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Abstract: Video activity recognition, although being an emerging task, has been the subject of
important research efforts due to the importance of its everyday applications. Surveillance by
video cameras could benefit greatly by advances in this field. In the area of robotics, the tasks of
autonomous navigation or social interaction could also take advantage of the knowledge extracted
from live video recording. The aim of this paper is to survey the state-of-the-art techniques for
video activity recognition while at the same time mentioning other techniques used for the same
task that the research community has known for several years. For each of the analyzed methods,
its contribution over previous works and the proposed approach performance are discussed.
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1. Introduction

Activity recognition consists of identifying some actions from a series of observations. This field
has caught the interest of many researchers since the 1980s due to the number of applications for
which it is useful, such as medicine [1,2], human–computer interaction [3,4], surveillance [5,6] or
sociology [7,8]. For instance, in surveillance [9,10], the automatic detection of suspicious actions would
allow for launching a warning and taking measures against any danger. Another example is the
use of activity recognition for rehabilitation [11], recognizing the action the patients are performing
and having the ability to determine if it is right or not. One of the main techniques used for activity
recognition is computer vision, namely video-based activity recognition. Visual video features provide
basic information for video events or actions.

The task of tracking and understanding what is happening in a video can be very challenging.
Many attempts have been made lately using different techniques [12–14] such as optical flow [15,16],
Hidden Markov Models (HMM) [17–19] or, more recently, deep learning [20,21]. Furthermore,
apart from using multiple techniques, many different scenarios are being considered, single action
recognition [22,23], group tracking [24,25], etc.

However, despite remarkable progress, the advances achieved so far do not meet high accuracy
standards and the correct realization of this task in some areas, such as video surveillance, is still
an open research issue.

In the analysis of a video content, many different functionalities can be implemented. One of the
simplest ways to detect motion regarding a fixed background is Video Motion Detection [26–28]. Video
tracking [29,30] is more challenging than the previous approach and can be very time consuming,
due to the amount of data that a video contains. The aim of video tracking is to associate target objects
in consecutive video frames, which can be especially difficult if the objects are moving fast in relation to
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the frame rate. If object recognition techniques are needed (a challenging problem in its own), further
complexity is added. On the contrary, the human brain seems to have the ability to recognize human
actions perfectly. This aptitude is not just related to acquired knowledge, but also to logical reasoning
and the capability of extracting relevant information from context. Based on this, the integration of
commonsense reasoning [31,32] and contextual knowledge [33] has been proposed.

Hence, action recognition involves the classification of different actions from videos, a sequence
of frames, taking into account as well the fact that the action could not be performed during the entire
video. Although it seems an extension of image classification tasks, as it has been mentioned before,
the progress for video classification has been slower due to various reasons:

• Apart from spatial information, temporal context across frames is also required.
• Huge computational cost.
• Datasets are more limited, due to the difficulty to collect, annotate and store videos.

Throughout this paper, several techniques applied for video activity recognition are mentioned,
as well as the latest contributions made in the field. In addition, as a final note, some of the databases
used for this topic are presented along with the results of the latest contributions using them. In Figure 1,
a diagram showing the techniques explained and other tasks related to this subject but which are not
discussed in this review are indicated.

Figure 1. Summary diagram.

This review focuses on a specific area of Human Action Recognition, to keep the discussion
simple. Only action recognition from a whole video recorded from a fixed position is considered in
this paper, as we think this problem setup is the entrance gate to the analysis of other more complex
situations, as those presented in the bottom part of Figure 1. At the same time, the complexity level
of the problem considered in this review is high enough to deserve a dedicated survey. For the sake
of completeness, we will briefly review the main characteristics of the situations shown in Figure 1
but not covered here. In action prediction, instead of recognizing the action that is happening in the
video, the objective is to guess the action that will occur in an incomplete video. The zero-shot action
recognition problem consists of training a model to classify videos of categories that have no instances
in the training set, which means that there are no instances of certain classes that are going to appear
in the test set. To address this issue, complementary information of invisible classes is assumed in
the form of attribute vectors that describe each class. In the cross-view action recognition, there are
different points of view in the scene when the action is occurring. There are other variations such as
egocentric activity recognition that consists of recognizing actions from egocentric videos [34].

The survey is centered in action recognition methods for videos that are recorded in third person
and the whole action occurs inside the video. Although different information can be extracted from
the videos and there are articles mentioned that also use extra information such as depth sensors’
information, all the presented methods have these two characteristics in common. The methods that
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are explained use databases with the characteristics of the ones presented in Section 3. Although
there are previous reviews on video action recognition [12,35,36], as it is a subject that is continuously
progressing, it is always necessary to have a survey that collects the latest contributions. Our review,
apart from mentioning articles that others have not been able to collect since they have been published
later, also deals with older articles that have served as reference for later methods.

2. Used Techniques

As activity recognition has been an active research area lately, there have been many different
approaches to deal with this problem. Throughout the survey, some of these are introduced, starting
with simpler approaches and finishing with the newest contributions to the field. The proposed
methods that try to solve this problem that are referred to in this paper could be separated into three
main groups: methods using hand-crafted motion features, depth information based methods and
deep learning based methods. Strictly speaking, these three areas are somehow interrelated and depth
sensors features could lie under the hand-crafted or deep learning categorization. For a long time,
computer vision has focused on data recorded from RGB (visible light) cameras, especially in the case
of videos. Depth sensors have started to be used in the field of video analysis in more recent times and
this is the reason why we feel it deserves a separate section.

First, hand-crafted motion features methods are explained. In these methods, some interesting
features are obtained from the raw pixels of the video frames and then these features are used to
perform the recognition. Second, depth information based methods are analyzed, which use depth
maps as extra information. Third, deep learning methods are presented, which, unlike hand-crafted
methods, achieve the features for the recognition automatically. Throughout the document, several
methods that combine some of these three modalities are also presented.

2.1. Methods Using Hand-Crafted Motion Features

This document focuses on video-based activity recognition, in which the representation of visual
and temporal information becomes important. There are several ways to extract visual features,
both static image features and temporal visual features, and then use them to perform the recognition.
Temporal visual features are a combination of static image features and time information, so, through
these features, temporal video information is achieved. Key-frame [37,38], bag-of-words (BoW) [39,40],
interest points [41,42] and motion based approaches [43–46] are types of representations that can be
obtained from a video. Key-frame based approaches, as the name indicates, consist of detecting the
key-frames of the video which would be used for classification; BoW based approaches represent the
frames of the video segments over a vocabulary of visual features; interest points based approaches
focus on simply selecting a specific set of points or pixels for the classification and, to finish, motion
based approaches focus on the movement along the video. Throughout this section, only motion based
approaches are analyzed.

In [47], the authors use a temporal template as the basis of their representation, continuing with
their approach presented in [48]. This temporal template consists of a static vector-image where the
value of the vector at each point represents a function of the motion properties at the corresponding
spatial location in an image sequence. They explore their representation with a simple two component
version of the template:

• The first value indicates the presence of motion and where it occurs by a binary motion-energy
image (MEI). Being D(x, y, t) a binary image sequence and r the value that defines the temporal
extent of a movement, the binary image is defined this way:

Er(x, y, t) =
r−1⋃
i=0

D(x, y, t− i). (1)



Sensors 2019, 19, 3160 4 of 25

• The second value is a scalar-valued image where intensity is a function of recency of motion of
the sequence, represented by a motion-history image (MHI) which indicates how the image is
moving. Hr represents the temporal history of motion at each point, where recently moved pixels
are brighter:

Hr(x, y, t) =

{
r, if D(x, y, t) = 1,

max(0,Hr(x,y,t−1)−1), otherwise.
(2)

Then, a recognition method is developed, which matches these temporal templates against stored
instances of known actions. They also present a recognition method to automatically perform temporal
segmentation being invariant to linear changes in speed.

The authors of [49] demonstrate that local measurements in terms of spatio-temporal interest
points (local features) can be used to recognize complex motion patterns. As these features, which
capture local motion events in videos, can be adapted to size, frequency and velocity of moving patterns,
the resulting video representations are stable with respect to the corresponding transformations.
To represent motion patterns, they use local space-time features [50] and to detect local features
they construct, using Gaussian convolution, its scale-space representation. Then, they explore the
integration of local space-time features with Support Vector Machines (SVM) classifier [51,52], used in
many visual pattern recognition methods [53,54], and apply the resulting approach to the recognition
of human actions. In addition, for the purpose of evaluation, the authors introduce a new video
database containing 2391 clips of six human-actions performed by 25 people in four scenarios.

In [55], the authors present a hybrid hierarchical model, inspired by [56], where video sequences
are represented as collections of spatial and spatio-temporal features. These features are achieved by
extracting both static and dynamic interest points and the model is able to combine static and motion
image features, as well as performing categorization of human actions in a frame-by-frame basis.
Motion features are extracted as in [40]. They show that using static and dynamic features together is
better than using just a single feature type.

Laptev et al. [42] contribute to the recognition of realistic videos and use movie scripts
for automatic annotation of human actions in videos. Due to the achievements in image
classification [57–60], they employ spatio-temporal features and spatio-temporal pyramids, extending
spatial pyramids of [58]. Interests points are detected as in [50] using a space-time extension of the
Harris operator [61]. Then, a multi-scale approach is used and features at multiple levels are extracted.
For classification, they use a nonlinear SVM with a multi-channel Gaussian kernel [60]. Apart from the
action recognition task, their main contribution consists of automatically annotating human actions
with the use of movie scripts and getting videos with more realistic characteristics.

Visual features such as edges, corners, interest points, etc. can be used to form a more complicated
feature called optical flow. The optical flow methods try to calculate the motion between two image
frames which are taken at times t and t + ∆t at every position, assuming that the intensity of objects
does not change during the movement I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t). Expanding that equation
using the Taylor Series Expansion [62] and further calculations, this equation is obtained:

IxVx + IyVy = −It (3)

or
∇IT · ~V = −It. (4)

The solution, the optical flow, is the value of ~V. Some approaches are given in the calculation of
optical flow due to the fact that there are two unknowns in the equation. In this part, several methods
that have made use of this feature and its variations are presented.

The authors of [63] present a method to recognize human actions observing them from a far
field of view, but they also test their model with normal resolution datasets, such as Weizmann [64].
They use Histograms of Oriented Gradients (HOG) for human pose representations, first introduced



Sensors 2019, 19, 3160 5 of 25

in [65] and successfully applied in multiple action recognition methods [66–69]. They also use a
time series of Histogram of Oriented Optical Flow (HOOF) to characterize human motion. To get a
subset of discriminantly informative principal components (PCs), an extension of Supervised Principal
Component Analysis (SPCA) [70] technique is used, which tries to select a subset of PCs in order to
best separate samples projected from different classes. This step significantly speeds up the run-time
of recognition without sacrificing accuracy. A multi-class Support Vector Machine (SVM) classifier is
trained for action classification. The classifier prediction is made by a collection of one-against-one
SVM classifiers, as in the implementation of [71].

In [46], inspired by the success of histograms of features in object recognition, the authors propose
the representation of each frame with the use of HOOF features, which are independent from the scale
of the moving person and to the direction of motion. These histograms are created by computing
optical flow at every frame and binning the vectors according to each primary angle. To classify HOOF
time-series, they posit a generalization of the Binet–Cauchy kernels [72] to nonlinear dynamical systems
(NLDS), as the data that represents, for instance, that the histogram time series is non-Euclidean and
needs to be modeled with nonlinear dynamical systems. The generalization is done by using a Mercer
kernel [73] on the output space. The Binet–Cauchy kernels are used for NDLS to perform the activity
recognition and proposed HOOF features as outputs of NLDS.

The authors of [45] introduce a motion descriptor based on direction of optical flow. In their
method, interest silhouettes are subtracted from the background (used dataset provides foreground
masks [64]) and optical flow is computed using the Lucas–Kanade algorithm [74]. Then, before
computing a direction histogram, the window is divided into eight regions. To represent the
distribution of optical flow direction, they use a histogram, segmenting the direction of optical flow
into eight bins. To create the motion vector, they concatenate a direction histogram of optical flow in
every region. They also smooth the motion vectors to reduce motion variation and noise, and then
these vectors are used for classification. K-means clustering [75] is first used to group similar postures
and then the classification is done by a K-NN classifier. Niebles et al. [55] also used clustering but with
a bag-of-words model instead of motion.

Due to the demonstration of dense trajectories being efficient video representations, in [76],
their performance is improved by using camera motion to correct them. The estimation of camera
motion is done by matching feature points between frames using SURF (speeded up robust features)
descriptors [77] and dense optical flow [78]. A human detector [79,80] is used to remove inconsistent
matches generated because of the differences of human and camera motions and, in addition,
background trajectories are also removed. Motion-based descriptors, such as HOF (histogram optical
flow), are significantly improved by this.

In [81], the authors propose a generic temporal video segment representation method for action
recognition based on optical flow concept [62], with the idea that, to deal with a video-based action
recognition problem, temporally represented video information is needed. In their approach, for
feature detection, the Shi–Tomasi algorithm is used [82], which is based on Harris corner detector [61],
and, to estimate optical flow, the Lucas–Kanade algorithm [74] is computed. For each selected frame
of the video, optical flow vectors are grouped according to their angular features. Being an optical
flow histogram the most common method of optical flow based video representation, they enrich these
approaches by a novel velocity concept, Weighted Frame Velocity. This concept refers to the velocity of
cumulative angular grouping of a temporal video segment, which represents the motion of the frames
more descriptively. Similarities in the histogram do not always mean that there are similarities in the
motion, so, instead of using a histogram based approach as in [46,83–85], vectors are grouped with
respect to their angular characteristics and then summed and integrated with the new velocity concept.

The authors of [15] propose a local descriptor built by optical flow vectors along the edges of
the action performers. First, a foreground extraction is done by a Gaussian Mixture Model (GMM)
based method [86] and optical flow based technique [62] in order to segment the region of interest.
To represent the segmented objects, optical flow based feature vectors are computed along the boundary
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using Horn and Schunck algorithm [62] based optical flow extraction technique. This way, shape
and instantaneous velocity information extracted from the boundaries of the action performers are
incorporated in the feature set. These features are then used to feed a multi-class SVM classifier.

In [87], human activities are recognized using background subtraction, HOG features and
Back-Propagation Neural Network (BPNN) classifier. In this approach, background estimation is
performed at first, using mean filter to obtain the background and areas of the image containing
important information. Afterwards, in order to extract features to describe human motion, a histogram
of oriented gradients (HOG) [65] descriptor is used, with the idea that local shape information can be
completely described by intensity gradients or edge directions. Finally, a BPNN is used to perform the
final classification.

In Table 1, a summary of the explained methods using hand-crafted motion features is presented.

Table 1. Summary of methods using hand-crafted motion features.

YEAR SUMMARY DATASET

Bobick et al. [47] 2001 Use of motion-energy image (MEI) and
motion-history image (MHI). -

Schuldt et al. [49] 2004 Use of local space-time features to
recognize complex motion patterns. KTH Action [49]

Niebles et al. [55] 2007 Use of a hybrid hierarchical model,
combining static and dynamic features. Weizmann [64]

Laptev et al. [42] 2008
Use of spatio-temporal features and extend
spatial pyramids to spatio-temporal
pyramids.

KTH Action [49]
Hollywood [42]

Chen et al. [63] 2009
Use of HOG for human pose
representations and HOOF to characterize
human motion.

Weizmann [64]
Soccer [83]
Tower [63]

Chaudhry et al. [46] 2009
Use of HOOF features by computing
optical flow at every frame and binning
them according to primary angles.

Weizmann [64]

Lertniphonphan et al. [45] 2011 Use of a motion descriptor based on
direction of optical flow. Weizmann [64]

Wang et al. [76] 2013 Use of camera motion to correct dense
trajectories.

HMDB51 [88]
UCF101 [89]
Hollywood2 [90]
Olympic Sports [91]

Akpinar et al. [81] 2014
Use of a generic temporal video segment
representation, introducing a new velocity
concept: Weighted Frame Velocity.

Weizmann [64]
Hollywood [42]

Kumar et al. [15] 2016
Use of a local descriptor built by optical
flow vectors along the edges of the action
performers.

Weizmann [64]
KTH Action [49]

Sehgal, S. [87] 2018 Use of background subtraction, HOG
features and BPNN classifier. Weizmann [64]

2.2. Depth Information Based Methods

The interest of applying depth data captured from depth cameras for the action recognition
problem has grown due to the advances of imaging technology in capturing depth information in
real time, such as Microsoft Kinect [92] and Intel Realsense [93]. In the past few decades, research of
human action recognition has mainly concentrated on video sequences captured by traditional RGB
cameras, but, thanks to the advances in imaging techniques, RGBD sensors are able to capture color
image sequences together with depth maps in real time. Depth images are insensitive to changes in
lighting conditions and provide additional body shape and motion information that can help with
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distinguishing actions that generate similar projections from a single view. In this paper, some of the
recent methods using depth maps are introduced. However, if more information is required, there are
many other interesting methods to analyze [94–97].

In [98], the authors propose the use of sequences of depth maps for action recognition, which
provide additional body shape and motion information. In their approach, in order to make use of the
additional body shape and motion information from depth maps, they generate Depth Motion Maps
(DMM) by projecting depth maps into three ortoghonal Cartesian planes and accumulating global
activities through entire video sequences. Then, a good characterization of the local appearance and
shape on DMM is achieved with HOG, Histrogram of Oriented Gradients. HOG descriptors extracted
from depth motion map of each projection view (front, top, side) are combined as DMM-HOG, which
is used to represent the entire action video sequences. This DMM-HOG descriptor is the input to
a linear SVM classifier which is used to make the recognition.

A new descriptor for activity recognition from videos obtained with a depth sensor is presented
in [99], called the histogram of oriented 4D surface normals (HON4D). In order to capture the complex
joint shape-motion cues at the pixel level, the authors use a histogram to describe depth sequence,
which captures the distribution of the surface normal orientation in 4D space of time, depth and
spatial coordinates. Instead of concatenating features [100], their histogram, as it operates in 4D
space, captures the distribution of the changing shape and motion cues along with their correlation.
The histogram is built by creating 4D projectors that represent the possible directions of the 4D normal
and, as the descriptor is a representation for the entire sequence, it is robust against noise and occlusion,
unlike other methods [101]. To quantize the 4D space, they use the vertices of a polychoron to get
a more discriminative quantification.

In [102], the authors present a two-layer Bag-of-Visual-Words (BoVW) model. First, they delete
background clutter, so background noise is removed. In addition, foreground noise disturbances are
eliminated by jointly using motion and shape information. To distinguish similar actions, motion-based
STIPs (spatial-temporal interest points) and shape based STIPs are detected. They use 3DLSK, first
mentioned in [103], to describe local structures of motion-based STIPs, and, in order to fit better
to depth data and its lack of texture or scale changes effects, they propose a multi-scale 3DLSK
(M3DLSK). On the other hand, to capture spatial-temporal relationships among STIPs, they extract
a spatial-temporal vector (STV) descriptor for each STIP to distinguish between different actions.
Fusing both descriptors, M3DLSK and STV, a feature representation able to capture local and global
motion and shape is achieved.

Satyamurthi et al. [104] propose the use of depth motion maps projected on multiple directions,
multi-directional projected depth motion map (MPDMM), based on depth motion maps [96,98].
The proposed approach can be separated in three key components. First, they propose to extract
features by converting the video sequences into frames using multi-directional projected DMM.
The input 3D depth action video is projected into a set of 2D maps according to a set of planes and
directions. After calculating the motion energy of each projected map, this is concatenated through
entire video sequences to get the MPDMM model. Second, features are extracted from MPDMM model,
on the basis of conventional texture-based Local Binary Patterns (LBP) descriptors [105]. The MPDMM
image is processed with the LBP technique by thresholding the neighborhood of each pixel and
outputting the result as a series of binary numbers that are then used as a statistical measure forming
a histogram. Third, the kernel-based Extreme Learning Machine (ELM) [106] with a radial basis
function kernel is applied to perform the classification.

In Table 2, a summary of the explained depth information based methods is presented.
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Table 2. Summary of depth information based methods.

YEAR SUMMARY DATASET

Yang et al. [98] 2012 Use of Depth Motion Maps (DMM),
combining them with HOG descriptors. MSRAction3D [107]

Oreifej et al. [99] 2013 Use of histogram of oriented 4D surface
normals (HON4D) descriptor.

MSRAction3D [107]
MSRGesture3D [108]
3D Action Pairs [99]

Liu et al. [102] 2018
Use of a two-layer BoVW model, using
motion-based and shape-based STIPs to
distinguish the action.

MSRAction3D [107]
UTKinect-Action [109]
MSRGesture3D [108]
MSRDailyActivity3D [100]

Satyamurthi et al. [104] 2018 Use of multi-directional projected depth
motion maps (MPDMM).

MSRAction3D [107]
MSRGesture3D [108]

2.3. Deep Learning Based Methods

After being a breakthrough in image classification, it was a matter of time to start using
deep learning for video-based activity recognition. Although great advances have been made and
state-of-the-art results have been achieved, the level of image classification has not been reached yet.

In 2014, a paper was released [110] encouraged by the results of Convolutional Neural Networks
(CNNs) [111] for image recognition problems [112–115]. Using a 1M videos dataset, they studied
different ways for extending the connectivity of a CNN in a time domain in order to take advantage
of local spatio-temporal information. They proposed three connectivity patterns: Early Fusion, Late
Fusion and Slow Fusion. The Early Fusion extension combines information across an entire time
window immediately on the pixel level. The Late Fusion model places two separate single-frame
networks with shared parameters a distance of 15 frames apart and then merges the two streams in the
first fully connected layer. This way motion can not be detected until the fully connected layer, which
compares both outputs to compute global motion. The Slow Fusion model slowly fuses temporal
information throughout the network such that higher layers get access to progressively more global
information in both spatial and temporal dimensions. For optimization, Downpour Stochastic Gradient
Descent [116] is used. The results show that a slow fusion model performs better than the early and
late fusion alternatives. They also find out that a single-frame model already displays very strong
performance, suggesting that local motion may not be critically important.

In the same year as the previous paper, another work was published [117] that has been the
reference of later publications. Simonyan et al. propose a two-stream Convolutional Neural Network
architecture that incorporates spatial and temporal networks. Videos can naturally be decomposed
into spatial and temporal components. The spatial part provides information about scenes and objects
of the video, taking as input a single frame. Nevertheless, the temporal part, which consists of stacked
optical flow vectors, shows the movement of the observer (the camera) and the objects in the form of
motion across the frames. This way, the authors divide the architecture into two streams. Each stream
is implemented using a deep ConvNet [118]; softmax scores are combined by late fusion using a
SVM [119] or averaging. It seems that training a temporal network with optical flow improves the
training of just stacked frames as in [110]. However, compared to the shallow representation of [76],
there are some things to improve yet.

After these two publications, and taking them as a starting point, deep learning has continued
to be used for activity recognition, mainly with Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) [120].

In [121], the authors investigate if recurrent models are effective for tasks involving sequences.
They propose a Long-term Recurrent Convolutional Network (LRCN) and demonstrate the value
of these models for activity recognition. The LSTM unit they use is as the one described in [122].
Compared to previous models, recurrent convolutional models learn compositional representations in
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space and time and not just assume a fixed visual representation or perform simple temporal averaging
for sequential processing. As input, both RGB and optical flow are used and it is observed that the
best results are achieved by the weighted scores of both inputs as in [117]. They show that learning
sequential dynamics with a deep sequence model improves previous methods that only took into
account parameters of the visual domain.

Wang et al. in their work [123] presented very deep two-stream ConvNets in order to improve the
results of recent architectures [117] getting closer to image domain deep models. Apart from using two
known architectures, GoogLeNet [124] and VGGNet-16 [125], they use 10-frame stacking of optical
flow for the temporal network and a single frame image for the spatial network. As the training
datasets are small, the model is initialized by pre-training it with ImageNet and, to avoid over-fitting,
dropout and data augmentation techniques are used. They proposed two new data augmentation
methods: one of them consists of cropping four corners and one center of the images and, in the other,
multi-scale cropping is used.

In [126], trajectory-pooled deep-convolutional descriptor (TDD) is introduced, which combines
the works of [76,117]. The authors first train two-stream ConvNets and use them as feature extractors
to achieve convolutional spatial and temporal feature maps from the learned networks. With the
improved trajectories method, a set of point trajectories are detected and, using trajectory pooling,
TDD descriptors are created based on normalized convolutional feature maps and these trajectories,
as in Equation (5):

D(Tk, C̃a
m) =

P

∑
p=1

C̃a
m((rm × xk

p), (rm × yk
p), zk

p), (5)

where Tk is a trajectory, C̃a
m is a mth layer normalized feature map, (xk

p, yk
p, zk

p) is the pth point position

of video coordinates of Tk trajectory and rm is the mth layer map size ratio, (·) being the rounding
operation. Fisher vector representation is used to bring together TDDs over the whole video and,
finally, an SVM classifier does the recognition.

Although having some similarities with previous works [110,117], in [127], Tran et al., instead
of using 2D convolutions across frames, use 3D convolutions and 3D pooling, propagating temporal
information across all the layers in the network. They propose a simple yet effective approach for
spatio-temporal feature learning using deep three-dimensional, convolutional networks trained on a
large scale supervised video dataset. They show that 3D ConvNets [110,128] with a linear classifier are
more suitable for spatio-temporal feature learning than 2D ConvNets and that the model performs
even better additionally using hand-crafted features like iDT [76].

In the work by Feichtenhofer et al. [129], the authors add two ideas to the two-stream architecture
of [117]. They show that it is important to associate spatial feature maps of a particular area to temporal
feature maps for that corresponding region. The spatial and temporal networks are fused at an early
level, so, rather than fusing at the softmax layer, they are fused at a convolutional layer. The fusion
can be made in different ways and, in [130], Yue-Hei et al. evaluate many other methods to combine
two-stream ConvNets over time. The architecture they propose does not increase the number of
parameters significantly compared to previous methods and their results are improved by adding also
iDT features [76].

Wang et al. also improved the two streams architecture in their work [131], presenting a long-rate
temporal structure model, the Temporal Segment Network (TSN). Most of the previous works were
not able to incorporate long-range temporal structures, but their model combines a sparse temporal
sampling strategy and video-level supervision to enable efficient and effective learning using the
whole action video. Another problem they wanted to deal with was over-fitting because, due to the
difficulty of collecting data, the available datasets were limited. They use different techniques to avoid
the risk of over-fitting: batch normalization [132], dropout [133] and pre-training. The authors also
evaluate the model using four different input modalities: optical-flow, warped optical-flow, RGB and
RGB difference, the last one inspired by [134].
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Bilen et al. [135] presented the concept of dynamic image, which summarizes a video into just
a single RGB image by applying rank pooling on the images of a video. This way, image classification
CNNs can be used directly, as the input is an image. The idea of reducing the whole video to a single
image is taken from [136]. In their experiments, two scenarios were considered: getting a single
dynamic figure from a video or getting several dynamic images from each video, the second approach
is thought to deal with the lack of training videos. Then, dynamic feature maps are obtained by
adding a new temporal layer to the CNN and a pre-trained CaffeNet [137] model is used to initialize
the network.

In 2017, Carreira et al. [138] presented a new architecture that uses two different 3D networks for
both streams of a two-stream architecture [117], called Two-Stream Inflated 3D ConvNet (I3D). It is
based on 2D ConvNet inflation, expanding filters and pooling kernels of very deep image classification
ConvNets into 3D, leading to very deep spatio-temporal classifiers and making it possible to learn
spatio-temporal feature extractors from videos. In basic two-stream architectures the spatial stream
is formed by single frames; however, in I3D, the spatial stream input consists of frames stacked in
time dimension. Apart from the new model, the main contribution of this paper is a new dataset for
action recognition, the Kinetics Human Action Video dataset, which is two orders of magnitude larger
than previous datasets with 400 actions and more than 400 clips per action collected from YouTube.
They also showed that, when pre-training on Kinetics, results of I3D models are improved.

Later in 2018, [139] improved the performance of [121] by using lower spatial resolution and longer
clips to keep the complexity of networks tractable while dealing with the inability to capture long
range temporal information. They consider space-time convolutional neural networks [127,128,140]
and study architectures with long-term temporal convolutions (LTC), which are used to learn video
representations. As in [121], different low-level representations are studied: RGB and optical flow. Their
experiments confirm the advantage of motion-based representations and highlight the importance of
good quality motion estimation for learning efficient representations for human action recognition.

Ullah et al. [141] proposed an action recognition method by processing the video data using
convolutional neural networks (CNN) and deep bidirectional LSTM (DB-LSTM) networks [142]. On the
one hand, in order to reduce complexity and redundancy, deep features are extracted from every six
frames of a video using pre-trained AlexNet [112]. Then, the sequential information among frame
features is learned using an DB-LSTM network, where multiple layers are stacked together in both
forward pass and backward pass of DB-LSTM to increase its depth. The video is analyzed in N chunks
and N depends on processing time interval T. The final output is the combination of small chunks
outputs. As the video is processed and features are analyzed for a certain time interval, the proposed
method is able to learn long sequences and recognize actions in long videos.

Wang et al. [143] proposed a discriminative pooling based on the idea that, among the frames,
not all of them have the same importance and a few are those that provide characteristic information
about the action [144]; some of the features in one sequence are indeed useful, while the rest are not.
Taking all the CNN features as positive (containing good and bad features) and the known background
or noisy frames as negative, a nonlinear hyperplane that differentiates the discriminative features
from the rest is learned to make the separation. The decision boundary of the classifier thus learned
is then used as a descriptor for the entire video sequence, which they call the SVM Pooled (SVMP)
descriptor. Thus, they formulate an efficient solver that learns these hyperplanes per video and the
corresponding action classifiers over the hyperplanes. This pooling scheme is end-to-end trainable
within a deep framework.

The authors of [145] presented the first end-to-end convNets which admit videos of arbitrary
size and length. After seeing that 3D convolutional networks have achieved good results in action
recognition, they decided to delete two of the requirements that existing convNets had: fixed size
and length input videos were required, which reduce the quality of video analysis. Basically, each
video is decomposed into spatial and temporal shots and, for both pieces of information, the same
process is computed. A spatial temporal pyramid pooling (STPP) convNet is first used to extract
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equal-dimensional descriptors from variable-sized frame sequences. Then, a Long Short-Term Memory
(LSTM) or a CNN-E model is used to recognize the actions from these descriptors. Finally, both streams
(spatial and temporal) are combined by a late fusion.

In Table 3, a summary of the deep learning based methods explained is presented.

Table 3. Summary of deep learning based methods.

YEAR SUMMARY DATASET

Karpathy et al.
[110] 2014 Use of different connectivity patterns for CNNs: early

fusion, late fusion and slow fusion.

Sports-1M
[110] UCF101
[89]

Simonyan et al.
[117] 2014 Use of a two-stream CNN architecture, incorporating

spatial and temporal networks.
UCF101 [89]
HMDB51 [88]

Donahue et al.
[121] 2015

Use of a Long-term Recurrent Convolutional Network
(LRCN) to learn compositional representations in space
and time.

UCF101 [89]

Wang et al. [123] 2015
Use of very deep two-stream convNets, using stacked
optical flow for temporal network and a single frame
image for spatial network.

UCF101 [89]

Wang et al. [126] 2015 Use of trajectory-pooled deep-convolutional descriptor
(TDD).

UCF101 [89]
HMDB51 [88]

Tran et al. [127] 2015 Use of deep 3D convolutional networks, which are better
for spatio-temporal feature learning. UCF101 [89]

Feichtenhofer et al.
[129] 2016

Use of two-stream architecture associating spatial feature
maps of a particular area to temporal feature maps of that
region and fusing the networks at an early level.

UCF101 [89]
HMDB51 [88]

Wang et al. [131] 2016 Use of Temporal Segment Network (TSN) to incorporate
long-range temporal structures avoiding overfitting.

UCF101 [89]
HMDB51 [88]

Bilen et al. [135] 2016 Use of image classification CNNs after summarizing the
videos in dynamic images.

UCF101 [89]
HMDB51 [88]

Carreira et al.
[138] 2017

Use of two-stream Inflated 3D ConvNet (I3D), using two
different 3D networks for both streams of a two-stream
architecture.

UCF101 [89]
HMDB51 [88]

Varol et al. [139] 2018
Use of space-time CNNs and architectures with long-term
temporal convolutions (LTC), using lower spatial
resolution and longer clips.

UCF101 [89]
HMDB51 [88]

Ullah et al. [141] 2018
Use of CNNs to reduce complexity and redundancy and
deep bidirectional LSTM (DB-LSTM) to learn sequential
information among frame features.

UCF101 [89]
HMDB51 [88]
YouTube
actions [146]

Wang et al. [143] 2018
Use of a discriminative pooling, taking into account that
just a few frames provide characteristic information about
the action.

HMDB51 [88]

Wang et al. [145] 2018 Use of convNets which admit videos of arbitrary size and
length, using first a STPP and a LSTM (or CNN-E) then.

UCF101 [89]
HMDB51 [88]
ACT [147]

Finally, in order to compare the presented techniques briefly, some advantages and disadvantages
are presented in Table 4.
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Table 4. Advantages and disadvantages of presented techniques.

Advantages Disadvantages

Hand-crafted
motion features

- There is no need of a large amount
of data for training.
- It is simple and unambiguous to
understand the model and analyze
and visualize the functions.
- The features used to train the
model are explicitly known.

- Usually these features are not
robust.
- They can be computationally
intensive due to the high
dimensions.
- The discriminative power is
usually low.

Depth information

- The 3D structure information of the
image that depth sensors provide
is used to recover postures and
recognize the activity.
- The skeletons extracted from depth
maps are precise.
- Depth sensors can work in darkness.

- Depth maps have no texture,
making it difficult to apply local
differential operators.
- The global features can be unsettled
because depth maps may contain
occlusions.

Deep Learning

- There is no need of expert knowledge
to get suitable features, reducing the
effort of feature extraction.
- Instead of designing them manually,
features are automatically learned
through the network.
- Deep neural networks can extract
high-level representation in deep layer,
making it more suitable for complex tasks.

- Need to collect massive data,
consequently there is a lack of
data sets.
- Time consuming.
- Problem of models capability of
generalization.

3. Benchmark Datasets

Although there is not a standard benchmark in activity recognition, there are some datasets that
are being considered as reference ones [148]. As it has been mentioned above, due to the complexity of
collecting data, the available datasets are limited. In this section, the most used datasets are presented.

3.1. UCF-101

UCF101 [89,149] is an action recognition dataset of realistic action videos. It is composed of
13,320 videos with 101 action categories and 27 h of video data. This dataset is an extension of the
UCF50 [150] dataset that has 50 action categories.

The videos have been collected from YouTube, making the dataset realistic, and it provides a great
variety of videos with different objects, camera motion, background, lighting, viewpoint, etc. Based on
those features, videos are gathered into 25 groups (4–7 videos per action in each group) with videos
sharing some of the features, as background, for example.

The 101 categories can be divided in five main groups:

1. Human–Object Interaction: twenty categories.
2. Body-Motion Only: sixteen categories.
3. Human–Human Interaction: five categories.
4. Playing Musical Instruments: ten categories.
5. Sports: fifty categories.

3.2. HMDB51

HMDB51 [88,151] is another action recognition database that collects videos from various sources,
mainly from movies but also from public databases such as YouTube, Google and Prelinger Archives.

It consists of 6849 videos with 51 action categories and a minimum of 101 clips belong to each
category. The action categories can be divided as well in five main groups:
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1. General facial actions: smile, laugh, chew, talk.
2. Facial actions with object manipulation: smoke, eat, drink.
3. General body movements: cartwheel, clap hands, climb, climb stairs, dive, fall on the floor,

backhand flip, handstand, jump, pull up, push up, run, sit down, sit up, somersault, stand up,
turn, walk, wave.

4. Body movements with object interaction: brush hair, catch, draw sword, dribble, golf, hit
something, kick ball, pick, pour, push something, ride bike, ride horse, shoot ball, shoot bow,
shoot gun, swing baseball bat, sword exercise, throw.

5. Body movements for human interaction: fencing, hug, kick someone, kiss, punch, shake hands,
sword fight.

Apart from the action label, other meta-labels are indicated in each clip. These labels provide
information about some features describing properties of the clip, such as camera motion, lighting
conditions, or background. As videos are taken from movies or YouTube, the variation of features
is high and that extra information can be useful. In addition, the quality of the videos has been
measured (good, medium, bad), and they are rated depending on whether body parts vanish while
action is executed or not.

3.3. Weizmann

Before the two previous databases were created, many methods used the Weizmann [152]
database published by [64] to evaluate the performance of their contributions. It provides 90
low-resolution (180 × 144, deinterlaced 50 fps) video sequences. These clips show 10 different actions
performed by nine different people. These are the actions that appear in the database: run, walk, skip,
jumping-jack (jack), jump-forward-on-two-kegs (jump), jump-in-place-on-two-legs (pjump), side-gallop (side),
wave-two-hands (wave2), wave-one-hand (wave1) and bend. Background and the viewpoint are statics.

3.4. MSRAction3D

In 2010, as there was no public benchmark database, the authors in [107] published the database
called MSRAction3D [153] which provided the sequences of depth maps captured by a depth camera.
The dataset contains twenty actions: high arm wave, horizontal arm wave, hammer, hand catch, forward
punch, high throw, draw x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend, forward kick,
side kick, jogging, tennis swing, tennis serve, golf swing, pick up and throw. Seven different individuals
performed each action three times, facing the camera during the performance. The depth maps have a
size of 640 × 480 and they were captured at about 15 frames per second (fps) by a depth camera with
infra-red light structure.

3.5. ActivityNet

The authors of [154] presented in 2015 the ActivityNet [155] database. It is composed of
203 different classes with an average of 137 videos per class and a total of 648 video hours. The videos
were obtained from online video sharing sites and they are around 5–10 min long. Half of the videos
are in HD resolution (1280× 720) and most of them have a frame rate of 30 fps.

The aim of this database is to collect activities of humans daily life and it has a hierarchical
structure, organizing the activities according to social interactions and where they take place.

3.6. Something Something

Later, in 2017, the authors of [156] introduced the “Something Something” [157] dataset. The first
version of the database consists of 108,499 videos belonging to 174 different labels with 23,137 distinct
object names. The length of the videos variate between 2 and 6 s and they have a height of 100 px
and variable width. Labels are textual descriptions such as “Putting something next to something”
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where something refers to an object name. This database is already split into train, validation and test,
containing 86,017, 11,522 and 10,960 videos, respectively.

However, there has been a second release of the dataset and now it contains 220,847 videos,
168,913 for the training set, 24,777 for the validation set and 27,157 for the test set. The number of labels
remains the same, but there are additional object annotations now. Moreover, the pixel resolution has
increased from 100 px to 240 px.

3.7. Sports-1M

In [110], Karpathy et al. presented a new database, Sports-1M [158], which contains 1,133,158 video
URLs with 487 automatically annotated different labels. YouTube Topics API was used to do the
annotation. There are around 1000–3000 videos per class and some of them, nearly the 5%, are labelled
with more than one class.

Nowadays, the YouTube-8M [159] dataset is also available and the Sports-1M dataset is included
in it. This dataset is composed of videos from 3862 labels and it contains 350,000 h of video. In this
case, each video has an average of three labels.

3.8. AVA

The authors of [160] presented AVA [161], a video dataset of spatio-temporally localized Atomic
Visual Actions. This dataset consists of 430 movie clips of 15 min length annotated with 80 actions
(14 poses, 17 person–person, 49 person–object). There are 386,000 labelled segments, 614,000 labelled
bounding boxes and 81,000 person tracks, with a total of 1.58M labelled actions, with multiple labels
per person occurring frequently.

Every person of the scene is localized by a bounding box and labels are assigned according to the
action performed by the actor. Each scene can have more than a label, one of them corresponds to the
actor’s pose and additional labels which correspond to person–object or person–person interactions
can be assigned. A frame containing more than one actor is labelled separately for each person of
the scene.

To finish, in Table 5, a summary of the explained datasets is introduced, in order to present the
information more clearly.

Table 5. Summary of the presented datasets.

# Classes # Videos # Actors Resolution Year

Weizmann 10 90 9 180 × 144 2005
MSRAction3D 20 420 7 640 × 480 2010

HMDB51 51 6849 - 320 × 240 2011
UCF50 50 6676 - - 2012
UCF101 101 13,320 - 320 × 240 2012

Sports-1M 487 1,133,158 - - 2014
ActivityNet 203 27,801 - 1280 × 720 2015

Something Something 174 220,847 - __ (Variable width) × 240 2017
AVA 80 430 - - 2018

4. Results

To better analyze the explained methods and the contributions of each one of them, the results
obtained for mentioned datasets are compared. For each method, the achieved accuracy values
for different datasets are shown, together with the reference to the original article where they have
been proposed.

On the one hand, in Table 6, results for depth information based methods can be observed. These
methods use the MSRAction3D as benchmarks because the input they need is different from other
models. Regarding the methods used with the MSRAction3D database, the best result of the presented
methods is achieved by [102], as it can be seen in Table 6.
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Table 6. Obtained accuracies for the benchmark dataset with depth information based methods.

METHOD MSRAction3D

DS

DMM-HOG [98] 85.52%
HON4D [99] 88.89%
M3DLSK+STV [102] 95.36%
MPDMM [104] 94.8%

On the other hand, most of the hand-crafted feature methods use the Weizmann dataset as a
benchmark. However, some of the presented models work with both UCF101 and HMDB51 datasets,
which are used as benchmarks in deep learning methods. Thus, in Table 7, the obtained accuracy
values can be observed, together for deep learning and hand-crafted methods.

Table 7. Obtained accuracies for the benchmark datasets with hand-crafted methods and deep learning
methods.

METHOD UCF101 HMDB51 Weizmann

Hand-crafted

Hierarchical [55] - - 72.8%
Far Field of View [63] - - 100%
HOOF NLDS [46] - - 94.4%
Direction HOF [45] - - 79.17%
iDT [76] - 57.2% -
iDT+FV [76] 85.9% 57.2% -
OF Based [81] - - 90.32%
Edges OF [15] - - 95.69%
HOG features [87] - - 99.7%

Deep learning

Slow Fusion CNN [110] 65.4% - -
Two stream (avg) [117] 86.9% 58.0% -
Two stream (SVM) [117] 88.0% 59.4% -
IDT+MIFS [162] 89.1% 65.1% -
LRCN (RGB) [121] 68.2% - -
LRCN (FLOW) [121] 77.28% - -
LRCN (avg, 1/2-1/2) [121] 80.9% - -
LRCN (avg, 1/3-2/3) [121] 82.34% - -
Very deep two-stream (VGGNet-16) [123] 91.4% - -
TDD [126] 90.3% 63.2% -
TDD + iDT [126] 91.5% 65.9% -
C3D [127] 85.2% - -
C3D + iDT [127] 90.4% - -
TwoStreamFusion [129] 92.5% 65.4% -
TwoStreamFusion+iDT [129] 93.5% 69.2% -
TSN (RGB+FLOW) [131] 94.0% 68.5% -
TSN (RGB+FLOW+WF) [131] 94.2% 69.4% -
Dynamic images + iDT [135] 89.1% 65.2% -
Two-StreamI3D [138] 93.4% 66.4% -
Two-StreamI3D, pre-trained [138] 97.9% 80.2% -
LTC (RGB) [139] 82.4% - -
LTC (FLOW) [139] 85.2% 59.0% -
LTC(FLOW+RGB) [139] 91.7% 64.8% -
LTC(FLOW+RGB)+iDT [139] 92.7% 67.2% -
DB-LSTM [141] 91.21% 87.64% -
Two-Stream SVMP(VGGNet) [143] - 66.1% -
Two-Stream SVMP(ResNet) [143] - 71.0% -
Two-Stream SVMP(+ iDT) [143] - 72.6% -
Two-Stream SVMP(I3D conf) [143] - 83.1% -
STPP + CNN-E (RGB) [145] 85.6% 62.1% -
STPP + LSTM (RGB) [145] 85.0% 62.5% -
STPP + CNN-E (FLOW) [145] 83.2% 55.4% -
STPP + LSTM (FLOW) [145] 83.8% 54.7% -
STPP + CNN-E (RGB+FLOW) [145] 92.4% 70.5% -
STPP + LSTM (RGB+FLOW) [145] 92.6% 70.3% -
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As it can be seen in Table 7, the Two-Stream I3D method [138], pre-trained with the Kinetics
dataset, provides the best result for the UCF101 dataset. For HMDB51, the best result is achieved by
the DB-LSTM model [141] and, among those who have tested with the Weizmann database, the best
value is given by the method presented in [63].

5. Discussion

After reading the previous sections, the researchers could ask themselves which are the most
promising lines of research in the field of action recognition in videos, or where it is more likely to get
a higher return for the invested effort.

For people just interested in applying an existing method to their data, or in minimal modifications
or customizations, some authors of the presented methods have made their code available that can
be used. These implementations are indicated in Table 8. Among them, the methods explained
in [138,141] provide the best results.

Table 8. Available code for presented methods.

METHOD YEAR PAPER CODE

Deep
Learning

2018 Video representation learning using
discriminative pooling [143]

SVMP
https://github.com/3xWangDot/
SVMP

Deep
Learning

2018 Action Recognition in Video Sequences
using Deep Bi-Directional LSTM With
CNN Features [141]

Bi-directional LSTM
https://github.com/Aminullah6264/
BidirectionalLSTM

Deep
Learning

2018 Long-term temporal convolutions for
action recognition [139]

LTC
https://github.com/gulvarol/ltc

Deep
Learning

2017 Quo vadis, action recognition? A new
model and the Kinetics dataset [138]

Two-Stream I3D
https://github.com/deepmind/
kinetics-i3d

Deep
Learning

2016 Dynamic image networks for action
recognition [135]

Dynamic images
https://github.com/hbilen/dynamic-
image-nets

Deep
Learning

2016 Temporal segment networks: Towards
good practices for deep action
recognition [131]

TSN
https://github.com/yjxiong/
temporal-segment-networks

Deep
Learning

2016 Convolutional two-stream network
fusion for video action recognition [129]

Two-Stream Fusion
https://github.com/feichtenhofer/
twostreamfusion

Deep
Learning

2015 Learning spatiotemporal features with
3D convolutional networks [127]

C3D
https://github.com/facebook/C3D

Deep
Learning

2015 Action recognition with
trajectory-pooled deep-convolutional
descriptors [126]

TDD
https://github.com/wanglimin/tdd/

Deep
Learning

2015 Towards good practices for very deep
two-stream convNets [123]

Very deep Two-Stream convNets
https://github.com/yjxiong/caffe/
tree/action_recog

Depth
information

2013 HON4D: Histogram of oriented 4D
normals for activity recognition from
depth sequences [99]

HON4D
http://www.cs.ucf.edu/~oreifej/
HON4D.html

Hand-crafted
motion
features

2013 Action Recognition with Improved
Trajectories [76]

Improved Trajectories
http://lear.inrialpes.fr/~wang/
improved_trajectories

https://github.com/3xWangDot/SVMP
https://github.com/3xWangDot/SVMP
https://github.com/Aminullah6264/BidirectionalLSTM
https://github.com/Aminullah6264/BidirectionalLSTM
https://github.com/gulvarol/ltc
https://github.com/deepmind/kinetics-i3d
https://github.com/deepmind/kinetics-i3d
https://github.com/hbilen/dynamic-image-nets
https://github.com/hbilen/dynamic-image-nets
https://github.com/yjxiong/temporal-segment-networks
https://github.com/yjxiong/temporal-segment-networks
https://github.com/feichtenhofer/twostreamfusion
https://github.com/feichtenhofer/twostreamfusion
https://github.com/facebook/C3D
https://github.com/wanglimin/tdd/
https://github.com/yjxiong/caffe/tree/action_recog
https://github.com/yjxiong/caffe/tree/action_recog
http://www.cs.ucf.edu/~oreifej/HON4D.html
http://www.cs.ucf.edu/~oreifej/HON4D.html
http://lear.inrialpes.fr/~wang/improved_trajectories
http://lear.inrialpes.fr/~wang/improved_trajectories
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For researchers interested in developing new methods or in deep modifications of current ones,
deep learning looks like the way to go, although the computations costs could be forbidding.

Some researchers could have the resources to generate new datasets similar to those presented
in this paper. They need to have in mind several decisions: will the videos have the same resolution
and/or length and will they be recorded with the same background? We advocate for datasets covering
different kinds of videos, with that information present in the metadata and with enough samples
of each type. Anyway, if the researcher resources are somewhat limited, which is usually the case,
it is advisable to focus on just one type of video. All the technical information about the sensor might
appear in the metadata, as well as lighting conditions or any information of interest. If depth sensors
are used, high and low resolution of the depth data could be provided. Processing of depth data can
be computationally expensive, and other researchers using that dataset could benefit from access to
a standard low resolution version of that data.

The task of labeling the database samples can be eased with the help of some tools. While just
providing a global label for a video does not require a great deal of effort, the video database curators
could choose to gather information about individual frames in the videos. There are several tools that
could be useful in this task, like Sloth [163], LabelMe [164,165] or LabelBox [166].

It is difficult to predict the future development of this area, but, at least in the short term, the overall
tendency in machine learning is going towards massive data, computationally expensive algorithms
and dedicated hardware. It is expected that the price of depth sensors will keep a descending
curve, as well as the cost of hardware in general. The main challenges are expected to be twofold:
for the researchers developing new methods, those related to the storage and processing of massive
databases, and for developers integrating the methods into software solutions, those related to a fast
classification time.

6. Conclusions

In this paper, different methods for video activity recognition have been presented. Several
models have been explained showing the development of recent years. Likewise, several databases
used to evaluate the performance of the models have been introduced. The results have been shown
together in a table in order to compare the methods presented correctly.

Due to the extent width of the subject, there are many more models that have not been mentioned
in this document. Even so, an attempt has been made to show a current state-of-the-art by presenting
different techniques to deal with the problem. To sum up, through this document, we have tried to
show the relevance and current situation of video-based activity recognition.

Video-based activity recognition, as it has been mentioned before, is more complicated than
static image classification and this is also reflected in the results obtained so far. However, since deep
learning is still being exploited, in the near future, this task may become easier to perform and current
results may be improved using some deep learning techniques.
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