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Abstract

This PhD thesis deals with the problem of the propagation of fronts under random
circumstances. While front propagation is a physical phenomenon with countless ap-
plications, it is notoriously hard to study the advancing of a front when the underlying
dynamics is affected by random phenomena that affect the topology and the shape of
the studied contour. In this thesis, a statistical model to represent the motion of fronts
when are evolving in a media characterized by microscopical randomness is discussed and
expanded, in order to cope with three distinct applications: wild-land fire simulation,
turbulent premixed combustion, biofilm modeling. In the studied formalism, the position
of the average front is computed by making use of a sharp-front evolution method, such
as the level set method. The microscopical spread of particles which takes place around
the average front is given by the probability density function linked to the underlying
diffusive process, that is supposedly known in advance, say in a parametric formulation;
the effective front is computed by taking weighted averages of the average fronts adopt-
ing the previously chosen probability density as a weight function. The front position is
obtained as the weighted mean of fronts calculated by means of the selected sharp front
technique, using as weight-function the probability density function which characterizes
the underlying microscopic diffusion process.

The adopted statistical front propagation framework allowed a deeper understanding of
any studied field of application. (i) In the case of wild-land fire, the proposed splitting
allowed to study separately the rate of spread of the fire and the turbulence and fire
spotting effects (the latter involving random trajectories of fire brands). This work put
the basis for a multi scale analysis of the different macroscopic and meso-scopic factors
in fire-spotting driven fires. (ii) In the case of turbulent premixed combustion, the use
of the probability density of the front fluctuations allowed for physical insights of flame
instabilities. (iii) In the case of biofilm spread modeling, the proposed splitting allowed for
the study of the seeding and dispersal phenomenon, studying the generation of satellite
biofilm spots generated by an active colony through planktonic cell migration.

The application of this model introduced eventually parameters whose impact on the
physical observables of the front spread have been studied with Uncertainty Quantifica-
tion and Sensitivity Analysis tools. In particular, metamodels for the front propagation
system have been constructed in a non intrusive way, by making use of generalized Poly-
nomial Chaos expansions (gPC) and Gaussian Processes (GP). Such techniques have
been transversal to nearly any application of the presented thesis. Different techniques
for gPC have been compared for the study case of the studied statistical front propagation
model in wild-land fire with the occurrence of fire-spotting, keeping GP as a benchmark.
On the other hand, the UQ and SA techniques that have proven to be successful for
the latter application have been applied to a recent 1D biofilm model that has recently
been added a multi species invasion module. The use of metamodel-based UQ and SA
techniques had a two-fold purpose: on the one hand, it allowed to shed some light on the
underlying physics, ranking the parameters according to their relevance, measuring their
interaction in affecting the observables, and quantifying the uncertainty in the outputs
given random input parameters. On the other hand, the given front propagation models
have been a chance to rank metamodels and explore their suitability to a large spectrum
of applications.
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Chapter -1

Introducción

Esta tesis trata sobre la propagación de frentes (interfaces) en un medio aleatorio o en uno deter-

mińıstico, donde la dinámica que empuja el frente de propagación se ve afectada por un cualquier

tipo de aleatoriedad. Esta aleatoriedad se asocia generalmente con fenómenos que ocurren en escalas

que son más pequeñas que las escalas del frente objeto del estudio, es decir, se trata de fluctuacio-

nes microscópicas aleatorias del dicho frente. La propagación de frentes (Front Propagation) es una

disciplina que se encuentra entre varios campos cient́ıficos como el ingenieŕıa, la informática y las

matemáticas. Ponerse en el caso de que el frente modelado se propague en un entorno aleatorio, o

bajo una ley de propagación aleatoria, puede ayudar la mejora de los diferentes modelos en su tarea

de adherirse lo más cerca posible a la realidad. Para nombrar un primer ejemplo, en el contexto de

la propagación de incendios de bosque, una ley de propagación demasiado sencilla, que descuide el

ascenso y la cáıda de las tizas, aśı como el transporte turbulento del aire caliente, podŕıa fallar en el

predecir la topoloǵıa y la extensión espacial de un frente de llamas, siendo este perjudicial para la

capacidad de pronóstico del modelo en cuestión. Un otro ejemplo acerca del modelado en bioloǵıa,

un enfoque estándar de propagación frontal para una colonia de bacterias planas organizadas en

forma de biopeliculas (biofilm) no puede comprender fácilmente la siembra y dispersión (seeding

and dispersal) puestas en marcha por bacterias que cambian de actividad sésil a planctónica, que

determinaŕıa en la fase final del ciclo vital del biofilm la formación de colonias maduras en lugares

más ricos en recursos.

Para describir el movimiento de los frentes aleatorios, en esta tesis adoptaremos un modelo de

propagación de frentes inicialmente pensado para estudiar la combustión turbulenta de premezcla,

que consiste en una división entre un frente determinista y las fluctuaciones aleatorias superimpues-

tas.

El frente determinista se puede calcular de manera efectiva haciendo uso de los algoritmos y

conocimientos que ya están presentes en literatura. Estos algoritmos suelen dividirse en dos tipo-

loǵıas, los de Reacción - Difusión y los de frente ńıtido (sharp front). La primera tipoloǵıa utiliza

sistemas de ecuaciones en derivadas parciales para expresar algunos campos el cuyo gradiente puede

1
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dar informaciones acerca de la dinámica del frente en examen. La segunda tipoloǵıa, que es la que

ha sido utilizada en la Tesis, concibe el frente como una interfaz neta que propaga por medio de un

campo de velocidad. Constituyen ejemplos de esta tipoloǵıa el método llamado Conjunto de Nivel

Level Set y los algoritmos de marcadores. El Level Set corresponde a un punto de vista Euleriano,

con una representación impĺıcita del frente, mientras los métodos de marcadores a una especifica-

ción Lagrangiana del campo de flujo, con una representación explicita del frente. Entre los dos, el

Level Set es el algoritmo que has sido utilizado más frecuentemente en el desarrollo de la presente

Tesis, utilizando libreŕıas de diferencias finitas que empleen métodos denominados esencialmente no

oscilatorios (ENO).

Como hemos especificado antes, el resultado del avance del frente determinista se enriquece con

las fluctuaciones aleatorias. Dichas fluctuaciones están profundamente interconectadas con las ca-

racteŕısticas microscópicas del fenómeno modelado. La descripción de los fenómenos aleatorios a

pequeña escala se puede modelar mediante el uso de variables aleatorias, pues adoptar un método

determinista seria demasiado oneroso bajo el punto de vista computacional, o simplemente impo-

sible por los conocimientos cient́ıficos y técnicos actuales. En el caso del enfoque adoptado en la

presente Tesis, nos limitamos a la función de densidad de probabilidad de desplazamientos aleato-

rios. Cuanto mas se conoce la f́ısica sobre los fenómenos a pequeña escala, cuanto más precisa es la

función de densidad de probabilidad de los efectos aleatorios que se puede concebir. Por ejemplo,

en la aplicación de los incendios de bosque, cuanto mas conocimientos previo procedente de varias

fuentes se dispone (fenómenos relacionados con la macro-escala como la estabilidad atmosférica,

fenómenos relacionados con la meso-escala como la geometŕıa de la llama, mapeo con buena reso-

lución del viento a la altura de la llama...), tanto mas precisa puede ser la descripción anaĺıtica

del fenómeno aleatorio. Como acabamos de comentar, en esta Tesis se formula la suposición de

que toda la dinámica subyacente al frente macroscópico está bien descrita por una distribución

de probabilidad adecuada, que dependerá de un conjunto de parámetros. El modelo final entonces

comprenderá de los parámetros estándar de un estudio de propagación frontal en la macro-escala

(campo de velocidad externo, efectos de curvatura ...) mientras que en la micro-escala una elección

precisa de los parámetros que gobiernan la densidad de probabilidad está destinada a desempeñar

un papel muy importante. La mayoŕıa de los modelos obtenidos en este marco exhiben, por lo tanto,

un comportamiento de escalas múltiples simultáneas (concurring multi-scale), con diferentes escalas

que contribuyen al mismo tiempo a la topoloǵıa frontal (es decir, número de incendios aislados en

un modelo de incendio de bosque) y posición del frente en examen. Aunque la estructura formal del

modelo es común a cualquier aplicación, cada escenario particular necesita de funciones ad hoc para

expresar esta conexión entre la escala microscópica y el avance macroscópico del frente. Se observa

que incluso si estamos de facto resolviendo el problema del avance del frente en dos problemas se-

parados, las funciones introducidas son relativamente sencillas bajo el punto de vista matemático, y
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una clara ventaja de este técnica es que, siempre que haya suficiente información para proporcionar

un buen modelado, la totalidad del modelado a pequeña escala se encapsula dentro de la probabi-

lidad prescrita de desplazamientos microscópicos, y no hay necesidad de recurrir a un sistema de

EDP acopladas de tipo stiff. Como mencionamos anteriormente, este marco de modelado implica

la introducción de parámetros relacionados con la escala microscópica. Dado que este enfoque es

bastante nuevo en el panorama matemático, la influencia de cada parámetro en los resultados de las

ejecuciones del modelo (es decir, en un conjunto de observaciones f́ısicas observables representativo

de la cantidad de información pronosticada por un modelo de ejecución) necesita ser evaluado. Esto

es útil porque la clasificación correcta de los parámetros de entrada podŕıa, por un lado, dar im-

portantes información sobre los procesos f́ısicos principales en los fenómenos modelados, y por otro

lado dar informaciones importantes para los experimentadores sobre qué parámetro se debe medir

con más atención. Este problema es abordado por el análisis de sensibilidad (SA). Otro problema es

cuantificar cómo la incertidumbre sobre los parámetros en entrada afecta la incertidumbre general

sobre las cantidades f́ısicas de interés pronosticadas por el modelo. Una respuesta a este problema,

en el caso del método propuesto, cuantificaŕıa la incertidumbre sobre los parámetros de la función de

densidad de probabilidad prescrita para la parte fluctuante del modelo. Este problema es respondido

por la llamada Cuantificación de Incertidumbre (UQ). En esta Tesis, tanto el análisis de sensibilidad

como la cuantificación de incertidumbre se aplican a casi cualquier declinación del modelo, con un

énfasis particular en la aplicación de incendios de bosque. A pesar de que en este trabajo solo se

utilizan experimentos sintéticos, es decir, se crean los datos analizados para UQ y SA por medio de

simulaciones, alcanzar el nivel de precisión deseado tanto en técnicas estándares de UQ como de SA

habŕıa implicado traspasar el presupuesto computacional. Para eludir esta limitación computacional,

se ha buscado una réplica barata (conocida como meta-modelo o sustituto del modelo, metamodel

- surrogate model) de la simulación de propagación del frente. En lugar de modificar las ecuaciones

del modelo para lanzar una análisis de UQ y SA, se persigue un método guiado por los datos (data

driven) donde un Dise de Experimentos (Design of Experiments, DoE ) se construye a través de un

muestreo oportuno de los parámetros caracterizados por incertidumbre.

Toda la información para construir el meta-modelo se deduce de la base de datos construida a

través de las integraciones numéricas del modelo según especificado por el Disegno de Experimentos,

y el meta-modelo, computacionalmente mucho más barato, se lanza el número necesario de veces

para recuperar la información necesaria para una análisis extensiva de UQ y SA. Para no obtener re-

sultados dependientes del algoritmo, dos familias diferentes de meta-modelos han sido utilizadas. El

primer meta-modelo utilizado es el Proceso de Gauss (Gaussian Process, GP), una técnica utilizada

también en aprendizaje automático no supervisado (non-supervised Machine Learning). El segun-

do es un método espectral, llamado Caos Polinomial generalizado, (generalized Polynomial Chaos,

gPC). Debido a la no linealidad exhibida por los procesos involucrados, investigamos el impacto de
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diferentes opciones de la base polinomial de gPC (completa o dispersa, sparse) en el rendimiento

del meta-modelo gPC bajo un presupuesto computacional fijado de antemano. El uso de una base

polinomial dispersa ayudó a reducir el tamaño del problema estocástico pues se enfocaba solo en los

componentes de base polinomial más significativos y ayudar a capturar mejor la compleja respuesta

del modelo a las variaciones en los factores de entrada.

Estructura de la Tesis

Esta tesis está estructurada de la siguiente manera:

• En el Caṕıtulo 1, se dan algunas ideas sobre el amplio tema del modelado de la propagación

de frentes. Más espećıficamente, en este capitulo se describen las dos principales familias de

métodos para dicho modelado, es decir, las ecuaciones en derivadas parciales de difusión y

reacción y los métodos de sharp front. En este último grupo, adoptado a lo largo de la tesis, las

caracteŕısticas principales del Método de conjuntos de nivel (Level Set Method), y del DEVS,

un esquema de front tracking Lagrangiano, son explicadas.

• En el Caṕıtulo 2, el lector es introducido a los conceptos clave de Cuantificación de Incerti-

dumbre (UQ) y Análisis de Sensibilidad (SA). Varias técnicas de UQ y SA (especialmente las

relacionadas al marco de los meta-modelos) constituyen una experiencia esencial que abarca

casi cualquier aplicación del modelo de propagación presentado en esta Tesis. Aunque el ob-

jetivo final del Caṕıtulo es cubrir las ideas principales y las Técnicas adoptadas en el resto

de la tesis, una introducción mas amplia y general al panorama de UQ y SA para complejos

modelos computacionales se ha proporcionado en la primera parte del Caṕıtulo.

• El Caṕıtulo 3 comienza con una descripción del modelo estad́ıstico para la propagación del

frente adoptado en esta tesis. En particular, se muestra cómo el formalismo propuesto concilia

dos enfoques considerados alternativos entre śı que son los que se basan en esquemas de sharp

front ( como Level Set Method y DEVS) y los basados en sistemas acoplados de ecuaciones de

reacción-difusión. En la última parte del Caṕıtulo, se da un ejemplo de la aplicación de este

modelo. Más espećıficamente, la simulación de un frente caracterizado por geometŕıa inicial

compleja que se mueve de forma aleatoria en medios anormalmente difusivos (front propaga-

tion in anoumalous diffusive media. En particular, la densidad de probabilidad empleada en

este contexto es la solución fundamental (llamada también Green’s function) de una familia

de ecuaciones diferenciales en derivadas parciales fraccionarias de tipo Erdélyi-Kober que des-

criben el moto de part́ıculas a través de un medio de propagación no estándar. Las técnicas

UQ y SA descritas en el Caṕıtulo 2 son adoptadas para estudiar dos parámetros relacionados

con el desplazamiento aleatorio de dichas part́ıculas.



CHAPTER -1. INTRODUCCIÓN 5

• El Caṕıtulo 4 trata sobre la aplicación del modelo a la combustión turbulenta premezclada.

Después de una introducción, algunas reflexiones sobre la aplicación del modelo estad́ıstico de

propagación propuesto en esta tesis para inestabilidades de combustión son ilustradas.

• El Caṕıtulo 5 trata sobre el campo de aplicación del modelado de incendios forestales. Al

principio del Caṕıtulo, se revisan las técnicas adoptadas en la literatura para modelar y simular

la propagación de incendios forestales. Posteriormente, se describe el fenómeno del fire spotting,

donde un incendio principal genera a través de una lluvia de tizas otros incendios secundarios.

Se enumeran los principales modelos matemáticos disponibles para su predicción.

La adaptación del modelo estad́ıstico de propagación objeto de la presente Tesis para que se

pueda aplicar a la predicción de incendios forestales, modelando tamb́ıen fenómenos aleatorios

como las turbulencias y el fire spotting. La parametrización del modelo obtenido, llamada

RandomFront, se presenta con todos los detalles matemáticos y las asunciones f́ısicas necesarias.

A nivel computacional, la integración del modelo en dos entornos de simulación diferentes

(LSFire y WRF-SFire) se discute en la parte central del Caṕıtulo. Posteriormente, se presenta

una análisis extensiva de UQ y SA sobre el modelo integrado en LSFire. El Caṕıtulo concluye

con los últimos avances en esta investigación, acerca del modelado multi-escala del fire spotting.

• En el Caṕıtulo 6 se describe la aplicación del modelo de propagación frontal a las biopeĺıculas

microbianas (microbial biofilms). Al principio, el fenómeno biológico se describe brevemente.

Después de eso, el modelo estad́ıstico de propagación de frentes es adaptado para modelar

siembra y dispersión en biopeĺıculas planas. Después de realizar unos experimentos numéricos

para desvelar las capacidades del modelo, un simple test especifico se compara con una prueba

experimental in vitro. El caṕıtulo concluye con la aplicación de UQ y SA a meta-modelos

que replican un modelo detallado de biopeĺıcula 1D orientado a aplicaciones de ingenieŕıa. En

particular, se estudian los parámetro de un sub-modelo cuya finalidad es analizar la invasión

de una especie bacteriana en una biopeĺıcula caracterizada por otra especie. La extensión del

frente de biomasa se estudia de forma estad́ıstica pues se supone que los parámetros de invasión

bacteriana son aleatorios.

• Finalmente, en el Caṕıtulo 7 se describen las perspectivas de futuras investigaciones y se

extraen las conclusiones principales del trabajo de Tesis.



Chapter 0

Introduction

This thesis deals with the propagation of fronts (interfaces) in either a random medium or in a

deterministic one, where the dynamics pushing the propagating front affected by any kind of ran-

domness. This randomness is usually associated with phenomena occurring at scales that are smaller

than the scales of the front object of the study, i.e. we are dealing with microscopical random fluc-

tuations of the front.

Front propagation is a discipline that stands in between several scientific fields such as engineer-

ing, computer science and mathematics.

Letting the modeled front embrace a random environment or a random propagating law can help

the bettering of different models in their task of adhering as close as possible to reality. To name a

first example,in the setting of wild-land fire propagation, a simple propagation law that neglects the

rise and fall of burning embers, as well as the turbulent transport of hot air, may be not as accurate

as expected in predicting the topology and the spatial extension of a burning front, this being

detrimental to overall forecasting potential of the model itself. Shifting the attention to biological

modeling, a standard front propagation approach for a planar colony of bacteria cannot grasp easily

the seeding and dispersal put in place by bacteria switching from sessile to planktonic activity, that

would eventually determine the formation of mature colonies in places richer in resources.

In order to describe the motion of random fronts, in this thesis we shall adopt a modeling

framework initially thought for studying turbulent premixed combustion, that consists of a splitting

between a deterministic front and the super-imposed random fluctuations. The deterministic front

can be computed effectively by making use of the algorithms and know-how already present in liter-

ature. On the other hand, the random fluctuations are deeply interconnected with the microscopical

features of the modeled phenomenon. The description of the aleatory phenomena at the small scale

can be modeled via the use of random variables. In the case of the approach adopted in the present

Thesis, we limit ourselves to the probability density function of random displacements. The more

physics is known about the small scale phenomena, the more accurate the probability density func-

tion of the random effects can be conceived. The underlying dynamics is allegedly well described by

6
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a suitable distribution, that will depend on a set of parameters. The final model will then comprise

of the standard parameters of a front propagation study at the macro-scale (external velocity field,

curvature effects...) while at the micro-scale an accurate choice of the parameters of the probability

density is bound to play a paramount role. Most of the models obtained in this framework exhibits

thus a concurrent multi-scale behavior, with different scales contributing at the same time to the

front topology (i.e. number of isolated fires in a wild-land fire model) and front position. Even

though the formal structure of the model is common to any application, each particular scenario

needs ad-hoc functions to express this connection between the microscopic scale and the macroscopic

front advancing. It is remarked that even if we are de factosplitting the problem of front advancing

in two separate problems, the introduced functions are relatively straightforward speaking in math-

ematical terms, and a clear advantage of this approach is that as long as there is enough information

to provide a good modeling, the totality of the small scale modeling is encapsulated inside of the

prescribed probability of microscopic displacements, and there is no need to recur to a possibly stiff

system of coupled PDEs.

As we mentioned earlier, this modeling framework entails the introduction of parameters related

to the microscopic scale. Since this approach is quite new in the mathematical landscape, the

influence of each parameters on the output of the model runs (i.e., on a set of physical observable

representative of the quantity of information forecast by a model execution) needs to be evaluated.

This is useful because ranking correctly the input parameters could on the one hand give important

insights on the leading physical processes in the modeled phenomena, and on the other hand give

important information to the experimentalists about which parameter should be measured with more

care. This problem is addressed by the Sensitivity Analysis (SA). Another problem is to quantify

how the uncertainty on the input parameters affects the overall uncertainty on the physical quantities

of interest of the model forecast. An answer to this problem, in the case of the proposed approach,

would also quantify the uncertainty on the parameters of the prescribed probability density function

of the fluctuating part. This issue is answered by the so called Uncertainty Quantification (UQ).

In this thesis, both Sensitivity Analysis and Uncertainty Quantification are applied to almost any

declination of the model, with a particular stress on wild-land fire application. Despite the fact that

in this thesis are used only synthetic settings, that is, the analyzed data for UQ and SA is created

by the means of simulations, reaching the desired level of accuracy in both UQ and SA would have

implied trespassing the computational budget. To circumvent this limitation, a computationally

cheap replica (known as metamodel, or surrogate of the front propagation model is sought. Instead

of modifying the model equations, a so called ensemble method is pursued. In other words, databases

are built via an opportune sampling of the uncertain parameters. All the information to build the

surrogate of the model is then inferred from the database, and the computationally cheap surrogate

is launched the necessary number of times in order to retrieve the needed information about UQ and
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SA. In order not to get algorithm dependent results, two different families of surrogate models have

been applied. The first one is the Gaussian Process one, a technique used in unsupervised machine

learning. The second one is a spectral method, generalized Polynomial Chaos (gPC). Due to the

non-linearities exhibited by the processes involved, we investigate the impact of different choices of

the gPC polynomial basis (full or sparse) on the surrogate performance for a fixed computational

budget. Using a sparse polynomial basis helped in reducing the size of the stochastic problem by only

choosing the most significant polynomial basis components, and help to better capture a complex

model response to variations in the input factors.

Structure of the Thesis This thesis is structured as follows:

• In Chapter 1, some insights are given on the broad topic of front propagation. More specifically,

the two main families of methods for front propagation modeling, namely reaction diffusion

equations and sharp front methods, are described. In the latter group, the one actively adopted

throughout the thesis, the main features of Level Set Method (LSM), a well known Eulerian

front propagation scheme, and DEVS, a Lagrangian front tracking scheme, are pointed out.

• In Chapter 2, the reader is introduced to the key concepts of Uncertainty and Sensitivity

Analysis. Several UQ and SA techniques (especially the ones connected to surrogate modeling)

do constitute an essential expertise cutting across nearly any application of the presented front

propagation model. Therefore, the ultimate aim of the Chapter is to cover the main ideas and

techniques adopted in the rest of the Thesis.

• Chapter 3 begins with a description of the modeling framework for statistical front propagation

adopted in this Thesis. In particular, it is shown how the proposed formalism reconciles two

approaches considered alternative to each other that is the ones based on moving interface

schemes (sharp front schemes such as LSM and DEVS) and the ones based on reaction-diffusion

equations. In the last part of the Chapter, an example of application of this framework is given.

More specifically, the simulation of a front of complex initial geometry moving in a random

anomalously diffusive media is performed. UQ and SA techniques described in Chapter 2 are

adopted in order to study two parameters connected to the random particle displacement.

• Chapter 4 is about the application of the model to Premixed Turbulent Combustion. After an

introductory part, some thoughts deriving from the application of the proposed approach to

combustion instabilities are delivered.

• Chapter 5 deals with the wild-land fire modeling application field. At the beginning of the

Chapter, the main model and techniques adopted in literature to model and simulate wild-

land fire spread are reviewed. Afterwards, the phenomenon of fire-spotting is described and
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the main model available for its prediction are listed. The mathematical adjustments necessary

for the model to be applied in the prediction of wild-land fires including turbulence and fire

spotting effects. Its parametrization, named RandomFront, is presented as well. The output of

the model in two different simulation environment (LSFire and WRF-SFire) is then discussed

with a response analysis. UQ and SA of a simple test case for the model with RandomFront

parametrization is discussed. The Chapter concludes with the latest advances in this research,

regarding multi-scale modeling of fire spotting.

• In Chapter 6 the application of the front propagation model to microbial biofilm is described.

At first, the biological phenomenon is shortly described. After that, the presented framework is

adapted to model seeding and dispersal in planar biofilms. Synthetic experiments are initially

performed. The capabilities of the model in reproducing reality are then tested against a simple

in vitro test case. The chapter concludes with the application of surrogate-based UQ and SA

to a detailed 1D biofilm model oriented to engineering applications, to study the parameter

of a species invasion submodel. The extension of the biomass front is studied under random

bacterial invasion parameters.

• At last, in Chapter 7 the future perspectives are listed, and the main conclusions are drawn.



List of Publications

In this Chapter are reported all the papers (published and in preparation), conference proceedings,

given talks and presented posters which are the result of the PhD course.

Use of Symbols

In the following, we will connect each result to its corresponding Chapter(s).

• Chapter 2 is related to the use of Uncertainty quantification and Sensitivity Analysis tech-

niques.

• Chapter 3 is related to the framework of statistical front propagation object of this thesis.

• Chapter 4 is related to the application of the statistical front propagation model to Turbulent

Premixed Combustion. Its symbol is (Ch.4).

• Chapter 5 is related to the application of the statistical front propagation model to wildland

fires.

• Chapter 6 is related to the study of bacterial biofilms, with or without the use of the proposed

framework of statistical front propagation.

List of Publications

Publications in Peer Reviewed Journals

[(Ch.3) (Ch.5) ] Ref. [283]: A. Trucchia, V. Egorova, A. Butenko, I. Kaur, and G. Pagnini. Randomfront

2.3: a physical parameterisation of fire spotting for operational fire spread models – implement-

ation in WRF-Sfire and response analysis with LSFire+. Geoscientific Model Development,

12(1):69–87, 2019.

[( Ch.2) (Ch.3) (Ch.5) ] Ref. [284]: A. Trucchia, V. Egorova, G. Pagnini, and M.C. Rochoux. On the merits of

sparse surrogates for global sensitivity analysis of multi-scale nonlinear problems: Application

to turbulence and fire-spotting model in wildland fire simulators. Communications in Nonlinear

Science and Numerical Simulation, 73:120 – 145, 2019.

10



CHAPTER 0. INTRODUCTION 11

[( Ch.2) (Ch.6) ] Ref. [285]: A. Trucchia, M.R. Mattei, V. Luongo, L. Frunzo, and M.C. Rochoux. Surrogate-

based uncertainty and sensitivity analysis for bacterial invasion in multi-species biofilm mod-

eling. Communications in Nonlinear Science and Numerical Simulation, 73:403 – 424, 2019.

[(Ch.3) (Ch.5) ] Ref. [77]: Vera N. Egorova, A. Trucchia, and Gianni Pagnini. Fire-spotting generated fires.

part i: The role of atmospheric stability. Applied Mathematical Modelling (in press), 2019.

[(Ch.3) (Ch.4) ] Ref. [287]: A. Trucchia and Gianni Pagnini. Restoring property of the Michelson-

Sivashinsky equation. Combustion Science and Technology, 2019. Accepted (2019).

Submitted Papers

[(Ch.3) (Ch.5) ] Ref. [78]: Vera N. Egorova, A. Trucchia, and Gianni Pagnini. Fire-spotting generated fires.

part ii: The role of flame geometry. Applied Mathematical Modelling, 2019. Submitted.

Papers in preparation

[(Ch.3) ] A. Trucchia, A. Mentrelli, G. Pagnini, The role of diffusion and curvature in front propaga-

tion, manuscript in preparation

[(Ch.3) (Ch.6) ] A. Trucchia, F. Villa, L. Frunzo, G. Pagnini, Seeding Dispersal Modeling For Systems of

Planar Microbial Biofilms, arXiv preprint, arXiv:1712.04832, https://arxiv.org/abs/1712.

04832

Outreach: proceedings, talks and posters

Proceedings

[(Ch.3) (Ch.5) ] Egorova V. N.; Pagnini G.; Trucchia A. Wildland fire propagation modeling: fire-spotting

parametrisation and energy balance. Proceedings of the 17th International Conference on

Computational and Mathematical Methods in Science and Engineering, CMMSE 2017, pp.

805 - 813, 2017-07-04

[(Ch.3) (Ch.5) ] Egorova V. N.; Pagnini G.; Trucchia A. Wildland fire propagation modelling. MODELLING

FOR ENGINEERING AND HUMAN BEHAVIOUR 2017 Extended abstract, December 2017

[(Ch.3) (Ch.4) ] Pagnini G.; Trucchia A. Darrieus-Landau instabilities in the framework of the G-equation.

Digital proceedings of the 8th European Combustion Meeting, 18-21 April 2017, Dubrovnik,

Croatia, April 2017

[(Ch.3) (Ch.4) ] G. Pagnini, A. Trucchia, Quasi-probability Approach for Modelling Local Extinction and

Counter-gradient in Turbulent Premixed Combustion . Proceedings Joint Meeting the German

and Italian Sections of the Combustion Institute, 23-26/05/2018, Sorrento, Italy

https://arxiv.org/abs/1712.04832
https://arxiv.org/abs/1712.04832


CHAPTER 0. INTRODUCTION 12

[( Ch.2) (Ch.3) ] A. Trucchia, G. Pagnini, The role of the environment in front propagation, Proceedings of

the 18th International Conference on Computational and Mathematical Methods in Science

and Engineering, CMMSE 2018 July 9–14, 2018, 2018-07-09

[(Ch.3) (Ch.5) ] Egorova V. N., Trucchia A. , Pagnini G.; Concurent multi-scale physical parametrization

of fire-spotting: A study on the role of macro- and meso-scale characteristics of the system ,

Advances in Forest Fire Research, 2018

[(Ch.3) (Ch.5) ] Pagnini G.; Egorova V.; Trucchia A.; Mentrelli A.; Kaur I. , Wildfire Propagation Modelling,

Geophysical Research Abstracts Vol. 20, 2018

[(Ch.3) (Ch.4) ] Pagnini G., Trucchia A., Front Curvature Evolution and Hydrodynamics Instabilities, Pro-

ceedings/Extended Abstract Book (6 pages) of the XXXX Meeting of the Italian Section of

the Combustion Institute, Rome, Italy, 2017-06-07

Outreach

Invited Talks

[(Ch.3) ] Presentation of seminar Front propagation in random media at the GNFM XLI Mathematical

Phyisics Summer School, Ravello, Italy, 15/09/2016

[( Ch.2) (Ch.3) ] Presentation of seminar ”The role of the environment in front propagation” at the Interna-

tional Conference on Computational and Mathematical Methdos in Science and Engineering,

CMMSE 2018 (July 9-14 2018, Rota, Cadiz, Spain)

[( Ch.2) (Ch.3),(Ch.5) ] Seminar ”Surrogated - based Uncertainty Quantification and Sensitivity Analysis of a Wild-

land fire model” at BCAM LIGHT SEMINAR, May 3rd 2018, BCAM, Bilbao, Spain

[( Ch.2) (Ch.6) ] Seminar ”Surrogate-based Uncertainty Quantification and Sensitivity Analysis for Bacterial

Invasion in Multi-species Biofilms” at BCAM LIGHT SEMINAR, February 19th 2019, BCAM,

Bilbao, Spain

[( Ch.2) (Ch.3),(Ch.5) ] Talk Surrogate Analysis of turbulence and fire spotting in wild-land fire modeling delivered at

FIRST BYMAT CONFERENCE: BRINGING YOUNG MATHEMATICIANS TOGETHER

May 07-09 2018 , ICMAT, Universidad Autonoma de Madrid, Madrid, Spain.

[( Ch.2) (Ch.3),(Ch.5) ] Seminar ”Uncertainty Quantification and Sensitivity Analysis of a Wild-land fire model”

delivered at Mathematics Department ”Renato Caccioppoli” at Federico II University, Naples,

Italy, November 2019

[(Ch.3) (Ch.6) ] Seminar ”Seeding and Dispersal of Planar Microbial Biofilms: a chance for modelling” de-

livered at workshop QBIO2019 - Quantitative Biomedicine for Health and Disease, Bilbao,

February 13th, 2019



CHAPTER 0. INTRODUCTION 13

Research visits

1. Six months research visit at CERFACS (Toulouse, France) under the supervision of Dr Mélanie
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If the path be beautiful, let us not ask
where it leads.

Anatole France



Chapter 1

Introduction to Front Propagation

The main aim of the thesis is to study a novel method for front propagation, and its applications

to different scenarios. In order to do so, an accurate description about what front propagation is

appears to be necessary.

The first question that shall be addressed in this introductory Chapter, is surely ”What is a

front?”. The reader surely shall bear in mind some intuitive notion of front, as a line, or a surface,

that more or less sharply separates two parts of the space that differ in something easy to detect

at a first glance. For example, in a wild land fire seen from above, it is clear that a fire line (one-

dimensional front) neatly separates two parts of the territory, the burnt (or still burning) one and

the untouched one.

Speaking the language of mathematics, a front is a solution of a spatially distributed system

connecting two steady states. [221, 189]. From the dynamical systems point of view, a front can be

defined as a heteroclinic orbit of a dynamical system in a co-moving frame of reference.

Front propagation and interface motion occur in many scientific areas such as chemical kinetics,

combustion, biology, transport in porous media, and industrial deposition processes. It is quite an

ubiquitous phenomenon, and its acquired thus a scientific and technical relevance.

The modeling of such varied spectra of situations can be ascribed to two main families of equa-

tions:

• (Systems of) non-linear Parabolic Partial Differential Equations (PDEs), belonging to the case

of Reaction Diffusion (R-D) systems;

• A so called Sharp Interface, given e.g. by (systems of ) hyperbolic Hamilton Jacobi equations,

or with the aid of Lagrangian Techniques.

In the following we will briefly describe the two main families, bearing in mind that the formu-

lation of Chapter 3 will set a bridge between the two approaches.

15
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1.1 Scalar R-D equations in Homogeneous media

One of the simplest model of scalar R-D equation is the well known model

∂u

∂t
=
∂2u

∂x2
+ f(u) (1.1)

where x ∈ R,. In spite of its simplicity it has been used in a wide number of applications, ranging

from chemical kinetics to combustion.

The quantity u in (1.1) may stand for the concentration of a particular reactant, the population

density of a biological species, temperature of a mixture, or whatever the practitioner needs to

represent in order to compute a travelling front.

The term f is a (possibly non-linear) reaction term, that couples the diffusive ut = uxx part of

(1.1). It is this specific term that governs the kinetics of the front propagation. In Ref. [311] a

short list of nonlinearities, arising in literature and applications, are presented. We report here this

selection:

1. f(u) = u(1− u) the KPP ( Fisher) non-linearity;

2. f(u) = um(1 − u), m ≥ 2,m ∈ N : mth order Fisher non-linearity ( Zeldovich nonlinearity is

the case when m = 2);

3. f(u) = u(1− u)(u− µ) is the bistable nonlinearity;

4. f(u) = e−E/u(1−u) is the Arrhenius combustion nonlinearity or combustion nonlinearity with

activation energy E but no temperature cutoff ;

5. f(u) = 0∀u ∈ [0, θ], f(u) > 0∀u ∈ (0, 1), f Lipschitz continous is the combustion nonlinearity

with ignition temperature θ .

The first two types are borrowed from chemical kinetics (e.g., from autocatalytic reactions).

The second type is the higher order generalization of the type 1. Type 3 has been introduced

in a biological framework (Fitz-Hugh-Nagumo , FHN systems) and from phase-field models for

solidification processes. The last two types come from premixed combustion studies, type 4 being

the σ → 0 limit case.

The isotropic scalar R-D equation in d dimension, d > 1 is given by

∂u

∂t
= ∇xu+ f(u) (1.2)

where ∇x is the operator

∇x(·) ≡
d∑
i=1

∂2(·)
∂xi2

(1.3)
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1.2 Scalar R-D equation in non-homogeneous media: going
towards Complexity

1.2.1 R-D Fronts in Periodic Media

This section will briefly address the problem of front propagation in a medium that is not homogen-

eous, described by the means of a scalar R-D equation.

In literature we can see that this problem has been approached by adding increasing layers of

complexity. To be more specific, it has been addressed at first analyzing periodic media, and then

looking at the more realistic, but also more challenging, random media setting. Periodic media

assumption comes in handy when multi-scale problems are studied. Problems characterized by

two or more scales are common in applications, e.g. when the effective permeability needs to be

determined for flows in porous media. In the example of the flow in porous media, the two scales are

the sample one and the one related to pores. These two scales are usually different in magnitude,

and this makes the solution of the problem difficult. Some mathematical tool to express at the

large scale the contribution of the collective effect at the small scale. When the small scale can be

assumed to be organized in a periodic structure, this up-scaling problem can rely on the framework

of homogenization theory. We recall that in this setting, homogenization is an Asymptotic Analysis

Theory that originates from material engineering, or more precisely, from understanding the way the

constitutive equation of composite material can be retrieved from the constitutive equation of each

component of the given material and from their topological and geometrical distributions. With the

ansatz of two-scale homogenization, the general form of traveling fronts can be derived for some of

the cases from 1 to 5 of the previous section’s list, and analytical results have been found for stability

of the fronts as well as estimates on the front speeds (see Ref. [311]).

1.2.2 RD Fronts in Random Media

A random setting is in a plethora of cases a way more practical assumption while modeling a

physical phenomenon. In engineering, sometimes the collect of information on the medium is a

costly procedure and thus some estimation that makes uses of a random, uncertain setting has to

be adopted, rather than a precise and analytical periodic expected behavior.

As can be found in any book of fluid dynamics, see e.g. Ref. [22], turbulent flows are known to

be intrinsically random in nature, and one of the main approach to be considered in describing the

motion of a turbulent fluid is by the means of statistical quantities such as energy spectrum and two

point velocity correlation functions.

In literature two broad categories of random media can be found, namely the tame media and

the wild ones.
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Tame Random Media

A tame random medium can by defined by a stochastic process X(x, ω) with finite moments (at

least up to the second one ) and short range correlations. An example is X(x, ω) = ξn(ω), for

x ∈ [n − 1, n), n = 1, 2, 3 . . . , where the ξn are independent identically distributed (i.i.d.) random

variables with finite first and second moments,

E[ξn] = µ, E[ξ2
n] = σ2 + µ2.

We denoted by the positive constant σ2 the variance of the stochastic process where σ is the standard

deviation. Applying the classical Central Limit Theorem , we have that the sum Sn = ξ1 + . . .+ ξn

is characterized by the limit

lim
n→∞

(Sn − nµ)

σ
√
n

= W1

where W1 is a unit Gaussian random variable (that is, a random variable with a normal distribution) .

The central limit theorem is a robust result and can be extended to cases with short correlations. The

product expectation E[(X(s)−E[X(s)])(X(t)−EX(t)])] is generally called the covariance function,

and the correlation is the ratio of the covariance to σsσt , where σ2
s = E[X(s)2] − (E[X(s)])2 .

The covariance or correlation is a measure of the degree of independence. For a stationary random

process, the distribution of X is invariant under translation in x, so σs is a constant, and we may

just use covariance for correlation if the variance is finite.

This framework of random processes can be effectively linked to front propagation in a random

medium. We may in fact model the location of a one-dimensional random front as a time-dependent

random process S(t, ω). In a scalar R-D setting, the front can have the interpretation of the iso-

contour of the quantity of interest with respect to a fixed value, i.e. 1
2 .

The main concept of the R-D approach to random front propagation is that the position of the

front at a given time can be computed by the sum of the space elapsed by a particle that is advected

by an average constant speed, and a noise term.

That will translate into formulas as

S(t) ≈ c∗t+W (1.4)

with W an unknown noise term. This writing can be further exploited and made rigorous by the

means of the Central Limit Theorem, at least in the case of one dimensional Burgers fronts [311]:

lim
t→∞

S(t)− c∗t
σ
√
t

= W1 (1.5)

As stated in [311], this result holds for a much more general class of equations than the con-

servative PDEs of Burgers type. However, PDE of conservative type allow for an interpretation of

(1.5) by the means of mass conservation arguments.
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The homogenization process that in the periodic case allowed the derivation of front speeds , sees

his alias in this random settings as the law of large numbers for a sum of i.i.d. random variables.

However, even for tame random media, there is more to be added to represent realistically the

front position. The term
√
tW is the new phenomenon taking place, front fluctuation, which has

no analogue in deterministic front problems (being them in a homogeneous or periodic medium).

In principle, one has to understand both the mean field phenomenon (a homogenization result on

the average front speed) and the statistics of the front fluctuation (Gaussian or otherwise) in order

to completely describe a random front. This is certainly a more challenging task. The modeling

framework adopted in this Thesis takes into account this intrinsic random fluctuations by the means

of the random process probability density function, without having to model explicitly the random

contributions like in 1.5.

Wild Random Media

A wild random medium is one in which the second or first moment of the random variable which

characterizes the front motion in the medium is infinite.

In the case of a sum of i.i.d. random variables, one encounters non-Gaussian stable laws (see e.g.

Reference [100]). If the first moment is still finite, then the following weak convergence holds:

lim
n→∞

Sn − E[ξ1]n

An
= Y (1.6)

where limn→∞
An√
n

= +∞.

The random variable Y has a stable probability distribution of exponent α ∈ (1, 2) whose char-

acteristic function can be derived explicitly. Such a random variable can be viewed as having a so

called fractional moment α. One still has a law of large numbers, but the scaling of the fluctuation

(if it exists) is a power larger than 1
2 , and so it falls below the definition of anomalous. If the prob-

ability density function has an even slower tail, so that the first moment is infinite but a fractional

moment α ∈ (0, 1) is finite, then

lim
n→∞

Sn
An

= Z (1.7)

with Z is a stable random variable with exponent α ∈ (0, 1). If in (1.7) the front location is

represented by Sn, the fluctuations may provoke front acceleration up to leading (macroscopic) order

[311].

1.3 Sharp Interface Fronts

Another way of looking at the challenging problem of front propagation is a formulation where the

observable of the front is not given by a smooth function that evolves through a set of R-D PDEs,
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but rather a so-called sharp interface, that is a discontinuity that propagates in space and time. Such

method give as an output two distinct sub-domains, the inner and the outer, and for a given point

of the interface, only a front speed is given, not a spectrum of speeds like the R-D case. There is,

therefore, an hyper-surface to be analytically studied or to be discretized numerically. In some cases,

the literature will refer to the method as ”front tracking” rather than ”front propagation scheme”,

e.g. when the front is represented a series of markers that evolve following Lagrangian laws.

In this thesis we will deal with at least two methods that give as an output a propagating

interface.

The first is the so called Level Set Method, an Eulerian formulation that follows an iso-contour of

a higher dimensional scalar function that evolves through an Hamilton Jacobi (HJ) set of equations.

This method has been introduced in the seminal work of Osher and Sethian [196] in 1988, and

has reached an impressive amount of application fields, ranging from multi-phase flows to material

science [44], with combustion [136] being the first notable field of application of such method. The

combustion community however has historically adopted the terminology G-equation addressing

formally to the same equation.

The second strategy is a front tracking one, shifting the problem from an Eulerian Setting

(analyzing some field in a position x at time t, ∀(x, t) ∈ (Rd ×R) to a Lagrangian one, following

the trajectories of a finite set of point (which discretizes the front position at time t) characterized

by an initial position and a according to a speed function.

Lagrangian front tracking is also known under the name of marker method (see Ref. [138]);

From a numerical point of view, this Lagrangian technique with computational cost simulates the

evolution of an interface without the need of any underlying grid to depict the state of the system.

It is mandatory to specify that topology change of a front is not, in principle, easy to be dealt with

in this setting, while with Level Set Method formulation the merging or detaching of fronts come

”for free” already built-in in the analytical formulation.

1.4 Level Set Method

The level set method is in a few introductory words an initial value problem for a scalar field

ϕ(x; t) ∈ R whose level surfaces represent interfaces. An equation for such field has been formulated

in [307] , and [249]. Despite its simplicity, its formulation can be used in a wide range of situation,

in both homogeneous and random (turbulent) environment.

The field equation of the Level Set Method (LSM from now on) is the following:

∂ϕ

∂t
+ v∇ϕ = uf |∇ϕ| (1.8)

where v is a given (macroscopic) flow field, possibly turbulent, and uf is a contact speed, that

in the application field of combustion is the chemical velocity of the flame. Its left side is a Total
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(material, convective) derivative Dϕ/Dt. The right hand side is a nonlinear source term depending

on the gradient of the advected field.

Its derivation is quite straightforward, not dissimilar in its nature from many results of classical

Hydrodynamics.

Let us start with a point x0 such that ϕ(x0, t0) = c. We shall then expand in Taylor series up

to the first order the field ϕ(x, t) in a neighborhood of (x0, t0):

ϕ(x, t) ≈ ϕ(x0, t0) + (x− x0∇ϕ(x0, t0) + (t− t0)
∂ϕ(x0, t0)

∂t
(1.9)

For t→ t0 we shall get to the formulation for x(t):

x(t)− x0

t− t0
= v(x0, t0)− uf

∇ϕ0

|∇ϕ0|
(1.10)

where ϕ0 ≡ ϕ(x0, t0) = c because of the initial assumption.

The velocity of a point on an iso-contour (that can be, for example, the burning surface of a

flame or the front between two distinct phases in a multi-phase flow) is thus the sum of an advection

velocity and of the (chemical, in the case of combustion) propagation of the iso-contour in the

normal direction with respect to the surface. In this formulation, by making good use of the notion

of iso-contour, we can get an useful analytical formula for the normal to the interface:

n =
∇ϕ
|∇ϕ|

(1.11)

The (1.8) equation can be formulated also as

∂ϕ

∂t
+ v(x, t) + uf (x, t)n∇ϕ = 0 (1.12)

With the desired iso-contour ϕ0 advected by the external velocity field v(x, t) and by the problem-

dependent contact growth uf (x, t).

1.4.1 Normal, Curvature, Signed Distance Setting

The level set method, by augmenting the dimension of the problem (i.e., trading the problem of

tracking a curve in a plane with the problem of computing the evolution of a moving surface ϕ =

F (x, y; t) gives us explicit representations for the normal vector and the curvature of the front. The

normal to the evolving front at each point x ∈ Γ(t) is given by Equation (1.11); note that in this

case the normal vector field is given for any point in the domain, not only in Γ(t). Anyway, the

notion of normal to a surface looses its significance outside of the surface.

Mean curvature κ of the interface is defined as the divergence of the normal n,

κ(x, t) = ∇ ·
(
∇ϕ(x, t)

‖∇ϕ(x, t)‖

)
, (1.13)
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Equation (1.12) with a curvature-dependent speed reads (after substituting Equation (1.11)):

∂ϕ

∂t
= V0(1− λMκ(x, t)) ‖∇ϕ‖ , (1.14)

V0 is a drifting speed here assumed constant and λM is a parameter that regulates the influence

of the curvature on the front speed. In combustion literature, λM is called Markstein length.

By including the curvature, the mathematical problem expressed by (1.8) shiftes from hyperbolic

to parabolic.

Signed distance function

Given a set Ω(t), we call a signed distance function a function ϕs that for any given point x ∈ S ⊆ Rd

gives

ϕΓ(x) =

{
dist(x, ∂Ω(t) if x ∈ Ω(t)
−dist(x, ∂Ω(t) if x /∈ Ω(t)

(1.15)

From Equation (1.15), we have that if the boundary of Ω(t), ∂Ω(t) ≡ Γ, is piecewise smooth, the

signed distance function ϕΓ is differentiable almost everywhere, its gradient satisfying the so called

Eikonal Equation

|∇ϕs| = 1 (1.16)

Please note that the signed distance function is a Level Set function since its 0−level iso-contour

is nothing but the interface Γ(t) = ∂Ω(t). It is not only one of the infinite variation of level set

functions for describing such interface, but it is one of the preferred ones in applications due to

numerical stability issues and its access to useful formulas to describe normal vector to interface and

its mean curvature [252].

In this formulation, choosing ϕ = ϕΓ, we shall have

n = ∇(ϕ) (1.17)

κ = ∆(ϕ) (1.18)

Arrival time formulation

It is worth pointing out that an alternative representation of the front propagation is possible

whenever the velocity V (x, t) is constant in time and strictly positive (or strictly negative). In fact,

let τ (x) be the arrival time function that represents the temporal instant at which the front reaches

the point x, then ‖∇τ‖ is the rate of change of the arrival time with respect to the change in the

front distance, i.e.,

‖∇τ‖ =
1

V
, τ (x) = 0 , ∀x ∈ Γ0 . (1.19)
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Equation 1.19 is known as eikonal equation and it is a time-independent version of the level set

equation (3.5). It has the important advantage of allowing – when applicable – for a great reduction

of the computational costs.

1.5 Insights of Level Set Method

We can be slightly informal and describe the formulation of (1.8) as the following so called Hamilton

Jacobi partial differential equation:

∂ϕ

∂t
+H(∇ϕ,x) = 0 (1.20)

One of the main subtleties that arises in solving this equation is that the solution need not

be differentiable, even with arbitrarily smooth boundary data. It is common knowledge, indeed,

that solutions of Hamilton Jacobi Equations such as (1.8) may develop discontinuities as t grows

larger, depending on the configuration for u and the initial level set field ϕ(x, 0) (and thus the

initial shape γ corresponding to the desired iso-contour of ϕ at time t = 0. See e.g.[195, 252].

This non-differentiability is intrinsically connected to the notion of weak solutions. Since Level

Set Method is a mature scheme from the numerical point of view, the modelist has a wide set of

numerical techniques which naturally account for this non-differentiability in the construction of

accurate and efficient approximation schemes and do not exclude physically correct non-smooth

solutions [195, 252].

1.5.1 Breaking the differentiability: a key example

We shall consider a well known example from the literature, in order to show how a Level Set Method

behaves when differentiability is lost. Let us consider the periodic initial cosine curve

γ(t = 0) = (1− s, [1 + cos(2πs)/2]) (1.21)

and propagate it in a Level Set Method formulation with uf = 1 and v = 0. In this rather

fortunate case, we may construct the solution at time t analytically in an explicit form. This is a

common test case for the sake of illustrating the potentialities and the theoretical foundations (as

well as the robustness) of Level Set Method for front tracking.

With a little amount of computation the reader can get to this expression for the parametrization

of the front at time t and with parametrization parameter term s:

x(s, t) =
ys(s, t = 0)

(x2
s(s, t = 0) + y2

s(s, t = 0))1/2
t+ x(s, t = 0) (1.22)

y(s, t) =
−xs(s, t = 0)

(x2
s(s, t = 0) + y2

s(s, t = 0))1/2
t+ y(s, t = 0) (1.23)
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Figure 1.1: Four different time steps (from lowest to highest plot, respectively) of the motion de-
scribed by Equation 1.22. The last time step (red plot) corresponds to a time where the swallowtail
structure is already formed.
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As can be seen in Figure 1.1, the front develops a sharp corner in finite time (exhibited from

the red contour). Once this corner develops, the normal is ambiguously defined, and it is not clear

how to continue the evolution. Hence, beyond the formation of the discontinuity in the derivative,

we will need a so called weak solution, i.e. a solution that satisfies only weakly the definition of

differentiability, see e.g. [81]. How can a solution be continued beyond the formation of a singularity

in the curvature corresponding to a corner in the front? A reasonable answer depends on the nature

of the interface under discussion. If the interface is viewed as a geometric curve evolving under the

prescribed speed function, then one possible weak solution is the ”swallowtail” solution formed by

letting the front pass through itself, that is leaving everything as it is in Fig. 1.1. This solution is in

fact the one given by equations (1.22); the lack of differentiability at the point where the swallowtails

crosses itself does not cripple the solution, since the latter is written only in terms of the initial data.

However, this solution after the developing of sharp cusps is not anymore a graph in the strict

sense. Furthermore, if we suppose the moving curve is to be regarded as an interface separating two

regions (say, burnt/burning surface of a forest fire and unburt part of the forest), we cannot accept

an output such as Fig. 1.1. From a geometrical argument, if we set uf = 1, the the front at time t

should consist of only the set of all points located a distance t from the initial curve. In other words,

the solution is developed by imagining wave fronts emanating with unit speed from each point of

the boundary data and the envelope of these wave fronts always corresponds to the ”first arrivals”.

A careful adherence to this statement produces the so called Huygens’ principle construction. This

will mantain the solution of (1.8) a graph for all times. Several theoretical arguments are described

in literature, such as the Entropy Solution.The first mention to Entropy Solution for the LSM was

posed by Sethian in [251, 249]. If we imagine the boundary curve as a source for a propagating

fiame, then the expanding flame satisfies the requirement that once a point in the domain is ignited

by the expanding front, it stays burnt. This construction is compatible with the Huygens’ principle

one, as shown as in [252]. We should remark what is the link between the ”entropy condition” and

the classical notion of entropy. An intuitive explanation is that an entropy condition stipulates that

no new information can be created during the evolution of the problem. Once an entropy condition

is invoked, some information about the initial data is lost, because different previous configuration

could lead to the same result. Indeed, the entropy condition used in the context of LSM states that

once a particle is burnt, it remains burnt, that is, once a corner has developed, the solution is no

longer reversible. The problem cannot be run backwards in time; we will not retrieve the initial data

in any case. Thus, some information about the solution is definitely discarded. Figure 4.2 shows

this alternate weak solution, with no ”swallow-tail” formation and a clear distinction between the

two areas the front is dividing; in a combustion setting, a we shall say a clear distinction between

the burnt domain and the unburnt one.
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Figure 1.2: Simulations performed by integrating the LSM with Ian Mitchell’s toolbox [181]. Each
panel shows 5 time steps of a simulation with a constant normal velocity of 1ms−1 which pushes the
contours upwards with time. The simulated window is t ∈ [0, 0.5]. The parameter λ of Equation 1.14
is decreasing for each panel, respectively 1 in Figure 4.2, 0.5 in 4.2 and 0.05 in 4.2

1.5.2 Link with Conservation Laws

Let us imagine that we are so fortunate that we can put the initial front as a graph of a function

f(x). That is, Γ = (x, f(x), with f periodic on [0, 1]. Let us also suppose that the propagating

interface remains a function for all the time. Let γ be the height of the propagating function at time

t, that is γ(x, 0) = f(x). In the level set formalism we have the following equation of motion, given

by Equation (1.14):

γt = ufn
√

(1 + γ2
x) (1.24)

Using uf = V0 ∗ (1− λMκ) and setting V0 = 1, we get to

γt −
√

(1 + γ2
x) = λ

γxx
1 + γ2

x

(1.25)

Substituting in the last equation the slope c = γx, we obtain

ct +
[
−
√

(1 + c2)
]
x

= λ

[
cx

1 + c2

]
x

(1.26)

In the setting of hyperbolic conservation laws, we have in the last equation an equivalent of

the well known Burgers Equation with vanishing viscosity (viscous hyperbolic conservation law).

From this example it is evident the role of the curvature in switching from the hyperbolic setting

( λ = 0, possibilities of cusps in the graph given by γ(x, t) given by shocks in the Equation (1.26)

that regulates its slope c ) to parabolic setting (λ > 0).

From the work of J.A. Sethian [249] we have the following Theorem, here readapted in the context

of the equation written so far:
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For the constant speed case of Equation (1.8) setting uf = 1 , the entropy solution which respects

the Huygens’ principle is given by the limit λM → 0 of (1.14) , with V0 = 1

In Figure 1.2 some simulations with Ian Mitchell’s toolbox [181] in OCTAVE programming en-

vironment [74]. For the same normal velocity, the multiplier for the curvature dependent term is

lowered from 1 to 0.05 from the leftmost panel to the rightmost one. The simulation is performed

from time t = 0 to time t = 0.5 and 5 equally spaced time steps are reported by plotting iso-contours

corresponding to ϕ = 0 Such contours are represented by blue lines, advected by the normal velocity

that pushes the front upwards. It is clear that a higher multiplier for the curvature term smears

out the geometrical inhomogeneities and the front tends to a planar contour pushed vertically by a

constant speed. By lowering the multiplier for the curvature term λ, we have that the profile tends

to the one devised by the entropy solution of the level set equation (vanishing viscosity).

To summarize the discussion so far concerning the theoretical foundation of LSM:

• A front propagating at a constant speed may form corners as it evolves, since it is linked to
Hamilton Jacobi equations. At such points, the front is no longer differentiable and a weak
solution has to be constructed to continue the solution retaining physical meaning.

• The correct weak solution comes by means of an entropy condition. The choice of weak solution
given by our entropy condition rests on the perspective that the front is an evolving interface
separating two regions, and the assumption that one is interested in tracking the progress of
one region into the other ( as in the combustion setting).

• A front propagating at a normal speed 1 − λMκ for λK > 0 does not form corners and stays
smooth for all time; Mathematically speaking, it is a parabolic equation not anymore prone to
shocks. Furthermore, as the dependence on curvature vanishes (limλM→0) , the limit of this
motion is the entropy-satisfying solution obtained for the constant speed case.

• In the case that the propagating curve remains a graph during its evolution, there is a direct
connection between the equation of motion and a one-dimensional hyperbolic conservation law
for the front slope. The role of curvature in a propagating front is analogous to the role of
viscosity in this hyperbolic conservation law (from this the use of the term ”viscosity solution”).

• By embedding the motion of a curve as the zero level set of a higher dimensional function, an
initial value partial differential equation can be obtained whose treatment can be way simpler
in many cases.

1.6 Lagrangian Methods

Purely Lagrangian methods for modeling moving interfaces consist of seeding the interface with

marker particles and then moving them according to a the velocity field accounting for the underlying

physics. These methods have proved to be capable of reaching high level of accuracy in literature

[289, 66, 102].

However, as also pointed out in [102] they share three drawbacks:

• It is difficult to simulate breakup and merging processes of the surfaces. Therefore, topology

changes are quite hard to deal with. See in this respect Figure 1.3 and Figure 1.4, where
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Figure 1.3: The three figures show the merging of two (initially separate) radially expanding fronts
in 2 dimensions, according to the formalism of LSM. They correspond to three separate time steps,
from the initial setting (left) to the last time step of the simulation (right panel).ϕ(x, t) is here
represented as a signed distance function, and plotted as a colored surface assuming values in the z
axis. The contour of the front, namely the 0 iso-contour of ϕ(x, t), is projected in the plane z = −18
for clarity purposes.

two fronts are merging in LSM formalism and a Lagrangian formalism, respectively. It is clear

that when LSM includes merging of fronts in a straightforward way, some other front detection

algorithm is needed for a Lagrangian scheme.

• It is not straightfoward to keep particle density consistent with the desired level of discretiza-

tion. They tipically accumulate at some areas while leaving other areas few particles. Effective

particle creation and deletion strategies are needed to avoid such situation.

• Most purely Lagrangian methods maintain the connectivity of the particles see e.g. [292].

Such connectivity is needed to reconstruct the free surface from the scattered particles that

are given as a result of the numerical lagrangian approach. This connectivity defines a mesh

of the moving interface. Unfortunately, the latter mesh may get too distorted by the action of

the underlying velocity field, corrupting the reconstruction process, and ultimately leading to

collapse of the simulation.

1.6.1 Lagrangian front tracking: DEVS algorithm

While this Thesis will focus on the application of LSM for the drifting part of the model described

in Chapter 3, the studied model modularity allowed for its implementation in a Lagrangian setting

in a study concerning wild-land fire applications [126]. In that setting a specific Lagrangian scheme

for front tracking has been adopted, the so-called DEVS [316], that was included in the operational

code for wild-land fire simulation ForeFire [88, 85].

DEVS handles the time advancement in terms of the increment of physical quantities instead of a

discrete time step. The resulting front is a polygon (as a common output for Lagrangian algorithms)

whose marker points have real (i.e.. non-discrete) coordinates instead of being located on nodes of

a regular mesh or grid. This computationally in-expensive Lagrangian technique simulates the
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Figure 1.4: Left panel: interface represented in a Lagrangian way at two different timesteps: t0, with
light blue markers and red contour, and t1, with fuchsia markers and blue contour. The interfaces
evolves trough a prescribed velocity field represented buy the arrows. Right panel: the merging
of the fronts without any ad-hoc algorithm that accounts for the change in topology of the front,
showing thus the problem addressed in [102]. Front at t = t0 is represented by two fronts of magenta
markers with red contour, while front at t = t1 is represented by two entwined fronts of blue markers
with blue contour, while the correct physical result would rather be a unique front.

evolution of an interface without making use of any underlying grid representing the state of the

system. Note that in the case of Eulerian front advancing schemes such as LSM, we had to rely on a

mesh where to discretize the PDEs. Each contour is discretised into a set of markers. Each marker

is connected to the next one through a piecewise linear segment.

Each marker is associated with a propagation speed and direction; and each time a marker

moves, the intersection with the neighborhood is checked to take care of collision and topological

changes. In order for the markers to be advected at each time-step, a velocity field V(x, t) need

to be defined The propagation speed of the marker is defined by the ROS, while the propagation

direction is defined by a front normal function. While spline interpolation may be used to estimate

this normal, the bisector angle made by the marker with its immediate left and right neighbors is

used as a computationally effective approximation of this outward normal.

In DEVS, time is treated as a continuous parameter and each marker evolves according to its

own independent time step. The time advancement of the markers is event based and all markers

do not share the same time step. Due to different time advances for each marker, the CFL condition

applies only locally and the markers move asynchronously. All events, triggering marker movement,

are time sorted in an event list and processed by a scheduler. This self adjusting temporal resolution

in Lagrangian formulation is computationally efficient and provides an efficient way to simulate the

spatially in-homogeneous problem. The simulation in DEVS advances as new events are generated;

the generation of new events is managed by the following two criteria:

Collision criterion: A collision happens when a marker moves into a different area, e.g., from an

unburned to a burned area or from an active fire to a fuel break. Each collision generates a

modification of the shape.
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Quantum distance criterion: Quantum distance ∆q is defined as the maximum distance each

marker is allowed to cover during advancement. The actual resolution of the simulation is

limited by this parameter and details smaller than the quantum distance ∆q may not be

accounted for.

Three type of events can be defined to control the front propagation: decomposition, regeneration

and coalescence. The decomposition function is activated when a marker enters a different area (e.g.,

while approaching a fuel break zone). As soon as the marker enters a new area, two new markers

are created on the boundary of the new area. In regeneration, the markers are redistributed to

refine the shape; if two markers are separated by a distance greater than the perimeter resolution

∆c, a new marker is generated between the two markers. The coalescence function reconstructs

the fire-perimeter by merging the markers. All markers with separation less than ∆r are merged

together. For stability and to avoid cross over of two markers, ∆r = ∆c/2 is assumed and the

condition ∆c ≥ 2∆q should be respected. The precision of the method is highly dependent on the

choice of ∆q and ∆c. Quantum distance ∆q, should be of a much higher resolution than the wind

data for minimal error. A detailed description of the DEVS front tracking method can be found in

Ref. [87].

An example of the output of a ForeFire run is available in Section 5.6.2 of Chapter 5.
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Data is the sword of the 21st century,
those who wield it the samurai.

Jonathan Rosenberg
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2.1 Introduction

This chapter introduces the reader to the key concepts of Uncertainty and Sensitivity Analysis, with

the aim of covering the main ideas and techniques adopted.

The main keywords of the chapter are here resumed below. All the models presented in this thesis

can be thought as a black-box, connecting the uncertain inputs to some observable, that is some

quantity of interest that can be measured with ease and results from the integration of the model

with selected input parameters. Uncertainty Quantification on the outputs (treated in Section 2.2 )

and Sensitivity Analysis on the model parameters (treated in Section 2.3) are then useful techniques,

mandatory to fully understand the behavior of any computational model. Non intrusive methods

32
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are adopted to avoid modifying the forward model and call it as a black box to carry out UQ and

SA. Stochastic approach to run the model multiple times to cover the space of uncertainties referred

to as the hypercube: this method is also called ensemble approach. In order to compute the statistics

for UQ and SA, the practitioner could be either adopt Monte Carlo random sampling approach,

or use a surrogate of the physical model to avoid the high numerical cost of the former method.

Surrogate models are treated in Section 2.4.

Computer models, or simulators, are nowadays widespread over every field of science. They allow

us to study a (possibly complex) physical model without the need to perform experiments (be

they computer models or real experimental settings) which may prove to be very expensive, if not

impossible, in terms of time and resources. Just to name a few examples, CAE (Computer Aided

Engineering) that may adopt Finite Element Modeling to compute mechanical and thermal stresses

over complex structures, or a Computational Fluid Dynamics simulation of the wind around an

aircraft wing. Most simulations related to real world problems involve the discretization of a set

of Partial Differential Equations via some numerical scheme ( Finite Differences, Finite Volumes,

Finite Elements...) or Ordinary Differential Equation if the spatial variability is not object of study.

Nonetheless, some of them do not depend explicitly on such a set of coupled Differential Equations,

like Pott’s models or Cellular Automatas.

In this work, the simulated models are obviously the fire spread model of Chapter 5 and the

front propagation model for complex media of chapter 3, which rely on WENO finite-difference

schemes to discretize the Hamilton Jacobi Level Set Equation, and to numerical kernel applied to

their solution to represent underlying random effects. In both cases, as stated before, experiments

may be expensive, not practical, or even dangerous (if involved e.g. some kind of wild-land fire run

amok), or even impossible to be projected at all. Computer models can be therefore a much more

viable and safer alternative.

Simulators are usually made of two parts. The first one is the so called Mathematical Model,

which depends on the aforementioned set of PDEs or ODEs and makes an effort to describe the

analyzed process totally or partially, according to the state of theoretical knowledge reached by the

scientific field involved by the modelled process. There may be a tradeoff between the complexity of

such mathematical model and the level of accuracy the modelist expects from the latter. The output

it gives may reflect spatial or temporal trends, that should be refined in most cases to give answers to

the modelist’s questions. The mathematical models written for practical purposes involves typically

large sets of inputs and outputs, that may represent either real world quantities or a parametrization

of them.

The second part of a simulator is its numerical implementation in a computational architecture.
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In the field of applied mathematical modeling, most models cannot be resolved analytically,

being thus the coding of algorithms into computer programs the only way to achieve a result.

Such programs can consists of thousand of low level and/or high level computer code lines, and to

perform a simulation of the mathematical model under consideration expensive architectures and

huge amount of time has to be employed, due to the complexity of most useful models.

Since simulators typically depend on a large set of parameters, they may be treated as “black-

box” models, that is considering them just a way to connect inputs to outputs, neglecting their

inner mechanics. Even in the case where all the mathematical features are known analytically,

its complexity may be so severe that considering the model other than a “black-box” would be

challenging. The input is usually made of a vector of input parameters θ (physical parameters,

numerical parameters, initial conditions, external forcing... ), while the output is usually coded into

a set of Quantities of Interest (QoI), y.

Such quantities of interests may be scalars, vectors or fields and ad-hoc techniques are adopted to

compress an entire set of spatial and temporal fields, typical output of a computer simulation, into

such vector of observables [168], [16]. Some of the main techniques adopted for data compression

of QoIs are spatial aggregation, modal decomposition (POD – Proper Orthogonal Decomposition,

DMD – Dynamic Mode Decomposition, SINDY – Sparse identification of nonlinear dynamics).

The model equations (e.g. system of partial differential equations) can be written in a compact

form using the operator M mapping the input parameters θ onto the set of quantities of interest y

such as

M(θ) = y, (2.1)

being M the considered black-box function, θ ∈ Rd the input parameter vector, y ∈ Rn the

vector of quantities of interests, d, n ∈ N.

2.2 Uncertainty Quantification

Each mathematical model computed with the aid of a numerical scheme is affected by several layers

of uncertainty. The field of Uncertainty Quantification (UQ) aims at quantifying with the best

accuracy possible such sources of uncertainty. This is of particular relevance bearing in mind that

the output of a computational model may be an important part of a decision making process.

Kennedy and O’Hagan, in Ref. [127], formulated an exhaustive list of the main sources of uncer-

tainty in computer experiments:

• Parameter (input) Uncertainty: The model is run following a set of physical and modeling

parameters, often subject to epistemic uncertainty. Some of them, like e.g. the gravitational
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acceleration, may be declared fixed being thus subject to no appreciable fluctuation. Nonethe-

less, the rest of the input set can be considered as random quantities (even if sometimes just

a rough estimate of their support - lower and upper bound - can be given).

• With the term Model Discrepancy Kennedy and O’Hagan address the fact that even when

setting to zero the uncertainties on the parameters, hardly ever any useful computational model

will reproduce the physical phenomena it intends to represent. We should then pay attention

since this epistemic uncertainty lies under such Model Discrepancy. In the framework adopted

in this thesis, this corresponds to the representation error of the operator M (model error).

In the field of Data Assimilation it is also called representativeness error.

• Residual Variability stands for the fact that either true (experimental) realizations of the

observed phenomena may have a stochastic nature not grasped by the model and its compu-

tational implementation, or the real world phenomena for each experimental realization varies

according to a set of parameters larger than the ones used by the model. In other words, the

phenomenon to be modeled is either too unpredictable or too complex to have a computational

model adopting a limited set of parameters capable of mimicking perfectly every realization.

• Another layer of uncertainty (strongly connected to the previous one) is represented by the

so called Parametric variability, which accounts for the fact that since the inputs cannot

be specified properly due to lack of information, and the output depends on uncontrolled

conditions.

It is also known as internal variability linked to the intrinsic variability of the system. As

an example, some systems exhibit space and time variability of the parameters. This kind of

uncertainty is also referred to as aleatory uncertainty.

• If the model is being calibrated against some data coming from real world experiments, the

measurements of such physical process are bound to be affected in some way by the so called

Observational error, which constitutes a source of uncertainty, whose magnitude varies from

phenomenon to phenomenon.

• With Code Uncertainty Kennedy and O’Hagan express the fact that not every configuration

can be tested by the code, since it would be not achievable at all in acceptable times. Some

kind of interpolation between selected code runs should be employed (like the Surrogate Models

that are described in Section 2.4 ).

In the end, we can classify the sources of uncertainty into two categories: epistemic uncertainty

due to the modeling choices and the available inputs that can be theoretically reduced if we have

more information versus the aleatory uncertainty due to the inner variability of the physical processes

at play that cannot be reduced, but does need to be quantified.
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In this work, we focus on the Parameter Uncertainty, i.e. in the epistemic uncertainty in the

vector θ composed by input parameters of a given modelM. In this framework, θ is represented as

a random vector.

Even if Sensitivity Analysis has been historically considered a part of UQ, in this work we neatly

divide the two subjects.

SA is a way to analyze the connection between the input parameters and the quantities of interest,

and more specifically to analyze how the variability in the inputs affect the variability in the QoI.

SA is treated in detail in Section 2.3.

On the other hand, UQ is a way to quantify the uncertainty in the quantities of interest, to

characterize the associated PDF or its statistical moments. Here, the PDF of the QoI will directly

depend on the PDF of the input parameters subject to uncertainties.

The main purpose of UQ as presented here is then the Uncertainty Propagation: the investigation

on the way the uncertainty on input parameters propagates (possibly in a non-linear way) through

the computational model M and affect some quantities of interest (QoI). Such QoIs, due to the

randomness/uncertainty on the inputs, may be treated in a statistical framework, studying their

probability density function and statistical moments (mean, variance...) as well as obtaining the

probability of exceeding certain thresholds. Another problem of paramount relevance addressed by

UQ is the Inverse Problem: help the simulator to match reality, for instance connecting some range

of the quantity of interest of the real world phenomenon to to some specific subsets of the input

parameter space, thus honing the computational model in its capabilities.

Techniques for propagating uncertainties can generally be classified as intrusive or non-intrusive,

see Reference [69]. Intrusive UQ methods need a reformulation of the governing equations of the

mathematical models describing the phenomena of interest [51]. Non-intrusive UQ methods, on the

other hand, uses ensembles of model runs. The elements of such simulation ensemble are retrieved

by sampling the uncertain inputs according to various sampling schemes. If we adopt a probabilistic

interpretation of UQ, we are exploring the support of the PDF of each parameter. The impact of

the input uncertainties can then be analyzed for the selected model output quantities of interest

adopting some kind of statistical strategy. In this thesis we shall work exclusively with non-intrusive

ensemble methods.

Design of Experiments In the framework of ensemble methods, a design of experiments (also

known as experimental design) refers to the way of discretizing the uncertainty (or “hypercube”)

ZΘ ∈ Rd , in which the parameters vary. It is a way to encode the N realizations of parameters

θ, for which the mathematical model (the Forward Model) is integrated as a “black-box” to obtain

the ensemble of N functional outputs y from which statistics can be performed. In practice, this
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ensemble forms a database DN :

DN =

{(
θ(l),y(l)

)
1≤l≤N

}
, (2.2)

where y(l) =M
(
θ(l)
)

stands for the integration of numerical model M associated with the lth set

of input parameters θ(l).

Some of the classical methods to build these experimental designs are quasi-random low discrep-

ancy sequences [107, 82], good lattice points [23], Latin Hypercubes [42], orthogonal Latin Hypercube

[17], that have generally proven to behave well for spaces of dimensionality d ≤ 10.

As we shall see in the further sections, the mathematical formulation of DoE given above will

be the key point to understand how Uncertainty Quantification and Sensitivity Analysis are linked

together.

2.3 Sensitivity Analysis

As stated in [218], Sensitivity Analysis (SA) investigates how the variability of the output of a

computational model can be attributed to the variation of the input parameters in the space where

they are defined. It is a very vast subject of Applied Mathematics and Statistics, historically

considered entwined with UQ. The use of SA techniques is becoming year after year a consolidated

practice, being considered nowadays a fundamental tool in the construction, use and understanding

of mathematical models of all sorts [274] and there is thus a vast literature about the application of

SA techniques. To name just a few examples of application area, in [290] local sensitivity analysis is

used in Combustion Chemistry, where models of homogeneous hydrogen explosion and of premixed

laminar hydrogen-air flame are studied and the kinetic parameters ranked via SA; Confalonieri et

al. in [58] applied several routines of SA for the sake of ranking the parameters of an ecological

model for the prediction of rice model, WARM; as a last example, in nuclear engineering simulations,

Auder et al. in [16] studied the sensitivity to inputs for a nuclear reactor application (coping with

uncertainties in the pressurized thermal shock analysis).

2.3.1 Purposes of a SA procedure

Saltelli et al. in Ref. [243] referred to the main purposes of SA as the three Settings of a SA

procedure.

They are reported below:

1. Ranking - (Factor Priorisation): it is the objective of ordering the input parameters by their

respective relevance, i.e. their impact on the vector of QoI y;

2. Screening - (Factor Fixing): it consists on the identification of the input parameters (factors)

that share a negligible effect on the vector of QoI y; those parameters may be set to their
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nominal values and no more modeling effort, experimental characterization or sampling should

be performed, hence simplifying the analysis of the computational or mathematical model

(dimensionality reduction).

3. Mapping : it is the most ambitious objective of a SA procedure, and it is closely related to the

inversion of the forward model M. It consists on the determination of the region of input

parameters Z that produces a-priori selected effects on the output vector y. More formally, it

aims at defining the input set

Z∗ ⊂ Z s.t. fm(θ) > 0 ∀θ ∈ Z∗,

for a selected functional fm.

2.3.2 Types of Sensitivity Analysis

Since the SA is a rather vast area of applied Mathematics and Statistics, pursuing different objectives,

the algorithms and methodologies evolved according to different guidelines. There is a extensive

literature about review and comparison between different SA approaches (to name a few examples,

the review of Iooss and Lemâıtre in [119] and the review of Pianosi et al. [218], the latter with a

focus on models for environmental predictions).

In this section a brief description of the main types of SA techniques currently available for the

practitioners are listed.

Three important subdivisions of SA

Before we start listing the main techniques for SA, a main subdivision of the features that a SA

analysis may exhibit is the following:

• Local or Global SA: Local sensitivity analysis considers the output variability against variations

of the vector of input factors θ in the neighborhood of a certain fixed value θ0. Examples of

Local SA are the derivative methods based on Taylor decomposition, described with more

detail in the next paragraph. On the contrary, Global Sensitivity Analysis (or GSA) considers

variations within the entire space of variability of the input factors,. The application of local

SA obviously requires the user to specify a nominal value θ0 for the input factors. While

GSA overcomes this possible limitation, it still requires specifying the input variability space

ZΘ ∈ Rd introduced in Section 2.2, in which the parameters may vary. If the latter space

of feasibility of the parameters is poorly known, and so built by the means of more or less

severely rough estimates, the results from GSA should be handled with care.

• One at time SA or All at Time SA: In sampling-based SA, that is a SA analysis that involves

the construction of a Design of Experiment (DoE) the sampling may be One At Time (OAT)
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or All At Time (AAT). In OAT sampling, the input factors of the simulation model θi will

be perturbed from their nominal values one at a time while keeping all others fixed. In AAT

sampling instead, the variability of the output QoI are induced by varying all the input factors

at the same time. This allows the sensitivity to each factor to account for the direct influence

of that factor as well as the joint influence with the other factors due to interactions.

• Quantitative or Qualitative SA The term quantitative SA refers to methods where each input

factor θi is associated with a quantitative and reproducible evaluation of its relative influence.

In practice this is achieved through a set of sensitivity indices (or importance measures). An

example of them are the Sobol’ Indices described in the following. In qualitative SA, instead,

the sensitivity of the QoI on the variability of inputs is assessed in a qualitative way, visualizing

plots of model outputs or via the aid of specific visualization tools like, for instance, scatter

plots (e.g. [27] ), tornado plots (see e.g. [115]), visualization of the posterior distributions of

the input parameters (e.g. [98]). Qualitative SA tools can be used to help visualize in a more

complete fashion results carried out by a Quantitative SA.

Perturbation - derivatives methods and multiple-starts perturbation methods

The most basic technique for SA varies the input parameters (input factors) of the simulation model

from their nominal values (that is the vector θ0 one θi ∈ θ at a time (OAT) and assesses the effects

on the simulation results in a qualitative (e.g. via visual inspection) or quantitative way. If a scalar

or vectorial QoI y can be defined, a quantitative approach is then to measure the output sensitivity

of the desired QoI with respect to the θi , i-th input parameter via partial derivative evaluated at

θ = θ0 or via finite-difference techniques if the QoI cannot be expressed trough analytic functions (as

it is in the vast majority of the cases). The analytic measure of relevance of y output with respect

to i− th input θi is then in analytic form

Si(θ0) = ca
∂y(θ)

∂θi
(2.3)

while in finite-difference form it reads

Ŝi(θ0) = cfd
y(θ1, . . . θi + δi, . . . , θd)− y(θ1, . . . θi, . . . , θd)

δi
(2.4)

with ca, cfd opportune scaling/normalizing factors.

These so called Derivative-based SA methods are motivated theoretically by the means of the

Taylor series expansion of the QoI yi ∈ y, see e.g. [112, 38]. When no analytical formula is available,

the computation of the sensitivity measures for d input parameters requires (d+1) model evaluations.

Derivative-based sensitivity measures are therefore computationally very cheap, but their range of

applicability is somewhat crippled by the fact that they explore solely a local neighborhood of θ0,

providing only information about local sensitivity. Second derivatives (with particular focus on the



CHAPTER 2. UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS 40

mixed ones), which may be estimated with a relatively small number of additional model evaluations,

can provide information about local interactions between input parameters.

A global extension of the perturbation approach is to compute output perturbations from multiple

points θk within the feasible input space Z, in a Design-Of-Experiment fashion. A global sensitivity

measure will come by aggregating these individual sensitivities. There are several methods belonging

to this category, differing one from each other according to the way they tackle the following aspects:

(i) whether they use finite differences directly, or they apply a transformation, such as norms or

squared values; (ii) how they select the fixed points of the DoE; (iii) how the individual sensitivities

are aggregated.

The most established method of this type is the method of Morris [185], also called the Elementary

Effect Test (EET). Here, the mean of r finite differences (also called ‘Elementary Effects’ or EEs) is

taken as a measure of global sensitivity:

Si = µMorris =
1

n

n∑
j=1

EEj =
1

n

n∑
j=1

y(θj1, . . . θ
j
i + δji , . . . , θ

j
d)− y(θj1, . . . θ

j
i , . . . , θ

j
d)

δji
ci (2.5)

where ci stands for a normalization coefficient or a weight and the apex j stands for the j − th

”finite difference gradient” explored in the feasibility space ZΘ ∈ Rd. An alternative measure

proposed by Campolongo and Saltelli [46] consists of taking the absolute value of the finite differences

to avoid that differences of different signs would cancel out,

Si = µ∗Morris =
1

n

n∑
j=1

EEj =
1

n

n∑
j=1

∣∣∣∣∣y(θj1, . . . θ
j
i + δji , . . . , θ

j
d)− y(θj1, . . . θ

j
i , . . . , θ

j
d)

δji

∣∣∣∣∣ ci (2.6)

Besides the above sensitivity measure, it is common practice to also compute the standard

deviation of the EEs, which provides information on the degree of interaction of the i-th input

factor with the others, and on the non-linearity of the forward modelM. A high standard deviation

indicates that a factor is interacting with others because its sensitivity changes across the variability

space due to the different values assumed buy the other θis.

Importance Measures:Methods based on the analysis of linear models

In a DoE based setting for SA, a sample of inputs and outputs DN =
{(
θ(l),y(l)

)
1≤l≤N

}
, is available.

it is possible to fit a linear model explaining the behaviour of yg iven the values of θ, provided that

the sample size N is sufficiently large. Adopting such linear models, several indices of importance

measure to rank variable and quantify their inpacts on the outputs are given in the following.

• Pearson correlation coefficient:

ρ(θj , y) =

∑N
i=1(θ

(i)
j − E(θj))(Yi − E(y))√∑N

i=1

(
θ

(i)
j − E(θj)

)2√∑N
i=1 (Yi − E(Y ))

2

(2.7)
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It may be seen as a linearity measure between the input parameter θi and the output y (here

to be interpreted it it is the case as a component of the vector of QoI y . It equals ±1 if the

tested input variable share a linear relationship with the output. If the input variable and the

output are independent one from each other, the index equals 0.

• Standard Regression Coefficient (SRC):

SRCj = βj

√
V ar(θj)

V ar(y)
(2.8)

where βj is the linear regression coefficient associated to θj . In the case when the linearity

hypothesis is confirmed, the square of SRCj is a share of the total variance.

• Partial Correlation Coefficient (PCC):

PCCi = ρ(θj − θ̂−j , Y − Ŷ−j) (2.9)

where θ̂−j is the prediction of the linear model expressing the input θj as a function of the

other inputs and Ŷ−j is the prediction of the linear model where θj is absent.

The estimation of these sensitivity indices is subject to an uncertainty estimation, due to the

fact that in most application the sample has a limited size due the cost of data retrieval or CPU

time for simulations. Such uncertainty can be estimated through analytical formulas ([52]).

Importance Measures: Methods based on the variance decomposition

Following Pianosi et al. in [218], Variance-based SA methods rely on three fundamental principles:

(i) input factors are regarded as stochastic variables so that the variability on random input para-

meters induce a variance in the output space; (ii) the variance of the output distribution is a good

indicator of output uncertainty; (iii) the contribution from a given input factor θi to the output

variance should be considered an acceptable measure of its sensitivity.

Sobol’ indices [257, 243] are a well known mathematical tool for global sensitivity analysis based

on variance decomposition. They provide the quantification of how much of the total variance in

the quantity of interest is due to the spread in the selected uncertain input parameter, assuming the

input parameters to be independent random variables. The variance of the output random variable

Y denoted by V[Y ] can be decomposed as

V[Y ] =

d∑
i=1

Vi(Y ) +

d∑
j=i+1

Vij(Y ) + · · ·+ V1,2,...,d(Y ), (2.10)

where Vi(Y ) = V [E(Y |Θi)], Vij(Y ) = V [E(Y |Θi,Θj)]− Vi(Y )− Vj(Y ) and more generally,

VI(Y ) = V [E(Y |ΘI)]−
∑

J⊂I s.t. J 6=I

VJ(Y ), ∀I ⊂ {1, . . . , d} (2.11)
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Based on this variance decomposition, the first-order Sobol’ index Si associated with the ith para-

meter of Θ reads

Si =
Vi(Y )

V(Y )
. (2.12)

It corresponds to the ratio of the output variance V(Y ) that is uniquely due to the ith input factor;

Si ranges between 0 and 1. The corresponding total Sobol’ index STi instead measures the whole

contribution of the ith input parameter (including this time interactions with other parameters of

Θ) on the output variance. It is defined as:

STi =
∑

I⊂{1,...,d}
I3i

SI . (2.13)

By definition, STi ≥ Si. If both first-order and total indices are not equal, that means that the input

parameter Θi share some interactions with other parameters of Θ to explain the output variance.

Sobol’ in [257] proposed the following Monte Carlo algorithm for the estimation of Si = Vi(Y )
V(Y ) :

given θ and η two independent sample points, Vi(Y ) is calculated with the formula

Vi(Y ) =

∫
Y (θ)Y (η1, . . . , θi, . . . ηd)dθdη1 . . . dηi−1, dηi+1, . . . dηd − Y 2

0 , (2.14)

where Y0 is the mathematical expectation of the quantity Y .

In this case, Monte Carlo estimator for the latter formula reads

Vi(Y ) ≈ 1

N

N∑
k=1

Y (θk)Y (η1k . . . ηi−1k, θik, ηi+1k, . . . ηdk)−

[
1

N

N∑
k=1

Y (θk)

]2

, (2.15)

where θk and ηk = {η1k . . . ηdk} are two independent samples of realizations the d-dimensional

set of random input parameters. Formulas 2.14 and 2.15 can be straightforwardly generalized for

the case when VI(Y ) is sought, with I ⊂ {1 . . . d} a set of indices.

The sample size N in 2.15 required to reach a good level of precision in estimating variance based

indices can be quite high in most of the cases, this constituting a problem for simulations that are

expensive in terms of computational time.

In order to overcome this issue, several techniques are currently available in literature. The

methodology known as FAST ( Fourier Amplitude Sensitivity Test) [117] adopts a Fourier Series

expansion in order to approximate first order Sensitivity Indices, while extended-FAST (eFAST)

[242] improves the latter technique to cope with the determination of total order indices.

Another technique to circumvent the size of the DoE is to develop a surrogate of the forward

model, in order to make the reiterate model evaluations needed for the estimation of the desired

sensitivity index a simple computation of an analytical function that comes from a training of the

surrogate.
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Importance Measures: other methods and final thoughts

The methods illustrated so far are nothing but a part of the full asset of algorithms and techniques

available in literature to perform a SA. While the reader is referred to complete and exhaustive

textbooks on the topic [243, 142] , we shall name here a few more examples that do not fold in the

aforementioned categories.

Density Based Methods The limits of Variance-Based methods is that they rely solely on the

variance output to rank and screen input parameters. Density - Based methods, nevertheless, focus

on exploiting all the information contained in the output PDF of the forward model, rather than

concentrating just on some moment of the latter.

The main concept of Density Based Methods is to measure the sensitivity to the i− th parameter

θi through the variations in the ouput PDF that are induced while such parameter is fixed to a certain

value. This can be carried out by measuring some kind of divergence between the unconditional

output PDF (generated by varying all parameters) and the conditional PDF obtained by fixing the

considered input factor to a fixed nominal value or to a set of prescribed values. If the analyzed

parameter is fixed to a set of values, some kind of statistics of the output is needed.

In formulas, we have

Si = stat
[

divergence
(
fy, fy|θi

)]
(2.16)

where fy, fy|θi are the unconditional and conditional output PDF, respectively, ’stat’ denote

some statistics and ’divergence’ some divergence measure between the two PDFs.

As a measure of divergence between the two PDFs Shannon Entropy has been adopted in liter-

ature [135], while Borgonovo [37] adopted the so-called δ-sensitivity approach, measuring the area

between the cumulative distribution functions (CDFs) of the two PDFs.

In Entropy based methods there is no statistic adopted on the choice of θi, while in δ-sensitivity

approach the Expected Value operator is adopted as a statistics of a sample of values for θi.

A rather recent approach related to Density Based Methods is the so-called PAWN algorithm,

introduced by Pianosi and Wagener [219]. The key idea that characterizes such approach is to analyze

output distributions by their Cumulative Distribution Functions, which are easier to derive than

PDFs, and as a measure of distance between unconditional and conditional CDFs, the Kolmogorov-

Smirnov statistic is adopted.

Mapping through SA: CART and Regional Sensitivity The difficult task of mapping model

output ranges and possible regions of the input hyperspace may be performed through ad-hoc al-

gorithms, that shall be only briefly addressed in this Chapter. To begin with, a well established

method is Regional Sensitivity Analysis (RSA), also known as Monte Carlo Filtering [317]. Its key



CHAPTER 2. UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS 44

idea is the assignation of the label ”behavioral” or ”not behavioral” to each input parameter ac-

cording on whether the associated forward model evaluation follows or not the expected pattern.

One advantage of this approach is that it can be applied to any type of model output, including

non-numerical ones, as long as a splitting condition can be verified, possibly also by recurring to

qualitative evaluation. RSA has been widely used in applications where the model output is an

objective function (i.e. a measure of the model accuracy against observations) and the splitting

criterion reflects the achievement of a minimum requirement of model performance.

Another interesting technique that allows for the mapping between input and outputs of a given

model (as well as ranking) is that of Classification And Regression Trees (CART), see e.g. [110]. It

belongs to the group of Correlation and Regression analysis SA techniques, and can also work with

non-numerical inputs and outputs.
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Figure 2.1: Schematic view of the different techniques for SA described in Subsection 2.3.2. In this
table all the methods described in this Chapter are catalogued by the right hand side lines following
their nature (local or global), the nature of their sampling (OaT or AaT). The left hand side labels
inform us about the computational cost of each method, being d the cardinality of θ. The label of
the columns indicate the tasks fulfilled by each method. Please note that even if they are Global
Methods useful for ranking and screening, Variance Based Sensitivity Analysis techniques are very
expensive in terms of sample size. This motivates the construction of a surrogate model. Adapted
from [218]
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2.4 Surrogate Models

A Surrogate Model (SM) (also known as emulator, or metamodel) is a technique employed in engin-

eering and applied sciences when an outcome of interest (the QoI encoded in the vector y) cannot

be found straightforwardly. In the framework of this thesis, it corresponds to the solution of the

forward model M for a given set of input parameters θ, that may also represent an engineering

design problem.

In our sampling-based (DoE based) UQ and SA setting, we can see from Figure 2.1 that for

an all-at-time variance-based global SA, ≈ 1000d model evaluation are needed to effectively rank

the input parameters. This would constitute a challenge even for the evaluation of a model with

acceptable computational time consumption.

Moreover, the dimension d > 1 adopted in this thesis is always ≤ 3, but further works could

consider wider set of parameters, that could give rise to the “curse of dimensionality” as the num-

ber of samples required to cover in an efficient way the parameter space in uncertainty increases

exponentially with the number of model parameters.

In general, when the forward operator M is a computational model, the compilation of the

simulations database D may not be affordable, and this may indicate that numerical resolution

needs to be reduced or physical processes ignored to decrease runtime and make many model runs

computationally viable.

Surrogate models have the purpose to speed up complex models while retaining a reasonable level

of accuracy and detail in reproducing the QoI. In practice, the forward operatorM is then replaced

by an emulator, M̂. In a metamodel approach, DoE of equation 6.29 presented in Section 2.2, DN
from where information for UQ and SA can be extracted, is made of metamodel execution rather

than real model ones. The metamodel is trained on a smaller database of (numerically expensive)

real model execution, DM with M << N .

2.4.1 Main categories of Surrogate Models

In order to better locate the techniques adopted in this thesis, we present in the following list the

main categories of Surrogate Models (see e.g. the reviews [15, 314] ):

• Data-Driven Surrogates, where an analytical function, rather cheap to call, is constructed

based on a database D of simulations. Data Driven Surrogates are a broad family, includ-

ing Polynomial interpolation, Gaussian Processes (and the Gaussian Process related Kriging

scheme), polynomial chaos expansions, Bayesian Networks, support vector machines.

The key idea of many Data-Driven Surrogates such as Polynomial Chaos and Gaussian Process

(both treated in detail in the following sections) is to replace the forward model y =M(θ) by
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a weighted finite sum of basis functions that can be generally expressed as

ŷ (θ) =
∑
α∈A

γαΨα (θ) , (2.17)

where the coefficients γα and the basis functions Ψα are to be determined, A being the set of

indices that defines the basis size. The coefficients and basis functions are calibrated by the

training set (or “database”) compiled through a DoE, DN . The latter corresponds thus to a

limited number N of forward model integrations (or “training set”) such that

DN = (Θ,Y) =

{(
θ(k), y(k)

)
1≤k≤N

}
, (2.18)

where y(k) = M(θ(k)) corresponds to the integration of the forward model for the kth set of

input parameters θ(k).

• Projection Based Surrogates, also called reduced order, reduced basis models, where the set

of equations that constitute the forward model M are projected onto a subspace of reduced

dimension, with the use of a ad-hoc basis of orthonormal vectors. The two main sub-categories

are singular value decomposition (SVD) and Krylov-based methods. They include Proper

Orthogonal Decomposition, Krylov Subspace Methods, and Fourier mode reduction, to name

a few examples.

• Multi-fidelity based surrogates , also called multi-scale, hierarchical methods are a category of

SM quite different from the previous two. In order to obtain such surrogates the underlying

physics is simplified by physical reasoning, or ad-hoc techniques to extract information using

different level of coarseness of the numerical grid are employed. Multi-grid methods, multi-scale

finite element methods and variational multi-scale method fall in this last category.

In this Thesis we shall adopt two types of SMs, both of them belonging to the first category

(Data Driven SMs): generalized Polynomial Chaos (gPC) and Gaussian Process (GP). They will be

described in detail in the next sections.

While the gPC expansion retrieves the global forward model behavior, the GP regression is a

local interpolator of the forward model behavior at the training points. For gPC-expansion, the user

needs to determine the appropriate total polynomial order of the expansion as well as the appropriate

type and number of basis functions Ψα. There are also different projection strategies to compute

the coefficients γα. For GP regression, the user needs to choose the type of correlation structure

and to estimate its associated hyperparameters.
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2.4.2 Polynomial Chaos Expansion

θ, the vector of input parameters, is defined in the input physical space. We denote its counterpart

in the standard probabilistic space with ζ = (ζ1, · · · , ζd), where ζi the random variable associated

with the ith uncertain parameter θi in θ characterized by its marginal PDF ρθi . θ is thus rescaled

in the standard probabilistic space to which the gPC formulation applies.

Polynomial Basis

θ is projected onto a stochastic space spanned by the orthonormal polynomial functions {Ψα(ζ)}α∈A.

The basis functions are orthonormal with respect to the joint PDF ρζ(ζ), i.e.

〈Ψα(ζ),Ψβ(ζ)〉 =

∫
Z

Ψα(ζ) Ψβ(ζ)ρζ dζ = δαβ, (2.19)

with δαβ the Kronecker delta-function and Z ⊆ Rd the space in which ζ evolves. In practice,

the orthonormal basis is built using the tensor product of one-dimensional polynomial functions,

Ψα = φα1 . . . φαd with φαi the one-dimensional polynomial function. The choice for the basis func-

tions shall be formulated depending on the probability measure of the random variables. According

to Askey’s scheme, the Jacobi polynomials form the optimal basis for random variables follow-

ing Beta-distribution,the Hermite Polynomials for Gaussian distributions, Laguerre Polynomials for

Gamma distributed parameters and finally the Legendre polynomials are the counterpart for uniform

distribution [313].

Assuming that the considered output of the Forward Model is of finite variance, each quantity

of interest y (see Sec. 2.2) can be considered as a random variable for which there exists a gPC

expansion of the form (2.20)

ŷ (θ) =Mpc(θ(ζ)) =
∑
α∈A

γαΨα (ζ) . (2.20)

Ψα is the αth multivariate basis function chosen in adequacy with the PDF ρθ associated with the

parameters θ ( we assume that all random variables in θ are independent so that ρθ is the product

of the marginal PDFs {ρθi}i=1,··· ,d). α = (α1, · · · , αd) is a multi-index in A, which identifies the

components of the multivariate polynomial Ψα.

Once the PDF ρθ is chosen, {γα}α∈A are the unknowns to be determined to build the surrogate

Mpc.

Truncation Strategy

For computational purposes, the sum in Eq. (2.20) is truncated to a finite number of terms r that

is associated with the total polynomial order P of the gPC-expansion. There are several ways of

choosing the r terms. We shall refer to such ways as “truncation strategies”. We will also use the

concept of “enumeration functions” in the following: a linear (or hyperbolic) enumeration function



CHAPTER 2. UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS 49

is a mapping I from N to Nd, which establishes a bijective mapping between a given integer i and

a multi-index α.

Linear Truncation Strategy. The standard truncation strategy (referred to in the following as

“linear”) consists in retaining in the gPC-expansion all polynomials involving the d random variables

of total degree less or equal to P . As a consequence, α = (α1, · · · , αd) ∈ {0, 1, · · · , P}d. The number

of terms r is thus constrained in this linear case by the number of random variables d and by the

total polynomial order P so that

rlin = (d+ P )!/(d! P !). (2.21)

The set of selected multi-indices for the multi-variate polynomials A is defined as

Alin ≡ Alin(d, P ) = {α ∈ Nd : |α| ≤ P} ⊂ Nd, (2.22)

where |α| = ||α||1 = α1 + · · · + αd is the “total order” of the multi-index. In this case, we refer to

the basis as the so called “full basis” for a given total polynomial order P .

Hyperbolic Truncation Strategy. Following the sparsity-of-effects principle, high-order inter-

action terms (i.e. polynomial terms involving several uncertain parameters of θ) are often less im-

portant in physical problems and can be neglected when compared to main effects (i.e. polynomial

terms involving a single uncertain parameter of θ) and low-order interaction terms. As an alternat-

ive to the linear truncation strategy, the “hyperbolic” truncation strategy consists in eliminating a

priori high-order interaction terms. A more general approach than Eq. (2.22) to define the number

of terms r in the gPC expansion consists in introducing q-quasi-norms:

Ahyp ≡ Ahyp(d, P, q) =
{
α ∈ Nd : ||α||q ≤ P

}
, (2.23)

where the q-semi-norm is defined as

||α||q ≡

(
d∑
i=1

(αi)
q

)1/q

. (2.24)

The number of terms in the gPC expansion is expressed by the cardinality of A, which varies

according to P and q for a given dimension d. The adoption of such semi-norms penalizes high-rank

indices and high-order interactions. That is, the lower the value of q, the higher the penalty in the

determination of A. As a limiting case, setting q = 1 we retrieve the linear truncation strategy and

thus a full basis of cardinality Alin(d, P ).
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Sparse Truncation Strategies. There are alternatives to reduce the number of terms in the gPC-

expansion. We will now schematically represent three of them, ordered by their growing complexity:

1-“sequential strategy”, 2- “cleaning strategy”, 3- “least angle regression”.

1- The sequential strategy [25] consists in constructing the gPC-expansion in an incremental way,

starting from the first term Ψ0 (K0 = {0}) and adding one term at a time in the basis (Ki+1 =

Ki ∪ {Ψi+1}). The terms that are sequentially added to the basis are ordered according to the

adopted enumeration strategy (linear or hyperbolic). The response surface is therefore of increasing

complexity, since the enumeration functions in both cases increase the polynomial complexity when

increasing the index. In the applications in this Manuscript, the construction process is stopped

when a given accuracy is achieved, or when the number of terms in the gPC-expansion reaches the

maximum size of the basis rmax specified by the user.

2- An alternative to the sequential strategy is the cleaning strategy [25], which builds a gPC-

expansion containing at most rmax significant coefficients, i.e. at most rmax significant basis functions,

starting from the full basis (still retaining the constraint of hyperbolic truncation if selected). The

main idea of the cleaning strategy is to discard from the active basis the polynomials Ψα that are

associated with low magnitude coefficients, i.e. satisfying

|γα| ≤ ε · max
α′∈A′

|γα′ | (2.25)

where ε is the significance factor (set in this work to 10−4), and where A′ represents the current

active basis. This selection procedure means that the terms in the gPC-expansion are not ordered

following the degree of the polynomial functions but instead according to the magnitude of the

coefficients.

3- In complement to the aforementioned strategies, there is a more advanced approach called least-

angle regression (LAR) to select the active polynomial terms. The key idea of the LAR algorithm

is to select at each iteration a polynomial among the r terms of the full basis (or eventually the

hyperbolic-truncated basis) based on the correlation of the polynomial term with the current residual.

The selected term is then added to the active set of polynomials. The coefficients of the active

basis are computed so that every active polynomial is equi-correlated with the current residual

until convergence is reached. Hence, LAR builds a collection of surrogates that are less and less

sparse along the iterations. Iterations stop either when the full basis has been looked through

or when the maximum size of the training set has been reached. When the iterations stopped,

the polynomial coefficients are computed via the least-square algorithm presented in the following

paragraphs. Further details can be found in Refs. [32, 31, 76].

Projection strategy

In this manuscript, we focus on non-intrusive approaches based on `2−minimization methods to

numerically compute the coefficients {γα}α∈A using the N snapshots from the training set DN .
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Galerkin Pseudo-Spectral Projection. This Galerkin-type projection is based on the orthonor-

mality property of the polynomial basis. Adopting this approach, the αth coefficient γα is computed

using the definition of the inner product. The latter is numerically approximated using tensor-based

Gauss quadrature (referred to as “quadrature” in the following) as follows:

γα = 〈y,Ψα〉 ∼=
N∑
k=1

y(k) Ψα(ζ(k))w(k), (2.26)

where y(k) =M(θ(k)) is the kth snapshot of the DN -database corresponding to the Forward Model

evaluations for the kth quadrature root θ(k) of Ψα, and where wk is the weight associated with

θ(k). When considering a full basis, (P + 1) is the number of quadrature roots required in each

uncertain direction to ensure an accurate calculation of the integral 〈y,Ψα〉. Hence, in our problem,

we have N = (P + 1)3 simulations in the training set to build the PC surrogates through Galerkin

pseudo-spectral projection.

Least-Square Minimization. With this approach, the estimation of the coefficients {γα}α∈A is

done by solving a least-square minimization problem, i.e. by minimizing the approximation error

between the (exact) LSfire+ model evaluations and the PC-surrogate estimations at the points of

the training set DN . The least-square projection solves a minimization problem over the given basis

as follows:

γ̂ = argmin
γ∈Rr

N∑
k=1

(
y(k) −

∑
α∈AP

γαΨα

(
x(k)

))2

(2.27)

which is achieved by the means of classical linear algebra algorithms. Note that the sample size

N required by this strategy for the problem to be well posed is at least equal to (r + 1), where

r is the total number of gPC coefficients to be computed (i.e. the cardinality of the set A). Note

also that in the present work this is the projection method used to compute the coefficients selected

by the sparse truncation methods (sequential, cleaning or LAR); when using non-sparse truncation

strategies, this is referred to as the standard least-square (SLS) approach.

Workflow scheme for constructing the gPC-expansion

The algorithm relative to the construction of the gPC-surrogate is here summarized as follows:

1. choice of the polynomial basis {Ψα}α∈A following the assumed marginal PDFs of the inputs

θ ;

2. choice of the total polynomial degree P (problem-dependent choice);

3. truncate the expansion to rlin (or rhyp) prior terms terms corresponding to the multi-index set

AlinorAhyp to keep the predominant information given by the forward model using linear or

hyperbolic truncation strategy (rlin depends on d, P ; rhyp depends on d, P and q with q the

hyperbolicity factor so that 0 < q ≤ 1);
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4. if a sparse strategy is used (sequential, cleaning or LAR), find a suitable set of multi-indices

A ⊂ Alin,hyp with a cardinality r ≤ rlin, hyp, otherwise skip this step;

5. projection strategy (quadrature or least-square) to compute the coefficients {γα}α∈A⊂Nd using

N = (P + 1)d snapshots from the simulation database DNref
;

6. formulate the surrogate modelMpc, which can now be evaluated for any new pair of parameters

θ∗.

2.4.3 Gaussian Process surrogate

As stated by Ref. [229], a GP is a random process (here the QoI of the forward model y) indexed over

a domain (here Rd), for which any finite collection of process values (here
{

y(θ(k))
}

1≤k≤N ,θ
(k) ∈ Θ)

is characterized by a joint Gaussian distribution. More specifically, let ỹ be a Gaussian random

process completely described by its zero mean and its correlation π:

ỹ(θ) ∼ GP
(
0, σ2

gp π(θ,θ′)
)
, (2.28)

with π(θ,θ′) = E [ỹ(θ)ỹ(θ′)]. In the present case, the correlation function π (or kernel) is chosen as

a squared exponential (also known as “RBF kernel”):

π(θ,θ′) = exp

(
−‖θ − θ

′‖2

2 `2gp

)
, (2.29)

where `gp is a length scale which represents the model output dependency between two input vectors

θ and θ′, and where σ2
gp is the variance of the output signal. The surrogate model of the QoI is thus

the mean of the GP, resulting from the conditioning of ỹ on the training set Y =
{

y
(
θ(k)

)}
1≤k≤N .

The quantity of interest provided by the GP-surrogate for any given θ∗ ∈ Rd satisfies

ygp(θ∗) =

N∑
k=1

βk π
(
θ∗,θ(k)

)
, (2.30)

where

βk =
(
Π + τ2

gp IN
)−1

(
y(θ(1)) . . . y(θ(N))

)T
, (2.31)

Π =
(
π(θ(j),θ(k))

)
1≤j,k≤N

, (2.32)

and where τgp (referred to as the “nugget effect”) is used to circumvent ill-conditioning issues for the

matrix Π. The hyperparameters {`gp, σgp, τgp} are optimized through maximum likelihood applied

to the dataset DN adopting a basin hopping technique [300].
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Workflow

The algorithm relative to the construction of the GP-model is resumed below:

1. choose the kernel function π suitable for the input vector θ = (θ1 . . . θd) ∈ Rd – we consider

RBF throughout this Thesis, see Eq. (2.29);

2. optimize the hyperparameters of GP, {`gp, σgp, τ} associated with the kernel π using maximum

likelihood;

3. formulate the surrogate Mgp, which can be evaluated for any new vector of parameters θ∗ =

(θ∗1 , . . . , θ
∗
d) with Eq. (2.30) and Eq. (2.31).

2.4.4 Retrieving Results from Surrogates: GP and gPC

In this thesis manuscript, the adopted Surrogate Methods are gPC and GP. In practice, independ-

ently of the different model, the objective is to retrieve statistical moments or PDF of the QoI

(Uncertainty Quantification) or to retrieve Sobol’ Indices (variance-based SA). Below are listed the

methods adopted to infer that relevant information from the built Surrogate Model.

Obtaining Information from Gaussian Process

Sensitivity Analysis: For GP approach, the Sobol’ indices can be computed via the Fourier Amplitude

Sensitivity Testing (FAST) method [117] and its evolution eFAST [242], using the surrogate model

to perform the required computations instead of time-consuming forward model evaluations. Sobol’

indices may also be stochastically estimated using the Martinez’ formulation. The latter estimator

is stable and gives asymptotic confidence intervals for first-order and total-order indices [24, 171].

Uncertainty Quantification: After building a database D with the aid of Monte Carlo Sampling over

the domain of the input parameter, Zθ, and computing the surrogate on that set of samples, the

mean and STD of the QoI will read

µŷ =
1

Nsample

Nsample∑
k=1

ŷ(k), (2.33)

σŷ =

√√√√ 1

Nsample − 1

Nsample∑
k=1

(
ŷ(k) − µŷ

)2

, (2.34)

with ŷ(k) the kth element of the dataset DNsample
containing the surrogate evaluations over the

aforementioned Monte Carlo sampled points.

The PDF of the QoI can be obtained through kernel smoothing techniques applied to the database

DGP,MC .
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Obtaining Information from gPC

Sensitivity Analysis: For the PC approach, Sobol’ indices can be directly derived from the PC

coefficients. For the ith component of the input random variable x, the Sobol’ index reads:

Spc,i =
1

σ2
hpc

∑
j∈A⊂Nd,

ji>0 and jk 6=i=0

γ2
j , (2.35)

with σhpc
the STD computed in Eq. (6.33), shown in the following paragraph.

Uncertainty Quantification: Using the gPC metamodel, the statistical moments can be derived

analytically with relative ease from the coefficients {γα}α∈A⊂Nd such that the mean and the STD

will read:

µŷpc
= γ0, (2.36)

σŷpc
=

√√√√ ∑
α∈A⊂Nd

α6=0

γ2
α. (2.37)

The PDF of the QoI can be obtained through Kernel Smoothing Techniques applied to a Monte-

carlo database of Surrogate Model evaluations DPC,MC , in a similar fashion to GP case.

2.4.5 Error Metrics

In the present thesis, three error metrics are used to assess the quality of the surrogate predictions:

the empirical error between the surrogate prediction and the forward model M prediction (also

known as “training error”), the Leave One Out (LOO) error and the Q2 predictive coefficient [167].

Empirical Error εemp

The truncation of the gPC-expansion may introduce an approximation error at the training points,

which can be computed posterior to the surrogate construction. This empirical error denoted by

εemp reads

εemp =
1

N

N∑
k=1

(
y(k) − ŷ(k)

)
, (2.38)

with y(k) the kth element of the training set DN and ŷ(k) its corresponding value, predicted this

time by the surrogate, for the same element of the training set.

However, this error estimator has several drawbacks. First, the GP metamodel (when noise is

not introduced in the kernel) is de facto an interpolator. Because of this, the approximation error

is expected to be εemp = 0. Secondly, such estimator may severely underestimate the magnitude of

the mean square error. When the size of the training set N comes closer to the cardinality of the

gPC-expansion A, εemp may tend to zero, while the actual mean square error does not; this problem

is addressed to as “overfitting”.
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Leave-one-out Error

Since a more robust estimator is needed, the Leave-one-out (LOO) predictive coefficient based on

cross-validation is often adopted in literature. LOO error is sometimes referred to as PRESS (Pre-

dicted Residual Sum of Squares) or jacknife error. It is built by excluding each time a different

mth collocation point in the building of the surrogate model M̂ and computing the value of such

surrogate model, addressed to as M̂−m, on the DOE collocation points. Such error estimator is

expressed by the following relation

εLOO =

1
NDOE

∑NDOE
m=1

(
M(Pm)− M̂−m(Pm)

)2

V ar(PNDOE )
, (2.39)

where PNDOE is the vector of DoE model evaluations.

Predictive coefficient Q2

We require a more robust error estimator suitable for both gPC-expansion and GP-model. In this

thesis, we use the Q2 predictive coefficient based on cross validation. The computation of Q2 relies on

two distinct datasets: the current training set DN and a reference sample DNref
that is independent

of the surrogate construction and that is therefore referred to as the “validation dataset”. Q2 will

then read

Q2 = 1−

Nref∑
k=1

(
y(k) − ŷ(k)

)2

Nref∑
k=1

(
y(k) − yref

)2
, (2.40)

with y(k) the kth element of the validation dataset sample DNref
, ŷ(k) the surrogate prediction for

the same element of DNref
and yref the empirical mean over the Validation Dataset DNref

. Note that

computing Q2, the training set DN is only used to construct the surrogate model and to obtain the

estimation ŷ of the quantity of interest y. The target value for Q2 is 1.

2.4.6 Numerical Implementation

The GP implementation relies on the Python package scikit-learn [211] (see http://scikit-learn.org/).

The gPC-implementation relies on the Python package OpenTURNS [25] (see www.openturns.org).

The batman [239] Python package is used to build datasets and perform statistical analysis.
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Philosophy is written in this grand book,
which stands continually open before our
eyes (I say the ’Universe’), but can not be
understood without first learning to
comprehend the language and know the
characters as it is written. It is written in
mathematical language, and its characters
are triangles, circles and other geometric
figures, without which it is impossible to
humanly understand a word; without
these one is wandering in a dark labyrinth.

Galileo Galilei
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In this chapter the model that will be the core of this thesis will be presented. Its main aim

is to represent the motion of fronts when are evolving in a media characterized by microscopical

randomness, here modeled through its Probability density Function (PDF). In the following, after

a short introduction the similarities and links with other models already available in literature are

presented. In Section 3.1 the mathematical model is described thoroughly. Later, in Section 3.2 an

example of application of the model is illustrated. In particular, a model for a front characterized

57
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by complex initial geometry subject to curvature, deterministic propagation and underlying anom-

alously diffusive fluctuations is derived in the framework of the proposed approach. Some thoughts

about the main actors in the possible quenching of the front are given in 3.3. Subsequently, Section

3.4 describes an ad hoc setting of complex initial geometry to see the effects of the parameters re-

lated to both microscopic and macroscopic physics with a simple response analysis. Finally, Section

3.5 presents a Surrogate-based UQ and SA of the model for a selection of parameters and physical

observables (QoI).

As introduced in Chapter 1, the tracking of fronts plays an important role in many fields of applied

science. The model that is object of investigation in this manuscript focuses on the case when the

propagating interface is embedded in a medium characterized by a random motion which implies

some diffusion process. In classical diffusion processes (Gaussian diffusive process) the particle mean

square displacement grows linearly in time. On the other hand, in complex media diffusion typically

shows a non-linear growth in time. Some example of such phenomena can be found in biological

systems [20, 114, 178], in fluids and plasmas [67] and in other systems [179].

In the latter case, it can be stated that anomalous diffusion takes place, instead of classical

diffusion [34, 114, 20, 201].

The main bricks the proposed method is built with are listed below:

• the position of the average front is computed by making use of a sharp-front evolution method,

such as the level set method (LSM) [250];

• the microscopical spread of particles which takes place around the average front is given by the

probability density function (PDF) linked to the underlying diffusive process, that is supposedly

known in advance, say in a parametric formulation;

• the effective front is computed by taking weighted averages of the average fronts adopting the

previously chosen PDF as a weight function.

This methodology to depict random fronts has been introduced first to study the evolution of the

burnt mass fraction in turbulent premixed combustion [202], which shall be the object of Chapter 4.

Later on, it has been applied successfully to wild-land fire propagation simulation [203, 204,

206, 199, 200], through an adaptation of the modeling approach that shall be treated in detail in

Chapter 5.

In these two application fields, the chosen PDF has been chosen either as the Gaussian one

[202, 203, 204, 206, 199, 200], or a convolution of the latter with another PDF closely related to the

problem physics [206, 199, 200].

In the recent work of Mentrelli and Pagnini [2], anomalous diffusion has been first introduced in

this front tracking framework adopting the time-fractional diffusion equation, with the required PDF
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being the fundamental solution, or Green’s function, of this family of fractional partial differential

equations.

Similarities and difference with other existing models

The formalism proposed by this formulation is a very general one, and could in principle share some

features with some well established algorithms. In [2] a thorough description of similarities between

this and other approaches has been undertaken. More specifically, it emerged that the formalism

that will be described in the next Section will have something in common with Smoothed Particle

Hydrodynamics (SPH) [183]. This framework is characterized by the robustness of its numerical

implementation and it is well suited for many practical problems as fluid-structure interactions.

However, the typical problems of SPH, namely the choice of the kernel function and of the smoothing

length, are here avoided because they are directly determined by the particle PDF. This can be

considered a positive feature of the present approach.

Moreover, presented formalism could be linked with relative ease to procedures adopted in tur-

bulent premixed combustion, where the LSM/G-equation [216] is widely utilized and the turbulent

flame closure model introduced by Zimont [319, 241] can be taken into consideration. An analysis

of the applicability of this approach in that specific combustion science area can be found in [202].

In addition to all this, the present approach is also connected to the so-called Stochastic Level Set

Method (SLSM), developed and adopted in computer vision. Typical problems in this research area

consist in recovering a certain surface or region through a shape optimization framework. However,

classical methods suffer from being sometimes stuck in local minima. To overcome this difficulty,

the SLSM has been developed. This method combines stochastic motion and the classical LSM

[194, 259, 123] and adopts a decision mechanism. The SLSM is quite close to the approach here

proposed, as in both models the interface location is obtained by solving the level set equation

with a suitably randomized front speed. However, the final aims of the two methods are different,

and so is the mathematical construction. In fact, in typical computer vision problems the final

aim is not to compute the average shape after a large number of independent realizations, but to

recover a certain shape with the frontline upon the derivation of a proper stochastic differential

equation. In the present study, the interest is indeed focused on the average properties of the

processes for applications in physics and engineering. Even if it could be possible to have average

properties of the process obtained with the SLSM by performing the ensemble average of many

independent realizations, the approach here proposed uses physical arguments to derive the PDF

of the interface particle displacement instead of focusing on the selection of the correct stochastic

differential equation, so it can be regarded as the averaged counterpart of the method adopted in

computer vision.
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3.1 Modelling approach

The core model that is declinated in other forms for each kind of specific application is the same

discussed in Refs. [206, 126]. Its modularity allow for straightforward adaptations towards each

specific modeling target.

This approach is based on the idea to split the motion of the front into a drifting part and a

fluctuating part and the front position is also split correspondingly. This splitting allows specific

numerical and physical choices that can improve the algorithms and the models. In particular, the

drifting part can be obtained by existing methods for simulate front propagation, for example the

Eulerian LSM (or G-equation in the combustion community) or the Lagrangian DEVS. The fluctu-

ating part is the result of a comprehensive statistical description of the phenomenon which includes

the random effects in agreement with the physical properties of the system. As a consequence, the

fluctuating part can have a non-zero mean (for example, due to ember jump lengths in wildland fire

propagation [206, 126]), which means that the drifting part does not correspond to the average mo-

tion. This last fact makes a distinction between the present splitting and the well-known Reynolds

decomposition adopted in turbulence studies.

The random front line is obtained as follows. First a front contour Γ(t) is computed by using

an opportune existing method (e.g., LSM or DEVS) and this step gives the drifting part of the

front position. Later a deterministic indicator function is introduced which takes the values 0 and

1 outside and inside the domain Ω(t) ⊂ Rn, n ≥ 1, surrounded by the computed front contour Γ(t).

Since the front line can be re-located in a different position by using the translation or sifting property

of the Dirac delta function, by using a delta function peaked on a random position, a random front

contour is constructed. A stochastic indicator function can be determined by an integral formula

involving the product of the deterministic indicator function times the Dirac delta function peaked

along the stochastic trajectory. Finally, by applying the ensemble average, the averaged stochastic

indicator function states the effective front position by a smooth function ϕe : S×R+
0 → [0, 1], where

S ⊆ Rn is the domain of interest. A selected isoline/isosurface of this smooth function represents

the effective front line emerging from the proposed method, i.e., Γe(t) = {x ∈ S|ϕe(x, t) = ϕ∗}.

Let x ∈ S ⊆ Rn and t ∈ R+
0 , in formulae we have the following indicator function IΩ : S ×R+

0 →

{0, 1} defined as

IΩ(x, t) =

 1 , x ∈ Ω(t)

0 , elsewhere
, (3.1)

where Ω(t) is the domain surrounded by the frontline generated at time t by the adopted operational

code. Let Xω(t,x) = x + ξωt be the ω-realization of a stochastic trajectory where x is a point inside

the domain Ω(t) established at time t by the adopted operational code and ξt is the random noise.

The one-particle density function of Xω(t,x) is pω(x; t|x) = δ(x−Xω(t,x)) and, after the ensemble

averaging denoted here by 〈·〉, the PDF of Xω(t,x) results to be p(x; t|x) = 〈δ(x−Xω(t,x))〉. The
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indicator function IΩ(x, t) turns to be stochastic by using the sifting property of the delta function

as explained above, i.e.,

IωΩ(x, t) =

∫
S
IΩ(x, t)δ(x−Xω(t,x)) dx . (3.2)

Finally, after ensemble averaging of IωΩ(x, t) it follows

〈IωΩ(x, t)〉 = 〈
∫
S
IΩ(x, t)δ(x−Xω(t,x)) dx〉

=

∫
S
IΩ(x, t)〈δ(x−Xω(t,x))〉 dx

=

∫
S
IΩ(x, t)p(x; t|x) dx

=

∫
Ω(t)

p(x; t|x) dx = ϕe(x, t) . (3.3)

The averaging procedure can pass into the integral because the domain of integration is not affected

by the stochastic motion and the indicator function IΩ(x, t) comes out of the averaging brackets

because it is a deterministic quantity.

Applying the Reynolds transport theorem and subsequently the divergence theorem to for-

mula (3.3), the following reaction-diffusion equation is obtained

∂ϕe
∂t

=

∫
Ω(t)

∂p

∂t
dx +

∫
Ω(t)

∇x · [V(x, t) p(x; t|x)] dx , (3.4)

where V(x, t) is the expansion velocity of the domain Ω(t). With reference to the right-hand side of

equation (3.4), the first term gives the spreading and represents the diffusive part. In particular, in

the case when p(x; t|x) evolves locally in time, this term reduces to Lϕe, where L is a generic spatial

operator that can be for example the classical or the fractional Laplacian. The second term on the

right-hand side is indeed the source term. In fact, this term depends on the velocity of the temporal

expansion of the domain Ω(t), and for this it is responsible for the insertion of further amount of a

proper quantity into the simulation domain.

In the family of reaction-diffusion equations (3.4), the source term includes the front velocity of

the moving interface scheme V(x, t) and the fundamental solution p(x; t|x) of equation (3.4) in the

non-reactive case, i.e., null source term. Hence, this approach reconciles two approaches considered

alternative to each other that is the ones based on moving interface schemes (which generate a

sharp function that is non zero inside a bounded domain and zero outside) and the ones based on

reaction-diffusion equations (whose solution is generally a continuous smooth function that has an

exponential decay, and it is non zero in an infinite domain). In fact, even if equation (3.4) is a

reaction-diffusion equation it is strongly based on the velocity of growth of the domain Ω(t) that is

indeed established by a moving interface scheme.

It is known that the ensemble average of Dirac delta functions with stochastic arguments repres-

enting independent realizations of a stochastic process can be understood as the PDF corresponding
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to the so-called empirical distribution function [306]. This means that the effective front position

emerges to be described by a weighting procedure of the drift-generated front where the weight-

function is the PDF of the fluctuating part. Due to the presence of the deterministic indicator

function in the integrand, the above weighting procedure is equivalent to compute the integral of the

PDF of fluctuations for the values of drifting component belonging to the internal region of the front

contour computed from a literature method (e.g. LSM, DEVS or G-equation). Any application

of the method is therefore strongly dependent on the correct determination of the statistics of the

fluctuating part because it describes the physics of the specific underlying system and, in particular,

on the determination of the PDF of the fluctuations.

Some remarks on the above method are:

i) if a non-random initial front contour is considered, the initial condition of the PDF of fluctu-

ations is a Dirac delta function peaked on internal point of the initial front line.

ii) if no randomness occurs in the process, the PDF of fluctuations remains a Dirac delta function

so the result of the proposed method reduces to the chosen literature method (e.g., LSM or

DEVS);

iii) the proposed method avoids to use the Reynolds decomposition of the value of the observable

function, as it was erroneously assumed sometimes in literature in the context of turbulent

premixed combustion [214, 215, 148]. In fact, by definition, the curve representing the frontline

does not have fluctuations in its value in any adopted method, but it has fluctuations in its

position and these fluctuations are exactly what is modelled in the present method by the

fluctuating part and its PDF. It should be remarked here that this approach avoids to assume

explicit fluctuations of the level-set function, see also [193], as in other literature approaches

[214, 215, 148, 240].

iv) the resulting effective front differs from an average procedure proposed by Oberlack et al.

[193], because in the method proposed here the full PDF is considered, which means that

the variance of interface position is also included, along with the average position. This

difference is fundamental to take into account the diffusive characteristics, the displacement

variance being closely related to velocity correlation, i.e., Green–Kubo–Taylor formula, which

is the most important element to characterize the structure of stochastic processes. If the

displacement variance tends to zero, then the PDF tends to the Dirac delta function and the

average G-equation derived by Oberlack et al. [193] is recovered.
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3.2 Example of model application: complex front kinetics in
random media

To conclude this Chapter, an experiment combining salient features from both drifting part and

fluctuating one is presented.

It is an extension of the multidimensional front evolution in anomalous diffusive media proposed

in [2], considering more complex geometry and extending the underlying microscopical fluctuations

in order to model the so called Erdélyi–Kober fractional diffusion.

In the one–dimensional case of such setting, the Green’s function of the PDF that appear in for-

mula (3.3) is related to theM-Wright/Mainardi function [155, 153, 198], which reduces to the Gaus-

sian distribution as the fractional order of the time derivative tends to one. TheM-Wright/Mainardi

function is a well-established function, and with state-of -art robust algorithm available for its com-

putation [223].

To deal with multi-dimensionality, the one–dimensional case analyzed in [176] has been extended

to multiple dimension by [108] and put in a more simple formulation by [2].

The latter work showed specifically that using an integral representation formula of the M-

Wright/Mainardi function [156], Green’s function for multi-dimensional cases can be represented by

the same integral formula of the one-dimensional one with the help of a simple multi-dimensional

Gaussian PDF.

The deterministic evolution of a single mean front is analyzed with the well-known Level Set

Method as the selected sharp front technique, already described in detail in Chapter 1.

We remind that in the framework of the LSM, the position of the interface identifies with an

isocontour (for the sake of simplicity the zero isocontour ) of a certain a scalar field which is obtained

solving the so called level set equation, an equation of the Hamilton–Jacobi type.

For this experiment we chose such framework for the computation of the drifting part since it

has been proven useful to depict a plethora of geometrical configurations, and gives simple recipes

for interface kinetics driven by normal vector, curvature, or external velocity fields; sharp gradients,

cusps and even change of topology of the fronts (merging and splitting of sub-domains) can be

described with relative ease.

In addition to these advantages, one key-feature of the level set method framework is that it

allows to easily improve the physical model by progressively including more detailed interface effects

that might influence the front propagation, as the dispersion effects of interface particles due to

diffusive phenomena considered in this experiment.

Given the recent extension to the multi–dimensional case of the well established one–dimensional

model useful for the study of the propagation of fronts in anomalous diffusive media [176], the

experiment highlighted in this Chapter provides the latter model a time stretching effect and a
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curvature driving term, in order to analyze a complex kinetic where there is an interplay between

microscopic, stochastic and macroscopic, geometric features.

3.2.1 Computation of the drifting part

Let γ : S × R+
0 → R, then its evolution in the framework of the LSM is governed by the following

Hamilton–Jacobi equation
∂ϕ

∂t
= V(x, t) ‖∇ϕ‖, (3.5)

that corresponds to formula (1.8) of Chapter 1 with null external velocity field v and contact speed

V(x, t). The domain Ω(t) is that one bounded by the front contour Γ(t) now established by the level

set value ϕ(x, t) = ϕ∗, i.e., Γ(t) = {x ∈ S|ϕ(x, t) = γ∗}.

Front curvature is connected to the surface density per unit volume, and this affects the speed of

the propagation when the propagation is due to a chemical reaction, as for example in combustion

[] and material science []. Equation (3.5) with a curvature-dependent speed reads

∂ϕ

∂t
= V0(1− λκ(x, t)) ‖∇ϕ‖ , (3.6)

where κ is the curvature of the front, i.e.,

κ(x, t) = ∇ ·
(
∇ϕ(x, t)

‖∇ϕ(x, t)‖

)
, (3.7)

V0 is a drifting speed here assumed constant and λ is a parameter that regulates the influence of

the curvature on the front speed. In combustion literature, λ is called Markstein length.

By including the curvature, the mathematical problem passes from hiperbolic to parabolic. This

transition could affect the evolution of the front by provoking for example a quenching behavior, as

discussed in Section 3.3.

3.2.2 Computation of the fluctuating part

Erdélyi–Kober fractional diffusion

The PDF of fluctuations can be derived from the analysis of the physics of the system. So in the

case of classical diffusive environments it is Gaussian while it can be a more general PDF when

anomalous diffusion occurs, e.g., [154, 208, 176, 2].

The generalized diffusion process here considered is the isotropic multi-dimensional Erdélyi–

Kober fractional diffusion [208], and its Green function is the PDF p(x; t) to plug into in Eq. 3.3

.

The Erdélyi–Kober fractional diffusion equation is obtained from the classical diffusion equation

by introducing a power-law memory kernel togeher with a time-stretching change of variable. As it

will be shown in detail, one of the main outcomes of this modelling choice is the clear separation
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between the shape of the PDF and the variance of the underlying stochastic process because they

are controlled by two independent parameters.

Consider the standard Gaussian (or Normal) diffusion, the evolution of the process is driven by

the well-know heat equation
∂f

∂t
= ν∆f , f(x; 0) = δ(x) , (3.8)

whose solution is

f(x; t) =
1

(4πνt)n/2
exp

{
−‖x‖

2

4νt

}
, (3.9)

that is characterised by a variance which grows linearly in time, i.e.,

σ2
n =

∫
Rn
‖x‖2 f(x; t) dx = 3σ2

1 , σ2
1 = 2ν t . (3.10)

It is here reminded that the density function P (x, t) with general initial condition P (x, 0) = P0(x)

is connected to the fundamental solution f(x, t) by a convolution integral, i.e.

P (x, t) =

∫ +∞

−∞
f(ξ, t)P0(x− ξ) dξ . (3.11)

Following Mura, Taqqu and Mainardi [186], this classical setting of diffusion can be generalized

by considering a PDF of the form

P (x; t) =

∫ ∞
0

f(x; τ)h(τ ; g(t))dτ , (3.12)

where f(x, t) is the Gaussian density in (3.9) and h(τ, g(t)) introduces both a memory kernelK(t) ≥ 0

and a change of the time variable t → g(t) ≥ 0, where g is smooth and increasing with g(0) = 0,

because it is the solution of the equation

h(τ ; g(t)) = h(τ ; 0)−
∫ g(t)

0

K[g(t)− g(s)]
∂h(τ ; g(s))

∂τ
dg(s)

= h(τ ; 0)−
∫ t

0

∂g

∂s
K[g(t)− g(s)]

∂h(τ ; g(s))

∂τ
ds . (3.13)

Then the PDF P (x; t) defined in (3.12) solves the equation

P (x; t) = P0(x) + ν

∫ t

0

∂g(s)

∂s
K[g(t)− g(s)] ∆P (x; s) ds , (3.14)

whose explicit derivation can be found in Ref. [186]. Consider the following case

K(t) =
tβ−1

Γ(β)
, g(t) = tα/β , 0 < α ≤ 2 , 0 < β ≤ 1 , (3.15)

from equation (3.14) we obtain

P (x, t) = P0(x) + ν
α

β

1

Γ(β)

∫ t

0

sα/β−1(tα/β − sα/β)β−1 ∆P (x; s) ds . (3.16)
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Equation (3.16) can be re-written in the framework of Erdélyi–Kober fractional integrals, i.e.,

P (x, t) = P0(x) + νtα
[
I0,βα/β ∆P

]
(3.17)

where the Erdélyi–Kober fractional integral operator I`,mq is defined in the following.

Let µ, η and γ be µ > 0, η > 0 and γ ∈ R, the Erdélyi–Kober fractional integral operator Iγ,µη ,

for a sufficiently well-behaved function ϕ(t), is defined as [128, formula (1.1.17)]

Iγ,µη ϕ(t) =
t−η(µ+γ)

Γ(µ)

∫ t

0

τηγ (tη − τη)µ−1ϕ(τ) d(τη) ,

=
η

Γ(µ)
t−η(µ+γ)

∫ t

0

τη(γ+1)−1(tη − τη)µ−1ϕ(τ) dτ . (3.18)

As also remarked by Pagnini in [198], in the particular case γ = 0 and η = 1, the Erdélyi–Kober

fractional integral operator (3.18) and the so called Riemann–Liouville fractional integral of order

µ, here noted by Jµ, are related by the formula

I0,µ1 ϕ(t) =
t−µ

Γ(µ)

∫ t

0

(t− τ)µ−1ϕ(τ) dτ = t−µJµ ϕ(t) . (3.19)

Deriving both sides of Equation 3.17 we obtain its diffusive form, which reads

∂P

∂t
= νtα−1

[
α+ t

∂

∂t

](
I0,βα/β ∆P

)
, (3.20)

and finally, introducing Erdélyi–Kober fractional differential operator D`,mq ,

∂P

∂t
= ν

α

β
tα−1 Dβ−1,1−β

α/β ∆P , (3.21)

The definition of the Erdélyi-Kober fractional differential operator is here reported. Let n− 1 <

µ ≤ n, n ∈ N , the Erdélyi–Kober fractional derivative is defined as [128, formula (1.5.19)]

Dγ,µη ϕ(t) =

n∏
j=1

(
γ + j +

1

η
t
d

dt

)
(Iγ+µ,n−µ
η ϕ(t)) . (3.22)

Such differential operator shares some connection with other fractional operators, e.g. Riemann–

Liouville fractional derivative. We recall that Riemann–Liouville fractional derivative of order µ,

m− 1 < µ ≤ m, m ∈ N is defined as DµRL ϕ(t) =
dm

dtm
Jm−µ ϕ(t), and it is linked with the Erdélyi–

Kober fractional derivatives by the relation

D−µ,µ1 ϕ(t) = tµDµRL ϕ(t) . (3.23)

A further important property of the Erdélyi–Kober fractional derivative is the reduction to the

identity operator when µ = 0, i.e.,

Dγ,0η ϕ(t) = ϕ(t) . (3.24)

Mura, Taqqu and Mainardi [186] pointed out that with the choice (3.15), h(τ ; g(t)) turns out to

be:

h(τ ; g(t) = tα/β) =
1

g(t)β
Mβ

(
τ

g(t)β

)
=

1

tα
Mβ

( τ
tα

)
, (3.25)
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where Mη(z), z ∈ C and 0 < η < 1, denotes the so called M-Wright/Mainardi function [151, 152,

155, 153]

Mη(z) =

∞∑
n=0

(−z)n

n! Γ (−ηn+ (1− η))
=

1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(ηn) sin (πηn) . (3.26)

The Mη function is a special case of the Wright function [155, 208] and it is an entire function of

order 1/(1− η). It provides a generalization of the Gaussian density and the following special cases

hold:

M0(z) = e−z , M1/3(z) = 32/3Ai(z/31/3) , M1/2(z) =
1√
π

e−z
2/4 , (3.27)

where Ai is the Airy function.

We also remind the following integral representation [156]:

1

tη/2
Mη/2

( r

tη/2

)
= 2

∫ ∞
0

e−r
2/(4τ)

√
4πτ

Mη

( τ
tη

) dτ
tη
, 0 < η < 1 , r ∈ R . (3.28)

By setting h(τ ; 0) = δ(τ) we have P0(x) = δ(x).

Finally, the desired PDF which is the Green function of (3.16) is

p(x; t) =

∫ ∞
0

e−‖x‖
2/(4ντ)

(4πντ)n/2
Mβ

( τ
tα

) dτ

tα

=

∫ ∞
0

n∏
i=1

e−x
2
i /(4ντ)

(4πντ)1/2
Mβ

( τ
tα

) dτ

tα

=

∫ ∞
0

n∏
i=1

e−x
2
i /(4νλt

α)

(4πνλtα)1/2
Mβ(λ) dλ

=
1

(νtα)n/2
Mβ/2

(
‖x‖√
νtα

)
, (3.29)

where the notation Mη(z) is used for the multi-dimensional extension of the M-Wright/Mainardi

function Mη(z).

As the reader had seen in the previous derivation, the marginal pdf of the non-Markovian diffu-

sion process ggBm emerges to be related to the Mainardi function Mν and the shape of the pdf, and

its possible resemblance with a Gaussian, is managed by the means of this versatile yet quite recent

mathematical tool; another thing worth to be noticed is that in this Time Stretched Fractional Dif-

fusion framework, (or, talking in terms of the stochastic particle dispersion, in the ggBm framework)

let the model distinguish between the shape of the PDF and the sub- super diffusive regime, acting

on the parameters β and α, respectively. The fact that the diffusive regimes (wheter it happens to

be super or sub-diffusive) is up to the α parameter is highlighted by the particle variance σ2
d which

in one–, two– and three–dimensions (d = 1, 2, 3) is [154, 108]:

σ2
1 =

∫ +∞

−∞
x2 p1(x; t) dx =

2ν tα

Γ(β + 1)
, σ2

2 = 2σ2
1 , σ2

3 = 3σ2
1 . (3.30)

Differently from the analysis performed in [2], the PDF stated in (3.29) allows for studying

independently the spreading (driven by α) and the shape of the PDF (driven by β).



CHAPTER 3. MODEL INTRODUCTION 68

here the diffusive regime and the gaussianity are well distinguished and it is in principle possible

to simulate even the case of a linear variance law, but with non-Gaussian PDF, that is the case when

β 6= α = 1 and a Gaussian PDF with non linear variance when β = 1 and α 6= 1.

A microscopical insight

Erdélyi–Kober fractional diffusion equation is related to the class of stochastic processes called

generalized grey Brownian motion (ggBm) [208]. In fact, the one-point one-time particle PDF of the

ggBm is the Green function of the Erdélyi–Kober fractional diffusion equation.

We recall that the ggBm [187, 62] is a special class of H-self-similar-stationary-increments (H-

sssi) of order H = α , or Hurst exponent H = α/2. The ggBm provides non-Markovian stochastic

models for anomalous diffusion, and it can generate sub- (0 < α < 1) and super- (1 < α < 2)

diffusion processes. Special cases of the ggBm are the fractional Brownian motion (β = 1), the grey

Brownian motion (0 < α = β < 1) and the standard Brownian motion (α = β = 1).

Stochastic trajectories of the ggBm can be generated by the product of a fBm with Hurst exponent

H times and positive constant independent random variable `, i.e.,

X = `XH . (3.31)

The ggBm considered in Ref. [187] is established by imposing H = α/2 and Λ = `2 be distributed

according to Mη.

This approach has been recently propose to model diffusion in biological cells [182], but also to

derive the stochastic solution of the space-time fractional diffusion equation [210] or two-particle

anomalous diffusion [209], with the proper distribution of Λ.

3.3 Quenching

Depending on the physical interpretation of the two evolving unknowns of the model,ϕ(x, t) and

ϕe(x, t), it may be useful to provide a description of the possible cases when one of the two domains,

the one embedded by one ( the zero - level one, for the sake of simplicity) iso-contour of ϕ or the

other by ϕeff , eventually shrinks to one point and vanish.

The proposed model could thus in principle lead to

1. A Geometrical Quenching, due to the curvature term in the equation (3.6), that involves

the deterministic front computed by the means of ϕ and does not receive any feedback by the

effective front, being moreover independent of any choice of the probability density function;

2. A Diffusive quenching, due to the dynamics of the effective front evolution law (3.4), which

depends on the choice of the probability density function and is moreover closely related to

the deterministic front advancing.
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3.3.1 Geometrical quenching

The Geometrical Quenching, in the formulation of equation (3.6) , is due to the curvature term λκ:

we remind the reader that in our formulation the normal velocity is always pointing outwards and

cannot be responsible for such a recoiling of the front. To be more specific, the Level Set equation

(3.6) sees in its curvature operator a dissipative term , as it is pointed out in many theoretical works

on front propagation (see e.g. Ref. [101]). We also remind that in the case of null normal velocity

term, such equation becomes

ϕ(x, t)t = ξκ(ϕ(x, t)) |∇ϕ(x, t)| = ξ∇ ·
(
∇ϕ(x, t)

|∇ϕ(x, t)|

)
|∇ϕ(x, t)| (3.32)

Equation (3.32) gives rise to a geometric flow called mean curvature flow, that in its one-

dimensional characterization (that is, regarding the evolution of a closed curve in a plane) has been

called in the literature curve shortening flow, see again [101]. Each surface (with suitable hypothesis

of regularity) or curve will shrink to a sphere (or a circle) and then collapse into a single point. This

situation shall be regarded as a limiting case for the proposed model, i.e. for the case when

|V(x, t)| → 0. (3.33)

This behavior is portrayed in Figure 3.2c.

Apart from the limiting case of (3.33) , the intermediate case of the Level Set equation shall be dis-

cussed making use of its ·convection diffusion formulation valid as long as the condition |∇ϕ(x, t)| = 1

is enforced :

ϕ(x, t)t + V · ∇ϕ(x, t) = ξ∇2ϕ(x, t) (3.34)

with V = Vn .

This formulation of the curvature / convection driven motion of the deterministic front suggests,

for a fixed initial condition of the unitary gradient level set equation , an interplay between the two

quantities V and ξ.

In the case V/ξ � 1 can be observed a dissipative kinetic that takes over the entire process and

drive inwards the level set curves, causing the deterministic front to extinguish. This case describes

of course even the previous limiting case of curvature driven flow. On the other hand, when V/ξ � 1

we have the deterministic front that will advance with the area of the enclosed domain augmenting

with respect to time. The case without the effects of curvature considered (i.e. ξ = 0 ) falls obviously

in this case.

The authors have seen a striking analogy of this dynamic with the results of [202], where with

Lagrangian arguments this two-parameter behaviour has been depicted even though with a totally

different physical interpretation.
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3.3.2 Diffusive quenching

Shifting the attention towards the diffusive quenching, a thorough description (regarding the model

that neglects curvature effects) can be found in [2]. We shall nonetheless remark the fact that due

to different levels of the diffusion parameter ν (and adopting different threshold values ϕth ) the

quenching can either take place or not, and that a quenching of the effective front can be followed by

a reappearance of the front due to diffusive phenomena, with the latter event that can acquire some

sense depending on the physical interpretation of the model. For example, in the context of the

modeling of turbulent premixed combustion, if the effective front modeled by the ϕth− isocontour

of the field ϕe(x; t) vanishes, the corresponding premixed flame can be considered extinguished and

the system can be considered from that moment on quiescent.

3.3.3 Feedback mechanisms

The remarkable fact that a front propagation phenomenon in a complex medium is described through

the study of two different fields ϕ and ϕe , gives credit to a straightforward question: how should the

two fields interact with each other? The first interaction worth noting is that the deterministic front,

can itself exhibit a shrinking behavior and in this case the effective front ( built up as an integral of

positive quantities on the domain given by the deterministic advancing, as shown in equation (3.3) )

will eventually extinguish itself, this time without any chance of coming back. The inclusion of the

curvature term in the deterministic front evolution law allowed this one-way feedback between the

two descriptions of the moving interface.

The other way round, that is the influence of ϕe on the level-set field ϕ is, in the framework of

the model depicted by this paper, not observable. Nonetheless, there are works where this link has

been successfully established and thoroughly studied, such as [203] and [205]. In the latter works, an

auxiliary function it is utilised in order to change at a time τ the value of (3.1) from 0 to 1 according

to the behaviour of ϕ(x; t) in the whole interval of time [t0, τ ]. Such methodology has been applied

in the modelling of wild-land fire spread, the probability distribution function representing in that

case the probability of burning embers fall; the topic is covered in Chapter 5.

3.4 Numerical results

In this Section the profiles of the isocontours of ϕ and ϕe defined in the previous sections are

presented and discussed. It has to be reminded that the profile of the isocontours of ϕe are being

computed by using formula (3.3) depending on the level set equation (3.5), and that the PDF

pd(x; t|x) = pd(x − x; t) is the fundamental solution of the d-dimensional stretched time-fractional

diffusion given in (3.29).
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3.4.1 Insight on the numerical tools and recipes

The motion of the fronts that propagate in random diffusive and sub-diffusive media, under the effect

of normal velocity and curvature, has been computed by the means of a software package developed

ad-hoc for this goal, that is actually an evolution of the one described in [2]. The latter code, written

in C and Fortran2008 utilizes a library (liblsm90) which is capable of computing the evolution of

a co-dimension one front in one, two and three dimensions, with the use of robust finite-difference

algorithms (belonging to the family of Weighted ENO schemes) and a Runge-Kutta scheme for the

time-advancing. In order to make advantage of the parallel architecture were the code has been run

we adopted an OpenMP parallelization paradigm.

All the results that will be shown in the following part are the result of a post-processing work

done by the means of open-source software as SciPy [122] and Matplotlib [116], in the IPython

framework [212].

The computations have been performed by the means of the computational server HIPATIA,

made available at the Basque Center for Applied Mathematics (BCAM) in Bilbao, Basque Country

– Spain.

3.4.2 Geometrical asset

To reproduce the effects of motion under curvature and normal velocity subject to random frac-

tional fluctuations, a series of numerical experiments are conducted. To show the different behavior

depending on the geometry of the front, a particular initial front ϕ∗(t = 0) is adopted. Such ini-

tial front is given by a circle from which a series of rectangles have been carved only in the upper

half. The motion will suddenly smear out the sharp angles and the front will exhibit a low uniform

curvature in the lower half and a heterogeneous curvature in the upper one.

For the sake of establishing a suitable initial condition, and for its good numerical proprieties

(again, see [252]) the adopted level set is a signed distance function, i.e. a function that for each

point of space will take the value of its distance from the interface. See Figure 3.1 for an example

of model run when ϕ is a signed distance function.

The signed distance function ([252]) for the initial circle, of radius r and centered in x0 has been

obtained by the well known formulation

ϕC(x) = ||x− x0|| − r (3.35)

The rectangles we have implemented have the signed distance function

ϕR(x) =

{
max(|x− xC | − l, |y − yC | − w) if x = (x, y) ∈ Ω+

min(|x− xC | − l, |y − yC | − w) if x = (x, y) ∈ Ω−
(3.36)

where in the last equation l and w are the semi axis of the rectangle, the symbol Ω+ denotes the

exterior of the domain while Ω− its interior, and (xC , yC) is the center of the rectangle. The carving
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Figure 3.1: Three different time steps of the evolution of the iso contour ϕ = 0 with the complex
initial geometry introduced in this Section. The colored surface is the level set field ϕ while the
iso-contour of interest is projected in the plane z = −20 for clarity purposes.

of the circle has been performed by using the set subtraction

ϕ(x) = max(ϕ(x),−ϕRT (x)) (3.37)

where ϕRT is the set theoretic sum of the rectangles, that is, using the signed distance function

algebra (as in [195] )

ϕRT (x) = min(ϕR1(x), ..., ϕRn(x)) (3.38)

Since the signed distance function embedding was adopted for the reconstruction of the advecting

front, to maintain numerically the analytics properties of the latter a reinitialization procedure had

to be undertaken. A simple time dependent approach was adopted ; i.e. the steady solution of

∂φ

∂t
+ sgn(φ)n̂ · ∇φ (3.39)

has been sought.

The interval of time steps between each reinitialization procedure was not fixed, since in the

initial phases of the evolution there were sharp edges that required extra attention in preserving

the signed distance function structure of the scheme, and so a reinitialization had to be performed

each time step. In the later part of the simulation, when the geometrical structure of the front was

generally more easy to deal with, the reinitialization could be performed each 20 time steps without

degrading dramatically the numerical accuracy.

The computational domain was a square box, with side of 1m, and the radius of the initial

circle was 0.2m. For the undertaken simulations, 4 equally spaced rectangles have been carved out,

starting from the horizontal diameter of the circle. The horizontal length of each rectangle was

0.2×R, with R the radius of initial circle.

3.4.3 Parameters and ranges

Equation (3.29) as well as (3.6) regulate the motion of the front, and do depend actually on various

parameters, related to microscopical and macroscopical features. This dynamic is prone to exhibit
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Figure 3.2: Setting for the example of model application. Figure 3.2a shows the initial contour
ϕ(x, t = 0) = 0. Figure 3.2b shows the loss of spatial information on the front ϕ(x, t = t1,2,3) = 0
due to a kinetics driven only by the normal velocity. Figure 3.2c shows the shrinking of a contour
when its LSM equation is driven just by the curvature term, that is when Equation 3.32 is enforced.

very complex behaviour for it depends at least on the subsequent parameters, summed up for the

sake of completeness:
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• Normal velocity of the macroscopic front, V0 ;

• Markstein Length related to the curvature effect

• Parameter of the diffusion of space/time fractional diffusion, ν ;

• Parameter β of the Mainardi Function (that accounts for the Gaussianity of the stochastic

front);

• Parameter α of the time exponent (that governs super and sub diffusivity).

When the computation of ϕe has been performed, all the possibilities have been tried among the

combinations of the subsequent parameters:

• V0 ∈ {0.01, 0.1}[ms ]

• λ ∈ {0.05, 0.1}[ cms ]

• ν ∈ {0.001, 0.01}[m
2

s ]

• α ∈ {0.5, 1.0, 1.5}

• β ∈ {0.1, 0.3, 0.5}

3.4.4 A glimpse at the kinetic

In order to understand the plots of the numerical results of the simulation, we remark a few charac-

teristics of the motion that our surface have exhibited:

1. The normal velocity in the lower part of the hand-shaped contour will just advect the ϕ = 0

iso-contour along a radial direction. In the upper part, it would do the same for the outer

part of the fingers. The inner sides of the fingers will be advected by the normal velocity

one towards the other, and the bigger the value of V0, the less the deterministic shape of the

hand will mantain its carachteristic form before collapsing into a circle. See Figure 3.2b for an

example of a purely normal-driven flow that converges to an expanding circle.

2. The curvature effect (governed in this case by λ will contribute (as remarked in the previous

Section) to smear out the dis-uniformities of the initial shape, contributing to making it con-

verge to a circle. Its effect is of paramount importance in the upper part of the hand-shaped

profile, since the radius of curvature will be significantly smaller in the corners of the fingers,

while in the lower side the radius of curvature the radius of curvature will be large and uniform.

We did not appreciate in the explored range of Markstein numbers an evident change in the

kinetics of the front, and therefore only the plots for λ = 0.1 are presented. In Figure 3.2c a

shrinking profile for ϕ = 0 under a motion regulated by Equation 3.32 is presented.



CHAPTER 3. MODEL INTRODUCTION 75

3. The diffusion coefficient ν of the PDF will regulate the sharpness of the ϕe front (the higher

ν, the less sharp the φe profile). Following the results of [2] , it will play an important role on

the eventual shrinking of the ϕe = ϕth iso-contour we are modelling. We remark the limit

lim
ν→0

p(x; t) = δ(x; t) (3.40)

that gives an intuitive explaining to how the iso-contours of φe stick to the deterministic front

when ν is low.

4. The cofficient β shifts the motion to sub-diffusive to diffusive. This is quite evident from the

plots, since the contour of a low beta diffuses less and stick more to the LSM profile; this

is evident also for the quenching regime captured by the choice of parameters ν = 100 and

V0 = 1, when in the sub-diffusive regime the shape of the front is more similar to LSM than

in the β = 0.5 case, thus limiting the quenching towards a vanishing circle.

5. The coefficient α exhibits the particular capability to govern in some sense the shape memory

of ϕe: in each of the right hand side columns, the central figure of the left hand side column has

been proposed again, this time varying the coefficient α. In this way it can be appreciated how

the profiles are more close to the deterministic LSM contour as α increases. This is particularly

evident e.g. in the plot with ν = 100 and V0 = 1, where the β = 0.5 iso-contour surpasses the

black-colored line of the standard Gaussian ϕe contour when α passes from 0.5 to 1.5.
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Table 3.1: Left column, from top to bottom: contours corresponding to D = 10m2s−1, V0 =
1m/s, α = 1, β = 0.1 (red), 0.3 (blue) ,0.5 (green), at t = 0.3, 0.6, 0.9s respectively. Right column is
the same as the central plot of left column but for increasing α, from top to bottom α = 0.5, 1, 1.5, in
order to show effect of changing α. The corresponding plots with Gaussian PDF are outlined by black
solid contours; the ones corresponding with plain LSM advancing (PDF = δ(x, t) are represented
by pink dash-dotted contours.
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Table 3.2: Left column, from top to bottom: contours corresponding to D = 10m2s−1, V0 =
10m/s, α = 1, β = 0.1 (red), 0.3 (blue) ,0.5 (green), at t = 0.3, 0.6, 0.9s respectively. Right
column is the same as the central plot of left column but for increasing α, from top to bottom
α = 0.5, 1, 1.5, in order to show effect of changing α. The corresponding plots with Gaussian PDF
are outlined by black solid contours; the ones corresponding with plain LSM advancing (PDF =
δ(x, t) are represented by pink dash-dotted contours.

0 20 40 60 80 100
0

20

40

60

80

100

D = 10  = 1.0 Time 005 Vel 10 mks 0.1

 = 0.10
  = 0.30
 = 0.50

Gaussian
LSM

0 20 40 60 80 100
0

20

40

60

80

100

D = 10  = 0.5 Time 010 Vel 10 mks 0.1

 = 0.10
  = 0.30
 = 0.50

Gaussian
LSM

0 20 40 60 80 100
0

20

40

60

80

100

D = 10  = 1.0 Time 010 Vel 10 mks 0.1

 = 0.10
  = 0.30
 = 0.50

Gaussian
LSM

0 20 40 60 80 100
0

20

40

60

80

100

D = 10  = 1.0 Time 010 Vel 10 mks 0.1

 = 0.10
  = 0.30
 = 0.50

Gaussian
LSM

0 20 40 60 80 100
0

20

40

60

80

100

D = 10  = 1.0 Time 015 Vel 10 mks 0.1

 = 0.10
  = 0.30
 = 0.50

Gaussian
LSM

0 20 40 60 80 100
0

20

40

60

80

100

D = 10  = 1.5 Time 010 Vel 10 mks 0.1

 = 0.10
  = 0.30
 = 0.50

Gaussian
LSM



CHAPTER 3. MODEL INTRODUCTION 78

Table 3.3: Left column, from top to bottom: contours corresponding to D = 100m2s−1, V0 =
1m/s, α = 1, β = 0.1 (red), 0.3 (blue) ,0.5 (green), at t = 0.3, 0.6, 0.9s respectively. Right column is
the same as the central plot of left column but for increasing α, from top to bottom α = 0.5, 1, 1.5, in
order to show effect of changing α. The corresponding plots with Gaussian PDF are outlined by black
solid contours; the ones corresponding with plain LSM advancing (PDF = δ(x, t) are represented
by pink dash-dotted contours.
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Table 3.4: Left column, from top to bottom: contours corresponding to D = 100m2s−1, V0 =
10m/s, α = 1, β = 0.1 (red), 0.3 (blue) ,0.5 (green), at t = 0.3, 0.6, 0.9s respectively. Right column
is the same as the central plot of left column but for increasing α, from top to bottom α = 0.5, 1, 1.5,
in order to show effect of changing α. The corresponding plots with Gaussian PDF are outlined
by black solid contours; the ones corresponding with plain LSM advancing (PDF = δ(x, t) are
represented by pink dash-dotted contours.
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3.5 Surrogate Modeling of the problem

The example of model application of Section 3.2 is studied via some of the UQ and SA techniques

illustrated in Chapter 2, In particular,the approach of Variance-Based Sensitivity Analysis (with

Sobol’ indices) is chosen for SA. Due to the limited computational budget, that make a
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Montecarlo-based analysis prohibitive, a surrogate model is constructed via the means of

Polynomial Chaos with LAR strategy (see Section 2.4.2 of Chapter 2 ). This example of

application has two objectives. The first is the ranking between the two parameters α, β of the

PDF of random fluctuation in complex media and given in Equation 3.29, under complex initial

geometry. The other objective is the quantification on the uncertainty in the output of such

complex kinetic given uncertainty in the two parameters α, β that characterize the medium,

governing diffusive regime and the gaussianity respectively.

3.5.1 Parameters, databases and observables

For this analysis, the random input parameters is defined as θ = {α, β}.

To see the effect of the parameters range of variation on the output shape, we need to think of

some kind of observable to better quantify the effect of the parameter choice. The following

quantities of interest (QoI) are chosen:

1. The first one is the Area inside of the statistical contour, i.e. inside of a selected iso-contour

of the smooth indicator function ϕe. Setting the threshold value ϕth = 0.5, the first QoI reads

Y1 =

∫
ϕ(x)>ϕth

1dx (3.41)

2. The second QoI is related to the shape of the figure. NM couples of markers are put on the

ϕ0.5 iso-contour and the γ0 isocontour so that at time t = 0 they coincide. For t > 0, the two

iso-contour shall exhibit some difference each couple of marker is then characterized by their

euclidean distance di; That difference encodes the effect of diffusion on the macroscopic

shape configuration. See Figure for a representation of this setting. For the limiting case

p(x; t) = δ(x; t) we get to the outcome di = 0 ∀i. The second QoI is then defined as

Y2 =

∑NM
i=1 di
NM

(3.42)

The values Yi may depend on time. We analyze two different time steps Yi(t = {t1, t2}) in the

following.

For this purpose, two databases of NDOE = 216 are compiled with Halton sampling, one with the

information of Y1, Y2 at time t = t1, while the other at t = t2. A scatter plot of a database used for

this exercise is portrayed in Figure 3.4.

A schema of the adopted work-flow for a non-intrusive surrogate analysis is outlined below, in line

with what reported in Chapter 2.

For Yi ∈ {Y1, Y2}:

1. Determine the PDF for each variable. By using the support of those PDFs construct the

hypercube

H ≡ [θ1min , θ1max ]× [θ2min , θ2max ] (3.43)



CHAPTER 3. MODEL INTRODUCTION 81

2. Sample Design Of Experiment (DOE) of NDOE = 216 samples θk = {θ1, θ2}i ∈ H. This

sampling used the PDFs of each parameter θi ∈ θ. In our specific case, the Halton Method, a

low-discrepancy scheme, is employed.

3. Run the simulation for each choice of parameters 1 . . . NDOE and collect the QoIs Yi into the

training database DNDOE .

4. Compute the surrogate model M such that M(θ∗i ) = Ŷ ∗i is the surrogate representation of

the value Yi associated at the evolution of the analyzed system subject to the choice θ∗i of

the parameters. The adopted surrogate model is gPC with LAR projection strategy, see

Chapter 2.

5. With the computationally cheap surrogate model perform Sensitivity Analysis and

Uncertainty Quantification obtaining Partial and Total Sobol Indices, PdF and moments of

the QoI Yi.

6. Perform convergence and error analysis with some error estimator. For this specific

application we chose LOO indicator.
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Figure 3.3: Representation of the Markers used to compute observable Y2. The pink dashed contour
is the LSM contour, in our case the iso-contour ϕ = 0. The green contour is a realization of
the process with selected α, β (in the picture (α, β) = (1, 0.5). In particular, the green contour
corresponds thus to the iso-contour ϕe = 0.5.

Run settings

Since we do not want to characterize a specific medium or regime of front propagation, we span the

hypercube H with Uniform Distributions. Those distributions will be used by the Halton Sampling

of the DOE and by the Polynomial Basis construction for the PC routines.

The two analyzed times are (t1, t2) = (0.2, 0.4) While θ = (α, β) is varying, we fix

D = 100, V0 = 0.2, λ = 0.1.
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Figure 3.4: Panel: DOE representation of the θ = {α, β} case for Y1 and Y2.
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Figure 3.5: Panel: Y1 (covered area), Sobol Indices at two different times (rows), t1 = 0.2 (a),
t2 = 0.4 (b) ; Y2 (shape discrepancy), Sobol Indices at two different times (rows), t1 = 0.2 (c) ,
t2 = 0.4 (d).
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Figure 3.6: Panel: Y1 (covered area), PDF at two different times (rows), t1 = 0.2 (a), t2 = 0.4 (b) ;
Y2 (shape discrepancy), PDF at two different times (rows), t1 = 0.2 (c) , t2 = 0.4 (d).
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Figure 3.7: Panel: Y1 (covered area) at time T2 = 0.4, adequacy plot for empirical error (a) and
LOO error versus maximum degree of employed Polynomial Chaos (b) ; Y2 (shape discrepancy) at
time T2 = 0.4, adequacy plot for empirical error (c) and LOO error versus maximum degree of
employed Polynomial Chaos (d) ;
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3.5.3 Discussion of Surrogate Model results

The surrogate model of the test case 3.2, given by gPC with LAR regression strategy, gives out

interesting results concerning both SA and UQ. To begin with, we have from Figure 3.5 the First

order and total order Sobol’ indices for both Y1 at time t1, t2 (Fig. 3.5a,3.5b) and Y2 at time t1, t2

(Fig. 3.5c,3.5d).

α, that governs the Hurst exponent of the underlying fluctuating dynamic, is the leading term for

both observables Y1, Y2. However, the effects of Beta are not entirely negligible. Since first order

Sobol’ index (dark blue) is different from total Sobol index (light blue), the two parameters do

interact one with each other in determining change in the covered area (Y1) or shape modifications

(Y2). We shall now shift the attention to Figure 3.6, which portrays the different PDF of the

observables Yi at the two analyzed times. The PDF for Y1 shows the fact that the contour given by

LSM (that corresponds to the statistical contour given by p = δ(x, t) cannot be trespassed. In fact,

a barrier-like peak can be observerd at the right of the PDF for both analyzed times t1, t2. This

can deliver the message that in a random medium characterized by unknown Hurst exponent (and

unknown particle displacement variance) and unknown Gaussianity in the shape of the particle

PDF, an upper estimate over the covered the area may be furnished. On the other hand, shape

discrepancy (last two figures of the panel of Figure3.6) is way more noisy; a somewhat bimodal

trend can be discerned. This can mean that the statistical contour ϕe = 0.5 can stick to LSM (the

peak on 0 ) or either provoke a remarkable shape loss (peak over 3, on the plot relative to t = t1).

The gPC with LAR projection strategy has been applied and its trustworthiness tested via error

metrics. LOO error and Empirical error behaved well.
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As soon go kindle fire with snow, as seek
to quench the fire of love with words.

W. Shakespeare



Chapter 4

Applications to Turbulent
premixed combustion

Turbulent premixed combustion (TPC) is a vast scientific field involving nonequilibrium

phenomena, which plays a role of paramount importance in important industrial issues such as

engine design and energy production. TPC constitutes a challenging scientific field which involves

nonequilibrium phenomena. It requires a set of governing equations and a rich phenomenology

follows. The set of governing equation includes: mass and momentum conservation, equation of

state for gases, energy and species conservation. The nonlinearity of the problem requires equation

closures and modeling. While a description of the physical phenomena involved, the mathematical

formulation and the computational state of art to study TPC is beyond the scope of this Chapter,

the application of the proposed modeling framework described in Chapter 3 is here summarized.

We refer the interested reader to [147] for a comprehensive treatise of TPC under a physical and

engineering perspective.

The application to TPC that is described in this Chapter is a particular case of a more general

framework, already discussed in Chapter 3, about reacting fronts in random environments whose

formulation can be applied to processes in which a closed interface netly separates what is inside

from what is outside, TPC being of course one of the processes to which such formulation can be

applied. With respect to TPC, the main aim is to provide novel methods able to lead to new

theoretical insights in combustion science. The derivation of such framework is sparse in a number

of papers and formulated under different point of views relative to the different considered

application [202, 204, 203, 206]. The present formulation is intended for the family of processes

that are studied in literature by using, for example, the so-called level-set method (LSM) [250],

discussed in Chapter 1. We recall that LSM has been adopted successfully in many different

applications. wildland fire propagation [157], groundwater infiltration [121], biology [150], material

science [104] and TPC [147] (for solving the so-called G-equation).

As discussed in Chapter 3, the level-set method and reaction-diffusion equations can be considered

88
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approaches that are alternatives to each other because the solution of reaction-diffusion equations

is generally a continuous smooth function that has an exponential decay, and it is non-zero in an

infinite domain, while the level-set method provides a sharp function that is non-zero on a compact

domain. However, one of the main results of the present formulation is that these two approaches

are indeed complementary and they can be reconciled. Adopting the TPC terminology, we start

from the G-equation that describes a level surface propagating with a random motion, we show

that it is possible to derive a reaction-diffusion equation that describes the effective volume of the

reacted mixture fraction under the assumption that the probability density function (PDF) of the

random diffusive process underlying the front motion is known.

Thus, the evolution equation for the resulting observable can be reduced to equations for the

progress variable by choosing the PDF of the front fluctuations. This approach reduces to the

G-equation when there are no fluctuations [202] and to the Zimont equation for a planar flame and

Gaussian fluctuations [320]. This promising approach has been directed lately towards the

challenging problem of hydrodynamic instabilities described by the MS equation [253, 180].

The G-equation represents the motion of an iso-surface that is assumed to be the

burned/unburned interface and its propagation can be assumed to be linked with the flame

propagation. The G-equation provides the motion of an iso-surface governed by a flow field and by

a reaction speed in the outward normal direction to the interface. The flow field is generally

governed by the hydrodynamical equations providing a random velocity field. As a consequence of

this random velocity field the position of the iso-surface turns to be random, too. After averaging

the random locations of the iso-surface, the effective front profile emerges to be governed by a

reaction-diffusion equation. This reaction-diffusion equation is different for different PDFs of the

random fluctuations of the front positions.

In Section XX, We provide the density function of the fluctuations of the front positions such that

the corresponding reaction-diffusion equation is the Michelson Sivashinsky equation. That would

allow the derivation of the MS equation as the average of random fronts propagating according to

their G-equation. Anyway, it happens that their fluctuations in position emerge to be distributed

according to a quasi-probability distribution, exhibiting negative values that need special care

under both physical interpretations and aspects. In particular, we highlight through the study of

the information entropy of the fluctuation density that the MS equation describes a dynamic that

includes the restoring of the system condition. Moreover, we propose such negative values as a

mere ad hoc modeling approach for local extinction and counter-gradient phenomena.

4.1 Model Description

The process of turbulent premixed combustion is mainly characterized by flame propagation

towards the unburned region and turbulent dispersion of the resultant product particles. The
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combustion process is described by a single dimensionless scalar observable, denoted as average

progress variable, 0 ≤ c(x, t) ≤ 1, and representing the burned-mass fraction, i.e. the fraction of

burned particles which are located in x at time t. The value c(x, t) = 1 describes the presence of

only products and the value c(x, t) = 0 describes the presence of only reactants. To avoid

unnecessary mathematical difficulties, we consider a constant-density mixture and a zero-mean

turbulent velocity field.

Let Γ(t), t ≥ 0, be the front under investigation, corresponding to a certain iso-line of the progress

variable c(x, t) = 1, say c = 0.5. We assume that such front can be represented by a level surface of

the scalar field G(x, t), x ∈ Rn. The front velocity v is assumed to be composed as

v = u− sn , (4.1)

where u is the flow velocity and s the consumption speed corresponding to the chemical reaction

such that the front propagates relative to the mixture element in the normal direction with

velocity sn = s∇G/‖∇G‖. The front equation results to be

∂GΓ

∂t
+ uΓ · ∇GΓ = s ‖∇GΓ‖ , (4.2)

where index Γ means that only the points x ∈ Γ(t) are considered. Equation (4.2) is the so-called

G-equation originally introduced by Markstein in 1964 [165].

Since the chemical reaction occurs only on the selected level surface G = c, it is remarked that a

field equation for G(x, t) is indeed uniquely defined only on such iso-surface [215]. In other words,

equation (4.2) is defined solely for points x belonging to Γ(t) such that G(x, t) = c, from which the

restriction to x ∈ Γ(t) in (4.2) follows.

Introducing Ǧ(x, t) as implicit formulation of the mean front position x, where the symbol ·̂

represents the ensemble average, and remembering that we are considering the iso-surface of value

equal to c, i.e., Ǧ = c without any fluctuation in its value, the ensemble averaging procedure leads

to
∂Ǧ

∂t
+ û · ∇Ǧ = ŝn · ∇Ǧ . (4.3)

Equation (4.3) was derived and studied by Oberalck et al. [193]. According to an analysis on its

symmetries, there is a unique model for ŝn that is [193]:

ŝn = sT ň , ň =
∇Ǧ
‖∇Ǧ‖

. (4.4)

To conclude, the level surface that propagates following the mean front position x(t) solves the

equation
∂Ǧ

∂t
+ û · ∇Ǧ = sT ‖∇Ǧ‖ , (4.5)
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where sT is the turbulent burning velocity in opposition to s, that is the laminar burning velocity.

The LHS of (4.5) represents the convective derivative and the RHS describes a source term where

the front surface propagates relative to a mixture element in the normal direction with velocity sT .

It is reported that Sabelnikov & Lipatnikov [240] questioned equation (4.5) derived by Oberalck et

al. [193]. Their main question concerns the difference between the mean contour and the contour

of the mean. In fact, in general the average values denoted by ,̂ or by 〈 〉, of observables computed

along the random instantaneous front line depicted by Xω
c (t), and the values of observables

computed along the mean trajectory 〈Xω
c (t)〉 = x(t), and here denoted by ,̌ differ. In particular,

the mean normal direction, i.e., n̂, and the normal direction of the front in the mean position, i.e.,

ň, are different and, because of the key role of curvature in the front propagation, the evolution of

the corresponding fronts strongly differ.

The iso-surface Ǧ = c corresponds to the front contour Γ̌(t), which is depicted by the mean motion

of Xω
c (t), that encloses the domain Ω̌(t). Equation (4.5) is defined only on the level surface

corresponding to the front line Γ̌(t) = {x = x(t) ∈ S|Ǧ(x, t) = c}. All points inside Ω̌(t) can be

considered already reacted and those outside as still unreacted. Then the following indicator

function is introduced

IΩ̌(t) =

 1 , x ∈ Ω̌(t)

0 , x /∈ Ω̌(t)
. (4.6)

Indicator IΩ̌(t) allows to estimate the propagation of the chemical reaction in terms of the volume

of the reacted mixture fraction.

Random fluctuations of the front contour define also random fluctuations of the volume of the

reacted mixture fraction, that are stated by using the sifting property of the Dirac delta-function

peaked in the random points Xω
c (t), i.e.,

Iω
Ω̌

(x, t) =

∫
Rn
IΩ̌(x, t)δ(x−Xω

c (x, t)) dx

=

∫
Ω̌

δ(x−Xω
c (x, t)) dx , (4.7)

and after averaging we have

〈Iω
Ω̌

(x, t)〉 =

∫
Ω̌

〈δ(x−Xω
c (x, t))〉 dx

=

∫
Ω̌(t)

Pc(x; t|x) dx = Ve(x, t) . (4.8)

The averaging procedure introduced for the random indicator Iω
Ω̌

takes into account the

fluctuations of the random front points Xω
c around their mean position x.
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To conclude, applying Reynolds transport theorem [105] we obtain the following evolution

equation:
∂Ve
∂t

=

∫
Ω̌(t)

∂Pc
∂t

dx +

∫
Ω̌(t)

∇x · [sT ňPc(x; t|x)] dx . (4.9)

Let the turbulent dispersion be represented by the general evolution equation

∂Pc
∂t

= Ex[Pc ] , Pc(x; 0|x0) = δ(x− x0) , (4.10)

where the spatial operator Ex[·] includes the particle displacement statistics such as the variance

σ2(t) = 〈||x− x0||2〉/3.

Equation (4.9) is also governed by the volumetric expansion of Ω(t). This expansion is connected

with the consumption rate that in a general form is set to be

u(x, t) = sT (κ, t) n̂ , (4.11)

where κ denotes the local mean curvature. If molecular processes are neglected, the initial burning

speed must be zero, i.e. sT (κ, 0) = 0, see Ref. [202]. From (4.11) the location of the flame surface

from a Lagrangian point of view can be expressed as

Lf (t) = L0 +

∫ t

0

u(x, τ) dτ . (4.12)

Finally, inserting (4.10) and (4.11) in (4.9) gives

∂Ve
∂t

= Ex[Ve ]−∇ ·
∫

Ω̌(t)

sT ňPc(x− x; t) dx

+

∫
Ω̌(t)

Pc
{
∂sT
∂κ

(∇x κ) · ň + sTκ

}
dx , (4.13)

As a result, it can be observed that the evolution of the progress variable is led by three main

factors: turbulent motion, displacement speed of the contours of c(x, t) and their mean curvature.

It is worth remarking that (4.13) cannot be reduced to the most widely used front propagation

equations [311], and, since (4.13) follows from the exact Lagrangian definition (4.8), none of them

is physically correct to model turbulent premixed combustion.

Another formulation for equation (4.9), taking into account the probability flux J , as well as the

following general kinetic equation for Pc

∂Pc
∂t

= −∇ · J , (4.14)

is
∂Ve
∂t

= −∇ ·
∫

Ω̌(t)

J(x; t|x) dx +

∫
Ω̌(t)

∇x · [sT ňPc(x; t|x)] dx , (4.15)

that is again a reaction-diffusion equation.
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According to classical properties of diffusion, the PDF Pc of the stochastic process Xω
c is assumed

to be unimodal and its mean and median are coincident. This means that it is symmetric and

normalizes with respect to both x and x. Consequently, Ve(x, t) ranges in the compact interval

[0, 1],as we expect by our equivalent for the consumption rate that comes from intrinsic Lagrangian

arguments. In applications, the effective front contour is given by selecting a threshold value for

Ve(x, t), i.e., Γe(t) = {x ∈ S|Ve(x, t) = Vthe }.

We thus remark that all formalism derived so far can be applied in TPC, after recognizing that

equation (4.5) is related to the G-equation [216] and Ve(x, t) to the so-called progress variable.

Moreover, if no curvature effects is considered, the consumption speed sT results to be the

turbulent burning velocity and it can be stated [202]

sT = sL +
D
λ
, (4.16)

where sL is the laminar burning velocity and λ a length scale related to the equivalence ratio of

the mixture [202] and D is the turbulent diffusion coefficient.

Finally, for homogeneous isotropic and stationary turbulence classical flux-gradient relation can be

assumed:

J(x, t) = −D∇Pc , (4.17)

that is the equivalent of choosing the simple non-Markovian parabolic model for the turbulent

dispersion in Equation 4.10:

Ex[Pc ] ≡ D∇2Pc. (4.18)

and equation (4.15) becomes

∂Ve
∂t

= D∇2Ve +

∫
Ω̌(t)

∇x · [sT ňPc(x− x; t)] dx . (4.19)

that reduces to the G-equation when no diffusion is assumed, i.e., Pc(x− x; t) = δ(x− x).

Moreover, when the front curvature κ = ∇ · ň in the mean front position is taken into account, we

have that sT (x, t) = sT (κ, t) and equation (4.19) can be re-written as

∂Ve
∂t

= D∇2Ve −∇ ·
∫

Ω̌(t)

sT ňPc(x− x; t) dx

+

∫
Ω̌(t)

Pc
{
∂sT
∂κ

(∇x κ) · ň + sTκ

}
dx , (4.20)

where again, because Pc = Pc(x− x; t), the formula ∇xPc = −∇xPc is used.

If a plane flame is considered then κ = 0 such that sT = sT (t) and ň = ň(t), and equation (4.20)

becomes
∂Ve
∂t

= D∇2Ve + sT (t)‖∇Ve‖ , (4.21)
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that is the same equation derived by Zimont & Lipatnikov [320] and discussed also in Ref. [319].

Hence equation (4.20) can be considered as the natural extension to the case with non null

curvature of the model equation presented in [320, 319]. This application is discussed in Ref. [202].

This method suggests that for different choices of the PDF of the fluctuation of the front position

Pc(x; t) different equations can be recovered. In this paper we are interested in deriving through

this method the MS equation, and some properties of this equation are studied.

4.2 Statistical fronts in Michelson–Sivashinsky Equation

In addition to the effect of flow interactions [147], premixed flames are also subject to various

instabilities, which can be thermal diffusive or hydrodynamic in nature. The thermal diffusive

instability [254] is caused due to non-unity Lewis number, implying non equi-diffusion and leads to

the formation of cellular structures on the flame surface and/or oscillations of the flame surface.

The hydrodynamic instability, also known as the Darrieus-Landau instability [139] is caused by the

gas expansion produced by heat release in a flame, causing the flow lines across the front to deviate

towards the normal to the flame which leads to wrinkling of the flame. Large scale flames, often

found in practical applications, are susceptible to this instability leading to the formation of sharp

crests on the flame pointing towards the burned side or the roughened surface observed on

expanding flames in turbulent flow fields [96].

This instability, acting together with turbulence in the flow, is known to play an important role in

turbulent flame propagation.

One such simplified model describing the evolution of a weakly perturbed flame front is the

Michelson-Sivashinsky (MS) equation [253, 180]. The latter model is based on a nonlinear

integro-differential equation obtained via asymptotic analysis. Such equation holds in the limit of

weak thermal expansion, or small density changes along the flame. M-S equation sheds some light

in the development of the hydrodynamical instability by adequately describing the corrugated

shapes that form beyond the occurrence of instability and the subsequent increase in propagation

velocity of the flame. However, its application is restricted by the fact that density changes in

combustion are rarely small.

The potentiality of the approach is investigated further in this Section focusing on the

Darrieus-Landau (hydrodynamic) instabilities. In particular, this model formulation is set to lead

to the Michelson-Sivashinsky (MS) equation.

Hereinafter, we consider the one-dimensional MS equation in the following form:

∂φ

∂t
=
∂2φ

∂x2
−
(
∂φ

∂x

)2

− D1
xφ , (4.22)

where D1
x is the space-fractional derivative in the sense of Riesz–Feller [222] of order 1.
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Let the Fourier transformation be defined by

f̃(ξ) =

∫ +∞

−∞
e+iξxf(x) dx , f(x) =

1

2π

∫ +∞

−∞
e−iξxf̃(ξ) dξ , (4.23)

then the space-fractional derivative in the Riesz–Feller sense Dαx , with α ∈ (0, 2), is defined by its

Fourier symbol −|ξ|α. For the integer value α = 2 the classical second derivative is recovered, i.e.,

D2
x =

∂2

∂x2
, and for the integer value α = 1, the operator D1

x is the fractional derivative of order 1

with Fourier symbol −|ξ| and differs substantially from the standard first derivative. Actually, the

fractional derivative of order 1 is related to the Hilbert Transform via the relation

D1
xw(x) =

1

π

d

dx

∫ +∞

−∞

w(y)

(y − x)
dy . (4.24)

According to the standard derivation of MS equation in cylindrical symmetry [95], function φ(x)

represents the height of the flame in point x of the axis directed along the size of the cylinder.

We consider the front Ǧ described by (4.5) as the reference front. We denote by the vector y the

points of he multidimensional domain where the iso-surface Ǧ is embedded.

By adopting the model described in Section 4.1, we introduce the field g(y, t) defined according to

the second line of formula (4.8), i.e,

g(y, t) =

∫
Ω̌(t)

Pc(y − ŷ; t) dŷ . (4.25)

In [287], this field is analyzed through the equation 4.20 and arranged in order to provide an

alternative solution of the M-S equation.

In this case, to apply the formalism discussed in this Chapter to this problem, a different turbulent

dispersion law must be considered.

In formulas 4.10 reads

∂Pc
∂t

= Ex[Pc ] =
∂2Pc
∂r2

− D1
rPc , Pc(r; 0) = δ(r) , (4.26)

We recall that the Green functions of the space-fractional diffusion equation

∂Pc
∂t

= DαrPc , Pc(r; 0) = δ(r) , (4.27)

are Lévy stable densities. In particular, when α = 2 the Green function is the Gaussian density

and when α = 1 it is the Lorentzian density. The Gaussian density is associated to classical

diffusion and the Lorentzian density can be associated to a lightly damped linear oscillator.

We shift the attention towards the fractional differential equation involved in 4.26

∂Pc
∂t

=
∂2Pc
∂r2

− D1
rPc , Pc(r; 0) = δ(r) , (4.28)
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and, by using Fourier inverse transformation, the quasi-probability that solves (4.28) can be

written in the following integral form

Pc(r, t) =
1

2π

∫ +∞

−∞
e−iξr e−ξ

2t+|ξ|t dξ , (4.29)

such that it results to be similar to the integral form of the Wigner quasi-distribution for quantum

optics. The second term on the RHS of (4.28), because of the sign minus and α = 1, may be

understood as a counter-damping effect of an harmonic oscillator.

4.3 Discussion

It is here highlighted that the PDF of fluctuations which solves (4.28) emerges to be a

quasi-probability distribution showing negative values that requires high care, see Figures 4.1 and

4.2. This fact addresses a non-complete correspondence between the modelling approach for

random front propagation described in Section 4.1 and the MS equation. We study this failure

with the aim to provide an understanding of the dynamic inside the MS equation and some

suggestions for future model developments.

In particular, we argue that this failure is mainly due to a restoring property of the nonlocal term

related to the velocity v∗ provided by the flow field at the interface, and, as a mere modelling

approach, these negative values can be interpreted as due to local reversibility that can be ascribed

to the so-called counter-gradient phenomenon.

4.3.1 Restoring property of the MS equation

The nonlocal term of the MS (4.22), i.e.,

1

2
D1
xφ =

1

4π

∫ +∞

−∞

∫ +∞

−∞
|ξ| eiξ(x−µ)φ(µ, t) dξdµ = v∗ , (4.30)

where v∗ is the velocity of the flow field at the interface, embodies a restoring characteristic of the

MS equation.

Actually, this deviation from the Gaussian behaviour causes the negative values in the PDF Pc
(4.29). To study this restoring we consider the information entropy of the modulus of the PDF

Pc(x; t), namely:

S(t) = −
∫
|Pc| ln |Pc|dx , (4.31)

and the plots of the entropy and the entropy production rate dS/dt are displayed in Figure 4.3.

The entropy production rate is a measure for the irreversibility of a process. The diffusion

equation represents the canonical irreversible process and has positive entropy production. The

wave propagation corresponds to the reversible process and has zero entropy production. In Figure

4.3, we observe that the rate of the information entropy decays faster, i.e., ∼ t−2.6, than in the

standard diffusive case, i.e., ∼ t−1.
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In order to reproduce a similar decay of the rate of information entropy, we look for a simpler

equivalent to |Pc| that share similarities with respect to the spatial and temporal variations

observed in Figure 4.2. In particular, we chose a function that expresses temporal and spatial

variations in a first window of time, and then decayed to a standing spatial wave depending only

on x. The selected wave-like function consists of the superposition of a wave and decaying

wave-like disturbances with high frequency. In formulas it reads:

η(x, t) = cos
[x

2

]
+ cos[30x]t−0.6 . (4.32)

In Figure 4.4, the information entropy and its rate of function |η(x, t)| are displayed against the

scaling t−1 and t−2.6, and the fast decay t−2.6 is plotted as reference for the entropy. The fact that

the same decay of entropy rate of Figure 4.3 is expressed by making use of a simpler analytical

representation, confirms that the salient features of the Green function of the fractional differential

equation (4.28) are a spatial (traveling) wave with initial spatio-temporal perturbations.

To conclude, the solution provided by formula (4.25) highlights through the function Pc the

existence of a restoring wave-like motion inside the MS equation. Such behaviour cannot be

reproduced by a pure diffusive process, and from this the emergence of negative values of Pc and

the failure of the proposed approach described in Section 4.1. This wave-like motion is introduced

in the MS equation through the nonlocal velocity v∗ defined in (4.30). This nonlocal term,

together with its sign, provides a restoring force that poses a challenge for modelling the MS

dynamic by random fronts.

4.3.2 Quasi-probability for modelling local extintion and
counter-gradient phenomena

The emergence of a quasi-probability suggests the idea to introduce, in analogy with quantum

mechanics, a probability amplitude whose squared modulus provides the observable for the purely

propagating front. In formulas, the following can be stated.

Let C = |C| eiQ = CR + iCI be a probability amplitude with real and imaginary part. If we assume

that function g(y, t) defined in (4.25), and related to the MS equation (4.22) as previously derived,

corresponds to the square of the real part of C, then we have

g = C2
R = |C|2 − C2

I , (4.33)

where accordingly to definition (4.25)

|C|2 =

∫
Pc≥0

IΩ̌(t)Pc(x− x, t) dx , (4.34)

and

C2
I = −

∫
Pc<0

IΩ̌(t)Pc(x− x, t) dx . (4.35)
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Hence, the negative values of the quasi-probability result to be associated to the imaginary part of

the probability amplitude C and they have a role in slowing the propagation because C2
I ≥ 0. In

particular, if we integrate (4.25) in space we have that in correspondence of the negative values of

the quasi-probability there is a reduction of the mass amount. Actually, the negative values

highlight where statistically the fraction of burned mixture is replaced by unburned mixture.

From this reasoning, we propose to use the negative intervals of the quasi-probability for modelling

the non-propagating features of the process as local extintion and counter-gradient phenomena.

In fact, the negative values refer to a Eulerian local reversibility of the progress variable (and not

to a reversibility of the Lagrangian volume of mixture), that occurs because of the entering of fresh

mixture into a volume just now fully burned. This effect can be ascribed first to the local

extinction, that stops the propagation of the combustion, and then to the so-called

counter-gradient, which is generated by the density difference between reactants and products,

that pushes back the front of the burned mixture.

4.4 Summary and conclusions

A model of the flame front propagation based on the G-equation and on stochastic fluctuations

imposed to the mean flame position is considered. Stochastic fluctuations described by an

adequate PDF are thus imposed to the average flame position in order to give a proper formulation

of the flame surface propagation. An evolution equation of reaction-difffusion type is derived for an

observable that can be understood as the effective burned fraction, or progress variable.

This modelling approach allows for a number of observations on TPC, in general, and on the MS

equation, in particular. In general, when stochastic fluctuations are removed, the G-equation along

the motion of the mean flame position is recovered suggesting that approaches based on

reaction-diffusion equations and G-equation are indeed complementary and they can be reconciled.

Moreover, it is known that hydrodynamic instabilities in TPC are described by the MS equation.

This model could in principle lead to an alternative derivation of the MS equation allowing for a

number of findings of its properties that are complementary to, for example, the skewness of the

flame curvature [61] or the stability of the front [295]

The PDF of the fluctuations of the front position results to be governed by the nonlocal term

associated to the MS equation, and from this it follows that such PDF is a quasi-probability, i.e., a

density function with negative values. We showed that these negative values are a footprint of a

restoring property related to the nonlocal term. Actually, by studying the information entropy and

its rate, it emerges that the fluctuations of the front position are not driven by a diffusive motion

only, but also and more by a wave-like motion. This wave-like motion restores the system

configuration and opens a challenge for its statistical and stochastic modeling.
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However, as a mere modeling approach, the negative values of a quasi-probability can be used to

model the local reversibility of the Eulerian progress variable, which means that if a fixed point is

occupied by a burned volume it turns to be occupied by an unburned one and then the

modelization of the local extinction follows, together with the counter-gradient.
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Figure 4.1: Top: evolution in time of the quasi-probability Pc (4.29). The colors from brown to
purple stay for time since t = 0.3 to t = 18. Bottom: the same as in the Top panel but for the
function |Pc| normalized in order to represent a probability density function.
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The No. 1 cause of forest fires is trees.

Pat Paulsen
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5.1 Introduction

Wild-land fire (also known as wildfire) is a worldwide phenomenon that occurs in any vegetated

area independently of national fire-fighting management strategies, causing significant damages to

the environment, properties and human lives (see e.g. [39]).

Wildfires are characterized then by a strong social and economical impact, calling for a more

profound understanding of their dynamics for controlling the risk and managing their suppression

[277].

Mathematical and physical Modeling of wild-land fire propagation serves as a crucial (and

relatively cheap) tool in order to contrast the high economic and environmental damage provoked

by wild-land fires.

An effective and swift modeling can aid in building up an efficient plan for fire suppression and

restrict the life and property damage to a minimum, helping in gathering data to orient the

practitioners in their decision-making processes.

Unfortunately, producing easy-to-use models that are accurate from a physical perspective is not

an easy task at all. Modeling the propagation of wild-land fire has proven to be a complex,

multi-scale, multi-physics and multi-discipline process.

Wildfire propagation involves processes from the scale of the combustion chemistry to the

fire-atmosphere coupling including interactions with rather different factors such as the topography

and flame geometry [270, 271].

The core problem lies in delivering either a versatile or a specialized model which is relatively easy

to implement and may provide the requested previsions in a reasonable amount of time.

With the growth in available computational power, various new and improved modeling

approaches have been introduced and analyzed over the last years.

We address for this purpose the quite complete reviews by Sullivan [267, 268, 269], which provide a

comprehensive summary of the large set of physical, empirical, statistical and mathematical

analogue models that are currently available in literature to tackle this difficult problem.



CHAPTER 5. APPLICATIONS TO WILDLAND FOREST FIRES 107

Structure of the Chapter This Chapter is structured as follows. In Section 5.2 the main

model and techniques adopted in literature to model and simulate wild-land fire spread are

reviewed. In Section 5.3 the phenomenon of fire-spotting is described and the main model available

for its prediction are listed. Section 5.4 describes how to model derived in Chapter 3 has been

adapted to model random effects in forest fires (such as turbulence and fire spotting) while its

parametrization, RandomFront, is presented in Section 5.5.

The computational tools used for this application of the model are listed in Section 5.6. The

output of the model in two different simulation environment (LSFire and WRF-SFire) is discussed

in Section 5.7. UQ and SA of a simple test case for the model with RandomFront parametrization

is given in Sections 5.8 and 5.9. The latest advances in this research, regarding multi-scale

modeling of fire spotting, are described in Section 5.10.

5.2 State of Art for Wild-land fire modeling

The different models and analogues for wild-land fire can be categorized in several ways. In the

following, a first distinction concerning their complexity is furnished. After that, another

subdivision of the present models is outlined, this time in the context of the dichotomy between

R-D fronts and sharp fronts, in line with the contents of Chapter 1.

5.2.1 Wildfire models: growing complexity

• Empirical models: they are those models which describe the evolution of a fire by making use

of approximations derived from statistics of real fire scenarios. Those models share the

feature of depicting an advancing front who propagates according to the normal vector of the

front calculating for each point the rate of spread (ROS) as a scalar function of local

parameters: fuel, moisture, terrain steepness (orography), wind direction and magnitude, etc.

They are by far the most accessible models in term of model complexity and use of

computational resources. As a drawback, they do exhibit some limitations when they are

used in contexts different from the ones they were conceived for since they rely on empirical

or quasi-empirical laws. Some models that folds in this category are the ones based on

Rothermel’s Rate of Spread [237], like Behave [10], BehavePlus [11], FARSITE [92] and

Anderson model [8].

• Quasi-physical models, based on Reaction-Diffusion-Convection equations: they are typically

derived from mass, energy and momentum conservation arguments. They consists on

(possibly large) sets of coupled PDEs that model the physical processes that give rise to the

fire spread. The computational cost is usually more demanding compared with the empirical

models, but they adapt well to a large spectrum of different settings since they rely less on
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empirical assumptions. Belong to this category Albini’s model [5], Butler’s model [41] and

PhyFire [14].

• Full fledged physical models: more sophisticated models which describe in depth and with

high resolution both physical and chemical aspects of wild-land fires. They tend to be

numerically demanding, and the real-time simulations of real case scenarios is not feasible

even if massively parallel supercomputers are employed. To name a couple of examples, we

cite FIRETEC [145, 146] and WFDS Wildland-Urban Interface Fire Dynamics Simulator)

[175].

5.2.2 Cathegorizing wildfire models: R-D fronts and Sharp Front
approaches

Reaction-Diffusion based models - brief overview

It rather intuitive that an important observable in regions where a wild-land fire takes place is the

temperature field. Given that the mechanisms of energy transport involve molecular processes in

turbulent flows, on a macroscopic level the transport of energy (that is of paramount importance

in a wild-land fire simulation) can be reproduced analytically as a diffusion process, where the fuel

combustion is considered as a source term.

A two-equation model involving the average temperature field, T (x, t) and the fuel mass fraction

F (x, t), with F ∈ [0, 1] has been studied and has given good results, see e.g. [14, 184, 248, 18, 160].

In its most simple formulation, this two-equations model can be formulated as:

∂T

∂t
+ U∇T = ∇(k∇T ) +RF − (T − Ta), (5.1)

∂F

∂t
= −RF, (5.2)

where U stands for the mean wind velocity at fire height, K is a thermal diffusion coefficient, R is

the reaction rate and Ta is the ambient temperature.

In models based on sets of reaction-diffusion equations, the typical solution features large gradients

in the neighbourhood of the fire front, while it remains nearly constant elsewhere. The fire

evolution can then be tracked following this sharp gradients, that are to be regarded then as an

important asset.

Sharp front models

Even if a Reaction Formulation of the propagating front is feasible, a large part of the statistical

and mathematical models available in literature comprise of a Rate of Spread (ROS) formulation

and a moving interface technique to model the interface between burnt and unburnt regions. The

analytical formulation of the ROS is developed independent of the moving interface scheme and
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can be characterised in terms of the wind speed, slope, fuel characterisation, combustion

properties, along with other experimental data. Various formulations for the ROS are available in

literature [237, 19, 157, 90, 91], and they are usually versatile enough to be used with most moving

interface schemes. Among the different moving interface methods available, Eulerian Level Set

Method (LSM) described in Chapter 1 is used extensively in wildfires to represent the propagating

fire-line [250, 157, 159]. As already pointed out in Chapter 1, it is a scheme which represents a

moving interface on a simple Cartesian grid. This method is particularly appropriate for wildfire

simulations, as it permits an accurate computation of the front normal vector which is used to

propagate the front. Other approaches available in literature which focus on wildfire propagation

modelling include the Lagrangian Discrete Event System Specification (DEVS) [124, 87, 86] and

Huygens’ principle [8, 231, 232, 233, 92]. The Lagrangian DEVS approach accounts for the

propagation of the wildfire without defining any underlying mesh to represent the burning state.

Since DEVS folds into the cathegory of event driven simulations, it considers time as a continuous

variable and allows for faster simulations over higher resolution. On the other hand, wildfire

models based on Huygens’ principle utilize an elliptical spread at each point of the fire-front and in

some cases also benefit from some analytical results [8, 231, 232, 233].

5.2.3 Rate of Spread Formulation

Since the semi-emprical model of Rothermel is adopted in the following part of the Chapter, it

surely deserves a detailed explanation. The interested reader is invited to read the recent technical

report [12].

Rothermel’s model originated from the work provided by Frandsen [97] where the principle of

energy conservation was applied to a unit volume of fuel ahead of a steadily advancing fire in a

homogeneous fuel bed. In the latter analysis, the fuel-reaction zone is considered as fixed and the

unit volume moves as a constant depth toward the interface. The unit volume ignites then at the

interface. Rate of spread can be considered thus a ratio between the heat flux received from the

source and the heat required for ignition by the potential fuel.

Rothermel’s model is flexible in the sense that can be adapted to several tipology of fuels. To be

more specific, the practitioner can change the number of fuels, the distribution of fuel size

(homogeneous or heterogeneus size distributions), and even include the distinction between dead

and live fuel, for the simulator to fit real wild-land fires best.

While the details of such models can be found in [12], we report here the seminal case, where a

single-sized dead fuel is considered.

ROS =
IRξ (1 + φW + φS)

ρbεQi,g
(5.3)
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Where ξ is the propagating flux ratio, φW,S are corrective terms due to wind and slope

respectively, ρb is the bulk density (lb/ft3), that is the amount of oven-dry fuel per unit volume of

fuel bed, ε is the Effective Heating Number (i.e. the proportion of a fuel particle that is heated to

ignition temperature at the time flaming combustion starts, that tends to unity for fine fuels), and

Qig is the Heat of preignition (Btu/ft2/min), that is the amount of heat required to ignite one

mass unit of fuel.

In the last equation IR is the reaction intensity of the fire (Btu/ft2/min), that is the energy

release rate per unit aera of fire front.

It is derived through the following relation

IR = Γ′wηhηMηS (5.4)

where Γ′ is the optimum reaction rate (min−1) (reaction velocity that would exist in the case of

mosture-free fuel that contained minerals and aplpha cellulose), ηM is the Moisture damping

coefficient and ηS is the Mineral Damping Coefficient.

The main concepts that this simple yet effective equation help describing are enlisted in Figure 5.1

The input parameters to correctly generate a ROS field ROS(x, t) computing one after one every

factor of Equation 5.3 (that tipically depend on other subparameters, not shown here for the sake

of simplicity) can be divided in three main areas:

• Properties of the fuel particle: heat content, mineral content, particle density;

• fuel array settings: fuel load, surface-area-to-volume ratio (SAV), mean depth of fuel bed,

dead fuel moisture of extinction (the content in moisture of the fuel, weighed over all the fuel

classes, at which the fire is not spreading).;

• environmental factors: fuel moisture content, wind velocity, slope steepness (orography).

5.3 Introduction to fire spotting

One of the key aspects of fire propagation is the so-called fire-spotting, whose modeling constitutes

a difficult challenge [83]. This phenomena occurs when burning embers tear off from the main fuel

source (that is, from the main propagating wild-land fire) and cause new independent ignitions

thanks to the horizontal wind which may transport them far beyond the zone of direct ignition. It

is documented as a dominant phenomenon contributing towards a conspicuous spread of fire in

many devastating recorded historical fires [130].

It is a hazardous phenomenon because it may lead to a drastic acceleration of the overall process of

fire spread, bringing harmful consequences.
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Moreover, fire-spotting has an unpredictable, random and non-linear nature and it constitutes thus

a challenging issue in wildfire science.

5.3.1 State of Art for Fire-spotting Modeling

Researchers have studied the phenomenology of fire-spotting by the means of both experimental

and theoretical insights in order to update the existing wildfire management decision support

systems.

Most of the experimental procedures and techniques for studying the fire-spotting phenomenon

focus on characterization of firebrands generation (see e.g. [163, 79]), drag forces and ignition

processes [162], size and shape of the firebrands [164, 279]. However, the experimental settings

shared a few drawbacks. Indeed, the short temporal and spatial scales of the experimental settings

limited a detailed description of the flight paths of the firebrands and thus the landing

distributions.

On the other hand, shifting the attention to analytical and in silico models, mathematical and

computational modeling of firebrands can provide an estimate of the maximum landing distance

and flight paths of the firebrands through a simplified overview of the physical dynamics of plume

characteristics, the overall fire behavior, and the atmospheric conditions around the fire.

Tarifa et al. in [275, 276] and Albini et al. in [3] were the first to develop simplified plume models

to estimate firebrand lifetimes, flight paths and the potential fire-spotting distance. Starting with

their works, there has been a paradigm shift in the development of the firebrand models, with the

latest models making use of from the advanced computational techniques and resources.

Woycheese and coauthors in [310] provide a model for the lofting of spherical and cylindrical

firebrands by using the plume model proposed by [26]. They also provide analytical functions for

the maximum loftable diameter and the maximum loftable height in terms of the fire intensity,

atmospheric wind and the fuel characteristics. Numerical experiments performed by Sardoy and

co-workers [245, 244] considered also the effects of atmospheric conditions, fire properties and fuel

properties on the overall firebrand behavior, providing a statistical estimate of the ground level

distributions of the disk shaped firebrands. Their results highlighted that firebrands landing at

short distances ( i.e., up to 1000 m from the firebrand source ) are distributed according a

lognormal distribution.

The work [302] furnished another mathematical model to quantify the distribution and the mass of

the firebrands through a Rayleigh distribution function. In an another paper, [131] present a

multiphase transport model for wildfires (FIRETEC) that relied on solid physical grounds, in

order to study the firebrand transport. In a more recent study, also Martin et al. [170] discussed in

detail the underlying physical processes for firebrands generation and transport, deriving a landing

distribution based on these physical processes.
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Besides these statistical approaches, other kind of numerical attempts have been tried. To name a

few example, some numerical models based on Large Eddy Simulation (LES) [113, 278, 280] or

more in general Computational Fluid Dynamics (CFD) [299] have been produced and analyzed.

Totally different approaches such as graph-based ones ( the small world networks -based work of

Porterie et al in [225])and individual based cellular automata models [213] also exist in the

literature.

[29] present one such study based on coupled fire/atmosphere LES for predicting the short range

fire-spotting. They simulate different firebrand trajectoriesto analyze the sensitivity of the flight

path to different sizes of lofting particles, different release heights and wind conditions. However,

they do mention the limited applicability of such models to operational use because of their high

the computational costs.

Despite the presence of multiple studies focusing on the detailed aspects of the firebrand landing

distributions, none of the them is able to provide a comprehensive yet versatile approach for an

application to operational fire spread models. The continuing demand for the operational

management tools is to provide a quick and efficient output with simple inputs but at the same

time taking the most important parameters into consideration. Few operational fire spread models

like FARSITE [89], BEHAVEPLUS [13] and Prometheus [291] incorporate the phenomenon of

fire-spotting through the Albini’s model [3, 4]. However, Albini’s model provides only an estimate

of the maximum distance for a spot fire and does not include any function for the ignition

probability to model the spread of spot fires. The Australian wildfire simulator PHOENIX

Rapidfire [281] is designed to model large fast moving fires and also includes a fire-spotting

module, but the formulations for fire spread in PHOENIX are calibrated for eucalyptus forests and

a generic application to other types of fuels requires a possibly resource-consuming re-calibration

[226]. The new operational models like WRF-SFIRE [159] and FOREFIRE [87] are fast and allow

coupling with the atmospheric models for a better representation of the initial and concurrent

atmospheric conditions (generally speaking, they are intended to be modular); but lack so far any

specific module to explicitly model the fire-spotting behavior.

5.4 A novel family of Wild-land Fire models

The adopted modeling approach adopted in the present work is based on the idea to split the

motion of the front into a drifting part and a fluctuating part, since it relies on the core model

described in detail in Chapter 3 with major adjustment for the specific wild-land fire setting

[206, 126].
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Drifting Part The drifting part, that can be provided by choosing an existing operational

model, is here based on sharp front description of the advancing interface, that may result from the

integration of several models. However, in the precise framework of this rather new model, the

level-set method [250, 157] (which is also used in WRF-SFIRE model [159]) has been adopted in

every work related to the application of the Model to wild-fire spread. The only notable exception

is the implementation of DEVS Lagrangian Model [126].

In formulas, temporal evolution of the level set φ(x, t) = φ∗ is governed by the Eikonal equation

∂φ

∂t
(x, t) = V(x, t) ‖∇φ(x, t)‖ , φ(x, 0) = φ0(x), x ∈ Ω, t ≥ 0, (5.5)

where V corresponds to the ROS parameterization that is a function of the wind field U(x, t),

orography and biomass fuel conditions, and where φ0(x) is the initial condition at time 0. Fireline

propagation is then assumed to be directed towards the normal direction to the front. Equation

5.5 can be derived directly from the Level Set Formulation of Chapter 1 (for instance from

Equation 1.12 by setting a null external velocity field, imposing uf to be equal to the ROS field

and substituting the formula for the normal n = ∇ϕ
|∇ϕ| .

Fluctuating Part The fluctuating part, that is the result of a comprehensive statistical

description of the physics of the system and includes the random effects, can be opportunely

parametrized according to the underlying physics of wild-land fires to include turbulent hot-air

transport and firebrand landing distance.

The statistical formulation and parametrization adopted in this Chapter to adapt the model of 3 is

labeled as RandomFront. The chronology of this approach refers to the following papers: v1.0 ,

the simplest one, which accounted for the sole turbulence without any parametrization [203, 204];

v2.0 included turbulence and fire-spotting with literature parametrization for fire-spotting [206],

while v2.1 included turbulence and fire-spotting along with a parametrization for turbulence

effects [126] using nominal values for fire spotting. In [125] v2.2 included turbulence and

fire-spotting with a first physical parametrization of fire-spotting .

Finally, in the recent [283] version v2.3 has modified and corrected the parametrization of fire

spotting with respect to the previous version.

5.4.1 Enhancing the Front Propagation model for wild-land fire
applications

The model described so far in this Thesis, that is described in Chapter 3, Eqs XX – XX, gives

information about a statistical front, given by the smooth function ϕe, that ranges in the compact

interval [0, 1]. Is here remarked that such function results from an application of a kernel

supposedly known a priori that includes the randomness not modeled by the macroscopic front
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evolution speed V that otherwise would not be caught by the modeling process. Such a smooth

function can be used in many ways; an example can be tracking a selected iso-contour, or using

this smooth indicator function as an index about how microscopical randomness can shed

uncertainty into a contour deriving from a deterministic front evolution.

Still, this formulation is somewhat incomplete in modeling complex dynamics since at each time

t > 0, it neglects the history of the front evolution in the time interval [0, t). Chronologically, the

first field of application which necessitated as a new feature the history of the evolution up to time

t has been wild-land fire simulation [206, 199, 200].

This has been possible thanks to a storing function ψ(x; t) : S → R+ that will be described in

detail in this Section.

For the sake of readability, the whole derivation of the model will be re-proposed here.

Let the domain be denoted by S, and let Ω ⊆ S represent the burnt - burning area, while

Xω = X + ηω stands for the trajectory of each active fire point as the sum of a drifting part X and

the superimposed fluctuating part ηω. The drifting part X is obtained from the output of a

sharp-front wildfire propagation model, while the fluctuations in the fire-line are included through

a probability density function (PDF) corresponding to the type of random process under

consideration. Let the area enclosed by the drifting part be described through an indicator

function IΩ(x, t) = 1 when x is inside the domain Ω, and IΩ(x, t) = 0 when x is outside. Using the

sifting property of the Dirac Delta function, the time evolution of each active burning point can be

randomized as:

IωΩ =

∫
Ω(t)

δ(x−Xω(t,x))dx . (5.6)

Considering the ensemble average of the active burning points, a new effective indicator function is

defined as seen in Chapter 3:

φe(x, t) =

∫
S

IΩ(x, t)f(x; t|x) dx . (5.7)

As already explained in detail in Chapter 3 in the last equation f(x; t|x) represents the PDF

which accounts for the random effects fluctuations. The effective indicator φe ∈ [0, 1] and an

arbitrary threshold is fixed to mark points as burned, i.e., Ωe(x, t) = {x ∈ S | φe(x, t) > φthe }. The

ignition of the fuel caused by the firebrands involves heat exchange over a sufficient period of time,

hence, a sufficient delay is also incorporated in the model through an other function ψ, that is used

as a storing function. This addition helps makes the model capable of accounting fot the history of

the process, as anticipated at the beginning of this Subsection. The function ψ simulates thus the

ignition of fuel by hot air and burning embers as an accumulative process over time, by the means

of a heating-before-burning mechanism.
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Since the fuel can burn following two pathways, namely hot-air heating and firebrand landing, the

resistance analogy suggests that the resulting ignition delay can be computed as a first guess as

resistances acting in parallel.

Specifically, let τh and τf be the ignition delay due to hot air and firebrands landing, respectively.

Hence, their joint ignition delay τ reads

1

τ
=

1

τh
+

1

τf
=
τh + τf
τhτf

. (5.8)

The heating-before-burning mechanism is depicted as the persistence in time of the effective fire

front, i.e.,

ψ(x, t) =

∫ t

0

φe(x, η)
dη

τ
, (5.9)

where ψ(x, 0) = 0 corresponds to the unburned initial condition.

At each time t, all points x that satisfy the conditions ψ(x, t) > 1 or φe(x, t) > φthe are labelled as

burned.

The main components of the model are portrayed in Figure 5.2

The choice of PDF f(x; t|x) is a crucial part of the model and it is application dependent. In the

case of turbulence and fire spotting modelling for wild-land fires, it is assumed that fire-spotting

can be considered a downwind phenomenon which takes place in turbulent atmosphere.

The shape of the PDF is defined as follows:

f(x; t|x) =


∫ ∞

0

G(x− x− l n̂U ; t)q(l) dl , downwind ,

G(x− x; t) , upwind .

(5.10)

The distribution function G(x− x; t) is an isotropic bi-variate Gaussian which models the effect of

the turbulent heat fluxes in fire propagation. On the other hand, the distribution function q(l)

represents the firebrand landing distribution. The strength of the turbulence around the burning

fire can be calibrated through the turbulent diffusion coefficient D , whose physical characterisation

is outlined in the next Section. A precise description of the landing distributions through

experimental observations is difficult due to temporal and spatial constraints. It should also be

remarked that experimenting real settings may not be so feasible for forest fire in the case of strong

wind-driven fire spotting, due to the related hazards to the surrounding environment.

Nevertheless, the experimental results analysing the flight paths, shape and landing distributions

of the firebrands have shown that the frequency of the firebrands landing in the positive direction

(along the mean direction of the wind) from the source increases with distance to a maximum

value and then gradually decays to zero (see [106]). The landing distributions of the firebrands

have also been studied employing numerical solution of the energy balance equations

[244, 113, 133]. Among the several transport models proposed in literature, both [113] and [244]



CHAPTER 5. APPLICATIONS TO WILDLAND FOREST FIRES 116

choose the lognormal density function as an approximate fit to the firebrands landing distribution.

Howbeit, [302] adopt a Rayleigh distribution for the same purpose. In the model parametrized via

RandomFront, the shape of q(l) is defined by a lognormal distribution to represent the frequency

profile of the fallen firebrands:

q(l) =
1√

2πσl
exp
−(ln l/µ)2

2σ2
, (5.11)

where µ is the ratio between the square of the mean of landing distance l and its standard

deviation, while σ is the standard deviation of ln l/µ.

5.5 Physical parametrisation of fire-spotting ( RandomFront

v2.3 )

In this section, the parametrization RandomFront v2.3 is described. This description follows the

one on the recently published work by Trucchia et al. [283]. We recall that two main physical

phenomena with random nature are investigated by the model studied in this thesis, that is

turbulence effects and fire spotting. These two phenomena, following the framework of Section 5.4,

depend on three parameters, namely D (turbulence effects), µ and σ (fire spotting phenomenon).

In particular, turbulent heat fluxes in fire propagation is accounted for by the means of an

isotropic bi-variate Gaussian function G(x− x; t), which appears in Equation 5.10. Turbulence is

then parametrized only by the turbulent diffusivity D. Physical based values for D are given by

RandomFront. Details can be found in Subsection 5.5.

We shift now the attention towards fire spotting, that in the model described in Section 5.4 is

modeled by the lognormal distribution of the firebrands fall, in Equation 5.10. The latter

distribution is specified by the parameters σ and µ.

In the following, a physical interpretation to the different aspects of the fire spotting part of the

mathematical model is provided.

We recall that the firebrands generated from the vegetation face strong buoyant forces and the

ones characterized by a size less than the maximum loftable one are uplifted vertically in the

convective column. These firebrands will eventually rise to a maximum height until a balance

between the buoyant and the gravitational forces is reached.

The firebrands are then are expelled from the column, and are successively steered by the

atmospheric wind and they will travel at their terminal velocity of fall. A simplified model for the

landing distance is adopted, where it is assumed that the ejection of the firebrands from the

vertical convective column is a random process affected by the turbulence in the environment

around the fire. The strength of the convective column, the atmospheric conditions and the

dimensions of the firebrands play a vital role in governing the trajectory of the firebrands.
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In this section, the landing distribution of the firebrands based on a lognormal probability function

is combined with the physical characterization of the firebrand transport.

The parametrization RandomFront 2.3 is of course simplified, in the sense that it includes only the

essential ingredients to describe the firebrand transport. Firebrands are assumed to be spherical

and for a particular set of concurrent atmospheric conditions and fuel characteristics (that is, for a

given choice of the set of parameters) the size is assumed to be constant. This parametrization also

neglects any modification in the flight of the firebrand due to rotation of firebrand or collision with

other firebrands.

In literature, the maximum spotting distance is often employed as a numerical measure to assess

the severity of the fire-spotting danger under different circumstances, see e.g.

References [3, 275, 276]. Given the importance of maximum-spotting distance, the mathematical

model is parametrized in terms of the pth percentile of a lognormal distribution as a measure of the

maximum landing distance. The pth percentile for a lognormal distribution is described by its

location and shape parameters µ and σ respectively:

L = µ exp(zpσ) , (5.12)

where the value of zp corresponding to the pth percentile can be estimated from the z-tables (see,

for example, http://www.itl.nist.gov/div898/handbook/eda/section3/eda3671.htm). A

further hypothesis is made, that the pth percentile represents the maximum landing distance for

firebrands under different situations and no ignition is possible beyond this cut-off. To ascertain

the value of ”cut-off” percentile, it is assumed that the effective contribution of the firebrands

stops to be meaningful when its probability decreases to 20 times its peak value. After that, the

ability of the firebrands to cause an ignition is neglected. While this cut-off criteria is chosen

rather empirically, it is remarked that a sufficiently large number (like 20) ensures that no

considerable fire-spotting behavior is missed out.

For this particular distribution, the cut-off for 50th percentile lies way beyond the point denoting

the 1/20th of the maximum probability. In order to define a generalized value of the cut-off

percentile for all the simulation cases presented in this article, the value of zp is chosen to be 0.45,

which corresponds to the 67th percentile point.

The process of fire-spotting can be roughly subdivided into generation, lofting and transport of

firebrands. The generation of firebrands from a burning canopy is a process characterized by

random and dynamic nature. On the other hand, the lofting and transport of the firebrands is

regulated by the firebrand geometry, fuel combustion rates, plume dynamics and of course ambient

wind conditions. Strong buoyant forces act over the firebrands generated from the vegetation. The

firebrands with size less than the maximum loftable size are uplifted vertically in the convective

column. Such firebrands rise to a maximum height until the buoyant and the gravitational forces
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counterbalance each other. Once the firebrands are expelled from the column, they are transported

by the atmospheric wind and they fly at their terminal velocity of fall. The several sub-processes

involved in the firebrand lofting and transport may share interactions and affect the maximum

spotting distances. However, an explicit modeling of the coupled processes is mnot an easy task

and in most cases approximations and assumptions are adopted in order to simplify the physical

processes. Some relevant progresses on fire-spotting distributions and maximum spotting distances

are provided by Tarifa et al. in [275, 276]. In their different works the spotting distributions and

the maximum spotting distances are identified with the combination of experimental and

theoretical approaches. In the formulation of RandomFront, these existing approaches are followed.

In the following a brief discussion of the different processes which are considered in the physical

parametrization is provided, following [283]:

1. Firebrand lofting :

(a) Vertical gas flow: In the convective column, the updraft introduced by fire lifts the

firebrands. The strength of vertical gas flow Ugas increases with the fire intensity I and

is empirically expressed as in [188]:

Ugas = 9.35

(
I

Hc

)1/3

, (5.13)

where Hc stands for the heat of combustion of wildland fuels.

(b) Size of firebrands: The convective activity inside the plume regulates the maximum size

of the firebrand that can be lofted. The terminal velocities of the loftable firebrands can

not trespass the vertical gas flow rate. As the vertical gas flow increases for increasing

fire rate, heavier firebrands may be uplifted into the plume. From literature,we have that

the maximum loftable radius for spherical firebrands can be expressed as [275, 3, 302]:

rmax =
3

2
Cd

ρa
ρf

U2
gas

g
, (5.14)

where ρa and ρf are the density of the ambient air and wild-land fuels respectively, Cd

is the drag coefficient and g is the gravitational acceleration.

(c) Maximum loftable height : From References [302] and [310] we retrieve a parametration

of the maximum loftable height for spherical firebrands in terms of the radius of

firebrand r, constrained by the maximum radius of the firebrands rmax:

H = 1.46

(
ρf

ρa Cd

)
r

5/2
max

r3/2
. (5.15)

2. Horizontal transport :
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(a) Maximum landing distance: Assuming the shape of the firebrands to be spherical,

Tarifa et al. in [275] combine both experimental and theoretical approaches to describe

the firebrands maximum landing distances. Based on this framework, Wang in [302]

provides an approximation of the maximum travel distance from a vertical convective

column for spherical firebrands, using the maximum loftable height H, the

meteorological mean wind U = |Uh|, where Uh is the horizontal wind vector field at

fire-height, and the radius of the firebrands r:

L = H U
Ugas

(rmax

r

)1/2

. (5.16)

3. Ignition probability : As described in the previous section, the probability that the fuel is

ignited by burning embers is modeled by the means of the storing function ψ (5.9). Until

now, it has been always assumed that the fuel conditions are homogeneous and the ignition

probability depends only on an ignition delay τ . No other local variables are taken into

account in this respect.

4. Secondary fire-lines: The secondary emissions generated during the fire-spotting are assumed

as new sources of fire with a proper fire intensity. These new fires act as additional input

along with the primary fire towards generation of other secondary fired. It is assumed that

these new sources are capable of generating firebrands of the same size as the primary source.

Small-scale processes, like the progressive mass loss of a firebrand due to combustion, influence the

fire-spotting phenomenon, by generating fluctuations of random nature in the firebrand trajectory.

This fluctuations are embodied in the parametrized model by the presence of probability density

function for for the landing distance.

Finally, the above mentioned large-scale subprocesses under lofting and transport mechanisms are

linked through Eq. (5.12) to obtain the physical parametrization of µ and σ of the lognormal

distribution. Using Eq. (5.16) and Eq. (5.15), we express the shape and location parameters as

follows:

σ =
1

2zp
ln

(
U2

rg

)
, (5.17)

µ = H
(

3

2

ρa
ρf
Cd

)1/2

. (5.18)

With the adoption of such parametrization of µ and σ the governing parameters for lofting are

represented by µ, while transport mechanisms are represented by σ. Insights on the

parametrization of µ are given in next Subsection 5.5, while other observations on the

parametrization of σ are given in Subsection 5.5.
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Parametrization of µ

We hypothesize that the definition of µ is sufficiently elaborated to cover all the essential input

parameters that are needed to describe the lofting mechanism of the firebrands inside of the

convective column. The relative density ρa/ρf as well as atmospheric drag do quantify the buoyant

forces experienced by the firebrand. For this reason, it is appropriate to include these quantities

into the definition of µ for varying fireline intensity. Substituting maximum loftable height from

Eq. (5.15) in µ gives:

µ = 3.52× 105

(
ρa
ρf

Cd

)2(
I

Hc

)5/3

r−3/2g−5/2 . (5.19)

The radius of the firebrand r and the fuel density are important ingredients to determine the

height of the lofted firebrands.

In [284] another equivalent formulation for µ has been used, that is

µ = Hp

(
3 ρa Cd

2 ρ∗f

)1/2

, (5.20)

where Hp [m] represents the plume height, which is related to the maximum loftable height H via

the relation H = λHp, and where ρ∗f = ρf/λ
2 [kg m−3] is the biomass fuel density that accounts for

the correlation factor λ between smoke plume height and maximum allowable height for firebrands.

We adopt the analytic formulation of Hp with respect to the fire-line intensity I used in [258], i.e.

Hp = αH HABL + βH

(
I

dPf0

)γH
exp

(
δH

N2
FT

N2
0

)
, (5.21)

where αH , βH , γH and δH are empirical constant parameters, Pf0 [W] is the reference fire power

(Pf0 = 106W ), Habl [m] is the height of the atmospheric boundary layer (ABL). The subscript FT

stands for free troposphere.

Parametrization of σ

The second parameter of the lognormal distribution σ, given by 5.17 is hypothesized to define the

transport of firebrands under the effect of horizontal wind after ejection from the convective

column. The definition of σ includes a dimensionless ratio F = U2/(rg) which is analogous to the

Froude number, which quantifies the balance between inertial and gravitational forces experienced

by the firebrand. All firebrands with r ≤ U2/g can be transported by the horizontal wind.

Parametrization of D

We assume that all turbulent processes are represented in the forward model through the

standalone turbulent diffusion coefficient D. We only consider turbulent fluctuations, implying

that the estimation of D is independent of the wind U. Since we consider a flat terrain and an

extension of the wildland fire that is not limited to the computational domain Ω under
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consideration, we assume horizontal isotropy. Even though an exact estimation of D is beyond the

scope of the present study, a quantitative estimation of D is required to carry out sensitivity

analysis related to turbulence and fire-spotting. D corresponds to the turbulent heat convection

generated by the fire. The ratio between the total heat transfer and the heat molecular conduction

is widely known as the Nusselt number, Nu = (D + χ)/χ, where χ is the air thermal diffusivity.

The relation between the Nusselt number Nu and the Rayleigh number Ra (i.e. ratio between

convection and heat conduction) is given by the experimental correlation Nu ' 0.1 RaβRA with

Ra = γ∆T g h3/(νχ) (γ is the thermal expansion coefficient, ∆T is the temperature difference in

the convective cell, h is the dimension of the convective cell, g is the gravity constant and ν is the

kinematic viscosity). Thus, the turbulent diffusion coefficient D is computed in this work as

D ' 0.1χ

[
γ∆T g h3

νχ

]1/3

− χ, (5.22)

with χ = 2 · 10−5 m2 s−1, γ = 3.4× 10−3 K−1, g = 9.8 m s−2 and ν = 1.5× 10−5 m2 s−1. To define

the range of variation of D, we introduce some assumptions. The heat transfer is considered in the

horizontal plane, perpendicular to the vertical “heating wall” embodied by the fire; the length scale

of the convective cell is assumed to be h = 100 m [126], and ∆T varies from 800 to 923 K. Note

that the relation between the Rayleigh number and the Nusselt number is highly sensitive to the

scaling exponent βRA due to the power-law. Libchaber’s experiments found βRA ≈ 2/7 instead of

1/3. In [191], the relation Nu = 0.146 Ra0.299 is proposed for Ra > 5 · 107; for higher values of Ra,

it is recommended to use βRA = 0.3.

For all the simulations presented as a response analysis of the model in this article, the value of the

turbulent diffusion coefficient D is assumed to be 0.15 m2s−1.

The simple design of the physical parametrisation makes the model computationally less expensive

and the requirement of defining only few vital parameters to execute any simulation also serves as

an added advantage to the operational users. Static and dynamic input parameters of the model

are reported in Table 5.1.
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Figure 5.1: Adaptated from [12]
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Figure 5.2: Schematic view of the front propagation model for wild-land fire propagation application.
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Table 5.1: List of symbols.

Model quantities Units
φe, effective indicator -
ψ, ignition function -
x = (x, y), horizontal space variable m
t, time s
f , probability density function of the random processes m−2

G(x; t)), isotropic bi-variate Gaussian probability density m−2

q(l), lognormal distribution of firebrand landing m−1

Parameters
Static Parameters Value
µ , parameter of q(l) –
σ, parameter of q(l) –
D turbulent diffusion coefficient of G 0.15m2s−1

ρa, density of air 1.2 kgm−3

ρf , Density of wildland fuel (Pinus Ponderosa) 542 kgm−3

Cd, drag coefficient 0.45
zp, p-th percentile 0.45
g, acceleration due to gravity 9.8 ms−1

Hc, heat of combustion of wildland fuels 18620 kJkg−1

ω0, oven-dry mass of fuel 2.243 kgm−2

H, fuel low heat of combustion 22000 kJkg−1

Dynamic Parameters Units
U = (U, V,W ), wind vector at fire-height ms−1

Uh = (U, V ), horizontal wind vector field at fire-height ms−1

τ , ignition delay of firebrands s
I, fire-line intensity MWm−1

Ugas, Vertical gas flow ms−1

r, radius of spherical firebrand m
rmax, maximum loftable radius for spherical firebrand m
H, maximum loftable height for spherical firebrands m
Vros, rate of spread ms−1

5.5.1 Tables of Symbols

5.6 Computational Implementation of the Model

Three distinct computational frameworks have been employed so far in the simulations of the

mathematical model of random front propagation, along with the several stages of model

development (and of RandomFront parametrization growth in complexity). They will be listed

here with a short description.

5.6.1 LSFire+

The code LSFire+ is developed in C and Fortran where the model RandomFront 2.3 acts as a

post-processing routine at each time step in a LSM code for the front propagation implemented by

the means of LSMLIB [53] and the ROS is computed by using the library FireLib [28]. The
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numerical library LSMLIB is written in Fortran2008/OpenMP and propagates the fire-line through

standard algorithms for the LSM, including also Fast Marching Method algorithms.

5.6.2 ForeFire

ForeFire (https://github.com/forefireAPI/firefront) [87] is a Lagrangian DEVS based

wild-land fire simulation model; for technicalities on DEVS see Chapter 1.

ForeFire is an open-source wildfire simulator developed by University of Corsica, France [84] to

serve as a basis for an operational simulator. It is flexible in the sense that it may include new

physical feature with relative ease. ForeFire is based on a Lagrangian front tracking technique.

Shifting the attention towards fire models, it integrates the so-called Balbi model for the evaluation

of the RoS ( see [19]).

We recall that the temporal scheme used to simulate the fire perimeter in wild-land fire simulator

ForeFire is based on the Lagrangian DEVS scheme [315]. DEVS handles the time advancement in

terms of the increment of physical quantities instead of a discrete time step. The front that

constitutes the output at each time step is a polygon whose marker points have real (that is,

non-discrete) coordinates instead of being necessarily located on nodes of a regular mesh. Also

fire-break zones ( e.g. rivers, roads ...) are represented as arbitrary shaped polygons.

Coupling the front tracking method with DEVS allows for the utilization of time as a continuous

variable; by doing so, the limitation of establishing a trade off between the temporal resolution and

the scale of the simulation according to the Courant–Friedrichs–Lewy (CFL) condition is removed.

ForeFire original model is developed without any description of underlying random processes such

as turbulent heat transfer and fire-spotting phenomena. Without further modeling or coupling

with ad-hoc sub-models, it cannot simulate the evolution of the fire across fuel break zones.

In the synopsis of the random front model object of this Thesis, ForeFire has been adopted to

show the performance and the capabilities of the front propagation model which is the object of

this Thesis in a full-fledged Lagrangian wild-land fire simulator. It has been tested after the

preliminary attempts with Eulerian LSM simulators (LSFire+) [203, 204, 199, 200, 206, 207] and

the main output of the related research lies in the work of Kaur et al. [126].

The main highlight of the work of Kaur et al. is the comparison of the performance of a

Lagrangian (ForeFire) and an Eulerian (LSFire+) moving interface method for wild-land fire

propagation. Through rather simple and idealized numerical experiments the potential

applicability of the proposed formulation to DEVS has been explored. The result obtainted with

DEVS-based ForeFire have been compared with the ones provided by LSFire+. The RandomFront

implementation on Forefire highlights that DEVS based wildfire propagation model qualitatively

improves its performance (e.g., reproducing flank and back fire, increase in fire spread due to

pre-heating of the fuel by hot air and firebrands, generation of secondary fires, fire propagation

https://github.com/forefireAPI/firefront
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through no fuel zones, . . . ) when random effects are included through the model parametrized

with RandomFront. The resulting comparison showed that DEVS and LSM based wildfire models

are comparable, while they do exhibit some technical differences in the geometrical construction of

the direction of propagation (mainly due to the different construction of the normal vector from

LSM to Lagrangian formalism)

ForeFire library is written in C/C++/Java and Fortran bindings for a UNIX compatible

environment. It is compiled using the build platform SWIG (http://swig.org/) . NetCDF

library with legacy C++ interface is necessary in order to build ForeFire. Moreover, the Python

tool SCons (http://www.scons.org/) is used while making the library. A python based interface

is available to perform the simulations with software calls directed to the main code. In addition, a

command-line interpreter to launch simulation is available. An on-line version of ForeFire is

available at http://forefire.univ-corse.fr/

Example of ForeFire simulation

To exemplify a launch of ForeFire a simple simulation is performed. The fire is started at 10:00

a.m. and the simulation window ends at 13:00. The fire starts at 41◦55’48.0”N 8◦59’24.0”E,

Bastelica, Corsica Island (France). The wind direction has been uniformly set to 220◦ and with

constant magnitude of 32 km/h.
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Figure 5.3: Output of ForeFire simulation in Bastelica, Corsica Island, France. The different
contours of the fire perimeter are represented with different colors from 0 to 2.73 elapsed hours.
Panel 5.3b portrays a zoom of 5.3a in order to better appreciate the discrete markers related to each
fire contour.

5.6.3 WRF-Sfire

In order to prove the viability of the proposed formulation within an operational code, we have

implemented RandomFront 2.3 in the framework of the WRF-Sfire simulator ([56, 158]).

WRF-Sfire is a coupled fire-atmosphere model, which operates in the computational environment

 http://swig.org/
http://www.scons.org/
http://forefire.univ-corse.fr/
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of a well known public domain numerical weather prediction model : WRF v3.4 (Weather Research

and Forecasting; [255]; http://wrf-model.org/users/users.php)

The fire module embedded into WRF simulates a surface fire and takes into account a two-way

coupling with the atmospheric model. The near-surface winds from the atmospheric model are

interpolated on the fire grid and are used along with fuel properties and local terrain gradients to

compute both the ROS and the outward front-direction, that are further used as an input to the

front propagation routines through a LSM scheme. Fuel consumption is responsible for the release

of sensible and latent heat into the lowest layers of the atmosphere and this has a role in the

computation of the boundary-layer meteorology. Recently, the model has been equipped with a

fuel-moisture sub-model and a chemistry sub-model (WRF Chem), which contribute towards

reproducing and investigating the effects of the fire-atmosphere coupling. A schematic

representation of WRF Sfire modular structure is given in Figure 5.4.

Coen et al., in [56] point out that fires generally start from a horizontal extent much smaller than

the size of the fire mesh-cell. The same may be argued for the secondary ignitions related to

fire-spotting phenomenon. In this respect, [56] propose and explain in detail an algorithm for a

punctual or line ignition that actually runs on WRF-Sfire. The purpose of this algorithm is

two-fold: i) it guarantees from a physical point of view that the ignition starts at sub-grid scale

without generating unrealistically large initial heat flux and an accelerated ignition; ii) this

procedure is numerically robust because it is fully integrated into the representation in terms of a

signed distance function of the LSM [250].

In the formulation described in this Chapter, a punctual ignition occurs whenever the condition

ψ(x, t) ≥ 1 holds true. This procedure is not computationally viable, as pointed out by Trucchia et

al. in [283]. In practice, a threshold distance Rth = 200 m is set for the sake of separating every

pair of punctual ignitions. Let P be the set of point-wise fire-spotting ignitions, the actual

algorithm performed at each time-step within WRF-Sfire model is reported in Algorithm 1.

Algorithm 1 Algorithm for Point-Wise uniformly ignition due to Fire-Spotting, adapted from [283]

1: for xi ∈ Grid do
2: if ψ(xi, t) > 1 ∧ xi 6∈ Ω(t) then
3: if dist(P ,xi) > Rth then
4: New fire-spotting ignition in xi and
5: P ← P ∪ {xi}
6: end if
7: end if
8: end for

5.6.4 Computational resources

The computational resources used for the simulations related to the topics presented in the present

Chapter are listed below. Simulations with WRF-Sfire have been perfomed on a Intel(R)

http://wrf-model.org/users/users.php
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Figure 5.4: Scheme of WRF-Sfire modular structure

Core(TM) i5-4310M 2.70GHz CPU laptop with 8 GB of RAM. Each simulation that spanned 20

physical minutes took about 100 minutes of computational time.

Simulations with LSFire+ are performed over the cluster HYPATIA of BCAM, Bilbao, using

OpenMP shared memory parallelism, running over 24 cores inside of an Intel(R) Xeon(R) CPU

E5-2680 v3 2.50GHz node with 128GB of RAM. The computational time for each simulation,

that spanned 140 minutes of physical time, was about 45 minutes.

5.7 Response analysis of LSFire+ and outputs of WRF-SFire
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Quantity Unit of measurement First Test Case Second Test Case
D m2s−1 0.15 0.15
U ms−1 10 2÷ 26
I MWm−1 5÷ 100 50
r m 0.015 0.015÷ 0.03
τ s 1 1

Table 5.2: Values of the main parameters for numerical simulations performed with LSFire+.

5.7.1 Discussion for LSFire+

Simulation Setting The simulated domain for the response analysis in LSFire+ isa rectangle of

dimensions [0m, 6000m]× [0m, 6000m]. The simulations start at time t = 0 min and end at time

t = 140 min. The grid spacing is ∆x = ∆y = 20m. At time t = 0 min the initial fire-line is a circle

of radius 180 m centered at xc = (720m, 3000m). The horizontal wind has been assumed in this

simulation set-up as a constant field parallel to the vector j = (1, 0) and with modulus

|Uh| = |(U, V )|.

Quantifying randomness: βe parameter For the response analysis separate set of simulations

are carried and the response is evaluated through a parameter βe, which describes the effective

increase in the burned area:

βe = (xrandom − xno−random)/xno−random . (5.23)

βe thus stands for the increase in the number of burned grid points with respect to the simulation

when no random effects are considered.

Fire Spotting vs Turbulence effects

In LSFire+ the effects of fire spotting occur in conjunction with turbulence and both processes

contribute towards the fire propagation, as they are both included in the formulation of the PDF

of Equation 5.10 It is therefore difficult to separate the effects of both processes individually.

However, a comparison of the increase in burned area due to turbulence and turbulence plus

firespotting is portrayed in Fig. 5.5a.

In that plot, the number of burned grid points is plotted versus the elapsed simulation time for two

simulations corresponding to different setting of the PDF of Equation 5.10. The first case accounts

only for turbulence (that is, f = G, while the second is the turbulence plus fire-spotting (that is, f

is the one expressed in 5.10). All the simulation parameters remain the same in both the

simulations. In the first part of the simulations, the line plots for both the simulations overlap

significantly. This means that fire-spotting has no visible contribution in the initial stages of the

fire. However, after 50 minutes, the effect of fire-spotting picks up and the burned area increases
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rapidly with respect to the turbulence-only setting. At t = 130− 140 min. the number of burnt

pixel due to fire spotting plus turbulence is almost three times the effect of turbulence alone.

Response analysis to fire intensity

An increase in the fire intensity causes an increase in the burned area also on the non-random

model (such parameter is involved in Eqn (5.24), accounting for the definition of the ROS). At the

same time,changes in I also affects the fire-spotting behavior due to the definition of µ (Equations

5.20, 5.21) . The parameter βe allows us to identify the contribution of fire-spotting towards the

fire-propagation. Figure 5.5b shows the change in the burned area under the combined effect of

turbulence and fire-spotting when increasing the fire-intensity. The two plots correspond to the

same wind speed (10 ms−1) with two different choices for the firebrand radii, i.e., 0.015 m and

0.030m. According to the physical parametrization of the lognormal shape parameters µ and σ

shown in detail in Section 5.5 for the set of simulations of Figure 5.5b, (increase in fire intensity I),

the parameter µ varies while parameter σ remains constant. For both radii, an increase in the fire

intensity is followed by a sharp increase in burnt area for low fire intensities. A zoom-in of this

sharp rise is also shown in Figure 5.5c. For smaller firebrand radius, the fire-spotting effect exhibits

a slight saturation between 15-25 MWm−1. However, after further increase in the fire intensity,

the contribution of fire-spotting remains positive until 60 MWm−1 when then it saturates again.

Any further increase in the fire-intensity causes a decreasing importance of the fire-spotting. When

the larger firebrand radius is considered, a similar behavior is reproduced for fire intensities less

than 15 MWm−1, but with further increase in I, the contribution from fire-spotting takes a dip

before it start increasing again.

The zoom-in of the response analysis given by Figure 5.5c is important as literature shows that for

fire intensities around 8MWm−1 for vegetation type Pinus ponderosa are already classified as high

”severity class” [50]. For fire intensities up to 10 MWm−1 a rapid increase in the fire-spotting

behaviour up to 4MWm−1 is observed. Any further increase in the fire intensity has a positive

effect on the ROS and on the propagation of the main fire. That is, deterministic ignition prevails

on ignition by random effects. Because of that, a lower effect on the fire-line due to fire-spotting is

observed. It is also worth attention the fact that for weak fires (less than 1MWm−1), the

fire-spotting mechanism seems to be independent of the firebrand radius.

To better explain the observation made in the previous paragraph, the lognormal distribution for

selected values of I are plotted in Figure 5.6 . These lognormal distribution plots show general

trend in the distribution with varying µ but keeping a constant value for σ. With an increase in I

(or µ, given the parametrization of Section 5.5), the maximum probability increases, but at the

same time the distribution becomes increasingly skewed. For these particular choices of parameters

µ and σ, the skewness is more pronounced for fire intensities greater than 20 MWm−1. For lower
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values of I (less than 20MWm−1), the lognormal distribution exhibits a slow decay and the

probability of a ”long-range” ignition increases. This may explain the large initial increase in the

contribution of the fire-spotting behavior for low range of fire-intensities. As the magnitude of the

corresponding peak value is also decreasing with increasing µ (or I), this ”long-range” ignition

probability might have a positive influence only until a threshold. This threshold is the range

where parameter βe in Figure 5.5b takes a dip or exhibits a saturation. Beyond this point, the

effective contribution of ”long-range” probability is not relevant anymore, while the contribution of

the”short-range” ignitions becomes more and more important. The gradual increase in the

effective burned area for both firebrand sizes (for fire-intensities greater than 30 MWm−1) can be

explained by such reasoning. For large values of µ the lognormal distributions tend to be quite

similar, even if still become increasingly skewed (see Figure 5.6b). In the limit of increasing

skewness, the ”short-range” probability will lie so close to the main fire-line that the real

contribution of fire-spotting to the fire profile should decrease. In [283] it is observed a similar

trend only for the small firebrands. It has been hypothesized that such behavior may be replicated

by larger firebrands too, but only outside of the specific range of simulations of such paper.

The effect of the fire intensity on the fire-spotting behavior can be explained also by analyzing the

physical parametrization provided in Section 5.5. According to RandomFront parametrization, an

increase in the fire intensity increases the maximum loftable height. The firebrands are therefore

ejected from more elevated heights. Higher release height contributes to the increase in the

firebrand activity at longer distances and the initial increase in the fire perimeter may thus follow

this observation. At the same time, the increase in the firebrand ejection height over constant wind

conditions causes the firebrands to travel longer in the atmosphere before reaching the ground.

The growing travel time for a firebrand favors its combustion and then firebrands reach the ground

with a lower temperature (less ”long-range” ignition probability) compared to its counterpart

ejected at lower heights.

Lower temperature of the firebrands leads to a lower heat exchange with the unburned fuel,

compromising thus the successful ignition by the falling ember. Because of that, after reaching an

area of maximum activity, the effective contribution of the ”long-range” firebrands under same

atmospheric conditions decreases with increasing fire activity. This physical reasoning may thus

explain the initial dip/saturation in the fire-brand activity. Moreover, it can be stated that the

”short-range” firebrands have larger energy and becomes the dominant cause of the fire-spread.

This range can be considered as the transition time when the ”long-range” firebrands become less

important but the ”short-range” activity becomes more noticeable. For the heavier fire-brands a

similar behavior is expected, though the maximum loftable height under identical wind and fire

conditions is lower due to its weight. Lower loftable height decreases the maximum landing
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distance and the magnitude of the burned area is less. This is also evident from the lower

magnitude of βe in the results.

Response analysis to wind speed

Figure 5.5d highlights the simulation results with an increasing value of the wind velocity over

constant fire intensity (50 MWm−1). Similarly to the previous analysis for I, results for two

different radii (0.015 m and 0.030 m) are presented. The fire-spotting mechanism over varying wind

speeds shows similar behavior for the different sizes of the firebrands. For both radii indeed, the

effective burnt area does increase with the increasing wind speed but after a threshold value, an

increase in the wind speed leads actually to a decline in the effective burnt area. The plot for

r = 0.015 m shows that after a value around 10− 11 ms−1, the contribution of the firebrands

decreases. In a similar way, in the red plot for radius r = 0.030 m, the effective increase in the

burned area follows an identical pattern but the total increase in the burned area is lesser in

magnitude and shows a saturation around the maximum before it start decreasing (at around

22ms−1). It is understood that for bigger firebrands the maximum value of fire spotting activity

occurs at higher wind speeds and such strong activity is supported by a broader range of wind

speed values.

The lognormal distributions for a selection of wind speed values, fixing r and I, are plotted

Figure 5.7. These two plots show two different aspects of the response behavior of the lognormal

distribution when parameter σ is varying but parameter µ is constant. Firstly, from the Figure

5.7a it emerges that with increase in the wind speed (increasing σ, constant µ) the lognormal

distribution shifts towards the left but the tails decrease slower, and the distribution is wider

around the maximum. The increase in the width of the lognormal distribution leads to a larger

area of ”long-range” and ”short-range” probability of ember fall. This explains the initial rise of

the burned area in Figure 5.5d. At the same time, the increasing wind speed is also responsible for

a decrease in the magnitude of the peak probability, hence beyond a certain threshold, the overall

contribution from fire-spotting for a localized area starts decreasing. The saturation in the

fire-spotting behaviour can be explained by the second aspect of the lognormal response. In fact,

Figure 5.7b reports that after a certain threshold of U (that, being r fixed, uniquely determines σ

in a monotonic fashion), the lognormal distributions become more and more similar. This

threshold depends upon the value of parameter µ, and for smaller values of µ (smaller r or I), we

have an early appearance of such threshold. As the lognormal distributions tend to have similar

probability distributions with increasing wind speed (Figure 5.7b), the contribution from

fire-spotting also becomes similar and it may explain the saturation effect of bigger firebrand

radius reported in Figure 5.5d.



CHAPTER 5. APPLICATIONS TO WILDLAND FOREST FIRES 133

As we discussed for the effects of fire intensity, the response of the model over different wind

velocities can be interpreted with physical reasoning following the RandomFront parametrization of

σ given in Section 5.5. In terms of the physical quantities used in the parametrization, it can be

stated that strong winds can carry away the firebrands at longer distances from the main ignition

source and thus result in a larger fire perimeter (increase in ”long-range probability”). Historically

it has been reported that strong winds coupled with very dry conditions made the perfect setting

for long range fire-spotting. Strong wind speeds can loft the smaller firebrands to longer distances

but with an increasing wind speed the combustion process quickens and the firebrands reach the

ground with less temperature. These physical arguments may therefore explain the reduced effect

of fire-spotting on the burned area over very high wind conditions. Contrarily, a larger firebrand

size can sustain longer in the atmosphere. Their ”long-range” probability is hence relatively higher

than the one for smaller firebrands. This explains the occurrence of maximum burned area at

15ms−1 instead of 12 ms−1 for 0.015m radius. The heavier mass of bigger firebrands confines their

flight to shorter distances compared to the lighter firebrands and thus a lower magnitude of the

burned area can be seen. The longer saturation in the fire-brand activity for the larger firebrand

may be related to the fire-brand’s ability to stay airborne longer without burning out.

5.7.2 Discussion of the test case with WRF-Sfire

Experimental setting

The implementation of RandomFront in WRF-Sfire has been described in the recent work [283].

The outputs of this Section mainly refer to the that work. In that numerical experiment, a slight

modification of the hill test case is considered (https://github.com/openwfm/wrf-fire/blob/

master/wrfv2_fire/test/em_fire/hill/namelist.input.hill). To simplify the underlying

dynamics,retaining at the same time the fire-atmosphere coupling, the hill is removed ( by setting

fire mountain type = 0) and we have therefore a square-grid simulation over a flat domain with

side 2.5 km. The horizontal atmospheric grid-spacing at terrain-height is 60 m, and the fire spread

grid-spacing is 15 m. The initial wind field at the fire height is

(U(x; t = 0), V (x; t = 0)) = (−6.4 ms−1,−3.6 ms−1) in all the points of the domain. The simulation

starts at the instant t = 0 min and ends at t = 20 min. The fire-line is located initially along the

segment given by the extrema (1900 m, 1500 m) and (1900 m, 1800 m).

The fuel has been set equal to fire Type 9 , i.e., FM 9 Hardwood litter according to Anderson

classification [9]. This fuel type may model a terrain covered by Pinus ponderosa trees. The radius

of the spherical embers has been fixed to r = 12.5 mm following a size considered by [161] with the

same vegetation.

For what concerns the integration in WRF-Sfire of the formulation proposed in this Chapter, the

fire-line intensity I and the wind field are computed by means of the WRF-Sfire model. This

https://github.com/openwfm/wrf-fire/blob/master/wrfv2_fire/test/em_fire/hill/namelist.input.hill
https://github.com/openwfm/wrf-fire/blob/master/wrfv2_fire/test/em_fire/hill/namelist.input.hill
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allows for a space and time varying field of both parameters σ and µ according to formulas (5.17)

and (5.19), respectively. In particular, the latest advancements of WRF-Sfire documented in [158],

furnish a spatial representation of the potential-fire characteristics from which a field extension of

the fire-line intensity I is available. This allows to have a space and time varying field of µ for the

fire-spotting algorithm. Parameters D and τ are set as D = 0.15 m2s−1 and τ = 8 s, without using

specific estimations given by WRF-Sfire.

Discussion of results

Figures 5.8-5.10 display the simulation results. In each figure the fire front is reported by a dashed

line at the time steps corresponding to t = 6 min, t = 10 min and t = 20 min. The selected instants

permit us to track the main fire alone, the generation of a secondary fire and the multi-generation

of secondary fires, respectively.

In Fig. 5.8 the evolution of the fire-line is shown reporting the three components of the

(tridimensional)wind field; Fig. 5.9 shows the relationship between parameter µ and the fire

intensity field; Fig. 5.10 shows the relationship between parameter σ and the squared norm of the

horizontal wind. The latter two relationships follow straightly from RandomFront parametrization.

In general, it can be observed that the fire-line propagation is ”pulled” in the direction of the

maximum value of the squared norm of the horizontal wind (see right column in Fig. 5.10). This

direction is induced by the fire itself as a feedback on the weather as it is shown by the patterns of

the atmospheric observables when secondary fires are generated by fire spotting effects.

The geometrical profile of the fire perimeter plays an important role in determining the behavior of

fire-spotting. In particular, the asymmetry in the fire perimeter at 20 min along the prominent

direction of propagation, makes the first secondary fire show up in the top-left part of the domain.

As time (and fire-activity as well ) increases, the differences between the maximum value of the

squared norm of the horizontal wind and its surroundings increase and the fire-line becomes

symmetric with respect to the main direction of the wind.

This has direct implications in the fire-spotting action, as the new secondary fires appear

increasingly aligned along the main direction of propagation.

The secondary fires are equally important as the primary fire in influencing the weather around the

fire. The plots clearly show the influence of fire-atmosphere coupling, and a feedback dynamics

from secondary fires to primary fire can be also observed. The secondary fires affect the wind (see

Fig. 5.8) and also the parameter σ (Fig. 5.10), which implies a change in fire-spotting

characteristics for further ignitions. Another thing worth interest is that the first secondary fire

occurs at a distance of almost 1500 m from the main fire. This observation supports the viability of

the proposed formulation to simulate fire-spotting mechanism in studies of medium-to-large scale

fire events.
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Nonetheless, even if the implementation in WRF-Sfire allows for a more comprehensive picture

including the physical features of a multi-scale and multi-physics process, the complexity of the

model, the number of parameters and the numerical cost increase as well.
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(a) Comparison of Turbulence and Turbulence + Fire
Spotting effects on the number of burnt grid points
versus elapsed simulation time. Adapted from [283].

(b) Gain factor βe versus Fire Intensity

(c) Gain factor βe versus Fire Intensity (detail)

(d) Gain factor βe versus horizontal wind speed mag-
nitude.

Figure 5.5: Results of the response analysis of LSFire+.
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Figure 5.6: Lognormal distributions for various values of I while fixing σ.

0 10 20 30 40 50
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p
ro
b
a
b
ili
ty
 d
is
tr
ib
u
ti
o
n

U = 2.0 ms-1
U = 4.0 ms-1
U = 6.0 ms-1
U = 8.0 ms-1
U = 10.0 ms-1
U = 12.0 ms-1
U = 16.0 ms-1

(a) U ∈ [2, 16]ms−1; Picture adapted from [283].

0 10 20 30 40 50
x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p
ro
b
a
b
ili
ty
 d
is
tr
ib
u
ti
o
n

U = 20.0 ms-1
U = 22.0 ms-1
U = 24.0 ms-1
U = 26.0 ms-1

(b) U ∈ [20, 26]ms−1; Picture adapted from [283].

Figure 5.7: Lognormal distributions q for various values of U while fixing µ.
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(c) t= 20 min.

Figure 5.8: Wind vector components (U, V, W ) performed with WRF-Sfire at times t =
6, 10, 20 min. Firefront is reported by a dashed line.
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(c) t= 20 min.

Figure 5.9: Fire intensity I and PDF shape parameter µ performed with WRF-Sfire at times t =
6, 10, 20 min. Firefront is reported by a dashed line.
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(c) t= 20 min.

Figure 5.10: PDF shape parameter σ and horizontal wind squared magnitude (|Uh|2) performed
with WRF-Sfire at times t = 6, 10, 20 min. Firefront is reported by a dashed line.

5.8 UQ and SA of Wild-land fire Model

In order to spot the principal parameters for further model calibration (and with the perspective of

integrating this model into Data Assimilation routines), and to quantify the uncertainties on the

fire model output as well, a recent work of Sensitivity Analysis and Uncertainty Quantification has

been carried out. The main framework is outlined in this Section, while the discussion of the main

results is given in Section 5.9 Regarding the aim of UQ and SA, the adopted methodologies, e.g.

Surrogates models, we refer to Chapter 2. The two following chapters are based on the recent

publication [284].
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Rate of Spread Submodel and Test Case Study

The focus of this Section is on sensitivity analysis methodology. Because of that, we consider a

simplified version of the ROS parameterization required in Eq. (5.5). The maximum value of the

ROS, V(x, t), is specified by means of Byram’s formula [43, 6]:

V0 =
I

∆hc ω0
, (5.24)

where I [kW m−1] is the fireline intensity, ∆hc [kJ kg−1] is the fuel heat of combustion and

ω0 [kg m−2] is the oven-dry mass of fuel consumed per unit area in the active flaming zone. In

analogy with the methodology adopted in [206], the action exerted by the near-surface wind field U

on the ROS field is quantified using a corrective factor fw, that reads:

V = V0
(1 + fw)

αw
. (5.25)

In the equation above, fw is computed adopting fire-Lib and Fire Behaviour SDK libraries

(http://fire.org; see also [159], in the case of the NFFL – Northern Forest Fire Laboratory –

Model 9). The parameter αw is a suitable angle factor to guarantee that the maximum ROS in the

upwind direction equals the ROS prescribed by Byram’s formula (5.24). This choice makes the

ROS dependent on the wind direction rather than on its magnitude to constrain the well-known

dominant role of the wind in the fire propagation and to allow for the emergence, if they exist, of

second-order effects due to other factors.

In this UQ and SA attempt, an idealized test case is considered. The computational domain is

7, 200 m× 6, 000 m. The wind field is uniform and constant. Vegetation is homogeneous and the

terrain is flat. The fire front at time t = 0 is a circle of radius rc = 130 m, whose center is located

at xc = (1, 500 m; 3, 000 m).

5.8.1 Model Input Description

By adopting the same formalism of Chapter 2, the set of uncertain parameters is defined as θ ∈ Rd,

where d is the number of parameters to consider for the following sensitivity analysis. In this

Section, two different sets of uncertain model parameters with d = 3 are studied. SA requires for

each parameter a PDF representing its statistics and thereby its variability. This is useful for two

main reasons. First, by knowing a fairly good prior of the input parameters, sampling for compiling

the databases will be more meaningful, reproducing a more faithful statistical population. On the

other hand, some statistical algorithm such as generalized Polynomial Chaos (see Chapter 2 ) can

be specifically tuned according to the prior distribution of the studied parameters.

http://fire.org
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Sensitivity analysis for macroscopic/microscopic quantities

The first set of parameters mixes macroscopic and microscopic quantities: the wind speed

magnitude ‖U‖, the fireline intensity I and the ignition delay time-scale τ . Sensitivity analysis

with θ = (‖U‖ , I, τ)
T

corresponds to a preliminary step: in [284], uniform marginal distributions

that spanned around the mean values adopted in previous work [206, 177, 126]. These uniform

PDFs are outlined in Table 5.3.

Table 5.3: Uniform marginal PDFs for θ = (‖U‖ , I, τ)
T

. The uniform distribution is here reported
as U (a; b) with a the minimum value and b the maximum value of the parameter.

Parameter Uniform distribution
Wind ‖U‖ [m s−1] U (6; 14)

Fireline intensity I [kW m−1] U (15, 000; 25, 000)
Ignition delay reference time τ [s] U (0.6; 1.4)

Sensitivity analysis for microscopic parameters

The dependence of the wildfire spread model on a set of microscopic variables is also explored.

This time, instead of using Uniform priors, we determine a suitable Bayesian description for the

uncertain parameters θ = (µ, σ,D)
T

. Recall that this choice of θ is linked exclusively to the

fluctuating part of the forward model. As shown in Section 5.4, µ and σ are the two parameters of

the log-normal PDF q(`; t) (Eq. 5.11) that models the ember landing position. We remind that D

(given by Eq. 5.22) is the diffusive coefficient of turbulent hot air, acting in the Gaussian PDF

G(x− x; t), which describes turbulent diffusion. The fire-spotting parameterization introduced

in [126], corresponding to RandomFront v2.2, described in Section 5.5 is adopted in this work. For

each parameter, their dependence on subparameters is given by parametrization RandomFront.

This allows for the determination of marginal PDFs by using a Monte Carlo random sampling on

the subparameters. The resulting Beta-distributions are summarized in Table 5.4.

Statistical Description. The following methodology is carried out to obtain a statistical

description of the three parameters {D,σ, µ}, which depend on several subparameters.

Such subparameters are perturbed around their nominal values found in the literature following

uniform PDFs. We recall that D is computed following Eq. (5.22). To obtain a range of variation

for D, we modify the temperature difference in the convective cell ∆T and the dimension of the

convective cell h. As for parameters σ and µ, they can be computed following Eqs. (5.20)–(5.17).

We perturb the following parameters: αH , βH , γH , δH , Habl in Eq. (5.21); ρa, ρf in Eq. (5.19); zp

and r in Eq. (5.17). All the identified subparameters are associated with a uniform PDF. For the

parameters αH , βH , γH and δH , the extrema of the uniform PDF correspond to the highest and

lowest values found in all the possible configurations outlined in [258], where both ABL and FT
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Table 5.4: Range of variations and Beta-distribution for θ = (µ, σ,D)
T

. Note that the parameters of
the Beta-distribution (Eq. 5.26) are given in the following order: shape parameters a and b, location
and scale.

Parameter Minimum/maximum values Beta-distribution parameters
Log-normal parameter σ 5.49–12.69 1.37 1.99 5.94 4.93
Log-normal parameter µ 7.25–98.16 3.18 7.49 7.43 94.73

Turbulent diffusion coef. D [m2 s−1] 0.23–0.47 1.19 1.20 0.23 0.23

regimes are accounted for. ∆T lays within the range [800; 923 K]. For all other factors, we adopt a

uniform PDF, whose extrema are defined adding a perturbation of 20 % to the values adopted in

the work [126].

Once uniform PDFs are defined for each subparameter, they are sampled through a Monte Carlo

random sampling. The size of the sample (or “ensemble”) is 10,000 to obtain converged statistics.

Starting with Eqs. (5.17 –5.22), we obtain 10,000 realizations of the three parameters of interest

{D,σ, µ}. We can then analyze their empirical statistical distribution by fitting the resulting

histograms with different types of PDF. Figure 5.11 portrays the fits obtained when using a

Beta-distribution for each sample. We adopt such distribution due to the subsequent requirements:

positiveness, limited support, and compatibility with the adopted surrogate models (again, see

Chapter 2). In Table 5.4 the characteristics of each Beta-distribution and the associated range of

variation for each parameter in θ = (µ, σ,D)
T

are presented. The analytic formulation for the

Beta-distribution, with a and b (a, b > 0) the “shape parameters”, reads:

Beta(x; a, b) =
Γ(a+ b) xa−1 (1− x)b−1

Γ(a)Γ(b)
, (5.26)

for x ∈ (0, 1), with Γ(x) the Gamma function. To shift and/or scale the distribution, the “location”

and “scale” parameters are introduced. Beta(x, a, b, location, scale) is equivalent to

Beta(y, a, b)/scale with y = (x− location)/scale.

5.8.2 Simulated Quantities of Interest

To quantify the evolution of a fire over a time period [0; T ], two different indices are defined. We

consider first the percentage of the domain Ω that is burnt at a given time t:

At =

∫
Ω
IB(t)(x, t) dx

|Ω|
, (5.27)

where |Ω| [m2] corresponds to the area of the computational domain and IB(t) is the indicator

function of the burnt area, which returns 1 inside of the burnt area and 0 elsewhere. At

corresponds to a normalized burnt area. However, this quantity does not give information on the

topology of the fire, which can be complex in the case of fire-spotting. To overcome this limitation,

we also consider an indicator St that describes the minimum spanning rectangle (from now on,
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Figure 5.11: Histograms and corresponding fits with Beta-distribution (solid lines) for the three
parameters µ, σ (fire-spotting effects) and D (turbulence effect) following a Monte Carlo random
sampling with 10,000 realizations in the sample.

MSR) of the burnt area over the area of the domain |Ω| at a given time:

St =
|MSR(t)|
|Ω|

. (5.28)

The MSR is a geometrical quantity that corresponds to the smallest rectangle within which all

burnt grid points lie at a given time t. So |MSR(t)| [m2] measures the area of this rectangle.

Fig. 5.12 portrays an ensemble of 100 firelines at time 50 min. Each plotted fireline corresponds to
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a different set of parameters D, µ and σ (that is, to a different realization of θ = (µ, σ,D)
T

)

obtained by sampling the Beta-distributions given in Table 5.4. For each fireline, Fig. 5.12 shows

the corresponding normalized MSR as defined in Eq. (5.28) at time 50 min. Low MSR values (cyan

colors) indicate simple topology of the fireline, while for high MSR values (rose colors) the fireline

presents more irregularities and a more complex propagation induced by turbulence and

fire-spotting, spanning thus a wider area.

Figure 5.12: Ensemble of 100 fireline positions over the 2-D computational domain Ω after 50 min
of LSFire+ model integration obtained when varying D, µ and σ as presented in Table 5.4. The
black circle is the initial fireline that is the same for all simulations. The colormap corresponds to
the normalized MSR St at time t = 50 min (Eq. 5.28).

In this Chapter, in analogy with [284], we analyze the time dependency of the quantities At and St

by comparing them at two different times, t1 = 26 min and t2 = 34 min. The resulting scalar

quantities (or “observables”, “Quantities of Interest”, “QoI”) are noted A1, A2, S1 and S2.

5.8.3 Design of Experiments

We build several datasets to analyze the performance of the gPC- and GP-surrogates in an

extensive way in Section 5.10.2; these datasets are summarized in Table 5.5. Note that estimating

the generalization error of the surrogate model requires the use of an independent dataset, that is

why we use a Monte Carlo random sampling including N = 216 members for validation. Note also

that the Halton’s low-discrepancy sequence is involved in this work in order to explore the

hypercube defined by the distribution of the uncertain parameters. This design of experiment will

be compared to a tensor-based Gauss quadrature in terms of performance of the surrogate model.
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Table 5.5: Datasets DN of LSfire+ simulations used in this work for building surrogates (“training”)
or for validating them (“validation”).

Sampling Strategy Purpose Sample size

θ = (‖U‖ , I,D)
T

Halton’s sequence Training 216
Monte Carlo random sampling Validation 216

θ = (µ, σ,D)
T

Halton’s sequence Training 216
Quadrature rule Training 216

Monte Carlo random sampling Validation 216

5.9 Results of UQ and SA

The presented UQ and SA procedure has at least two objectives.

i) Firstly, an extensive comparison of the performance of different surrogate strategies for a

limited budget ( the size N of the training set DN , N = 216). See Table 5.6 forthe different

types of surrogate adopted. The effect of the different surrogate model techniques on the

predicted Quantities of Interest At and St in terms of mean value and STD are analyzed, as

well as the effect on the predicted Sobol’ sensitivity indices. This extensive analysis is carried

out for the case θ = (µ, σ,D)
T

, meaning that we only consider uncertainty in the fluctuating

part of the forward model LSFire+.

ii) The second objective is to rank by order of relevance the uncertain parameters, either

θ = (‖U‖ , I, τ)
T

or θ = (µ, σ,D)
T

, . On physical grounds, this allows to isolate the most

influential input parameters for the problem of turbulence and fire-spotting.

5.9.1 Comparison of surrogate performance

Error assessment

The error indices here adopted follow directly from Section 2.4.5 of Chapter 2. In Table 5.7 the

error metrics (i.e. the εemp empirical error and the Q2 predictive coefficient) are presented. They

are obtained for different types of surrogate (gPC on the one hand, and GP on the other hand)

with respect to θ = (µ, σ,D)
T

with a fixed size of the training set, N = 216. Concerning the

gPC-surrogate, its performance is analyzed in details varying truncation and projection schemes,

summarized in Table 5.6. The GP-surrogate is obtained using a standard RBF kernel (see

Section 2.4.3). The GP surrogate is in this context a useful benchmark order to evaluate the

quality of the gPC-surrogates. For every surrogate approach, one surrogate model is built for each

of the four observables {A1, A2, S1, S2} corresponding to the two observables At and St at times

t1 = 26 min and t2 = 34 min,respectively.
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In Table 5.7 we first focus on the results obtained with linear truncation (q = 1), meaning that the

basis of polynomial functions is full for a given total polynomial order P . Table 5.8 (right column)

presents corresponding scatter plots (referred to as “adequacy plots”) of the surrogate predictions

with respect to the physical model predictions. These plots quantify the adequacy of the surrogate

to the physical model at the training points in terms of predicted burnt area ratio A2. It is found

that the Q2 predictive coefficient is over 0.9 only for the LAR and cleaning sparse methods for all

observables. The empirical error is of the same order of magnitude, varying between 10−3 for the

MSR ratio St and 10−4 for the burnt area ratio At. Note that for a given observable at a given

time, there is no significant difference among the surrogate strategies in terms of empirical error.

We therefore focus the following analysis on the standalone Q2 predictive coefficient. Note also

that the performance of each surrogate is time independent since for a given observable, the Q2

predictive coefficient is similar at times t1 and t2. We therefore focus on results at time t2 in the

following.

When moving to hyperbolic truncation schemes (q = 0.75 or q = 0.5), we reduce a priori the

number of coefficients to compute in the gPC-expansion, while the size of the training set remains

the same (N = 216). The lower the value of q, the smaller the number of gPC-coefficients r.

Table 5.9 (right column) presents adequacy plots for hyperbolic truncation with q = 0.5; this is to

compare to the adequacy plots obtained for linear truncation in Table 5.8 (right column). Results

show that the performance of the quadrature approach does not improve when q decreases. In the

opposite, the performance of the SLS approach improves and features a Q2 predictive coefficient

over 0.9 for A2 and over 0.8 for S2 when using hyperbolic truncation. This improvement is also

noticeable in Table 5.9 (right column), where hyperbolic truncation allows to better represent the

model response for low values of the burnt area ratio (A2 < 0.03). The sequential sparse method

also provides better results for a hyperbolic coefficient q = 0.5. The performance of LAR and

cleaning sparse methods remains similar as in the linear case q = 1.

LAR appears as the most accurate gPC strategy and has a Q2 predictive coefficient that is similar

to that obtained with the GP-model based on RBF kernel. Hyperbolic truncation does not add

much value to the results compared to linear truncation, except for the SLS strategy. This may be

explained by the fact that the terms that are important to retain in the gPC-expansion are not

located in an isotropic way in the three dimensions (d = 3). It is therefore of interest to identify

which polynomial terms are important to keep in the basis in order to obtain a good performance

of the surrogate in each of the three dimensions.

Sensitivity of gPC-surrogates to total polynomial order P

In Table 5.7, the results for SLS and LAR methods are obtained by choosing the optimal value of

the total polynomial order P in the sense that the surrogate was obtained by finding the value of
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Table 5.6: Types of surrogate used in this work. Recall that q is the hyperbolic parameter for
truncation (q = 1 corresponds to linear truncation) and N is the size of the training set.

Name Truncation Sparse Training set
Quad. (Quadrature) q = 1, 0.75, 0.5 No Gauss quadrature, N = 216
SLS (Standard Least-Squares) q = 1, 0.75, 0.5 No Halton, N = 216
LAR (Least-Angle Regression) q = 1, 0.75, 0.5 Yes Halton, N = 216
Cleaning q = 1, 0.75, 0.5 Yes Halton, N = 216
Sequential q = 1, 0.75, 0.5 Yes Halton, N = 216
RBF kernel – – Halton, N = 216

P that maximizes the Q2 predictive coefficient; P varying between 1 and 14. Recall that the total

polynomial order P determines the size of the full basis used to construct the surrogate when using

linear truncation. The SLS method considers the full basis, while the LAR method selects the

most influential terms among the full basis. Since the size of the training set is fixed to N = 216

and since (P + 1)3 = 216 for P = 5, we know that the problem becomes ill-posed for a full basis

when the total polynomial order is over 5. This is not an issue for LAR since it selects inline the

influential coefficients in the basis. It is therefore of interest to investigate if the LAR method

features an improved performance when P > 5.

Figure 5.13 presents the Q2 predictive coefficient for P varying between 1 and 14 for SLS and LAR

surrogates obtained for the burnt area ratio A2. As expected, Fig. 5.13a shows that the best

performance of the SLS method with linear truncation is obtained for P = 5 and that it degrades

very fast when increasing P (the Q2 predictive coefficient is below 0.4 for P > 6). When moving to

hyperbolic truncation with q = 0.5, Fig. 5.13c shows that the Q2 predictive coefficient remains over

0.4 for P > 5. The resulting surrogate is therefore improved in this configuration as already pointed

out in Table 5.7. Hyperbolic truncation allows the SLS approach to include high-order polynomials

in the basis without generating an ill-posed problem (i.e. without having more coefficients to

compute than the size N of the training set). Still, results show that the Q2 predictive coefficient

does not follow a monotonically increasing function toward the target value 1 in this hyperbolic

configuration; this configuration is therefore not robust. In the opposite, the LAR method shows a

monotonic convergence towards the target value 1 when increasing P in Figs. 5.13b–d. A good

performance of LAR is obtained for P = 10 for both linear and hyperbolic truncation schemes.

This sensitivity study shows that a total polynomial order P higher than 5 is required to build the

response surface of the burnt area ratio. Similar results are obtained for the MSR ratio (not shown

here). This demonstrates the benefits from sparse schemes when having a fixed and limited

training set DN . Improving the performance of the SLS approach using linear truncation would

require a higher total polynomial order P and therefore a larger training set.
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Table 5.7: Error metrics εemp and Q2 for gPC-expansions and GP-model detailed in Table 5.6. The
size of the training set is N = 216. One type of surrogate is built for each of the four observables,
A1, A2, S1 and S2.

gPC expansion – Linear truncation (q = 1)
A1 A2 S1 S2

εemp Q2 εemp Q2 εemp Q2 εemp Q2

Quad. 1.4 · 10−4 0.84 2.7 · 10−4 0.86 5.5 · 10−4 0.77 4.6 · 10−4 0.83
SLS 3.0 · 10−4 0.83 6.3 · 10−4 0.88 1.0 · 10−3 0.74 2.3 · 10−3 0.75
LAR 1.0 · 10−4 0.99 4.2 · 10−4 0.970 5.0 · 10−4 0.96 2.3 · 10−3 0.95

Cleaning 1.0 · 10−4 0.96 4.1 · 10−4 0.95 5.5 · 10−4 0.96 1.2 · 10−3 0.95
Sequential 3.3 · 10−4 0.85 6.7 · 10−4 0.89 1.1 · 10−3 0.77 2.5 · 10−3 0.85

gPC expansion – Hyperbolic truncation (q = 0.75)
A1 A2 S1 S2

εemp Q2 εemp Q2 εemp Q2 εemp Q2

Quad. 3.7 · 10−4 0.76 8.6 · 10−4 0.77 1.6 · 10−3 0.67 3.7 · 10−4 0.66
SLS 1.5 · 10−4 0.93 1.8 · 10−4 0.93 1.0 · 10−3 0.84 2.5 · 10−3 0.84
LAR 2.0 · 10−4 0.94 5.6 · 10−4 0.95 1.0 · 10−3 0.84 2.6 · 10−3 0.86

Cleaning 9.9 · 10−5 0.94 3.3 · 10−4 0.90 5.0 · 10−4 0.96 1.1 · 10−3 0.96
Sequential 1.9 · 10−4 0.94 4.7 · 10−4 0.94 8.7 · 10−4 0.86 1.9 · 10−3 0.92

gPC expansion – Hyperbolic truncation (q = 0.5)
A1 A2 S1 S2

εemp Q2 εemp Q2 εemp Q2 εemp Q2

Quad. 1.8 · 10−4 0.83 2.0 · 10−4 0.87 6.2 · 10−4 0.74 3.6 · 10−4 0.83
SLS 1.4 · 10−4 0.96 9.6 · 10−5 0.95 7.4 · 10−4 0.86 1.9 · 10−3 0.86
LAR 1.5 · 10−4 0.97 4.3 · 10−4 0.97 6.5 · 10−4 0.93 1.6 · 10−3 0.94

Cleaning 8.8 · 10−5 0.95 3.3 · 10−4 0.94 4.5 · 10−4 0.92 9.2 · 10−4 0.98
Sequential 1.3 · 10−4 0.97 4.2 · 10−4 0.96 6.4 · 10−4 0.93 1.5 · 10−3 0.95

GP model
RBF −− 0.99 −− 0.98 −− 0.88 −− 0.99

Identification of the influential gPC-coefficients

Table 5.8 (left column) presents a three-dimensional schematic (referred to as “sparsity plot”) of

the coefficients retained in the gPC-expansion using linear truncation, each dimension

corresponding to one stochastic/uncertain dimension. The three dimensions are here the turbulent

diffusion coefficient D and the lognormal parameters µ and σ. This is useful to visualize the

polynomial degree associated with the active coefficients as well as the magnitude of the

coefficients given by the colormap (recall that there is a direct link between the coefficients and the

statistical moments of the predicted quantity of interest for gPC-expansion).

Quadrature and SLS methods have the same full basis for a given polynomial order P (here P = 5

since the size of the training set is N = 216); they are associated with a typical “pyramidal”

sparsity plot, where the first coefficient corresponding to the mean estimate of the burnt area ratio

A2 has the highest magnitude (approximately equal to 0.04). For sparse methods (LAR, cleaning,

sequential), the number of coefficients is significantly reduced since the terms with the least impact

are automatically filtered out of the sparse basis. The sparsity plot has no longer a “pyramidal”

shape. LAR and sequential strategies feature instead a two-dimensional structure (along the
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Table 5.8: Comparison between quadrature, SLS and sparse (LAR, cleaning, sequential) methods
to build the gPC-expansion for the burnt area ratio A2 using linear truncation. Left: sparsity plots
representing the magnitude of the coefficients with respect to the three-dimensional input space
(d = 3). Right: adequacy scatter plots comparing surrogate (x-axis) and model (y-axis) predictions
at the training points. For SLS and LAR, results are obtained with the best fit obtained for varying
P .
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Table 5.9: Same caption as Fig. 5.8 but for hyperbolic truncation with q = 0.5.
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(c) SLS, q = 0.5.
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(d) LAR, q = 0.5.

Figure 5.13: Sensitivity of the Q2 predictive coefficient with respect to the total polynomial order
P . Comparison of the SLS (a)–(c) and LAR (b)–(d) surrogate methods for linear truncation (top
panels) and hyperbolic truncation with q = 0.5 (bottom panels) for 1 ≤ P ≤ 14.

vertical plane) indicating that the burnt area ratio A2 is not sensitive to the third dimension, here

the lognormal parameter µ, but only to the lognormal parameter σ and to the turbulent diffusion

coefficient D. Only the cleaning strategy retains a three-dimensional structure by accounting for

interaction terms involving the lognormal parameter µ. This highlights the presence of influential

interaction terms involving several parameters. However, all sparse strategies indicate that one

direction is dominant since the number of coefficients in this direction is high and the basis terms

can go up to a total polynomial order P = 12 in the case of cleaning and P = 8 in the case of LAR

(instead of the constrained P = 5 for quadrature and SLS). This dominant direction corresponds

to the lognormal parameter σ.

Note that Table 5.9 (left column) presents similar plots as Table 5.8 (left column) but for

hyperbolic truncation with q = 0.5. The magnitude of the coefficients does not change for

quadrature, explaining why hyperbolicity does not improve the performance of the surrogate based

on quadrature. This is not the case of SLS, which now features high magnitude for the coefficients

along the direction D for polynomial terms having a degree between 4 and 8. This highlights the

need to have polynomials of higher degree to capture underlying physical processes. Still, SLS with

hyperbolicity is not sufficient to capture the same structure as sparse methods. Note that sparse



CHAPTER 5. APPLICATIONS TO WILDLAND FOREST FIRES 153

methods converge to the same structure using linear or hyperbolic truncation schemes, indicating

the robustness of these methods.

The influence of the three parameters on the behavior of the burnt area ratio A2 can be quantified

using Sobol’ sensitivity indices. Table 5.10 presents the Sobol’ indices using sparse methods and

linear truncation for the burnt area ratio A2 (same results are obtained using hyperbolic truncation

with q = 0.5 – not shown here). Table 5.11 presents similar quantities for the MSR ratio S2.

Results confirm that the lognormal parameter σ is the most influential one for both quantities of

interest A2 and S2 with a first-order sensitivity index above 0.98 for A2 and above 0.92 for S2.

This means that more than 90 % of the variance in A2 and S2 is explained by uncertainties in the

lognormal parameter σ. Results also show interaction effects are limited but still present between

the lognormal parameter σ and the turbulent diffusion parameter D as foreseen in sparsity plots.

Note that all sparse gPC-surrogates as well as the GP-model exhibit the same global trend. The

main differences lie in the relevance of the lognormal parameter µ. LAR and sequential strategies

cut out any contribution of µ in the variability of the predicted quantities of interest. This is not

the case of the cleaning strategy that has a non-zero total Sobol’ index for µ as the GP-model.

We can evaluate the impact of the choice in the surrogate strategy on the predicted mean and STD

estimates of the quantities of interest. Note that the coefficients of the gPC-expansion can be

interpreted in a statistical way with the first coefficient being the mean estimate and the squared

sum of the other coefficients being its corresponding variance estimate (see Section 2.3). Table 5.12

presents the mean and STD estimate of the burnt area ratio A2 and of the MSR ratio S2 obtained

for different gPC- and GP-surrogates. Results show the consistency of the statistical moments

obtained using sparse gPC-expansions and GP-model for both A2 and S2. The SLS approach using

linear truncation is able to retrieve accurate mean and STD estimates (about 1 % deviation with

respect to GP-model predictions). In the opposite, the quadrature approach provides mean and

STD estimates with more than 10 % deviation with respect to GP-model predictions.

This highlights the importance of having high-order polynomial terms in some uncertain directions

to build an accurate gPC-expansion and have accurate estimate of the statistical moments in the

present study. These directions can be identified using Sobol’ sensitivity indices. Sparse

gPC-strategies are relevant to address such issues due to the flexibility of selecting the most

influential polynomial terms during the construction of the surrogate (linear and hyperbolic

schemes are defined a priori).

Sensitivity to the size of the training set

So far the analysis was obtained for a fixed training set of size N = 216 (generated using Halton’s

low discrepancy sequence or, in case of quadrature rule, tensor-based Gauss quadrature sampling).

A convergence analysis is carried out, to discover whether the same level of accuracy could be
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Table 5.10: Comparison of Sobol’ sensitivity indices associated with the burnt area ratio A2 and
obtained for Halton’s low discrepancy sequence.

Sµ Sσ SD ST,µ ST,σ ST,D
gPC expansion – Linear truncation q = 1

LAR 0. 0.986 5.67 · 10−3 0. 0.994 1.35 · 10−2

Cleaning 0. 0.984 5.89 · 10−3 4.70 · 10−3 0.994 1.62 · 10−2

Sequential 0. 0.987 4.84 · 10−3 0. 0.995 1.33 · 10−2

GP model
RBF kernel 4.59 · 10−4 0.982 5.97 · 10−3 0.001 0.992 0.012

Table 5.11: Same caption as Table 5.10 but for the MSR ratio S2.

Sµ Sσ SD ST,µ ST,σ ST,D
gPC expansion – Linear truncation q = 1

LAR 0. 0.948 1.49 · 10−2 0. 0.985 5.22 · 10−2

Cleaning 0. 0.925 1.66 · 10−2 2.66 · 10−3 0.983 7.18 · 10−2

Sequential 0. 0.954 1.45 · 10−2 7.15 · 10−3 0.978 4.63 · 10−2

GP model
RBF kernel 5.43 · 10−4 0.941 9.89 · 10−3 0.002 0.975 0.047

obtained or not, for sparse gPC-surrogates built with a reduced training set (N < 216). To answer

this question, we vary the size of the training set N between 10 and 216 with respect to the

observable S2. For each size of the training set, a LAR gPC-surrogate is built and the Q2

predictive coefficient provided its cross-validation using the available Monte Carlo validation

database (Table 6.3.9). This convergence test is performed for different truncation strategies,

i.e. for different levels of hyperbolicity q ∈ {1, 0.75, 0.5}. Figure 5.14 presents the evolution of Q2

with respect to the size of the training set N . Results show the convergence of Q2 to a constant

value when N > 100. Linear truncation and hyperbolic truncation (q = 0.5) provided a similar

performance for N > 100. It can be noted that the hyperbolic solution obtained using q = 0.75 is

not the best option.

5.9.2 Analysis of the physical model predictions

Results show that the LAR gPC-strategy features a good overall performance.

For this reason, the following analysis is restricted to the latter Surrogate Model. It will be used to

further analyze the fire-spotting and turbulence submodel included in LSFire+, retrieving Sobol

Indices for each input parameter.

In Table 5.14 and Table 5.16 are summarized the error metrics as well as the mean and STD

estimate of the burnt area ratio A2 and of the MSR ratio S2 at time t2 for the two sets of

uncertain parameters θ = (‖U‖ , I, τ)
T

and θ = (µ, σ,D)
T

, respectively. In Table 5.13 and

Table 5.15 the corresponding Sobol’ Indices can be found. Note that the empirical error εemp and

the Q2 predictive coefficient are in acceptable range for all tested configurations. Anyway, in this

Subsection the focus lies upon the physics of the problem.
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Table 5.12: Mean and STD estimate of the burnt area ratio A2 (left column) and of the MSR ratio
S2 (right column) using linear truncation scheme (q = 1), Halton’s low discrepancy sequence and
gPC or GP surrogate approach.

A2 S2

gPC expansion – Linear truncation (q = 1)
mean ± STD mean ± STD

Quad. 0.0406 ± 0.175 0.102 ± 0.322
SLS 0.0458 ± 0.198 0.114 ± 0.333
LAR 0.0464 ± 0.194 0.114 ± 0.324

Cleaning 0.0469 ± 0.194 0.115 ± 0.327
Sequential 0.0458 ± 0.196 0.113 ± 0.319

GP model
mean ± STD mean ± STD

RBF kernel 0.0463 ± 0.194 0.114 ± 0.327
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Figure 5.14: Convergence test with respect to Q2 predictive coefficient for the LAR gPC-surrogate
built using Halton’s low discrepancy sequence (cross-validated using the Monte Carlo random
sampling). Solid blue line corresponds to linear truncation; dash-dotted orange line corresponds
to hyperbolic truncation with q = 0.75; and dashed green line corresponds to hyperbolic truncation
with q = 0.5.

As shown in Section 2.3.2 of Chapter 2, Sobol’ sensitivity indices order by relevance each input

factor. In the case θ = (‖U‖ , I, τ)
T

, a clear predominance of the wind speed ‖U‖ is reported, given

the considered range of the fireline intensity I. This is a rather interesting result, because some

normalization has been applied on the wind effects on the ”deterministic” ROS model

(i.e. parameter αw in Eq. 5.24). The latter normalization made the propagation of the deterministic

fireline depend solely on the orientation of the wind vector and not on its magnitude. This means

that the wind has a more general and fundamental role, reflected e.g. in fire-spotting and

secondary fire generation (the so called ”fluctuating part” of the model described in Section 5.4.

The ballistic term σ in Eq. (5.11) gjven by the parametrization RandomFront depends heavily on

the value of ‖U‖. This is in line with the results of the second set of input factors. In the case
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θ = (µ, σ,D)
T

, σ is the most influential parameter when considering Sobol’ indices, way above D

and µ (in order of relevance). The Sobol Indices for both At and St are comparable. Nevertheless,

St gives slightly more relevance to µ and D inputs with respect to At. For both parameter sets,

the mean of the S2-observable is larger than that of A2, as we could expect from their respective

definition. Its value of STD is also larger. Uncertainties in {‖U‖ , I, τ} cause a more significant

spread of the fire-line shape and position, when compared to uncertainties in {µ, σ,D}. This can

be explained by the fact that in the first case the ember ignition time scale is also varied.

To sum up, the results of this UQ and SA highlighted the importance of the mean wind factor, on

both main fire propagation and the generation of secondary fires. This result is consistent with the

phenomenology of wild-land fires and with the fire-spotting phenomenon. We recall that

fire-spotting refers to independent ignitions located far away from the main fireline. This occurs

when the convective column lofts firebrands, the wind transports them up to their falling into the

downwind fuel and the firebrands may ignite. The stronger the wind, the larger distance firebrands

can be transported. This process is accounted in the model via the lognormal parameter σ. The

importance of σ is also, put into mathematical terms, a feature of the adopted lognormal PDF for

firebrand landing distance. It controls in facts the tail of the density function, the kurtosis of the

lognormal density being equal to e4σ2

+ 2e3σ2

+ 3e2σ2

− 3. We remark that these results, reported

also in [284], are not neglecting the ”response saturation” due to very strong winds and the

eventual burn-out of the airborne firebrands seen in Section 5.7.1 (see Figure 5.5d). It should be

pointed out that in the setting of this SA and UQ procedure, the wind varied according to

Table 5.3, in a range way smaller than the one explored by the simpler response analysis

summarized in Figure 5.5d. Similar arguments can be stated for the selected range of I, that in

[284] is a fraction of the whole range analyzed in [283], which is portrayed in Figure 5.5b.

Nevertheless, this UQ and SA study thus showed that the studied turbulence and fire-spotting

sub-model correctly includes the double role of the mean wind,on the one hand enhancing the

propagation of the main fire-line , and on the other hand transporting firebrands for secondary

ignitions.

5.10 Multi-scale modelling of fire spotting

This Section, which concludes the wild-land fire-themed Chapter, concerns the two last works in

chronological sense related to the Wild-land fire model of Section 5.4. These works used the

presented Model to study the role for the emergence of fire-spotting phenomena and the ignition of

secondary fires of both a macroscale factor, as the atmospheric stability ([77]) and of a mescoscale

factor, as the flame length ([78]).

Such works focused on the interactions among scales of the whole wild-land fire phenomenon,

following a concurrent multiscale modelling : that is, estimating parameters related to aspects
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Table 5.13: Sobol’ indices (first-order in dark blue and total-order in light blue) using LAR gPC-

surrogate and linear truncation; θ = (U, I, τ)
T

; N = 216. Left: Sobol’ indices associated with the
burnt area ratio A2. Right: Sobol’ indices associated with the MSR ratio S2.
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Table 5.14: Mean and STD of observables A2 and S2 as well as error metrics εemp and Q2 using

LAR gPC-surrogate and linear truncation; θ = (U, I, τ)
T

; N = 216.

Quantity of interest Mean STD εemp Q2

A2 0.07 0.06 9 · 10−4 0.95
S2 0.19 0.13 2 · 10−3 0.96

Table 5.15: Same caption as in Table 5.13 but for θ = (µ, σ,D)
T

.
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Table 5.16: Same caption as in Table 5.14 but for θ = (µ, σ,D)
T

.

Quantity of interest Mean STD εemp Q2

A2 0.05 0.04 4 · 10−4 0.97
S2 0.11 0.11 2 · 10−3 0.95

occurring in a very large range of scales and implementing them into the model for the

macroscopic fire front. This concept is delineated in Figure 5.15.

• At the macroscopic scale, fire-spotting phenomenon is affected by atmospheric conditions. In
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Figure 5.15: Sketch of the multiple scales occurring in a wild-land fire. Adapted from [77]

RandomFront parametrization, the depth of the atmospheric boundary layer (ABL) is used as

macroscopic factor. Such quantity is related to the atmospheric stability, into the estimation

of the smoke-injection height including the uplift against the atmospheric stratification and

the plume widening due to entrainment of the surrounding air [258]. In RandomFront the

firebrand-injection height is estimated as an approximated lift for inertial particles that are

flowing into the fire plume. In [282] a simple formulation of the stable boundary layer is

derived by making use of the bulk Richardson number. The refinement of this formulation is

proposed by Serafin in [247]. More general study, that includes formulations for stable,

neutral and unstable boundary layers may be found in [266].

• At the mesoscopic scale, fire-spotting is affected strongly by the fire intensity and by the

flame characteristics, fire intensity being related to many aspects of the flame geometry, see

[6] and references therein. As shown in [296], fire spread is strongly affected by the

geometrical characteristics of the flame . An accurate estimation of these parameters can

help to determine how a wildfire may be controlled. In practice, the flame length is used to

determine the size of fire control lines [1], while the flame height is used to predict the

exposure to heat flux [236]. Also fire-spotting is affected by fire intensity. Such interaction is

used by practitioners to forecast house survival probability in bush fires, see e.g. [308].

To sum up, the objective of this last research effort is then to highlight the role of a macroscopic

factor and the one of that of a mesoscopic factor for characterizing fire-spotting. With such

characterization, information on favorable configurations for the occurrence of fire-spotting and the

associated risk can be provided. Implicit connection between the atmospheric stability and fire

propagation allows the modeling of several scenarios for different times of day of wildfire. Another

important result of this research is the establishment of the range of unburned terrain where the

secondary fires may occur, which models different scenarios of firebrand showers.
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The papers [77] and [78] are the last two works, chronologically speaking, which make use of the

Model of Section 5.4 and of parametrization RandomFront 2.3. In these works some slight

modifications are brought to the parametrization, giving rise to the version RandomFront 2.3b.

The simulations needed from the two above cited papers are carried out in LSFire+. The results

presented in this thesis refer exclusively to the macroscopic scale effects, with the model upgrading

presented in the next subsection. Such results have been published in the recent paper [77].

5.10.1 Upgrading the Model: RandomFront2.3b

In this subsection some slight modifications to the model adopted in the last works, that converged

into version 2.3b of RandomFront are presented. To begin with, it is remarked that the injection

height of firebrand is a fraction of the injection height of the smoke, Hsmoke, i.e.,

H = λHsmoke < Hsmoke, as already seen in Equation 5.20 of Section 5.5. In the following the choice

λ = 0.4 is adopted. This estimation is explained in detail in the Appendix of [77].

It is recalled that the injection height can be described in terms of buoyancy frequency, or

Brünt-Väsäla frequency N2 [258]. This quantity is used in meteorology to measure atmospheric

stratification and atmospheric stability. Positive values of N2 refer to a stable boundary layer

(SBL). If the potential temperature is uniform with height, a displaced air parcel experiences no

buoyancy force and will thus remain stable at its new location. Such a layer of air is described as

neutrally stable. If the potential temperature increases with height, a parcel of air which is

displaced upwards (downwards) experiences this time a negative (positive) restoring force and shall

tend to return to its equilibrium position. It can usually be observed at nighttime. For this reason,

it is also known as nocturnal boundary layer. On the contrary, atmosphere is considered to be

unstable, if the potential temperature decreases with height, and a displaced parcel would

experience a force in the direction of the displacement. Unstable atmosphere is described by

negative values of N2 that may cause the appearance of complex numbers in the formulation of the

injection height. In order to avoid such problems, general formulation has been proposed in [258]

by using the free troposphere value N2
FT [258] and letting a part of the ABL (α < 1) be considered

as ”freely” passed. In RandomFront it is used the following generic formula for the injection height

of the smoke of Equation 5.21, here reported for clarity:

Hsmoke = αHABL + β

(
If

dPf0

)ζ
exp

(
−δFTN

2
FT

N2
0

)
, (5.29)

where If is the fire intensity, HABL is the height of ABL. Parameters are constrained by: α < 1,

β > 0, ζ < 0.5 and δFT ≥ 0 [258]. The stability conditions of the atmosphere enter into such

parametrization with the height of the ABL. Note that HABL has an impact not only in the

fire-spotting parametrization, but also for turbulent diffusion, due to Parametrization of D, in

Section 5.5.
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On the basis of the maximum loftable height (5.21), the maximum travel distance can be defined

as follows [302]

`max = H

(
3ρCdFr

2ρf

)1/2

, (5.30)

Such equation is of course compatible with Equation 5.16. Following the definition of µ and σ, we

report for clarity from Section 5.5 the expression for `max in terms of σ, µ:

`max = µ exp(zpσ) . (5.31)

Formulation (5.21), as well as (5.30), may take into account stable, neutral and unstable

atmosphere. The model is therefore versatile enough to describe wildfire behavior at any daytime.

The wind velocity in (5.17) is the projection of the vector of wind to the vector Φ from some point

of the computational domain to the point where the PDF is computed, see Figure 5.16. Denoting

by ω the angle between the wind direction and the vector Φ, the expression of σ in 5.17 reads

σω =
1

2zp
ln

[
(U cosω)2

rg

]
. (5.32)

Figure 5.16: Sketch of the vector Φ and the angle ω in the generation of secondary fires. Adapted
from [77].

This upgrade of the model allows for σω to depend not only on the wind velocity, but also on the

position of the considered point. For physical reasons, it is assumed that fire-spotting is a

downwind phenomenon, that translates into −π/2 ≤ ω ≤ π/2. If angle ω tends to π/2, σ becomes

negative: that would eventually lead to small value of the maximum landing distance. We observe

that in the limit case, firebrands would eventually fall down to already burned terrain and there is

thus no fire-spotting effect. Therefore, negative values of σω are not considered. On the other side,

when ω is close to zero, the position vector Φ has approximately the same direction as the mean

wind vector (see Figure 5.16) and the travel distance reaches its maximum. We define a limit angle

ω0 in order to reduce computational cost in the simulations, such that the fire-spotting distribution

is evaluated only when cosω > cosω0. Such angle can be determined with a few computations, as

shown in [77].
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The minimum travel distance expressed in in terms of the parameters µ and σ and the limit angle

ω0 reads:

`0 = µ exp(z0
pσ) = H

(
3ρCd

2ρf

)1/2
U cosω0√

rg
, (5.33)

after some computations we get to

cosω0 =

(
U
√
rg

) z0p
zp
−1

= Fr
z0p
zp
−1
, (5.34)

where z0
p is the the lognormal distribution percentile corresponding to the equality:

q(`max) = q(`0) . (5.35)

By plugging-in (5.30) and (5.33) into (5.35) it follows

(z0
p)2 + 2σz0

p = z2
p + 2σzp . (5.36)

The last equation has two solutions: one is zp, that gives the maximum travel distance. The other

one is

z0
p = −zp − 2σ , (5.37)

that corresponds to the minimum travel distance `0 > 0. In this new framework, all the jumps of

the firebrands fall eventually inside of the interval [`0, `max].

Since `0 > 0, it is always possible to estimate the ratio `max/`0 = κ. Thus, taking into account this

ratio and repeating the computations above, the following expression for κ is found:

κ = exp (2σ(zp + σ)) , (5.38)

that leads to the expression of cosω0 as a function of κ:

cosω0 = Fr− lnκ/ lnFr =
1

κ
. (5.39)

The last equation found (5.39 is a connection between the critical angle ω0 and the range of the

possible travel distances represented by κ. It can also be interpreted as the inverse proportionality

of the arc and the radius in a sector of the fixed area. In the limit case when ω tends to π/2, the

projection of the wind tends to zero, that corresponds to the situation when the firebrand falls

down into the burning area. In practice, the constrain to reduce computational efforts is [77]

cosω ≥ max

{
1

κ
, Fr−1/2

}
. (5.40)
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5.10.2 Results and discussion of the Macroscale study

In this section we present the numerical results with special attention to the effects of varying the

height of ABL. The results are based on the ones reported on [77].

Please note that all of the results are backed by statistical data of wildfires in Spain from 2012 to

2017 (documented in [77]). The key idea conveyed is that wildfires develop differently under

different boundary layer conditions.

In all the simulations we consider a constant wind U = 4.47 ms−1, and fire intensity If = 20

MWm−1. The changes in the values of HABL influence the values of µ, involved in the

determination of maximum travel distance of firebrands `max as well as the values of the turbulent

diffusion coefficient D. See in this respect Table 5.17 and Figure 5.17.

The PDF of firebrand landing distance for different values of HABL is portrayed in Figure 5.20.

From formula (5.30) we have that `max depends linearly on HABL and, due to the lognormal

distribution of landing distance, the resulting changes in `max do not strongly affect fire-spotting.

From (5.22) we have that the turbulent diffusion coefficient depends on HABL with the third power

and the resulting changes affects strongly the propagation of the fire with an important effect on

the merging of the secondary fires generated by the fire-spotting. In fact, during stable conditions

a larger number of fires with respect to unstable conditions is observed but at the same time a

lower burned area is computed, showing that in unstable conditions the turbulent heat transport is

stronger with the double effects of a faster fire propagation and a more efficient merging.

Case 1: Stable Case 2: Unstable
HABL [m] 100 200 400 800 1000 1200 2000
µ [m] 4.0325 4.3879 5.0985 6.5198 7.2304 7.9411 10.7836

D [m2s−1] 0.0533 0.0995 0.1858 0.3467 0.4238 0.4993 0.7908

Table 5.17: Effects of atmospheric stability on the fire-spotting parameters.

Stable atmosphere: HABL varies from 100 m to 500 m.

If an air parcel displaced from the original height returns to the original height, then the the

atmosphere is considered in stable condition. The so called stable boundary layer forms at night

over land (it is also known as nocturnal boundary layer). It grows to depths of about 100 to 500

m, see for further information [264]. Due to the stability condition, clouds lire in layers and winds

are steady and light. The smoke drops back down to the ground, and the convective column is not

high, and this affects both fire-spotting and turbulent transport of heat. The contour lines of the

effective indicator function is plotted in Figure 5.18. Please note that when the corresponding

value of the effective indicator function reaches the threshold value φthe = 0.5, the corresponding

grid point is marked as burned, as shown in the scheme of Figure 5.2. The plots of 5.18 show the

growth of the burning area after 37, 70 and 119 minutes after the ignition, respectively.
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Figure 5.17: Plots of the fire-spotting parameter µ (left) and the diffusion coefficient D (right)
varying HABL.

Unstable atmosphere: HABL varies from 800 m to 2000 m. When an air parcel after

displacement from the original height accelerates upward due to buoyancy effects, the atmosphere

is called unstable. It is usually observed during the day and afternoon. The depth of the boundary

layer varies according to clime classes and seasons. The well known Köppen-Geiger climate classes

are used to categorize the world-wide characteristics of the boundary layer, see e.g. [174]. In such a

way, analyzing seasonal mean diurnal cycle of ABL depth for climate class Dfb (Cold with warm

summers and no dry season, in summer and winter) given in [174], it is found that the diurnal

HABL takes value in the range between 1000 m and 1800 m during the summer, and between 600

m and 800 m during winter. For other climate classes, HABL differs substantially (it may rise up to

3000m). Fire contours under the unstable atmospheric conditions is portrayed in Figure 5.19.

By comparing Figures 5.18 and 5.19, it can be observed that the generation of secondary fires is

faster in the unstable case (see both panels (b) ), and the correspondent burned area is also larger.

Likewise, the merging of secondary fires in the unstable case is more rapid (see both panels (c) ).

It is worth noting the emergence of patterns of not burned areas surrounded by the fire, see

5.19(c). The plots in Figure 5.20 display the lognormal distribution for two different values of the

height of atmospheric boundary layer HABL, following the proposed RandomFront parametrization.

Larger values for HABL correspond to a growth in the probability of long ember jumps.

Figure 5.21 shows the total number of burned points simulated with several values of HABL at

different times. After an initial interval of time of dormancy with limited growth, the burned area

starts growing rapidly according to a power law.

It can be observed that the dormancy interval ends first under unstable atmosphere, and that the

burned area during unstable atmospheric conditions is always larger than during stable

atmospheric conditions.
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To detect the main reason behind the rapid boost of the burned area, whether it is due to

turbulence or fire-spotting, a further series of simulations with fixed diffusion coefficient D is

performed. By doing so,D is independent of the atmospheric conditions and does not adopt

RandomFront parametrization of Section 5.5. The results for stable (HABL = 100 m) and unstable

(HABL = 1000 m) atmospheric conditions are shown in Figures 5.22 and 5.23. All the parameters

are set equal to the previous simulations, but with fixed D = 0.0387 m2s−1. Note that this fixed

value of D is less than any other value followed by the dependency on the HABL. Fire front

propagates in the same way in both atmospheric conditions, displaying an equal number of

secondary fires and equal burned area (see Figure 5.24). Thus, the atmospheric stability conditions

affects the fire propagation mainly through the turbulent diffusion coefficient. Hence, comparing

Figures 5.19 and 5.23 we observe that the number of independent fires is less during unstable

conditions and by taking into account also Figures 5.21 and 5.24, we conclude that the

atmospheric conditions affect the propagation of wildfires through the heat turbulent transfer. In

particular, during unstable conditions we observe that turbulence pushes the front resulting into a

faster propagation causing an increasing of the burned area and a more rapid merging of

independent fires such that during unstable conditions the number of independent fires is less than

during stable conditions in spite of the fact that the burned area is larger.

The numerical results show that the inclusion of the atmospheric stability conditions in terms of

the ABL height in the parametrization changes substantially the form and the speed of the fire

front. Nonetheless, the effect of atmospheric stability is significantly stronger in the fire spread

phenomenon when it acts on turbulent heat transfer than when it acts on fire-spotting. Speaking

in terms of the adopted physical model, HABL determines more noticeable effects due to its

inclusion in D (following Equation 5.22) than due to its inclusion in µ (following Equation 5.19)

This result is in line with the main conclusions of Section 5.9, where the Sobol’ importance

measure related to D outclassed the ones related to µ for both observables, burnt area and MSR.

Let us now consider historical data on fires in Spain from 2012 to 2017 from The Earth Observing

System Data and Information System (https://earthdata.nasa.gov/

earth-observation-data/near-real-time/firms/active-fire-data). The database contains

information about the acquisition time but not about the corresponding atmospheric stability. In

order to distinguish between stable and unstable conditions we take into account two extremely

different cases [264]: diurnal ignitions during the summer months and nocturnal ignitions in winter

months. The historical data is retrieved from two satellites characterized by different resolution:

MODIS C6 with resolution 1 km and VIIRS with resolution 375 m (see Table 5.18). The more

precise satellite VIIRS is able to capture smaller wildfires and therefore it reports a higher number

of ignitions, while MODIS C6 identifies wildfires larger than the resolution threshold.

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
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Comparing the results in Table 5.18 one can find that the number of fires in unstable conditions

captured by VIIRS satellite is almost 3 times larger than the observations by MODIS C6. In stable

atmosphere the number of fires captured by VIIRS is usually more than 20 times larger. Taking

into account the different resolution of the two satellites one can conclude that wildfires under

unstable conditions are characterized by larger burning area, while under stable conditions the

burning area is smaller with a significant increase in the number of wildfires.

Year MODIS C6 Data (1km) VIIRS Data (375 m)
Stable Unstable Stable Unstable

2012 138 1150 1170 3302
2013 34 639 960 1580
2014 16 361 803 1243
2015 30 769 664 2167
2016 38 672 1029 1895
2017 64 671 1106 1866

Table 5.18: Comparison of number of wildfires in stable that corresponds to winter night time, and
unstable that corresponds to summer daylight time, atmosphere observed by satellites with different
resolution. Historical data: Spain, 2012-2017 years.

As it is mentioned above, stable boundary layer is also known as nocturnal boundary layer [264],

that allows to suppose that, in general, the stable atmosphere is observed during the night and,

consequently, the diurnal boundary layer is more unstable. Thus, the data collected from the

satellites during the whole year is considered distinguishing the diurnal and nocturnal fires (see

Table 5.19).

Bearing in mind that MODIS C6 satellite can capture only large enough burning areas, while

VIIRS is capable of identifying smaller fires, data from Table 5.18 can be explained as follows. In

the daytime wind is more erratic and strong, causing thus more unpredictable behavior of the fire

propagation. On the other hand, at night the main front may propagate slower but with a larger

number of new ignitions.

Year MODIS C6 Data (1km) VIIRS Data (375 m)
Day Night Day Night

2012 4240 (68.5%) 1946 (31.5%) 8430 (39.4%) 12945 (60.6%)
2013 2631 (76.2%) 821 (23.8%) 6261 (45.3%) 7575 (54.7%)
2014 2181 (83.8%) 422 (16.2%) 5400 (42.8%) 7228 (57.2%)
2015 2317 (73.0%) 857 (27.0%) 5547 (41.8%) 7723 (58.2%)
2016 2328 (72.5%) 884 (27.5%) 7906 (42.9%) 5942 (57.1%)
2017 3578 (69.0%) 1606 (31.0%) 8288 (42.0%) 11470 (58.0%)

Table 5.19: Number and % of day and night fires in Spain. Historical data refers to 2012-2017
period.

Basing ourselves on official statistical data (http://www.mapama.gob.es), more than 50% of new

ignitions in Spain are deliberate. We expect that the most of them occur during the night, that

also explains the data presented in Table 5.19.

http://www.mapama.gob.es
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During the day the number of ignitions is more reduced, while the burning area is larger, since the

percentage of the daytime fires obtained by MODIS C6 is higher than the percentage of night-time

ones, and the contrary is observed for the VIIRS data. Hence, these satellite data may be

interpreted in a similar way to the numerical results obtained through the model simulations.

The main physical mechanism that constitutes the claim of this data-supported numerical

investigation is recalled in the following. During daytime, an higher ABL layer causes an higher

convection cell, that besides augmenting the firebrand travel distance , increases the turbulent

transport. Due to this phenomenon, the fire front propagation is faster and the merging of the

spotting fires is accelerated. As a consequence, during the daytime the burning area is larger and

the number of independent secondary fires is lower.

As it has been already remarked, such scenario is reproduced by the proposed model varying the

HABL (that acts on D and µ in the physical parametrization). The feedback of the model on

different HABL allows the model to be adapted to different climatic classes.
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Figure 5.18: Fire front propagation during stable atmospheric boundary conditions: HABL = 100
m, µ = 4.0325 m, D = 0.0533 m2s−1.
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Figure 5.19: Fire front propagation during unstable atmospheric boundary conditions: HABL = 1000
m, µ = 7.9411 m, D = 0.4238 m2s−1.
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Figure 5.20: Lognormal distributions for various values of HABL. The adopted values correspond to
the stable and unstable atmospheric conditions, respectively.

Figure 5.21: Burned area versus elapsed simulated time under stable (blue) and unstable (red)
atmospheric boundary conditions. HABL varies from 100 m to 1200 m.
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Figure 5.22: Fire front propagation during the night (Stable atmospheric boundary conditions:
HABL = 100 m, µ = 4.0325 m, D = 0.0387 m2s−1).
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Figure 5.23: Fire front propagation during the daylight (Unstable atmospheric boundary conditions:
HABL = 1000 m, µ = 7.2304 m, D = 0.0387 m2s−1).
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We chose such parametrization of µ and σ in order to delineate the governing parameters for
lofting (represented by µ) and transport mechanisms (represented by σ).

Figure 5.24: A comparison of the total burning area in time in stable (blue) and unstable (red)
atmospheric boundary conditions in simulations with fixed diffusion coefficient D = 0.0387 m2s−1.
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A biofilm is a community of microbes
bound together in a viscous, gooey blob.

Michael Lemonick, 2014.
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In this Chapter, the work developed on applications related to Biofilm modeling is reported. In

Section 6.1, the biological phenomena is described. In Section 6.2, the studied model of statistical

front propagation is adapted to a particular case of biofilm spread, that is, the case of planar

174
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microbial biofilm. In Section 6.3, some of the UQ and SA techniques of Chapter 2 are adopted to

analyze a model of biofilm growth accounting for species invasion. This last work is the same that

is described in the recent paper of Trucchia et al. [285].

6.1 What is a biofilm?

It is well accepted that microorganisms lead social lives and exhibit complex behavior responding

to the extracellular environment and other organisms. Experimental activity in fact highlighted

that both in natural and artificial environments, microorganisms preferentially exist in the form of

self-organized assemblages termed “biofilms”, consisting of surface-associated communities

embedded in an exopolysaccharide matrix and organized into microcolonies [94, 262]. Such

exopolysaccharide matrix corresponds to extracellular polymeric substances that are secreted by

microorganisms into their environment and that play a crucial role in the cell attachment to a

given surface and in the biofilm formation overall. Wilderer and Characklis in [49] defined biofilms

“a layer of prokaryotic and eukaryotic cells anchored to a substratum surface and embedded in an

organic matrix of biological origin”. The importance of biofilms has emerged since their first

scientific description in 1936 [321] and the recognition of their omnipresence in the 1970s

([169, 59]). Biofilms are complex microbial communities that drive biogeochemical cycling

processes of most elements in nearly any environment(soil, water, sediment and subsurface).

Costerton et al. in [60] estimated that planktonic microorganisms (that is, microorganisms that do

not organize themselves into biofilms) constitute less than 0.1% of the total aquatic microbial life.

Attached to a surface (substratum), microorganisms inside of biofilms adopt coordinated chemical

and physical interactions, enabling cells to develop efficient survival strategies [190]. As a matter of

fact, bacteria in biofilms (sessile bacteria) differ substantially from free-living bacterial cells (also

called planktonic bacteria) by the means of a set of emerging properties, such as the formation of

physical and social interactions, the increased tolerance to antimicrobials and the enhanced rate of

gene exchange [94]. The key idea is that the ability of bacteria to form biofilms attaching to

surfaces can thus become an important competitive advantage over bacteria growing in suspension.

As an example, bacteria in suspension can be washed away with the water flow, while attached to

a biofilm microorganisms are protected from the hydrodynamics of the bulk liquid and can then

keep growing in locations characterized by the presence of nutrients supply. The physical structure

of biofilm itself encourages distinct biological niches that allow the growth and survival of

microorganisms that could not compete successfully in a completely homogeneous system.

Furthermore, specific microbial activity in biofilms can modify the internal environment (e.g., pH,

O2 , metabolic products, or disinfectant concentration) to make the biofilm more hospitable than

the bulk liquid [234]. A single biofilm structure can host different species of microorganism that

can contribute to the conversion of different organic and inorganic dissolved substrates. For
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Figure 6.1: Schematic representation of a biofilm. A micro colony of bacteria is embedded in a
self produced exopolysaccharide matrix, anchored to an inert substratum and submerged in a bulk
liquid (even though sub-aerial biofilm also exist). While bacteria are rather rigid bodies (particulate
phase of the biofilm),the several dissolved substances that play an active role in the metabolism of
the bacteria which compose the biofilm (dissolved substrates) can diffuse through the ECM.

example, when a wastewater contains a mixture of conventional and xenobiotic organic pollutants,

biodegradation of the xenobiotics requires a population of slow-growing bacterial organisms - those

capable of degrading the xenobiotics. The slow growing ones could be washed out of a

suspended-growth process, since all the biomass has the same growth rate, which normally is

controlled for the benefit of the bacteria which degrade the conventional organic pollutants.

However, when bacteria organize themselves as a biofilm, the slow-growing bacteria can establish

themselves deeper inside the biofilm, protected thus from loss, while the conventional pollutants

are removed near the interface between biofilm and the bulk liquid. [235].

Impact of biofilms on society

In general, biofilms play a significant role in various natural and engineered systems. Their action

ranges from being deleterious to human activities and health to being a strong ally in several

situations. [303].

To name a few example of detrimental biofilms, we cite the biofilm-related problems in dental

hygiene (dental plaque), infectious diseases (e.g., cystic fibrosis), and infections related to the

presence of bacteria in medical implants (e.g., catheters, contact lenses, heart valves). Biofilms are
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Figure 6.2: Schematic representation of the biofilm life cycle stages ([260]): (i) Reversible attachment
of planktonic bacteria. (ii) Irreversible attachment. (iii) Micro colonies formation. (iv) Mature
biofilm development. (v) Biofilm detachment/seeding and dispersal.

also responsible for biofouling and process water contamination, microbially influenced corrosion

and quality deterioration of drinking water.

Conversely, there are many examples of biofilms which are good for society.

For example, biofilms have been extensively used in biotechnological applications such as

waste-water and solid waste treatment, drinking water filtration, biofuel production. In coastal

areas, rivers and lakes, a large fraction of bacterial activity is located in biofilms present in stones

and sediments. Biofilms also occur in nature in soils and on the roots of plants. All these above

mentioned naturally occurring biofilms are of paramount importance for cycling nutrients in the

Biosphere.

Biofilm life cycle and dispersal

Cells in biofilms experience developmental programs which result in an ordered and predictable

transition through several distinct stages. Each of these stages is based on stage-specific expression

of genes [93]. Such biofilm developmental program culminates with the release of free-living cells

that are able to colonize new habitats, possibly richer in resources [173]. There are a total of five

stages [260], which are represented in Figure 6.2.

In the first stage, reversible attachment the formation of microbial biofilms begins with the

reversible adhesion of a small number of cells to a surface. The initial attachment between bacteria
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and the surface is governed by non-specific interactions such as electrostatic, hydrophobic, or van

der Waals forces.

After binding to the surface through the glue-like matrix, bacterial cells begin the process of

irreversible adhesion, proliferation, and accumulation as multi-layered cell clusters. This is the

second stage of biofilm life cycle, i.e. irreversible attachment.

The attached cells then synthesize new exopolysaccharide material in order to cement their

adhesion to the surface, and to other cells in the developing biofilm. This extracellular matrix,

composed of a mixture of biomaterials such as polysaccharides, proteins, nucleic acids, and other

substances, is considered essential in holding bacterial cells together in the biofilm structure, in

helping to retain nutrients for cell growth, and in protecting cells from dehydration and the effects

of stress. Once having irreversibly attached to a subtratum, bacterial cells undergo phenotypic

changes. This phase, named micro colonies formation, is characterized by active binary division of

attached cells and cell recruitment.

The fourth stage is the one of mature biofilm development. Biofilms in fact typically acquire a

three-dimensional structure when they reach maturity. The cell accumulation requires coordinated

efforts from the microbial community to produce a well-organized structure. Mature biofilms

typically consist of differentiated mushroom-like structures of cells embedded within extracellular

polymer matrix, which contains voids open to the bulk fluid, to allow the transport of nutrients

from the interface to the inner parts of the biofilm, and removal of metabolic wastes. These

three-dimensional structures characterized by macrocolony morphology rely on self-produced

extracellular matrix components. EPS, amyloid-forming proteins, adhesins, and exopolysaccharides

(all inside of the biofilm matrix) are necessary to generate such structures, where spatial

distribution (gradients) of water,nutrients, signaling compounds ( and waste prod- ucts) can be

noted along the spatial extent of the biofilm, changing thus the methabolism of the cells.

The fifth (and last) stage of bio-film life cycle is when bacterial cells detach from the biofilm or

seed reentering the planktonic state, and may start a new biofilm formation cycle in other settings.

While detachment is a passive process of cell loss resulting from sloughing of cells and/or erosion

from the biofilm, active or seeding dispersal is coordinated via regulatory systems in response to a

number of cues (e.g., alteration in the availability of nutrients, oxygen depletion, levels of iron) and

signals (e.g., acyl-homoserine lactones, diffusible fatty acids, cell-cell autoinducing peptides) [103].

Thus, seeding dispersal can occur in the complete absence of flowing conditions, and does not

depend upon shear forces that removes cells from the biofilm. Another interesting feature of

seeding dispersal is that cells appear to have a distinct phenotypes different from those of biofilm

and planktonic cells, increasing cell ability to colonize a greater range of habitats important for

niche expansion [54, 63]. Thus, dispersal represents an important adaptive strategy with profound

impacts on the survival and fitness of microorganisms. It allows biofilm populations to spread and
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colonize new surfaces, avoiding overcrowding, depletion of resources and competition among cells

in the local environment, and promoting the rejuvenation of biofilms [21]. Furthermore, dispersal is

linked to the generation or maintenance of genetic variation, with significant outcomes for the

success of those bacteria in the environment [227, 54, 63].

Although dispersal is advantageous from the microbial standpoint, it may negatively affect some

industrial and medical processes. For instance, through dispersed cells, biofilm can spark new

infections within the host and result in the transmission of bacteria between different hosts [132].

Furthermore, dispersal may promote, for example, the spread of parasitism phenomena in animals

and plants [297], biodeterioration of historical and artistic objects [48, 298] and fouling in

food-processing equipment [47].

The existence of a programmed generation of dispersed cells appears increasingly clear, but the

challenge now is to provide the mechanistic understanding of biofilm dispersal.

In 6.2, we propose a modeling approach to study the growth of mono-layer microbial biofilm on

inert surfaces by focusing on the biofilm spread induced by dispersal, predicting the formation and

growth of satellite colonies generated by dispersing biofilms.

6.1.1 Mathematical modeling of biofilms

Understanding the mechanisms of biofilm formation, growth, and detachment/dispersal plays an

important role for promoting biofilms which help human activities while reducing the damage

provoked by detrimental ones. Without any doubt, mathematical modeling is one of the essential

tools for shedding some light on such complex biological phenomena.

Since most biofilms are complex systems [303], a biofilm model that attempts to capture all its

complexity should necessarily include mass balance equations for all processes occurring for all

biofilm components, continuity and momentum equations for the fluid inside and outside the

biofilm , and boundary conditions for every variable in the interface with bulk liquid. The

implementation of such an exact model is impractical, at least. As a consequence, even the most

complex biofilm models make use of several assumptions and simplifications. Most biofilm models

capture therefore only a fraction of the total complexity of a biofilm system, but they still prove to

be rather useful. Simplifications, as a matter of fact, are a natural and necessary part of any kind

of mathematical model.

Many biofilm models have been proposed in the literature over the last decades [172, 129]. Some of

them have been derived in the framework of continuum mechanics and formulated as differential

equations based on (mass, volume, momentum, energy) conservation

principles [304, 75, 7, 57, 318, 228]. Others have been introduced as bottom-up models and assume

biofilms to be inherently stochastic living systems [220, 134, 273, 120, 140]. Still, biofilm modeling

remains a challenge, in particular since the biological processes involved in biofilm formation and
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growth are highly nonlinear and since there is no agreed-upon methodology to guide the user in

the selection of the most appropriate model(s) and in the choice of the input parameters. For

instance, no reference values have been defined for these inputs [35], while they may affect the

nonlinear system in unpredictable ways.

An interesting view that links this biological topic with the front propagation in random/complex

models is the fact that biofilm is made of bacteria that instead of living dispersed in an aqueous

media, prefer to live in a neatly separated structure. It is easy to detect thus a front that advances

due to the push of biological activity on the biofilms, and may be subject to external velocity field

of hydrodynamic nature [272]. In the following Sections, this view of biofilm in the context of

statistical front propagation is pursued in two different context. In Section 6.2, the statistical front

propagation model of Chapter3 is used to model planar biofilm that perform (random) seeding and

dispersal of bacteria, creating new colonies. This work corresponds to the recent report [288] In

Section 6.2, conversely, a one-dimensional biofilm model of engineering relevance that includes for

planktonic invasion in a biofilm composed by different species is studied. This work corresponds to

the recently published paper [285]. For the sake of such study, UQ and SA with some of the

mathematical instruments presented in Chapter 2 is performed. In this case, the biofilm is seen as

growing in only one direction, and the front is just a point separating the biofilm phase and the

bulk liquid. Nevertheless, since its evolution depends on a set of parameters that are supposed of

random nature (because no precise information can be inferred), we have indeed a front that

propagates as a random process.

6.2 Model Application: Planar Bioilm Modeling

In this work, summarized in the recent report [288], we focus on a planar geometry, neglecting the

vertical growth of the biofilm, to better catch a bidimensional pattern of biofilm colonies all over

the surrounding environment. Such planar setting is proper of biofilm growth in oligotrophic

environments (e.g., reverse osmosis membranes, stone monuments, surgical gauze, contact lenses,

water supply pipes), where nutrient constraints limit microbial growth to thin mono-layered

biofilms. As already stated in the previous Section, the growth of this biofilm is characterized by

two main phenomena: the biomass expansion due to the growth of primary existing colonies, and

the formation of new colonies due to the attachment of dispersed cells released by the primary

ones, i.e., seeding dispersal. The biofilm colony growth is modeled by using the Level Set Method

introduced in Chapter 1, while seeding dispersal is simulated, using the same modeling approach of

Chapter 3, through the Probability Density Function (PDF) corresponding to the diffusive process

that governs the bacteria dispersal behavior. The concepts of Chapter 3 are in the following

adapted to this biological application.
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The surface of mature biofilm colony Ω is generally composed by an ensemble of biofilms spots Ωi

with i = 1, . . . , n(t) where the total number n depends on time t because of possible merging and

birth of colonies. Let ϕ : S × [0,+∞[→ R be a function defined on the domain of interest S ⊆ R2

such that the iso-line ϕ (x, t) = c describes the evolution the boundaries of Ωi, i.e., the evolution of

the colonies fronts. Then the motion of the fronts of biofilm colonies is determined by the Level Set

Equation:
∂ϕ(x, t)

∂t
= u(x, t) ‖∇ϕ(x, t)‖ . (6.1)

For the sake of simplicity, the outward normal velocity u(x, t) is assumed constant, i.e., u(x, t) = u.

Let the mature colonies be able to release a sufficient large number of cells whose dispersion is

characterized by a random motion. Let Xω(t,x) be the ω-realization of the trajectory of a

dispersed cell with an average position x = x(t) and initially located in x(0) = x0, such that

Xω(0,x) = x0. Cell trajectories are described by the one-particle density function

pω(x; t) = δ (x−Xω (t,x)), where δ (x) is the Dirac δ-function. Moreover, let the regions Ω

occupied by the colonies be conveniently marked by an indicator function IΩ(x, t). Then, an

effective indicator ϕe, ϕe(x, t) : S × [0,+∞[→ [0, 1], of the region surrounded by a random front is

obtained by using the sifting property of the δ-function and by averaging the indicator function:

ϕe(x, t) = 〈
∫
S
IΩ(x, t)δ(x−Xω(t,x)) dx〉

=

∫
S
IΩ(x, t)〈δ(x−Xω(t,x))〉 dx

=

∫
S
IΩ(x, t)p(x; t |x) dx

=

∫
Ω(t)

p(x; t |x) dx , (6.2)

where p (x; t |x) = 〈δ (x−Xω (t,x))〉 is the PDF of the seeding bacteria. In this work, p (x; t |x) is

assumed to be Gaussian.

Function ϕe(x, t) in this application fields provides an estimation of the probability that dispersed

bacteria cells arrive in a point x from different sources Ωi(t). However, to relate this probability of

arrival to a successful formation of a new biofilm colony spot, a criterion associated with a

reversible/irreversible attachment due to environmental conditions and biological time scales is

needed. A parallelism can be made between this concept and the time delay in the secondary fires

appearances due to firebrand showers treated in Chapter 5. In both cases we thus recur to a

storing function that included a time-delay parameter, ψ.

The integral field ψ is defined here as

ψ(x, t) =

∫ t

0

1

τ(x, ε)
ϕe(x, ε) dε . (6.3)
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Such field stores at any point of domain x the signals received from the active biofilm ( that is, Ω)

during the temporal interval [0, t].

Unlike forest fire applications of Chapter 5, time delay is here actively determined by the dynamics

of biofilm and the environmental conditions of the surroundings.

We denote in fact by τ(x, t) the timescale of signal storing ([288] ), defined as

τ(x, t) = τe(x, t) + V (x, t) . (6.4)

In the last formula, τe(x, t) represents the environmental distribution of resources neglecting the

action of biofilms, while the field V (x, t) accounts for the resource depletion carried out by the

biofilm.

The feedback mechanism, in the same way as seen in Chapter 5 between ψ and ϕ is given by the

procedure

ψ(x, t) ≥ 1→ IΩ(x, t) = 1 . (6.5)

In this biofilm modeling framework, formula 6.5 has the following biological interpretation: when

into a considered spot a certain amount of dispersed cells have established and endured a certain

amount of time (that accounts for the environmental availability of resources) then a new colony is

generated. We recall that the indicator function IΩ(x, t) results to be

IΩ(x, t) =


1 , if ϕ (x, t) ≤ c or ψ(x, t) ≥ 1 , x ∈ Ω ,

0 , elsewhere , x 6∈ Ω .

(6.6)

Equation (6.4) portrays an trade-off between the availability of resources offered from the

surrounding environment and the resource depletion carried out by the growth of the biofilm

colonies. This simple formulation of the timescale for the waiting times of free cells seeding might

generate different patterns of biological interest. In the following, the term τe is assumed constant

in time, because it represents the availability of resources before the action of biofilm, and this is

assumed to change slower than the biofilm evolution.

The term V (x, t) instead, is modeled by the following Poisson problem

α∆V (x, t) = ρb , (6.7a)

V (x, t)|x∈∂S = 0 , (6.7b)

where ρb is the bacterial density inside the colonies and α an absorption kinetic coefficient. In our

case, the bacterial density inside the colony is constant, and the latter equation becomes

α∗∆V (x, t) = IΩ(x, t) , (6.8)

where α∗ corresponds to α in the rescaled setting and differs for the physical dimensions. The

dynamic governed by (6.8) depends only on α∗ and, in spite of its simplicity, it manages to

represent availability of biofilm resources, determining the temporal dynamics of seeding dispersal.
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Computational resources In the following two Subsections, numerical routines are used to

integrate the equations [6.1–6.8]. Such computations were done by using the facilities of BCAM by

running an OpenMp-parallel finite difference C/Fortran code. Its routines rely on a

general-purpose library written in Fortran2008/OpenMP, LSMLib

(http://ktchu.serendipityresearch.org/software/lsmlib/). The latter provides robust and

efficient tools to track the evolution of co-dimensional fronts moving in one-, two- and

three-dimensional domains.So called Essentially non oscillatory (ENO) algorithms are employed to

compute accurate space derivatives, while for the advancement in time a second order

Runge–Kutta scheme was implemented.

6.2.1 Synthetic test case

In the numerical experiments performed, the simulation starts with 4 active biofilms spots located

at a random places in the square S = [0, L]× [0, L] . Such active biofilms are represented for the

sake of simplicity as 4 circular spots of the same radius L/20 . The distribution of resources not

affected by biofilm activity, τe, is here modeled as expressed in the model description, via 14 spots

of resources of the same radius of the active biofilms, L/20. The level of resources is therefore low

outside of a favorable spot , wich implies a bigger attachment time scale τ = 10.0. On the other

hand, inside of a favorable spot the time scale of attachment is low, and the attachment time has

been set to τ = 0.01. The normal velocity of the Level Set Equation 6.1 has been deliberately been

set low, in order to highlight the effect of the seeding and attachment phenomenon rather than the

biomass expansion.

Figure 6.3 shows the colonization of the surrounding environment with resources spot marked as

red dashed circles, and active colonies as magenta solid contours. In the z-axis the quantity ϕe

that is related to the probability of seeding and dispersal is plotted. Three different time steps are

plotted, with increasing simulated time from left to right. At the last time step, due to the action

of φe (stored in ψ), a new active colony is born in a resource spot in the lower right corner of the

simulated domain. This new colony is born uniquely due to the effect described by the presented

model, and not by the standard front advance carried out by LSM equation. Field of ψ of the last

time-step of the latter simulation is portrayed in Figure 6.4.

Figure 6.5 shows the dynamics of a second synthetic experiment, with 6 spots of resources. The

active colonies contours are colored from brown to yellow, according to the different time steps.

The black dashed lines are isocontours of V field at the time of the first plotted active colony,

while the purple spots are location of resources. Note that due to the action of the V field, not

always the new biofilm spot is generated in the nearest available location. Formation of new

colonized spots due uniquely to seeding can be observed.

http://ktchu.serendipityresearch.org/software/lsmlib/
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Figure 6.6 shows the effect of the variation of α on the biofilm dynamics for this numerical setting

(more specifically, on the seeding-storing field ψ). From left to right, the parameters assumed

increasing values α ∈ (0.1, 0.15, 2.5). Higher values for α meant higher consumption of resources

put in action by the colonies, that prevented thus the establishment of new ones in their

surroundings.

6.2.2 Experimental test case

In order to prove the potentiality of the proposed approach, an experimental test case has been

designed and realized. Pseudomonas aeruginosa strain PAO1 (MH873) was used in this study as a

model system of bacterial biofilms. In fact, the metabolically versatile P. aeruginosa PAO1 is an

opportunistic pathogen of plants, animals, and humans and is ubiquitously distributed in soil and

aquatic habitats. Furthermore, the bacterium is genetically characterized and amenable to

mutagenesis and ”omics” based approaches [263, 301]. The microorganism was maintained at

-80◦C in suspensions containing 20% glycerol and 2% peptone, and was grown aerobically in

Tryptic Soy Broth (TSB medium) for 15h at 30◦C. Dispersion experiments were conducted by

using the colony-biofilm culturing system. Briefly, 2 sterile black polycarbonate filter membranes

(0.22 µm pore size and 25mm diameter) were placed in each Petri dish containing Tryptic Soy

Agar (TSA medium), at a distance of 2 mm from each other. Bacterial cells are trapped

completely by the membrane filters having a pore size smaller than the bacterial size, while

nutrients and metabolites diffuse across membranes easily. Fifty µl of cell suspension containing

1× 108 cells were used to inoculate the central filter membrane. The plates were incubated at 30◦C

for 72h. Every 24h the Petri dishes were observed, and the dispersal phenomenon was documented

by capturing imagines with both a camera and a stereomicroscope (magnification 12X).

Numerical solution of model (6.1)–(6.8) has been computed by setting the physical

non-dimensional parameters as follows: α∗ = 0.05 LT−2, u = 10.0 LT−1 inside the membranes and

zero outside, and the diffusion coefficient of the Gaussian PDF equal to 103 LT−2. The numerical

set-up is based on a 2D mesh [0, 220]x[0, 370] with grid step δx = δy = 1.0L. The numerical test

concerns the two membranes: the inoculated one and seeding target (the two external dashed lines

in Fig. 6.7). These circular membranes have radius R = 60 in grid step units and center in

(110, 118) (the inoculated membrane) and (110, 252) (the target membrane). At the initial instant,

a mature biofilm colony is assumed to be present in the inoculated membrane with circular profile

centered in the center of the membrane and radius r = 35. Furthermore, the availability of the

environmental food needs to be set and it is represented by τe in (6.4). In particular, τe is assumed

to be constant in time and ranging through a linear interpolation procedure from 0.01T, when x is

inside the inner disk with radius < 0.70R, to 600.00T, when x is outside the membranes (see the
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Figure 6.3: Colonization of the surrounding environment with resources spot marked as red dashed
circles, and active colonies as magenta solid contours. In the z-axis the quantity ϕe that is related
to the probability of seeding and dispersal is plotted. Three different time steps are plotted, with
increasing simulated time from top to bottom. At the last time step, due to the action of φe (stored
in ψ), a new active colony is born in a resource spot in the lower right corner of the simulated
domain.
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Figure 6.4: ψ field of the last time-step of the simulation described by Figure 6.3. The favorable
spots (here dotted lines), far from the action of the active colonies, are colonized with the help of
the storage function ψ.

Figure 6.5: From brown to yellow, time evolution of biofilm spots. The black dashed lines are
isocontours of V field, while the purple spots are location of resources. Note that due to the action
of the V field, not always the new biofilm spot is generated in the nearest available location. The
part of the domain that have experienced a biofilm colonization that must be due uniquely to seeding
and dispersal effect is highlighted by a black square.
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Figure 6.6: Plot of the ψ field, for increasing α (from left to right, α ∈ (0.1, 0.15, 2.5), at a fixed time
t = 240∆t. This comparison shows the crucial role of biofilm resource consumption in the dynamic
of biofilm colonization of a complex environment.

dashed circles in the right side of Fig. 6.7). This assumption corresponds to a very large timescale

for generating a new colony outside the membranes, which corresponds to unfavorable conditions.

Figure 6.7 shows the growth of a primary colony in the inoculated membrane and its colonization of

the target membrane by a seeding dispersal mechanism both for the experimental data (the pair of

membranes on the left) and the proposed modeling approach (the pair on the right). The Level Set

Method describes the growth of the colony: first the primary one that is living in the inoculated

membrane (left side membrane) and later the secondary one in the target membrane. The seeding

and the attachment mechanism, which are responsible for the colonization of the target membrane,

are well reproduced by the model. In spite of the fact that the present comparison is qualitative, it

shows that the present approach is able through its modular structure to model the growth of the

biomass colony and to take into account the different processes that simultaneously occur. In

particular, the present approach provides a method to link a sharp interface model for the growth

of biofilm colonies and a statistical treatment for biofilm seeding. The modular structure allows for

a detailed front propagation through a more detailed expression for the normal velocity of the

colony front u(x, t) and a more detailed bacterial migration through a new statical

characterization. The comparison between the experimental pictures and some frame of evolution

of the model is promising and, thanks to the modular structure, the present approach emerges as a

novel and useful method for understanding the complex dynamics displayed by microbial biofilm.

Conclusions

The work described so far shed some light on the possibility of linking a sharp interface model for

biofilm spots growth and a statistical treatment of biofilm seeding. That should help model and

understand dynamics that are of paramount importance in a various spectra of applications, given

that any new stochastic characterization of bacterial migration could be easily implemented in this

framework. As a final remark, one of the main motivations for researching on biofilm dispersal is

to provide a mechanistic model to predict how cells attach and proliferate, seeding then new

biofilms. A better understanding of the evolution of dispersed cells may offer a broad conceptual
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Time

Figure 6.7: Left column: pictures from the inoculated membrane and the host membrane, taken at
t = 24h, 48h and 72h. The biofilm is contoured by a red dashed line. Right column: three stages of
the numerical simulation of the experiment, where the biofilm is marked by the purple bold surface.

framework for constructing new approaches and techniques to manipulate biofilm formation (either

discouraging or promoting biofilm development) in environmental, industrial and medical

applications. Hence, the ability to model and predict the mechanisms of dispersal would have a

great socio-economical impact, with many implications for global health, as well as for the

management of environmental microorganisms in biogeochemical cycling processes and

biotechnological biofilm-related applications.

6.3 Uncertainty Quantification and Sensitivity Analysis of a
multi species biofilm modeling

In this section, an existing model of 1D biofilm that had recently been improved with new

equations accounting for species invasion, is studied with UQ and SA procedures. This Section will

follow the results of the recent paper [284].
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6.3.1 Importance of sensitivity analysis in existing biofilm models

In the context of biofilm modeling, studying the sensitivity of the biofilm model predictions to the

variability in the input parameters is a way to better understand the response of the model to an

certain choice of parameters and ultimately to highlight new features into the biological processes.

In this Section the same notation of Chapter 2 is adopted. As a consequence, for each set of input

parameters θ = {θ1 . . . θd}, the output of the model is codified into a set of quantities of interest

y = {y1 . . . yn}. This leads to the definition of the functional relation F

θ ∈ Rd → y = F(θ) ∈ Rn. (6.9)

In the framework of uncertainty quantification [143, 256], the set of input parameters θ is

considered uncertain and the objective is to propagate the input uncertainties through the

numerical model and to estimate the subsequent uncertainties in the quantities of interest y. In

complement, global sensitivity analysis methods [118, 65] provide valuable ways to characterize the

input-output model dependency F : they are helpful to derive a relevant screening of the input

parameters, spot unimportant parameters and focus the attention on the most relevant ones.

Although the parameters involved in biofilm models may vary considerably and interact with each

other to influence in depth the model output, only few attempts have been made in the past years

to apply uncertainty quantification [261, 51] and sensitivity analysis to biofilm models at both local

and global levels [109, 40, 36, 137, 294, 309, 55]. Most of these studies refer to an application of the

original Wanner-Gujer model [304], which nowadays the most widely used biofilm model in

engineering applications. This model has been integrated in AQUASIM [230], a numerical

simulator designed for simulating aquatic systems and also for performing parameter estimation

and sensitivity analysis, see Refs. [40, 137, 294] related to global sensitivity analysis: Ref. [40]

presents a comparison between the qualitative Morris screening method and the quantitative

variance-based Fourier amplitude sensitivity test for a two-step nitrification biofilm model;

Ref. [137] presents variance-based sensitivity analysis applied to a one-dimensional biofilm model

for ammonium and nitrite oxidation for varying biofilm reactor geometry; and Ref. [294] calculates

sensitivity by performing model output linear regression for a complete autotrophic nitrogen

removal biofilm.

Unfortunately, Wanner-Gujer-type biofilm modeling is not detailed enough to study bacterial

invasion mechanisms, which occur frequently and play an important role in most of engineering

applications. To overcome this modeling limitation, a new class of continuum models for

multi-species biofilm formation and growth, which explicitly accounts for invasion mechanisms, has

been recently introduced [71, 72]. The novelty in such biofilm modeling class relates to the

introduction of a new state variable, which describes the concentration of planktonic species inside

of the biofilm. The diffusion of the free cells from the bulk liquid into the biofilm and the other
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way around is modeled by a diffusion-reaction equation; the growth processes are governed by a

system of nonlinear hyperbolic partial differential equations; and finally, substrate dynamics are

described by a system of semi-linear parabolic partial differential equations. All equations are

inter-connected so that the resulting system of differential equations corresponds to a free boundary

value problem, where the free boundary is represented by the biofilm thickness. This model

formulation aims at reproducing the colonization of new species diffusing from bulk liquid to

biofilm and the development of latent microbial species within the biofilm, without explicitly

prescribing boundary conditions for the invading species at the free boundary. These boundary

conditions are consistently specified by the model, instead of being set arbitrarily [305].

This new class of continuum models can handle any number of microbial species, both in sessile

and planktonic states, as well as dissolved substrates. One difficulty is that this type of model

involves parameters related to species invasion that are rather new in the literature and whose

reference values are not obvious to specify. To overcome this issue, we present in this study, a

variance-based sensitivity analysis approach that makes use of the well known Sobol’

indices [257, 243] described thorougly in Chapter 2, to spot the most important parameters related

to bacterial invasion mechanisms. These Sobol’ indices derived from variance decomposition

quantify the contribution of each uncertain parameter to the variance of the quantities of interest.

One non-intrusive way to compute them could have been the execution of a Monte Carlo random

sample of inputs and simulated outputs [80]. While this approach may be regarded as generic and

robust, it is computationally expensive due to a slow rate of convergence with respect to the

sample size. Due to the complexity of the biofilm model, this would require at least the order of

104–105 biofilm model simulations: this solution would of course exceed the available

computational budget. An alternative is to derive (or “train”) an emulator of the biofilm model

using a limited sample of inputs and simulated outputs (or “training set”) and taking advantage of

the regularity of the model response F . Stated differently, the objective is to fit the emulator (or

“surrogate”) over a dataset of biofilm model simulations and then to mimic in an accurate and

efficient way, the model response F for any set of parameters θ without solving the original system

of differential equations. Statistical information on the quantities of interest and Sobol’ indices can

then be computed using the emulator. Emulating can be regarded as a supervised learning

procedure and belongs to the field of machine learning [111].

In this study, the objective is to build a surrogate that accurately represents bacterial invasion as

described by a recent multi-species biofilm model and use it to perform uncertainty quantification

and global sensitivity analysis. In order to provide results that are not algorithm-dependent, we

compare two families of popular surrogate models, namely generalized Polynomial Chaos

(gPC) [265, 224, 312, 68, 30, 70] and Gaussian Processes (GP) [192, 167, 149, 141, 166].

Comparison of gPC-expansion and GP-model have been reported in the
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literature [246, 142, 197, 238]; Ref. [197] highlights that one approach does not systematically

outclass the other in terms of surrogate accuracy and computational efficiency, the best surrogate

being application-dependent. It is therefore of interest to compare gPC and GP approaches for

biofilm applications. The training step of the surrogate requires a sampling of the uncertain input

space, with the creation of a Design of Experiment (DoE). The GP approach is known to be more

accurate for less structured design than tensor grid when performing sensitivity analysis [293].

Consistently, the sampling is performed here using a low-discrepancy Halton’s sequence with a

given budget N = 216. Due to the nonlinearities of the biological processes involved, we investigate

the effect of several choices of the gPC polynomial basis (full or sparse) on the surrogate

performance for a fixed sample size N . We recall that adopting a sparse polynomial basis may

reduce the size of the stochastic problem by only selecting the most significant basis components,

and help to better capture a complex model response to variations in the input parameters [286].

We consider here the least-angle regression (LAR) approach to build a sparse gPC basis [33, 32],

which was found to provide the best performance among several sparse methods in Ref. [286].

Again, further details on LAR regression can be found in Chapter 2.

It is worth noting that the biofilm model we analyze belongs to the category of hyperbolic partial

differential equations, meaning that the quantities of interest can exhibit sharp variations (and

even discontinuities) for a subset of the input stochastic space. Given that, building an accurate

surrogate that covers the whole input space when dealing with model nonlinearities results to be

quite challenging [224, 68, 30, 217]. One strategy found in literature is to partition the input space,

bulding local surrogates and finally combine them into a mixture-of-experts model [144]. It is thus

of paramount interest to investigate if building a global surrogate for biofilm applications could

give acceptable results, before embarking on more complex settings such as mixture of experts.

In this Section, the target problem is a typical microbial interaction occurring in waste-water

treatment plants. Initially, the biofilm is only made of heterotrophic bacteria and latent

autotrophic bacteria are present in the bulk liquid; then autotrophic bacteria infiltrate the biofilm,

switch their state from planktonic to sessile mode and start to proliferate, where they meet the

best environmental conditions for their growth. The gPC and GP surrogates are exploited to

quantity the uncertainties in the microbial species volume fractions and analyze their dependency

with respect to three parameters related to the autotrophic bacterial invasion (the problem

dimension is d = 3 in Eq. 2.1). Note that in the literature, global sensitivity analysis and

uncertainty quantification mostly deal with scalar outputs, while the biofilm model output here is

functional with spatial and temporal discretizations, n > 1 in Eq. (2.1). Our approach consists

here in building a surrogate at each time step of interest, over the spatial grid associated to the

model output [45, 99, 65].
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6.3.2 Biofilm model

In the following the recent continuum model [71] is described. We recall that the aim of this model

is to forecast in a quantitative and deterministic way, the bacterial invasion in multi-species

biofilms [172]. Such model essentially consists of a modified Wanner-Gujer formulation accounting

for the dynamics of the invading planktonic species as well as substrate diffusion, attachment,

detachment, microbial growth and biomass spreading. This model has been derived in one

dimension and subsequently generalized to three dimensions [129]. However, in the present study,

we focus only on the one-dimensional model.

6.3.3 Free boundary value problem

The invasion model is formulated as a free boundary value problem for the three state variables:

(1) the concentration of microbial species in sessile form Xi(z, t), i = 1, . . . , Ns, X = X1, . . . , XNs ;

(2) the concentration of planktonic species ψi(z, t), i = 1, . . . , Ns,ψ = ψ1, . . . , ψNs ; and (3) the

concentration of the dissolved substrates Sj(z, t), j = 1, . . . , Nm, S = S1, . . . , SNm , including the

substrates provided by the bulk liquid and the metabolic waste products related to microbial

metabolism. Note that the state variables are functions of time t and space z, with z denoting the

one-dimensional spatial coordinate assumed perpendicular to the substratum surface located at

z = 0. Note also that for generality, both the microbial species in sessile and planktonic states are

in number of Ns, although in most of applications Ns denotes the number of all particulate

components, such as extracellular polymeric substance, inert material and all the phenotype

variants of the microbial species.

In the following, the concentration of the ith microbial species in sessile form Xi(z, t) is defined as:{
∂Xi
∂t (z, t) + ∂

∂z (u(z, t)Xi(z, t)) = ρi rM,i(z, t,X,S) + ρi ri(z, t,S,ψ),

Xi(z, 0) = ϕi(z), t = 0, 0 ≤ z ≤ L(0).
(6.10)

Equation (6.10) describes the growth of the ith microbial species constituting the biofilm and

derives from mass conservation. Biofilm expansion is driven by biomass accumulation: biomass

spreading is modeled as an advective mass flux of each species. The reaction terms rM,i model the

growth of sessile cells (which is controlled by the local availability of nutrients, usually described

with standard Monod kinetics) and the natural death of cells. The terms ri stand for the growth

rates of the ith microbial species due to colonization, which induces the switch of planktonic cells

to a sessile growth mode. This phenotypic change is catalyzed by the formation of specific

environmental niches within the biofilm matrix. Please note that Eq. (6.10) can be reformulated in

terms of volume fractions

fi = Xi/ρi,

Ns∑
i=1

fi = 1, (6.11)
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where fi is the volume fraction at a particular location that is occupied by the ith species, and

where ρi represents the biomass density for the ith species, usually assumed the same for all

microbial species. Note that ϕi(z) in Eq. (6.10) denotes the initial distribution of biofilm

particulate components at initial time; for invading microbial species, ϕi(z) = 0. Note also that the

advective biomass velocity u(z, t) corresponding to the velocity at which the microbial mass is

displaced with respect to the film-support interface is formulated as


∂u
∂z (z, t) =

Ns∑
i=1

(rM,i(z, t,X,S) + ri(z, t,S,ψ)) ,

u(0, t) = 0, z = 0, t ≥ 0.

(6.12)

u(z, t) is determined by the mean observed specific growth rate of the biomass; it is assumed

identical for all considered species. u(z, t) also depends on the specific growth rates related to

invasion process. The boundary condition at z = 0 is derived from a no-flux condition imposed at

the substratum surface.

Moreover, the biofilm extent (or “thickness”) varies with time, i.e. L ≡ L(t). Equation (6.13)

governs the evolution of the free boundary, which depends on the displacement velocity of

microbial biomass as well as on the attachment and detachment fluxes:{
dL
dt (t) = u(L(t), t) + σa(t)− σd(L(t)), t > 0,

L(0) = L0, t = 0,
(6.13)

where L0 corresponds to the initial biofilm thickness. Equation (6.13) is derived from conservation

principles at global scale.

The concentration of the ith planktonic species ψi(z, t) follows a diffusion-reaction equation:

∂ψi
∂t (z, t)− ∂

∂z

(
DM,i

∂ψi
∂z (z, t)

)
= rψ,i(z, t,S,ψ),

ψi(z, 0) = ψi,0(z), t = 0, 0 ≤ z ≤ L(0),

∂ψi
∂z (0, t) = 0, z = 0, t > 0,

ψi(L(t), t) = ψ∗i (t), z = L(t), t > 0.

(6.14)

Equation (6.14) governs the movement of planktonic cells within the biofilm matrix. The reaction

terms rΨ,i represent a loss term for invading species when biofilm colonization occurs. DM,i

denotes the diffusion coefficient of the ith planktonic species within the biofilm. For all considered

microbial species, the initial concentration of planktonic cells within the biofilm is usually set to 0

(implying that invasion occurs at initial time) or using a spatially-distributed specific function

ψi,0(z). Homogeneous Neumann conditions are adopted on the substratum surface at z = 0 due to

a no-flux condition. Dirichlet boundary conditions are prescribed at the free boundary z = L(t).

The functions ψ∗i (t) represent the concentrations of planktonic cells within the bulk liquid; they

can be prescribed or derived from mass conservation within the bulk liquid.
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The concentration of the jth dissolved substrate Sj(z, t) is also governed by a reaction-diffusion

equation 

∂Sj
∂t (z, t)− ∂

∂z

(
Dj

∂Sj
∂z (z, t)

)
= rS,j(z, t,X,S),

Sj(z, 0) = Sj,0(z), t = 0, 0 ≤ z ≤ L(0),

∂Sj
∂z (0, t) = 0, z = 0, t > 0,

Sj(L(t), t) = S∗j (t), t > 0,

(6.15)

where the term rS,j represents the jth substrate production or consumption rate due to microbial

metabolism, and where Dj denotes the diffusion coefficient of the jth substrate within the biofilm.

The initial concentration of the jth dissolved substrate is prescribed using the function Sj,0(z). As

for the concentrations of planktonic species ψi(z, t), homogeneous Neumann conditions are adopted

for Sj(z, t) on the substratum surface at z = 0 due to a no-flux condition, and Dirichlet boundary

conditions S∗j (t) are prescribed at the free boundary z = L(t).

6.3.4 Autotrophic colonization

In the present study, we consider the following target problem: the biofilm is constituted by three

particulate components, heterotrophic bacteria X1, autotrophic bacteria X2, and inert material X3

(X3 directly results from the decay of the two active microbial species X1 and X2).

At initial time, we assume that the biofilm is only composed of heterotrophic bacteria and we

enhance autotrophic colonization. We consider heterotrophic-autotrophic competition with oxygen

as common substrate as in Ref. [304]. Three dissolved substrates are taken into account: organic

carbon S1, ammonia S2, and oxygen S3. Oxygen is used for both organic carbon oxidation and

nitrification. Note that the waste products of the metabolic reactions are not explicitly modeled.

The establishment and proliferation of X2 strictly depend on the formation of an environmental

niche, where the growth of heterotrophic bacteria X1 is limited by the low concentration in organic

carbon. Planktonic cells ψ2 are considered for X2 as the biofilm model is aimed at simulating the

invasion of a constituted biofilm by autotrophic bacteria after the establishment of a favorable

environmental niche.

The stoichiometry and the process rates needed to close the model equations (Eqs. 6.10–6.15),

including the expressions for rM,i, rS,j , ri and rψ,i, are taken from Refs. [305, 71].

The biomass growth rates rM,i in Eq. (6.10) are

rM,1 =

(
µmax,1

S1

K1,1 + S1

S3

K1,3 + S3
− kd,1

)
X1, (6.16)

rM,2 =

(
µmax,2

S2

K2,2 + S2

S3

K2,3 + S3
− kd,2

)
X2, (6.17)

rM,3 = kd,1X1 + kd,2X2, (6.18)

where µmax,i denotes the maximum net growth rate for the ith biomass, Ki,j is the affinity

constant of the jth substrate for the ith biomass, and kd,i stands for the decay constant for the ith
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biomass. The specific growth rates induced by the switch of the planktonic cells to the sessile

mode of growth, also required as inputs to Eq. (6.10), are defined as

r1 = r3 = 0, (6.19)

r2 = kcol,2
ψ2

kψ,2 + ψ2

S2

K2,2 + S2

S3

K2,3 + S3
, (6.20)

where kcol,2 corresponds to the maximum colonization rate of autotrophic bacteria, and where kψ,2

corresponds to the affinity-type constant for ψ2.

The conversion rates for the three substrates required as inputs to Eq. (6.15) can be formulated as

rS,1 = − 1

Y1
µmax,1

S1

K1,1 + S1

S3

K1,3 + S3
X1, (6.21)

rS,2 = − 1

Y2
µmax,2

S2

K2,2 + S2

S3

K2,3 + S3
X2, (6.22)

rS,3 = −1− Y1

Y1
µmax,1

S1

K1,1 + S1

S3

K1,3 + S3
X1

−4.57− Y2

Y2
µmax,2

S2

K2,2 + S2

S3

K2,3 + S3
X2, (6.23)

with Yi denoting the yield of biomass i.

The conversion rate of the planktonic cells associated with the ith species, required as input to

Eq. (6.14), is given by

rψ,i = − 1

Yψ,i
ri, (6.24)

where Yψ,i is the yield of sessile species on planktonic ones. The terms rψ,i describe the

consumption rates of planktonic cells due to invasion process. rψ,i are assumed proportional to ri,

meaning that they are modeled using the same Monod kinetics.

6.3.5 Simulation settings

To numerically solve the free boundary problem presented in Section 6.3.3 and Section 6.3.4, we

use a straightforward upgrade of the numerical method proposed in Ref. [73]. The method of

characteristics is used to track the biofilm expansion. Finite difference method is then adopted to

solve the diffusion-reaction equations. We extend this method to account for the new independent

variables {ψi}, which account for invasion processes and which follow Eq. (6.14); {ψi} are treated

similarly as the variables {Sj} characterizing dissolved substrates in Eq. (6.15). The solver is

implemented in Matlab.

In the present application, simulations are run for the target simulation time T = 15 days. The

initial and boundary conditions related to the free boundary problem are listed in Table 6.1.
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Table 6.1: Initial-boundary conditions for biofilm growth, Eqs. (6.10)–(6.15).

Variable Symbol Value Unit
Initial volume fraction of f1 ϕ1(z) 0.0 –
Initial volume Fraction of f2 ϕ2(z) 1.0 –
Initial volume Fraction of f3 ϕ3(z) 0.0 –
Bulk liquid concentration of S1 S∗1 3 gCODm

−3

Bulk liquid concentration of S2 S∗2 13 gNm
−3

Bulk liquid concentration of S3 S∗3 5 gO2
m−3

Bulk liquid concentration of ψ1 ψ∗1 0.0 gCODm
−3

Bulk liquid concentration of ψ2 ψ∗2 1.0 gCODm
−3

Initial biofilm thickness L0 300 µm
Initial concentration of S1 S1(z, 0) 0.0 gCODm

−3

Initial concentration of S2 S2(z, 0) 0.0 gNm
−3

Initial concentration of S3 S3(z, 0) 0.0 gO2
m−3

Initial concentration of ψ1 ψ1(z, 0) 0.0 gCODm
−3

Initial concentration of ψ2 ψ2(z, 0) 0.0 gCODm
−3

6.3.6 Sources of uncertainty, quantities of interest and experimental
designs

6.3.7 Functional output

The state of the biofilm evolves in time t ∈ [0, T ] and space z ∈ [0, L(t)]. The biofilm is

characterized by biomass volume fractions, fi, i ∈ {1, . . . , Ns}, and substrates Sj , j ∈ {1, . . . , Nm},

with Ns = 3 and Nm = 3 (see Section 4.1). Since the objective here is to analyze invasion

mechanisms, we focus our attention on the species volume fractions fi defined in Eq. (6.11).

The quantities of interest could be in principle formulated as

yi(t) =

∫ L(t)

0

fi dz

L(t)
, i ∈ {1, . . . , Ns}. (6.25)

However, this choice would not express the spatial variability of the biofilm properties and would

lead to an analysis of the different species as if the biofilm were concentrated in a single point. To

circumvent this problem, the following discretization of the biofilm is proposed:

yijk = fi(zj , tk), i ∈ {1, . . . , Ns}, (6.26)

where the spatial discretization is given by zj = j∆z, ∆z = L(t)/Nz and j ∈ {0, . . . , Nz − 1}, and

where the time discretization is given by tk = k∆t, ∆t = T/Nt and k ∈ {0, . . . , Nt − 1}.

In particular, we consider Nt = 4 times at which the biofilm extension is discretized into Nz = 5

locations. Note that the inert volume fraction f3 is retrieved by mass conservation (Eq. 6.11).

Hence, the model output y is of functional type and includes the elements yijk with i = {1, 2};

j = 1, . . . , 5; and k = 1, . . . 4 (y ∈ Rn with n = 40) in the present study. This functional output is

referred to as the “quantities of interest”.
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Note that the quantities of interest are considered as Lagrangian markers assigned to a relative

position of the biofilm, whose spatial extent L ≡ L(t) depends on time and on the biofilm model

parameters (see Section 6.3.8).

6.3.8 Sources of uncertainty

In biological applications, a major source of uncertainty resides in the parameters associated with

species or substrates. In the present modeling approach, parameters such as µmax,i, kd,i, Ki,j and

Yi (i = 1, . . . , Ns, j = 1 . . . Nm) are well characterized in Ref. [304] and are therefore assigned to

reference values. We thus shift our attention to the parameters related to autotrophic bacteria

biofilm invasion: kcol,2 and kψ,2 involved in r2 in Eq. (6.20) to model the growth rate of

autotrophic bacteria in sessile mode on the one hand, and Yψ,2 involved in Eq. (6.24) to model the

consumption rate of planktonic cells denoted by rψ,2 on the other hand. Hereafter, kcol,2, kψ,2 and

Yψ,2 are respectively denoted by kcol, kψ and Yψ for clarity purposes. The uncertain input vector θ

is thus defined as

θ = (kcol, kψ, Yψ) ∈ R3. (6.27)

such that the problem dimension is d = 3, see Table 6.2.

We recall that these parameters are not well characterized in literature and their determination

still requires an accurate experimental activity based on ad-hoc techniques. In this work, we

consider stochastic methods to represent input uncertainty. Thus, according to the theory of

Chapter 2, the uncertain input parameters are modeled by a random vector Θ, meaning that their

values are supposed to depend on a random parameter ω such that Θ ≡ Θ(ω). ω is to be taken

from the set of all outcomes Ω, which is equipped with a σ−algebra S and a probability measure

P. The triplet (Ω,S,P) forms a probabilistic space [51].

The functional output y is considered as an element of L2(Ω,S,P) and is therefore represented as

a vector of stochastic process, i.e.

Y(ω) = F (Θ(ω)) , (6.28)

with F the mapping of the input parameters onto the space of the functional output given by the

biofilm model (see Eq. 2.1).

Table 6.2: Uniform marginal PDF associated with kcol, kψ and Yψ. Note that U(a, b) stands for the
uniform distribution with a the minimum value of the parameter and b the maximum one.

Parameter Uniform distribution
kcol U(10−4, 10−2)
kψ U(10−5, 10−2)
Yψ U(10−5, 10−3)
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Stochastic methods require to characterize the probability density function (PDF) associated with

the input random vector Θ denoted by ρΘ. We need to introduce some assumptions on the nature

of such uncertainty sources. First, we assume the components of Θ are independent. Second, we

consider uniform marginal PDF for each random variable Θi (i = 1, . . . , d) in Θ, denoted by ρΘi .

The following restrictions apply: kcol > 0, kψ > 0 and Yψ ∈ [0; 1]; see Table 6.2. The objective here

is to analyze under uncertainty, the relation between inputs Θ and outputs Y and to build an

emulator of the relation F in Eq. (6.28).

6.3.9 Experimental designs, databases, adopted surrogate mdoels

It is recalled that a design of experiments refers to the way of discretizing the uncertainty space (or

“hypercube”) ZΘ ∈ Rd (d = 3), in which the three parameters kcol, kψ and Yψ evolve. It is a way

to define the N realizations of parameters θ, for which the biofilm model is integrated as a

“black-box” to obtain the ensemble of N functional outputs y from which statistics can be derived.

This ensemble forms a database DN :

DN =

{(
θ(l),y(l)

)
1≤l≤N

}
, (6.29)

where y(l) = F
(
θ(l)
)

stands for the integration of the biofilm model F associated with the lth set

of input parameters θ(l).

In the present study, two databases of size N = 216 are compiled using quasi-Monte Carlo

sampling methods. They rely on low-discrepancy sequences to explore the hyperspace given by the

support of the three PDFs without any bias and to capture most of the variance [64]. The first

database built using Halton’s sampling serves as a training set and corresponds to the ensemble of

simulations over which the surrogates are trained (Fig. 6.8a). The second one is built using Faure’s

sampling. It serves as a validation set and corresponds to the ensemble of simulations that is not

part of the experimental design and that is used to evaluate the surrogate accuracy (Fig. 6.8b).

Note that the biofilm model is characterized by high nonlinearities. Figure 6.9 presents 10

representative biofilm model snapshots at different times, (a) 5 days, (b) 10 days and (c) 15 days.

The spatial distribution of the heterotrophic bacterial volume fraction f1 is represented for each

time, each line corresponds to a different realization of input parameters θ = (kcol, kψ, Yψ) that is a

point of the Halton’s low-discrepancy sequence presented in Fig. 6.8a and each line is colored with

respect to the autotrophic bacterial volume fraction f2. The biofilm length L(t) effectively varies

with time from 0.0010 to 0.0016 m.

Adopted surrogate models

In this work we built an emulator of the biofilm model, using generalized Polynomial Chaos (gPC)

expansion or Gaussian Process model. The common idea of both approaches is to design for each
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(a) Halton’s sampling
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Figure 6.8: Cloud representation of the two databases DN with N = 216, corresponding to different
sets of the three parameters kcol (x-axis), kψ (y-axis) and Yψ (z-axis). The two databases corres-
pond to low-discrepancy sequences, (a) Halton’s sampling (training set) and (b) Faure’s sampling
(validation set).
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(a) Time t = 5 days

(b) Time t = 10 days

(c) Time t = 15 days

Figure 6.9: Time-evolving species volume fractions f1 and f2 for varying uncertain input vector
θ = (kcol, kψ, Yψ) (Eq. 6.27). The x-axis corresponds to the biofilm thickness L(t); the y-axis
corresponds to f1; and the colormap corresponds to f2. The simulated physical time is (a) 5 days,
(b) 10 days and (c) 15 days.
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quantity of interest Y in the vector Y (Y ≡ Yijk) a surrogate by means of a weighted (finite) sum

of basis functions:

Y =
∑
α∈A

γαΨα, (6.30)

The coefficients {γα}α∈A and the basis functions {Ψα}α∈A are calibrated with the information

contained in the Halton’s training set DN with N = 216 (see Section 6.3.9).

In practice, the three adopted surrogate that are analyzed in the following sections are:

• generalized Polynomial Chaos (gPC) with linear projection strategy (SLS)

• generalized Polynomial Chaos (gPC) with LAR sparse projection strategy (LAR);

• Gaussian Process with RBF kernel.

In practice, the computation the gPC-expansion and GP-model used OpenTURNS [25] Python

package (see www.openturns.org); batman [239] was used to build Halton’s and Faure’s datasets.

6.3.10 Results

A posteriori error estimation of the surrogate models

The surrogates are ranked by their accuracy by the means of two error estimator introduced in

Section 2.4.5 of Chapter 2: Empirical Error εemp and Q2 coefficient.

Since in the following, for any tested configuration, we have εemp < 10−4, we shall focus on the Q2

coefficient alone. Moreover, it is remarked that GP surrogate has automatically εemp = 0 because

it is an interpolator of the DoE points. We validated thus the surrogates using the Q2 predictive

coefficient that corresponds to a cross-validation error metric using the independent dataset based

on Faure’s low discrepancy sequence:

Q2 = 1−

Nfaure∑
l=1

(
y(l) − ŷ(l)

)2

Nfaure∑
l=1

(
y(l) − y

)2
, (6.31)

with y the empirical mean over the Faure’s validation set (Nfaure = 216). We remind that the

target value for Q2 is 1.

Figures 6.10–6.11 present the Q2 predictive coefficient along the biofilm after 5 days, 10 days and

15 days for the three different surrogates: SLS-based gPC-expansion (black-star line); LAR-based

gPC-expansion (red-dotted line); and RBF-based GP-model (blue-squarred line). Figure 6.10 is

obtained when considering the species volume fraction f1 – heterotrophic bacteria – as observable;

Fig. 6.11 is the counterpart of Fig. 6.10 for f2 – autotrophic bacteria. Results show that the LAR

gPC-expansion gives the best performance with a Q2 close to 1 over the whole time period and all

along the biofilm thickness. The SLS gPC-expansion exhibits to significant error after 10 days and
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15 days, when the biological processes at play become more complex. The minimum value for Q2

moves along the biofilm over time, with Q2 going down to 0.6 at z ≈ L/4 after 10 days and 0.82 at

z = 2/4L after 15 days. The GP-model achieves intermediate performances between LAR-based

gPC-expansion and SLS-based gPC-expansion; the corresponding Q2 being at minimum equal to

0.9 when it reaches 0.6 for SLS-based gPC-expansion after 10 days. After 15 days both LAR-based

gPC-expansion and GP-model share similar performance.

Figure 6.12 presents the polynomial terms that are retained in the LAR gPC-expansion built to

emulate the species volume fraction f1 at a particular location of the biofilm (z = L(t)/4); time

evolution of these polynomial terms is presented (after 5, 10, 15 days). Note that we consider the

case z = L(t)/4 since the LAR gPC-surrogate tends to outperform the SLS gPC-surrogate and the

GP model at this location (see Fig. 6.10). Each active polynomial Ψα is associated with a colored

symbol, where the color represents the magnitude of the coefficient γα. The x-/y-/z-axis of the

plots represent the degree of the polynomial. It is evident that in this case LAR offers some

flexibility (due to the sparse structure of the polynomial basis) to integrate high-order polynomial

terms in the gPC-expansion, in particular along the direction associated with the parameter kcol

(x-axis), where polynomial degrees go up to 16 after 10 days. The full basis considered in the SLS

gPC-surrogate cannot include these terms due to the limited size of the training set (N = 216,

implying that P ≤ 5). The increase in complexity of the biofilm structure with respect to time is

highlighted by the increasing number of terms retained in the gPC-expansion over time.

To sum up, the sparse truncation strategy underlying the LAR-based gPC-expansion seems to

provide a clear advantage to build an emulator of the biofilm model. The magnitude and number

of LAR gPC-coefficients give insight into the complexity of the biological processes occurring in

multi-species biofilm; this complexity growing over time. The latter can only be captured by a

flexible adaptative surrogate approach that identifies inline the required polynomial degree to

accurately capture the system dynamics. The following analysis is therefore carried out using the

standalone LAR approach.

6.3.11 Uncertainty quantification of the biofilm model predictions

Using the LAR gPC-expansion, the statistics of each quantity of interest y can be derived

analytically from the coefficients {γα}α∈A. The mean value µy and STD σy of y can be estimated

as

µy = γ0, (6.32)

σy =

√√√√ ∑
α∈A⊂Nd

α6=0

γ2
α. (6.33)
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The PDF of each quantity of interest is retrieved through kernel smoothing techniques by sampling

the uncertain input space ZΘ using 10,000 members based on Monte Carlo random sampling and

by evaluating the LAR gPC-expansion for all these points.

Figure 6.13 presents the PDF of the species volume fractions f1 and f2 with respect to the biofilm

thickness L(t), along with the mean (solid line) and STD (dashed lines); each panel from left to

right corresponds to a different time step over the 15-day time period under consideration. Results

show that the uncertainty on the model output is driven rightwards as the simulation runs forward

in time: after 5 days the largest variance is observed near z = L(t)/4 and moves to z = 3/4L(t)

after 15 days. The same trend is observed for both species volume fractions f1 and f2.

The fact that the central part of the biofilm is subject to the highest level of uncertainty can be

interpreted as the increase in complexity of the biofilm structure, which is correlated to the

establishment of the invading species, is essentially due to the niche formation occurring far from

the biofilm boundaries (substratum surface on the left and bulk liquid on the right). Recall that

the adopted boundary conditions refer to a fixed bulk liquid concentration at z = L(t) as well as a

no-flux condition at z = 0 (see Table 6.1). Figure 7 shows the trends for the three substrates

Sj(j = 1, . . . , 3) over time; the organic carbon S1 and the oxygen S3 feature a signifcantly reduced

spread at the bottom of the biofilm, independently of the choice of the input vector θ. This is due

to a combined effect of substrate diffusion and microbial metabolism which leads to the decrease of

substrate concentration with respect to the constant value prescribed at the bulk liquid inteface.

More specifically, S1 is mainly consumed in the outermost part of the biofilm and tends to become

zero in the central part of the biofilm where the invading species finds favourable environmental

conditions for its growth. Moreover, S3 is completely depleted in the outer part of the biofilm and

thus the microbial complexity due to the invasion process is significantly reduced at the bottom of

the biofilm. Note that all the results have been obtained for the specific case study, reproducing a

typical microbial interaction occurring in wastewater treatment plants, which is of relevant interest

for engineering applications. Diverse boundary conditions may lead to a different result in terms of

invasion phenomenon and thus in uncertainty quantification.

It is worth mentioning that some PDFs associated with f1 and f2 have more than one mode, see

for instance Fig. 6.15 corresponding to the PDF of the autotrophic species volume fraction f2 at

z = L/4 after 10 days. This bimodal PDF has a physical explanation: for the given range of the

input parameters under consideration, the autotrophic invasion at some location features two

distinct behaviors, either a successful or unsuccessful niche formation.

6.3.12 Analysis of the biofilm structure

Using the Halton’s training set, we can compute the covariance matrix Cyy ∈ RNz×Nz , also known

as dispersion matrix, to characterize the covariance between the model state y at different
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locations z ∈ [0, L(t)] at a given time. Cyy can be empirically estimated as

Cyy =

N∑
l=1

(
y

(l)
ik − yik

) (
y

(l)
ik − yik

)T
N − 1

, (6.34)

where y
(l)
ik = {y(l)

ijk}j=1,··· ,Nz is the vector containing the ith quantity of interest yijk at a given

time index k for the ensemble member l. In this matrix, the diagonal terms correspond to the

variance of the model state variable at a given location j. The off-diagonal terms represent the

covariances in the model state variable between two locations along the z-axis. The covariance

matrix is symmetric by definition. By normalizing the covariance matrix by the variance, we can

derive the correlation matrix shown in Fig. 6.16 (by definition diagonal terms are equal to 1). One

column of the correlation matrix therefore provides the correlation function of a particular point

with the rest of the z-axis.

Figure 6.16 presents the evolution of the correlation matrix over the 15-day time period for both f1

and f2 state variables. Results show that at early times (after 5 days), the biofilm can be

considered as a single entity with respect to its internal structure since the correlation factor is

very high (above 0.99 for both f1 and f2). At later times, the internal structure becomes more

complex and decorrelates. This evolution is due to the growth in spatial complexity of the biofilm,

with the mechanism of autotrophic invasion that alters the species composition of the biofilm in a

non-linear way via species niche formation. This is inline with the complex structure of the LAR

polynomial basis presented in Fig. 6.12, which includes for instance high-order polynomial terms in

the three directions kcol, kψ and Yψ.

In summary, the spatial structure of the biofilm after 10 days seems to be organized as two main

clusters: one related to the scarcity in substrates at z = 0 (the blue cluster at the bottom-left

corner of the correlation matrix in Fig. 6.16), a second one related to the fixed bulk concentration

of substrates at z = L(t) (the blue cluster at the top-right of the correlation matrix in Fig. 6.16).

6.3.13 Input-output sensitivity analysis

Sobol’ indices [257, 243] are widely used for global sensitivity analysis based on variance

decomposition. They are described in Section 2.3.2 of Chapter 2.

It is here briefly recalled that the first-order Sobol’ index Si associated with the ith parameter of

Θ is given by

Si =
Vi(Y )

V(Y )
, (6.35)

and corresponds to the ratio of the output variance V(Y ) that is due uniquely to the ith input

parameter; Si ranges between 0 and 1. The corresponding total Sobol’ index STi measures the

whole contribution of the ith input parameter (including interaction with other parameters of Θ)
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on the output variance. By definition, STi ≥ Si. If both first-order and total indices are not equal,

this indicates that the input parameter Θi has some interactions with other parameters of Θ to

explain the variance of the output QoI.

Figure 6.17 shows the first-order and total Sobol’ indices obtained with the LAR gPC-expansion

related to the autotrophic bacteria volume fraction f2. These indices are presented at different

times t ∈ {5, 10, 15 days} (from left to right panels), and at different locations along the biofilm

thickness z ∈ {0, L/2, L} (from top to bottom panels).

Results clearly express the prevalence of the input parameter kcol with Sobol’ indices close to 1 for

all times and locations. From a physical viewpoint, kcol is therefore a key parameter to represent

colonization by autotrophic species X2 at the expense of heterotrophic species X1.

kcol reproduces in fact the attitude of the microrganisms to switch their state from planktonic to

sessile. That is, kcol represents the key parameter for the invasion phenomenon to occurr, so

changes in Yψ and kψ have a negligible effect on the overall invasion process. This is due to the

fact that the concomitant presence of planktonic species and of specific environmental niches

allows the invasion phenomenon to occur only when the planktonic species are characterized by

significant values of the colonization rate for the investigated simulation times. This gives us

precious information about which measurements may be improved, to use the invasion modeling to

improve our understanding of the colonization process overall.

This is inline with the high-order terms contained in the LAR polynomial basis in the direction of

kcol (see Fig. 6.12). The total polynomial order of the sparse gPC-expansion is due to kcol: kcol

exhibits polynomial terms of degrees up to P = 16 after 10 days and P = 14 after 15 days.

Note that similar sensitivity is observed along the biofilm thickness after 5 days (first column of

panels in Fig. 6.17), which is consistent with the uniform correlation matrices obtained at the same

time in Fig. 6.16 and the subsequent interpretation: the biofilm can be considered as a single

entity at early times.

In complement, the sensitivity of the model output to the parameters kψ and Yψ is slightly higher

after 15 days than after 5 days (10−2/10−3), in particular in the first portion of the biofilm

(z ≥ L/2). These results are also consistent with the two clusters observed in the correlation

matrices after 15 days in Figure 6.16. The biofilm is gaining in spatial complexity as time

advances: more parameters with respect to the standalone kcol could act on the spatial

distribution of the invading species. Results show that the input parameter kψ is usually more

influential than Yψ, especially at z = L (third row of panels in Fig. 6.17), even though the

relevance of these parameters is of several orders of magnitude below that of kcol (about 10−4).

First-order and total Sobol’ indices are not identical, implying that some interactions occur

between the two parameters kψ and Yψ. Recall that kψ is related to the colonization rate of

autotrophic bacteria and that Yψ is related to the consumption rate of autotrophic planktonic
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cells. These two processes are thus interrelated, the consumption of planktonic cells being affected

by the switch of planktonic cells to a sessile mode of growth (see Eq. 6.14).

It is worth noting that at location z = L, we obtain nearly constant Sobol’ indices over time. This

may be caused by the constant boundary conditions imposed at the bulk liquid interface. In

contrast, in the central part of the biofilm (second row of panels in Fig. 6.17 corresponding to

z = L/2), where the niche formation occurs, the sensitivity of the model output to Yψ becomes

higher than that of kψ for long times of biofilm evolution.

6.3.14 Conclusions

In this work, uncertainty quantification and global sensitivity analysis non-intrusive methods were

applied to a novel and promising multi-species microbial biofilm model, which explicitly accounts

for bacterial invasion processes. Invasion can rapidly alter biofilm populations and could even

result in the loss of the resident species. It is therefore a key biological process that requires deeper

understanding to improve engineering design. For instance, the continuum biofilm model could be

helpful to predict the optimal operational conditions (dilution rates, oxygen concentration, carbon

addition, etc.), which favor the establishment of a specific microbial syntrophy between resident

and invading species.

The simulation of these biological processes is directly affected by the choice of the biofilm

boundary conditions as well as by the range of variation of the input parameters, in particular

those related to the planktonic species. The present study focused on the sensitivity of the

autotrophic and heterotrophic bacteria volume fractions to the parameters characterizing the

colonization rate of autotrophic bacteria and the consumption rate of planktonic cells,

i.e. θ = (kcol,2, kψ,2, Yψ,2) ∈ R3. This sensitivity has been measured here through the computation

of spatial and temporal Sobol’ indices using a cost-effective surrogate.

It is worth mentioning that Sobol’ indices measure the relative contribution of a given parameter

on the output variance among the perturbed parameters and of its possible interactions with other

parameters. The sensitivity analysis results therefore depend on the choice of θ. The biofilm model

may depend on a rather large set of parameters, even on those that were fixed to nominal values in

this work. For this reason, the output variance obtained here is necessarily a fraction of the

potential variance that could be measured for a fully randomized model.

We presented a detailed analysis of the surrogate performance for a given simulation budget N .

Two families of surrogates, gPC-expansion and GP-model, were compared in terms of Q2

predictive coefficient. One difficulty in building surrogates is the choice of the basis. In particular,

for gPC-expansion, the choice of the total polynomial order P and of the basis components (full

basis with all elements of degree less or equal to P , or sparse basis) is an essential step to insure

the surrogate accurately represents the model response over the whole input parameter space. In
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the present test case, the LAR gPC-expansion was found to be the best emulator of the biofilm

model over the different time snapshots and biofilm locations, the sparse basis providing more

flexibility on the total polynomial order for each input parameter than the full basis. The sparse

basis is then an asset to fit the nonlinear biological processes with a limited training set. A single

global surrogate was enough to achieve the target Q2 criterion for the LAR gPC-expansion.

This investigation carried out via the LAR gPC-expansion provided new insights into the biofilm

invasion mechanisms.

First, the spatial correlation functions along the biofilm thickness highlighted the temporal changes

in the biofilm structure: the young biofilm (after a few days) featured some homogeneity in its

spatial structure but the mature biofilm (after ten-to-fifteen days of growth) lost spatial correlation

due to the increase in complexity of the biological processes involving niche formation and ongoing

resident/invading species competition.

In complement, Sobol’ sensitivity indices highlighted the key role of kcol,2, which represents the

maximum colonization rate of autotrophic bacteria and which outclasses by several orders of

magnitude the contribution of kψ,2 (affinity-type constant for planktonic species associated with

autotrophic bacteria) and Yψ,2 (yield of sessile species on planktonic ones for autotrophic bacteria).

This prevalence of kcol,2 is not only related to its key role in regulating the switch from planktonic

to sessile modes of growth, but also to the specific setting of the case study. A relative increase in

the relevance of (kψ,2, Yψ,2) was noticed as biofilm increased in complexity over time.

Finally, the PDF and statistics of the biofilm state provided an interesting viewpoint on the

biofilm structure and its temporal evolution. While the mean values retrieved autotrophic invasion

trends already documented in Ref. [71], the present study found that the invading and resident

species concentrated both their variance in the central part of the biofilm, far from the free

boundary, where restrictive conditions on substrates have been imposed, and far from the inert

surface, where lack of substrates limited the variability. The variance trends showed for both

heterotrophic and autotrophic species, a shift in the location of the maximum spread towards the

free boundary L ≡ L(t) for increasing time t.

Uncertainty and global sensitivity analysis is found to be a promising way to identify the most

influential parameters in any given regime or application scenario and to quantify their effects on

the biofilm structure and evolution. More generally, this provides guidelines to orient further

biofilm model developments and design in the long-term prediction capability that could answer

some of the medical, environmental and industrial issues related to bacterial invasion. Further

work might be related to the extension of the present analysis to more complex biological

situations, which are related to the dispersal phenomenon and involve the modeling of planktonic

species dynamics in multi-species biofilm.
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Figure 6.12: Sparsity plots representing the magnitude of the LAR gPC-coefficients {γα}α∈mathcalA
with respect to the three-dimensional input space, θ = (kcol, kψ, Yψ) (d = 3) and time evolution
from 5 to 15 days (from left to right panels). x-, y- and z- axis correspond to the polynomial degrees
of the gPC-expansion terms associated with kcol, kψ and Yψ, respectively. The gPC-expansion
under consideration represents the model response for the species volume fraction f1 (heterotrophic
bacteria) at z = L(t)/4. The color of the symbols indicates the magnitude of the gPC-coefficients.
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Figure 6.15: Bimodal PDF of the autotrophic species mass fraction f2 at location z = L/4 after
10 days obtained through kernel smoothing.
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Figure 6.16: Spatial correlation matrices for species volume fractions f1 (top panels) and f2 (bottom
panels) evolving over time (5 days to 15 days from left to right panels) and computed using Halton’s
training set with N = 216.
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Figure 6.17: First-order and total Sobol’ indices (in logarithmic scale) associated with input para-
meters θ = (kcol, kψ, Yψ) and species volume fraction f2 (autotrophic bacteria). Time evolution
from 5 to 15 days of biofilm growth is portrayed from left to right panels; spatial distribution along
the biofilm thickness (0 ≤ z ≤ L(t)) is shown from top to bottom panels. For each panel, light
gray colors correspond to first-order Sobol’ indices, while dark gray colors correspond to total Sobol’
indices. The indices are presented in the following order from left to right bars: kcol, kψ, Yψ.



Chapter 7

Conclusion

In this final Chapter, conclusions of this PhD work and potential future paths to extend the

contributions are reported.

7.1 Conclusions

During this PhD work, the model presented in Chapter 3 ultimately reached a good level of

maturity. This has been possible through both a careful study of its theoretical insights and by

strengthening the bonds with applications. As a consequence of this study, the use of UQ and SA

techniques has been a mandatory step, setting the possibility for a detailed study of several models

(even models not pertaining to the class of models that use the formulation of Chapter 3) via ad

hoc UQ and SA algorithms.

The major contributions are listed as follows:

• The random front propagation model has been tested via a versatile probability density

functions borrowed from Fractional Calculus. In particular, at the end of Chapter 3, the

influence of the Gaussian shape of the pdf and the variance of the underlying particle

displacement is studied through surrogate-based UQ and SA techniques.

• The application to Turbulent Premixed Combustion saw a possible application in the study

of hydrodynamic instabilities in combustion. Since the particle displacement, for what

concerns the studied case, is connected to a quasi-probability, the limitation of the proposed

formalism for tackling a spectra of non-linear phenomena where the random front

propagation cannot be ascribed totally to fluctuations around a mean flow are detected [287].

• In the application to wild-land fire simulators, the model needed to be integrated in a

framework useful for practitioners and engineers. By the end of the thesis, this model has

been implemented into WRF-Sfire [283] and ForeFire, reducing thus the gap between an

otherwise theoretical model of statistical front propagation and the real challenges that
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society must tackle in order to reduce wild-land fire related risk. Another aspect that need to

be remarked is that wild-land fire application field saw, chronologically, the first use of UQ

and SA techniques on the parameters related to the parametrization RandomFront of the

statistical front propagation model of Chapter 3. This work, summarized by the paper[284],

gave us important insights on the role of the different parts of RandomFront parameterization

on the overall behavior of a wild-land fire. On the other hand, it constitutes one of the most

complete and extensive sensitivity analysis for wildfire simulation currently available in

literature, that contributed to the ongoing open problem of the comparison of surrogate

models (gPC vs. GP) with the use of cross-validation. The of the problem dimension using

sparse approach confirmed once more the usefulness of sparse regression techniques in gPC

surrogate modeling for UQ and SA of computational models. The last works on wild-land

fire are resumed in [77] and [78] (the last one currently under review), which focus on

concurrent scales (meso-scale and macro-scale) that share influence on the wild-land fire

problem, and the factors in RandomFront that express such effects. More specifically, in [77]

the effects of the atmospheric stability conditions on the behavior of fire-spotting generated

fires have been studied with the proposed formulation for statistical fronts. It emerged that

during stable conditions, there are many simultaneous active fires because turbulent heat

transport does not merge them rapidly. During unstable conditions, turbulent heat transport

emerged to be strong enough for merging the independent fires causing an acceleration in the

front propagation and the formation of unburned islands surrounded by the fire. The key

idea is that different atmospheric stability conditions cause different kind of risks, which in

turn require different management strategies.

• The last application of the model in chronological order is the one regarding bacterial biofilm

spread. On the one hand, the model of Chapter3 is adapted to study, with the help of

additional analytical tools, the spread of planar bacterial colonies, with the formation of new

detached colonies under the assumption of random seeding and dispersal [288]. On the other

hand, the knowledge on biofilm modeling thanks to the aforementioned application, as well

as the use of UQ and SA tools adopted in [284] laid the basis for a probabilistic analysis of a

detailed one-dimensional biofilm model that explicitly models planktonic bacterial invasion in

a multi-species biofilm [285]. In particular, the final aim was to quantify and understand how

the uncertainty in the input factors of the invasion submodel impacts the overall biofilm

model predictions, and to spot which parameters are the most important factors enhancing

the response of the biofilm model.

Possible further works starting from the basis laid in this PhD thesis are:
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• Completion and publication of all the works cited in Chapter ”List of Publications” under

Section ”Papers in preparation”.

• After the publication of [78], a high-dimensional UQ and SA study of the effects of

parameters concerning both macroscale (atmospheric stability) and meso-scale (flame

geometry - flame length) on the number of separate spotting fires and the ovarall burnt area,

possibly using the tools described in [284].

• Concerning biofilms, completion and publication of the work [288] with increased

experimental and numerical studies. Subsequent UQ and SA study of the obtained model to

spot the most influential factors.
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