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The morphology, crystallization behavior and properties of multi-crystalline polymer systems
based on triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers are
reviewed. The triblock terpolymers, with increasing PLLA content, exhibited a triple crystalline
nature. Upon cooling from melt, the PLLA block crystallizes first and templates the spherulitic
morphology of the terpolymer. Then, the PCL block crystalizes and, lastly, the PEO block.

These triblock terpolymers are probably melt miscible, as SAXS experiments confirmed. Thus,
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the crystallization of PCL and PEO blocks takes place within the interlamellar zones of the
PLLA spherulites that were formed previously. Therefore, the lamellae of PLLA, PCL and PEO
exist side-by-side within a unique spherulite, constituting a novel triple crystalline
superstructure. The theoretical analysis of SAXS curves implies that only one lamella of either
PCL or PEO can occupy the interlamellar space in between two contiguous lamellae of PLLA.
Several complex competitive effects such as plasticizing, nucleation, anti-plasticizing and
confinement take place during the isothermal crystallization of each block in the terpolymers.
New results on how Successive Self-nucleation and Annealing (SSA) thermal treatment can be
used as an additional suitable technique to properly separate the three crystalline phases in these

triple crystalline triblock terpolymers are also included in this contribution.

1. Introduction

Block copolymers have been in the focus of polymer physics researchers during the past
two decades.l*1 Crystallization and morphology of block copolymers are strictly related with
their physical properties and potential applications in several fields. To name a few, block
copolymers have been used in biomedical applications, cell adhesion coatings, drug delivery,
nanotechnology, stimuli-responsive nanostructured materials, nanoparticles, lithography,
patterning and templating in optoelectronics devices, and hydrogels.>8l Therefore,
understanding the morphology and overall crystallinity is essential for both basic and applied
polymer science.t™ 5 %12The final structure, crystallization and physical properties are not only
determined by the crystallization conditions but also by the microstructure, chemical nature,
molecular weight, block composition and miscibility or segregation between blocks.. [ 10-22]

Since block copolymers consist of segments of different length and nature, chemically
bonded together, a broad range of semicrystalline/amorphous ordered superstructures can be
formed, as the polymer chains self-assemble. The superstructures created will depend on the

miscibility (or segregation) of the blocks and the transition temperatures (order-disorder, glass



transition and crystallization).)  Thus, the immiscibility between the blocks or the
crystallization process drive the microphase separation that ultimately fixes the final
morphology. Nanostructures of different geometries are exhibited by strongly segregated
systems, while birefringenced unique mixed spherulites are formed by miscible block
copolymers. Those spherulitic-type superstructures include spherulites with well-defined
Maltese cross, banded spherulites, concentric spherulites, axialities and 2D aggregates.[> 2!

Different crystallization phenomena that include nucleating effects, fractionated and
confined crystallization, reduced crystallinity, plasticization and retarded or first order
crystallization kinetics, have been extensively investigated in miscible diblock and triblock
copolymers and terpolymers with more than one crystallizable block.[> % 16-29. 22241 particularly,
biodegradable and biocompatible diblock copolymers such as poly(ethylene oxide)-b-poly(e-
caprolactone) (PEO-b-PCL),?>*I poly(ethylene oxide)-b-poly(L-lactide) (PEO-b-PLLA),#4-57]
and poly(e-caprolactone)-b-poly(lactide)s (PCL-b-PLA) 58-¢81 exhibit two main behaviors: a
plasticizing effect over the PLLA crystallization caused by the PCL or PEO molten chains, and
both nucleating effect or retarded crystallization kinetics of the crystallization of the PCL and
PEO blocks induced by the PLLA previously formed crystals.[® "1 PLLA-b-PCL and PLLA-b-
PEO diblock copolymers attract high interest, because of their physical properties, as well as,
their mechanical performance and biodegradation behaviour, which are in direct relationship
with the nano and micro crystalline morphology.> 17 €]

When a third potentially crystallizable block is added, the crystallization behavior and
morphology become even more complex. Some authors reported PLLA-b-PCL-b-PEO-b-PCL-
b-PLLA pentablock terpolymers, in which, according to WAXS experiments, only the PCL and
PLLA blocks could crystallize, depending on block composition. For instance, the PCL block
crystallized and the PLLA and PEO blocks remained amorphous when the PCL contents
increases. On the contrary, if the terpolymer had a higher PLLA content, the PCL melting peak

decreased.5% Thus, very few works have been published for ABC type triblock terpolymers in
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which the three blocks have crystalized, particularly, terpolymers with PEO, PCL and PLLA
blocks.34 70751 Sun et al. "2 reported triple crystalline triblock and pentablock terpolymers of
PLLA, PCL and PEO. They demonstrated the coexistence of the three crystalline structures
employing DSC and WAXS analysis. The WAXS spectra exhibited strong diffraction peaks
corresponding to the PEO and PLLA crystals but very weak peaks suggesting the presence of
PCL crystals. It seems that the PLLA and PEO end blocks highly hamper the crystallization of
the PCL middle block. In addition, the PCL content in the terpolymers (between ~13-20 %), is
very low, which might be also a reason for the weak WAXS scattering reflections.
Complementary DSC analysis was not able to elucidate the crystallization of each block since
the crystallization temperature of the PCL and PEO blocks overlapped. However, because
PLLA crystalizes at higher temperatures, the crystallization of this block was indeed distinctive.
Similar behavior was observed during subsequent melting, since PCL and PEO crystals melt in
the same range of temperatures, while the PLLA crystals melted at higher temperatures.

Both block composition and block length are strictly related. Thus, not only the
composition influences the crystallizability of the terpolymers. Each block must have a suitable
length in order to crystallize. For instance, it is a well known fact that the crystallizability of the
PLLA depends on the molecular weight and it exhibits a rather slow crystallization kinetics.[®!
In PEO-b-PCL-b-PLLA triblock terpolymers, Chiang et al.["® reported that a PLLA block with
a molecular weight of 1000 g.mol* could not crystallizeafter cooling at 10 °C.min™. The
molecular weight should had increased up to 6300 g.mol™in order to obtain a PLLA crystalline
phase. But if the PLLA molecular weight is further increased, the crystallizability of PLLA
reduces due to its low chain mobility .I’® The authors also reported single crystals obtained
from solution. Different crystalline phases were obtained depending on the crystallization
protocol employed. In one-step crystallization, not well-defined edge-on PEO crystals were
observed while PCL and PLLA crystals were flat-on oriented. On the contrary, in a two-step or

a three-step sequential crystallization protocol, the first crystallization of the PLLA block fixed
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the final morphology and directed very well-defined single crystals of the PEO and PCL blocks.
The PEO and PCL crystallization arose in between the lamellae of the PLLA crystals.

A comprehensive knowledge of this new generation of ABC triblock terpolymers
composed of PEO, PCL and PLLA (PEO-b-PCL-b-PLLA) and their triple crystalline features
is highly pertinent. The coexistence in a single superstructure of one amorphous mixed phase
including chains of the three blocks, and three unique crystalline phases (each of them
corresponding to each block) will affect their physical properties and biodegradability. Herein,
we review the latest findings of our group regarding the features of these unique triblock
terpolymers. The remarkable tricrystalline structure and the complex crystallization behavior
have been studied by wide angle X-ray scattering (WAXS), small angle X-ray scattering
(SAXS), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and
polarized light optical microscopy (PLOM). New results are also presented after conducting
Successive Self-nucleation and Annealing (SSA) thermal protocols ['” 78 in this kind of

terpolymers.

2. The ABC triple crystalline triblock terpolymers under study
The triblock terpolymers under study were synthesized previously, as reported in ref. 79.

The structure of the PEO-b-PCL-b-PLLA triblock terpolymers are presented in Figure 1.
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PEO-b-PCL-b-PLLA triblock terpolymer

Figure 1. Chemical structure of the PEO-b-PCL-b-PLLA triblock terpolymers



One-pot sequential organocatalytic ring-opening polymerization of ethylene oxide (EO),
e-caprolactone (CL) and L-lactide (LLA) using benzyl alcohol as the initiator and a
phosphazene base, 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-24°,41°-
catenadi(phosphazene) (t-BuP-), as a single catalyst for the three monomers, was employed.
Extensive details of the synthesis of the terpolymers can be found in reference.[”® 8 The
triblock terpolymers have the same lengths of PEO and PCL blocks and different lengths of
PLLA blocks (see Table 1). The corresponding PCL-b-PLLA diblock copolymers and PEO,
PCL and PLLA homopolymers were synthesized similarly and were included only for
comparison purposes. The synthesis methodology allowed guaranteeing relatively narrow
molecular weight distributions (BM < 1.20). The chemical structure was confirmed by nuclear
magnetic resonance spectra (*H NMR). Size exclusion chromatography (SEC) and *H NMR
were used to stablish the number-average molecular weight (M») of the blocks and the M, of
the entire terpolymers and corresponding diblock copolymers.

All the samples are described in Table 1, being thethe subscript numbers the composition
of theblocksand the superscript numbers, the molecular weight of the entire terpolymer, diblock

copolymer or homopolymer.

Table 1. Block molecular weight (Mn) and polydispersity index (PDI) of the
terpolymers, diblock copolymers and homopolymers.

Samble code M, PEO block M, PCL block M, PLLA block PDI

P (g mol™?) (g mol™?) (g mol?) (Mw/Mn)
PEO* 3800 - - 1.03
PCL’ - 7000 - 1.10
PLLA%® - - 4600 1.10
PLLA8Z® - - 8600 1.12
PCLsgPLLA4 M2 - 6600 4600 1.21
PEQO2PCL4PLLAG ! 4600 6800 4700 1.10
PCL4sPLLAs/ - 6600 8800 1.16
PEQ2PCL3sPLLASY® 4600 6800 8500 1.18




3. Standard SAXS characterization of the PEO-b-PCL-b-PLLA triblock
terpolymers
SAXS experiments in the melt demonstrated that both triblock terpolymers investigated
(see Table 1) are probably melt miscible. No reflection was observed at 160 °C, a temperature
at which both samples are in molten state. The lack of SAXS scattering is an indication of a
homogeneous phase. However, it should also be considered that the electron density difference
between the phases (i.e., PLLA, PCL and PEO) could be too small for weak segregation to be
detected. ?°1 Nevertheless, as PLLA can form spherulites or axialites during crystallization from
the melt, such crystallization must be taken place from a melt mixed or weakly segregated melt
Despite that, a homogeneous melt (or only weak segregation) is a common observation in
PCL-b-PEOI PCL-b-PLLA, % . 661 and PEO-b-PLLAM® diblock copolymers. The melt
microphase segregation in diblock copolymers can be predicted by calculating the segregation
strength (which is the product of the Flory-Huggins interaction parameter (y) and the
polymerization degree (N), on the basis of the mean-field theory! 2°)). Since the samples are
ABC-type triblock terpolymers, it is more complicate to estimate their miscibility through this
theory. A rough estimation of y [ 6881 and N parameter for each pair of blocks AB, BC and
AC of PEO, PCL and PLLA in the terpolymer (the solubility parameters used are reported in
the literaturel® ®8) indicates a low melt-segregation, since the yN values of the pairs are lower
than 10. Even though the yN values do not fully represent the interactions in the triblock
terpolymer as a whole, they did agree well with what it was expected. Both the literature reports
about similar diblock copolymers and the SAXS experiments of both PEO-b-PCL-b-PLLA
triblock terpolymers agreed and confirmed the block miscibility in the melt.
As the terpolymers are cooled down from melt, SAXS scattering peaks are observed at

room temperature and 80 °C. These peaks imply the presence of a long-range order periodic



lamellar microdomain structure.[ For instance, PEO-b-PCL diblock copolymers exhibited
analternating crystalline lamellar structure, in which an amorphous layer is in between a lamella
of PCL and a lamella of PEO.[®? Similar alternating lamellar structures has also been reported
on diblock copolymers of PLLA with either PCL or PEO(PEG) (see [ 1 and references
therein), which are all weakly segregated or miscible in the melt. The nature of the lamellar
structure and morphology in these triblock terpolymers will be the subject of the upcoming

sections, but first, the crystallizability of each block is assessed by DSC and WAXS analysis.

4. Non-lIsothermal crystallization of PEO-b-PCL-b-PLLA triblock terpolymers
evaluated by DSC and WAXS analysis

The thermal behaviour of the samples affects their final morphology. The DSC and WAXS
experiments demonstrate that these ABC triblock terpolymers are triple crystalline upon
cooling from the melt (see Figure 2). The triple crystalline nature is achieved when slow
cooling rates are used (between 1 and 5°C.min™t). The DSC cooling scan of the terpolymers
exhibits three well-defined exothermic peaks that correspond to the crystallization of each block
from the melt (see Figure 2b). The PLLA block crystallizes first at expected temperature,
around 70 °C. Upon further cooling after PLLA crystallization, the PCL or the PEO block could
crystallize but which one did it first is very difficult elucidate, since both blocks have similar
crystallization temperatures. Analogous PEO-b-PCL-b-PLLA triblock terpolymers obtained by
Chiang et al by a different synthetic pathway exhibited a similar behavior.[]

The order of crystallization depends on copolymer composition. For instance, in PEO-b-
PCL diblock copolymers, the PCL block crystallizes first than the PEO block when PCL is the
major component. On the contrary, the PEO block crystallizes first, when its content in the
copolymer is higher. WAXS measurements, taken upon cooling from melt, allowed us to
identify the order in which each block crystallized from the melt. The crystallographic planes

of PEO, PCL and PLLA crystalline structures were determined, and the crystallization order
8



goes as follows: the PLLA block crystallizes first, then the PCL block, and at the end, the PEO
block. In this case, the crystallization sequence observed in the triblock terpolymers obeyed to

the larger PCL content.
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Figure 2. (a) WAXS pattern taken at different temperatures during cooling from the melt at 5
°C mint of PEO29PCL42PLLAZ9'®L. (b) DSC cooling scans at 1 °C min after melting at 160
°C for 3 min. Reproduced with permission.["] Copyright 2016, RSC.
5. Microscale morphology of the PEO-b-PCL-b-PLLA triblock terpolymers

Several aspects influence the solid-state arrangement of block copolymers: crystallization
behavior, block copolymer composition, segregation strength and microphase separation due to
the crystallization process. The sequential crystallization and superstructural organization of
the terpolymers can be detected by Polarized light optical microscopy (PLOM) microscopy in
samples cooled from the melt.

Since these triblock terpolymers are melt-miscible, the block that crystallizes first upon
cooling from the melt (i.e. the PLLA block) fixes the microscale morphology of the whole
terpolymer. ["Y1 The phase separation is driven by the PLLA block crystallization, which in the

end templates the morphology for the following crystallization of the PCL and PEO blocks.



Irregular spherulitic-type superstructurest’*! without banding extinction patterns is the

microscale morphology of the terpolymers observed by PLOM (see Figure 3a,a’).

@) (b’) (c)

Figure 3. PLOM Micrographs taken at a) a’) 100 °C, b) b’) 39 °C and c) c¢’) room temperature
for PEO29PCL42PLLA2*! (up) and PEO23PCL34PLLA43® (down). Scale bar 100 um.
Reproduced with permission.[”®l Copyright 2018, Elsevier Inc.

As the PLLA content in the terpolymer is reduced, a branch-like morphology is developed
by this block. This irregular crystalline texture might be due to a disturbance of the PLLA
lamellae growth caused by a richer PCL-PEO amorphous phase in the proximity of the
crystalline front.[*] After PLLA crystallization, the sample is further cooled down and a change
in the magnitude of the birefringence takes place, without altering of the PLLA superstructure.
This birefringence change is caused by the PCL crystallization that is taking place within the
interlamellar regions of the PLLA spherulites that were formed before. (see Figure 3b,b’).

Similar as in miscible PCL-b-PLLA3%¢1 and PEO-b-PLLAPL 55 %81 diplock copolymers

reported previously.
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Further cooling after PCL crystallization only caused a new change in the magnitude of the
birefringence: the quadrant colors became even lighter and brighter. This additional change in
the magnitude of birefringence is due to the crystallization of the PEO block. In other words,
the subsequent crystallization of the PCL block, second, and the PEO block, third, did not
modify significantly the superstructure created during PLLA crystallization, and only a
sequential change in the magnitude of the birefringence occurred due to the intraspherulitic
crystallization of the PCL and PEO blocks within the PLLA interlamellar regions (see Figure
3c,C0).

These PLOM observations in the PEO2PCL42PLLA29' ! and PEO2sPCL3sPLLA43YM®
triblock terpolymers are very similar to those reported on PCL-b-PLLA 764661 and PEO-b-
PLLA [3%.55 561 diblock copolymers. The final microscale morphology is a mixed spherulitic-
type superstructure with crystalline lamellae of PLLA, PCL and PEO surrounded by an

amorphous phase that includes PLLA, PCL and PEO chains.["*]

6. Nanoscale morphology of the PEO-b-PCL-b-PLLA triblock terpolymers

The way the three types of lamellae arrange inside the spherulitic morphology was assessed
by detailed SAXS/WAXS analysis and AFM observations, after employing different
crystallization protocols.l’ Since these are melt-miscible triblock terpolymers, it might be
assumed that the mixed spherulitic-type superstructures are composed of lamellae from each
constituent block interdigitated and alternated between them. In order to give evidences of this
hypothetic alternated lamellar crystalline structure at the nanoscale, a thermal protocol was
employed and the final lamellar morphology of the samples was observed by AFM.

The terpolymers were first crystallized at the PLLA crystallization temperature until
saturation, then quenched until PCL crystallization temperature and allowed crystallizing until
saturation, and finally, quenched until room temperature. During this last cooling, the PEO

block also crystallizes. An outstanding picture of the tricrystalline structure of the PEO-b-PCL-
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b-PLLA triblock terpolymers is depicted in the images obtained by AFM microscopy (see
Figure 4).

The triblock terpolymers exhibited a wide range of lamellae of different thicknesses
(Figure 4). Three average populations of different lamellar thickness were detected and
measured. The thicker edge-on lamellae have 15 nm (an example is labeled red in Figure 4),
and the second average lamellar thickness observed is around 10 nm (examples are labeled
green in Figure 4). Comparisons made with an analogous PLLA-b-PCL diblock copolymer
(precursors) of the same molecular weight subjected to the same thermal protocol allows

assigning the thickest lamellae to the PLLA block and the 10 nm lamellae to the PCL block.

Phase | 150.0 nm

Figure 4. AFM phase micrographs of PEO23PCL34PLLA43™ observed at 25 °C, where three
different average lamellar thickness are observed corresponding to the three constituent blocks
(see text). Samples were quenched to 25 °C after isothermal crystallization in two steps: first at
81 °C and then at 50 °C. Reproduced with permission.[”*l Copyright 2017, ACS.

Besides the 15 nm and 10 nm lamellae, an additional and even smaller average lamellar
thickness was observed in the terpolymer by AFM. This third population of lamellae was

measured and exhibited an average lamellar thickness of ~ 7 nm (examples are labelled blue in
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Figure 4). These lamellae should correspond to the PEO block. In order to prove that the three
crystalline phases (PEO, PCL and PLLA) were present in the terpolymer, a WAXS pattern was
taken at 25 °C. The crystallographic planes of the three PLLA, PCL and PEO crystals were
observed in the WAXS spectrum. However, the PEO12o reflection overlaps with the PLLA113/203
peak. Thus, it is difficult to infer with certainty that the PEO block also crystallized. To resolve
this, SAXS/WAXS patterns were taken upon heating the crystallized terpolymer and the

corresponding diblock copolymer samples.
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a) b)
Figure 5. a) WAXS patterns of PEO23sPCL3sPLLA43™® taken at 25 °C, after isothermally
crystallizing the sample in two steps: first at 81 °C and then at 49.5 °C. b) Intensity ratio between
WAXS signals PLLA113/203and PLLA110/200 0f PCL43sPLLAs7*>4, and (PLLA113/203+PEO120) and
PLLA1101200 of PEO23PCL3sPLLA43®® during heating after crystallizing the samples in two
steps. Reproduced with permission.” Copyright 2017, ACS.

The intensity ratio between PLLA113203+PEO120 and PLLAz10200 reflections of the
PEO23PCL3sPLLA43Y terpolymer was measured and compared to the PLLAi113203 and
PLLA110200 WAXS reflections of the corresponding PCL43sPLLAs7 > diblock copolymer (see
Figure 5a). If the PEO block in the terpolymer also crystallized, the intensity of its crystalline
reflection (at the PEO12o signal) would be included into the intensity measured for the

PLLA113/203 reflection.
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Figure 6. a) Lorentz corrected SAXS patterns during heating of PEO23PCL3sPLLA43®?, after
isothermally crystallizing the sample in two steps: first at 81 °C and then at 50 °C. b) Evolution
of the long period values calculated from SAXS measurements during heating, after
isothermally crystallizing PEO23PCLasPLLA43™? at 81 °C (T1), and at 81°C and then 50 °C
(T2). c) Evolution of the PLLA lamellar thickness during heating, after isothermally
crystallizing the sample in two steps: first at 81 °C and then at 50 °C. Reproduced with
permission.[”* Copyright 2017, ACS.

Between 25 and 75 °C, the intensity ratio of the diblock copolymer does not vary
significantly (see black symbols). In this temperature range the PLLA phase remained

crystalline (see Figure 5b). On the contrary, at 25 °C, the terpolymer exhibited an intensity ratio
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that was almost twice the value of the one shown by the corresponding the diblock copolymer
(see Figure 5b). Thus, the presence of a PEO crystalline phase in the PEO23PCL34PLLA43!?
triblock terpolymer is confirmed by this experiment. Further increment of the temperature up
to 50 °C reduced the intensity ratio in the terpolymer until it matches the intensity ratio of the
diblock copolymer. DSC measurements demonstrated that the PEO block melts at 45 °C. As
conclusion, the WAXS experiments demonstrated without doubt the exceptional tricrystalline
structure observed by AFM for this ABC type triblock terpolymer.[’]

The nanoscale structure was assessed employing also X-Ray experiments. SAXS/WAXS
measurements were taken of the as crystallized triblock terpolymer at room temperature, and
then during a subsequent heating (see Figure 6a). The evolution of the long period (d) value
was registered as a function of temperature.l” It is very difficult to certainly assign the SAXS
peaks to a particular population of lamellae in the triblock terpolymer, since the alternated
lamellar structure in which the three blocks co-exist is not that clear. The long periods measured
are an average value of the crystalline lamellar phases present. Hypothetically, the PLLA
lamellae that crystallized first should be responsible for the scattering of the larger domain
spacing.

Figure 6a shows that two transitions occurred at around 50 and 60 °C. Between these
temperatures a significant increment in the intensity of the first SAXS peak can be seen and a
modest increment in the long period values (d). The first transition coincides with the melting
of the PEO block, and the second one with the melting of PCL block. Beyond 60 °C, the PLLA
block is the only one that remained crystalline and its interlamellar regions are composed of
mixed amorphous phase that include PLLA, PCL and PEO chains. Finally, at around 120 °C,
the long period values and, accordingly, the PLLA crystalline lamellar thickness increased (see
Figure 6b and c).[’4

The SAXS analysis of the PLLA block become more complex to elucidate due to the crystal

reorganization phenomenon that is characteristic of PLLA during heating. After the melting of
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PCL and PEO blocks, a high-g shoulder can be observed in Figure 6a (signaled with a blue
arrow). The analysis demonstrated that this small shoulder should correspond to a second order
reflection, and not to a second population of PLLA crystals of smaller lamellar thickness. If it
was so, these smaller PLLA crystals should have melted at lower temperatures and the shoulder
should have disappeared at those temperatures, but that is not the case. Both peak and shoulder
disappeared almost simultaneously beyond 132 °C.["4]

After the PEO and PCL blocks melting (at around 65 °C), the lamellar thickness of the
PLLA crystals in the triblock terpolymer was ~8.3 nm (see Figure 6c¢), which is similar to the
value reported by Xue et al.?! in symmetric PLLA-b-PEO diblock copolymers.l” Considering
this value, a three-fold chain conformation was estimated and proposed for the PLLA block.
Similarly and taking into account the lamellar thickness measured by both AFM and SAXS and
the length of the extended chain, the PCL and PEO blocks should have also crystallized in a

multi-folded arrangement.

7. Elucidating the tri-lamellar packaging of the PEO-b-PCL-b-PLLA triblock
terpolymers
The way the coexisting three types of lamellae arrange inside the triple crystalline
terpolymer spherulites is intriguing. After the crystallization of the PLLA block, the
crystallization of the PCL and PEO blocks takes place inside the mixed interlamellar amorphous
regions of the PLLA spherulites. Thus, it is very complex to resolve the lamellar self-assembly
within the triblock terpolymers, since the mixed amorphous domains contain both PCL and
PEO chains. It is complicate to ascertain the exact tri-lamellar packing inside the spherulite,
once these other two blocks have crystallized.. With the purpose of elucidating this question,
one-dimensional structural models have been employed.[™
The experimental SAXS curves were theoretically reproduced employing one-dimensional

density profiles p(x) from microstructural models (see Figure 7a). Several suppositions were
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considered. First, the whole system was described as a one-dimensional problem (ignoring the
contribution microphase separation because these triblock terpolymers exhibited miscibility in
the melt). Second, a Gaussian distribution of the long period of PLLA, and theoretical values
for long period and standard deviation were assumed. Thus, the intensity 1(q) can be calculated
numerically from the absolute square of the Fourier transform of the scattering density,
according to scattering theory. In this way, the periodic lamellar structure can be theoretically

described.
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Figure 7. a) Experimental SAXS data at 25.3 °C and simulated SAXS curve of the density
profile corresponding to crystalline PCL and PEO. b) Schematic representation of the
trilayered morphology in the triple crystalline PEO23PCL3sPLLA43' % triblock terpolymer.
Reproduced with permission.[’¥ Copyright 2017, ACS.

After several trails, the array model that best fitted the experimental data was an
insertion model in random fashion (Figure 7b), in which only a PCL or a PEO crystalline
lamella is inserted within the PLLA amorphous layer, that is in the intelamellar region in
between PLLA lamellae. The purpose of the simulation is to have a qualitative picture of the
microstructure by comparing experimental scattering SAXS curves with the theoretical ones,
instead of obtaining the exact structural parameters. Thus, the trilamellar morphology proposed

include only one lamella of PCL or one lamella PEO that inserts randomly between two

lamellae of PLLA [ (see Figure 7b).
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8. Overall isothermal crystallization kinetics of the PEO-b-PCL-b-PLLA triblock
terpolymers
Different crystallization phenomena have been reported in double crystalline diblock and
triblock copolymers. Adding a third crystallizable block complicates even more the
understanding of the crystallization behaviour of these multiphasic materials, since each block
and the environment created affects the crystallization of the other two. Therefore, different
sequential crystallization protocols were designed and implemented to follow the isothermal

crystallization behavior of each block in the PEO-b-PCL-b-PLLA triblock terpolymers,

8.1 Isothermal crystallization kinetics of the PLLA block

The isothermal cold crystallization of the PLLA block (i.e., crystallizing from the glassy
state) in the triblock terpolymers was followed after quenching from melt state until 0°C and
subsequent heating until the PLLA crystallization temperature was reached. This methodology
was chosen in order to increase the nucleation density of the very slow-crystallizing PLLA
block. Comparisons were made with analogous PLLA-b-PCL diblock copolymers of same
molecular weight of the blocks in order to establish differences.

The PCL and PEO blocks are molten during the crystallization of the PLLA block, since
this block crystallizes at higher temperatures. Thus, the molten PCL and PEO chains plasticized
the PLLA block, causing an increment in the supercooling needed to crystallize de PLLA block
(see Figure 8, left). Despite the plasticizing effect, an unexpected improvement on the overall
crystallization rate of the PLLA block in the terpolymers was observed, in comparison to the
crystallization rate of the same PLLA block in the analogous diblock copolymer. This behavior
contradicts the PLLA block crystallization reports in PCL-b-PLLA diblock copolymers, in

which it has been observed a diminishment of the crystallization rate of the PLLA block.[®]
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Figure 8. Schematic representation of overall isothermal crystallization behaviour of PLLA
(red, left), PCL (green, center) and PEO (blue, right) blocks in PEO-b-PCL-b-PLLA triblock
terpolymers. Reproduced with permission.[”® Copyright 2017, ACS.

The enhanced crystallization of the PLLA block in the terpolymers might be related to the
high mobility of the additional and extremely flexible PEO chains that might contribute to the
diffusion of the PLLA chains into the growing crystalline front. This plasticizing effect of the
molten PEO and PCL chains might increase the supercooling needed in order to induce the
crystallization of the PLLA block (please be aware that PLLA isothermal crystallization was
followed upon heating from 0 °C, i.e., cold isothermal crystallization).

A particular observation is that the increment in the PLLA block molecular weight caused
a slightly reduction of the PLLA crystallization rate at the same temperature. That is a common
observation for PLLA.U8841 |n addition, the crystallization degree of the PLLA block is smaller
in both terpolymers than in the diblock copolymers. The lower crystallinity degree is an
indication of the plasticizing effect induced by the molten PCL and PEO chains, which content
is higher in the terpolymers. In other words, it might become more difficult to add new
crystallizable segments to the crystallization front due to the diluent effect induced by the
molten PEO and PCL chains. Finally, the experimental data was fitted to the Avrami equation.
The Avrami index values obtained agreed with instantaneously nucleated axialites (or 2D
aggregates) in the terpolymers and with instantaneously nucleated spherulites in case of the

diblock copolymers.[’®
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8.2 Isothermal crystallization kinetics of the PCL block

The crystallization behavior of the PCL block in the terpolymers and diblock copolymers
was followed under two different crystallization protocols. Comparisons were made with a PCL
homopolymer of the same molecular weight as in the terpolymers and diblock copolymers. In
the first protocol (protocol 1) (see Figure 9, left), the PLLA block was first crystallized until
saturation, and then, the sample was quenched until the crystallization temperature of the PCL
block and the isothermal PCL crystallization was recorded. The purpose of this thermal protocol
was to evaluate the influence of the PLLA semicrystalline matrix surrounding the PCL chains
in the PCL block crystallization.

In a second protocol (protocol 2) (see Figure 9, right), the sample was quenched directly
from the melt until the crystallization temperature of the PCL block, in order to follow the
isothermal PCL block crystallization surrounded by a PLLA phase in amorphous state... In both

protocols, the PCL block was crystallized at temperatures in which the third PEO block stayed

molten.["5]
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Figure 9. Two step crystallization protocol (protocol 1) employ to follow the isothermal
crystallization of the PCL block with the PLLA phase previously crystallized (left). One step

crystallization protocol (protocol 2) to follow the crystallization of the PCL block while keeping
the PLLA phase amorphous (right).
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8.2.1 Protocol 1: Semicrystalline PLLA matrix
Even though the PCL block had to crystallize inside the interlamellar regions of the

previously formed PLLA crystals, the crystallization kinetics of the PCL block was faster in the
terpolymers and diblock copolymer than in the PCL homopolymer. Moreover, the supercooling
needed to crystallize the PCL block reduced. Those observations are an indication of a
nucleating effect caused by the PLLA crystals over the PCL crystallization (see Figure 8,
center, PLLA matrix crystallized). In addition, richer PCL domains are induced by the previous
crystallization of the PLLA block. During the PLLA crystallization, the PCL and PEO chains
are excluded from the crystallization front, leading to richer domains of PCL and PEO. Thus,
during the crystallization of the PCL block, the subsequent diffusion of the PCL chains to the
crystallization front is less hindered, promoting an acceleration in the PCL crystallization
Kinetics.

Comparing the terpolymer with the diblock copolymer (both with smaller PCL content), it
should be noted that the PCL block is in the middle and had one end attached to a molten PEO
chain and the other to a PLLA crystal. It seems that the PEO molten block improved the PCL
block crystallization. This suggested that the molten PEO chain, chemically bonded to one end
of the PCL block, might increase the diffusion and mobility of the PCL chains to the
crystallization sites. Therefore, a slight increment in the overall PCL crystallization kinetics
was detected. The amorphous PEO molten chains also aided to augment the PCL crystallinity
degree, as if we compared to the crystallinity of the PCL block in the diblock copolymers.
Increased mobility and diffusion of the PCL chains to the growing PCL crystal front might have

contributed to the enhanced PCL crystallinity.["®]

8.2.2 Protocol 2: Amorphous PLLA matrix
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The opposite crystallization behavior was observed for the PCL block in the terpolymers
under this condition. The crystallization kinetics of the PCL block in the terpolymers and
diblock copolymers was highly reduced, as compared to the PCL homopolymer. The
surrounding amorphous PLLA phase induced an anti-plasticizing effect that caused a reduction
of the overall crystallization kinetics. In addition, the supercooling needed to crystallize the
PCL block under this condition enlarged (see Figure 8, center, PLLA matrix amorphous). A
reason for the observed behavior might be a demixing process suffered by the PCL chains from
a mixed amorphous phase that contains more rigid PLLA chains. This demixing process is
required in order to nucleate and grow in the crystalline front. The PCL block crystallizes at
temperatures in which the chain movements of the more rigid PLLA block are slower, making
more difficult the crystallization of the PCL chains covalently attached to them. However,
comparing with the diblock copolymer, a third molten PEO block (as in the terpolymers)
enhanced the crystallization kinetics of the PCL block in the middle, increased the
crystallization temperature, and therefore, reduced supercooling needed to crystallize.

As in protocol 1, the molten PEO chains in the terpolymers caused a plasticizing effect,
enhancing the crystallization ability of the PCL block. The molten PEO chains might increase
the diffusion and mobility of the PCL chains to the crystalline front. Despite the fact that PEO
molten chains improved the crystallization rate, the PCL block crystallinity degree did not
significantly change in the diblock copolymer and terpolymer in the supercooling range
evaluated. In addition, fitting to the Avrami equation provided Avrami index values between 2

and 3.

8.3 Isothermal crystallization kinetics of the PEO block
Following the isothermal crystallization kinetics of the third PEO block alone is very
complex because the PEO crystallization and melting temperatures are very close to those of

the PCL block. Thus, a crystallization protocol in three sequential steps was needed in order to
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ensure that only the PEO block was crystallizing at the selected crystallization temperatures. .
The thermal protocol comprised a first crystallization of the PLLA block until saturation. Then,
in a second step, the as crystallized sample was rapidly cooled down to the PCL crystallization
temperature and this block was crystallized until saturation. The PCL crystallization
temperature was chosen to be high enough in order to keep the PEO chains melted. Finally, in
a third step, the sample was again rapidly cooled down until the PEO crystallization temperature
and the PEO isothermal crystallization was registered. In this way, it was evaluated the effect
of the previously formed PLLA and PCL lamellae on the PEO block crystallization in the
terpolymer.

Both PLLA and PCL crystalline lamellae imposed a confinement effect over the PEO
crystallization, reducing its crystallization, kinetics in comparison to the PEO homopolymer.
Moreover, the PEO block crystallized at lower crystallization temperatures. Thus, a higher
supercooling was required to induce the PEO block crystallization (see Figure 8, right). The
previously formed PCL and PLLA crystals constituted a hard confinement case. In other words,
the PCL and PLLA lamellae established a hard environment surrounding the amorphous mixed
phase that included the PEO block chains. As it was proposed by the theoretical SAXS analysis,
the PEO chains may have only crystallized in the limited free interlamellar spaces between the
PLLA lamellae, but only those spaces in which none PCL lamella grew first. The proposed
model suggested that the PLLA interlamellar zones are not big enough to hold both PCL and
PEO block lamellae together. Therefore, the PCL and PLLA lamellae hindered the PEO block
crystallization, reducing both its crystallization rate and its crystallinity degree, in comparison

to the PEO homopolymer.

[75]

9. Melting behavior and thermal fractionation of the PEO-b-PCL-b-PLLA triblock

terpolymers by means of Successive Self-nucleation and Annealing (SSA) protocol
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The melting behavior of these ABC triblock terpolymers was analized by DSC. In order to
obtain a tricrystalline terpolymer (that is a triblock terpolymer in which all the block could
crystallize separately), it is of major importance to employ very small crystallization rates
(1°C.min). Beyond this value, it is not possible to identify in a DSC the crystallization of the
PEO and PCL blocks independently, since their inherent crystallization temperatures are very
close. The same problem occurs with their melting temperatures.

Figure 10 depicts the DSC heating scan at 20 °C.min, after crystallizing the samples at
1°C.min’, of both PEO-b-PCL-b-PLLA triblock terpolymers. The melting of the PLLA block
clearly takes place at around 120 °C, identified by a broad endothermic peak with a minor low-
temperature shoulder, that is ascribed to a recrystallization-melting mechanism.[6® 887 The
PEO and PCL crystals melt at lower temperatures between 40 and 60 °C. A double endothermic
peak located between these temperatures indicates the melting of these blocks, but is not
possible to separate them by a standard cooling and heating DSC scan.

A highly useful thermal fractionation technique is Successive Self-Nucleation and
Annealing (SSA). It was designed and implemented by Miiller et al.l’””- 8 and it is conceptually
based on the molecular segregation capacity exhibited by semicrystalline polymeric systems
when they are isothermally crystallized or annealed. As advantages, SSA can thermally
fractionate a polymer sample in a short time, employing standard DSC equipment. It consists
on the sequential application of self-nucleation and annealing steps to a polymer sample. The
final DSC heating run reveals the distribution of melting points induced by the SSA protocol.
In order to properly apply the technique, a previous Self-Nucleation (SN) thermal protocol must
be conducted in the samples. This protocol allows obtaining the Ideal Self-Nucleation

temperature (Ts), which will be the starting temperature of SSA.
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Figure 10. Subsequent DSC heating scans at 20 °C min™* after cooling at 1 °C min™ of the PEO-
b-PCL-b-PLLA triblock terpolymers. Reproduced with permission.[” Copyright 2016, RSC.
Therefore, in order to apply the SSA thermal fractionation treatment to the terpolymers and
the corresponding diblock copolymers and PLLA homopolymers, we selected the sample with
the highest PLLA melting temperature and conducted a self-nucleation protocol (see Figure
11a) on it. The aim is to produce self-nuclei by partial melting of a standard crystalline state
(see referencel” 8 for more details). From the SN experiments, the Domains of Self-
Nucleation can be determined. Depending on the Ts chosen, the polymer can melt entirely, only
self-nucleate or self-nucleate and anneal. The ideal Ts temperature is the lowest temperature
within the self-nucleation domain. It can be identified as that temperature prior to that one that

produces a characteristic annealing peak (i.e., domain I1) in the subsequent melting scan.
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The sample selected was the PCL4sPLLAs7*>* diblock copolymer. Figure 11b shows the
heating scan after the isothermal step at different Ts values (indicated in black for each curve).

The characteristic annealing peaks at higher temperatures (signaled with an arrow in the green
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curves, i.e., domain I11) when 142 °C was used as self-nucleation temperature (Ts). Therefore,
the ideal Ts temperature to apply the SSA protocol was 143 °C.

The SSA protocol consists of successive self-nucleation and annealing steps starting from
Tsideal (See Figure 12) until the full width of the melting range is covered. The difference
between Ts,ideal and the subsequent Tsx is usually 5 °C. This is the fractionation window and it
should be kept constant throughout the SSA experiment.[’” 78 After several cycles, the sample
is finally heated until complete melting. In this final step, the result of the SSA thermal
fractionation is revealed.

Figure 13 depicts the final DSC heating scans of the PEO-b-PCL-b-PLLA triblock
terpolymers, corresponding PCL-b-PLLA diblock copolymers and PLLA homopolymers after
being subjected to the SSA treatment.

It is clear that the SSA treatment was effective in fractionating the PLLA block. These
fractions are more evident in the triblock terpolymers and diblock copolymers with higher
PLLA content, as expected. The series of melting peaks observed in both the PLLA range and
the PEO/PCL range corresponds to the melting of crystals of different lamellar thickness
created and annealed at each Ts.

Interestingly, the molten PEO and PCL chains contributes to enhance the lamellar thickness
of the PLLA lamellae since the thermal fractions of this block melt at higher temperatures in
comparison with PLLA homopolymer. This represents an additional evidence of the improved
PLLA crystallizability caused by the PCL and PEO molten chains. What is more significant is
that the SSA fractioning is able to clearly separate the melting peaks of the PCL and PEO blocks
in the triblock terpolymers. Comparing to Figure 10, in which a double melting peak was
observed in the range between 40 and 60 °C, after the SSA, the melting transitions of PEO and
PCL are now well distinct (see Figure 13c), as the peaks above 50 °C are clearly due to the

melting of PCL crystals (easily spotted by comparing diblock and triblock heating scans).
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Figure 13. a) DSC heating scans at 20 °C.min? for the PEO-b-PCL-b-PLLA triblock
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thermal treatment. b) Zoom of the PLLA zone. ¢) Zoom of the PCL-PEO and PCL zone.
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Which block melts first was again elucidated by WAXS analysis. Figure 14 shows the
WAXS patterns taken on heating of a SSA treated triblock terpolymer. It can be seen that the
PEO reflection disappears first, indicating that PEO crystals are the first to melt upon heating,
and after, the PCL block crystals. To sum up, the SSA technique was effective to properly

fractionate the three blocks in triple crystalline PEO-b-PCL-b-PLLA triblock terpolymers.
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Figure 14. WAXS patterns of PEO20PCL42PLLA24'! taken at different temperatures during
subsequent heating after SSA thermal treatment.

SSA is a versatile technique to thermally fractionate very complex systems, such as
ABC triple crystalline triblock terpolymers. It can yield valuable information about the
crystallization order in block copolymers and terpolymers, since it is very sensitive to any
interruption of the chain that can limit its crystallization ability. Complementary analysis of the
phase segregation employing SAXS techniques will be pursued in order to elucidate the

structure of the phase segregation as a consequence of the SSA treatment.
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9. Conclusions

In multicrystalline block copolymers, microphase separation driven by crystallization
forces self-assemby into well-ordered lamellar nanostructures, depending on the crystallization
conditions, composition and physical features of the blocks. These ordered nanostructures can
be used in lithography, medical and optoelectronic devices. Additionally, multicrystalline block
copolymers allow the study of the crystallization behavior at the nanoscale under confinement
environment, and the crystallization analysis becomes more challenging as the number of
potentially crystalline phases increases.

Particularly, the complexity of the crystallization behavior of PEO-b-PCL-b-PLLA
triblock terpolymers with three crystallizable phases relies on different competitive effects that
depend on the crystallization conditions and the particular physical properties of the blocks. In
that sense, whether one of the phases is molten, amorphous or crystalline can affect the ability
to crystallize of the other two, and as a result, complex opposite effects such as plasticization,
nucleation, anti-plasticization and confinement might take place. Particularly, the PCL and PEO
blocks caused a plasticizing effect over PLLA crystallization, while the PLLA phase could
induce a nucleating effect over the PCL crystallization if this phase is crystallized, or an anti-
plasticizing effect if this phase is amorphous. The PEO block crystallization is subjected to a
hard confinement effect when the other two blocks are first crystallized. Thus, depending on
the crystallization conditions, a trilamellar morphology can be tailored to tune the
biodegradability of the material at the nanoscale. Moreover, SSA thermal fractionation is a
suitable technique to thermally separate the three phases present in the triblock terpolymers.

The addition of a third crystallizable block to biodegradable diblock copolymers broadens
the potential application of these biodegradable materials. Further analyses of the nucleation,
crystallization and melting behavior, with novel techniques will be pursued. Surely,
understanding the crystallization and self-assembly behavior of triple crystalline triblock

terpolymers is expected to be in the focus of researchers for the next years.
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New generation of triple crystalline ABC triblock terpolymers composed of PEO, PCL and
PLLA (PEO-b-PCL-b-PLLA). The remarkable tricrystalline structure and the complex
crystallization behavior of these materials are discussed. New insights on the intricate interplay
between the blocks are presented by means of Successive Self-nucleation and Annealing (SSA)
thermal fractionation.
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