
axiom by saying that, whereas the A-function has the form f(nQ, n), KDS's
function has the form Anq,n0) (1976, pp- 58-59). The additional argu-
ment ensures that the simplest constituent compatible with the evidence
receives the highest confirmation in the long run (1976, pp. 60, 73).

In addition to these axioms, KDS includes K free parameters, where
K is, as before, the number of Ct-predicates specifiable in the language.
The parameters are values for the representative function at 0,60, where
¢=1,2,., K1, and for {1,K+1,K).

The parameters and axioms together determine a range of inductive
systems. The range of KDS is not coextensive with that of the o-A contin-
uum, but the two do overlap considerably; GCS, for example, bclongs to
both o-% and KDS (1976, pp. 59-60). Kuipers has shown that the systems of
KDS "are in fact those members of Hintikka's o) system in which A(w) is
proportional to w but without Hintikka's particular choice of the prior
distribution p(C,) in terms of o (1978a, p- 262).

Hintikka and Niiniluoto make it clear that their results are intended to
be primarily qualitative (1976, pp. 60, 73). Commenting on this, Kuipers
observes that the systems of KDS "seemed to be extraordinarily compli-
cated," and that "this feature made it hard to obtain much quantitative in-
sight in the systems, which explains why the analysis of Hintikka and Ni-
iniluoto was mainly restricted to qualitative considerations” (1978a, p.
262). Kuipers proves, however, that the systems of KDS, which he calls 'P-
systems', are equivalent to a class of systems he calls 'Q-systems’, and that
"the mathematical 'machinery’ of Q-systems is highly transparent; it is as
simple as could reasonably be expected” (1978a, p. 263).27

Let us briefly examine these Q-systems, therefore, before turning to
analogy in KDS. Kuipers presents them axiomatically (1978a, p. 265), but
for our purposes it suffices to note a few salient features. Like (21), the
analogous function for the o-A continuum, the representative function for Q-
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The basic ingredients for the requisite p(e) are as in the a-A continuum:
PG and p(d C,). But p(C,) in a Q-system is a freely chosen parameter;
though it can be set according to (19) or (20), it need not be. p(eCy) for
Ct-evidence is a variant of (23) obtained by replacing the - representa-
tive function with (36), the corresponding Q-function. The result is

g T (nQ> P)

38
n (n, wp) 8
p(dCy) for the Pe-evidence of analogy is therefore
11
2 o " (nq, p)
(39)

a1 n(n+ 1, wp)

instead of (27). Reflecting these changes, (o) is then a scaled-down version
of (28):

cd
IT = (nq,p)
LSy & . &
C., ) 40
Z:O[(Z )7 (Cen) %1 T (n+ 1, (c+) p) (40
Finally, p(e n /) is a parallel version of (29):
f_l n (nq, p) ‘
S ] (41)
0 7 n(n+ 1, (crd) p)

c) Assessment of analogy in the K~dimensional system

To track the behavior of perfect analogy in KDS, we recall that the prob-
ability of a partially observed individual having a given Ct-predicate is
ple A B)p(e) expressed as in (41)/(40). This quotient, like (32), has the
structure of (33): both numerator and denominator are summations over
products of N-components (the number of constituents of a given width
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KDS is successful with perfect analogy, as Niiniluoto has shown, but it
does not return acceptable values for the imperfect variety (1981, pp. 7-
10). Attempting to remedy that has led a number of thinkers to explore
the kind of broad analogy Carnap called analogy by similarity. Among
them are Niiniluoto (1980, 1981, 1988), Spohn (1981), Constantini
(1983), Kuipers (1984), Skyrms (1993), and Festa (1997). Space con-
straints preclude a survey of this literature, but 1 will briefly describe
Kuipers' approach in (1984), which Niiniluoto has explicitly endorsed
(1988, p. 287).

Kuipers observes that (1), Carnap's characteristic function for the A-
system, can be looked at as an application of the straight rule to nq real
empirical instances of a certain Q-predicate and A(K)/K virtual logical
instances of the same predicate (1984, p- 69). Why not then treat analogy
by analogy with these virtual logical instances? Why not add virtual
analogical instances to (1) so that similarities among predicates are fac-
tored in? That is, let the number of virtual analogical instances of a spe-
cific Q-predicate on the evidence ¢ be nQ(e) 2 0. Each Q-predicate will
have its own nq(e), which together add up to (). Then (1) could be given
an analogy factor nq(e/m(n) to go along with its empirical factor nqln
and its logical factor 1/K. That is, (1) would become

A (K)
nQ + T +nq(e

c(bo, eo) = . 44
Vo « 7+ (K) + () 49

Like the empirical factors and logical factors, the various analogy factors
sum to 1. (44) would hold only for the part of KDS coextensive with the A-
continuum, but Niiniluoto speculates on extending the procedure to the
rest of KDS in (1988, pp. 289-292).

This is an attractive proposal, intuitive and clear, but how would the
analogy factors be chosen? Intuitively, the idea is to make them propor-
tional to the relative similarities of the Q-predicates. Techniques for
measuring these similarities have been proposed by Niiniluoto (1981, pp.
12-14), Kuipers (1984, pp. 67, 73-74), and again by Niiniluoto (1988, pp.
279-80). Suppose we take the first of these proposals as an illustration. Let
dyy be the number of primitive predicates not shared by the Q-predicates
'Q) and 'Q,". Then the Q-predicates' degree of resemblance » can be ex-

pressed as
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suggested in Section 1, an analogy is rationally acceptable only if its con-
clusion is more probable on the evidence than any rival conclusion based on
the same evidence, then these logics make the formal criterion of greater
probability operational. What is more, if the argument from analogy has
the epistemically foundational role I believe it can be shown to have, then
logics such as these assume critical importance at the very roots of knowl-
edge. An argument classifying something as a certain kind has not only the
obvious constraint on true premises; it has, in addition, a usable check on
its form.30

Notes

1 One of the few exceptions is Niiniluoto (1988).

2 Recent work on analogy by similarity includes Skyrms (1993) and Festa (1997).

3 Skyrms (1991) develops proposals by Kuipers (1988) and Martin (1967) in showing how
to handle finite Markov chains as one kind of analogy by proximity.

4 Relevance is the line between evidence and knowledge or, put another way, evidence is
relevant knowledge. How we make judgments of relevance is a psychological ques-
tion, and how we ought to make them is a logical question. But that we make them is
not a question at all; it is a fact. These issues, which are complex indeed, cannot be pur-
sued further here.

5 It may be said in Achinstein's and Hesse's defense that Carnap's description of perfect
analogy was probably the root of their error.

6 Carnap was converted to a semantic view of logic by Tarski. He relates in (1963, pp. 60-
67, 71-72) thar the concept of range came from Wittgenstein (1922) and Waismann
(1930-31). He comments repeatedly on the centrality of range in both deductive and
inductive logic; in (1942, pp. 96-97), for example, and in (1945, pp. 73-75).

7 eq here is not éq in Carnap (1952) but ¢. For the difference, see (1952, p. 12). Similarly,
hq here is Carnap's /. The changes have been made in the interests of a more suggestive
notation.. .

8 For the details of the derivation, see Carnap (1952, pp. 16-18, 30-31).

9 Thave changed Carnap's individuals 4to 2 and cto 6in order to mesh with usage else-
where in this paper.

10 The formula survives in Carnap's later work in (1950, p- 569) and Carnap and Steg-
miiller (1959, p. 227).

11 This does not violate Carnap's requirement of total evidence. See Hempel (1965, pp.
64-65).

12 Here I follow Hesse's presentation in (1964, p. 324).

13 Carnap talks of widths and distances of regions in an attribute space, but for our pur-
poses these refinements are inessential.
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29 That (43) is the natural extension of (9) in KDS was pointed out to me by Theo
Kuipers (personal communication).

30 For help in locating hard-to-find sources, I am indebted to different people in differ-
ent ways: Rick L. Chaney and Julie Arata Heringer of Saint Louis University's Madrid
campus; Ron Crown of Saint Louis University's Frost campus; and Blanca Bengoechea
and Ana Marfa Jiménez of the Instituto de Filosofa at the Consejo Superior de Inves-
tigaciones Cientificas in Madrid. In addition, the comments of two anonymous refe-
rees for Theoria aided considerably in the final revision of this paper, but any faults it
may retain are my own.
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