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Abstract

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3).
Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this
study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are
implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were
investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples.
Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle
development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or
participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle
development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in
LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-
related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that b-catenin regulation is also
altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription
factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may
induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The
obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.
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Introduction

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a

recessive genetic disorder caused by mutations in calpain 3

(CAPN3), a muscle-specific, calcium-dependent cystein protease.

Calpain 3 structure is similar to that of the ubiquitous calpains 1

and 2, but calpain 3 has specific regions (NS, IS1, and IS2) that

confer it special characteristics such as autocatalytic and nuclear

translocation capacity. Although calpain 3 was identified in 1989

[1], little is known about its function or its in vivo substrates. It has

been reported to play different roles in the cell. Calpain 3 has a

certain role in direct and indirect regulation of conventional

calpains by proteolytic degradation of calpains and calpastatin

respectively [2]. It may be involved in muscle contraction due to its

link to titin and to its regulation by calcium [3–7].

Calpain 3 was shown to be in complex with dysferlin, suggesting

a membrane homeostasis role of calpain 3 [8], and more recent

studies demonstrated that AHNAK, a novel component of the

dysferlin protein complex, serves as a direct substrate of calpain 3

in cell culture [9].

On the other hand, it has been confirmed that calpain 3 can cleave

the C-terminal portion of FLNC in vitro and suggested that FLNC

may be an in vivo substrate for calpain 3, functioning to regulate

protein-protein interactions with sarcoglycans. Thus, calpain-medi-

ated remodeling of cytoskeletal-membrane interactions, such as those

occurring during myoblast fusion and muscle repair, may involve

regulation of FLNC-sarcoglycan interactions [10].

Its presence in the nucleus has led to suggest that calpain 3 plays

an important role in regulation of transcription factors indirectly

controlling apoptotic processes [11,12]. Recent studies reported

that the antiapoptotic factor, cellular FLICE inhibitory protein (c-

FLIP), is NF-kB dependent and is only expressed when CAPN3 is

present [13]. However, other studies suggest that apoptosis may be

secondary to muscle damage and inflammatory response [14].
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Based on the observation of the C3 knockout (C3KO) mice, it

has been suggested that calpain 3 is necessary for ubiquitination

and acts upstream of the ubiquitination machinery [15].

Inflammatory cells have been detected in muscle tissue from

patients with mutations in the CAPN3 gene in early stages [16] as

happen in other distrophies. The role of inflammation in many

dystrophies seems to be unexplained, and it has been related to the

presence of signaling factors (cytokines) that withstand inflamma-

tory mechanisms and regulatory phenomena [17–19].

In this study, the RNA expression profiling in muscle from

biopsies of LGMD2A patients and control subjects were compared

in order to determine the potential functions and the pathways in

which calpain 3 is implicated.

Materials and Methods

Muscle samples and RNA processing
Muscle biopsies were taken from 10 LGMD2A patients (3

females and 7 males aged 13–48 years, mean age 29,5 years) and

10 controls (2 females and 8 males aged 22–84 years, mean age

50,2 years). Two out of the 10 LGMD2A patients showed an

inflammatory pattern with eosinophilic infiltrates in their biopsies.

For diagnostic purposes deltoid, quadriceps, and biceps muscle

specimens were collected using institutionally approved protocols

and after obtaining informed consent (Table 1). Muscle tissues

were snap frozen and stored at 280uC. Most of the 7 symptomatic

cases showed similar necrosis and regenerating phenomena (data

not available in one case).

The quality of all RNAs obtained from muscle biopsies

(RNAPlus, QBiogene) was verified using spectrophotometry and

the Bioanalyzer system (Agilent). All of them showed acceptable

quality and integrity (RIN above 7) to be eligible for the experiment.

All RNAs were reverse-transcribed, and biotinylated cRNA

probes were generated by in vitro transcription (Ambion, CA,

USA). Fragmented cRNA of each sample was hybridized

individually to human HG-U133A (22.283 probe sets) and HG-

U133B (22.645 probe sets) GeneChips (Affymetrix, Santa Clara,

California) in order to analyze the expression of 44.928 probes,

comprising more than 33.000 genes.

Data analysis
In-depth quality controls were performed to analyze the validity

of the hybridization processes in accordance with four criteria.

First, the correct presence of the signal corresponding to the spike

control BioB. Second, the expression ratio between the 39 and 59

ends of the housekeeping GAPDH should not exceed a value of

three. Third, the full percentage of presences detected by the

Affymetrix Detection algorithm for each array must be in the

range 40–60. And finally, the percentage of outlier probe sets

detected within each microarray should be less than 5%. All

hybridized arrays on the study met all four quality criteria,

demonstrating the reliability of data generated.

The hybridized arrays were scanned, and raw data were

extracted using the Microarray Analysis Suite 5.0 (MAS5;

Affymetrix). The raw data were normalized using RMA (Robust

Multichip Average) expression summary in Bioconductor [20].

RMA consists of three steps: a background adjustment, quantile

normalization, and finally summarization [21–23].

The sensitivity of microarray-generated data to noise from

experimental variables is well documented [24]. For the analysis,

the average values of each tested group (patients and controls)

were used in order to obtain the most homogeneous results, trying

to avoid variability between individual cases due to different

characteristics (genetic background, sex, age, muscles, mutations,

etc.). Two statistical methods were applied in order to distinguish

significant and substantial differential expression from noise and

variation due to either genetic heterogeneity or experimental

procedures.

First, in order to identify significantly different genes between

LGMD2A patients and normal controls, a geometric fold-change

analysis was used [24,25]. The threshold was set at a two-fold

change value. Using the criterion of fold-change implies that larger

fold changes are most likely to be real and no hypothesis is

assumed. Principal component analysis (PCA) was performed after

array normalization. PCA is a technique that summarizes a large

set of variables in a smaller set that retains the essential variance of

the original data set [26]. PCA derives an equivalent, uncorrelated

set of new variables from the original set of correlated variables

according to their contribution to a ranked set of principal

components [27].

Second, Class Comparison Difference Analyses were performed

using BRB-ArrayTools developed by Dr. Richard Simon and

BRB-ArrayTools Development Team. In order to identify probe

sets with significant intensity differences between disease classes, a

two-sample univariate t-test was applied to the unaffected control

data set vs. the LGMD2A data set. The use of p-values implies

hypothesis testing. It is assumed in the null hypothesis that there is

no fold change and then evidence was looked for to reject it using a

type-1 error. The threshold was set at p 0.001.

To minimize false positives, only the probe sets commonly

yielded by both methodologies were included into the final list of

genes differentially expressed in LGMD2A.

Moreover, as an additional supporting process, two machine

learning feature selection techniques were run. Symmetrical

uncertainty ranking [28] was first applied as an univariate

criterion to measure the worth of each probe set alone: this

computes the mutual information with respect to the class

phenotype and compensates for the bias of the information gain.

Correlation-based Feature Subset (CFS) selection [29], a multi-

variate feature selection that evaluates the merit of a probe set

subset by measuring the individual predictive power of each probe

set along with the redundancy within that subset, was then used.

CFS outputs a subset of features instead of individual relevances.

The same procedure was used to compare samples from

patients who were asymptomatic but had eosinophilic infiltrates in

their muscle biopsies (2 cases) and samples from healthy controls

(10 cases).

Microarray data have been submitted to the GEO (Gene

Expression Omnibus) public database (accession GSE11681).

Quantitative Real-Time PCR
To investigate the validity of array data, expression levels of the

differentially expressed genes were measured using the TaqMan

quantitative RT-PCR assay. Relative expression levels initially

determined with the cDNA microarrays were correlated to the

expression levels assessed using quantitative RT-PCR for each

patient sample.

Whereas microarrays identify target genes of interest among

thousands of genes, truly quantitative information relies on

quantitative RT-PCR. Some of the significantly regulated changes

found on the microarray could be replicated by quantitative RT-

PCR. Quantitative RT-PCR was performed using the 7900 HT

Fast Real-Time PCR System (Applied Biosystems). Because of the

limiting RNA amount isolated from muscle biopsies used for

microarray analysis, only a few samples (6 cases) were used for

confirmation with quantitative RT-PCR experiments.

The TaqMan Low Density Arrays (TLDA) were purchased

from Applied Biosystems, and the protocol recommended by the
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manufacturer was used. Customer-designed TLDAs were used in

order to test a series of 63 genes. In order to select these genes,

genes with unknown function, hypothetical proteins, and open

reading frame regions were excluded. Gene families were

represented including only some of the members, such as

collagens, etc. Moreover, genes showing differential expression

profiling in the comparison between patients with eosinophilic

infiltrates and healthy controls were included in the TLDA, as well

as genes with expression variation in other studies.

Expression levels for all transcripts were determined relative to

the internal housekeeping control gene GAPDH in the TLDAs

which, as expected, did not demonstrate altered expression

according to microarray analysis.

In order to identify probe sets with significant intensity

differences, the method applied to the unaffected control data

set vs. the LGMD2A data set was Benjamini-Hochberg method

using Stat Miner program (Integromics).

Results

After having adjusted the background, normalized and

summarized the data, the fold change obtained generates a list

by magnitude of response. As a result of this method, the fold

change analysis identified 156 differentially expressed probe sets in

LGMD2A skeletal muscle compared to control skeletal muscle. Of

these, 92 were significantly overexpressed and 64 showed a

reduced expression in LGMD2A patients compared to the

unaffected controls.

PCA grouped together on the one hand patient samples and on

the other hand control samples and a greater variability was seen

among controls due to the heterogeneity of this group (Figure 1).

On the other hand, the additional statistical method used to

analyze the data, the Class Comparison Differences method,

applied a two-sample univariate t-test to the unaffected control

data set vs. the LGMD2A data set. This method identified 627

probe sets with a p value higher than 0.001.

However, the final list of genes comprised 86 probe sets (74

genes) commonly yielded by the two methodologies which were

differentially expressed in LGMD2A compared to unaffected

muscle biopsies. Of these 74 genes, 53 were overexpressed and 21

had a reduced expression in the LGMD2A patients and all the

genes were clustered into functional groups (Table 2). Transcripts

were classified according to different biological processes, as

obtained from LocusLink (www.ncbi.nlm.nih.gov/LocusLink/):

extracellular matrix proteins/phosphate transport, cell adhesion,

muscle development, transcription factors, signaling pathways,

metabolic process, transport, ubiquitin cycle, and other functions.

The additional supporting process, the Correlation-based

Feature Subset selection (CFS) [29] highlighted a set of 21 genes.

Of these 21 genes, 7 corresponded to the previously determined

group of 74 genes. In turn, Symmetrical Uncertainty Ranking

returned correlation coefficients higher than 0.5 for 24 genes

within the list. Note that the highest correlation was 0.816 when

the coefficient was constrained between 1 (maximum) and 0

(minimum). The average coefficient for the whole gene list was

0.36, with a standard deviation of 0.177.

Overview of expression profiling in LGMD2A muscles
Some transcript classes were of particular interest in this analysis

(Table 2). Most genes found to be dysregulated in LGMD2A were

genes grouped in the transcription factor category, and some of

them showed the lowest fold-change values obtained in the study

(FOS, EGR1). By contrast, genes showing the highest fold-change

values included extracellular matrix proteins, genes involved in

muscle development, and three additional genes with different

functions (FRZB, TFRC, and CAPN6).

As a whole, in most of the biologically classified processes, the

same trend to up- or downregulation was seen for all genes

involved in the same process. Genes associated with extracellular

matrix (collagen types I, III, V, and XV, and SPARC), cell

adhesion, muscle development (MYH3, MYL5 and ITGB1BP2),

signaling pathways, and ubiquitin cycle predominated among

Figure 1. Principal component analysis (PCA) of HG-U133A microarrays (A) and of HG-U133B microarrays (B) after normalization. P:
LGMD2A Patients. C: Healthy controls. Muscle specimens obtained from individuals of the same status showed the greatest similarities.
doi:10.1371/journal.pone.0003750.g001
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upregulated genes. However, all genes involved in metabolic

processes and transcription factors (except for the E2F8 gene) were

downregulated (Table 2).

On the other hand, upregulation of IGF1, which is a regulator

of somatic growth and cell proliferation, was seen in this study.

IGFa is an inducer of different pathways such as the phosphati-

dylinositol 3-kinase survival (through activation of AKT1, AKT2),

the calcineurin.mediated signaling pathways, and of GATA2

activation.

HERC1 and ANAPC1 are genes implicated in the ubiquitin

cycle and showed upregulation in LGMD2A muscle samples.

HERC1, ubiquitously expressed, is located in the cytosol in the

Golgi apparatus, stimulating guanine nucleotide, forming a

cytosolic ternary complex with clathrin and Hsp70, and is

involved in protein trafficking. ANAPC1 is a component of the

anaphase promoting complex/cyclosome (APC/C), a cell cycle-

regulated E3 ubiquitin ligase that controls progression through

mitosis and the G1 phase of the cell cycle.

There are two deregulated genes according to our results whose

cell location is the mitochondrion matrix, one of which is involved

in the metabolic process, ALDH2 (aldehyde dehydrogenase 2

family) (downregulated), while the other, the PPM2C gene (protein

phosphatase 2C, magnesium-dependent, catalytic subunit) (upre-

gulated) is implicated in protein amino acid dephosphorylation.

Expression changes in common with other muscular
dystrophies

Twenty four out of the 74 deregulated genes with altered

expression in LGMD2A were also deregulated in other muscular

dystrophies (DMD, a-SGD, FSHD, dysferlinopathies, Fukuyama-

type congenital muscular dystrophy, and laminin-a2 deficient

congenital muscular dystrophy) [24,30–35] (Table 2).

LGMD2A and eosinophil infiltration
A comparison was made between biopsies of control muscles (10

cases) and biopsies from two cases showing eosinophil infiltrates.

Results of this comparison are summarized in Table 3.

Genes involved in immune response such as IL-32, IGHG1,

and IGKC were upregulated, as well as CAPN6, while those

involved in chemotaxis or regulation of the protein kinase B

signaling cascade were downregulated in asymptomatic cases

comparing with controls.

Validation of microarray data by quantitative RT-PCR
The main correlation between the two assays is showed in Figure 2.

Real-time PCR was not only used to confirm the abnormal gene

expression profiles detected by microarray analysis, but also to better

define fold-change variations using a more sensitive approach. This

approach showed mean fold changes in expression levels directionally

similar to those determined by microarray analysis. Overall, fold

change was lower when the microarray approach was used compared

to real-time PCR (Table 2).

Discussion

The main correlation between the two assays, microarrays and

quantitative RT-PCR, was high for all genes, indicating a good

agreement between both assays for identification of deregulated

genes.

On the other hand, by means of the additional supporting

process, a high correlation degree among results was shown and it

provided more reliability to the final list of genes. Therefore,

results of the two machine learning approaches support the degree

of relevance of the 74 genes identified.

Calpain 3 was not abnormally regulated in the microarray study

(data not shown). While protein analysis usually shows an absence of

protein in patients, the microarray data did not reveal a reduction of

calpain 3 mRNA indicating that this primary genetic defect cannot

be identified by expression profiling. It is worthwhile mentioning

that the presence of different missense mutations in most of the

patients may explain this observation as well as the variability found

in the Western Blot including normal patterns [36].

In LGMD2A muscles, genes associated with ECM/membrane-

related, cell adhesion genes, muscle development genes, signaling

pathway genes, and ubiquitin cycle genes were upregulated

(Table 2).

Extracellular matrix
The general trend for structural genes to be expressed at higher

levels in patients could reflect a general upregulation of structural

genes in the mutant muscle, as previously reported for other types

of muscular dystrophies [37].

It is interesting to note that a large proportion of genes

associated to the extracellular matrix were probably upregulated

as a result of fibrotic infiltration. These genes include extracellular

matrix proteins such as collagen types I and III (the two major

collagens in the ECM), cell adhesion proteins such as CD9, CD44,

and fibronectin.

SPARC, overexpressed in the fibroblasts of skin biopsy

specimens obtained from patients with systemic sclerosis [38],

could be the factor involved in the interstitial fibrosis seen in

muscles of LGMD2A patients. It is a matricellular glycoprotein

that may modulate cell interaction within the ECM by binding to

both ECM structural components and growth factors.

Muscle development
Our results showed that MYH3 (myosin, heavy chain 3, skeletal

muscle, embryonic) is highly upregulated in samples from

LGMD2A patients. Expression of embryonic myosin heavy chain

is a hallmark of muscle regeneration after birth and a characteristic

marker of human muscular dystrophies. During normal human

development, expression is restricted to the embryonic period of

development [39]. This could indicate a failed muscular regener-

ation attempt to compensate a downstream injury.

Another upregulated gene is myosin light chain 1 slow A

(MLC1SA), a transcriptional regulator promoting muscle cell

proliferation expressed in both slow-twitch skeletal muscle and

non-muscle tissue. This gene showed a high individual correlation

with class phenotype (0.442), and was one of the seven genes

included in the CFS output. This fact flawlessly demonstrates its

importance not only from an individual point of view, but also

because of its potential interactions. MLC1SA is one of the two

phosphorylable regulatory light chains forming the myosin

complex. Cohen et al [40] found that MLC1SB (Accession Nu
P09542 in mice) was a substrate for calpain 3. To date, no

contractile proteins have been identified as in vivo substrates for

CAPN3. Identification of MLC1 as a potential substrate for

CAPN3 was of interest because, in a previous study, Kramerova et

al [15] demonstrated that CAPN3 regulates sarcomere remodeling

by acting upstream of the ubiquitin–proteasome system.

LGMD2A patients showed upregulation of the IGF-1 gene as

previously observed in other muscular dystrophies. Normal

skeletal muscle is able to efficiently repair itself in response to

injury. IGF-1 has been implicated as a factor that may affect many

steps in gene expression control, including cell proliferation,

differentiation, and degradation processes. IGF-1 is a peptide that

has been shown to have anabolic effects on muscle cells. This

action can be explained based on the molecular signaling events

Expression Profiling in LGMD2A
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initiated by its receptor, a tyrosine kinase activated on IGF-1

binding, and transmitted through a cascade of intracellular events,

leading to a general increase in protein synthesis [41,42].

Integrin b1 binding protein (ITGB1BP2 = melusin), also

upregulated in LGMD2A muscles, is present in a costamere-like

pattern consisting of two rows flanking a-actinin at Z line. Melusin

expression is upregulated during in vitro differentiation of the

C2C12 murine myogenic cell line, and is regulated during in vivo

skeletal muscle development [43]. Upregulation of the melusin

gene may alter a process that is tightly controlled in muscle

development, leading to inadequate muscle differentiation and

maturation. The generalized inhibition of terminal stages of

myogenic differentiation in C3KO myotubes affects at least two

events: sarcomere formation and integrin isoform replacement

[44]. During myogenesis, two isoforms of b1 integrin are

expressed: b1A is expressed in myoblasts and is downregulated

during myogenesis, while b1D appears after fusion and eventually

displaces b1A in mature myotubes [45]. Neither b1A nor b1D

were cleaved by CAPN3, suggesting that changes in the level of

integrin isoforms are not a direct result of calpain 3 absence [44].

Ubiquitin cycle and protein degradation
It is still unclear whether CAPN3 directly cleaves proteins to

make them available for ubiquitination or whether the effect of

CAPN3 is indirect (i.e. through regulation of other proteins

involved in ubiquitination) [15]. In LGMD2A muscle samples, the

HERC1 and ANAPC1 genes involved in the ubiquitin cycle are

upregulated, suggesting that their regulation may be under the

control of calpain 3.

Moreover, Ono et al [46] found proteolysis of proteasome

regulatory subunit RPS6A by calpain 3, which may indicate that the

ubiquitin-proteasome system is subject to regulation by calpain.

As ubiquitination tags proteins for degradation, decreased

ubiquitination may lead to excessive accumulation of the proteins

that should otherwise be degraded. This in turn could trigger a cell

stress response, one manifestation of which is upregulation of heat

shock proteins [15]. According to the reported data, the DnaJ

(Hsp40) homolog, subfamily A member 4 (DNAJA4), that showed

upregulation, may regulate the chaperone function of Hsp70

proteins [47].

Signaling pathways
The protein coded by HERC1, upregulated in LGMD2A

patients, has a C-terminal HECT (homologous to E6-AP C-

terminus) domain, which suggests that it has an ubiquitin ligase

activity.

b-catenin plays a critical role in many cellular and morphogenic

processes by performing two distinct functions: in the nucleus, it

acts as a mandatory coactivator of TCF/LEF transcription factors

in response to Wnt signaling during both embryonic development

and adult muscle regeneration, while at the cell membrane, b-

catenin associates with the cadherin complex that links adhesion

molecules to the cytoskeleton. In both cases, the concentration of

b-catenin has been shown to be tightly regulated through

ubiquitin-mediated degradation [44].

Two distinct ubiquitin ligase complexes control b-catenin levels

in cytoplasm and at the membrane [48]. Ubiquitination and

degradation of the cytosolic pool of b-catenin are under the

control of Wnt signaling. Degradation of the membrane pool of b-

catenin in skeletal muscle is mediated by the Ozz-E3 ubiquitin

ligase complex [49]. Thus, it may be suggested that membrane b-

catenin is indirectly regulated by CAPN3. It should also be noted

that Trim32, found mutated in limb-girdle muscular dystrophy

type 2H, is another putative E3-ubiquitin-ligase [50].

On the other hand, frizzled-related protein (FRZB) is

upregulated in LGMD2A muscle samples. It could therefore be

hypothesized that b-catenin regulation is also altered at the Wnt

signaling pathway, leading to an abnormal myotube fusion or

incorrect myogenesis.

Deregulation of mitochondrial genes
In our results, the mitochondrial genes found to be deregulated

were ALDH2 and PPM2C. ALDH2 was downregulated in patient

samples and is implicated in the glycolysis/gluconeogenesis

pathway. On the contrary, expression of the PPM2C mitochon-

drial gene was upregulated in our study. Protein phosphatase 1J

(PPM1J_mouse, PP2C family) was found to be an in vivo substrate

for calpain 3 [40].

In later stages of the disease, the muscle pathology is

characterized mainly by the presence of lobulated fibers (LF),

which are composed of misaligned myofibrils that form a lobular

pattern, in addition to fiber size variation and interstitial fibrosis.

Lobulated muscle fibers reflect an abnormal spatial distribution of

the intermyofibrillar mitochondria network [51]. In C3KO mice,

abnormal A-bands were seen, suggesting a role for calpain 3 in

correct formation of sarcomeres or maintenance of sarcomere

alignment [14].

mRNA expression profiles were specifically altered in LGMD2A

muscles with lobulated fibers Keira et al [52]. Genes encoding for

extracellular matrix (ECM)/membrane-related, cytoskeletal, or

sarcomeric proteins were also upregulated in LF muscles.

According to these results, identification of these mitochondrial

proteins suggests that CAPN3 may be involved in mitochondrial

protein turnover.

Common genes with altered expression in different
muscular dystrophies

According to Table 2, LGMD2A can be characterized as an

active fibrotic disease with suppressed muscle regeneration, since

LGMD2A cases share upregulation of the extracellular matrix

Figure 2. Comparison between expression data obtained from
microarray experiments and data obtained from quantitative
RT-PCR.
doi:10.1371/journal.pone.0003750.g002
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(ECM) components with congenital muscular dystrophy cases and

share downregulation of the transcription factors with Duchenne

muscular dystrophies.

In muscles from patients with Duchenne muscular dystrophy,

upregulated genes were mostly those related to immune response,

sarcomeric, ECM, and cell growth, whereas downregulated genes

were associated to energy metabolism, transcription/translation,

signaling, and proteasomes [32].

c-fos and c-jun proteins have been described as showing strong

cytoplasmic expression related to the degeneration process

occurring in Duchenne and Becker muscular dystrophies [53].

However our results contradict the previously published results

and they showed a strong downregulation of c-fos and c-jun in our

samples.

Recently Gan et al [54] reported that Dishevelled (Dvl) and c-

Jun form a complex with b-catenin-T-cell factor 4 (TCF-4) on the

promoter of Wnt target genes and regulate gene transcription. c-

Jun mediates Dvl association with the functional TCF-b-catenin

complex and functions as a key component of Wnt signaling in vivo.

Since genes coding for proteins in this pathway are dysregulated in

LGMD2A patients, it may be suggested that the downregulation

of c-jun and other transcription factors observed in LGMD2A

patients are regulated in an indirect way by calpain 3.

TFRC (transferrin receptor) and VLDLR (very low density

lipoprotein receptor) are upregulated in LGMD2A patients as

occurred in FSHD muscles [33]. Transferrin is a key myoblast

trophic factor, initially promoting myoblast proliferation and

subsequently supporting myogenic differentiation. However,

TXNIP (thioredoxin-interacting protein) is downregulated in

LGMD2A muscles and was also downregulated in FSHD samples

[33]. Since TXNIP acts as an oxidative stress mediator, this

finding is consistent with the enhanced vulnerability to oxidative

stress seen in LGMD2A, as observed in FSHD myoblasts [33].

Many of the genes deregulated in facioscapulohumeral muscular

dystrophy (FSHD) are involved in myogenesis, cell differentiation,

and cell-cycle control.

According to the available information, it could be suggested

that FSHD shared the greatest quantity of differentially expressed

genes and the deregulation tendencies (up/downregulation) are

the same and in a similar range of variation. However it would be

difficult to establish any correlation given that in the FSHD, even

in patients with the same deletion fragment, high variability of

impairment and of muscle affectation grade is observed.

Therefore, the data depend enormously on the place and on the

moment that biopsy has been taken.

S100A6 (calcyclin) and S100A8 (calgranulin A), dysregulated in

LGMD2A muscles, are involved in various intracellular and

extracellular regulatory activities [55]. Upregulation of S100A6

expression was seen also in LGMD2B and as in other muscular

dystrophies, the structural defect causes a general membrane

instability that leads to an altered uptake of calcium ions into the

muscle fibers [31]. Since calpain 3 interacts with dysferlin and

AHNAK, a role of calpain 3 in membrane homeostasis has been

suggested [8,9]. The increased Ca2+ concentration probably

influences expression of various signaling molecules whose

transcription is sensitive to calcium concentration.

Dysferlin was not abnormally regulated in LGMD2A patients in

the microarray study. The value obtained for the expression of the

DYSF gene did not fulfil the established criteria to be considered

as differently expressed (data not shown).

In this study mRNA levels are analysed, not protein quantities.

Even if the protein is reduced in the Western Blot, this reduction

may not be regulated at a transcriptional level, it may happen at a

post-translation level. Since calpain 3 was shown to be in complex

with dysferlin and it has been demonstrated that AHNAK, a novel

component of the dysferlin protein complex, serves as a direct

substrate of calpain 3 in cell culture, the lack of one of these

proteins may justify the reduction of the other.

As described in previous works [31] while western blotting tests

showed a reduction or the absence of dysferlin protein in most

LGMD2B patients, the microarray data showed a reduction of

dysferlin mRNA for some of the patients analysed. This could be

due to the different types of mutations of the gene that affects the

translation efficiency of the mRNA or the stability of the protein.

Additionally, while protein analysis usually shows an absence of

protein in the C57BL/10.SJL-Dysf mice, the microarray data did

not reveal a reduction of dysferlin mRNA indicating that this

primary genetic defect cannot be identified by expression profiling

[37]. Moreover, it has been observed that neither calpain-3 nor

caveolin was consistently reduced in dysferlinopathies.

The vast majority of upregulated genes in Fukuyama-type

congenital muscular dystrophy (FCMD) and laminin-a2 deficient

congenital muscular dystrophy (MDC1A) encode extracellular

matrix components, presumably related to fibrotic change.

However, mature muscle components were extremely downreg-

ulated in congenital muscular dystrophies [34].

Muscle regeneration is also a process that depends on the

skeletal muscle basement membrane. Basement membrane is

thought to not only maintain cell integrity but also to mediate

signal transmission in cell differentiation, growth, attachment,

survival, polarity, proliferation, and apoptosis [56,57]. It is

hypothesized that upregulation of ECM genes might arise from

signal transduction defects due to basement membrane dysfunc-

tion. It is possible that muscle fibers keep high transcription levels

of ECM to create basement membrane components [34].

Costameric proteins can interact with many components of both

the sarcolemma and cytoskeleton. Different publications support a

role for the costamere/Z-disk axis in mechanotransduction, the

dynamic process through which mechanical stimuli are sensed by

muscle cells and converted into biochemical responses [57].

Based on our results and since collagens, melusin and

fibronectin, were deregulated, we may hypothesize that upregula-

tion of ECM genes found in LGMD2A patients may result from

signal transduction defects due to basement membrane dysfunc-

tion. Calpain 3 recognizes a wide range of substrates, including

cytoskeletal proteins and myofibrillar proteins [40,46]. These

cytoskeletal proteins and matrix proteins contribute to cell shape,

mechanical resistance, and morphological integrity of muscle cells,

and are part of a complex network of filaments and tubules that

transmit mechanical and chemical stimuli between cells. The

cytoskeleton is not only involved in cell stability and integrity, but

also plays a significant role in signal transmission from the cell

membrane to the nucleus.

LGMD2A and eosinophilic infiltrations
Presence of eosinophilic cells has recently been detected in muscle

tissue from patients with mutations in the CAPN3 gene [16].

In our study, IL-32 was upregulated in LGMD2A patients with

eosinophilic infiltrates (Table 3). Although IL-32 does not share

sequence homology with known cytokine families, IL-32 induces

various cytokines, human TNFa, and IL-8 in THP-1 monocytic

cells. IL-32 activates typical cytokine signal pathways of nuclear

factor-kappa B (NF-kB) and p38 mitogen-activated protein kinase

[58]. The neutrophil-derived proteinase 3 (PR3) was identified as a

putative IL-32 receptor [59], supporting the possibility that IL-32

upregulation in muscle may be chemoattractant for eosinophilic

cells.
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Eosinophilia has also been reported as a prominent feature of

the necrotic phase in dystrophin-deficient mdx mice. This study

suggested that eosinophilia was promoted by at least perforin-

dependent cytotoxicity of effector T cells and T-cell production of

interleukin-5 (IL-5) [60]. However these authors concluded that

some eosinophilia of mdx muscle is independent from perforin-

mediated processes and that it may be suggested that a similar

mechanism of calpain 3 could act in this process.

Inflammatory features may be seen in some muscular

dystrophies, such as facioscapulohumeral muscular dystrophy

[17] and dysferlinopathies [19]. Moreover, a Becker muscular

dystrophy presenting eosinophilic inflammatory myopathy was

described by Weinstock et al [18].

Although the comparison between gene expression profiles

between LGMD2A with and without eosinophilia would be

interesting, it was not possible to perform. The methods used needed

a higher quantity of samples to obtain significant results. Moreover,

when a PCA plot was performed for LGMD2A patients only

(including cases with and without eosinophilia), no different groups

were created and this may be due to the low sample number too.

It seems that the comparison between asymptomatic patients

with eosinophilia with control samples is more indicated to shed

some light onto the initial mechanism that triggers the eosinophilic

cell attraction to muscle. The comparison between asymptomatic

patients and controls allows a clearer view due to a lower

interfering expression variation.

In a first approach asymptomatic cases were considered as

affected and were included into the patient group in the general

analysis. These cases were included in the affected group due to

their abnormal muscle biopsy pattern. Additionally reinforcing this

decision, the PCA plots clustered together the LGMD2A case with

or without eosinophilia.

Finally in an additional analysis, however, it was decided to

consider them as a different group compared to the controls in

order to obtain information about eosinofilic attraction in the early

stage of the disease.

Conclusions
In conclusion, upregulated genes were mostly those related to

extracellular matrix, cell adhesion, sarcomeric proteins, and signal

transduction. It is therefore suggested that different proteins

located at or participating in the costameric region are involved in

processes regulated by calpain 3 during skeletal muscle develop-

ment. Upregulation of these proteins may indicate a compensatory

attempt of the muscle, and since most of these genes are also

upregulated in other dystrophic processes, upregulation might be

relatively nonspecific.

It was also found that genes participating in the ubiquitin

proteasome degradation pathway are deregulated in LGMD2A

patients, which suggests that regulation of this pathway may be

under the control of calpain 3 activity.

Finally, the upregulation of IL-32 and immunoglobulin genes

may cause the eosinophil chemoattraction observed in the

inflammatory findings in presymptomatic stages. This upregula-

tion seems to disappear when the disease progresses. However,

they might be quite specific markers for the disease.

Though samples taken from different muscles could add

variability to the results of the expression array analysis,

correlation of the results with the quantitative RT-PCR results

gave strength to the findings. Gene expression profiling is

presented as a useful approach to mine new data and hopefully

open new perspectives for muscular disorders, shedding some light

on identification of novel therapeutic targets for limb-girdle

muscular dystrophies.

Looking ahead, each of these methods should be individually

analyzed in the animal model and in cell models.

This analysis gives a total of 24 genes that may be considered as

potential diagnostic or evolutionary biomarkers of the disease.

However, this question will not be solved until the predictive value

of these markers is proved in a series of patients with different

evolutive status and secondly until the consistency of the results in

different muscles and different laboratories is proved.
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