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Abstract

A second-order perturbation (2PT) approach to the spin—orbit interaction (SOI) is implemented
within a density-functional theory framework. Its performance is examined by applying it to the
calculation of the magnetocrystalline anisotropy energies (MAE) of benchmark systems, and its
efficiency and accuracy are compared with the popular force theorem method. The case studies are
tetragonal FeMe alloys (Me=Co, Cu, Pd, Pt, Au), as well as FeMe (Me=Co, Pt) bilayers with (111) and
(100) symmetry, which cover a wide range of SOI strength and electronic band structures. The 2PT
approach is found to provide a very accurate description for 3d and 4d metals and, moreover, this
methodology is robust enough to predict easy axis switching under doping conditions. In all cases, the
details of the bandstructure, including states far from the Fermi level, are responsible for the finally
observed MAE value, sometimes overruling the effect of the SOI strength. From a technical point of
view, itis confirmed that accuracy in the MAE calculations is subject to the accuracy of the Fermi level
determination.

1. Introduction

In a model system of interacting magnetic moments various contributions can be identified that lead to the
observation of the magnetic anisotropy, i.e. the existence of a preferential magnetization direction in the system.
These terms are the classical dipole—dipole interaction, resulting in the so-called shape anisotropy, and
quantum-mechanical ones with origin in the electronic spin—orbit interaction (SOI). These latter include the
anisotropic exchanges, both the symmetric and antisymmetric (known as Dzyaloshinskii-Moriya interaction
[1,2]), and the magnetocrystalline anisotropy (MCA). Here, this fundamental property (MCA) is used as a probe
for approximate methods to treat the SOL, but our methods are potentially valid to treat other physical
properties determined by SO, like anisotropic g-tensors or anisotropic exchange interaction [3], and Elliot—
Yafet theory of spin relaxation [4].

The historical development of non-volatile memories based on the property of magnetorresistivity has been
closely related to the ability of balancing out those competing contributions. The key achievement was the
perpendicular magnetic anisotropy in thin film heterostructures, since the out-of-plane MCA at the interface
tends to dominate the in-plane shape anisotropy. Indeed, the efficient spin orientation control in the
ferromagnetic (FM) electrodes of magnetic tunnelling junctions is still a technological challenge. Additionally,
the use of external magnetic fields for this purpose is evolving towards voltage control of spintronic devices [5, 6]
and spin transfer torques induced by spin-polarized currents [7]. These advances motivate efficient, robust and
accurate modelling of the physics of the MCA for different materials/interfaces under external stimuli, such as
external fields or strain.
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Figure 1. Structure of the L1, tetragonal unit cell and cartesian axes that provide a good match between the MLWFs and the Y5,
orbital functions.

The interplay of MCA and dimensionality is considered as a promising route for the development of
spintronics. Furthermore, MCA plays a central role in the magnetic properties of two-dimensional materials,
since it can prevent thermal fluctuations from destroying long-range magnetic order [8]. In this context, density
functional theory (DFT) calculations that include SOI constitute a powerful theoretical tool to characterize the
MCA. Nonetheless, the small magnitude of the associated magnetocrystalline anisotropy energy (MAE) imposes
stringent convergence to the DFT calculations at the expense of high computational demands. In practice, fully
relativistic DFT calculations that include SOI are carried out by first computing self-consistently the
Hamiltonian of the system including the scalar relativistic term and next adding the spin—orbit contribution.
The latter may be treated self-consistently (FSC) or non-self-consistently [9, 10] within the so-called force
theorem (FT) [11] to obtain the MAE. FT is often considered to produce a good estimate of the FSC MAE value
for every system, at least for bulk crystals, although it has been shown to be less accurate in the case of low
dimensional systems [12]. In any case, this comparison between FT and SCF calculations can only be done for
relatively simple systems, because the FSC tends to be computationally too demanding. Alternatively, Green’s
function methods that treat SOI at the level of second-order perturbation theory (2PT) have been formulated in
the literature under different flavours [13—17]. These approaches rely on the knowledge of the spin—orbit effects
on atomic orbitals (AOs) [ 18—-20], which can be quasi-analytically accounted. However, to our knowledge, the
versatility of those perturbative methods has not been exploited within a DFT environment. Considering the
high computational expense involved in DFT calculations that include SOI under the aforementioned
techniques, it would be timely to explore the 2PT route.

In this work, we address approximate methods to treat spin—orbit effects in DFT calculations and establish
their efficiency, accuracy, and applicability range using MAE values of several Fe-based alloys as benchmarks.
Opverall, we tackle fundamental concepts related to the magnetic anisotropy, such as the relationship between the
one-electron wavefunctions used in ab initio or tight binding schemes with the multiplets (spin states) used in
spin hamiltonian formulations [21-23]. More specifically, our aim is two-fold: (i) set the technical grounds for
implementing a 2PT approach in regular DFT codes, with a detailed description of the handling of two different
families of localized basis sets. Thereby, the 2PT many-body expression for the MAE is evaluated using one-
electron operators and wavefunctions. (ii) Taking the FSC MAEs of the model systems as reference values, study
the accuracy of the FT and 2PT approximations and their dependence on the physics of the problem. This
requires to take into account careful convergence criteria.

As case studies, we choose tetragonal transition-metal alloys FeMe (Me=Co, Cu, Pd, Pt,and Au) with L1,
structure (see figure 1) and we also consider thin FeMe (Me=Co, Pt) bilayers with (111) and (100) orientations.
With this choice we can cover a wide range of two orders of magnitude in SOI strengths by using elements of
different atomic weigths and also we analyse differerent hybrid bands characters (d—d for FeCo, FePd, and FePt,
and d—s for FeCu and FeAu). Additionally, the MCA of this type of alloys is well characterized and, thus, provides
us with a reliable quantitative reference to compare the approximate methods considered. In fact, for solids with
cubic symmetry, MCA is an effect of fourth order in the SOI strength but a tetragonal distortion can enable a
second-order MCA. This idea is behind the materials used in (or proposed for) some of the aforementioned
devices. For example, multiferroics allow for strain-mediated magneto-electric coupling [24, 25] and, more
recently, tetragonal Heusler alloys have attracted attention for combining high MCA and half-metallicity
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[26,27]. The family of L1, alloys considered in this work is also versatile, since their structure and magnetic
properties can be tailored by varying the stoichiometry, as it is the case of the strongly magnetostrictive ‘galfenol’
(Fe,_,Ga,) [28,29], Fe,_,Co, [30-32], and Cu-Ni films [33]. Several theoretical studies have shown that a bias
voltage could significantly affect the MCA [34, 35] and, in fact, an electric-field-induced MCA switching has
been realized in Fe;,Coyq alloy films [36].

Our first principles calculations show that the second-order perturbative (2PT) approach to treat spin orbit
interaction is very reliable for the lighter (3d and 4d) transition metals but it breaks down for heavier 5d
elements. In general, the MAE values calculated using the force theorem (FT) agree reasonably well with the fully
self-consistent calculated values also for the heavier elements, but minor quantitative discrepancies between one
and other are apparent in the two-dimensional thin bilayers. The different performance of these two
approximate methods is explained by their construction: while 2PT is perturbative in the spin—orbit strength, FT
is perturbative in the charge density. The general character of these approaches suggests that they can be applied
to any system featuring dispersive bands. Regarding the nature of the MCA in the alloys under study, we find its
physical origin in the availability of empty Fe electron states, although the whole valence bandstructure
contributes to its final magnitude, this latter calculated with tenths of meV precision.

The paper is organized as follows: section 2 describes the three methods used here to compute the MAE,
namely FSC (section 2.1), FT (section 2.2) and, in more detail, two different implementations of a 2PT formula
in DFT codes (section 2.3). Details of the DFT calculation parameters for the Fe-based alloys are presented in
section 3. The results for the charge neutral and non-neutral cases are shown in sections 4.1 and 4.2, respectively.
Finally, conclusions are drawn in section 5.

2. Theoretical background

The SOI Hamiltonian is generally written as a sum over one-electron operators:

Hso = Z &lisi, (D

where l; and s; are the orbital and spin momentum operators, respectively, acting on the ith electron in the
system and &; accounts for the SOI strength. In practice, as most of the relevant electronic and magnetic
properties of solids derived from SOI originate from valence electrons, only outer-shell and semi-core electrons
are considered in our first principles calculations. Since &; is proportional to the radial derivative of the potential,
itincreases with the atomic number. Furthermore, it is often a good approximation to take the same value for all
the electrons within the same /-shell.

In the next subsections we describe the three methods considered in this work to evaluate the MAEs from
first-principles, all of them including SOI at different levels of approximation. In particular, we will examine
under which conditions a second-order perturbative approach, where &; acts as the perturbation constant,
breaks down.

2.1. Self-consistent MAE (FSC)
Our reference ab initio MAE value is obtained by substracting the total energies E,. between two fully-relativistic
self-consistent calculations, which include SO, for two different orientations of the magnetization,

MAE = E'()(C)t - Etzot’ (2)

where the spins are aligned along the OX and OZ directions shown in the L1, unit cell model of figure 1. The
main shortcoming of this method is its computational cost, since equation (2) implies substracting two large
numbers, which requires demanding convergence criteria. In fact, the obtention of well-converged MAEs from
equation (2) is crucial in this work (see details in the next section), since they are used as a benchmark for the
approximations described in the next subsections.

2.2. Non-self-consistent MAE based in the FT

A scalar relativistic ground state (GS) is converged in a spin-polarized calculation without SOI. The so-obtained
charge density is used to initialize a fully-relativistic calculation (i.e. non-collinear) by turning it into a block-
diagonal charge density matrix. Then, the spin—orbit Hgo term calculated for a given magnetization axis is added
to the scalar-relativistic hamiltonian Hy and new eigenvalues are calculated by diagonalization without further
self-consistent cycles. We denote the resulting total energy change AE;;;? and the corresponding charge density
change Ap™* The MAE is approximated as the difference in the band energies, EL:? ;, between the two
orientations of the magnetization, bearing in mind that the Fermi levels are in general different for the two
orientations, as they are computed independently,
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Ne Ny
MAE ~ AEt)f)t AEtzot = Elfand - Elfand = Zz[fx(ffn)ffn _fz(fin)fin]' (3)

k
Here, the sum runs over one-electron eigenvalues €37, calculated with the spins aligned along the OX and OZ
directions, respectively, and integrated over the entire first Brillouin Zone (1BZ). N, bands are considered (index
n)and a discrete grid of Ny points (index k) is used to sample the 1BZ. f* are the Fermi—Dirac distribution
functions, which depend on the magnetization axes through the Fermi energy, while the finite electronic
temperature kT acts as a smearing parameter. The approximation is based on the fact that AE;;, and AEZ, are
correct to order (Ap*)? and (Ap?)?, respectively. The method is thus sometimes called ‘second variation’ [10] or
‘force theorem’ [9, 11]. Equation (3) is correct to order Ap™ *while the (A p*?)2-order corrections have a small
effect, since there are cancellations from the two magnetization directions [9]. If one further assumes that the
self-consistency cycles introduce negligible modifications in the charge density matrix and in the exchange and
correlation potential, then equations (2) and (3) should provide very similar MAE values, although with a
considerable reduction in the computational cost in the latter case.

2.3. Second-order perturbative MAE (2PT)
A widely used alternative approximation treats the SOI as a second-order perturbation (2PT) to the many-body
GS, |U(©®). The general expression for the 2PT energy correction is

(P OHso| ) (WD Hso| ¥)

AEX = , 4
0= o E, (C))

i=0
where the sum runs over excited states. In a many-body language the GS |¥(?) is formed as a Slater determinant
by occupation of the lowest-lying one-electron Kohn—Sham eigenstates up to the Fermi level. Each excited state
|W®) is then constructed by creating electron—hole (e~h) pairs using the unoccupied Kohn—Sham eigenstates.
Thus, the Ey—E; term in the denominator is simply the energy difference between the occupied and unoccupied
eigenvalues associated to the particular e—h excitation [13, 18-20]. The perturbative expansion may then be
written in terms of the GS Kohn—Sham eigenstates |kno’) as follows:

N X no) [1 — n'o’
Mgszzz Wg_i% N o knolHsolkn'o") (fen'o’| Hsoknor), )
k nn' o0 no n'c

where o, o’ stand for the spin indices.

The second-order formula given by equation (5) is applicable only to a non-degenerate GS. A degenerate GS
in an extended metallic system happens when there is a band crossing at a certain k-point precisely at the Fermi
level and this band pair is coupled by Hgo (i.e. the corresponding matrix element is not zero). This can happen
eventually, and in this situation the eigenstate pair should be treated separately by first-order degenerate state
perturbation theory. However, in a calculation with a large Ny the contribution to AE{ of these exactly
degenerate states would be negligible, since only a handful of band crossings are expected at the Fermi level, and
they contribute with a factor of order £/ Ny [37]. A sufficiently fine k-grid can map the spin—orbit band splitting
effect nearby the crossing, so that equation (5) can be safely used.

In practice, it is convenient to express equation (5) in a basis whose elements have well defined I quantum
numbers (spherical harmonics Y},,,). A natural choice are AOs, which already constitute the basis set in a number
of DFT-based packages, leading to Bloch Kohn—Sham eigenstates of the form:

|kno) =

Z e‘kRz c?(k)|a(R), o), (6)
\/_

where R runs over the lattice vectors, |a(R)) denotes an AO located in unit cell R and N, is the total number of
AOs in the basis set. Inserting equation (6) into 5 yields:

AEQ = ZZZf (Cun)ll =S Cwir)) S8 01128 1y B3| HGS (01 8o (omoro @, )

N k oo nn' €kno — €kn'o’ aB, a8

where the k-space Hso(k) matrix elements are given by:

<w{®w=%2&%mm%w®d> ®)

k R
and the generalized projected charges by:
7 (k) = (o (ke ” (k). ©

Itis usual to further assume the so-called on-site approximation, whereby thel; - s; operators only mix states
within the same [-shell of a given atom contained in the origin unit cell. Equation (8) then becomes:
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(alHSS (0)18) ~ (0(0), olHsol B(0), o) ~ &, (admall - s|B'm'o") 6560 (10)

where indices o, 3 in the last term now refer to the principal quantum number in a given atom (in a multi-¢
scheme, also the particular ([38]), and Im stand for the orbital and magnetic quantum numbers of each AO. &, ;
is the SOI strength for this I-shell resulting from the integration of the radial part in the (amo|Hso|alm’c”)
matrix elements (independent of mm’ and oo”). The angular part of these matrix elements, {almo]|l - s|alm’c’),
take simple analytical expressions and tabulated formulas as a function of the spherical harmonics Y7, involved
can be found, for example, in [39, 40]. The on-site approximation simplifies considerably the 2PT formula:

AEQ = — 2 > 2 S )1 = J (Gt o)) g o gt ), (11)
k k oo nn' €kno — €kn'c’
where we have defined:
L 2041
AT (k) = Z & Z (almol|l - slalm'c’) ,:’Zn‘,’jm (k). (12)
al mm’

We observe that the 2PT equations (7) and (11) are perturbative in the SOI strength, which appears explicitly in
the form of the parameters £, in this equation.

Next, we consider the case when the unperturbed spin-polarized calculation is realized employing a plane-
wave basis set, as many DFT codes do. Instead of using a Bloch-function representation of the Kohn—Sham
eigenstates, we use a set of N,, maximally localized Wannier functions (MLWF) as formulated in [41]. MLWFs
are constructed to yield the exact eigenvalues as the ab initio calculation. Usually, a previous disentanglement
procedure is carried out, whereby a handful of relevant bands within an energy window are isolated from the rest
[42]. For the systems under study, we focus on the bands that originate from the d-valence electrons of both
metal atoms (allowing also for some degree of s—d hybridization) and belong to a window of about 10 eV below
and 5 eV above the Fermi energy. Afterwards, it is straightforward to obtain new Bloch functions on a k-grid as
dense as desired by interpolation [43]. This procedure allows us to estimate the 2PT MAE using as input solely a
scalar-relativistic first-principles calculation and does not require a highly dense 1BZ k-sampling.

The jth MLWF localized at the unit cell R that results from band disentanglement and wannierization for
states with spin o is:

NN
wf () = —= 35 RS Q) (W lkno), (13)
k k n

where |kno) stands for the Kohn—Sham eigenstates already interpolated in the dense k-grid [43] and Q" (k) are
the coefficients that relate the Wannier and Bloch functions.

Typically, atomic-like wavefunctions, formed by a radial function and spherical harmonics Y, to describe
the angular component, are used to initialize the wannierization procedure. Here, we use d-orbitals centred at
the atomic sites and a few s-waves at interstitial positions. The purpose of the latter functions is to facilitate the
wannierization and will not take part in the 2PT MAE calculation. We fix] = 2 and drop this index in the
following. Thus, the jlabel accounts for the a-th atom in the cell Rand the m = 0, £1, +2 quantum number. If
the deviation of the MLWFs from actual atomic wavefunctions is small, we can approximate the matrix
elements (w7, (R) |[Hso|w’,, (R)) by the ones in the AO representation (amoll - s|am’c”) and take advantage of
their simple analytic expressions [39, 40]. Note that, in general, the resulting MLWFs do not keep a well-defined
orbital character because they have to account for both the intra- and inter-AO hybridization present in the
system [44]. Nevertheless, a suitable choice of axes in the systems under study allows to obtain MLWFs that keep
the AO character and justify this approximation. Substituting equation (13) in (5) and using this approach, the
second-order energy correction associated to the SOl is

AEZ=37322" 3 &auk 0 (i o|l - slaymo)(aamyoll - slaamya’), (14)

a mlmzm my
aja; 00 m1m2m1m2

where the m;indexes run over the 5 d-orbitals of each atom «; in the unit cell. The F coefficients contain the
details of the basis change from Kohn—Sham states to MLWF states and, implicitly, they allow us to use a dense k-
grid by interpolation:
oo’ aqan 1 N f(fkn(r)[l - f(fknlo/)
proow — Lyge

mymym;m - _ ‘o
1R Nk k nn €kno €kn'c

Q7 (R (Qu, (0 Q7 (R (QiL5, (K" (15)

Equation (14) is similar to the 2PT MAE formula for extended systems developed by van der Laan [20], and here
we generalize the result to the case of more than one atom per unit cell. It is also straigthforward to show that the
on-site approximation equation (11) reduces to the above expression after replacing the Bloch coefficients

¢’ (k) in equation (9) by the Qj"” (k) ones and restricting the summation over the angular momentum numbers
tothel = I" = 2 case.
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Table 1. Unit cell lattice parameters (see figure 1) of the considered model bulk systems and calculation parameters used in the
wannierization. ris the number of s-wave-like Wannier functions, introduced in addition to the d-orbital-like ones, placed at
interstitial sites of the structure. [wy, w;] are the frozen windows used for disentanglement with respect to the Fermi energy. Two
intervals are shown for FeAu that correspond to different windows for the spin-majority and spin-minority bands, respectively.
ky is the grid used in the reference DFT calculation and k, the interpolated grid used to evaluate the MAE in the 2PT
approximation. pp;, is the minimum projection factor p, . (equation (16)) found for each system.

FeCo FeCu FePd FePt FeAu
a(A) 2.680 2.553 2.751 2.722 2.885
c/a 1.2 1.339 1.327 1.364 1.328
g 3 4 3 2 3,4
[Wo, w11 (€V) [-5.2,2.8] [—10.0,3.5] [—6.6,2.4] [-5.8,2.2] [—3.4,—1.1],[~1.4, 1.6]
ky 16 X 16 x 14 16 x 16 x 12 16 x 16 x 12 16 x 16 x 12 16 X 16 x 12
ky 40 x 40 x 33 36 x 36 x 28 36 x 36 x 27 40 x 40 x 30 36 X 36 x 27
Prnin 0.88 0.82 0.82 0.90 0.85

Table 2. Geometry of the considered thin film models and calculation parameters used in the wannierization. A
supercell of height 22.5 A is used. Here, dis the distance between atomic planes. The other parameters
description is similar to that of table 1. Frozen windows are used only in the FePt models.

FeCo(111) FeCo(100) FePt(111) FePt(100)
a(A) 2.50 2.68 2.78 2.722
d(A) 2.094 1.674 2.128 1.856
ng 3 2 4 3
[wo, w1] (eV) — — [—8.6,0.9],[—8.6,1.9] [—5.8,0.2],[—7.8,2.7]
k 16 x 16 x 1 16 x 16 x 1 16 x 16 x 1 16 x 16 x 1
k> 96 x 96 x 1 96 X 96 x 1 96 X 96 x 1 96 x 96 x 1
Pmin 0.92 0.91 0.88 0.87

Note that equation (14) (or equation (7)) is a ‘four-legged’ expression in the sense that is contributed by two
different e—h pairs. There are other 2PT formulations based on the use of a localized basis set of orbitals
[13,15, 18, 19]. However, it is worth to mention that our formulation of the MAE does not neglect spin-flip
contributions, unlike the one proposed by Bruno [18]. Formulas that neglect wavefunction phase effects in the
Kohn-Sham-to-local-basis projection have also been proposed [13, 15]. By doing so, the ‘four-legged’
equation (14) becomes only ‘two-legged” and equation (15) can be written in simpler terms, namely the
projected densities of states on the local orbitals.

3. Computational details

In all the procedures described in this section, to prevent the MAE values from being biased by the structural
parameters, we have kept the bulk L1, lattice constants a, ¢ fixed in all calculations (see figure 1 and table 1). The
model for FeCo has the Fe bcc unit cell volume and ¢/a = 1.2 to maximise the anisotropy, as suggested by the
literature on strain effects [30]. For FeCu, we keep the Cu—Cu as in bulk fcc Cuand ¢/a = 1.34 [45]. Finally, we
use published lattice constants for FePd, FeAu [46] and FePt [47]. The interplanar distance of the FeCo and FePt
bilayer models with (100) structure has been setto d = ¢/2. For the (111) films, the Co and Pt bulk lattice
constants have been used and the interplanar distance has been optimized (see table 2).

Two DFT codes have been used in this work: SIESTA-Green (SG) [38, 48] and VASP [49, 50]. The former
uses multi-¢ non-orthogonal strictly localized numerical AOs as basis set and replaces core electrons by pseudo-
potentials, while the latter uses plane-waves and projector-augmented wave potentials to describe the ion cores
[51]. Both codes feature SOl implementations [48, 52] that allow to obtain the MAE values directly from
equation (2) or the SOI-corrected eigenvalues of equation (3). By working with both codes we ensure that the
conclusions about the MCA are not biased by the basis set type. The exchange and correlation functional used in
all calculations is that of Perdew, Burke and Ernzerhof [53].

In the VASP calculations the p semi-core states are included as valence electrons. We have set the plane-wave
energy cut-off to 400 eV in all the systems, except for 420 eV in FeAu, and suitable k-point Monkhorst—
Packgrids [54] according to each lattice dimensions and calculation type ((24 x 24 x 20) for FeCo and
(24 x 24 x 18)for the other L1, units cells,and (48 x 48 x 1) for the thin film calculations). The tetrahedron
method with Blochl corrections is used to obtain the Fermilevel [55]. For the SG calculations we have adopted a
double-( polarized scheme to generate the AO basis set using a confinement energy of 100 meV although, as
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Table 3. SG values of the atomic SOI strength parameter & (Me=Co, Cu, Pd, Pt, Au) and VASP values of the atomic spin and
orbital magnetic moments, 15 and ji7, respectively, in Bohr magnetons (us values are obtained from calculations without
SOI). The last column shows an approximated MAE obtained from the expression —)_, %“ (17 (@) — p7 ()], where the index
« runs over the Fe and Me atoms, with {g. = 59.65 meV.

Eme (MeV) s (Fe) s (Me) ui (Fe) uy (Me) u; (Fe) u; (Me) MAE (meV)
FeCo 74.12 2.74 1.67 0.053 0.077 0.064 0.088 0.37
FeCu 110.44 2.55 0.16 0.045 0.009 0.055 0.011 0.20
FePd 191.36 3.00 0.38 0.061 0.030 0.069 0.027 —0.02
FePt 537.18 2.93 0.40 0.057 0.056 0.060 0.044 —1.57
FeAu 615.05 2.98 0.03 0.045 0.037 0.065 0.029 —0.93

opposed to VASP, no p semi-core states are considered. Pseudo-core corrections are included for all the atoms
involved, while a very fine real space mesh is employed by setting the mesh cut-off to 4000 Ry.

In the SG case, SOI matrices are calculated under the fully-relativistic pseudo-potential (FR-PP) method
described elsewhere [48]. This approach goes beyond the on-site approximation [56] (equation (10)) as it takes
into account intra- and inter-atomic interactions between different I-shells. Although the off-site terms tend to
be small, test calculations show that neglecting them can induce errors in the MAE of around 0.2 meV or even
larger (around 1 meV) in particular cases. Nevertheless, the on-site approximation allows to extract the SOI
strengths £, which we provide in table 3 for the d orbitals.

Even when working with the FSC method for SOI, the calculation parameters must be carefully tested. The
Fermi energy smearing is a decisive technical factor for the MAE of some of the systems. This issue has been
addressed with both codes for the FSC and FT methods. We find satisfactory convergence when the tetrahedron
method is used for the FSC MAE with VASP [55]. By doing so, we avoid kT-dependence in the resulting MAE
values (we have checked that the total energy extrapolation to kT' = 0 gives, in general, good agreement with the
results of the tetrahedron method). With SG, since the use of finer k-point grids can be afforded at a reasonable
computational and memory cost, a high convergence could be systematically achieved in the k-grid.
Convergency values below 0.01 meV are obtained with kT values entering the Fermi—Dirac distribution function
aslowas 1 meV. In the FT calculations we find that the smearing function, whether Fermi—Dirac or Methfessel—
Paxton of a given order [57], has a non-negligible influence, but it becomes less important for sufficiently fine k-
grids and small kT. A detailed convergence analysis for all phases can be found in the Supplementary
Information sections 1, 2 and figures 1—4 (stacks.iop.org/NJP/21/073054 /mmedia).

For the more elaborate 2PT methodology, we have implemented equation (7) for the SG calculations and the
semi-analytical form of equation (14) for VASP in combination with Wannier90 [41, 58]. The k-grids needed to
obtain a faithful representation of the electronic structure with MLWFs can be less dense than the ones typically
needed to obtain the MAEs. The latter, also used in the explicit evaluation of equations (14) and (15), can be
chosen as dense as desired by MLWF interpolation [43]. Besides, due to the strongly hybridized d-bands in the
L1, Fe-alloys, prior to wannierization it is useful to perform a disentanglement of the bands [42] within an
energy window that contains the relevant states. A numerical drawback in the whole procedure is that the quality
of the wannierization is system-dependent. Therefore, for each alloy we have chosen suitable settings, shown in
table 1, to meet the usual sanity requirements of a wannierization, namely, little overlap between MLWFs (at
least between the functions that emulate the d-orbitals), bandstructure reproducibility, and spatial localization.
The same strategy has been adopted for the four thin films (see table 2).

It is worth mentioning that the five atomic d-orbital wavefunction geometries, i.e. the representations of the
angular functions Y;,,,(7) in cartesian coordinates, depend on the convention taken for the OX, OY, OZ axes in
each code. Obviously, the electronic structure that results from hybridization of the atomic wavefunctions must
be independent of those conventions. However, if we align the crystallographic directions and the cartesian axes
of VASP and Wannier90 as shown in figure 1, we can represent the bonding states as overlapping Y, (r — Ry,)
functions localized at atomic positions R,,. Otherwise, the overlaps would happen for linear combinations of
Yy, (7) functions at each site. In such case, the MLWFs that reproduce the electronic structure do not resemble
the initial spherical harmonics and equation (14) cannot be applied directly: an intermediate step would be
needed to account for the linear combinations of Y3, (7) functions. The axes choice of figure 1 makes this step
unnecessary. Indeed, we can trace the MLWFs back to individual Fe and Me d-orbitals by visual inspection (see
supplementary information figure 5), deviations being the result of the inter-atomic hybridization only, i.e. an
effect of a purely physical origin, and not an spurious one caused by the axes convention. To quantify those
deviations, we define the projections

Pamo = |(Wi(R) [amor) |2 (16)
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Figure 2. Left: dependence of the MAE calculated in the 2PT approximation with equation (7) (SG calculation) on the energy window
of allowed occupied (solid) and unoccupied (dashed) one-electron states. Right: Projected densities of states on the d-orbitals (solid
lines) and sp-orbitals (dashed lines) of the Fe (red) and Me (blue) atoms of the five FeMe alloys (VASP calculation). In each panel, the
positive (negative) values correspond to majority (minority) spin states and the vertical dashed line indicates the Fermi energy.

which range between zero and one. As shown in tables 1 and 2, despite the dispersive character of the
bandstructures, in this work we find projections above 0.80 after wannierization.

4, Results and discussion

4.1. Neutral systems

Table 4 contains the collection of the MAE values of the L1, alloys calculated with the methodologies presented
in section 3. All the approaches provide the same behaviour in the MCA of each alloy, albeit there are some
quantitative differences in the corresponding MAE values, which will be discussed below. The easy
magnetization axis is OZ in the five studied systems. Overall, MAE values are smaller than 0.5 meV except for
FePt, a well-known prototype of large MCA, which shows a MAE of nearly 3 meV in good agreement with other
ab initio values available in the literature [46—48, 59].

The first important observation is that the MAE of Fe-based L1 alloys is not directly correlated with the SO
strength of the alloying metal. Indeed, it is the electronic structure what governs the MCA of these alloys,
overruling the effect of the SO strength. We find larger MAE values for FeCo and FeCu than for FePd and FeAu
in spite of &y, beinglarger than ¢, -, (see table 3). In the case of FeCo it is known that alarge MAE can be
achieved by a strain on the cell along OZ. For ¢/a = 1.2, the geometry chosen for this work, a maximum is
obtained because degenerate states coupled by Hyp lie on the Fermilevel [30]. As a matter of fact, in this respect,
FeCoisnotanisolated case [15, 60].

The FSC values obtained in the VASP and SG calculations are in good agreement for FeCo, FeCu, and FePd,
where discrepancies of 0.07 meV or smaller are found. For FePt and FeAu larger deviations of around 0.3 meV
exist. The reason for this discrepancy is difficult to identify. Small quantitative differences in the band structures
provided by both codes would be unimportant for most physical properties but, unfortunately, they become
significant for the estimation of the MAEs.

However, the MAE values predicted by the FT method (see table 4) are, in general, very close to the FSC
values, with typical deviations well below 0.1 meV. It is striking to find such a good agreement even for the
heaviest metal systems, where the charge density change is expected to be larger. There are only a few exceptions,
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Figure 3. Contributions to the 2PT MAE of equation (7), i.e. a SG calculation) from the atom-pair terms (panels (a)—(e)) and the
created e—h spin-pair terms (panels (f)—(j)). Here ‘dn’ stands for spin down in the graph. Each colour corresponds to a FeMe system.

namely the VASP calculation for FePt, FeCo and FeAu and the SG one for FeAu for which, nonetheless,
differences remain smaller than 0.2 meV. For the formers, we assign the discrepancy to calculation details rather
than to the limitation of using the non-self-consistent charge density. Among the technical details, the smearing
method used for the Fermi level determination is crucial, since the FT approach is sensitive to the small Fermi
energy shift when magnetization occurs in one or other direction. In the FeAu case with SG, where full k-
convergence is achieved, we may consider a 0.12 meV deviation as the upper limit to the accuracy of the FT,
probably due to the larger £, SOI strength. Notwithstanding, the Hgo term is fully accounted for by this
approach, although not self-consistently.
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Figure 4. MAE of bulk systems as a function of the number of valence electrons N,. The vertical line indicates the position of the Fermi
level in the neutral systems. Solid (dashed) lines correspond to the FT (2PT). Left: SG calculations, i.e. the dashed line is obtained from
equation (7), with a Fermi—Dirac smearing of kT = 10 meV is used here. Right: VASP calculations, i.e. the dashed line is obtained
from equation (14), with a Fermi—Dirac smearing of kT = 50 meV.

Table 4. MAE values in meV for the bulk neutral systems. Labels SG and V indicate SIESTA-
Green and VASP calculations, respectively, with the cut-off energy and k-point samplings
discussed in the text. In the 2PT SG (VASP) calculations a Fermi—Dirac smearing with

kT = 10 meV (kT = 50 meV) has been used.

FSC(SG) FSC (V) FT (SG) FT (V) 2PT (SG) 2PT (V)

FeCo 0.42 0.39 0.45 0.55 0.44 0.35
FeCu 0.38 0.45 0.42 0.45 0.42 0.38
FePd 0.22 0.16 0.20 0.13 0.19 —0.11
FePt 2.93 2.59 2.93 2.78 2.92 0.63
FeAu 0.20 0.50 0.36 0.62 0.41 0.76

Table 5 shows the MAE values for the thin films. The deviation of the FT values from the FSC ones is about
0.1 meV for FeCo and 0.3 meV for FePt bilayers. From these results, it is clear that the dimensionality reduction
can undermine the performance of FT. This has been observed in Fe and Co adatoms on Rh(111), Pd(111) [12]
and Pt(111) [61], too, with agreement between FT and FSC values largely depending on the adsorption site and
atomic species [12]. We recall that under the FT the electron density is not allowed to relax when SOT is included.
In the FSC calculation we expect these relaxations to be significant in the low-dimensional cases while in bulk 3D
systems, with the concomitant symmetry constraints, they are strongly reduced. Therefore, we find the FT
approach more reliable for the bulk (table 4) than for thin films (table 5).

Next, we address the performance of the 2PT approximation to the MAE, first focussing on the SG MAEs
in table 4: MAE values are in almost perfect agreement with FSC and FT results, the ony exception is the FeAu
alloy with a 0.2 meV difference. Thus, the same behaviour between the FT and 2PT methods indicates that
their accuracy is very similar despite the neglect of high-order Hso terms in the latter, both providing excellent
results at a much lower computational cost compared to the reference FSC calculations. The 2PT MAE values
obtained with the wannierized bands from the VASP calculation yield worse agreement than the other
methods becoming more pronounced the heavier the metal in the Fe alloy (see table 4). Specifically, the easy
axis for FePd is switched to OX while the MAE of FePt is considerably underestimated and that of FeAu
overestimated. Although this method allows the use of very dense k-point grids by interpolation, the quality of
the wannierization procedure is crucial for numerical accuracy. Nonetheless, the main factor that undermines
the final MAE values is the approximation in the Hs matrix elements: the assumption that the MLWFs
correspond to AOs with well-defined Im quantum numbers and, to a lesser extent, the on-site approximation
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Figure 5. k-resolved MAE as a function of the number of valence electrons N, along high-symmetry directions inside the first Brillouin
zone for the FeCo alloy. The top and bottom panels show the FT and 2PT approaches, respectively, obtained from equation (14)
(VASP calculation) with a Fermi-Dirac smearing of kT = 50 meV. The correspondence between the Wannier-interpolated
energy eigenvalues without SOl and the number of valence electrons is shown as black (majority spin) and green (minority spin)
bandstructures. The horizontal line indicates charge neutrality. In the colour scale, red and blue regions of the spectrum account for a
contribution to anisotropy easy axis along OZ or OX, respectively.

Table 5. MAE values in meV for the neutral bilayer models. Labels SG and V indicate SIESTA-
Green and VASP calculations, respectively, with the paramters discussed in the text. As in the bulk
structures, the 2PT SG (VASP) calculations used a Fermi-Dirac smearing with kT = 10 meV

(kT = 50 meV).

FSC(SG) FSC (V) FT (SG) FT (V) 2PT (SG) 2PT (V)

FeCo(111) —0.30 —0.41 —0.22 —0.36 —0.04 —0.12
FeCo(100) 0.42 0.38 0.51 0.39 0.76 0.38
FePt(111) 1.15 1.23 1.42 1.34 2.82 1.00
FePt(100) 2.95 2.35 3.39 2.24 6.00 1.75

(equation (10)) and the neglect of sp-orbital contributions. All in all equation (14) is a coarse approximation.
Despite the apparent resemblance of MLWFs with atomic wavefunctions by visual inspection (see figure 5 in
the supplementary information), the deformations of these ‘d-orbitals’ are significant, due to the fact that
Fe-alloys have strongly-hybridized bands. For FeCo and FeCu, nevertheless, the MAE behaviour in the energy
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Figure 6. MAE of thin films as a function of the number of valence electrons N.. Left and right columns show results from SG and
VASP calculations, respectively. Line type description as in figure 4.

windows analysed is similar to the SG ones (not shown). The performance of the 2PT method for the thin
films (table 5) is not as good as in the bulk case. As mentioned above, in a low-dimensional scenario we expect
the spin—orbit effects on the electronic structure to be stronger. Thus, due to its perturbative nature, it is more
difficult for the 2PT method to capture these effects fully.

Now, using the information provided by the L1 alloys we address the important issue of how close to the Fermi
level are the states determining the MAE values, the above mentioned usual assumption. The 2PT-derived MAE
is determined by eigenstates around the Fermi level within an energy range given by the SOI strength £ and the
(€kno — €rno')” ' factors. Indeed, equation (7) gives less weight to the e—h pairs coupled by Hso matrix elements
that lie farther in energy (the contributions of the energy prefactors are shown in figure 6 of the Supplementary
Information). Intuitively, deep states in the valence band might be regarded as negligible for the MAE. However, a
third factor needs to be considered: the avaible number of states. To analyse the competition of these three effects, we
have calculated the 2PT MAE allowing only initial (final) states within an energy window below (above) the Fermi
energy when evaluating equation (7). The results are shown in figure 2 (left) for the SG case, while those with VASP
are qualitatively the same (not shown). When imposing an energy window on the occupied states, a plateau in the
MAE value is not reached until the window is 5-7 eV wide, depending on the system. These energy ranges comprise
the d-band widths below the Fermi level (see the densities of states (DOS) projected on the d-orbitals in figure 2
(right). With heavier atoms, deeper states contribute non-trivially to the MAE, even reversing its sign, as it is the case
of FeAu. Therefore, the final value of the MAE of each system depends on its electronic structure details, since the
dispersion and binding energies of the individual band pairs coupled by Hsp largely vary from one system to
another. The effect of constraining the accessible empty states in figure 2 is less dramatic and reveals a common
behaviour in all the systems. With a window above the Fermi level, the MAE plateau is reached at ~2.5 eV. As shown
in the DOS plots, this energy range corresponds to the empty spin-minority states of Fe in all the alloys and other
empty metal d-states also contribute, although to a lesser extent, if available (Co and Pt).

Therefore, we conclude that, as a general rule, the high DOS counterbalances the decay of the
(€kno — €xn'o’)” ! factors and dominates over the € prefactors. We can see these trends in the systems under study.
In brief, figure 2 shows that states distant from the Fermi level by as much as several eV (that is, spanning the
whole d-band of the alloy) cannot be neglected in a 2PT calculation, not even in the case of atoms with weak SOI.
We note also that, because of the DOS effect, the observed MAE for FeAu is not the largest, despite of the heavy
Au atoms. From this figure, we conclude that the accessibility of empty Fe spin-minority states is a common
feature that allows for sizeable MCAs in the Fe-based alloys, while the details of the occupied d-bands of each
case determine the final MAE value.

Another appealing aspect of the 2PT formulation is that it allows to split the MAE into contributions arising
from pairs of atoms in the metallic alloy: Fe—Fe, Fe—~Me and Me—Me. This is straighforward when using MLWFs
and equation (14) (see figures 7(a)—(e) in the supplementary information), while if equation (7) is used, the
decomposition can be realized by restricting (v, ') to a given pair of atoms and performing the summation
over all the other (3, 8’) AO contributions. The result is shown in figures 3(a)—(e). As expected, Fe and Co have a
balanced weight on the final FeCo MAE, while Cu hardly contributes to that of FeCu. In the rest of alloys the
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decompositions show the contribution we could expect from the knowledge of the electronic structure, at least
qualitatively. The Pt—Pt and Fe—Pt terms are the main contributors in the FePt alloy, because &p, is an order of
magnitude larger than &g and because the d electrons of both species are strongly hybridized. We find, in
agreement to [14], that the large contribution of the SOI of Pt atoms to the perpendicular anisotropy (OZ easy
axis) is partially balanced by the effect of the Fe—Pt hybrid bands, which favour in-plane anisotropy. In FeAu, the
Au—Au term is also very large due to the magnitude of £4,,, but now we see that the contribution of Fe—Au terms
is weaker, since there is little hybridization with Au-d electrons.

Finally, we compare our perturbative results with the widely used 2PT equation by Bruno for bands of d-
orbital character [18], which assumes that all the accesible holes are minority spin states. Therefore, it neglects
e~h excitations that involve spin-flip, which leads to AE® o ¢ (L). Table 3 shows the MAE values obtained in
this approximation with the DFT-calculated AO moment values 1; for each magnetization direction. Although
the density of majority-spin states above the Fermi level is marginal (shown in figure 2), the results of the Bruno
formula differ significantly from the other methods, and in some cases it does not even predict the correct easy
magnetization axis. In addition to the breakdown of the approximation itself, we can ascribe the discrepancies to
the tendency of DFT to underestimate orbital moment values.

Figures 3(f)—(j) shows the contributions of the e~ spin pairs to the MAE of equation (7) (the equivalent result
with the MWLF approach is shown in the supplementary information figures 7(f)—(j)). We observe that the spin-flip
terms have, indeed, a non-negligible contribution in all cases. In FeCo and FeCu the spin-down final (empty) states
clearly dominate the total MAE value, since the contribution from the spin-up final sates is almost negligible due to
their very low DOS (see figure 2). However, the interpretation of the e~ spin pair contributions for the rest of alloys is
less trivial; in the case of FePt, in particular, the up-up term surprisingly accounts for most of the MAE. A detailed
energy-resolved analysis of this counterintuitive result (not shown) reveals that, despite the spin-down final states still
yield the largest contributions in absolute value for all alloys, they tend to cancel or even provide net negative values
(FePd, FePt, and FeAu) when integrated around the Fermi level, whereas the transitions involving spin-up final states
increase in magnitude as the Me atom becomes heavier and tend to take positive values.

4.2. Non-neutral systems

Figure 4 shows the MAE as a function of the number of electrons N, calculated for the L1, cases within the FT
and the 2PT approaches. Here, we have followed a rigid band approach, in which the Fermi level is recalculated
for each N, employing the eigenvalues and eigenstates of the unperturbed neutral calculation. Hence, the plots
represent the MAE behaviour of each alloy under conditions of doping or application of a bias voltage, which are
common working conditions in magnetic devices, albeit, due to the rigid band approach, only small deviations
from the neutral situation are physically meaningful. Nevertheless, this approach provides a deep understanding
of the physical origin of the MCA and yields valuable information about the accuracy of the MAE values, as we
show below. As expected from the disccusion in the previous section, there are only small differences between
the FT curves calculated with SG and VASP.

Switching of the easy magnetization axis occurs several times as a function of band filling in all cases. Interestingly,
aMAE reversal already takes place by removal or addition of one or two electrons per unit cell. Furthermore, the MAE
undergoes drastic changes in magnitude, even attaining values which are one order of magnitude larger than the
neutral ones, specially in the N, & 10 region where the d-bands show the highest density of states.

With a methodological aim in mind, the study of the MAE in the non-neutral case allows us to study the validity
the 2PT perturbative approach with greater confidence than in the neutral case, since now we can compare a MAE
curve with a rich structure instead of just a single value. The SG 2PT curves (dashed lines in the left-hand panel of
figure 4) are in very good agreement with the FT curves for FeCo, FeCu, and FePd, while large discrepancies appear
when heavier atoms are present. This is particularly evident in FeAu for N, = 5 — 10, which corresponds to the
spectrum region where the d-bands of Au lie. Considering the strong dependence of the MAE on the electron band
structure details discussed in the previous section and the fact that the agreement with FT is not homogeneous as N,
changes, both facts suggest that 2PT loses its validity for elements with strong SOL. Thus, the coincidence in the
neutral-case FePt and FeAu MAEs could be considered to be fortuitous, in the sense that the coincidenceis a
consequence of the specific band structure of the alloy, as it is the case of FePt (also observed in [62]) and FeAu”.

> Inthe FeAu alloy, the Au-d states are mostly confined in a band between —7 and —4 eV below the Fermi energy (see figure 2). On the one
hand, those states are subject to strong couplings by SO, since {4, = 615 meV. On the other hand, because of the (e, — €go7) ! factors,
those states have a weaker effect on the MAE for N, values close to charge neutrality (N, = 19) than for smaller N, values. E.g. aband filling
N, = 10 corresponds to a downward shift of the Fermilevel of —3.7 eV, close to the Au-d states. Therefore, fast sharp oscillations are
observed in the MAE curveat N, = 5 — 10, while smooth behaviour and apparent agreement with FT exists at N, > 12. Importantly, this
does not mean that the Au-d states have a negligible contribution, as evidenced by the absence of a plateau in the occupied states curve of the
FeAu panel of figure 2, which represents the N, = 19 case. For the FePt alloy, since the Pt-d band is less localized in energies, the
disagreement between 2PT and FT is visible throughout the MAE(N,) curve.
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This restriction of the 2PT validity to light atoms is not a serious disadvantage. This approach facilitates the
MAE evaluation with fine k-point grids and narrow smearing widths at a lower computational cost, since it
requires a single DFT calculation without SOIL. We recall that a weak MCA does not necessarily follow from a
small &, as we see in the systems under study. In extended systems like the current ones, band dispersion governs
the MCA.

Both FT and 2PT describe SOI with a perturbative treatment of either the charge density changes or the £
parameter, respectively. At this point, itis important to note another fundamental difference between the FT
and 2PT formalisms. In the former method, the eigenvalues change with the magnetization axis and some
degeneracies may be broken. In the latter method, the unperturbed band structure is not explicitely modified.
Instead, e~ pair excitations of the GS [U©) are induced by Hso, with probabilities given by their matrix
elements. In other words, 2PT is a many-body approach, while FT is a one-electron approach. Thus, if we take
the limit of single ions and uniaxial anisotropy, the 2PT approach described here tends to the widely-used
formalism of the spin hamiltonian for non-degenerate states Hi,, = DS? + E(S? — Sf) [63, 64]. This magnetic
anisotropy model is widely used in the study of single-atom magnetism and spin excitations [21-23].

Visual evidence of the inherent difference between FT and 2PT is presented in figure 5. This figure shows, for
the case of FeCo and the VASP-Wannier calculation, the MAE densities as a function of N, in the reciprocal
space along a few high-symmetry directions inside the 1BZ. To guide the eye, the bands without SOI have been
transformed from energies to the corresponding filling N, and superimposed on the MAE density graph. As
expected, for the FT case (top panel) the regions of non-zero MAE are localized close to the unperturbed bands,
and take positive or negative values depending on the relative Hgo induced shifts in the eigenvalues between the
OZ and OX magnetization directions. The map also reveals abrupt switching of the MAE densities close to
several band-crossings. For example, this happens near the I" point and N, ~ 9, where a pair of majority spin
bands is split by a few meV for magnetization along OZ. Since the splitting is nearly symmetric in energy about
the non-perturbed bands, the contribution to MAE is negative as the bottom band is filled and changes sign
when the upper one starts to become occupied. When both bands are completely filled the MAE vanishes. In the
2PT approach the MAE density (lower panel) takes a very different aspect since the bandstructure is not
modified and, as shown by figure 2, e~} pairs with an energy difference as large as a few eV can contribute to
MAE at a given N, (see also supplementary information figure 6). Thus, the map presents broad plateaus with a
non-negligible MAE density in areas devoid of bands, while sign changes are always localized precisely at the
bands, since they take place when the combined e distribution functions (term f (€xuo)[1 — f (€kn'or)]in
equation (5)) also changes sign as the band is crossed. Nevertheless, for FeCo the two approaches yield a similar
overall description of the MAE(N,) behaviour, as seen in the k-integrated curve of figure 4 (right), in spite of
treating bandstructures in a different way by construction.

With the 2PT calculation that uses MLWFs poorer agreement is found in the profile of the MAE(N,) curves,
due to the limitations of this methodology. Still, the qualitative behaviour is reproduced in all alloys except FeAu,
where similar deviations as for the SG case are found (see right-hand panel of figure 4). Therefore, it could be
used under suitable conditions to make predictions on the MAE behaviour as a function of doping or bias
voltage at alow computational cost from a DFT calculation which does not include SOI. Those conditions
are (i) weak SOI strength and (ii) resemblance between the MLWFs and Y5,,, spherical harmonics. When the first
condition is met, the MAE obtained in the on-site approximation (equation (10)) performs as accurately as FT.
This has been checked with SG calculations (see Supplementary Information figure 8), where the drawback of
point (ii) is not present. Interestingly, the effect of inter-atomic d-orbital hybridization on the MAE is well
captured by this methodology via the F factors in equation (15), while the crude approximation done for the SOI
matrix elements seems less important, as it can be deduced from the good agreement with the FT curves in the
FeCo and FeCu panels of figure 4 (right).

Finally, we analyse the effect of low dimensionality in the non-neutral case. Figure 6 shows the MAE
dependence on the number of electrons per unit cell for the four studied bilayers. As discussed above in
section 4.1, the impact of SOl in the two-dimensional bandstructure is stronger, which is manifested in the large
magnitude of the oscillations in the MAE curves of figure 6. Although FT is a less reliable method for the thin
films, we observe the same main trend as in the bulk results of figure 4, namely, that the agreement is better for
FeCo, since the SOI strength is inside the perturbative regime.

5. Conclusions

In this work, we have included the SOI in DFT calculations at different levels of approximation to obtain the
magnetocrystalline anisotropy energies (MAE). As reference, we use fully-relativistic fully-self-consistent (FSC)
calculations. We have examined the accuracy of a many-body second-order perturbation (2PT) treatment of the
SOI on the scalar-relativistic GS and we have found that it is as good as the well established FT approach. In both
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cases (2PT and FT), we have confirmed that an accurate Fermi level determination is crucial to obtain well
converged MAE values.

As case studies, we have considered several FeMe tetragonal ferromagnetic alloys with L1 structure, as well
as two FeMe (Me=Co, Pt) bilayers with (111) and (100) symmetry. By choosing Me=Co, Cu, Pd, Pt, and Au, we
cover the scenarios of s—d and d—d hybrid band effects and a range of atomic SOI strength parameters £&. We find
that the 2PT approximation describes accurately the MAEs of FeCo, FeCu, (£ ~ 0.05 eV) and satisfactorily that
of FePd (£ ~ 0.1 eV), but fails for the alloys containing 5d metals (§¢ ~ 0.5 eV), while FT to provides reliable
MAE values in general and some minor quantitative discrepancies with respect to FSC values for the bilayers.
The difference in the performance of the two approximations has the following origin: while 2PT is perturbative
in &, FT is perturbative in the charge density changes by SOL.

The MAE in this family of alloys is determined not only by the empty spin-minority Fe states, which lie about
2 eV above the Fermi level, but also by the whole valence band, which lies several eV below the Fermi level. Thus,
the MCA is determined by electronic states that lie from the Fermi level much further than the SOI strength
parameter. The details of the bandstructure are, in essence, responsible for the final MAE value.

Finally, the 2PT approximation is sound enough to account for the anisotropy behaviour of the weak SOI
alloys under deviations from charge neutrality. We show that magnetic switching can be induced by addition or
removal of electrons. This effect could be tuned by, for example, doping or strain, to find an scenario under a
minimal bias voltage. These properties have ample applications in magnetoelectric and magnetostrictive
devices. The 2PT approximation to the SOI, when valid, can be used to study large numbers of these cases
efficiently, as it uses as sole input a scalar-relativistic DFT calculation.
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