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Laburpena
Gizaki-makina elkar-ulertzea eskatzen duten hainbat atazetarako ezinbestekoa da

objektuen arteko erlazio espazialak ulertzea, eta hauen distribuzio espazialen jakintza
izatea. Irudiek, bertan agertzen diren objektuen arteko erlazio espazialak gordetzen

dituzte, baina baita irudien testuzko deskribapenek ere. Irudien testuzko deskribapenek
erlazio espazialei buruzko informazio esplizitua erakutsi arren; kasu askotan, informazio

inplizitua gordetzen dute. Inplizituki agertzen den informazio hau ulertzeko, ezinbestekoa
da objektuen eta testuinguruaren oinarrizko jakintza izatea. Aurrez garatutako

proiektuek, subjektu, erlazio eta objektuen arteko interakzioa baliatuz, objektuaren kaxa
inguratzailea (Bounding Box) iragartzea izan dute helburu. Hirukotea osatzen duten
hitzak ontologia bateko kontzeptuak izanik. Proiektu honetan testuzko deskribapenek
objektua irudian kokatzeko baliagarria den informazio gordetzen dutela erakutsiko da;
lehenengo aldiz, eskuz etiketatutako kontzeptu hirukoetan emaitzak hobetuz. Relations
in Captions (REC-COCO) datu multzoa sortu da frogapen hau egiteko. Datu multzo
hau MS-COCO eta V-COCO datu multzoen uztarketaren emaitza da. Hau sortzeko

irudietan agertzen diren objektuen, eta testuzko deskribapenetan agertzen direnen arteko
lotura egin da. Proiektu honetan ondorengoa frogatu da: (1) testuzko deskribapenetatik

lortutako hirukoteei testuzko deskribapenaren informazioa gehitzean, ontologiako
kontzeptu hirukoetan errendimendua hobetzen da; (2) hobekuntza mantendu egiten da

subjektu eta objektua soilik erabiltzean, esplizituki adierazi gabe zein den bi hauen
arteko erlazioa. Beste modu batera esanda, testuzko deskribapena eta objektu-subjektu

erreferentzia izanik, eredua gai da objektuaren posizioa eta tamaina zehazteko.

Abstract
Understanding spatial relations between objects and their distribution in space is
essential for human-machine collaboration in general and for specific tasks such as

composing sketched scenes, or image generation from textual descriptions (captions).
Textual descriptions include explicit spatial relations, but often spatial information is
implicit and relies on a common understanding of objects and their context. Previous

work on extracting spatial relations from text has predicted bounding boxes using
(subject, relation, object) triplets of ontology concepts as input. We show for the first

time that the captions encode background information which is useful to place objects in
an image, yielding better results than manually defined concept triplets. To prove this we
have built Relations in Captions (REC-COCO), a dataset derived from MS-COCO which
contains associations between words in a caption and the corresponding bounding boxes
in the image. We have adapted a well-known model to the task, with the results showing
that: (1) the use of the full text of the caption in addition to the textual triplet allows to

improve over manual concept triplets; (2) the improvement also holds when only using
the subject and object, without explicitly detecting which is the textual relation. From
another perspective, our work shows that given a caption, a reference subject and the

object in the caption, the system can assign a location and a size to the object using the
information in the caption alone.
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1 Introduction

Natural Language is the most common way used by the humans to communicate and
interact with each other. Human-machine communication has become more popular in
the last years, being one of the most active research areas in Natural Language Processing
(NLP). Natural Language Understanding often requires everyday knowledge about the
spatial arrangements of objects. To properly understand commands such as “bring me the
book lying on the table”, an automatic agent needs to identify the objects that compose
the scene (book, table, etc.), infer the relative positions mentioned in the text (e.g., the
agent must know that the object is on the table) and understand the scene composed by
them. Although human beings have an innate ability to understand the space around
them, inferring spatial relations is one of the main task in Artificial Intelligence.

Exploiting information represented in images as way to overcome the aforementioned
knowledge acquisition bottleneck has been subject of many recent works. Some authors
propose to associate actions with their semantic arguments (subject, object, etc.) with
pixels in images (i.e., bounding boxes of objects) as a way towards understanding the
images. This task consists of inferring relative spatial arrangement of two objects under a
relationship. For it, the bounding box of the subject and the structured triplet (Subject,
Relationship, Object) is given to the model as an input. The structured triplet contains
the information about the spatial relations. This information is used by the system to
output the location and size of the bounding box of the object.

Malinowski and Fritz (2014) demonstrated that it was possible to create a system to
infer relative spatial relations given two objects and the spatial preposition. We can denote
this relation as a structured input (Object1, spatial preposition,Object2). In Collell et al.
(2018) proposed a method to not only infer explicit spatial preposition (e.g., “below”, “on”,
etc.), but also implicit spatial relationships (e.g., “riding”, “catch”, etc.). We can denote
this relation as (Subject, Relationship, Object). We will call triplets to this structured
inputs. From now on we will use the acronym (S,R,O) to refer to triplets. There exists
two type of triplets: concept triplets and textual triplets. Concept triplets are manually
extracted from among a small vocabulary of an ontology. Textual triplets, on the other
hand, are extracted directly from the textual description of the image. Figure 1 illustrates
the difference between this two type of triplets.

There has been a great interest in tasks related to visual scene understanding in re-
cent years, such as human-object interaction. Due to this interest, there are large-scale
image-based datasets like MS-COCO or Visual Genome. One way to present human-
object interactions are triplets, but usually this datasets contains concept triplets that
are extracted from visual resource. Due to there are triplets that are not related to the
human-object interaction described by the textual description.

Language Analysis and Processing
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Person Riding Horse
Concept triplet

A woman rides horse through the dry desert
environment

MS-COCO Caption

Woman Rides Horse
Textual triplet

Figure 1: Example of how concept triplets and textual triplets are extracted.

1.1 Motivation and goals

Our work starts from the observation that there is often a textual description1 of the image
which mentions the objects to be placed alongside information which helps to place the
objects in the image. We argue that the information presented in triplets alone is often
insufficient to properly infer spatial relations. However, this hypothesis may not seem
surprising. Nobody tries to show in detail that the contextual information conveyed in
the descriptions is useful, and propose an architecture that is able to successfully use this
information to get better spatial relations.

Figure 2 shows examples of pairs of images where only using the triplet is not enough
to correctly predict the spatial relation. In each row there are two examples for the same
triplet, (person, reading, book) and (man, catch, frisbee), but the spatial relation between
subject and object is completely different. Note that the captions do describe this differ-
ence. For instance, in the top-left caption the person is sitting while it is reading a book,
so that the book is around the middle of the bounding box for the person; while in the
top-right caption the person is laying in bed, and therefore, the book is slightly above the
person. For this reason, we think that the form of captions encode contextual information
which is useful to infer spatial relations; and thus, place objects in an image with a better
accuracy than previous methods that uses manually produced concept triplets.

The main goals of this project are the following: (1) compare the performance to infer
spatial relations between the textual triplets as mentioned in the textual description and the
manually produced concept triplets; (2) a deep study of the performance between manually
produced concept triplets and the use of the full context of the caption in addition to the
textual triplet; (3) if there exists no dataset that contains all the needed characteristics,
create a dataset to validate the aforementioned hypothesis.

1We take caption and textual description to mean the same.
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Figure 2: Examples of the impact of the context in captions when placing objects in an
image. In each row there are two instances of the same triplet (S, R, O) (shown in red,
purple and green, respectively), occurring in two different images and respective captions.
Given the red bounding box the system needs to output the position and size of the green
box. The information in the triplets is insufficient to correctly infer the spatial relation,
while the caption does contain relevant information. Best viewed in color.
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2 Background of Neural Networks

In this chapter the main basic Neural Networks architectures used in NLP and CV will
be presented. The goal of this chapter is present the main basic architectures required to
understand the explanations given in the following chapters.

In the recent years the use of Artificial Neural Networks (NN) has grew exponentially.
Nowadays, we create algorithms able to solve problems such as image understanding, speech
processing, speech synthesis, machine translation, and wide range of other task.

NNs began as an attempt to exploit the architecture of the human brain to perform
tasks that previous algorithms were not able to do. In this type of architectures neurons
are connected to each other in various patterns forming a directed, weighted graph.

Although in the 70s a lot of works were published about NNs systems, the computers
at that time lacked enough power to process useful NNs. It was not until the end of 2000s
that appeared systems able to perform tasks that conventional algorithms had little success
with. This was partly due to the increase of the power to process of the new Graphical
Processing Units (GPUs) and distributed computing. The other reason behind the success
of this systems was the amount of data available. NN systems require huge amount of data
to train the models and optimize its weights. As a consequence, nowadays we are able to
create systems able to perform tasks that a few years ago were unthinkable.

In the following sections, we will present the basic NN systems and the specific systems
used in the field of NLP and CV.

2.1 Feed-Forward Network (FFN)

Figure 3: Simple Feed-Forward Neural Network with single hidden layer. Source: https:

//labur.eus/wFtZg

FFNs were the first and simplest type of NN devised. In FFNs the information always
moves in one single direction, forward; from the input nodes, through the hidden nodes
and finally to the output nodes. The simplest kind of neural network that can be created is
a single-layer perceptron, which consists of a single layer of output nodes. However, a
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single-layer network is not commonly used. Instead that multiple layers of computational
units are connected in a feed-forward way. The output of layer i is the input of layer (i+1).
We call Multi-layer perceptron to this type of architectures. Figure 3 illustrates a two
layer perceptron.

The formulation of a single-layer perceptron is as follows:

y = σ(Wx+ b) (1)

where W denotes the vector of weights, x is the vector of inputs, b is the bias and σ is
the non-linear activation function.

2.2 Convolutional Neural Networks (CNN)

The problem of FFNs is that they tend to overfit due to the presence of many parameter
within the network to learn. Therefore, Fukushima (1980) proposed a hierarchical multi-
layered neural network capable of robust visual pattern recognition through learning. In
this project we do not use this type of neural networks. So, we will not give a detailed
explanation. CNNs are used in task such as image classification, image recognition, ob-
ject detection, but also NLP tasks such as sentiment analysis, spam detection or topic
categorization.

Figure 4: Illustration of a CNN model. Source: https://labur.eus/aSGYf

In CNNs a filter is applied to an input, achieving a feature map. This neural networks
are normally used before a pooling or sub-sampling layer, which enables the network to
reduce the dimensionality of the input and extract the most meaningful features layer after
layer (see Figure 4). For it, in each step a matrix with different dimensionalities is applied
and the weight of this matrix are adjusted by itself. Figure 5 shows the process of a CNN
layer. Where the yellow matrix represent the filter, the green matrix the input image and
the red matrix the output convolved feature matrix

Language Analysis and Processing
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Figure 5: Illustration of a 2D CNN layer. Source: https://labur.eus/aSGYf

2.3 Generative Adversarial Networks (GAN)

(Goodfellow et al., 2014) proposed a framework for estimating generative models via an
adversarial process. The proposed framework consist of a generative model that is pitted
against an adversary: a discriminative model that learns to determine whether a sample is
from the model distribution or the data distribution. The goal of the generative model is to
generate fake samples to persuade the discriminative model that are real samples. GANs
are able to generate realistic images that some times humans are not able to distinguish if
they are real or fake.

2.4 Word embeddings

Word embeddings are vectors of real numbers that represent each word or phrase from a
given vocabulary. (Mikolov et al., 2013) proposed two architectures for computing vector
representations of words using large datasets. They demonstrated that NN language models
can be successfully trained in two steps: First, distributed representations are learned, and
then a conventional NN is trained for a given task. This is considered one of the most
important revolutions in NLP, because all the words of a given vocabulary are represented
in the same space, where words that have similar meanings are close to each other in the
embedding space.

There exists different approaches to learn this vectors, but CBOW, Skip-gram (Mikolov
et al., 2013), GloVe (Pennington et al., 2014) and fastText (Bojanowski et al., 2017) are
the most popular. Continuous Bag-of-Words (CBOW), computes the distributed represen-
tation of each word taking account the words context. Continuous Skip-gram model tries
to maximize classification of a word based on another word in the same sentence.

In contrast, Bojanowski et al. (2017) argued that using a distinct vector representation
for each word, the skipgram model ignores the internal structure of words. Therefore, they
proposed a new approach based on the skipgram model called fastText, where each word
is represented as a bag of character n-grams. Each character n-gram is associated with a
vector representation; defining words representation as the sum of these representations.

Language Analysis and Processing
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In the case of GloVe embeddings, unlike CBOW and Skip-gram, do not rely in local
statistics (local context information of words), but incorporate global information to obtain
word vectors. The model reads all the corpus and builds the co-occurrence matrix, as shown
as in Figure 6. Using this matrix they proposed an equation to extract the word vectors
(see (Pennington et al., 2014) for a more detailed explanation).

Figure 6: An example of the co-occurrence matrix used to extract GloVe embeddings.
Source: https://labur.eus/LsrG8v

This word representations were an amazing breakthrough. Though, as said above, each
word of a vocabulary is represented by one vector, but in Natural Language there exists
words with more than one meaning. It is not possible to represent the multiple meanings
of a word with a vector. In order to deal with this problem other advanced models are
created to capture not only a static semantic meaning but also a contextualized meaning.
This new type of embeddings are called contextualized word embeddings. Let’s see
an example, the word bank has at least two meanings: the ground at water’s edge and
the financial establishment. Although, when we look to static embeddings the word bank
is represented with a vector. In contrast, when we see the word bank in a sentence, we
are able to identify the correct sense used in that context. This is the main idea behind
contextualized word embeddings.

There exists different neural network architectures to capture this contextualized word
embeddings, but the most popular are ELMO and Transformers. The Transformer archi-
tecture has many benefits over the conventional sequential models as ELMO, this is in
part because of eliminating the sequential dependency. To do this, a new architecture was
proposed by adding an attention mechanism following by a feed-forward neural network.

A more detailed explanation of the model is presented below in Section 2.9. With this
contextualized word embeddings, new models are getting state-of-the-art results in several
tasks. It is for this that we experimented with this type of contextualized word embeddings
in this project.

2.5 Average embedding

The average embedding model is a simple method to get the representations of the sentence.
In this case, given a sequence S = w1, w2, ..., wN , where N is the length of the input text,

Language Analysis and Processing
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we represent each word wi with the GloVe embedding vi. And just averages the embeddings
of each token in the caption:

ccap =
1

N

N∑
i=1

vi (2)

Although it is the simplest method to generate sentence representations from word
embeddings, sometimes this method has a good performance, being a good baseline.

2.6 Recurrent Neural Networks (RNN)

In Natural Language Processing we have not a fixed-size vector as input and a fixed-size
vector as output. Most of the time we work with sequences in the input, the output, or in
most general case both. The recurrent nets allow us to operate over sequences of vectors,
something very exiting for NLP tasks. Therefore, this type of NNs are very used in NLP
task such as machine translation and language modeling or speech recognition tasks.

RNNs (Rumelhart et al., 1986) are networks composed by nodes where connections
between nodes form a directed graph along a temporal sequence. This allow to RNNs use
their internal state to process sequences inputs. In other words, they get an input vector
x and give back vector y. However, crucially this output vector’s contents are influenced
not only by the input you just fed in, but also on the entire history of inputs you have fed
in in the past.

The formulation of the forward pass of an RNN is as follows:

ht = tanh(Wxxt +Wrht−1 + br) (3)

where xt is the input at time t, Wx is the weight matrix for the input, Wr is the recurrent
weight matrix, br is the bias of the recurrent state and ht is state of the RNN cell at time
t. Figure 7 illustrates a basic RNN cell, according to the equation 3.

As with FFNs, RNNs usually works better stacking models up. For example, in a
two RNNs architecture, one RNN is receiving the input vectors and the second RNN is
receiving the output of the first RNN as its input.

In theory, RNNs are able to handle long-term dependencies. In practice, they are not
able to learn them. In (Bengio et al., 1994) demonstrated founding some fundamental
reasons that it might be difficult to learn this dependencies to RNN systems. For this
reason, a special kind of RNN is presented.

2.7 Long Short-term Memory (LSTM)

LSTMs were introduced by Hochreiter and Schmidhuber (1997), and are used in a large
variety of problems. LSTMs are explicitly designed to avoid the problem that RNNs have.
Basically, this networks have the same basic idea as RNNs, they are composed by nodes
where connections between nodes form a directed graph along a temporal sequence. But
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Figure 7: Representation of a basic Recurrent Neural Network cell. Source: https://

colah.github.io/posts/2015-08-Understanding-LSTMs

in this case, the repeating module has a different structure. LSTMs are composed by four
layers to avoid the problem of long-term dependencies.

Figure 8: The repeating module in an LSTM with four interacting layers. Source: https:
//colah.github.io/posts/2015-08-Understanding-LSTMs

Figure 8 shows an intuitive illustration of the LSTM cell. In this diagram, each line
carries an entire vector, from the output of one node to the inputs of others. The pink
circles represent pointwise operations, like vector addition, while the yellow boxes are
learned neural network layers. Lines merging denote concatenation, while a line forking
denote its content being copied and the copies going to different locations. But for a better
understanding of the notation used in this figure, see Figure 9.

The formulation of the LSTM cell is the following:
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Figure 9: Illustration of the layers and functions used in the LSTM cell. Source: https:

//colah.github.io/posts/2015-08-Understanding-LSTMs

ft = σ(Wf · [ht−1, xt] + bf ) (4)

it = σ(Wi · [ht−1, xt] + bi) (5)

ot = σ(Wo · [ht−1, xt] + bo) (6)

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

ht = ot ∗ tanh(Ct) (9)

where ht is the output of the LSTM cell at time t and Ct is the state of the actual cell.
This state is the actual memory that save the combination of all the previous states and
the actual state.

So far we have seen architectures used to process sequences. In the next section we will
present a model based on LSTMs to extract vector representations of an input sequence.

2.8 BiLSTM encoder

The Bidirectional Long Short-term Memory (BiLSTM) model consist of two hidden layers
of opposite directions to the same output. As said above language models as RNN or
LSTM are trained to predict the next token using the information of the previous tokens
of the sequence. Due to the sequential nature of this type of networks, they can only use
the information of the previous tokens ignoring some available input information.

To use all available input information, Schuster and Paliwal (1997) proposed the BRNN
model, the idea was to split the state neurons of a regular RNN in a part that is responsible
for the positive time direction and a part for the negative time direction. The outputs of
the forward states are not connected to the inputs of backward states, and vice versa. The
structure of this model can be seen in Figure 10. A BRNN computes the forward hidden

sequence
−→
h , the backward hidden sequence

←−
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer formt = 1 to T and updating the output
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layer:

−→
h t = H

(
W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
(10)

←−
h t = H

(
W

x
←−
h
xt +W←−

h
←−
h

←−
h t−1 + b←−

h

)
(11)

yt = W−→
h y

−→
h t +W←−

h y
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Figure 10: Bidirectional Recurrent Neural Network. Source: (Graves et al., 2013)

The Bidirectional Long Short-term Memory was proposed by (Graves et al., 2013), this
model combines BRNNs with LSTM giving the access to long-range context in both input
directions.

In this project, BiLSTM is utilized as a sentence encoder, that is to say, we give the
caption of the images are fed into this architecture. The model returns two outputs, the
final states of the backward and forward layers. Finally, this two states are concatenated
to get the representation of the input sentence.

2.9 BERT encoder

BERT is a language representation model which stands for Bidirectional Encoder Rep-
resentations from Transformers. This model is designed to pre-train deep bidirectional
representations jointly conditioned on both left and right contexts. The model can be
fine-tuned for different downstream task. For that the BERT model is first initialized with
the pre-trained parameters, and this parameters are fine-tuned using labeled data. The
authors have shown that BERT was the first fine-tuning based representation model that
is able to achieve state-of-the-art performance on several downstream tasks.
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Figure 11: The encoder of the Transformer - model architecture. Source: (Vaswani et al.,
2017).

Architecture

The BERT’s model architecture is a multi-layer bidirectional Transformer encoder based on
the original implementation proposed by (Vaswani et al., 2017). The encoder is composed
of a stack of N = 6 identical layers, where each one is broken down into two sub-layers:
a multi-head self-attention mechanism and a position-wise fully connected feed-forward
network. This two layers are employed using residual connection (He et al., 2016), followed
by layer normalization (Chollet, 2017). Let x be the input representation of the sentence,
the output of each sub-layer would be the following

output = LayerNorm(x+ SubLayer(x)) (13)

where SubLayer(x) is the function implemented by the sub-layer itself. Figure 11 shows
the BERT’s model architecture.

Multi-Head Self-Attention. As we say above, the encoder of the Transformer has two
sub-layers, being the Multi-Head self-attention one of the layers. The authors call to their
particular attention “Scaled Dot-Product Attention” (see Figure 12). The input consists of
three vectors: the query vector q ∈ dq, the key vector k ∈ dk and the values vector v ∈ dv.
In practice, the queries, keys and values are packed together into matrices Q, K and V .
Once the matrices are packed the output matrix of the attention function is computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (14)

The dot-product attention function is identical to the function described above, except

for the scaling factor of
1√
dk

. For large values of dk, the dot products grow large in mag-

nitude, pushing the softmax function into regions where it has extremely small gradients.
This factor is used to counteract this effect.
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Figure 12: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel. Source: (Vaswani et al., 2017).

The Transformer encoder linearly projects the queries, keys and values h times with
different, learned linear projections to dk, dk and dv dimensions, respectively, instead of
using a single attention function. The attention functions are performed in parallel, yielding
dv-dimensional output values. This values are concatenated and projected once again,
allowing this way to jointly attend to information from different representation sub-spaces
at different positions.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (15)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (16)

Where the projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,
W V

i ∈ Rdmodel×dv and WO
i ∈ Rhdv×dmodel . Due to the reduced dimension on each head, the

computational cost is similar to that of single-head attention with full dimensionality.

Position-wise Feed-Forward Network. Each of the layers in the encoder contain a
fully connected feed-forward network, which is applied to each position separately and
identically. This consists of two linear transformations with a ReLU activation in between.
This activation function stands for rectified linear unit, that it is linear for all positive
values and zero for all negative values. Mathematically is defined as max(0, x).

FFN(x) = max(0, xW1 + b1)W2 + b2 (17)

The parameter of the linear transformation are not shared between layers. The dimen-
sionality of input and output is dmodel, and the inner-layer has dimensionality dff = 4dmodel
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Positional Encoding. Since the Transformer encoder contains no recurrence and no
convolution, in order to make use of the order of the sequence, the information about
the relative or absolute position of the tokens in the sequence is injected. To this end,
“positional encoding” is added to the bottom of the encoder. This positional encoding has
the same dimension dmodel as the embedding, so that the two can be summed. Though
there are different positional encoding, the authors have used the sine and cosine functions
of different frequencies:

PE(pos, 2i) = sin(pos/100002i/dmodel) (18)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel) (19)

where the pos is the position and i is the dimension.

Input Representations

In NLP there are different type of down-stream task. Due to such a variety, it is not easy
to create a model able to handle them all. For example, the input is not the same on
single sentence classification tasks or question answering tasks. As we said above, BERT
handles a variety of down-stream tasks. To that purpose the input representation is able to
unambiguously represent both a single and a pair of sentences (e.g., 〈Question, Answer〉)
in one token sequence. Thus, a “sequence” refers to the input token sequence to BERT,
which may be a single sentence or two sentences packed together.

This model uses WordPiece embeddings (Wu et al., 2016) to represent the input sen-
tence tokens. The words are broken into word pieces given a trained WordPiece model.
Special word boundary symbols are added before training of the model such that the origi-
nal word sequence can be recovered from the WordPiece sequence without ambiguity. This
is an example of a word sequence and the corresponding WordPiece sequence:

• Word: Jet makers feud over seat width with big orders at stake

• WordPiece: J et makers fe ud ver seat width with big orders at
stake

In the above example, the word “Jet” is broken into two WordPiece “ J” and “et”.
“ ” is a special character added to mark the beginning of a word.

The BERT model uses WordPiece embeddings with a 30, 000 token vocabulary, where
the first token of every sequence is a special classification token ([CLS ]). This token is used
as a sequence representation for classification tasks.

The sentences are packed together using a special character too. First, the two sen-
tences are separated with the token ([SEP ]). For a given token, its input representation is
constructed by summing the corresponding token, segment, and position embeddings. The
segment embeddings are added to every token indicating whether it belongs to sentence A
or B. Finally, the position embeddings are used to indicate the position of each token in
the sequence. Figure 13 show an example of the input representation of BERT.
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Figure 13: BERT input representation. The input embeddings are the sum of the token
embeddings, the segmentation embeddings and the position embeddings. Source: (Devlin
et al., 2019)

Pre-training BERT

The BERT model is pre-trained using two unsupervised task, instead of the traditional
left-to-right or right-to-left language models.

Masked LM. Bidirectional conditioning would allow each word to indirectly “see itself”,
and the model could trivially predict the target word in a multi-layered context. Therefore,
the authors proposed to simply mask some percentage of the input tokens at random, and
then predict those masked tokens. In this case, the final hidden vectors that correspond to
the mask tokens are fed into an output softmax over the vocabulary. In the original paper,
they masked 15% of all WordPiece tokens in each sequence.

This method allows the system obtain a bidirectional representation of words, but using
the [MASK ] token the 100% of the time would end up on a mismatch between the pre-
training and fine-tuning, because this token would not be present in the fine-tuning step.
To mitigate this, the authors present the following solution:

• The randomly selected token is replaced with the [MASK ] token 80% of the times.

• The randomly selected token is replaced with a random token 10% of the times.

• The randomly selected token is not replaced 10% of the times.

Next Sentence Prediction (NSP). In the case of some downstream tasks such as
Question Answering (QA) and Natural Language Inference (NLI) the BERT model needs
to understand the relationship between the two input sentences, which language models
can not directly obtain. For it, BERT model is pre-trained for a binarized next sentence
prediction task. They chose the sentences A and B for each pre-training example:

• 50% of the time B is the actual next sentence that follows A (labeled as IsNext).

• 50% of the time B is a random sentence from the corpus (labeled as NotNext).
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BERT pre-trained models

There are two available BERT pre-trained models2:

• BERTBASE: contains 12 Transformer blocks with hidden size of dmodel = 768 and
12 self-attention heads. In total 110M parameters.

• BERTLARGE contains 24 Transformer blocks with hidden size of dmodel = 1024 and
16 self-attention heads. In total 340M parameters.

In this work we have used the BERTBASE model in Titan V GPUs. We are not able
to use the BERTLARGE because of the amount of parameters. The authors of the original
paper used Cloud Tensor Processing Units (TPUs) for pre-training BERT models.

Fine-tuning BERT

Although the authors of BERT present a wide range of fine-tuning approaches for different
NLP tasks, in this project we will focus on a Natural Language Representation model.

Figure 14: Single Sentence Classification Tasks model. In our project we have removed
the last classification layer and we just keep the representation of the [CLS ] special token.
Source: (Devlin et al., 2019)

The weights of the model are fine-tuned during the training while we use the BERT
model as a sentence encoder. We just keep the representation of the sentence that is
encoded in the [CLS ] special token. This way, we use the BERT model as an alternative
model to Average Embedding and BiLSTM models.

2https://github.com/google-research/bert
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3 Related work in spatial understanding

Understanding the spatial relations between objects and their distribution in space is es-
sential to solve several tasks such as human-machine collaboration (Guadarrama et al.,
2013) or text-to-scene conversion (Hinz et al., 2019; Huang and Canny, 2019; Jyothi et al.,
2019), and has attracted the attention of different research communities.

3.1 Visual scene understanding

There has been a great interest in tasks related to visual scene understanding in recent
years, such as human-object interaction (Li et al., 2019b; Wang et al., 2019), semantic
segmentation (Yuan et al., 2019) or object detection (Liu et al., 2019). As a consequence,
there are large-scale image-based datasets like MS-COCO (Lin et al., 2014), V-COCO
(Gupta and Malik, 2015), Visual Genome (Krishna et al., 2017) or HICO-DET (Chao et al.,
2018). Those datasets contain very rich and diverse scenes combining humans and their
daily environments, accompanied by textual descriptions and/or structured text, among
others. Thus, in principle, they should be appropriate to test whether textual descriptions
are useful to infer spatial relations between objects.

However, none of those datasets combine concept triplets, image descriptions, textual
triplets as mentioned in the textual description, and the bounding boxes of the subject and
object for each instance. Since we need all that information to validate our hypothesis, we
had to build our own dataset called Relations in Captions (REC-COCO), based on MS-
COCO and V-COCO. These three datasets will be presented in detail below in Section
4.

3.2 Spatial common sense knowledge

As previously mentioned, understanding the spatial relations between objects is essential to
solve many tasks. However everyday knowledge about the spatial arrangements of objects
is also needed to understand the spatial relations. For example, to properly understand
the command:

“bring me the book lying on the table”,

an automatic agent needs to identify the objects that compose the scene (book, table,
etc.) and the agent must know where the object is regarding the subject. For that reason,
previous research proposed the task of generating spatial representations. These works
argued that this task contributes to understand spatial relations, providing the system
with spatial common sense knowledge. With that aim, they created rule-based systems to
generate spatial representations (Kruijff et al., 2007; Moratz and Tenbrink, 2006). With the
arrival of deep learning systems this task began to gain more interest among researchers.
Malinowski and Fritz (2014) demonstrated that it is possible to create a system to estimate
spatial templates from structured input such as (Object1, spatial preposition, Object2)
(Platonov and Schubert, 2018).
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Collell et al. (2018) proposed the task of predicting the 2D relative spatial arrangement
of two objects under a relationship given a structured text input of the form (Subject,
Relation, Object). This work is the first one that demonstrated the ability of a system to
infer not only an explicit spatial preposition (e.g., “below”, “on”, etc.), but also implicit
spatial relationships (e.g., “riding”, “catch”, etc.). In contrast with explicit spatial prepo-
sitions, predicting spatial arrangements from implicit spatial language requires significant
common sense spatial understanding. In this work, the template is determined by the
interaction/composition of the Subject, Relation and Object, so changing one of the words
that make up the structured input may change the spatial template.

Figure 15 shows the model proposed by Collell et al. (2018). This model takes as input
the structured text and the coordinates of the subject and predicts the spatial coordinates
of the object. For that, they proposed to concatenate the embeddings of the input text
with the subject coordinates, and add two composition layers with a final dense layer to
predict the coordinates of the object. This final layer has two variants: Regression or Pixel.

Regression layer. The output is formed by the object coordinates and its size ŷ =

zout = [Ôc, Ôb] ∈ R4. This is evaluated against the true y = [Oc, Ob] with a mean squared
error (MSE) loss.

Pixel layer. The output is a matrix ŷ = σ(zout) = (ŷi,j) ∈ RMxM , where M is the number
of pixels per side and σ() an element-wise sigmoid. In other words, the output is a 2D
heatmap of pixel activations ŷi,j that indicates the probability that a pixel belongs to the
object. This is evaluated against the true y = (yi,j) ∈ RMxM with a binary cross-entropy
loss.

Figure 15: Architecture of the model to infer spatial relations from structured input text.
Source: Collell et al. (2018).
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Contrary to those previous works, we argue that the information presented in the
triplets alone is often insufficient to properly infer spatial relations. Therefore, our hy-
pothesis is that textual descriptions in the form of captions encode contextual information,
which is useful to infer spatial relations; and thus, place objects in an image.

3.3 Text-to-image synthesis

A different task consists of generating an image given a sentence. This task is becoming
more and more popular and recent studies have proposed a variety of models. For instance,
Reed et al. Reed et al. (2016a) use a GAN (Goodfellow et al., 2014) that is conditioned on
a text encoding for generating images of flowers and birds. Xu et al. (2018); Zhang et al.
(2017) proposed a GAN-based image generation framework where the image is progressively
generated in two stages at increasing resolutions. Reed et al. (2016b) perform image
generation with sentence input along with additional information in the form of keypoints
or bounding boxes.

Although all these previous works perform well generating images of flowers and birds,
they did not specifically model objects and their relations in images, and thus have diffi-
culties in generating complex scenes such as those in the MS-COCO dataset. Therefore,
some works (Hong et al., 2018; Li et al., 2019a) break down the process of generating an
image from a sentence into multiple stages.

Figure 16: Architecture of the model to infer spatial relations from structured input text.
Source: Li et al. (2019a).

As illustrated in Figure 16, the input sentence is first used to predict the objects
that are presenting the scene. To do so, they proposed to use a Bidirectional LSTM
architecture as a sentence encoder and a Gaussian Mixture Model (GMM) as a decoder
to predict the bounding boxes. They refer to this encoder-decoder architecture as Box
Generator. Once they have extracted bounding boxes automatically, they generate the
semantic segmentation mask using a Shape Generator. Finally, they implemented an
Image Generator combining GANs to generate the final image that represents the initial
input sentence.
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These works are aligned with our work, since they also assume that the spatial relations
can be obtained from paired textual descriptions and images, as we do. However, their
focus is on image generation and they do not prove that using raw textual information
is actually helpful for spatial relation inference. In that sense, this work provides a solid
foundation for their design choices; and thus, complements their work.

3.4 Quantitative information about objects

There is a line of work to determine the quantitative relation between two nouns on a
specific scale (Forbes and Choi, 2017; Yang et al., 2018). This type of relations are key
for image understanding tasks such as image captioning (Elliott and Keller, 2013; Silberer
et al., 2018) and visual question answering (Aditya et al., 2019; Aditya et al., 2019). The
common theme in recent works (Aramaki et al., 2007; Davidov and Rappoport, 2010; Nar-
isawa et al., 2013; Tandon et al., 2014) is to use search query templates with other textual
cues (e.g., ”more than”, ”at least”, ”as many as”, and so on), collect numerical values, and
model sizes as a normal distribution. However, the quality and scale of such extraction is
somewhat limited. Bagherinezhad et al. (2016) showed that textual observations about the
relative sizes of objects are very limited, and relative size comparisons are better collected
through visual data. In this sense, our work demonstrates that it is possible to extract
information about the relative sizes of objects, learning the implicit relations that appear
in the raw text.

In a related work, Elazar et al. (2019) proposed an unsupervised method for collecting
quantitative information about objects, adjectives and verbs. They used this method to
create a resource with distributions over physical quantities which they called Distribution
over Quantities (DoQ). In contrasts with the other works presented above which had fo-
cused on making only relative comparisons such as “Is a lion bigger than a wolf?”. Such
methods lacked the ability to assign a numerical value to objects and events. Conversely,

Figure 17: Example of the automatically extracted mass distribution for multiple animals.
Source: Elazar et al. (2019).
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this resource can be used to acquire common knowledge such as relative sizes of objects.
Figure 17 illustrates an interesting application example for this resource.

In comparison with our work, they do not use images for that goal, as they proposed
a task that only relies on textual data. In this project we use multimodal data instead of
textual alone, making their work complementary to ours.
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4 The REC-COCO dataset

In this chapter the developed Relations in Captions REC-COCO dataset will be presented.
The main goal of this project is to extract implicit and explicit spatial relations among the
entities mentioned in image captions. To the best of our knowledge, there exists no dataset
that contains explicit correspondence between image pixels (bounding box of objects) and
the tokens in the textual description of the images. We thus developed a new dataset
(REC-COCO) that contains such correspondences.

As mentioned in Section 3, other works demonstrated that it was possible to create
systems to estimate spatial templates from structured input such as (object1, relation,
object2). This works argue that the interaction/composition of the triplet determined
the spatial template, so by changing one word that makes up the triplet, the spatial
template may change. In this project we go one step further. Our hypothesis is that two
structured inputs with the same interaction/composition structure could have different
spatial templates depending on the context.

To validate our hypothesis we need a dataset composed by concept triplets (triplets
of ontology concepts), textual triplets (triplets composed by tokens that appear in the
caption), textual descriptions, and bounding boxes of the objects. Although there exist
datasets to infer spatial templates from structured input and also from textual description,
none of these datasets contains both characteristics. To address this issue, in this project
we have created the REC-COCO dataset.

The REC-COCO dataset is derived from MS-COCO (Lin et al., 2014) and V-COCO
(Gupta and Malik, 2015). Before explaining in detail our dataset and how we have created
it, the MS-COCO and V-COCO datasets will be presented.

4.1 Dataset collection

In this section the datasets involved in the creation of the REC-COCO dataset will be
presented. In particular, we have used the MS-COCO and V-COCO datasets for the task.

4.1.1 MS-COCO

The Microsoft Common Objects in COntext3 (MS-COCO) dataset (Lin et al., 2014) was
created to solve scene understanding tasks such as human-object interaction, semantic
segmentation or object detection. This dataset contains images of complex everyday scenes
preserving common objects in their natural context, accompanied by textual descriptions.

The MS-COCO dataset contains in total 328, 000 images over 91 common object cat-
egories, where each image is associated with instance-wise annotations (i.e., segmentation
mask and object bounding boxes) and 5 textual descriptions. To better understand the
composition of this dataset, we will describe next how they collected their corresponding
data. First of all, they selected the common object categories to appear in the dataset.
This selection was carried out combining categories from PASCAL VOC (Everingham

3http://cocodataset.org
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et al., 2010) and a subset of the 1, 200 most frequently used words that denote visually
identifiable objects. To further augment the set of candidate categories, several children
in ages from 4 to 8 were asked to say every object they saw in different environments.

Using this method, they got 272 final object category candidates. Due to the large
number of categories, the authors decided to reduce this number by taking account their
usefulness in applications, their diversity and how commonly they occur. All the categories
from PASCAL VOC were included to ensure backwards compatibility. This way, they
obtained the final list of 91 common object categories.

Next, they started collecting images, where the goal was to collect a dataset such
that a majority of images were non-iconic. Two strategies were used to collect this type
of images. First, they got images from Flickr, which tends to have less iconic images,
since Flickr photos are uploaded by amateur photographers, and also because they contain
metadata and keywords, which facilitates the search.

Second, instead of searching for object categories in isolation, they combined object
categories such as “dog + car” founding more non-iconic images. Interestingly, using
this method most of the time they got images that contain more categories than the two
specified in the search. The result was a collection of 328, 000 images with rich contextual
relationships between objects, as shown in Figure 18. This characteristic is very important
in our work, because we aim at building a system able to understand real life complex
scenes.

In order to annotate all the collected images in MS-COCO, they used Amazon’s Me-
chanical Turk (AMT). The annotation of the images were done in four stages: category
labelling, instance spotting, instance segmentation and caption annotation.

• Category labelling. In this first stage the task was to determine which object
categories were present in each image. Due to the cost of asking workers to answer
91 binary classification questions per image, they used a hierarchical approach. They
grouped the object categories into 11 super-categories. So instead of annotating 91
categories they only needed to annotate 11 reducing the time needed to classify the
various categories. For example, a worker could easily determine that animals were
not present without having to look specifically for cats, dogs, etc.

• Instance spotting. The main goal of this second stage was to label all instances of
the object categories that appear in an image.

• Instance segmentation. The third stage consisted in the task of segmenting each
object instance. At the end of the work, 2, 500, 000 object instances were segmented
from 328, 000 images.

• Caption annotation. The last stage consisted of adding five written caption de-
scriptions to each image in MS-COCO. This last feature has been the reason why we
have chosen this dataset, together with the complexity of the real live scenes that
appear on it.
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Figure 18: Samples of annotated images in the MS-COCO dataset. Source: Lin et al.
(2014).

4.1.2 V-COCO

The Verbs in COCO (V-COCO) dataset (Gupta and Malik, 2015) have been created to
solve the task of Visual Semantic Role Labeling. Given an image, the goal is to detect the
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people in the image who are doing an action and locate the objects of interaction.
The V-COCO dataset consists of 26, 199 instances of people in 10, 346 images with

action labels of 26 different action and classes, which associate objects in the scene with
different semantic roles for each action. Due to this work, this dataset adds to COCO
detailed action labels in addition to the detailed objects instance segmentations, forming
an interesting test bed for studding related problems.

The annotations were done on the challenging MS-COCO dataset described above.
The annotation process consisted of the following stages: identifying verbs, identifying
interesting images, annotated salient people with all action labels and annotations for
objects in various roles.

• Identifying verbs. In the first stage, the task was to identify the set of verbs to
study. To do this, they used the Stanford dependency parser (Chen and Manning,
2014) to determine the subject associated with each verb in a caption and determine
if it was a person. Once they had the verb list, they selected only 30 basic verbs
manually. But based on visual inspection of images they delete some words because
of the ambiguity of a single image.

• Identifying interesting images. In the next stage, with this list of verbs, they
identify a set of images containing people performing these actions. For each image,
they compute two scores to select the images: a) does this image have a person
associated with the target verb, b) does this image contains objects associated with
the target verb. Summing these scores they obtained a ranked list of images for each
verb, and they only selected the top 8, 000 images for each verb. Then, AMT was
used to obtain annotations for people in these images. Finally, all the images were
merged in a common set across all action categories.

• Salient people. In the third stage, they deleted instances of people which have not
sufficient pixel area in the image. In addition, all people that have less pixel area
than half the pixel area of the largest person in the image were discarded.

• Annotated salient people with all action labels. In the fourth stage, they
annotated salient people with all action labels. To do this, they annotated all salient
people in the set of images with a binary label for each action category. They used
AMT for obtaining these annotations using 5 different workers for each person for
each action.

• Annotations for objects in various roles. Finally, they obtained annotations for
objects in various roles for each action. For each positively annotated person they
obtained a YES/NO annotation for questions of the form: “Is the person in the blue
box holding the banana in the red box?”

Table 1 lists the set of actions and the semantic roles associated with each action.
We can also see the number of instances for each action, the set of objects categories for
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Action Roles # Role # Objects in role
carry 1 970 obj *
catch 1 559 obj 457 sports ball, frisbee,
cut 569 instr 477 scissors, fork, knife,

obj *
drink 1 215 instr 203 wine glass, bottle, cup, bowl,

eat 2 1198 obj 737
banana, apple, sandwich, orange, carrot,
broccoli, hot dog, pizza, cake, donut,

instr *
hit 2 716 instr 657 tennis racket, baseball bat,

obj 454 sports ball
hold 1 7609 obj *
jump 1 1335 instr 891 snowboard, skis, skateboard, surfboard,
kick 1 322 obj 297 sports ball,

lay 1 858 instr 513
bench, dining table, toilet, bed, couch,
chair,

look 1 7172 obj *
point 1 69 obj *
read 1 227 obj 172 book,

ride 1 1044 instr 950
bicycle, motorcycle, bus, truck, boat, train,
airplane, car, horse, elephant,

run 0 1309 - -

sit 1 3905 instr 2161
bicycle, motorcycle, horse, elephant, bench,
chair, couch, bed, toilet, dining table, suit-
case, handbag, backpack,

skateboard 1 906 instr 869 skateboard,
ski 1 924 instr 797 skis,
smile 0 2960 - -
snowboard 1 665 instr 628 snowboard,
stand 0 8716 - -
surf 1 984 instr 949 surfboard,
talk on
phone

1 639 instr 538 cell phone,

throw 1 544 obj 475 sports ball, frisbee,
walk 0 1253 - -
work on
computer

1 868 instr 773 laptop,

Table 1: List of action in V-COCO. Source: Gupta and Malik (2015).
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various roles for each action and the number of instances with annotations for the object
of interaction.

Figure 19 shows some examples of the V-COCO dataset. In these examples, the object
and the subject are annotated in the image using bounding boxes, which are also connected
to an ontological concept and a predefined action.

Figure 19: Examples of the V-COCO dataset. Actions and the semantic roles associated
with each action are linked to the corresponding set of pixels (bounding box) of the image.
Best viewed in color.

4.2 Linking V-COCO triplets to MS-COCO caption words

In this section we will present the methodology used to create the REC-COCO dataset.
As aforementioned, this dataset is derived from the MS-COCO and V-COCO datasets.
The former is a collection of images, each of them described by 5 different captions. The
latter comprises a subset of MS-COCO, along with manually annotated (S,R,O) concept
triplets associated with image bounding boxes. Note that in V-COCO the terms used to
refer to the (S,R,O) concepts are chosen from among a small vocabulary of an ontology,
and that they are not linked to the actual word used in the image caption (for a more
detailed information about how V-COCO is annotated, see Section 4.1.2).

We devised an automatic method that bridges the gap between MS-COCO and V-
COCO so that the concepts of V-COCO (S,R,O) triplets are associated with the caption
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Algorithm 1 Linking V-COCO triplets to REC-COCO caption words.

1: E ← pre-defined word embeddings
2: procedure TextualTriplet(Captions, T = {S,R,O})
3: TextualTriplets = {}
4: for Caption in Captions do . 5 Captions per image
5: TripletCaption = {} ; TripletScores = {}
6: C = concat(E[c] for c ∈ Caption) . Matrix of token embeddings from caption
7: for c in {S,R,O} do
8: vc = E[c] . Word embedding of concept c
9: TripletScores.add(max CT · vc)
10: TripletCaption.add(Caption[argmaxi C

T · vc])
11: if average(TripletScores) >= threshold then
12: TextualTriplets.add(TripletCaption)

return TextualTriplets

tokens in MS-COCO. The method is described in detailed in Algorithm 1, and outlined
in a more intuitive way in Figure 20. As mentioned above, V-COCO adds to MS-COCO
detailed action labels. Our method considers all these labels ((S,R,O) triplets) that are
connected to MS-COCO images in turn. The input to the algorithm are the triplet and
all 5 captions of the image in MS-COCO. Given the 5 captions, it processes each caption
in turn representing all words in the caption with a matrix of token embeddings using pre-
trained GloVe embeddings (Pennington et al., 2014). In the next step, for each concept in
(S,R,O), first, it get the vector representation, and then it computes which is the word in
the caption which has the maximum similarity, using dot-product4 of the embeddings as
the similarity function. If the average of the three similarity values is below a threshold5,
then the caption is discarded. Otherwise the indices of the tokens corresponding to the
concept triplet are collected in a list of textual triplets. When having processed all 5
captions, it returns the textual triplets above the threshold. These textual triplets (with
their corresponding caption and image) are used to generate our dataset.

Figure 21 shows an example of how a V-COCO triplet is mapped with a MS-COCO
caption to create a textual triplet in REC-COCO. In this figure we can distinguish 3
different color: red, purple and green. Each color refers to a concept of the triplet, subject,
relation and object, respectively. In the image we see two bounding boxes already extracted
from V-COCO. The red bounding box representing the subject, and the green bounding
box that represents the object. As explained above we extracted the tokens of the MS-
COCO caption that are related to each concept of V-COCO (S,R,O) triplet, and we linked
them with the bounding boxes. The relation between the object and the subject will not
have any connection with the image.

In V-COCO there are 26 different actions annotated, but some actions have only one

4The embeddings are normalized, and thus the result of the dot-product is equivalent to the cosine
similarity value.

5The threshold was empirically set to 0.75.
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REC-COCO triplet

A man lying on a park bench listening to
headphones and reading a book

MS-COCO Caption x5

Figure 20: Methodology used to create the REC-COCO dataset. The input are V-COCO
triplet and MS-COCO captions. We first represent the triplet and captions using word
embeddings. Then, we apply the dot-product as the similarity function. Finally, we select
the triplets that have more than 0.75 average score. Best viewed in color.

Number of Instances 19, 559
Number of Images 6, 407
Number of Captions 14, 928
Number of Actions 21
Triplets per Action* 936.85± 1413.93
Actions per Object* 2.41± 1.26
Actions per Image* 1.45± 0.62
Captions per Image* 2.33± 1.26

Table 2: Statistics of the REC-COCO dataset. *means and standard deviation.

argument (smile, look, stand, and so on) instead of two. We therefore discarded those
triplets with actions that did not explicitly require a subject and an object, and kept only
21 actions from the original 26.

REC-COCO comprises 19, 559 instances from 6, 407 different images. Each instance
consists of an image, a caption, a concept triplet, and a textual triplet where tokens
representing the action, subject and object are anchored to bounding boxes in the image.
Thanks to these elements, we have created two subsets of REC-COCO where the two have
the same instances: REC-COCO Concept and REC-COCO Textual. The only difference
between them is the type of triplet:

• REC-COCO Textual contains triplets formed by tokens extracted from subtitles.

• REC-COCO Concept contains triplets extracted from V-COCO formed by onto-
logical concepts.

Table 2 shows further statistics of the dataset. Some examples of the dataset are shown
in Appendix A.
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Person Read Book

Man Reading Book
REC-COCO triplet

V-COCO triplet
A man lying on a park bench listening to

headphones and reading a book

MS-COCO Caption

Figure 21: Example of REC-COCO. V-COCO triplet terms are linked with tokens in the
caption. As a result, we obtain new triplets (so-called textual triplets) with which the
caption tokens are linked to the image. Best viewed in color.

4.3 Nearest neighbors selection

In this section, we will present the experiments we have carried out for perform nearest
neighbors selection, i.e., to choose the best method to compute the nearest neighbors of
each triplet token in the caption. More specifically, we have done these experiments to
compare two approaches: classic Nearest Neighbors and Cross-Domain Similarity Local
Scaling (CSLS).

Nearest neighbors (NN). The NN algorithm is a classic non-parametric method used
for classification and regression. In this project we have used it for classification. Given a
number N of vectors in a multidimensional feature space, each with a class label, the goal
is to return the k nearest samples of the unlabeled vector that we aim at classifying.

We can define this algorithm as:

NN(xt) = argmax(CT · xt) (20)

where C is the matrix of the words representations that compose the caption, and xt
is the unlabeled word representation that we want to classify.

Cross-Domain Similarity Local Scaling (CSLS). This comparison metric was cre-
ated by Lample et al. (2018) with the motivation to produce reliable matching pairs between
two languages. They argue that NNs are by nature asymmetric: y being a NN of x does
not imply that x is a NN of y. They considered a bipartite neighborhood graph to avoid
this asymmetric nature, in which each word of one language is connected to its K-NN
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in the other language. The similarity measure between mapped source words and target
words will be the following:

CSLS(Wxs, yt) = 2 cos(Wxs, yt)− rT (Wxs)− rS(yt) (21)

where cos(. . .) is the cosine similarity, and rT (Wxs) is the mean similarity of a source
embedding xs to its target neighborhood, that we can formulate as follows:

rT (Wxs) =
1

K

∑
yt∈NT (Wxs)

cos(Wxs, yt) (22)

where yt ∈ NT (Wxs) is the neighborhood associated with a mapped source word em-
beddings Wxs.

In this project, we refer to words that form the concept triplet as source language,
and tokens of the caption as target language when applying the CSLS function to get the
nearest words between both.

In order to evaluate the performance of the two comparison metrics, we have labelled
manually 100 instances. In each instance, we have selected the words of the caption that
are related to each concept of the original triplet. In some cases, some of the concepts did
not appear in the caption. This is because the V-COCO dataset was annotated with the
actions that appear in the images and they did not use the captions. In these cases, we
used a special character NULL to denote that the triplet is not related with the caption.
Our goal in these cases was for metrics to yield an average word score smaller than the
threshold used in the algorithm.

Figure 22: Two plots comparing the precision of the NN and CSLS metrics.

Figure 22 shows the results of this experiment by means of the precision score to
compare the two metrics. If we look to this plots, we can see that the NN metric aligns
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correctly 42% of the samples, and CSLS 22% of the samples. In these experiments, the
NN metric achieves an average precision score of 2.18 and the CSLS metric achieves 2.00.
Note that perfect precision would be 3.00.

With these results, we can say that, for our task, the NN metric performs better
than CSLS. Therefore, we have used the NN algorithm to bridge the gap between the
concepts that compose the triplet extracted from V-COCO and the tokens that appear in
the captions.
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5 Methodology

In this chapter, we will present the systems proposed to the task of inferring spatial re-
lations. In order to validate our hypothesis, we create three different architectures and
compare their performance: SRO, Caption and C+SRO. The Caption and C+SRO mod-
els use textual descriptions or captions as input to infer the spatial relations. Therefore,
in this project we experimented with different caption encoders in our experiments.

5.1 Models for inferring spatial relations

First of all, we will explain the task of inferring spatial relations. This task consists on
considering the entities described in image captions and predicting the relative spatial
arrangement of two objects under a relationship among them. The task is very similar to
the one proposed by Collell et al. (2018), so we will use the same formulation here.

We denote as Oc = [Oc
x, O

c
y] ∈ R2 the (x, y) coordinates of the center of the bounding

box covering object O, and Ob = [Ob
x, O

b
y] ∈ R2 the half of the width and half of the

height of the bounding box covering the object. Model predictions are denoted with a hat

Ôc, Ôb. The task is then to produce the location and size [Ôc, Ôb] ∈ R4 of the token filling
the Object role in the caption describing the scene. The input for the system includes
structured (S,R,O) concept triplets, unstructured image captions, and a combination of
both (see below). Regardless of the input considered, and following Collell et al. (2018),
the system also requires the bounding box of the Subject as an additional input, denoted
as Sc, Sb.

We have experimented with slightly different models that use different inputs to predict
the bounding boxes (see Figure 23). In the following subsections, we will describe each of
the models in turn. From now on, we will use vS, vR and vO to refer to the embeddings of
the terms of a given triplet (S,R,O).

5.1.1 SRO

The SRO model is a neural network presented in Collell et al. (2018) that uses as input the
GloVe embeddings of the terms of the (S,R,O) triplet. The system consists of a dense layer
followed by a regression module that produces the coordinates and sizes of the bounding
box. Let vS, vR and vO be the d−dimensional embeddings of the terms of a given triplet
(S,R,O). The dense layer is:

zh = ReLU(Wh[vS; vR; vO;Sc;Sb] + bh) (23)

where Wh is a (4d + 4)× h weight matrix, bh is a h× 1 bias vector. zh is the input of
the regression module, which is simply:

ŷ = Woutzh + bout (24)
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Figure 23: Overall pipelines of the proposed architectures. From left to right and from top
to bottom: SRO model (Section 5.1.1), Caption model (Section 5.1.2) and C+SRO model
(Section 5.1.3). The inputs are the caption, the triplet and the bounding box of the subject
depending on the model we use. In the Caption Encoder part we use the models proposed
in Section 5.1.2. The output is always the predicted location and size of the object. Best
viewed in color.

Where Wout is a h × 4 weight matrix bout is a 4 × 1 bias term. The parameters of the
model are Wh, bh, Wout and bout. The loss function is the mean squared error (MSE) loss
between the predicted and real values:

L(y, ŷ) = ‖ŷ − y‖2 (25)

All the subsequent models are also optimized wrt. the MSE loss function.

5.1.2 Caption

The caption model is a variant of the SRO that uses the textual caption as input. The
dense layer is similar to SRO, but instead of (S,R,O) embeddings we plug into the model
an encoder module that produces an embedding representing the whole caption. Let ccap
be the output of the caption encoder, the caption model is then:

vcap = ReLU(Wcapccap + bcap) (26)

zh = ReLU(Wh[vcap;Sc;Sb] + bh) (27)

ŷ = Woutzh + bout (28)

Where Wcap, bcap,Wh, bh,Wout and bout are the parameters of the models (along with
the parameters of the textual encoders).
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We experimented with the following different caption encoders in our experiments (see
Section 2 for a more detailed explanation of each of them). We denote a caption with N
tokens as {w1, . . . , wN}.

• Average embedding (AVG). This encoder just averages the embeddings of each
token in the caption getting the representation of the sentence ccap:

ccap =
1

N

N∑
i=1

vi (29)

where vi is the GloVe embedding of the corresponding word wi.

• BiLSTM encoder. The caption words are fed into a bidirectional LSTM (Graves
et al., 2013) and the final hidden states of the left and right LSTMs are concatenated:

ccap = [
−→
hN ;
←−
hN ] (30)

The embedding layer of the LSTM modules are initialized with GloVe, and the rest
of weights are learned during training.

• BERT encoder. In this setting we use a pre-trained BERT model Devlin et al.
(2019). More specifically, the caption is represented by the embedding corresponding
to the special [CLS] token. BERT weights are fine-tuned during training.

5.1.3 C+SRO

The third architecture is a hybrid model that mixes the caption and SRO models and
requires both textual captions and (S,R,O) triplets as input. The C-SRO model is meant
to overcome two problems that caption and SRO models suffer. On the one hand, the SRO
model does not consider implicit spatial relations that are described in the caption, which
can be useful to detect the correct spatial relationships among objects. On the other hand,
information conveyed in captions is often very diverse and can mislead the caption model
to focus on uninteresting relations or objects.

Caption text is encoded by any of the methods described on the previous section,
and fed into a dense layer to obtain vcaption as above. The caption representation is then
concatenated to the (S,R,O) embeddings and fed into two dense layers and a regression
module:

zc = ReLU(Wc[vcap; vS; vR; vO] + bc) (31)

zh = ReLU(Wh[zc;S
c;Sb] + bh) (32)

ŷ = Woutzh + bout (33)
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where Wcap, bcap,Wc, bc,Wh, bh, ,Wout and bout are the parameters of the models.
We further try a slight modification of C-SRO (dubbed C-SO), where the embedding of

R is not provided to the system. The idea behind C-SO is to analyze whether the model is
able to infer the spatial relationship between the subject and object if explicit information
about the relation among them is absent. Note that the system should be still able to infer
this relation by analyzing the information conveyed in the unstructured caption.

C-SO is very similar to C-SRO, and the only modification is the removal of the relation
embedding from the first dense layer:

zc = ReLU(Wc[vcap; vS; vO] + bc) (34)
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6 Experiments and Results

In this chapter, we report the results of the executed experiments. In particular, we
conducted two sets of experiments. The First set aims at assessing the validity and quality
of the REC-COCO dataset. In the second set of experiments, we apply all the models
described above on REC-COCO and analyze the contribution of different input types to
the task.

6.1 Evaluation metrics

The evaluation metrics used within the project are the ones proposed by Collell et al.
(2018):

• Coefficient of Determination (R2) of the prediction and the ground truth. Let as
denote the dataset values as y1, ..., yn and prediction values as f1, ..., fn. The residuals
are defined as ei = yi−fi. The mean of the observed data is y. Then the most general
definition of the coefficient of determination is

SStot =
∑
i

(yi − ȳ)2 (35)

SSres =
∑
i

(yi − fi)2 =
∑
i

e2i (36)

R2 = 1− SSres

SStot

(37)

• Pearson Correlation (r) of both (x, y) axes between the predicted value and the
ground truth. The formal definition of pearson correlation is

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(38)

where n is sample size, xi, yi are the individual sample points indexed with ”i” and
x̄ = 1

n

∑n
i=1 xi (the sample mean); and analogously for ȳ.

• Intersection over Union (IoU). It is a popular metric to measure the bounding
box overlap (see for instance the PASCAL VOC object detection task (Everingham

et al., 2015)) which is defined as follows: IoU =
area(B̂O ∩BO)

area(B̂O ∪BO)
where B̂O and BO

are the predicted and ground truth object bounding boxes, respectively. If the IoU
is larger than 50%, the prediction is counted as correct. Note that our setting is not
comparable to object detection (nor our results) since we do not employ the image
as input (but text) and thus we cannot leverage the pixels to predict the object’s
location.
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• Above/below Classification. This is a binary metric that measures whether the
model correctly predicts that the object center is above/below the subject according

to the image. That is, sign(Ôc
y − Sc

y) and sign(Oc
y − Sc

y) must match. We report
macro-averaged (F1y) and macro averaged accuracy (accy)

6.2 Experimental setup

The data is preprocessed using the same procedure presented in Collell et al. (2018), namely,
we normalize the bounding box coordinates with the width and height of the images and
apply a mirror transformation on the vertical axis to the image when the object is on the
left side of the subject. Textual captions are first preprocessed, first lowercasing and then
removing punctuation marks. In order to use the BERT model as caption encoder, BERT
tokenizer is applied to the textual captions. Otherwise, we used 300-dimension GloVe
embeddings that are publicly available6. We used these word embeddings to represent
concept triplets, and to use Average embedding and BiLSTM model as caption encoders.

Regarding training details, we use 10-fold cross-validation to train all the models using
10 epochs, a batch size of 64 and a learning rate of 0.0001 with an RMSprop optimizer
(Tieleman and Hinton, 2012). The same parameters are used when training the BiLSTM
sentence encoders. We use default parameters when fine-tuning the BERT encoder and we
trained for 5 epochs with a batch size of 2. This is because of the amount of parameters
that the BERT model has, since our GPUs are not able to process more epochs or larger
batch sizes.

6.3 Results

In this section, the results obtained in the project will be presented. The section is divided
in two parts: dataset assessment and analysis of method performance. The first part is
dedicated to assess the quality and validity of the REC-COCO dataset. The second part
consists on the analysis of the performance of the proposed methods.

6.3.1 Dataset assessment

In this set of experiments, we assess the quality and validity of the REC-COCO dataset.
Our purpose is to ascertain that the task is feasible to be resolved by automatic methods.
At the same time, we aim at proving that the task is by no means trivial. With this aim,
we run the SRO model trained on different datasets and compare the results. The datasets
used for these experiments are the following:

• Visual Genome, which contains (S,R,O) concept triplets with corresponding bound-
ing boxes in the images. We use two variants of this dataset: the 378k version is the
same used by Collell et al. (2018), where all instances containing explicit relations
are discarded. We further reduce this dataset to have the same size as REC-COCO.

6http://nlp.stanford.edu/projects/glove
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Dataset Size accy F1y rx ry R2 IoU

Visual Genome
378k 0.745 0.745 0.892 0.832 0.648 0.111

20,000 0.717 0.712 0.872 0.765 0.469 0.068
REC-COCO

Concept
19,559 0.5165 0.7553 0.7540 0.7833 0.6342 0.1491

REC-COCO
Textual

19,559 0.4733 0.7788 0.7770 0.7036 0.6762 0.1206

Table 3: Results of the SRO architecture on different datasets to compare and validate the
performance of the REC-COCO Textual.

The subset is created by randomly selecting triplets of the 21 most used actions and
the 67 most used objects.

• REC-COCO Concept, which is a subset of V-COCO obtained by discarding the
actions that have no argument, as described in Section 4.2.

• REC-COCO Textual, which contains the same triplets as above, but using textual
triplets instead of concept triplets, that is, the terms used to refer to the (S,R,O)
elements are tokens extracted from captions (c.f. Section 4.2).

Table 3 shows the results of the experiments. As it can be observed, there is a big drop
between Visual Genome (378k) and the smaller subset, which stresses the importance of
the size of the training data. However, when using the subset of Visual Genome the results
of the task are comparable to those obtained with REC-COCO. Although the results of
different datasets can not be directly compared, they provide insights regarding the task
difficulty. In that sense, the results show that the task proposed by REC-COCO is com-
parable in difficulty to the triplets present in Visual Genome. Regarding the substitution
of triplet terms by tokens in captions, the results show that using textual triplets instead
of ontology concept triplets yields slightly worse results on average, but the results are
still comparable. That proves that the possible errors introduced when aligning triplets to
caption tokens is relatively low, and that REC-COCO Textual is overall a valid dataset
for inferring spatial relations from triplets.

6.3.2 Analysis of method performance

In this project we propose to use textual descriptions to obtain contextual information
and infer spatial relations. Our hypothesis is that captions encode background information
which is useful to place objects in images. In this section, we present extensive experiments
to prove the validity of the posed hypothesis.

Table 4 summarizes all the results obtained with the approaches presented in Section
5.1. The first column of the table describes the architecture used, while the second and third
columns describe the type of triplets used in the experiments (concept or textual triplets,
respectively). The fourth column describes the method used to encode the captions. The
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Model Concepts Textual Encoder accy F1y rx ry R2 IoU
SRO Yes - - 0.7553 0.7540 0.7833 0.6342 0.5165 0.1491

- Yes - 0.7788 0.7770 0.7036 0.6762 0.4733 0.1206
Caption - Yes AVG 0.5669 0.5532 0.0623 0.0804 0.0907 0.0128

BiLSTM 0.7469 0.7432 0.8123 0.5904 0.3602 0.0828
BERT 0.6504 0.6509 0.7739 0.2012 0.1882 0.0232

C+SRO - Yes AVG 0.781 0.7806 0.7478 0.6029 0.5076 0.1326
BiLSTM 0.7786 0.7751 0.8012 0.6305 0.5142 0.1317
BERT 0.7954 0.7956 0.8259 0.6605 0.5861 0.1494

C+SO - Yes AVG 0.7778 0.7766 0.8004 0.6044 0.5381 0.1384
BiLSTM 0.7936 0.7948 0.8003 0.6486 0.5655 0.1498
BERT 0.7757 0.7774 0.8259 0.6518 0.5931 0.1637

Table 4: Evaluation results between different proposed models on our dataset. The first
column indicates the model (c.f. Section 5.1), the second and third columns describes the
used triplets type and the fourth column indicates the caption encoder. Higher is better
in all columns, and we use bold to identify the highest score.

first two rows of the table are the same as the last two rows of Table 3, and are put here
for comparison purposes. As we mentioned in the previous section, these two rows show
that, when used alone, concept triplets are better than textual triplets, albeit only by a
small margin. However, incorporating the full text of captions to textual triplets (C+SRO
and C+SO models) yields better results than those obtained when using concept triplets
alone. It is interesting to see that deleting the relation from the triplets (C+SO model)
the system does not suffer a performance drop. This result suggests that our model is able
to recover and extract the relation between subject and object from captions. That is,
given a caption, a reference subject and the object in the caption, the system can assign a
location and a size to the object using the information in the caption alone.

In contrast, using captions alone yields the worst results overall. This could stem from
the fact that the captions in our dataset are complex and describe multiple relations, which
hinders the efficiency of the methods to predict relative spatial arrangement of subject and
object that are associated by a specific relation (see for example Figure 2). These results
suggest that providing the system with the specific words of the relevant elements in the
image is indeed helpful as it makes the system focus on the relevant parts of the image.

Regarding the caption encoders, BERT yields the best results overall. Interestingly,
BiLSTM outperforms BERT in the caption model, but the tendency is reversed when
including structured input. As expected, the AVG model performs worst in all the cases.

All in all, the results validate our hypothesis that the information conveyed in captions
is complementary to the structured information, and that the unstructured information is
particularly useful when important information is missing from the triplets.
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Figure 24: Examples where the model does not infer well the spatial relations. Manual
annotated bounding boxes are presented on the left while the predicted bounding boxes
are on the right. In each example we have the original caption, the V-COCO triplet of
ontology concepts and the automatically extracted textual triplet. The components of the
triplet are defined by colors, (S,R,O) (red, purple, green) respectively. Best viewed in
color.

6.4 Error Analysis

The MS-COCO dataset contains complex scenes with many objects in diverse contexts,
which makes spatial relations prediction very challenging. Therefore, our model is not
always able to infer well the spatial relations. Figure 24 shows two wrong examples. In
the first example, the error comes from the wrong alignment among the concept triplets
and the caption tokens. While the original V-COCO triplet is (person, hold, tennis racket)
our algorithm returns the triplet (person, come, ball), because the concepts of V-COCO
do not appear in the caption. As a consequence, the object is depicted too small and
is not well predicted. In the second example, the model is not able to infer the spatial
relation between the person and the object. When we compare the ground truth image
and the predicted bounding box, we can see that the person is laying on a surfboard, so, in
principle, the surfboard should be equal or larger than the person. In this case, our model
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has not been able to extract the implicit spatial information that appears in the context.

Even the context provided by captions may be insufficient to properly identify the
spatial relations of some images. Figure 25 shows examples of system predictions that
do not agree with the ground truth. The first two examples show difficult scenes where
the caption does not provide enough information about the scene. Note that, although
wrong, the system prediction corresponds more or less to prototypical spatial arrangements
between the objects mentioned in the scene, which would probably agree with the spatial
relations that a typical person would draw.

The third and fourth rows show examples where the objects are incorrectly tagged. For
example, in example (c) the bench in the image is larger than the tagged bounding box.

Figure 25: Comparison between ground truth (left) and predicted relations (right) in test.
We can see some difficult scenes like in the first and second examples, and wrong tagged
examples in the third and fourth rows. Best viewed in color.
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However, the model prediction for the bounding box suggests that it knows that a bench is
usually larger than a person. Further, when we compare the first and the third examples,
we see that our model is also able to differentiate when a person is laying or is sitting on a
bench. When it is laying, the bench is roughly equal in size to the person, but it is larger
in the x axis when the person is sitting on a bench. This is something interesting, because
it shows the ability to learn common sense from the raw text and visual information, like
humans do.
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7 Conclusions and future work

The main goal of this project was to demonstrate the hypothesis that using textual de-
scription of images improves the ability to model the spatial relationships among objects.
Previous research has been focused on using structured concept triplets, but we show for
the first time that those lack relevant contextual information.

To the best of our knowledge, there exists no dataset which contains associations be-
tween tokens in the textual description of the images and bounding boxes of objects.
Therefore, we devised an automatic method that bridges the gap between MS-COCO and
V-COCO to create the REC-COCO dataset.

The REC-COCO dataset allows us to validate the main hypothesis of this work, i.e.
that the implicit information in textual descriptions (captions) improves the ability to infer
spatial relations between objects when compared to just using the manually produced
concept triplets. We have adapted a well-known state-of-the-art architecture, and the
experiments prove the validity of the posed hypothesis, showing that:

(1) the use of the textual triplet as mentioned in the textual description, instead of the
concept triplet, degrades performance;

(2) the use of the full context of the caption in addition to the textual triplet allows to
improve over the manual concept triplets;

(3) the improvement also holds when the relation is not explicitly given to the system,
that is, when the system is only given the caption and the subject and object tokens
of interest.

This suggests that, given a text where different objects and their relations are described,
our system needs to be specified only which pair of objects are to be drawn. The specific
relation and the relevant contextual information can be directly extracted from the textual
caption. Although in some examples our system does not infer well the spatial relations,
our error analysis reveals that the system often guesses prototypical locations and sizes,
which can be linked to common sense knowledge.

Other interesting and relevant experiment would be the use of the C+SRO and C+SO
models with concept triplets. However, in this project we have not considered it because
our hypothesis is that we can infer spatial relations between objects using the textual
description only, instead of structured triplets, where relevant information may be missing.
In that context, the word triplets can be seen as pointers to which objects of the textual
description have to be considered for a given spatial relation (since there might be several
objects and different spatial relations in a single caption of an image). Note that we only
use the concept triplets in V-COCO as a bridge to build our dataset and to compare our
system to previous work.

In conclusion, the main contributions of the work are the following:

• We show for the first time that a textual description includes information that is
complementary to the mere subject, object and relation without any context. From
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another perspective, our work shows that given a caption, a reference subject and an
object in the caption, our system can assign a location and a size to the object using
the information in the caption, without any manually added relation.

• We introduce a new dataset created specifically for this task. The dataset comprises
pairs of images and captions, including, for each pair, the tokens in the caption that
describe the subject, relation and object, and the bounding boxes of subject and
object. The dataset is publicly available under a free license.

For the future, I would like to develop the next work as a PhD candidate:

• Create a system able to extract automatically the objects that compose the scene
from the textual description.

• Infer the bounding box of all the objects that compose the scene without specifying
the location and size of one of them.

• Use larger datasets like MS-COCO without the need of using algorithms to map
between concepts and captions, reducing the noise of the dataset, improving its
quality and having greater amount of data.

• Map the inferred spatial relations to semantic layout. Once having the bounding
boxes of the objects that compose the scene, I would try to map this bounding boxes
to a semantic layout where each object would have different shape.

• I would like to use Generative Adversarial Networks to create realistic images from
textual description of images. The goal is to synthesis images from the semantic
layout created in the previous step.

• The final goal of the thesis would be the creation of an end-to-end architecture for
the task of text-to-image synthesis.
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