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Abstract  

The human Y chromosome determines male sex and possess a haploid nature, escaping crossing 

over during meiosis. These traits make this chromosome male specific, which is transmitted from 

fathers to sons practically unchanged establishing paternal lineages. In the last years the study of 

genetic markers located in the human Y chromosome, that is, Y chromosome short tandem 

repeats (Y-STRs) and single nucleotide polymorphisms (Y-SNPs), has become relevant in the area 

of Forensic Genetics as a powerful tool to exclude male suspects from the involvement in a crime, 

identify the paternal lineage and biogeographical ancestry of male perpetrators, as well as to 

provide investigative clues to find an unknown male perpetrator or contributor or to a crime. In 

addition to that, the analysis of the Y chromosome can also be applied in other areas like 

population genetics and genetic genealogy for the study of paternity and/or kinship, detecting 

past and recent male mediated expansions, familiar searching, and evolutionary studies.  

Although highly useful, the analysis of the Y chromosome is limited in Forensic Genetics due to its 

haploidy and inheritance, which makes it less effective for identification purposes in comparison 

with autosomal markers. Moreover, it cannot distinguish between individuals from the same 

paternal lineage. However, its utility cannot be disregarded since the vast majority of the crimes 

where DNA evidence is helpful are committed by male perpetrators.  

The study of Y-SNPs has revealed that the distribution of paternal lineages, or haplogroups, around 

the word is restricted to concrete geographic areas at continental and regional level, allowing to 

reconstruct the evolutionary history of lineages.  In this context, the current genetic makeup of 

Europe has been the object of multiple studies, as a controversy arose around the Paleolithic or 

Neolithic origin of the most common paternal lineage in West Europe, R1b-M269. 

The main objective of the present doctoral thesis work focuses on the reconstruction of the most 

probable evolutionary scenario of the main European paternal lineage R1b-M269 in the Iberian 

Peninsula and Southwest Europe through the dissection in its subhaplogroups. The analysis of 

M269 and its sublineages in populations of Southwestern Europe allowed us to further 

characterize the paternal genetic landscape of that region, revealing a different distribution 

pattern from the one proposed before by other authors for R1b-S116, one of the main M269 

sublineages, and resolving the paragroup S116* by the presence of the Iberian near-specific 

haplogroup R1b-DF27, which occupies a different geographic area than the other S116 

subhaplogroups and is present in the Iberian Peninsula in frequencies over 30-50%.  
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On the other hand, the analysis and dissection of DF27 has revealed that this lineage is also 

present in Latin America due to historical events, and that some of its sublineages display 

moderate geographic differentiation in Iberia, making DF27 a potentially useful marker in Forensic 

Genetics for determining Iberian or southwest European paternal biogeographical ancestry. 

Furthermore, the estimated times to the most recent common ancestor (TMRCA) show that DF27 

originated recently, around 4,000-4,200 years ago, at the transition between the Neolithic and the 

Bronze Age that remodeled the Y chromosome landscape of Europe.  

In addition to that, in forensic and population genetics the necessity of new multiplex tools that 

allow the simultaneous genotyping of several genetic markers in a unique reaction has proven to 

be a critical demand. These multiplex tools can be composed of either Y-STRs and/or Y-SNPs, and 

are based on capillary electrophoresis, minisequencing, or massive parallel sequencing (MPS) 

technology, although the last one is not yet implemented in all Forensic Genetics laboratories. To 

respond to the increasing demand of Y-SNP multiplexes with higher haplogroup resolution, and of 

Y-STR multiplexes able to resolve the particular cases that the current Y-STR panels are not able 

to respond to, two novel multiplex panels were developed in the present work. On the one hand, 

the 15-plex Y-SNP minisequencing panel allows the fine subtyping of the haplogroup DF27, 

suitable for the inference of Iberian and southwest European paternal biogeographical ancestry. 

On the other hand, the slowly mutating (SM) Y-STR panel could be helpful in conjunction with 

current Y-STRs panels for confirming exclusions in kinship cases where minimal discrepancies in 

one or a few loci are reported using only the regular Y-STR panels, as well as for evolutionary 

studies. 

All in all, the studies conducted within the present doctoral thesis work have provided new clues 

about the evolutionary history of the current paternal genetic landscape of Europe, as well as an 

extensive genetic reference dataset of forensic and population interest for future applications.  
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Resumen 

El cromosoma Y humano determina el sexo masculino y posee una naturaleza haploide, sin estar 

sujeto en la mayor parte de su longitud a recombinación, debido a que escapa del 

entrecruzamiento cromosómico durante la meiosis. Estas características hacen que este 

cromosoma sea específico del sexo masculino y que se trasmita prácticamente sin cambios de 

padres a hijos, estableciendo lo que se conoce como linajes paternos. El estudio de los linajes del 

cromosoma Y, mediante polimorfismos de un solo nucleótido (single nucleotide polimorphism, 

SNP) en el cromosoma Y (Y-SNP), permite la reconstrucción de la historia evolutiva de los linajes 

paternos de la especie humana desde sus inicios en África hace al menos 300.000 años.  

El conocimiento de la estructura y propiedades del cromosoma Y obtenido a través de la genética 

de poblaciones humanas mediante el análisis de sus marcadores genéticos es la base para el 

estudio de las migraciones humanas y sus aplicaciones en genética forense y otras áreas afines 

como la genealogía genética o la genética evolutiva. Estos marcadores pueden ser de dos tipos, 

los anteriormente mencionados Y-SNPs, y los microsatélites Y-STRs (short tandem repeat, STR). Su 

estudio permite conocer cuáles son los linajes paternos característicos o presentes en cada 

población humana y entender cómo se distribuyen en las mismas, permitiendo así diferenciar 

entre unas poblaciones y otras. Por ello, en los últimos años su estudio es relevante dentro del 

área de la Genética Forense debido a que el análisis de estos marcadores permite, entre otras 

cosas, excluir a un sospechoso masculino como contribuyente de restos biológicos presentes en 

la escena de un delito, identificar el linaje paterno y la ancestralidad biogeográfica de los 

sospechosos, y proporcionar pistas para la identificación del autor o contribuyente masculino de 

un delito. Además de sus aplicaciones forenses, los marcadores genéticos del cromosoma Y 

también pueden aplicarse al estudio de paternidad o parentesco biológico, la búsqueda de 

familiares desaparecidos y la detección de movimientos migratorios masculinos tanto pasados 

como recientes. 

A pesar de su gran utilidad, el análisis del cromosoma Y presenta varias limitaciones que restringen 

su uso en rutina forense. Sus marcadores genéticos son menos efectivos para la identificación de 

individuos que los marcadores autosómicos debido a su modo de herencia, que impide distinguir 

entre los individuos de un mismo linaje paterno. Padres e hijos, además de familiares 

emparentados por línea paterna, poseen el mismo cromosoma Y. No obstante, debido al hecho 

de que la mayoría de los delitos con pruebas de ADN informativas son cometidos por individuos 

varones, la utilidad del análisis de marcadores genéticos del cromosoma Y en rutina forense es de 

gran ayuda. En particular, el análisis de estos marcadores resulta de gran valor en delitos 
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cometidos por varones, tal como agresiones sexuales, casos en los que el resto de marcadores 

genéticos (como los autosómicos) hayan fallado, o en casos en los que se quiera obtener 

información sobre la ancestralidad biogeográfica paterna de un sospechoso.  

El estudio de los Y-SNPs ha revelado que las agrupaciones de linajes paternos, también llamadas 

haplogrupos, se distribuyen en áreas geográficas concretas a lo largo del mundo, tanto continental 

como regionalmente. De manera que ciertos haplogrupos son más comunes en determinadas 

zonas del planeta o en algunos grupos étnicos mientras que otros se encuentran más diseminados, 

dependiendo todo ello de la historia evolutiva de cada población o linaje. En el caso de Europa, 

los linajes paternos más comunes son R1b en el oeste del continente y R1a en el este, ambos 

pertenecientes al macrohaplogrupo R.  

La actual composición genética de Europa ha sido objeto de múltiples estudios poblacionales 

desde hace varios años, y fruto de ello surgió una gran controversia alrededor del origen del 

haplogrupo más común en el oeste de Europa, R1b-M269. Las estimaciones de edad obtenidas a 

partir de los distintos estudios genéticos realizados por distintos autores situaron el origen de este 

linaje paterno tanto durante el periodo Paleolítico, como en tiempos más recientes, en el 

Neolítico. También surgió cierto debate alrededor de su lugar de origen, que según los autores 

que apoyan un origen de M269 en Paleolítico se situaría en la región Franco-Cantábrica y, según 

los autores que defienden su origen más reciente en el Neolítico, se situaría en el este de Europa. 

A fin de resolver las cuestiones sobre su origen, es necesario un mayor estudio de la estructura de 

M269 y su distribución a lo largo de Europa, cubriendo la mayor parte de territorio posible, ya que 

los estudios publicados hasta la fecha no han aportado suficiente información sobre algunas áreas 

concretas del continente, como la zona de la cornisa atlántica. También sería necesaria una 

revisión de los métodos y los parámetros utilizados para estimar la edad de dicho haplogrupo. 

Teniendo en cuenta lo mencionado anteriormente, el objetivo principal de este trabajo de tesis 

doctoral se centra en la reconstrucción del escenario evolutivo más probable del principal linaje 

paterno europeo M269 en la Península Ibérica y el suroeste de Europa a través de la disección en 

sus subhaplogrupos. Esto permitirá caracterizar de manera detallada la distribución de los linajes 

paternos presentes en la Península Ibérica e inferir el papel de esta región en la historia evolutiva 

de Europa, lo cual explicaría la distribución actual de la mayoría de los haplogrupos del suroeste 

de europeo. 

El análisis de M269 y de sus subhaplogrupos en poblaciones del suroeste de Europa nos ha 

permitido caracterizar el paisaje genético paterno en esa región, revelando que uno de los 

sublinajes principales de M269, R1b-S116, presenta un patrón de distribución distinto al 
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propuesto anteriormente por otros autores, observándose un gradiente de frecuencias 

decreciente con la distancia desde el norte de la Península Ibérica, la costa oeste francesa y las 

islas británicas. Por otro lado, el paragrupo de S116, S116*, fue prácticamente resuelto por la 

presencia del sublinaje R1b-DF27, que se distribuye en un área geográfica distinta de las de R1b-

U152 y R1b-M529, los otros dos subhaplogrupos principales de S116.  

En cuanto al origen de M269, los resultados obtenidos sugieren que se originó en el este de 

Europa, apareciendo sus sublinajes durante la ola de avance a medida que se extendió por el resto 

de Europa. De este modo, teniendo en cuenta los datos aportados por el análisis de Y-SNPs e Y-

STRs, y los resultados obtenidos por otros autores en estudios paralelos, se podría descartar el 

origen de M269 en el área Franco-Cantábrica. El cálculo de la antigüedad de M269 ha reforzado 

la problemática existente alrededor de los métodos para la estimación de la edad de un 

haplogrupo a partir de Y-STRs, dependiente en gran medida de la tasa de mutación elegida para 

el cálculo. No obstante, los últimos estudios de secuenciación masiva de la región específica 

masculina del cromosoma Y parecen haber aportado una escala temporal fiable para la diversidad 

del cromosoma Y.  

DF27 ha resultado ser un linaje paterno casi específico de la Península Ibérica, estando presente 

en frecuencias superiores al 30-50% y que disminuyen de manera drástica al 6-20% fuera de esa 

región. Además, también se ha detectado la presencia de este linaje en Latinoamérica debido a 

sucesos históricos, estando ausente en África y Asia. Por otro lado, la disección de DF27 ha 

permitido conocer que algunos de sus subhaplogrupos, como R1b-L176.2 y R1b-Z220, presentan 

cierta diferenciación geográfica dentro de la Península Ibérica, dividiéndola en este y centro-norte 

respectivamente. Todo ello hace de DF27 un marcador de potencial interés en Genética Forense 

para la determinación de la ancestralidad biogeográfica paterna Ibérica y/o del suroeste europeo.  

Las altas frecuencias del paragrupo de DF27, DF27*, podrían indicar la presencia de nuevos 

sublinajes todavía no conocidos de este haplogrupo, aunque no haya sido observado un patrón 

de variación interna a través de los median joining networks construidos con los individuos que 

forman parte del paragrupo. No obstante, la caracterización de la secuencia completa del 

cromosoma Y a través de secuenciación paralela masiva (MPS) permitiría la resolución completa 

y fiable del paragrupo. 

Por otra parte, las estimaciones del tiempo hasta el ancestro común más reciente (time to the 

most recent common ancestor, TMRCA) sitúan el origen de DF27 recientemente, hace 4.000-4.200 

años durante el periodo de transición entre el Neolítico y la Edad de Bronce que remodeló el 

paisaje genético paterno de Europa. En cuanto al lugar de origen de DF27, aunque no ha sido 
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posible determinarlo con precisión, el noreste de la Península Ibérica es la región más probable 

de origen, teniendo en cuenta la diversidad interna de los Y-STRs y los TMRCAs estimados en 

distintas poblaciones.  

Asimismo, en el área de la Genética Forense y de poblaciones ha surgido en los últimos años una 

creciente demanda de nuevas herramientas que permitan el genotipado simultáneo de múltiples 

marcadores genéticos en una única reacción. Las herramientas multiplex más utilizadas para el 

análisis de Y-STRs o Y-SNPs consisten en técnicas de análisis de longitud de fragmentos de STRs o 

minisecuenciación de SNPs mediante electroforesis capilar.  

En el caso de los Y-SNPs, es necesario el desarrollo de paneles que permitan un alto nivel de 

resolución de distintos haplogrupos, mientras que en el caso de los Y-STRs, es de interés el 

desarrollo de nuevos paneles complementarios a los ya existentes. Para responder a la creciente 

demanda de herramientas multiplex, en el presente trabajo de tesis se han desarrollado dos 

paneles multiplex de Y-SNPs e Y-STRs para su uso en Genética Forense y de poblaciones. 

Por un lado, se ha desarrollado el panel Y-SNPs 15-plex basado en la tecnología de 

minisecuenciación, que permite el subtipaje a alta resolución del haplogrupo DF27 y es una 

herramienta robusta y reproducible. Además de DF27 y sus subhaplogrupos, el panel también 

incluye otros sublinajes de M269 por encima de DF27, lo que hace su uso adecuado a la Genética 

Forense a la hora de inferir la ascendencia biogeográfica paterna Ibérica o del suroeste europeo 

de un vestigio, ya que varios de los Y-SNPs incluidos presentan una marcada o moderada 

diferenciación geográfica, en particular S116, U106, U152, M529, DF27, M167 y Z220.  

Por otra parte, el panel 15-plex también se puede aplicar para el estudio de la introgresión de la 

población del suroeste de Europa en poblaciones que hayan sido destino de migraciones históricas 

españolas y portuguesas, como Latinoamérica, u otras áreas del mundo influenciadas 

históricamente por presencia hispana, entre ellas Flandes, Cerdeña, Sicilia o Filipinas. Aunque 

otros paneles de minisecuenciación publicados previamente por otros autores incluyen el 

haplogrupo R1b, no ofrecen un alto nivel de resolución de este haplogrupo. Por ello, el uso del 

panel 15-plex en combinación con otros paneles de minisecuenciación de Y-SNPs que incluyan una 

baja resolución del haplogrupo R1b puede ofrecer un mayor poder resolutivo para los haplogrupos 

europeos con un consumo mínimo de muestra de ADN, algo crítico en muestras de origen forense. 

El panel 15-plex también puede utilizarse en combinación con el análisis del ADN mitocondrial, 

cuya información sobre el linaje materno puede completar la información sobre la ancestralidad 

de los individuos.  
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Debido a la falta de muestras reales de algunos de los Y-SNPs incluidos en la herramienta 15-plex, 

se utilizó la técnica de mutagénesis dirigida para generar de manera in vitro las variantes derivadas 

y, así, comprobar la capacidad del panel para detectarlas. La mutagénesis dirigida es una técnica 

de biología molecular que permite la creación de mutaciones puntuales en el ADN, además de 

inserciones y deleciones. Por lo tanto, la mutagénesis dirigida se postula como una técnica muy 

adecuada para producir variantes genéticas in vitro para su uso en reacciones de 

minisecuenciación, y permitir así la inclusión de todas las variantes durante el proceso de 

optimización de paneles multiplex.  

Por otro lado, el segundo panel desarrollado en el presente trabajo incluye seis Y-STRs de tasa de 

mutación baja, también llamados slowly mutating (SM) Y-STRs. Los paneles de Y-STRs de rutina 

forense actuales incluyen marcadores de tasa de mutación desde baja a alta, siendo los de alta 

tasa más adecuados para aplicaciones como la identificación de individuos y los de tasa media y/o 

baja para su aplicación en diagnóstico de parentesco, búsqueda de personas desaparecidas o 

estudios evolutivos. 

 A pesar de su gran utilidad, los paneles actuales no son capaces de resolver los casos de 

parentesco complejos, en los que las discrepancias mínimas son críticas y acaban siendo 

reportadas como exclusiones. Por ello, el panel SM Y-STRs es una herramienta de utilidad en 

Genética Forense en conjunción con los paneles de Y-STRs de rutina al incluir Y-STRs de baja tasa 

de mutación, adecuados para su uso en parentescos complejos. De este modo, el poder evaluar 

disparidades adicionales mediante el análisis de SM Y-STRs puede proporcionar evidencia 

adicional para la exclusión de parentesco biológico, ya que es más raro que se den eventos 

mutacionales en estos marcadores.   

Además, los SM Y-STRs son también adecuados para su uso en estudios evolutivos, permitiendo 

optimizar y aumentar la resolución de la predicción de haplogrupos del cromosoma Y a partir de 

los Y-STRs. La adición de los seis SM Y-STRs a la hora de hacer la predicción de un haplogrupo 

incluyendo los Y-STRs de los paneles convencionales puede ayudar a obtener predicciones más 

fiables, al ser marcadores más estables debido a su tasa de mutación más baja. Los estudios de 

validación realizados con este panel han demostrado que es una herramienta reproducible, 

robusta y sensible para su uso con vestigios de origen forense, al obtenerse perfiles genéticos 

completos a partir de cantidades muy limitadas de ADN (200 pg) y en presencia de dos inhibidores 

típicos en rutina forense como son el ácido húmico y la hematina. 

En conclusión, el presente trabajo de tesis doctoral ha proporcionado, por un lado, nuevas pistas 

sobre la historia evolutiva del acervo genético europeo actual, permitiendo caracterizar en mayor 
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detalle la distribución del haplogrupo M269 y varios de sus sublinajes y, por otro lado, dos nuevas 

herramientas de uso forense para el análisis multiplex de Y-SNPs e Y-STRs. Además, fruto del 

análisis de un gran número de marcadores en una extensa colección de muestras de distintas 

poblaciones mundiales se ha generado un extenso conjunto de datos de referencia de interés 

tanto forense como poblacional. 

 

 

 

 

  



 xi 

Table of contents 

1. Introduction ............................................................................................................................. 1 

1.1 Human genetic variability................................................................................................ 1 

1.2 Evolution and history of Forensic Genetics .................................................................... 2 

1.2.1 Chronology of Forensic Genetics ............................................................................. 2 

1.2.2 Genetic markers commonly used in Forensic Genetics .......................................... 5 

1.2.2.1 Short Tandem Repeats (STRs) .............................................................................. 6 

1.2.2.1.1 Types of STRs .................................................................................................. 6 

1.2.2.1.2 Mutation rate ................................................................................................. 7 

1.2.2.1.3 Nomenclature ................................................................................................. 7 

1.2.2.1.4 STRs used in Forensic Genetics ...................................................................... 8 

1.2.2.1.5 Forensic DNA databases ................................................................................. 8 

1.2.2.1.6 Scientific working groups in Forensic Genetics .............................................. 9 

1.2.2.2 Single Nucleotide Polymorphisms (SNPs) ........................................................... 10 

1.2.2.2.1 Advantages and disadvantages of SNPs versus STRs ................................... 11 

1.2.2.2.2 SNP categories and applications .................................................................. 14 

1.2.2.2.2.1 IISNPs ..................................................................................................... 14 

1.2.2.2.2.2 LISNPs .................................................................................................... 15 

1.2.2.2.2.3 AISNPs ................................................................................................... 15 

1.2.2.2.2.4 PISNPs .................................................................................................... 16 

1.2.2.2.3 SNP databases .............................................................................................. 16 

1.3 Study of paternal lineages: The Y chromosome ........................................................... 17 

1.3.1 The structure of the Y chromosome...................................................................... 17 

1.3.2 Y chromosome markers ......................................................................................... 19 

1.3.2.1 Y-STRs ................................................................................................................. 19 

1.3.2.1.1 Types of Y-STRs ............................................................................................. 20 

1.3.2.1.2 Minimal haplotype ....................................................................................... 20 

1.3.2.1.3 Y-STR typing kits ........................................................................................... 21 

1.3.2.2 Y-SNPs ................................................................................................................. 21 

1.3.2.2.1 Y chromosome haplogroups and global distribution of paternal lineages .. 22 

1.3.2.2.2 Phylogeny ..................................................................................................... 25 

1.3.3 Y-SNP typing technologies ..................................................................................... 26 

1.3.3.1 SNaPshot™ minisequencing ............................................................................... 26 

1.3.3.2 High Resolution Melting (HRM) .......................................................................... 28 

1.3.3.3 TaqMan™ assays ................................................................................................. 29 



 xii 

1.3.3.4 High density SNP arrays ..................................................................................... 30 

1.3.3.5 Massive parallel sequencing (MPS) .................................................................... 30 

1.3.4 Y chromosome genetic databases ........................................................................ 32 

1.3.4.1 Y-STR databases ................................................................................................. 32 

1.3.4.2 Y-SNP databases ................................................................................................. 33 

1.3.5 Applications of the analysis of the Y chromosome .............................................. 34 

1.3.5.1 Forensic Genetics ............................................................................................... 34 

1.3.5.1.1 Paternity and kinship testing ....................................................................... 34 

1.3.5.1.2 Biogeographical ancestry ............................................................................. 34 

1.3.5.1.3 Mixture analysis ........................................................................................... 34 

1.3.5.2 Population Genetics ........................................................................................... 35 

1.3.5.2.1 Population stratification .............................................................................. 35 

1.3.5.2.2 Male mediated expansion ........................................................................... 35 

1.3.5.2.3 Time to the most recent common ancestor (TMRCA) ................................. 35 

1.3.5.3 Evolutionary Genetics ........................................................................................ 35 

1.3.5.4 Genetic Genealogy ............................................................................................. 36 

1.3.5.5 Demography ....................................................................................................... 36 

1.4 Evolution and history of the genetic makeup of Europe ............................................. 36 

1.4.1 The paternal genetic landscape of Europe ........................................................... 37 

1.4.2 Genetic history of Europe ..................................................................................... 38 

1.4.3 The controversy of the origin of R1b-M269 ......................................................... 41 

1.4.4 Molecular dating of paternal lineages .................................................................. 42 

1.4.4.1 TMRCA calculating methods .............................................................................. 42 

1.4.4.2 Mutation rates ................................................................................................... 43 

2. Hypothesis and objectives .................................................................................................... 45 

2.1 Hypothesis ..................................................................................................................... 47 

2.2 Objectives ...................................................................................................................... 49 

3. Materials and methods ......................................................................................................... 51 

3.1 Human DNA samples ..................................................................................................... 53 

3.1.1 Population samples ............................................................................................... 53 

3.1.2 Control samples ..................................................................................................... 55 

3.2 DNA extraction .............................................................................................................. 55 

3.3 DNA quantification ........................................................................................................ 57 

3.4 Y chromosome phylogeny ............................................................................................. 57 

3.5 DNA amplification ......................................................................................................... 58 

3.5.1 Primer design and optimization ............................................................................ 58 



 xiii 

3.5.2 PCR amplification ................................................................................................... 59 

3.5.3 High Resolution Melting (HRM) ............................................................................ 59 

3.5.4 TaqManTM assay ..................................................................................................... 60 

3.6 Agarose gel electrophoresis .......................................................................................... 60 

3.7 DNA sequencing ............................................................................................................. 60 

3.7.1 PCR product purification........................................................................................ 60 

3.7.2 Sequencing reaction .............................................................................................. 60 

3.7.3 Sequencing product purification ........................................................................... 61 

3.7.4 Capillary electrophoresis and data analysis .......................................................... 61 

3.8 DNA pyrosequencing ..................................................................................................... 61 

3.9 Development of multiplex systems for the analysis of Y-SNPs and Y-STRs ................. 62 

3.9.1 Marker selection .................................................................................................... 62 

3.9.1.1 Study Number 4 .................................................................................................. 62 

3.9.1.2 Study Number 5 .................................................................................................. 63 

3.9.2 Primer design and optimization ............................................................................ 63 

3.9.3 Multiplex PCR ......................................................................................................... 63 

3.9.4 Minisequencing reaction ....................................................................................... 64 

3.9.5 Minisequencing purification .................................................................................. 64 

3.9.6 Capillary electrophoresis ....................................................................................... 64 

3.9.7 Reproducibility ....................................................................................................... 65 

3.9.8 Sensitivity and stability assays .............................................................................. 65 

3.10 Statistical analyses ......................................................................................................... 65 

3.10.1 Population genetic parameters ............................................................................. 65 

3.10.2 Forensic parameters .............................................................................................. 67 

3.10.3 Population differentiation ..................................................................................... 67 

3.10.4 Phylogenetic relationships .................................................................................... 68 

3.10.5 TMRCA estimation ................................................................................................. 68 

3.10.6 Demographic model evaluation ............................................................................ 70 

4. Results .................................................................................................................................... 71 

4.1 Study Number 1 ............................................................................................................. 73 

4.2 Study Number 2 ........................................................................................................... 105 

4.3 Study Number 3 ........................................................................................................... 133 

4.4 Study Number 4 ........................................................................................................... 163 

4.5 Study Number 5 ........................................................................................................... 181 

5. Discussion ............................................................................................................................. 205 

5.1 The paternal genetic landscape of Southwestern Europe ......................................... 207 



 xiv 

5.1.1 Haplogroup composition of Southwestern Europe............................................ 207 

5.1.2 Dissection and structure of M269 ....................................................................... 208 

5.1.3 The origin and controversy of M269 .................................................................. 211 

5.2 The Iberian near-specific paternal lineage DF27 ........................................................ 214 

5.2.1 Paternal lineages in the Iberian Peninsula ......................................................... 214 

5.2.2 Distribution and structure of DF27 haplogroup ................................................. 215 

5.2.3 Origin and evolution of DF27 .............................................................................. 219 

5.2.4 Relevance and forensic applicability of DF27 ..................................................... 221 

5.3 Estimating the time to the most recent common ancestor of Y-SNPs ...................... 223 

5.3.1 Interest................................................................................................................. 223 

5.3.2 Limitations of TMRCA estimation from Y-STRs .................................................. 224 

5.4 Evaluation of the new 15 Y-SNP minisequencing multiplex ...................................... 225 

5.4.1 Assessment of the 15 Y-SNP minisequencing panel .......................................... 225 

5.4.2 Applicability of the novel 15-plex minisequencing panel .................................. 226 

5.4.3 Application of the 15-plex to real cases ............................................................. 227 

5.5 Evaluation of the novel Slowly Mutating Y-STR panel ............................................... 227 

5.5.1 Efficiency of the novel multiplex ........................................................................ 227 

5.5.2 Applicability of the SM Y-STR panel ................................................................... 229 

5.5.3 Application if the SM Y-STR panel to real cases ................................................. 229 

6. Conclusions .......................................................................................................................... 231 

7. References ........................................................................................................................... 235 

8. Appendix .............................................................................................................................. 269 

 

  



 xv 

Abbreviations  

ABC: approximate Bayesian computation 

AMOVA: analysis of molecular variance 

ASD: Average Square Distance 

bp: base pair 

CE: capillary electrophoresis 

CNV: copy number variation 

CODIS: combined DNA index system 

DC: discrimination capacity 

DNA: deoxyribonucleic acid 

EMR: evolutionary mutation rate 

ESS: European Standar Set 

et al.: and others (from latin: et alii) 

FCA: factorial correspondence analysis 

GD: genetic diversity 

GMR: genealogical mutation rate 

GWAS: genome-wide association study 

HRM: High Resolution Melting 

INDEL: insertion or deletion polymorphism 

ISOGG: International Society of Genetic Genealogy 

MDS: multidimensional scaling analysis 

MPS: massive parallel sequencing 

MRCA: most recent common ancestor 

MSY: male-specific region of the Y chromosome 

mtDNA: mitochondrial DNA 



 xvi 

N: total number of samples  

NGS: next generation sequencing 

NRY: non-recombining region of the Y chromosome 

P: significance value 

PAR: pseudoautosomal región of the Y chromosome 

PCA: principal component analysis 

PCR: polimerase chain reaction 

RFLP: restriction fragment length polymorphism 

SBE: single base extension 

SNP: single nucleotide polymorphism 

STR: short tandem repeat 

TMRCA: time to the most recent common ancestor 

VNTR: variable number of tandem rpeats 

YA: years ago 

YCC: Y Chromosome Consortium 

Y-SNP: Y chromosome SNP 

Y-STR: Y chromosome STR 

  



 xvii 

Table list 

Table 1. Types of variation in STR markers. 

Table 2. Major scientific association and working groups in the field of Forensic Genetics over the 

last years in the Unites Estates (EEUU), Europe (EUR), Latin America (LA), Asia and Oceania (OCEA). 

Table 3. Comparison of SNP and STR markers. Adapted from 14. 

Table 4. Most commonly used Y-STR markers in forensic DNA analysis. PPY23: PowerPlex® Y23; 

RM Y-STR: RM Y-STR panel 150; 6-plex: 17 to 23 panel 155. 

Table 5. List of Y-SNPs defining the main Y chromosome haplogroups and their geographical 

distribution. NA: Not available. Adapted from 95. 

Table 6. Summary of available online Y-STR databases (as of November 2018). Adapted from 14. 

Table 7. Summary of available Y-SNP databases (as of November 2018). 

Table 8. Summary of the population samples analyzed in the present doctoral thesis. N= number 

of individuals; BNADN= Banco Nacional de ADN Carlos III – Spanish national DNA bank (BNADN 

Ref. 12/0031); The samples from UPV/EHU Biobancos del Instituto de Salud Carlos III (Sección 

Colecciones) ref. C.0000214 were collected by BIOMICs Research Group once favorable ethical 

reports were obtained (Faculty of Pharmacy UPV/EHU, September 2008 CEISH/119/2012). 

  



 xviii 

 

 

  



 xix 

Figure list 

Figure 1. First application of DNA fingerprint in an immigration dispute. The DNA fingerprints 

correspond to a Ghanaian family involved in an immigration dispute. U: Unrelated individual; M: 

Mother; X: the boy in the dispute; B: Brother; S1: Sister 1; S2: Sister 2. Fragments present in the 

mother’s DNA fingerprints are indicated by a short horizontal line; paternal fragments absent from 

M but present in at least one of the undisputed siblings (B, S1, S2) are marked with a long line. 

Maternal and paternal fragments transmitted to X are shown by a dot. Extracted from 24. 

Figure 2. Main highlights in the history of Forensic Genetics. 

Figure 3. Example of DNA typing and profiling in different individuals. 

Figure 4. Diagram of a single nucleotide polymorphism (SNP). 

Figure 5. Detailed structure of the Y chromosome. a) Sequence classes. XDG: X-degenerate, XTR: 

X-transposed. b) Callable sequence. c) Inverted repeat sequences. d) Notable INDELs and 

translocations. e) Protein-coding genes. Extracted from 110.  

Figure 6. Y chromosome phylogeny and global haplogroup distribution. The branch lengths are 

proportional to the estimated times between the successive splits, occurring the most ancient 

division around 190,000 years ago. The colored triangles represent the major clades, and the 

width of each base is proportional to one less than the corresponding sample size. Dotted triangles 

represent the ages and sample sizes of the expanding lineages. Inset, world map indicating, for 

each of the 26 populations, the geographic source, sample size, and haplogroup distribution. 

Samples correspond to 1,244 male individuals from five global superpopulations sequenced on 

the Phase 3 of the 1000 Genomes Project 164. Figure extracted from 165. 

Figure 7. Outline of the SNaPshotTM process steps and depiction of the SBE reaction. Dye-linked 

terminating ddNTPS are shown as circles with their relevant colors. Extracted from 172. 

Figure 8. HRM workflow. Adapted from Bio-Rad (http://www.bio-rad.com). 

Figure 9. Representation of TaqMan™ assay genotyping. Extracted from 204.  

Figure 10. Basic principle of massive parallel sequencing technologies. Adapted from 207. 

Figure 11. Simplified phylogeny of haplogroup R. The haplogroup assignment follows the minimal 

reference phylogeny for the human Y chromosome 171, supplemented with the more detailed tree 

maintained by the International Society of Forensic Genetics (ISOGG). 



 xx 

Figure 12. Frequency distribution of the haplogroup R1b-M269 in Europe. Extracted from 259. 

Figure 13. Summary of population dynamic events during the Neolithic Period in Europe. Different 

shadings and patterns denote the geographic distribution of cultures during this period: A) Early 

Neolithic. D) Late Neolithic/Early Bronze Age. Event A: The impact of incoming farmers during the 

Early Neolithic. Event C: Period of renewed genetic influx during the Late Neolithic with variable 

regional repercussions. Striped areas indicate archaeological culture for which ancient DNA data 

is not available so far. Green arrows display potential geographic expansion routes and their 

associated paternal or maternal lineages. Extracted from 266. 

Figure 14. Three approaches to estimate the mutation rate on the Y-chromosome. A: Genealogical 

approach. Mutations separating members of the pedigree are counted and divided by the number 

of generations. B: Calibration approach. The average number of mutations from the MRCA to the 

modern samples divided by the TMRCA, which is assumed to coincide with a population event of 

known date. C: Ancient DNA approach. The older the ancient sample is, the less time it has had to 

accumulate mutations. Thus, the number of “missed” mutations is proportional to the 

(radiocarbon) age of the sample. Extracted from 300. 

Figure 15. Simplified phylogenetic tree of the R1b-M269 haplogroup. 

Figure 16. A schematic representation of the general workflow followed for the analysis of Y-SNP 

and Y-STRs. CE: capillary electroforesis. 

Figure 17. Simplified phylogenetic tree of the R1b-M343 haplogroup and geographic location of 

the main subhaplogroups, if known. In red bold letters are represented the Y-SNPs analyzed in the 

present doctoral thesis work. 

Figure 18. Frequency distribution maps of the data compiled in Study Number 1 (blue stars) and 

the data from 258,259,345 (red points). The Y-SNPs used for the construction of these maps are 

highlighted in bold in the upper right tree. 

Figure 19. Frequency distribution maps of M269, S116, and DF27 in the Atlantic Coast and Iberian 

Peninsula obtained in Study Number 1. The stars in M269 map indicate the samples of population 

analysed. The upper right tree includes the Y-SNPs used for constructing the distribution maps. 

Figure 20. Median joining network of the M269 haplogroup in the Basque native population 

(bearing Basque surnames) obtained in Study Number 1. The blue arrows indicate a phylogenetic 

split of DF27 haplogroup into two groups bearing the alleles 14/18 and 15/19 in the Y-STR 

haplotype DYS437/DYS448. 



 xxi 

Figure 21. Evolutionary proposal for sublineages of M269 in Europe proposed in Study Number 1. 

The older the movement, the thicker the arrow. The thinner arrows indicate the current 

distribution of the younger sublineages here studied. 

Figure 22. A) Contour maps of the derived allele frequencies of the SNPs analyzed in Study Number 

3. B) Simplified phylogenetic tree of the R1b-M269 haplogroup.  

Figure 23. Peoples inhabiting the Iberian Peninsula in the pre-Roman era and their relative 

position. Adapted from 365. 

Figure 24. Overview of the territory partition at the end of the Christian Reconquista in the Iberian 

Peninsula between the years 1,250-1,350. Extracted from 367. 

Figure 25. Frequency contour map of DF27* obtained in Study Number 3. 

Figure 26. Median joining network of DF27 haplogroup in the populations of Asturias, Cantabria, 

native Basques, resident Basques, and Aragon obtained in Study Number 2. The phylogenetic split 

for DF27 haplogroup is due to differing haplotypes for YGATAH4-DYS43-DYS448 Y-STRs. 

Figure 27. Diagram of the theoretical positions of the Y-SNPs included in the 15-plex 

minisequencing panel presented in Study Number 4. Ancestral alleles appear in bold letters; 

Derived alleles appear underlined. 

Figure 28. A) Diagram of the panel developed in Study Number 5. (B) A representative 

electropherogram showing the profile of 1.5 ng control DNA amplified at the optimized PCR 

conditions. The peaks correspond to: DYS388 (blue), DYS485 (green), DYS426 (black), DYS525 

(black), DYS461 (red), and DYS561 (red). The GeneMapper ID-X plots are presented as combined 

all dyes.  

  



 xxii 

 

 

 

  



1. Introduction 









 1 

1.1 Human genetic variability 

The sequence of the human genome is a well-organized library that encodes the genetic 

instructions for human molecular functions and contains rich information about human evolution. 

The genome is composed by deoxyribonucleic acid (DNA), which includes genes and non-coding 

DNA, as well as the genetic information stored in other organelles such as the mitochondria 

(mtDNA). More than six decades have passed since the definitive structure of the DNA was 

proposed by James Watson, Francis Crick and Maurice Wilkins 1,2 and, despite of that, our 

understanding of all the secrets hidden along the genome is far from complete. 

In order to unravel these secrets in 1990 the Human Genome Project (HGP) was launched, the 

largest biomedical research project in history, with the involvement the International Human 

Genome Sequencing Consortium (IHGSC). In parallel, another project with the same aim was 

conducted outside government by the corporation Celera Genomics. This competition ended up 

with the concurrent release in 2001 of the draft sequences of the human genome 3,4, which 

provided a first overall view of the complete genome. Finally, the project was considered complete 

in 2003 5, two years ahead of its original schedule, and in 2007 the fully sequenced genomes were 

released to the public 6,7. As a follow-up of the HGP, in 2003 the project Encyclopedia of DNA 

Elements (ENCODE) was launched with the aim of defining all functional elements encoded in the 

human genome 8. This project has provided interesting findings, like approximately 8.5% of the 

genome, which is composed of more than 3,000 billion base pairs, corresponds to DNA/protein 

binding regions and 2.9% corresponds to protein-coding gene exons, while among these last ones 

only 1.2% presents a specific function in protein coding 8–11.  

Human genetic variation is defined as the genetic differences that are present in and among 

populations. Only a small fraction of the genome, 0.3%, differs between people and makes each 

individual unique with the exception of monozygotic twins 12. Consequently, these variable 

regions of the human genome provide the capacity to use the information contained in DNA 

sequences to differentiate and to establish biological relationships among individuals through 

human identification and kinship testing. 

Polymorphisms are known as variations in the form of different alleles, or variants, at a particular 

locus. There are three major forms of variation at DNA level: sequence polymorphisms, length 

polymorphisms and copy number variants (CNV) 13. The study of these variants has medical, 

forensic and evolutionary applications, since they allow to differentiate between individuals, occur 

at different frequencies in different human populations, and some are related to diseases. The 
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efforts made by the scientific community for a better understanding of the human genome, the 

development of better statistical methods, and the advent of massive parallel sequencing (MPS) 

has ended up in the discovery of a great number of new polymorphisms in the last years.  

DNA typing is a broad term that refers to a wide range of methods that allow studying genetic 

variations, which makes possible to obtain what is called a genetic profile and differentiate 

between individuals through the analysis of polymorphisms. Forensic Genetics is based on the 

analysis of genetic profiles, by the comparison of a profile obtained from a questioned sample 

with a reference or known sample, or DNA databases that contain profiles related to criminal cases 
13,14. 

1.2 Evolution and history of Forensic Genetics 

1.2.1 Chronology of Forensic Genetics 

Forensic Genetics can be defined as the application of genetics to the resolution of legal conflicts 
15. The first step in the development of Forensic Genetics was made by Karl Landsteiner in 1900, 

who described the ABO blood grouping system and observed that individuals could be classified 

in different groups according to their blood type 16. This finding led to the realization that this 

variation was applicable in solving crimes and paternity testing cases 17.  

During the first half of the twentieth century, the technique ‘absorption-inhibition ABO typing’ 

was developed, becoming a standard in forensic laboratories, and numerous blood group markers 

and soluble blood serum protein markers were discovered. Although their application to criminal 

casework was rather limited due to the quantity of biological material required to provide highly 

discriminating results, which is minimal or degraded in forensic cases, and the difficulty of 

analyzing body fluids other than blood 15,18. 

The introduction of the first antigen on leucocytes, which was later known as HLA (Human 

Leukocyte Antigen), in 1958 by Jean Dausset 19 involved an important improvement in paternity 

testing, as the HLAs were more polymorphic than any other genetic markers used up to that date 
15,20. Nevertheless, the antigenic HLA determinations possessed the same technical limitations as 

the other serological genetic markers for their application in forensic cases.  

The decade of 1980 can be considered as the starting point of a new era in Forensic Genetics. In 

1980 the analysis of the first highly polymorphic locus was reported 21, called minisatellites or 

variable number of tandem repeats (VNTR). Just a few years later, in 1984, Alec Jeffreys realized 

the potential forensic application of the minisatellite DNA by discovering their high levels of 
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variability 22–24, and developed the technique for their analysis that generated the well-known 

multiband patterns known as DNA fingerprints (Figure 1). The first time that DNA testing was 

applied in a forensic setting was in 1986, in the case that culminated in the conviction of Colin 

Pitchfork for a double rape and homicide in Leicestershire 13,25. 

 

Figure 1. First application of DNA fingerprint in an immigration dispute. The DNA fingerprints correspond to a Ghanaian 

family involved in an immigration dispute. U: Unrelated individual; M: Mother; X: the boy in the dispute; B: Brother; S1: 

Sister 1; S2: Sister 2. Fragments present in the mother’s DNA fingerprints are indicated by a short horizontal line; 

paternal fragments absent from M but present in at least one of the undisputed siblings (B, S1, S2) are marked with a 

long line. Maternal and paternal fragments transmitted to X are shown by a dot. Extracted from 24. 

Although the analysis of minisatellite markers was very informative, the technique, called DNA 

fingerprint, was not very successful in forensics due to problems derived from the statistical 

evaluation of the evidence in cases of band matching, standardization, and quality requirement 

of the samples. In order to overcome the limited fragment resolution of the technique, forensic 

laboratories adhered to binning approaches, where fixed or floating bins were defined in relation 

to the observed DNA fragment size, and adjusted to the respective detection system 26–28. For the 

reasons above mentioned, these multi-locus probes (MLP) were soon substituted in the forensic 

field by ‘single locus probes’ (SLPs). 

Another critical point in the history of Forensic Genetics was the application of the polymerase 

chain reaction (PCR). The PCR was designed and named by Kary Mullis and colleagues from Cetus 

Corporation in 1983 18,29,30, although the patent was not approved until years later in 1987 31. The 

successful application of PCR required considerable further development 32–34, as well as the 
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isolation of suitable heat-stable DNA polymerases available from thermophilic bacteria. This 

technique increased the sensitivity of DNA analysis to the point where DNA profiles could be 

obtained from only a few cells, enabling to analyze degraded DNA, a critical constraint at the time 

and even nowadays. It also made standardization easier by avoiding most of the statistical 

problems derived from the matching and binning of SLP bands 15. 

The first application of PCR in a forensic case was for the analysis of single nucleotide 

polymorphisms (SNP) in the locus HLA-DQA1 (originally called HLA-DQα) using sequence-specific 

oligonucleotide probes (SSO) 35. After the realization that it was feasible to analyze DNA markers 

through PCR, the first commercial kits became available. In forensic labs, the most popular kits 

were DQ Alpha AmpliType kit (Perkin-Elmer, Foster city, CA, USA), and the AmpliType Polymarker 

PCR Amplification kit (Perkin-Elmer, Foster city, CA, USA) 15,36. 

Afterwards, the efforts of the forensic community were directed to the amplification of fragment 

length polymorphisms, among which microsatellites or short tandem repeats (STRs) are included. 

The minisatellite D1S80 was the first one that was used in forensic analysis, but these early PCR 

systems were soon replaced by the analysis of STRs, which are currently the most commonly used 

markers in Forensic Genetics 13,15. Discovered in 1989 37,38, they were applied for the first time in 

forensics in 1990, and their discrimination power was higher in comparison with the previously 

used genetic markers.  

This was followed by a process of standardization of the techniques and the nomenclature of the 

markers, as well as an effort in quality control. As a result, the accreditation of forensic 

laboratories and professional certification of individuals became an important issue in Forensic 

Science 13,18. Finally, during the decade of 1990 the first STR national database was released and 

the first fluorescent STR multiplex systems appeared 39–41. 

Nowadays the most used methods in Forensic Genetics laboratories are the PCR systems based 

on STRs both for human identification and kinship testing, due to their higher power of 

discrimination, multiplex capability and rapid analysis speed 13. The beginning of the 21st century 

has come with the evolution of molecular biology technologies that has enabled the discovery of 

new and more discriminative markers, as well as a trend in the last years to develop new molecular 

tools able to genotype more and more markers in a single PCR reaction. The more polymorphic 

markers that are studied, the more power of discrimination that can be achieved for the resolution 

of a case.  
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Apart from STRs, in the last 20 years other kind of markers have been studied for forensic analysis 

such as mtDNA, SNPs and insertion-deletion polymorphisms (INDELs). In the last decade, a huge 

progress has been in molecular biology since massively parallel sequencing (MPS) techniques, also 

known as next-generation sequencing (NGS), became available as of 2005. These platforms have 

also started to be used and evaluated for their use in Forensic Genetics 42,43. Although its real 

application in routine casework is yet to be established, as its implementation in forensic 

laboratories has been debated due to the costs, the additional challenge of data processing, and 

sensitivity issues in comparison to traditional technologies. Figure 2 resumes the main highlights 

in the history of Forensic Genetics. 

 

Figure 2. Main highlights in the history of Forensic Genetics. 

1.2.2 Genetic markers commonly used in Forensic Genetics 

Polymorphisms can be classified into three main groups: 

• Sequence variation polymorphisms: 

This type of polymorphism entails variation of one or more nucleotides in the DNA sequence. SNPs 

and the hypervariable regions of the mitochondrial DNA (HVI, HVII and HVIII) can be categorize 

into this group.  

• Length polymorphisms: 

Length polymorphisms are variants of the same locus differentiated by the number of nucleotides 

within the fragment of DNA. Minisatellites and microsatellites are two types of this variation. 
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• Copy number variation (CNV) polymorphisms: 

These structural variants are segments of one kilobase (kb) or larger that are present at a variable 

copy number in comparison with a reference genome 44. These polymorphisms can involve 

inversions, duplications, deletions and relocations of large segments of chromosomes 13. 

In Forensic Genetics the most commonly analyzed polymorphisms are microsatellites, followed by 

SNPs.  

1.2.2.1 Short Tandem Repeats (STRs) 

Microsatellites or STRs are DNA regions with repeats units that are from 1 to 6 base pairs (bp) in 

length and are repeated typically 5-50 times 14,45. STRs account for about 3% of the total human 

genome 14,46,47 and are scattered throughout the genome, occurring around every 10,000 

nucleotides 47–49. They have become the forensic markers of choice because of their high variability 

and easy amplification by PCR 14. 

 

Figure 3. Example of DNA typing and profiling in different individuals. 

The number of repeats in STR markers is highly variable among individuals, making these markers 

highly effective for human identification purposes. These markers may present a different number 

of alleles or repetitions at a specific locus (Figure 3). Eventually, all the genotypes of a set of 

markers comprise the genetic profile of an individual. 

1.2.2.1.1 Types of STRs 

STR repeat sequences are named by the length of the repeat unit, i.e. if there are three nucleotides 

in the repeats, they are called trinucleotides. Usually in the core repeat there can be mono-, di-, 

tri-, tetra-, penta-, and hexanucleotides 14. The most popular STR systems for human identification 
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are tetranucleotides. On the one hand, di- and trinucleotides display greater ‘stutter’ percentages 

(typical STR amplification artifacts) than tetranucleotides (30% vs. 15%), and closely spaced 

heterozygotes are more difficult to resolve using size-based electrophoretic separations. On the 

other hand, penta- and hexanucleotides are less common in the human genome. STRs can also 

can be classified according to the rigor and degree of perfection of the repeat unit, into the 

categories ‘simple’, when it contains units of identical length and sequence; ‘compound’, when it 

comprises two or more adjacent simple repeats; or ‘complex’ , when it contains several non-

consensus alleles that differ in size and sequence and are, therefore, difficult to genotype 

reproducibly 14,50 (Table 1). 

Table 1. Types of variation in STR markers. 

Repeat unit Motif structure Example repeat structure Example STR 

Simple     

    Dinucleotide (AC)n ACACACAC YCAII 

    Trinucleotide (ATG)n ATGATGATGATG DYS481 

    Tetranucleotide (AATG)n AATGAATGAATGAATG TH01 

Compound (TCTA)m – (TCTG)n TCTATCTATCTGTCTG vWA 

Complex (TCTA)k – (AGTC)m – (CCGA)n TCTAAGTCAGTCCCGACCGA D21S11 

 

Finally, not all alleles for an STR locus contain simple repeat units, sometimes they can contain 

non-consensus alleles that fall in between alleles with full repeats units that are called 

microvariants 51.  

1.2.2.1.2 Mutation rate 

Mutation rate is defined as the number of mutations that can occur in a single generation. The 

mutation rates of human autosomal STRs are high, and oscillate between 10-2 and 10-6 per locus 

and per generation 52,53. The major mechanism that causes microsatellite allele mutation is 

replication slippage or slipped-strand mispairing (SSM), although some authors also mention 

other mechanisms such as recombination or unequal crossing over during meiosis 53–58.  

1.2.2.1.3 Nomenclature 

In order to make possible interlaboratory reproducibility and comparisons in the forensic 

community a common nomenclature was developed. The nomenclature has been established by 

the DNA Commission of the International Society of Forensic Genetics (ISFG, 

https://www.isfg.org/), formerly known as the International Society of Forensic Haemogenetics, 

and has been updated when necessary 59,59–61. Consequently, a repeat sequence is usually named 
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by the base composition of the core repeat unit and the number of repeat units in the 5’ to 3’ 

direction 14. With simple repeats, the number of repeats units are counted. For compound repeats, 

alleles are designated by counting the total number of full repeats. With complex repeat systems, 

alleles can be identified according to their relative size compared to an allelic ladder containing 

sequenced alleles 62. 

Nevertheless, currently most Forensic Genetics laboratories use commercially available kits that 

contain allelic ladders with alleles designated according to the ISFG rule and, therefore, do not 

have to worry about STR allele nomenclature 63.  

1.2.2.1.4 STRs used in Forensic Genetics 

For DNA typing to be useful in forensic casework across a wide number of jurisdictions and/or for 

international collaboration, it is necessary to analyze a common set of standardized markers. 

These common sets must be validated before their use in casework and DNA profiles are usually 

stored in national or international databases, which enable forensic laboratories to exchange and 

compare DNA profiles between individuals. DNA databases are indispensable tools available to 

law enforcement for fighting crimes, and their use allows to resolve forensic cases and human 

identification in natural or man-made disasters 64–66.  

In the last years the forensic community has made significant efforts in the development of new 

multiplex analysis methods including the main STRs that compose the two main forensic 

databases, the combined DNA system (CODIS) managed by the FBI 67 and the European Standard 

Set (ESS) database 68. Nowadays several commercial multiplexes are available which include the 

standardized STRs. As of 2015 63, three commercial manufacturers (ThermoFisher, Promega and 

Qiagen) provide more than two dozen different STR kits that examine subsets of markers from a 

total of 29 autosomal STR loci, a sex-typing marker known as amelogenin, the Y-STR DYS391 and 

a Y chromosome deletion. Among then, the following kits are the most used: Identifiler®Plus, 

MiniFiler™, NGM SElect™, GlobalFiler™ (from Thermofisher Scientific, Wilmington, DE, USA), 

Power Plex® 16, Power Plex® ESI-17 (from Promega Corporation, Madison, WI, USA) and 

Investigator ESSplex SE QS kit (from Qiagen, Hilden, Germany). 

1.2.2.1.5 Forensic DNA databases 

A DNA database is a collection of computer files that contains entries of DNA profiles that can be 

searched to look for potential matches 14. In Forensic Genetics, a DNA profile consist of a list of 

STR genotypes produced by the analysis of the defined core.  These profiles usually come from 

forensic casework or a criminal offender who has been considered to legally qualify to enter de 
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database. The objective of forensic DNA databases is to aid law enforcement investigations by 

allowing effectively sharing genetic information of suspects in crime cases, and making 

associations between groups of unsolved cases. The larger these databases grow, the more 

effective they become, although some privacy and security concerns were raised in the last years.  

Before the launch of the national DNA databases, not all the contained data was compatible 

between countries or laboratories, and the need for a compatible currency of data exchange 

motivated the selection of core STR loci. The first national database with forensic purposes was 

established in 1995 in the United Kingdom (NDNAD). Soon after that, other European countries 

started to create their own databases 64. In 1989, the FBI in the United States proposed the 

creation of a national database for North America, which was termed the combined DNA index 

system (CODIS). Subsequently, the requirement to compare DNA results across different countries 

or jurisdictions motivated the establishment of a core set of STRs 69,70, which would first consist of 

13 markers in the CODIS database, and of 7 STRs in the European database (known as the 

European Standard Set, ESS). As these databases grew in numbers, both core sets have been 

enlarged to avoid adventitious matches by adding 7 additional loci in 2015 (although it was not 

made effective until 2017), and 5 loci in 2009 respectively 14,68,71. As of 2014, more than 100 

countries have developed national databases for policing purposes 72. 

In this context, in order to enable forensic scientists to keep up to date of the advancements in 

DNA typing, such as the discovery of new alleles or STR markers, the National Institute of 

Standards and Technology (NIST) launched in 1997 the Short Tandem Repeat DNA Internet 

Database, known as STRBase (http://www.cstl.nist.gov/biotech/strbase) 73.  

1.2.2.1.6 Scientific working groups in Forensic Genetics 

Scientific working groups (SWG) consist of scientific subject-matter experts who collaborate to 

both improve discipline practices and build consensus standards. In the Forensic Genetics 

community, several working groups and commissions have been created in the last years with the 

aim to promote accurate and reliable testing and to assist with quality assurance measures 

through the dissemination of scientific results and opinions, guidelines, education, orientation and 

communication amongst scientists. Table 2 shows the existing working groups worldwide as of 

November 2018.  
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Table 2. Major scientific association and working groups in the field of Forensic Genetics over the last years in the Unites 

Estates (EEUU), Europe (EUR), Latin America (LA), Asia and Oceania (OCEA). 

Territory Acronym Name Webpage 

EEUU 

AABB American Association of Blood banks http://www.aabb.org/ 

ASCLD/LAB American Society of Crime laboratory 

Directors/ Laboratory Accreditation Board 

http://www.ascld.org/ 

CAP College of American Pathologists http://www.cap.org/ 

DAB DNA Advisory Board Not found 

NIST National Institute of Standards and 

Technology 

http://www.cstl.nist.gov/ 

SWGDAM Scientific Working Group on DNA Analysis 

Methods 

http://www.swgdam.org/ 

EUR 

DGAB Deutschsprachige Arbeitsgruppe der ISFG http://dgab-online.de/ 

EDNAP European DNA Profiling Group https://www.isfg.org/EDNAP 

ENFSI European Network of Forensic Science 

Institute 

http://enfsi.eu/ 

GeFI Genetisti Forensi Italiani http://www.gefi-isfg.org/ 

GHEP-ISFG Grupo de Habla Española y Portuguesa de la 

ISFG 

https://ghep-isfg.org/ 

IEWPDP Interpol European Working Party on DNA 

Profiling 

https://www.interpol.int/INTERPOL-

expertise/Forensics/DNA 

ISFG International Society of Forensic Genetics https://www.isfg.org/ 

STADNAP Standardization of DNA Profiling Techniques 

in the EU 

http://www.stadnap.uni-mainz.de/ 

LA 

GITAD Grupo Iberoamericano de Trabajo en Análisis 

de DNA 

http://gitad.ugr.es/ 

AICEF Academia Iberoamericana de Criminalística y 

Estudios Forenses 

http://www.aicef.net/ 

ASIA 

AFSN Asian Forensic Sciences Network http://www.asianforensic.net/ 

JSDPR Japanese Society for DNA Polymorphism 

Research 

http://dnapol.umin.jp/ 

OCEA 

SMANZFL Senior managers of Australian and New 

Zealand Forensic Laboratories 

http://www.nifs.com. 

au/SMANZFL/ 

SMANZFL.html 

 

1.2.2.2 Single Nucleotide Polymorphisms (SNPs) 

SNPs are base pair (bp) variations at specific locations in the genome and they represent the most 

abundant class of human polymorphisms 15,74 (Figure 4). The public dbSNP catalogue version 151 

contains more than 113 million of validated SNPs 
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(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi) in the human genome. A genetic 

variation at a single locus is not considered to be a SNP unless at least two alleles have a frequency 

over 1% in a large population of unrelated individuals 15. The genomic distribution of SNPs is 

heterogenous, occurring more frequently in non-coding regions of the genome.  

 

Figure 4. Diagram of a single nucleotide polymorphism (SNP). 

The vast majority of SNPs are biallelic due to the low mutation rate at a particular bp position, and 

it is highly unlikely that two-point mutations happen at the same position over the time. For that 

reason, the analysis of SNPs has allowed to reconstruct the history of populations by studying the 

distribution of SNP alleles among present and past populations. In addition to that, SNPs can also 

be used to identify individuals, which makes them of high interest in Forensic Genetics, and some 

of them are also related to particular traits or diseases, which remarks their utility in medicine 
15,74. In the past decade genome-wide association studies (GWAS) have discovered several novel 

SNPs, with applications in different scientific fields 75. Additionally, a large number of studies have 

contributed population data associated to some of these SNPs 76, and the forensic community has 

taken advantage of these resources to apply SNPs in forensic DNA analysis 74,77. 

1.2.2.2.1 Advantages and disadvantages of SNPs versus STRs 

STR are the preferred markers for forensic investigations due their high variability, the 

standardized commercial kits available, and the fact that they build up forensic DNA databases 
14,15. However, SNPs possess some qualities that makes them highly useful markers for forensic 

applications.  

First, the amplification products from SNPs can be less than 100 bp in size, since the length of the 

product needs only to be the length of the PCR primers plus 1 bp. PCR primers are usually 15-18 
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long, which means that the PCR amplicon containing a SNP may be shorter than 40 bp. In contrast, 

the PCR products containing a STR locus are generally longer than 200 bp in order to allow their 

separation and identification by capillary electrophoresis. Thus, SNPs are able to recover more 

information from degraded DNA samples than STRs. Consequently, partial genetic profiles are 

obtained by the analysis of STRs when the DNA is degraded, whereas SNP typing of the same 

samples ends up in complete profiles15.  

Second, SNPs can be multiplexed to a higher level than STRs due to the fact that some detection 

methods, such as array hybridization, are not constrained by electrophoretic space 14. 

Furthermore, the data interpretation derived from SNP typing results is simpler, as PCR artifacts 

known as ‘stutters’ are not formed in the amplification of SNPs, in contrast with the STR loci 

amplification. In addition to that, the sample processing and data analysis can also be more fully 

automated because there is no need of a size-based separation 14,15,74. 

Third, SNPs are more stable than STRs. Mutations are a huge problem in kinship testing, and the 

mutation rates of the commonly used STRs are high, as detailed in previous sections, whereas the 

mutation rates for SNPs are estimated to be between 1.1-1.3 x 10-8 bp 78,79. Consequently, the use 

of STRs in kinship testing can lead to genetic inconsistencies between child and a parent, since a 

few genetic inconsistencies are to be expected due to mutation events. By comparison, mutations 

will be extremely rare if SNPs are studied 15,80 and, for that reason, these markers pose as a useful 

tool for kinship testing in combination with STRs.   

Fourth, unlike STRs, the analysis of SNPs allows a moderate power to predict ancestry, bio-

geographical origin and certain physical traits, such as eye or hair color 14,77,81. The forensic 

community has grown more and more interested in the SNPs related to these characteristics in 

the last years given their potential applications.  

Although SNPs are full of advantages, they also possess significant limitations that challenge their 

use in forensic routine. The most critical disadvantage is their discrimination power. SNPs are less 

informative than STRs because most SNP loci are biallelic, meaning they have only two possible 

alleles, while the STR loci typically used in Forensic Genetics have 8-15 different alleles. The match 

probability for n SNP loci (P), assuming that all SNPs are in Hardy-Weinberg equilibrium, can be 

described as: 

𝑃𝑃 = (𝑝𝑝2)𝑛𝑛 + �2𝑝𝑝(1 − 𝑝𝑝)�𝑛𝑛 + ((1 − 𝑝𝑝)2)𝑛𝑛 

where p is the frequency of the least common allele and is constant for all loci. The highest match 

probability is obtained for p = 0.5. If p is between 0.2 and 0.5, 50 SNPs give a combined match 
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probability equivalent to that of 12 STRs 60. Thus, in order to obtain a discrimination capacity 

similar to those of STRs a higher number of SNPs should be analyzed, around four times the 

number of STRs on average 60,82, though the number of SNPs needed may fluctuate in practice due 

to the variable allele frequencies of these markers in different populations. 

SNPs possess better multiplexing capability than STRs, but the ability to simultaneously amplify 

enough SNPs in robust multiplexes to yield the discrimination power of the current STR panels 

from small amounts of DNA is still a challenge. The novel panels designed for MSP in the last years, 

which include large batteries of SNPs and allow analyzing hundreds of markers in multiple samples 

simultaneously 83–85, seem to have been able to overcome this limitation. However, degraded DNA 

samples still pose a challenge in these platforms 83,84.  

On the other hand, SNPs are not really informative for samples that contain DNA mixtures, 

something that happens quite usually in trace samples from casework 74. If both alleles of a SNP 

are detected in a mixture, there is no discrimination power and it is impossible to establish which 

individual contributed to the mixture. With STRs, since they are multi-allelic, it is possible to 

estimate the number of contributors in a sample from the number of detected alleles and, 

sometimes, to  even determine the major and minor contributors based on the amplification 

strengths of the alleles 14,15.  

Finally, forensic DNA databases are composed by STR profiles. To add SNP information to forensic 

databases would require analyzing the SNPs of all the included samples, which would be 

impossible in some cases due to the samples having been consumed or discarded, and the 

significant cost involved 86. For that reason, STRs will probably continue to be the markers of 

choice in forensic casework while SNPs will be used as a supplementary tool, as they are useful 

for some specific applications 74,87. Table 3 compares SNPs and STR markers. 

Table 3. Comparison of SNP and STR markers. Adapted from 14. 

Characteristics SNPs STRs 

Genome abundance Very high ≈ 1 in every kb Less abundant ≈ 1 in every 15 kb 

Variation type Sequence variation Length variation (repetition) 

Number of alleles Typically 2 Usually 5-20 

Presence in nuclear DNA Yes Yes 

Presence in mitochondrial DNA Yes No 

Mutation rate 
Low, nuclear 1.1-1.3 x 10-8/ 

mitochondrial 2.7 x 10-5 
High, between 10-2-10-6 

Stability across generations High Low 

Amplicon size Small, ≈ 60bp Longer, ≈ 100-400 bp 



 14 

Characteristics SNPs STRs 

Artifacts No Stutters 

Discrimination capacity Low, 20-30% as informative as STRs Very high 

Existence of national databases No Yes 

Mixture analysis Limited Very high 

Application on identification Requires a high number of markers Requires a low number of markers 

Application on degraded DNA Yes 
Limited, allelic loss or absence of 

profile 

Application on complex 

kinships 
Moderate Low 

Lineage information Yes No, very limited in Y chromosome STRs 

Phenotypic information Yes No 

Ancestry information Yes No 

MPS analysis Yes Yes 

Multiplexing capability 
> 10 markers with multiple 

fluorescent dyes 

<50 markers with conventional 

techniques, 100-1000 markers with 

MPS kits or microchips 

 

1.2.2.2.2 SNP categories and applications 

SNP markers were categorized at the 2007 congress of the ISFG 81. SNPs of forensic interest 

possess specialized applications and, for that reason, four categories were defined: identity-

testing SNPs (IISNPs), lineage informative SNPs (LISNPs), ancestry informative SNPs (AISNPs) and 

phenotype informative SNPs (PISNPs) 77,81. 

1.2.2.2.2.1 IISNPs 

Identity-testing SNPs provide information to differentiate between individuals and exclude those 

that cannot be the resource of an evidentiary sample, or cannot be a potential family member 77. 

They can serve as supplemental markers when STR results are not definitive enough in cases like 

complex kinship tests 14, or when the DNA is highly degraded or in low template amounts and STRs 

do not provide complete genetic profiles or any profile at all 88. For a SNP to be selected as a 

forensic identity marker it must possess high heterozygosity and low FST, as measured by Wright’s 

FST 89. 

Thus far, several panels of IISNPs have been developed 88. The most used in forensic practice are 

the panels based in single base extension (SBE) or minisequencing technology 90. Among them, 

the panels SNPforID 52-plex 91 and Wang’s 55-plex 90 are the ones with the highest number of SNPs 
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included. In the las 3 years three MPS forensic panels have been released which include IISNPs 

among other markers 83,84,92. 

1.2.2.2.2.2 LISNPs 

Lineage informative SNPs are sets of closely linked markers, with very little possibility of 

recombination between generations, so that each set behaves as a single locus 14,77. Although each 

of the SNPs that make up a lineage marker is usually bi-allelic, the combination of the SNPs is 

equivalent to a single locus with many variants. Each of the combination of the variants is called 

haplotype. The most used LISNPs are the ones included in the Y chromosome (Y-SNPs) and the 

mitochondrial DNA (mtSNPs) 14,77,88. All of these markers are transmitted uniparentally and, in the 

case mtSNPs and Y-SNPs, they have demonstrated informative geographical differentiation. 

These markers can be useful in Forensic Genetics for defining both paternal and maternal lineages, 

tracing human migrations, and kinship analyses 77,93. Y-SNPs and mtDNA can also aid in 

biogeographical ancestry prediction, although due to their inheritance caution should be taken 

when making ancestry predictions, since LISNPs provide lineage information about one of the 

parents and predictions on admixed individuals are often problematic and not reliable 94. 

The major applications of these markers in casework have been for mass disaster victim 

identification, missing person cases, and to give clues about an unknown contributor to a crime 

scene when other markers, such as STRs, have given no results 74,95. As expected, several 

multiplexes that contain LISNPs have been designed based on SBE technology 88 and some MPS 

kits also contain these types of markers as well. 

1.2.2.2.2.3 AISNPs 

Ancestry informative markers (AIMs) are distributed throughout the genome and occur at very 

different frequencies in the distinct populations of the world 96. Thus, they are able to predict an 

individual’s ancestral background. These markers can reveal the ancestral origin of a sample, but 

do not provide information about physical traits, as it is an indirect method of assessing phenotype 
77. The ideal characteristics of AISNPs are opposite to those of IISNPs, they should display low 

heterozygosity and high FST between populations 77,88. 

In forensic casework, knowing the biogeographic origin of an individual can provide limited clues 

about the general appearance of a person and facilitate the crime investigation. STRs perform 

rather poorly for defining biogeographical ancestry and ethnicity due to the high degree of allele 

sharing between populations. For that reason, SNPs are better predictors of ethnicity, although 
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some caution should be taken since AIMS are not 100% accurate for predicting ancestral 

background 14.  

Unlike LISNPs, AIMs are inherited jointly from both parents and owing to that, are able to predict 

ancestry in admixed individuals, who may not possess the expected phenotypic characteristics 

(like skin color). They can also be employed to efficiently estimate admixture proportions and to 

detect recent admixture in human populations 97.  

One limitation of this type of SNPs is the need to define a number of candidate markers able to 

measure and assess differences in continental population structure at individual level 98. Thus, a 

specific set of AISNPs should be used depending on the population. In this context, several 

multiplex tools have been released centered on global or population specific ancestry 97–100. 

1.2.2.2.2.4 PISNPs 

Phenotype informative SNPs, unlike AISNPs, can provide a direct and accurate genetic prediction 

of phenotypic traits and lead to the identification of the perpetrator of a crime due to the clues 

provided about their appearance 77,81. 

The most obvious phenotype descriptors, or externally visible characteristics (EVCs), are 

pigmentation (skin, hair and eyes), hair morphology, body height, and facial features, which are 

all of them highly heritable 101–104. The extraction of information on phenotype through the 

molecular analysis from biological crime scene samples is called Forensic DNA phenotyping (FDP) 
15, which is important when no matching individuals can be found from an evidentiary DNA profile. 

Most work on PISNPs has concentrated on pigmentation thus far, particularly skin, eye and hair 

color. Several SNPs related to those physical traits have been included in the forensic panels 

IrisPlex, HIrisplex, and 8-plex 104–106 which are able to predict eye color, eye/hair color and skin/eye 

color respectively. In the future, perhaps we will be able to reconstruct other highly heritable traits 

such as facial morphology or height, although sensitive considerations regarding privacy and 

ethics should be taken when performing these predictions. 

1.2.2.2.3 SNP databases 

SNP databases contain genomic information, allelic frequencies, and distribution of several SNPs 

in different human populations. Although most of these databases are not of forensic use, since 

they do not contain genotyping information related to casework, and the data is mostly derived 

from population studies, they can provide valuable information of SNPs related to forensic 

applications. Some of the most important databases providing SNP information are: 
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• dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/index.html), which is a free public 

archive for genetic variation across different species developed by the National Center for 

Biotechnology Information (NCBI). This database assigns a SNP ID or “rs” number to each 

variation in order to identify it unambiguously. 

• Ensembl (http://www.ensembl.org), is a genome database managed by the European 

Bioinformatics Institute and the Wellcome Trust Institute that provides a centralized 

resource of genomic information from various species. 

• SNPforID browser (http://spsmart.cesga.es/snpforid.php), is an online repository of the 

data generated by the SNPforID 91,107. 

• UCSC Genome Browser (http://genome.ucsc.edu/), is an on-line genome browser that 

offers access to genome sequence data from a variety of organisms. 

1.3 Study of paternal lineages: The Y chromosome 

The Y chromosome has a special primary role in humans, it determines male sex 108 and also has 

a critical role in spermatogenesis 109 and male fertility. Due to its distinct characteristics, namely 

male specificity, haploidy and absence of crossing over 110, the Y chromosome possess a particular 

interest in forensic, medical and population genetics 111.  

The sex chromosomes began to diverge from a pair of homologous autosomes around 180 million 

years ago 112. From then on, their evolutionary history has been strikingly different, as the X 

chromosome retained most of its original content and is highly conserved 113, while the Y 

chromosome has degenerated, losing lost most of its ancestral content 113. 

1.3.1 The structure of the Y chromosome 

The structure of the Y chromosome is highly complex, rich in segmental duplications and repeats 

that makes it almost impossible to assemble reliably using short-read sequencing technologies 
114,115. The presence of a Y chromosome usually leads to a male phenotype due to the expression 

of the gene SRY (sex-determining region Y) 116,117. 

The Y chromosome is small, comprising about 60 megabases (Mb) and containing only a few genes 
118 (Figure 5). At the tips of the short and long chromosomal arms, there are two segments of 

sequence homology, the pseudoautosomal regions 1 and 2 (PAR1 and PAR2), in which meiotic 

crossing over between the X and Y chromosomes occurs 119–124. PAR1 is positioned in the short 

arm and is approximately 2.5 Mb in length 122,123, while PAR2 is in the long arm and is less than 1 

Mb in size 121,123. The remainder of the Y chromosome, which is about 95% its total length, is called 
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the male-specific region of the Y chromosome (MSY), which is located between the PAR regions 

and does not recombine 14,110,118. Thus, it remains the same from father to son unless a mutation 

occurs. This region is also known as the non-recombining region of the Y chromosome (NRY), 

although due to the fact that abundant gene conversion and intrachromosomal recombination 

exists in this region 125, it is more correct to refer to it as MSY 118. 

 

Figure 5. Detailed structure of the Y chromosome. a) Sequence classes. XDG: X-degenerate, XTR: X-transposed. b) 

Callable sequence. c) Inverted repeat sequences. d) Notable INDELs and translocations. e) Protein-coding genes. 

Extracted from 110.  

 The MSY region is composed of approximately one half of variable sized heterochromatin, while 

the remaining 23 Mb are composed of euchromatin 118. The euchromatin is composed of three 

major sequence classes 118: 

• X-degenerate class (XDG) (Figure 5, a), which occurs in eight blocks of the Y chromosome 

with a length of 8.6 Mb. These sequences possess up to 96% nucleotide sequence identity 

to their X-linked homologues 126,127. 

• X-transposed region (XTR) (Figure 5, a), which is a 3.4 Mb block of DNA that has been 

transferred from the X chromosome since the lineages of humans and chimpanzees 

diverged from each other 128. These sequences are 99% identical to the sequences found in 

the X chromosome and do not participate in the crossing over during male meiosis. 

• Ampliconic regions (Figure 5, c), which are intrachromosomal repeats of high sequence 

similarity and have a total length of 10.2 Mb 118. There seven large blocks and the majority 
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of these sequences (60%) have intrachromosomal identities of 99.9% or greater, which 

makes it very difficult to tell one apart from another. Among the repeated sequences are 

large direct repeats and inverted repeats, as well as eight palindromes that collectively 

comprise 5.7 Mb. 

The high interchromosomal and intrachromosomal similarity of the X-transposed region and the 

ampliconic regions makes analyzing some genomic areas and interpreting resequencing data very 

difficult 110, and only in 9.99 Mb of the total chromosome sequence are variants unambiguously 

callable 129 (Figure 5, b). Although the MSY region is not affected by crossing over during male 

meiosis, some level of recombination has been reported. Gene conversion occurs quite usually in 

ampliconic regions through non-allelic homologous recombination 110,125,130–134, and sometimes 

between non-pseudoautosomal sequences on the X and Y chromosomes that are very similar 
132,135–137 (Figure 5, d). 

During the last decade, the improved sequencing technologies have enriched our knowledge of 

the structure of the Y chromosome and the variation within the MSY. It is clear that this 

chromosome, previously neglected by geneticists and greatly ignored by GWAS 110,111, will provide 

critical information in forensic and medical genetics thanks to long-read sequencing technologies, 

which will probably enable us to access the entire sequence of the chromosome and reveal the 

information hidden in the repeated regions of the MSY 110. 

1.3.2 Y chromosome markers 

The Y chromosome, in opposite to autosomal markers, is a lineage marker and is passed down 

during generations without changing, constituting paternal lineages. In order to examine Y 

chromosome diversity two broad categories of DNA markers have been used: bi-allelic markers, 

such as Y chromosome SNPs (Y-SNPs) 138, and multi-allelic markers, like Y chromosome STRs (Y-

STRs) 110,139,140. The use of the Y chromosome in Forensic Genetics is limited due to its haploidy 

and inheritance, which makes it less effective for identification purposes in contrast to autosomal 

markers. It cannot differentiate between individuals from the same paternal lineage, meaning a 

father, his brother and his son will possess the same Y chromosome. However, its utility cannot 

be disregarded since a vast majority of crimes where DNA evidence is helpful involve male 

individuals as perpetrators 14. 

1.3.2.1 Y-STRs 

Currently, the most used Y chromosome markers in forensic casework are Y-STRs due to their 

higher mutation rate (10-3) in comparison with Y-SNPs (10-9) 14. Y-STRs are used particularly in cases 
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where standard autosomal DNA profiling is not informative, crimes involving male perpetrators 

(especially sexual assault), characterization of paternal lineages of unknown male trace donors, 

and parentage/kinship analysis 95. Y-STRs are described as defining haplotypes, combination of 

different loci alleles on a chromosome that are inherited or transmitted together and do not 

undergo recombination 15. Thus, Y-STR haplotyping can exclude male suspects from involvement 

on a crime, identify the paternal lineage of a male perpetrator, highlight male contributions to a 

sample, and provide investigative leads to find unknown male perpetrators 95.  

1.3.2.1.1 Types of Y-STRs 

Some of the conventional Y-STR loci occur more than once due to the duplicated and palindromic 

structure of some regions of the Y chromosome and, therefore, produce more than one PCR 

product when amplified. Those are DYS385ab 141, DYS389 142, DYF387S1a/b and DYS464 a/b/c/d 
142–144. Y-STR marker selection for forensic application is usually performed taking into account two 

main criteria, diversity measures in the populations 145–148 and/or mutation rate 149–151. 

In forensic practice Y-STRs with low, medium, and high mutation rate use analyzed. Y-STRs with a 

higher mutation rate, or rapidly mutating Y-STRs (RM Y-STRs), possess a mutation rate of few 

mutations per 100 generations per each locus, and are more suitable for identification than those 

with low or medium mutation rate (few mutations per 1000 generations per locus) 95,148,150. For 

that reason, they have captured the interest of the forensic community recently. Some RM Y-STRs 

(DYS570, DYS576, DYS449, DYS518, DYS627, and DYF387S1a/b) have already been included in 

some commercial kits, such as Yfiler™ Plus (Qiagen, Hilden, Germany) and PowerPlex® Y23 

(Promega Corporation, Madison, WI, USA). 

On the other hand, the conventional Y-STRs (with lower mutation rates) are better suited for 

parentage studies and for familiar searching than RM Y-STRs, as the occurrence of mutations with 

increased probabilities will trouble the estimation of paternity/kinship 95.  

1.3.2.1.2 Minimal haplotype 

A paternal lineage can be more accurately characterized by Y-STR haplotyping if more Y-STR 

markers are considered. Although in the last years the number of Y-STRs available for human and 

lineage identification has increased dramatically, in 1990 only a few loci were available, and to 

serve as a reference for forensic scientists in Y chromosome testing a core set of 9 Y-STRs was 

selected in 1997 called the “minimal haplotype” 147,152,153. The minimal haplotype is defined by the 

markers DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393 and DYS385a/b. In 2003, 

two more markers were recommended to use by the SWGDAM: DYS438 and DYS439 154.   
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1.3.2.1.3 Y-STR typing kits 

As previously mentioned for STRs, forensic scientists rely heavily on available commercial 

multiplexes to perform DNA testing, and Y-STRs are no exception. Currently, the most widely used 

kits are Yfiler™ (Thermofisher Scientific, Wilmington, DE, USA), Yfiler™ Plus (Thermofisher 

Scientific, Wilmington, DE, USA), and Powerplex® Y23 (Promega Corporation, Madison, WI, USA). 

Other non-commercial multiplexes are also available which include RM Y-STRs, other markers of 

interest, or that serve to complete with more markers previous multiplexes 150,155–158 (Table 4).  

Table 4. Most commonly used Y-STR markers in forensic DNA analysis. PPY23: PowerPlex® Y23; RM Y-STR: RM Y-STR 

panel 150; 6-plex: 17 to 23 panel 155. 

Y-STR marker Minimal haplotype Yfiler Yfiler Plus PPY23 RM Y-STR 6-plex 

DYS19 X X X X   
DYS385a/b X X X X   

DYS389I X X X X   
DYS389II X X X X   
DYS390 X X X X   
DYS391 X X X X   
DYS392 X X X X   
DYS393 X X X X   
DYS437  X X X   
DYS438 X X X X   
DYS439 X X X X   
DYS448  X X X   
DYS456  X X X   
DYS458  X X X   
DYS635  X X X   

Y-GATA-H4  X X X   
DYS481   X X  X 
DYS533   X X  X 
DYS549    X  X 
DYS570   X X X X 
DYS576   X X X X 
DYS643    X  X 
DYS449   X  X  
DYS460   X    
DYS518   X  X  
DYS627   X  X  

DYF387S1a/b   X  X  
DYS526a/b     X  

DYS547     X  
DYS612     X  
DYS626     X  

DYF399S1     X  
DYF403S1a/b     X  

DYF404S1     X  

 

1.3.2.2 Y-SNPs 

Y-SNPs are distributed through the Y chromosome and they serve as markers of paternal lineage. 

They can be used to establish evolutionary lineages, broad biogeographical ancestry, and to trace 
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male-mediated demographic events 95,159,160. The applications and limitations described in section 

1.2.2.2 also apply in this case, in addition to limitations derived from the Y chromosome structure. 

The use of these markers is not extended in forensic casework, although they can provide useful 

clues when the DNA typing of other markers fail, or there is an unknown perpetrator. Y-SNPs are 

most used in population genetics and genetic genealogy, and they can also aid in paternity/kinship 

testing 159. 

Since their mutation rate is lower in comparison with Y-STRs (10-9), biogeographical ancestry 

signatures are kept much longer in Y-SNPs before it is diluted due to mutations. For that reason, 

Y-SNPs are more suitable for paternal biogeographical inference than Y-STRs. Furthermore, the Y 

chromosome escapes recombination and, once a mutation occurs, it is not removed from the gene 

pool unless no male offspring exists. The uniparentally inherited part of the genome, both Y 

chromosome and mtDNA, are more susceptible to genetic drift and, therefore, genetic differences 

can occur between geographic regions. On the other hand, some elements of human culture, like 

patrilocal residence, polygyny, and male-mediated migrations have also made the Y chromosome 

more suitable for ancestry analysis 95. 

1.3.2.2.1 Y chromosome haplogroups and global distribution of paternal lineages 

Y chromosome haplogroups are related sets of Y chromosomes that are collectively defined by 

specific Y-SNPs 110. Due to the evolution and migration of human groups across the globe, 

haplogroups display a strong geographical differentiation at continental level, and some even at 

regional level 140,161. Table 5 provides a broad picture of the distribution of paternal lineages 

worldwide, which can also be visualized in Figure 6. 

Table 5. List of Y-SNPs defining the main Y chromosome haplogroups and their geographical distribution. NA: Not 

available. Adapted from 95. 

Haplogroup Defining Y-SNP Rs number Geographic distribution 

A00-L1086 L1086, L1159, 
L1284 

NA, NA, NA Central Africa 

A0-V148 V148, V166, 
L896, L991 

rs181335666, 
rs187287389, NA, NA 

Central Africa, West Africa 

A1-M31 M31, P82, V4 rs369315948, NA, 
rs187409543 

West Africa, North Africa 

A2-V50 V50, L602 rs189205028, 
rs576471146 

Southern Africa, Central Africa 

A3-M32 M32 rs558241924 East Africa, Southern Africa 
B-M60 M60, M181, 

V244 
rs2032623, 
rs2032599, 
rs112298449 

Central Africa, Southern Africa, East Africa 

D-M174 M174, CTS94, 
JST021355 

rs2032602, 
rs199881488, 
rs2267802 

East Asia 
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Haplogroup Defining Y-SNP Rs number Geographic distribution 

E-M96 M96, M40, P29 rs9306841, 
rs9786608, 
rs60115999 

Africa, West Asia, Southern Europe 

E-V13 V13, V36 rs368031074, 
rs371443469 

Southern Europe 

E-M293 M293 rs9341316 Southern Africa 
E-M75 M75 NA Central and South Africa 
E-M35 M35, L336 rs375228668, 

rs112779735 
Africa, Ashkenazi and Sephardic Jews 

C-M130 M130, M216 rs35284970, 
rs2032666 

Central Asia, Northern Asia, North America, East Asia, 
Southeast Asia, Wallacea, Near Oceania, Remote 
Oceania, Australia 

C-M8 M8, M105 rs3899, rs2032612 Japan 
C-V20 V20 rs182352067 Southern Europe 
C-M356 M356 NA South Asia, Central Asia 
C-B65 B65 rs374541802 Indonesia, Philippines 
C-M38 M38 rs369611932 Wallacea, Near Oceania, Remote Oceania 
C-M208 M208 rs2032659 Near Oceania, Remote Oceania 
C-P33 P33 NA Remote Oceania 
C-PH41 PH41, PH338 NA, NA Australia 
C-M217 M217, P44, 

Z1453 
rs2032668, NA, NA Central Asia, Northeast Asia, South Americans 

(Ecuadorian Native Americans) 
C-P39 P39 NA Northern America 
F-M89 M89, M213, P14 rs2032652, 

rs2032665, 
rs9786420 

South Asia 

G-M201 M201, P257 rs2032636, 
rs2740980 

West Asia, Europe, Central Asia 

G-P15 P15, U5, L31 rs370167410 Mediterranean Europe, Northern Europe 
H-L901 L901, M3035 rs567848586, 

rs74378870 
South Asia 

I-M170 M170, M258, 
U179 

rs2032597, 
rs9341301, 
rs2319818 

Europe, West Asia 

I-M253 M253, L80 rs9341296, 
rs35960273 

Northern europe 

I-M438 M438, P215 rs17307294 South-eastern Europe 
J-M304 M304, P209 rs13447352, 

rs17315835 
West Asia, North Africa, Horn of Africa, Southern 
Europe, Central Asia, South Asia 

J-M267 M267, M497 rs9341313, 
rs371666197 

Middle East, Caucasus, North-East and North Africa 

J-M172 M172, L228 rs2032604, 
rs371968167 

Middle east, Caucasus, Mediterranean area 

L-M20 M20 rs3911 South Asia, West Asia 
M-P397 P397, P399, 

PR2099 
NA, NA, rs369017623 Wallacea, Near Oceania, Remote Oceania, Australia 

M-P34 P34 NA Near Oceania 
M-M10072 M10072, 

FGC38729, 
Z33118 

rs566812523, NA, 
rs368850080 

Australia 

N-M231 M231 rs9341278 Northern Asia, Northern Europe 
O-M175 M175, P186 rs2032678 East Asia, Southeast Asia, Remote Oceania 
Q-M242 M242 rs8179021 Northern Asia, Central Asia, Americas 
Q-M3 M3 rs3894 Americas 
Q-Z780 Z780 NA Americas 
R-M207 M207 rs2032658 Europe, West Asia, Central Asia, South Asia, North 

Africa, Central Africa 
R-M420 M420 rs17250535 Eastern Europe 
R-M458 M458 rs375323198 Eastern Europe, Caucasus region 
R-Z284 Z284 rs767265794 Northwest Europe 
R-Z93 Z93 rs566323605 South Asia, Central Asia 
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Haplogroup Defining Y-SNP Rs number Geographic distribution 

R-M343 M343, M415 rs9786184, NA Western Europe 
R-V88 V88 rs180946844 Africa, Southern Europe 
R-M269 M269, M520 rs9786153, NA Western Europe 
R-Z2103 Z2103, Z2105 rs567703217, 

rs544980517 
Eastern Europe, West Asia 

R-M412 M412 rs9786140 Western Europe 
R-L11 L11, S127 rs9786076 Western Europe 
R-S116 S116, P312 rs34276300 South-western Europe 
R-U106 U106, S21 rs16981293 North Central Europe 
R-M529 M529, S145 rs11799226 British Isles  
R-U152 U152, S28 rs1236440 Alps, France, Western Poland 
R-M479 M479 rs372157627 South Asia, Central Asia 
S-M254 M254 rs9341297 Near Oceania 
T-M184 M184 rs20320 West Asia, Horn of Africa, North Africa, Southern 

Europe, South Asia 
 

The relationship between Y-SNPs and geographical regions has been established thanks to 

population studies, which have generated valuable population data for many geographical 

regions. Some areas, however, have been less studied and the biogeographical information 

provided by Y-SNPs is limited, especially in the case of recently discovered markers whose 

distribution is not yet known 95.  

In some cases, Y-SNPs with strong geographical differentiation can display strong or moderate 

correlation with an associated Y-STR based haplotype. In these instances, a Y-SNP haplogroup 

could be inferred from associated Y-STR haplotypes. This is true for the broadly studied European 

haplogroups R1a (M420) and R1b (M343) (Figure 6, Table 5). However, many other haplogroups 

are not that studied, and not many Y-STRs with strong geographic signatures are known 95. In this 

context, many online haplogroup prediction tools are available, such as Whit Athey’s haplogroup 

predictor (http://www.hprg.com/hapest5/) and Nevgen haplogroup predictor 

(http://www.nevgen.org/), whose accuracy depend mainly on the number of Y-STR haplotypes 

from which allele frequencies can be calculated 162,163. Haplogroup prediction can be an easy and 

quick tool when Y-SNP information is not available, but the percentage of error present on the 

estimation, especially at subhaplogroup level, and in those lineages less studied, is a huge 

limitation that cannot be disregarded. For that reason, haplogroup prediction from Y-STR 

haplotypes is not an accurate enough method and Y-SNP typing is necessary to define the specific 

paternal lineage of a sample unambiguously 163.  
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Figure 6. Y chromosome phylogeny and global haplogroup distribution. The branch lengths are proportional to the 

estimated times between the successive splits, occurring the most ancient division around 190,000 years ago. The 

colored triangles represent the major clades, and the width of each base is proportional to one less than the 

corresponding sample size. Dotted triangles represent the ages and sample sizes of the expanding lineages. Inset, world 

map indicating, for each of the 26 populations, the geographic source, sample size, and haplogroup distribution. 

Samples correspond to 1,244 male individuals from five global superpopulations sequenced on the Phase 3 of the 1000 

Genomes Project 164. Figure extracted from 165. 

1.3.2.2.2 Phylogeny 

The appearance of modern humans goes back to a single common origin in Africa 300,000-200,000 

years ago. During this long history, there have been enough generation steps to allow the 

appearance of mutations that have end up creating continental differences at various Y-SNPs. 

These Y-SNPs can be used to establish a robust phylogeny using the principle of maximum 

parsimony 110, as each one of them first originated at some branch of the genealogical or 

phylogenetic tree that unites all humans. Therefore, Y-SNPs display a hierarchical structure that is 

organized in main haplogroups or lineages (defined by one or more concrete Y-SNPs) that can be 

dissected in subhaplogroups or sublineages, which are located below in the phylogenetic tree and 

possess the Y-SNP that defines the sub-branch as well as the one that defines the main branch. 
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In the last decade, several studies using MPS technology have provided a large number of 

undiscovered Y-SNPs and have allowed to reconstruct and calibrate a reliable reference phylogeny 

for the human Y chromosome 165–169 (Figure 6). The first efforts to develop a nomenclature for 

haplogroups were performed by the Y Chromosome Consortium (YCC) in 2002 170, given the strong 

confusion that arose the appearance of several nonsystematic nomenclatures for the 

haplogroups. In 2014, a minimal reference phylogeny for the human Y chromosome was 

presented, which represent a reduced version of the tree including only the principal branches 

together with the broad geographic distribution 171. This phylogeny is available online through 

Phylotree-Y (http://www.phylotree.org/Y/tree/index.htm). The International Society of Genetic 

Genealogy (ISOGG) offers online a more detailed phylogeny that is updated regularly 

(https://isogg.org/tree/index.html).  

Despite the great efforts made by the community to develop a consensus Y-SNP nomenclature 

there is still confusion regarding this issue, since several Y-SNPs possess more than one 

denomination and some authors use one of the denominations while others use another one. For 

that reason, in order to avoid ambiguous haplogroup assignation, is best to refer to Y-SNPs using 

the SNP ID number provided by the database dbSNP (if it is assigned), and/or the most common 

denomination provided by both phylogenies mentioned above.  

1.3.3 Y-SNP typing technologies 

A great variety of genotyping techniques are available for the analysis of SNPs 74, and the 

increasing interest on these markers during the last 20 years has resulted in the development of 

more and more novel typing platforms. These methods are based in four common technologies: 

hybridization, primer extension, ligation, or invasive cleavage 15,74. The techniques that will be 

described below are the most commonly used in Forensic Genetics and are also applicable for the 

typing of SNPs located in other regions of the genome. 

1.3.3.1 SNaPshot™ minisequencing 

The minisequencing or single base extension (SBE) method is one of the most relevant and 

commonly applied technology for forensic DNA analysis due to its sensitivity, high multiplexing 

capability, and the advantage of not requiring additional equipment apart from the one already 

available in any forensics laboratory 88,90,172. Furthermore, there is a high number of available 

panels of different types of SNPs of forensic interest 88. 

Minisequencing is a genotyping method that is based on primer extension techniques 74, where a 

detection primer is designed to anneal to the target DNA immediately upstream of the SNP of 
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interest and is then extended by DNA polymerase using fluorescently labelled single nucleotides 

(ddNTPs) 74,88,172 (Figure 7). Thus, only the single base that is complementary to the SNP of interest 

is added to the primer. The resulting dye-labeled products are most commonly detected by 

capillary electrophoresis (CE) 172, although other techniques are also available like fluorescence 

detection, matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry (MS), and microarrays, on which the multiplexing capability will depend 74. This 

technique was developed in 1990 173,174 and first validated for forensic casework few years later 

for the detection of mitochondrial sequence polymorphisms 175. 

 

Figure 7. Outline of the SNaPshotTM process steps and depiction of the SBE reaction. Dye-linked terminating ddNTPS are 

shown as circles with their relevant colors. Extracted from 172. 

The most common commercial minisequencing assay is the SNaPshot™ Multiplex kit by 

ThermoFisher (Thermofisher Scientific, Wilmington, DE, USA). Although there are not 

commercially available multiplex panels for the analysis of Y-SNPs, several studies have developed 

reliable multiplex tools that enable to genotype global haplogroups 176–179 or more regional 

lineages 178,180–182 in forensic and ancient DNA samples 183. These Y-SNPs panels are highly useful, 

but some limitations exist regarding the haplogroup resolution they are able to achieve, as well as 

the number of multiplex reactions needed for their application, as some panels require more than 

one multiplex reaction 177,180,181. Consequently, there are not minisequencing panels available that 

dissect each major branch of phylogenetic tree, as some haplogroups are more studied than 

others. Thus, there is a requirement to develop more multiplex tools that allow to dissect more 

specific haplogroups, achieving high resolution in a minimal number of reactions. 
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1.3.3.2 High Resolution Melting (HRM) 

High Resolution Melting (HRM) is the quantitative analysis of the melt curve of DNA fragments 

following a real-time PCR (RT-PCR) amplification. The use of this technique in Forensic Genetics is 

not as widespread as SNaPshotTM genotyping, but recent studies have shown the potential of HRM 

for SNP genotyping in forensic samples 184–186. HRM is a simple, cost effective, sensitive, closed 

tube SNP genotyping technique with high throughput potential 185. 

 

Figure 8. HRM workflow. Adapted from Bio-Rad (http://www.bio-rad.com). 

This method needs a RT-PCR to be performed first, were the target SNP is amplified in a short 

fragment using a saturating concentration of double-stranded DNA (dsDNA) binding dye, like 

EvaGreen or LCGreen 187,188. When the PCR products transitions from double stranded to single 

stranded conformation, a rapid loss of the fluorescent signal happens, where the fluorescence is 

proportional to the amount of remaining double stranded DNA. The temperature at which half of 

the DNA is in single stranded conformation is termed the “melting temperature” (Tm) 189–191. The 

Tm and the morphology of the PCR product melting profile are then used to identify the presence 

of sequence variation (Figure 8). The melting profile, as well as the Tm, is dependent on the 

features of the sequences like GC content, GC distribution, length, and sequence of the PCR 

amplicon 189,192. HRM is more sensitive for smaller fragments, as increasing the size of the PCR 

products may reduce Tm differences between alternative genotypes and increase the difficulty of 

data interpretation. For that reason, it is recommended to use fragments between 40-100 bp for 

SNP genotyping, or at least no longer than 300 bp 188,193–197. 

The major advantages of HRM are the speed of the analysis, as the acquisition of the melting 

profiles occurs within the instrument immediately after the PCR, the elimination of post-PCR 

sample manipulation, which reduces the time of labor and the risk of contamination, and the low 

cost in comparison with other techniques 185,189,198. Moreover, it can be applied to degraded DNA 

due to the short amplicons needed. The main limitation of HRM in Forensic Genetics is its reduced 

multiplexing capability, only multiplexes with up to 6 markers have been described 199,200. Although 
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multiplexing is possible, it is more limited than in other genotyping technologies due to the fact 

that product detection occurs in a limited range of temperature (60-95 °C) 185,186,199.  

1.3.3.3 TaqMan™ assays 

The TaqMan™ assay is based in the 5’ nuclease activity of the Taq polymerase, which displaces 

and cleaves the oligonucleotide probes hybridized to the DNA generating a fluorescent signal 
201,202. This method has been one of the most popular probe-based assays in forensics, especially 

for human DNA quantification and sex identification through RT-PCR 203. 

 

Figure 9. Representation of TaqMan™ assay genotyping. Extracted from 204. 

Two primers with reporter fluorescent dyes attached to the 5’ end and a quencher attached to 

the 3’ end are required, one complementary to the ancestral allele of the variant and the other to 

the derived allele 202. When the probes are not hybridized to the target DNA the quencher 

interacts with the fluorophore, quenching the fluorescence. During the PCR annealing step, the 

TaqMan™ probes hybridize to the target DNA, and in the extension step the Taq polymerase 

cleaves the 5’ fluorescent dye by its 5’nuclease activity, which leads to an increase in the 

fluorescence of the reporter dye. The genotype of a sample is then determined by the measuring 

of the signal intensity of the two different dyes 74 (Figure 9).  
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Even if this method is specific and very sensitive for Y-SNP analysis, its multiplexing capability is 

very limited, as it also happens with HRM. It is only possible to analyze simultaneously up to 4 

different SNPs. Considering that, currently the application of this technique in Forensic Genetics 

is mostly limited for DNA quantification and assessment, used in common quantification kits such 

as Quantifiler (Promega Corporation, Madison, WI, USA). 

1.3.3.4 High density SNP arrays 

High density SNP arrays allow hundreds of thousands or even millions of SNPs to be genotyped in 

parallel. Their main limitation is the high cost, the high rate of null results, and the requirement of 

high amounts of DNA, which is often not available from casework samples that come from minimal 

biological stains.  

In this method, oligonucleotides are attached to a solid support to create a microarray and are 

then hybridized with fluorescent labelled PCR products that contain the target SNP sequence. 

Fluorescence intensity is then translated into nucleic acid abundance. SNP arrays have been 

typically used in GWAS to associate genetic variants with diseases or particular phenotypic traits 
74. In addition to that, some companies that offer genealogical services, like 23andme 

(https://www.23andme.com/en-int/) or FTDNA (https://www.familytreedna.com/), use high-

density SNP arrays to provide genetic testing for biogeographical ancestry, including a high 

number of autosomal, mitochondrial, and Y chromosome SNPs.  

Overall, although the price of the arrays has lowered in the last years 205, this method offers the 

opportunity of genotyping a large number of SNPs at a scale that far exceeds current forensic 

casework requirement 74. 

1.3.3.5 Massive parallel sequencing (MPS) 

Over the last years, the SNP genotyping platforms based on massive parallel sequencing (MPS) 

have popularized not only in medical genetics, but also on Forensic Genetics for analyzing SNPs 

related to phenotype and ancestry, and STRs. The first limitation of these platforms was the cost, 

the DNA amount needed for the analysis, and the complex data processing. However, the last 

efforts made by the forensic community have allowed to generate and validate platforms 

compatible with casework samples 83,84.  

These methods, which are considered second-generation sequencing methods 43,206, offer the 

advantages over capillary electrophoresis systems of more deep sequence information and an 

increased discrimination power of a forensic profile through the possibility to analyze 
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simultaneously hundreds of markers in one multiplex PCR, not only SNPs but also STRs and 

complete genome sequence. Likewise, the complexity of data processing and interpretation, and 

the influence of external factors (i.e. costs, instrument performance, staff training, and quality 

levels of reagents) may increase as well 84.  

 

Figure 10. Basic principle of massive parallel sequencing technologies. Adapted from 207. 

The most widely used MPS techniques in forensics are PCR based capture methods combined with 

sequencing-by-synthesis using reversible dye terminators, represented by the Illumina® 

MiSeq®/NexSeq platforms, and ion semiconductor sequencing, represented by the Ion Torrent™ 

platforms Personal Genome Machine ™ (PGM)/S5 42,43 (Figure 10). From 2014 on, the first MPS 

commercial kits specifically designed for forensic applications were released by the companies 

Thermo Fisher Scientific (HID-Ion AmpliSeq™ Identity, HID-Ion AmpliSeq™ Ancestry, and mtDNA 

Whole Genome Panel), Verogen (ForenSeq™ DNA Signature Prep Kit), Qiagen (Qiagen SNP ID-kit, 

Globalfiler™ system) and Promega (PowerSeq™ systems), which include autosomal SNPs, Y-SNPs 

and/or STRs (autosomal, Y-STRs, and/or X-STRs). Furthermore, interlaboratory validation studies 
84, as well as commercial kit validation studies are already available for both platforms 83,208–210. A 

survey performed in 2017 among European forensic laboratories reported that the most used kits 

were the ones supplied by the companies Verogen (formerly Illumina) and Thermo Fisher Scientific 

in an equal proportion 43,211. Those kits are Forenseq™ DNA signature kit 43,208,211–216, and the HID-

Ion Ampliseq™ panels 217–221. 
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By now it seems clear that before MPS becomes a routine Forensic Genetic diagnostic tool there 

is still a lot of work left to do, like developing guidelines and accommodating the national DNA 

databases to accept markers identified by MPS 222. What is more, at the moment not all forensic 

laboratories can afford to implement MPS technologies to their routine analysis.  

1.3.4 Y chromosome genetic databases 

As mentioned in previous sections, DNA databases are essential for forensic casework and 

population genetics. Given the particular nature of the Y chromosome, specific databases have 

been devoted to store information of Y chromosome markers. 

1.3.4.1 Y-STR databases 

A number of online Y-STR databases exists which contain genetic profiles of anonymous 

individuals used to estimate the frequency of specific Y-STR haplotypes (Table 6). Some of them 

are of strict forensic use, while others contain Y-STR haplotypes associated with specific 

individuals and family names gathered by genetic genealogy companies that try to make 

genealogical connections. 

Table 6. Summary of available online Y-STR databases (as of November 2018). Adapted from 14. 

Database Use 
Number of 

samples 

Number of Y-STR 

markers tested 
Website 

Y-STR 

Haplotype 

reference 

database 

(YHRD) 

Forensic 265,324 7-29 http://www.yhrd.org 

US Y-STR 

Database 

(US Y-STR) 

Forensic 32,972 11-23 http://www.usystrdatabase.org/ 

Yfiler 

haplotype 

database 

Forensic 11,393 17 
http://www6.appliedbiosystems.com/yfilerdata

base/ 

Family 

tree DNA 

(FTDNA) 

Genealogy 137,512 12-67 https://www.familytreedna.com/projects.aspx 

 

Among the detailed databases in Table 6, the largest and most used in forensics is the YHRD, 

created by Lutz Roewer and Sascha Willuweit in 2000 223. This database contains results from more 

than 250,000 samples with at least the minimal haplotype loci results from different populations 
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and countries around the world. Searches in the database may be conducted by population group 

or geographic location, and in addition to that, it also offers tools for statistical calculations such 

as mixture analysis, kinship analysis, analysis of molecular variance (AMOVA) and 

multidimensional scaling (MDS). 

Genetic genealogy databases are not typically used for Y-STR forensic haplotype frequency 

estimates, as they include limited information, but they can be helpful for associating a concrete 

Y-STR haplotype with a particular family surname 159, in case it was necessary for casework 

investigation 14.  

1.3.4.2 Y-SNP databases 

Most Y-SNP information can be found in general online SNP databases (detailed in section 

1.2.2.2.3), but there are only a few of them that are exclusively dedicated to these markers and 

their phylogeny. Apart from their position in the Y chromosome phylogeny, other information like 

alternative names, chromosome position, distribution and age are also offered. Some of them 

even include Y-SNP typing results. Given the confusion that has arisen with Y-SNP nomenclature 
170 it is highly recommended to check the phylogenies managed by Phylotree Y and/or the ISOGG 

(Table 7). 

Table 7. Summary of available Y-SNP databases (as of November 2018). 

Database 
Phylogeny 

information 

Y-SNP 

results 
Webpage 

Y-STR Haplotype reference 

database (YHRD) 
Yes Yes  http://www.yhrd.org 

Phylotree Y Yes  No  http://www.phylotree.org/Y/tree/index.htm 

International Society of genetic 

Genealogy (ISOGG) 
Yes  No  https://isogg.org/tree/index.html 

Ybrowse from the ISOGG Yes  No  http://ybrowse.org/gb2/gbrowse/chrY/? 

Family Tree DNA (FTDNA) No  Yes  https://www.familytreedna.com/projects.aspx 

Yfull Yes  No https://www.yfull.com/tree/ 

 

None of the detailed databases, except the YHRD, is used in forensic routine. Nevertheless, these 

databases are still highly popular in population genetics and genetic genealogy thanks to amateur 

genealogists and citizen scientists, a huge and active community that has provided knowledge in 

the genealogical field and even contributed with novel information in the Y chromosome 

phylogeny 224. 
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1.3.5 Applications of the analysis of the Y chromosome 

In the previous sections of the present work the utility of the analysis of the Y chromosome and 

its markers has been addressed. Although small, this chromosome offers a wide range of 

applications in different fields like forensic, population and evolutionary genetics, genealogy and 

demography.  

1.3.5.1 Forensic Genetics 

1.3.5.1.1 Paternity and kinship testing 

Father and sons, as well as all the males of the same paternal lineage share the same Y 

chromosome, which its transmitted almost unchanged to the next generation. This feature allows 

to reconstruct familiar relationships through the analysis of Y-STRs and Y-SNPs, and is also relevant 

in disaster victim and missing person identification 14,95,159. 

In paternity testing, analyzing the Y chromosome is relevant in deficiency cases, when autosomal 

profiling is impossible or difficult, where the putative father of a male child is unavailable due to 

different circumstances, like being deceased. Y-STR analysis allow to exclude putative fathers, 

while inclusion can be difficult due to all individuals of the same lineage sharing the same Y 

chromosome. For this purpose, Y-STRs with low or medium mutation rated will be used, as finding 

the same haplotype indicates biological paternity 95. 

1.3.5.1.2 Biogeographical ancestry 

The analysis of Y-SNPs can allow to determine the paternal lineage of an individual. Since the 

distribution of haplogroups is not random, the detection of a particular paternal lineage can give 

clues about the paternal biogeographical ancestry of an individual 14,95,225. 

In forensic practice this application should be taken with caution, since Y-SNPs only give 

information about the paternal side, and lineage prediction on admixed individuals is not 

considered to be reliable 94. For that reason, it is best to combine Y-SNP analysis with mtDNA and 

AIM genotyping in order to provide an effective biogeographical ancestry prediction.  

1.3.5.1.3 Mixture analysis 

The Y chromosome may aid in some mixture cases, particularly where autosomal tests are limited 

by the evidence, like the presence of high levels of female DNA in the presence of low amounts of 

male DNA or mixtures with a high number of male individuals, as it happens in ‘gang rapes’. This 



 35 

situation usually happens in the following cases: sexual assault evidence from vasectomized or 

azoospermic males, and blood-blood or saliva-blood mixtures where the absence of sperm does 

not allow the differential extraction of male DNA 14,226. 

1.3.5.2 Population Genetics 

1.3.5.2.1 Population stratification 

The relationship between Y chromosome markers, both Y-STRs and Y-SNPs, paternal lineages and 

surnames can allow to detect population stratification, both past and more recent. Population 

stratification can go unnoticed due to not being able to detect it through the genome analysis of 

living individuals, or owing to the scarcity of available ancient DNA profiles from past individuals 
159,227. The genealogical data associated to Y-SNPs makes it possible to indirectly study the 

population differentiation of distinct time periods 228. 

1.3.5.2.2 Male mediated expansion 

Y chromosome markers are as popular for detecting migration patterns as their maternal 

counterpart, mtDNA. This is due to its strong geographic differentiation linked to patrilocal 

marriages 229, the wide-range of mutation rates of its markers, and the fact that most societies are 

patriarchal 110,159. Customs surrounding marriage practices influence the migration behavior of the 

different sexes, and can affect the diversity of the Y chromosome. In the last years, several Y 

chromosome resequencing studies 129,165,168,230,231 have coincided in detecting population bursts of 

expansion within specific paternal lineages in the past thousand years 110. 

1.3.5.2.3 Time to the most recent common ancestor (TMRCA) 

Investigating how an ancestral population diverges to give rise to distinct subpopulations remains 

a fundamental pursuit in population genetics. Through the analysis of Y-STRs and Y-SNPs the age 

of a concrete paternal linage can be estimated, that is, the time since the haplogroup-defining 

mutation occurred and, thus, provide insights into the origin and history of particular populations, 

haplogroups or past human migrations 140,167,232,233.   

1.3.5.3 Evolutionary Genetics 

By comparing the differences between different Y chromosomes within concrete patrilineal 

lineages mechanisms driving sex chromosome evolution can be studied 159,234. The analysis of Y 

chromosome variation in deep-rooting pedigrees has been useful for the detection and 
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characterization of the evolution of new regions of the Y chromosome structure 235 and the 

selection of relevant Y-SNPs in the Y chromosome reference phylogeny 171,236. 

1.3.5.4 Genetic Genealogy 

Classical genealogy is based on the research of archival evidence, like original genealogical records 

and documents in civil or parish records to reveal familiar or genealogical connections 110,159. 

Genetic genealogy combines the use of this type of evidence with genetic tests, which allows to 

establish genetic relatedness in absence of these documents.  

In this context, genealogical data can help to verify the observed genetic population structure and 

correctly interpret it, estimate more reliably the time scale of the gene flow events detected, and 

determine the temporal genetic differentiation within a concrete population 227. Furthermore, a 

relationship exists between Y chromosome haplotypes, both based on Y-STRs and Y-SNPs, and 

patrilineal surnames 237,238. The study of this relationship in different countries has revealed the 

effects of past social structures in the current diversity of the Y chromosome 238–241. 

1.3.5.5 Demography 

The study of the Y chromosome enables to estimate and compare rates of extra-pair paternity 

(EPP) within and between human populations, both past and present. The EPP rate can be directly 

estimated from mismatches in Y chromosomal genotypes between pairs of individuals that share 

a common paternal ancestor based on genealogical evidence 242. The study of EPP can help solve 

demographic historical questions and ascertain bias both in evolutionary demographic studies and 

the analysis of biological traits 159,243,244.  

1.4 Evolution and history of the genetic makeup of Europe 

Europe is a geographical area without well-defined boundaries located in the western part of the 

Eurasian subcontinent. Directly connected with Asia through the Middle east, and with North 

Africa through the Mediterranean Sea, this continent was populated during prehistoric times due 

to several waves of human migrations, and those demographic events have shaped the current 

gene pool of the European populations. Thanks to the insights provided by ancient DNA and 

modern population studies, it has been possible to reconstruct the most probable evolutionary 

scenario that determined the ancestry of the modern Europeans 245,246. 
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1.4.1 The paternal genetic landscape of Europe 

The genetic makeup of Europe has been defined by complex processes such as human migrations 

and population settlements influenced by environmental change, historical conquests of the 

territory and cultural progress 245,247. The analysis of Y-SNPs has enabled to establish the 

haplogroup composition of the current European population. 

The study of several genetic markers from autosomal DNA and the Y chromosome revealed a 

southeast-northwest frequency cline 247–252. Nowadays the most common paternal lineage in 

Europe is the macrohaploup R, defined by the Y-SNP M207 (Figure 11) (Table 5). In Europe 

haplogroup R is divided in two main subhaplogroups: R1a, which is defined by M420 and is more 

common in Eastern Europe in frequencies between 3-60% 247,252–254, and R1b, which is defined by 

M343 and is more common in Western Europe in frequencies up to 90% 247,252,254. The major 

Western European paternal lineage is the R1b subhaplogroup M269 255–258, which displays 

frequencies between 12-90% in this geographic area 257–259 (Figure 12). 

 

Figure 11. Simplified phylogeny of haplogroup R. The haplogroup assignment follows the minimal reference phylogeny 

for the human Y chromosome 171, supplemented with the more detailed tree maintained by the International Society 

of Forensic Genetics (ISOGG). 

M269 shows a northwest-southeast frequency cline, from high frequencies in the west to lower 

frequencies in Eastern Europe 257–260. As it happens with its mother haplogroup, M269 is also 

divided in many sublineages, such as M412 and L11, which are restricted to Western Europe 258,259. 

The L11 derived sublineages S116 (also known as P312) and U106 are distributed in North-Central 
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Europe and Southwestern Europe respectively 258–260. Finally, S116 is also divided in two main 

subhaplogroups that are geographically localized: M529 in the British Isles, and U152 in the Alps, 

France and Western Poland 258–260. 

Apart from the mentioned R derived lineages, other minor haplogroups can also be observed in 

the European continent, such as E, J, I and G 261,262, defined by the Y-SNPs M96, M304, M170, and 

M201 respectively (Table 5). E haplogroup has been observed to display frequencies up to 25% 
247,261, while J and I reach frequencies up to 27% 247,261 and 45% 247,262 depending on the geographic 

location. G is present only in scarce frequencies, between 5-15% 247. 

 

Figure 12. Frequency distribution of the haplogroup R1b-M269 in Europe. Extracted from 259. 

1.4.2 Genetic history of Europe 

Uniparental markers such as the Y chromosome and mtDNA are easy to track through generations 

and provide a unique male and female perspective of the human evolutionary history 263. Their 

analysis, along with autosomal data, is crucial as they provide insights into demographic and social 

factors like sex-biased introgression or mobility, which allow to reconstruct the structure and 

movements of past populations 264. For that reason, they are valuable markers in paleogenetics.  

The current genetic diversity of Europe has been shaped by three critical major demographic 

episodes 245,265,266:  

• The arrival of anatomically modern humans 45,000 years ago (ya) to Europe during the 

Paleolithic.  
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• The last glacial maximum (LGM) between 27,000-16,000 ya, where human populations 

retreated into refugia in the Iberian, Italian and Balkan peninsulas, and the posterior 

northward recolonization 14,000 ya. 

• The arrival of agriculture, which originated in the Near East, in southeast Europe during the 

Neolithic transition, and its spread throughout the rest of the continent between 9,000-

5,000 years ago (Figure 13 A). 

 

Figure 13. Summary of population dynamic events during the Neolithic Period in Europe. Different shadings and 

patterns denote the geographic distribution of cultures during this period: A) Early Neolithic. D) Late Neolithic/Early 

Bronze Age. Event A: The impact of incoming farmers during the Early Neolithic. Event C: Period of renewed genetic 

influx during the Late Neolithic with variable regional repercussions. Striped areas indicate archaeological culture for 

which ancient DNA data is not available so far. Green arrows display potential geographic expansion routes and their 

associated paternal or maternal lineages. Extracted from 266. 

The first two episodes, that is, the arrival of anatomically modern humans to Europe (45,000 ya) 

and the LGM where human populations retreated to refugia (27,000-16,000 ya), occurred during 

the Paleolithic (up to 11,500 ya) and Mesolithic (11,500-5,000 ya) periods in Europe. The humans 

that inhabited the continent during the Paleolithic and Mesolithic periods were Hunter-gatherers 

(HG) 245,266. Ancient DNA studies have revealed that the predominant Y chromosome haplogroup 

in HGs from North and Central Europe (8,000 ya) was I-M170 267–269, which has been proposed to 
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originate in the Paleolithic and expand after the LGM 262. Likewise, the most common mtDNA 

haplogroup in the Upper Paleolithic (50,000-11,500 ya) and Mesolithic (11,500-5,000 ya) HGs from 

Central, East, North and Southern Europe was U and its derived subhaplogroups 267,270–274 (Figure 

13 A).  

The genomic data (mtDNA and autosomal DNA) recovered from European Mesolithic individuals 

confirms a genetic discontinuity between Mesolithic and early farming individuals 265,267,273,275,276, 

and suggest that the population structure of pre-agricultural Europe was more complex than 

previously thought 266. Furthermore, ancient DNA analysis has suggested that modern-day 

Europeans derive from at least three highly differentiated populations: west european HGs, who 

contributed ancestry to all Europeans but not to near easterners; ancient north eurasians, which 

are related to Upper Paleolithic siberians 276; and early european farmers, of Near Eastern origin 

but who also possessed West European HG related ancestry 267. 

The Neolithic transition emerged in the Near East around 12,000 years ago and is described as one 

of the most fundamental cultural changes in human history 277,278, which involved the transition 

from foraging to agriculture and animal domestication with a more sedentary way of life 278,279. It 

reached Southeastern Europe around 7,000 years ago, expanding to the rest of the continent at 

later times. The available data from Central, South and Eastern European early farmers (7,000-

5,000 ya) suggest that the predominant Y chromosome haplogroup was G2a-P15 (Table 5), which 

is rare in modern Europeans 280–284, followed by the I sublineage I2-PF3835 269,283,285,286. Other 

haplogroups also observed in early farming sites are F-M89, and E1b-M35 280,281,283,284. Conversely, 

the most common mtDNA haplogroups from Central and Southwest European farmers in the early 

Neolithic period (7,500-5,000 ya) were N1a, T2, K, J, HV, V, W, and X, while in the late Neolithic 

higher frequencies of U were observed 266,267,272,280,281,284,287–292 (Figure 13 A).  

The most prevailing current European paternal lineages, R1a and R1b, have not been reported in 

the fossil record until the late Neolithic (4,000-3,000 ya), in remains associated to the cultures Bell 

Beaker in Western Europe 288 and Corded Ware in Eastern Europe 264, which coexisted for more 

than 300 years and overlapped in Central Europe until they were replaced by the Unetice culture 

in the Bronze Age (Figure 13 D). Likewise, the Bell Beakers show higher affinity with modern South 

Europeans, while the Corded Ware individuals show greater similarities with modern Eastern 

Europeans 266. Both cultures have been associated with migration processes during the late 

Neolithic 289. The succeeding historical period, the Bronze Age, started around 4,300 years ago and 

is associated with changes in burial practices, the spread of horse riding, and developments in 

weaponry 293,294. 
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1.4.3 The controversy of the origin of R1b-M269 

The origin of the major haplogroup in modern West European males has been the subject of 

heated controversy due to the differing estimated times to the most recent common ancestor 

(TMRCA) obtained by different authors, which placed its origin either in the Paleolithic or the 

Neolithic. On the one hand, some authors obtained older TMRCAs for M269, placing its origin in 

the Paleolithic, after the LGM, and assuming a postglacial expansion from the Franco-Cantabrian 

refuge, which would explain the current pattern of frequencies 247,252,294,295. These authors based 

their theories not only in Y chromosome data, but also in mtDNA haplogroup information 296, 

particularly H lineage, which shares a similar pattern of frequencies as R haplogroup. Another 

study supported the postglacial expansion of M269, but suggests that this haplogroup could have 

had a parallel expansion from a refuge located in Anatolia (Eastern Europe) towards Southeast 

Europe, based on the Y-STR variance within M269 297. 

On the other hand, Balaresque and colleagues 257, based on the higher diversity of Y-STR 

haplotypes observed in Eastern European M269 males in contrast with the frequency cline of this 

haplogroup, estimated the origin of the lineage around 6,000 years ago in Eastern Europe, during 

the Neolithic. These authors applied a germinal mutation rate instead of an evolutionary one for 

calculating the TMRCA 257. However, this proposal was strongly challenged by Busby and 

colleagues 259, who recalculated the diversity of the Y-STR haplotypes within M269 in a larger and 

geographically broader sample, and observed a homogeneous Y-STR variation in the whole group 

of European samples. A posterior study that analyzed some M269 subhaplogroups in a larger 

sample of Europe obtained coalescence times compatible with Balaresque’s proposal, suggesting 

a spread of M269 also in the Neolithic 258. Moreover, they linked the spread of M269 with the 

Linearbandkeramik culture, which spread throughout Northern Europe around 7,500 years ago, 

from Hungary to France. Finally, another theory suggested that M269 arrived to the Iberian 

Peninsula during the Neolithic and linked the appearance and subsequent dissemination of the 

sublineages S116 and M529 with the bell Beaker expansion northwards 298. 

The controversy cannot be more interesting, as it has generated a cordial and productive 

discussion to unravel the evolutionary history of M269. The analysis of ancient DNA from both 

Paleolithic and Neolithic remains, the better characterization of this haplogroups in more areas of 

Europe, as well as the availability of more whole sequences of the Y chromosome that will allow 

to make more robust date estimations, may definitely reveal the complete history of the West 

European major lineage.  
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1.4.4 Molecular dating of paternal lineages 

The most recent common ancestor (MRCA) is the most recent individual from which all the 

individuals are directly descended. The MRCA can sometimes be determined by constructing a 

pedigree but, in general, it is impossible to identify the exact MRCA in a large set of samples. What 

can be done is to estimate the time at which the MRCA lived, that is, the time to the most recent 

common ancestor (TMRCA), by using genetic data. A rooted phylogeny can provide a relative 

chronology for genetic changes. Mutations that appear closer to the tips of a phylogenetic tree 

must have occurred after those that are closer to the root within the same clade. In order to 

provide reliable estimates, it is necessary to construct a chronological record, that is, to provide a 

context to the genetic data by placing the timing of a change in a wider context, maybe related to 

an archaeological culture or a paleoclimatological event 299. 

The chronological record can be constructed by establishing molecular clocks, which are processes 

of variation that change predictable with time. This process can be mutation, recombination or 

genetic drift. Apart from that, it is also necessary to calibrate the molecular clock, that is, to know 

the rate of change. And the way to do that is by calculating the mutation rate 300. The non-

recombining portions of the genome, that is, the Y chromosome and mtDNA, contain haplotypes 

that can be related by a single most parsimonious phylogeny and allow to date all the nodes of a 

phylogeny 299.  

1.4.4.1 TMRCA calculating methods 

Several methods exist to calculate the TMRCA of a set of chromosomes that share a common 

mutation at a unique marker. These methods can be classified into those that involve a population 

model and those that do not need that model 301. This last class uses summary statistics of intra-

allelic diversity in order to date an allele, which increase linearly with time. For non-recombining 

haplotypes, mutation drives diversification and, consequently, it represents the molecular clock 
299. Those summary statistics are Rho (ρ) 302 and the average square distance (ASD) 303,304. Rho 

needs to construct a phylogeny while ASD does not need to. The main limitation of these methods 

is that it is difficult to get a true estimate of their 95% confidence limits, although they can provide 

unbiased point estimates. The source of error is usually the uncertainty in the parameters and/or 

in the demographic history of a population 299.  

On the other hand, model-based TMRCA estimation methods are based on the “coalescent 

theory” 305,306 and are more computationally intense. They are also called ‘Bayesian approach’ 

methods. Their main advantage is that they use all the information present in the genetic data, 
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suggesting the most likely phylogenetic tree and its age, and a wide range of parameters can also 

be estimated. However, the accuracy of the estimates is prone to bias resulting from choosing the 

appropriate demographic model 299,300. Three popular softwares that have implemented these 

methods are BATWING 307, Genetree 308 and BEAST 309, among others. 

1.4.4.2 Mutation rates 

Two types of markers can be used to calculate the TMRCA of Y chromosome haplogroups: the 

rapidly mutating Y-STRs, and the slowly mutating Y-SNPs 300. The calibration of the Y chromosome 

mutation rates can be performed using three approaches 299,300:  

 

Figure 14. Three approaches to estimate the mutation rate on the Y-chromosome. A: Genealogical approach. Mutations 

separating members of the pedigree are counted and divided by the number of generations. B: Calibration approach. 

The average number of mutations from the MRCA to the modern samples divided by the TMRCA, which is assumed to 

coincide with a population event of known date. C: Ancient DNA approach. The older the ancient sample is, the less 

time it has had to accumulate mutations. Thus, the number of “missed” mutations is proportional to the (radiocarbon) 

age of the sample. Extracted from 300. 

• I) Genealogical approach, based on pedigrees, counting mutations along the genealogical 

line and dividing by the number of generations or years. This results in a genealogical 

mutation rate (GMR) (Figure 14 A). 

• II) Calibration approach, where the average number of mutations from the MRCA to the 

modern samples is divided by the TMRCA, which it is assumed to coincide with a historical 

event of known time (Figure 14 B). It is also known as the evolutionary mutation rate (EMR) 

• III) Ancient DNA approach, based on phylogenetic lineages whose evolution has stopped 

long time ago. The older an ancient sample is, the less time it has had for mutations to 

accumulate than present-day samples. The number of ‘missed’ mutations is proportional to 
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the age of the ancient sample. This approach uses real samples from human evolutionary 

history, whose age is often known through radiocarbon dating (Figure 14 C). 

In the last years researchers have estimated the TMRCA of Y chromosome haplogroups using both 

Y-STRs and Y-SNPs, selecting both the EMR or the GMR. Selecting one mutation rate or the other 

to estimate haplogroup age from Y-STRs has been the subject of great controversy 167,310–312. The 

last studies conclude that GMR often provides better estimates for haplogroups that are younger 

than 7,000 years, while the EMR can estimate correctly (or overestimate) haplogroups older than 

15,000 years. However, if available, Y-SNP based ages should be employed as they provide more 

reliable estimations 300. 
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2. Hypothesis and objectives 
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2.1 Hypothesis 

The study of the human Y chromosome due to its haploid character and its male-specificity is a 

powerful tool in forensic analysis and genetic genealogy. In Forensic Genetics, Y chromosome 

testing is widely used particularly in cases where standard autosomal DNA profiling is not 

informative, as well as to exclude male suspects for involvement in a crime, identify the lineage 

and the paternal biogeographic ancestry of male perpetrators, and provide investigative leads for 

finding unknown male perpetrators 95,110. Likewise, in genetic genealogy the Y chromosome is 

vastly used for kinship analysis, evolutionary studies, familiar searching, and surname and 

demography studies among others 159,160. The markers of choice for these types of analysis are the 

well-known Y chromosome short tandem repeats (Y-STRs) and single nucleotide polymorphisms 

(Y-SNPs). 

Up to now, the study of Y-SNPs has enabled to know that particular paternal lineages are restricted 

to specific geographic areas at continental and regional levels, and the analysis of these lineages 

is highly useful to reconstruct the evolutionary history of the human species 161. These Y-SNPs are 

also of great interest in Forensic Genetics, as they allow to link a concrete biogeographical ancestry 

with a vestige.  

The current genetic makeup of Europe is the result of many population migrations and 

settlements influenced by climate, cultural progress, and historical conquest of territory among 

other causes 245. The most common paternal lineage in Europe is R1b-M269, which is shared by 

40-90% of the males in Central and Western Europe and follows a cline of increasing frequencies 

from East to West that peaks in the British Isles and Northern Iberia 257,258. Its origin has been the 

subject of heated controversy due to the discrepancies existing in the estimated times to the most 

recent common ancestor (TMRCA), which place the advent of this haplogroup in the Franco-

Cantabrian refuge during the Paleolithic 247,294,295, or more recently during the Neolithic in Eastern 

Europe 257,258. 

This controversy has made clear the requirement of a more precise understanding of the structure 

and distribution of haplogroup M269, of forensic and population interest, with more 

comprehensive sampling schemes including more information regarding some areas of Southwest 

Europe like the Atlantic coast and Iberia.  

The first hypothesis of the present thesis work is based on the fact that a better understanding of 

the structure of M269 through its dissection in its subhaplogroups, would allow to obtain more 
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reliable age estimations and adjust or even rewrite the theories of the European peopling, clearing 

the controversy regarding its origin. 

In addition to that, in forensic and population genetics the use of multiplex tools for genotyping 

markers of forensic interest like STRs and SNPs has been well established. The use of these panels 

allows the simultaneous genotyping of several markers in a unique reaction (or a reduced number 

of them), and are a time saving and cost-effective solution of easy implementation in any 

laboratory without the requiring of additional equipment. Currently, there are several commercial 

Y-STR panels available, which include STR markers that exhibit high to low-range mutation rates 

and are applicable for identification and kinship testing. However, due to the nature of the 

markers included in these panels there may be limitations for their application in particular cases, 

like exclusion cases with minimal discrepancies or evolutionary studies. Similarly, several Y-SNPs 

panels are available in the literature that include markers related to the most common Y 

chromosome haplogroups or some concrete sub-branches. These multiplex tools are based on the 

minisequencing technique, with capillary electrophoresis as its detection system. Although in the 

last years they have gained popularity in Forensic Genetics due to their application for inferring 

biogeographical paternal ancestry, there exists limitations in their power of population 

discrimination, the number of multiplex reactions necessary, and DNA sample consumption.  

In view of the above mentioned, the second hypothesis of the present work is centered around 

the demand to develop more efficient multiplex STR and SNP panels of forensic application. It is 

probable that new panels used in conjunction with the current ones will allow, on the one hand, 

to resolve those particular cases that current Y-STR panels are not able to respond to and, in the 

other hand, to obtain higher haplogroup resolution in Y-SNP panels that will enable to improve 

male lineage discrimination in concrete branches.  
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2.2 Objectives 

Main objective 

The main objective of this doctoral thesis work is to reconstruct the most probable evolutionary 

scenario of the main European paternal lineage R1b-M269 in the Iberian Peninsula and Southwest 

Europe through the dissection in its subhaplogroups by the analysis of Y chromosome SNPs (Y-

SNPs) and innovative statistics. This will allow us to carefully characterize the paternal ancestry 

landscape of the Iberian Peninsula and infer the role of this area in the European evolutionary 

history, which will explain how the vast majority of the Southwest European gene pool is 

distributed the current way. Furthermore, the genetic data generated in this study will be of great 

interest in Forensic Genetics for the detection of Iberian and/or Southwest European paternal 

biogeographical ancestry, as it will provide novel and more detailed information of the distribution 

of lineages below R1b-M269, improving the resolution at European regional level.  

Specific objectives: 

1. To analyze R1b-M269 paternal lineage and its current sublineages in populations of 

Atlantic Europe and the Iberian Peninsula, which will allow to define in detail the 

distribution of M269 in Southwest Europe and to obtain new clues about its evolutionary 

history. 

2. To characterize the structure and spatial distribution of the Iberian near-specific paternal 

lineage R1b-DF27 in Southwest European populations through the dissection in its 

sublineages, with the aim to estimate its time of origin, as well as to model its expansion 

in the phylogenetic context and the related demographic events.  

3. To design and optimize a new minisequencing method that allows the simultaneous 

analysis of 15 Y-SNPs for the fine subtyping of the Iberian paternal lineage R1b-DF27, with 

applicability in both forensic and population analysis. 

4. To design, optimize and validate a novel panel of six Slowly Mutating Y-STRs, which can 

be used in conjunction with the existing multiplex commercial kits for forensic casework, 

particularly in complex kinship cases and in optimizing the prediction of paternal ancestry 

based on current Y-STR panels with medium-high mutation rates. 
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3. Materials and methods 
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3.1 Human DNA samples 

3.1.1 Population samples 

In the present doctoral thesis work several populations have been studied (Table 8). All the 

samples were obtained from volunteer male donors following the ethical principles of the 2000 

Helsinki Declaration of the World Medical Association. For each study, the corresponding 

favorable ethical approvals were obtained. 

Table 8. Summary of the population samples analyzed in the present doctoral thesis. N= number of individuals; BNADN= 

Banco Nacional de ADN Carlos III – Spanish national DNA bank (BNADN Ref. 12/0031); The samples from UPV/EHU 

Biobancos del Instituto de Salud Carlos III (Sección Colecciones) ref. C.0000214 were collected by BIOMICs Research 

Group once favorable ethical reports were obtained (Faculty of Pharmacy UPV/EHU, September 2008 CEISH/119/2012). 

Study  Population  Sample Size Provided by 
Study Number 1 
N= 1560 

Alicante 
 
Andalucía 
Asturias 
Barcelona 
Basque Country 
 
Cantabria 
Galicia 
Madrid 
 
Portugal (Porto) 
 
 
Brittany (Brest) 
 
Ireland 
 
 
Denmark 

N= 116 
 
N= 100 
N= 63 
N= 100 
N= 341 
 
N= 96 
N= 70 
N= 99 
 
N= 110 
 
 
N= 145 
 
N= 146 
 
 
N= 174 

Miguel Hernández University – UMH 
Pathology and Surgery Dept. 
BNADN 
BNADN 
BNADN 
UPV/EHU Biobancos del Instituto de Salud 
Carlos III (Sección Colecciones) ref. C.0000214 
University of Cantabria – UC 
BNADN 
BNADN 
 
National Institute of Legal Medicine and 
Forensic Sciences of Porto 
 
University of Bretagne Occidentale – UBO 
 
Trinity Biomedical Sciences Institute – 
Academic Unit of Neurology 
 
University of Copenhagen – Forensic 
Medicine Dept. 

Study Number 2 
N= 591 

Aragón 
 
Asturias 
Basque Country 
 
Cantabria 

N= 92 
 
N= 63 
N= 340 
 
N= 96 

University of Zaragoza – Forensic Medicine 
Dept. 
BNADN 
UPV/EHU Biobancos del Instituto de Salud 
Carlos III (Sección Colecciones) ref. C.0000214 
University of Cantabria – UC  

Study Number 3 
N= 2990 
 
 
 
 
 
 
 
 
 
 
 

Alicante 
 
Andalucía 
Aragón 
 
Asturias 
Barcelona 
 
Basque Country 
 
Cantabria 
Castellón 
 

N= 142 
 
N= 100 
N= 92 
 
N= 63 
N= 571 
 
N= 340 
 
N= 96 
N= 49 
 

Miguel Hernández University – UMH 
Pathology and Surgery Dept. 
BNADN 
University of Zaragoza – Forensic Medicine 
Dept. 
BNADN  
BNADN; University Pompeu Fabra – Institute 
of Evolutionary Biology 
UPV/EHU Biobancos del Instituto de Salud 
Carlos III (Sección Colecciones) ref. C.0000214 
University of Cantabria – UC 
University Pompeu Fabra – Institute of 
Evolutionary Biology 
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Study  Population  Sample Size Provided by 
Study Number 3 
N= 2990 

Galicia  
Girona 
 
Lleida 
 
Madrid 
Mallorca 
 
Pyrenees 
 
Tarragona 
 
Valencia 
 
 
Alsace 
 
Auvergne 
 
Brittany (Brest) 
Île-de-France 
 
Midi-Pyrénées 
 
Nord-Pas-de-Calais 
 
Provence – Alpes Côte d’Azur 
 
 
Ireland  
 
 
Portugal (Porto) 

N= 70 
N= 131 
 
N= 104 
 
N= 99 
N= 48 
 
N= 46 
 
N= 120 
 
N= 79 
 
 
N= 80 
 
N= 89 
 
N= 145 
N= 91 
 
N= 67 
 
N= 68 
 
N= 45 
 
 
N= 146 
 
 
N= 109 

BNADN 
University Pompeu Fabra – Institute of 
Evolutionary Biology 
University Pompeu Fabra – Institute of 
Evolutionary Biology 
BNADN 
University Pompeu Fabra – Institute of 
Evolutionary Biology 
University Pompeu Fabra – Institute of 
Evolutionary Biology 
University Pompeu Fabra – Institute of 
Evolutionary Biology 
University Pompeu Fabra – Institute of 
Evolutionary Biology 
 
University of Santiago de Compostela – 
Forensic Science Institute 
University of Santiago de Compostela – 
Forensic Science Institute 
University of Bretagne Occidentale – UBO 
University of Santiago de Compostela – 
Forensic Science Institute 
University of Santiago de Compostela – 
Forensic Sciences Institute 
University of Santiago de Compostela – 
Forensic Sciences Institute 
University of Santiago de Compostela – 
Forensic Sciences Institute 
 
Trinity Biomedical Sciences Institute – 
Academic Unit of Neurology 
 
National Institute of Legal Medicine and 
Forensic Sciences of Porto 

Study Number 4 
N= 24 

Basque Country 
 
Barcelona  
 
Brittany (Brest) 

N= 21 
 
N=2 
 
N= 1 

UPV/EHU Biobancos del Instituto de Salud 
Carlos III (Sección Colecciones) ref. C.0000214 
BNADN 
 
University of Bretagne Occidentale – UBO 

Study Number 5 
N= 628 

Europeans from Spain 
 
 
 
Asians from Thailand 
 
Africans from Malawi 
 
Native Americans from 
Guatemala 
 
Hispanics from Colombia 
 
Hispanics from Nicaragua 

N= 319 
 
 
 
N= 102 
 
N= 31 
 
N= 50 
 
 
N= 60 
 
N= 66 

UPV/EHU Biobancos del Instituto de Salud 
Carlos III (Sección Colecciones) ref. 
C.0000214, BNADN 
 
Colorado College – Molecular Biology Dept. 
 
University of Santiago de Compostela – USC 
 
UPV/EHU Biobancos del Instituto de Salud 
Carlos III (Sección Colecciones) ref. C.0000214 
 
University of Antioquia 
 
University of Zaragoza – Forensic Medicine 
Dept. 
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3.1.2 Control samples 

Human control DNA 2800M (Promega® Corporation, Madison, WI, USA) was used to set up PCR 

amplification conditions (Studies Number 4 and 5) and to conduct sensitivity and stability studies 

(Study Number 5). 

3.2 DNA extraction 

Human DNA from buccal swabs of the populations of Brittany and Alicante (Study Number 1) was 

isolated by organic extraction. The population of Aragon (Study Number 2) was extracted from 

blood stains in FTA papers with Chelex-100® chelating resin suspension (Sigma-Aldrich 

Corporation, St. Louis, MO, USA). The remaining population DNA samples had already been 

previously extracted. 

The applied protocols for each of the above-mentioned methods are described below:  

1. Organic extraction 

• In a laminar flow cabinet, cut the swab tip or half of the swab tip and put it into a 

centrifuge tube. 

• Add 500 µl of lysis buffer (50 µl NaCl 1 M, 50 µl EDTA 100 mM, 50 µl Tris 100 mM, 100 

µl SDS 10%, 20 µl DTT 1 M, 205 µl Milli-Q water). 

• Add 25 µl of Proteinase K (20 mg/ml) and mix gently. 

• Incubate for 1 hour at 64 °C with shaking (750 rpm). 

• Mix for 5-10 seconds using a vortex mixer and then centrifuge.  

• In order to recover the amount of lysis product retained in the swab we used the 

double-tube method. The double-tube was constructed as follows: 

o Prepare 0.5 ml centrifuge tubes with a hole in their base and put them opened 

inside a 1.5 ml centrifuge tube. 

•  Transfer with great caution the swabs to the double-tube, close the lid and centrifuge 

for 5 minutes at 13,000 rpm. 

• Discard the 0.5 µl centrifuge tube and transfer the recovered lysis product to the initial 

centrifuge tube. 

• In a fume cabinet, add 500 µl of phenol: chloroform: isoamyl alcohol (25:24:1) to each 

tube and shake by hand thoroughly for 5-10 minutes. 

• Centrifuge for 10 minutes at 13,000 g.  

• Remove carefully the upper aqueous phase and transfer it to a new tube. 
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• Add one volume of phenol: chloroform: isoamyl alcohol (25:24:1), similar to the one 

recovered previously, and shake by hand thoroughly for 5-10 minutes. 

• Centrifuge for 10 minutes at 13,000 g.  

• Remove carefully the upper aqueous phase and transfer it to a new tube. 

• Add the following reagents in the listed order to the recovered aqueous phase and turn 

over the tubes 30-50 times: 

o 1/10 volumes of AcNa 2 M 

o 1 µl of glycogen (20 mg/ml) 

o 2 volumes of absolute ethanol at -20 °C 

• Incubate the samples at -20 °C for 60-120 minutes to precipitate the DNA from the 

sample.  

• Centrifuge for 20 minutes at 13,000 g. 

• Carefully remove the supernatant without disturbing the DNA pellet. 

• Add 1 ml of ethanol 70% and turn over the tube several times. 

• Centrifuge for 5 minutes at 13,000 rpm.  

• Discard the supernatant without disturbing the DNA pellet. 

• Remove the remaining ethanol in the DNA concentrator (about 15-20 minutes) at 45 

°C. 

• Resuspend the DNA pellet in 30 µl of sterile Milli-Q water. 

• Mix in a vortex for 10-20 seconds and centrifuge 

• Incubate for 10 minutes at 65 °C and 800 rpm in a thermomixer.  

2. Chelex-100® chelating resin suspension 

• Incubate the buccal swabs or FTA paper in 1 ml of sterile Milli-Q water at room 

temperature for 30 minutes, with shaking every 5 minutes. 

• Discard the swab. 

• Centrifuge for 1 minute at 10,000-15,000 g. 

• Discard the supernatant without disturbing the pellet, except for around 50 µl. 

• Resuspend the pellet in the remaining volume using the vortex gently.  

• Add 150 µl of Chelex-100® resin at 5%. 

• Incubate at 56 °C for 15-30 minutes. 

• Mix for 5-10 seconds using a vortex. 

• Incubate for 8 minutes at 100 °C. 

• Mix for 5-10 seconds using a vortex. 

• Centrifuge for 2-3 minutes at 10,000-15,000 g. 
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• Transfer the supernatant containing the DNA to another tube, with care of not taking 

any of the resin. 

3.3 DNA quantification 

DNA was quantified by using two methods: 1) Scientific NanoDropTM 1000 Spectrophotometer 

(Thermofisher Scientific, Wilmington, DE, USA), and 2) Quanti-iT PicogGreenTM dsDNA Assay Kit 

(Thermofisher Scientific, Wilmington, DE, USA). After that, the DNA was diluted in Milli-Q water 

to a 1-3 ng/µl concentration. 

3.4 Y chromosome phylogeny 

The nomenclature of the Y-SNPs analyzed in the present doctoral thesis work follows the minimal 

reference phylogeny for the human Y chromosome 171, supplemented when necessary with the 

more detailed tree maintained by the International Society of Genetic Genealogy (ISOGG; 

https://isogg.org/tree/index.html; v.12.53, February 2017). The analyzed Y-SNPs correspond to 

the diagnostic positions that determine the corresponding haplogroups (Figure 15). 

 

Figure 15. Simplified phylogenetic tree of the R1b-M269 haplogroup. 
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3.5 DNA amplification 

The general workflow followed for the analysis of Y-SNPs and Y-STRs is as the one described in 

Figure 16. Part of the samples included in Study Number 3 were analyzed in the Institut de Biologia 

Evolutiva from the University Pompeu Fabra (CSIC-UPF) by an Open Array panel as described in 

Solé-Morata and colleagues 240. 

 

Figure 16. A schematic representation of the general workflow followed for the analysis of Y-SNP and Y-STRs. CE: 

capillary electroforesis. 

3.5.1 Primer design and optimization 

PCR amplification primers were designed with the software PerlPrimer v.1.1.21 313 or manually. 

The specificity of the primers and their non-homology with the X-chromosome and other genome 

regions were confirmed with Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

Potential unfavorable interactions between primers were checked with the web-based version of 

AutoDimer 314. 

The optimal annealing temperature for each primer was assessed by testing the performance of 

the primers in temperatures between 55-62 °C.   



 59 

3.5.2 PCR amplification 

Conventional PCR amplification was performed for the analysis of the Y-SNPs M153, DF17 and 

L617, as well as for confirming by Sanger sequencing the corresponding genotypes of each HRM 

cluster. The reactions were carried out with 9.05 µl Milli-Q water, 0.6 µl of dNTPs (Bioline 

Reagents, London, UK), 0.45 µl of MgCl2 50 mM (Bioline Reagents, London, UK), 1.5 µl of buffer 

(Bioline Reagents, London, UK), 0.45 µl of each primer (10 µM), 0.3 µl of bovine serum albumin 

(Roche, Basilea, Switzerland), 0.2 µl of BIOTAQTM DNA polymerase 5 U/µl (Bioline Reagents, 

London, UK) and 2 ng of DNA in a final volume of 15 µl. 

The amplifications were carried out on the C1000TM Thermal Cycler (Bio-Rad, Hercules, CA, USA) 

under the conditions detailed in Study Number 1, which consisted in: pre-incubation at 98 °C 5 

min; 35 cycles at 98 °C 30 sec, 30 sec at the corresponding annealing temperature (see Studies 

Number 1 and 2); 30 sec at 72 °C, and a final incubation at 72 °C for 10 min. 

For the analysis of conventional Y-STRs (see Study Number 1) the kit AmpFLSTR Yfiler Amplification 

kit (Thermofisher Scientific, Wilmington, DE, USA) was employed following the recommendations 

of the manufacturer. 

The site-directed mutagenesis conducted in Study Number 4 was carried out with 8.9 μl of Milli-Q 

water, 0.6 μl dNTPs 10 mM (Bioline Reagents, London, UK), 0.6 μl MgCl2 50 mM (Bioline Reagents, 

London, UK), 1.5 μl buffer 10x (Bioline Reagents, London, UK), 0.3 μl bovine serum albumin (10x) 

(Roche, Basilea, Switzerland), 0.45 μl of each primer (Forward an Reverse) at 10 μM, 0.2 μl of 

BIOTAQ™ DNA polymerase 5 U/μl (Bioline Reagents, London, UK) and 2 ng of DNA. 

3.5.3 High Resolution Melting (HRM) 

All Y-SNPs were analyzed by HRM unless otherwise specified. The reaction contained 2.5 µl of 

SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA, USA), 0.5 µl of each primer at 1 μM and 1 ng 

of DNA in a final volume of 5 µl, and was carried out in a C1000TM Thermal Cycler (Bio-Rad, 

Hercules, CA, USA) equipped with a CFX96TM Real-Time PCR Detection System (Bio-Rad, Hercules, 

CA, USA). The conditions for amplification and melting were the following: 2 min at 98 °C; 35 cycles 

at 98 °C for 30 sec, 30 sec at the corresponding annealing temperature (see Studies Number 1 and 

2); 30 sec at 95 °C, 2 min at 60°C, and finally the melting cycle from 65 °C to 95 °C with an increase 

of 0.2 °C/sec, for detecting the different allelic variants. 

Data interpretation was carried out using the software Precision Melt Analysis v.1.2 (Bio-Rad, 

Hercules, CA, USA). Only high-quality amplification and melting curves with a cluster assignment 
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over 95% of confidence were considered. Positive and negative controls for each haplogroup, 

confirmed by Sanger sequencing, were used for performing the assignment of the corresponding 

allelic variants of every cluster. 

3.5.4 TaqManTM assay 

In Study Number 1 the Y-SNP M269 was analyzed using a TaqManTM predesigned assay 

(Thermofisher Scientific, Wilmington, DE, USA), following the manufacturer’s guidelines. Allelic 

discrimination analysis was performed with a 7000 Real-Time PCR System (Applied Biosystems, 

Foster City, CA, USA). 

3.6 Agarose gel electrophoresis 

Amplification success of DNA samples and the performance of the PCR reaction was assessed by 

agarose gel electrophoresis. PCR products were migrated in 1.5% agarose gels in TBE 1x solution 

with GelRed (Biotium, Fremont, CA, USA) at 100 V for 30 minutes and visualized with UV light in 

an UVIdoc gel documentation system (Uvitec, Cambridge, UK). 

3.7 DNA sequencing 

3.7.1 PCR product purification 

Nucleotide and primer excess from the PCR amplification were cleaned enzymatically by adding 

0.28 U of exonuclease I (exo) (Takara Bio, Kusatsu, Japan) and 0.72 U of shrimp alkaline 

phosphatase (SAP) (Takara Bio, Kusatsu, Japan) to 2 µl of PCR product and incubated for 45 min 

at 37 °C followed by 15 min at 80 °C. 

3.7.2 Sequencing reaction 

The sequencing reactions were carried out using BigDye Terminator v3.1 Cycle Sequencing Kit 

(Thermofisher Scientific, Wilmington, DE, USA) under the following conditions: 5.5 µl of Milli-Q 

water, 0.7 µl of BDT, 0.25 µl of the corresponding primer at 10 µM and 3.5 µl of PCR product in a 

final volume of 10 µl. The sequencing reaction consisted on 1 min at 96 °C, 25 cycles at 96 °C for 

10 sec, 5 sec at 55 °C and 1.15 min at 60 °C in a C1000TM Thermal Cycler (Bio-Rad, Hercules, CA, 

USA). 
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3.7.3 Sequencing product purification 

In order to eliminate the unincorporated BigDye terminators and salts the purification was 

performed using BigDye XterminatorTM Purification Kit (Thermofisher Scientific, Wilmington, DE, 

USA) in the following conditions: 22.5 µl of SAM solution, 5 µl of Xterminator solution and 10 µl of 

sequencing product. The samples were mixed for 45 min at 2,000 rpm in darkness and then 

centrifuged for 4 min at 2,000 rpm. 

3.7.4 Capillary electrophoresis and data analysis 

Sequencing products were analyzed by mixing 5 µl of Hi-DiTM Formamide (Thermofisher Scientific, 

Wilmington, DE, USA) and 5 µl of purified product. Capillary electrophoresis was conducted on an 

ABI PRISM 3130 genetic Analyzer (Thermofisher Scientific, Wilmington, DE, USA) with POP-7® 

polymer and a capillary of 36 cm. The results were analyzed using the software Sequencing 

Analysis v.5.2 (Thermofisher Scientific, Wilmington, DE, USA) and ChromasPro v.1.5 (Technelysium 

Pty Ltd, Brisbane, Australia). 

3.8 DNA pyrosequencing 

The Y-SNP L617 was analyzed by pyrosequencing in Study Number 2. PCR amplification was carried 

out using Qiagen HotStart Master Mix Kit (Qiagen, Hilden, Germany), 7.5 µM of biotinylated 

primer, 15 µM of nonbiotinylated primer and 1 ng of DNA. Pyrosequencing was carried out using 

the SQA kit (Biotage, Uppsala, Sweden) on a PSQ 96MA Pyrosequencer (Biotage, Uppsala, 

Sweden). Data interpretation was performed using the PyroMark Q96 MD Software (Qiagen, 

Hilden, Germany). 

The applied protocol for the above-mentioned method is described below: 

• Turn-on the Pyromark Q96MD. 

• Turn-on the thermoblock at 80 °C. 

• Fill the cuvettes of the vacuum platform with 100 ml of the buffers in the following order:  

o Cuvette 1: EtOH 70% 

o Cuvette 2: Denaturing solution (NaOH 2 M) 

o Cuvette 3: Pyromark Wash Buffer (Qiagen, Hilden, Germany) 1/10 dilution 

o Cuvette 4: Milli-Q water 

• For the Binding Buffer mix (BBM) for each sample add 40 µl of Binding Buffer, 26 µl of 

Milli-Q water and 2 µl of sepharose. 
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• Add 12 µl of amplified product (diluted to 1/2) to the BBM and mix it for 20 minutes at 

700 rpm in an orbital shaker. 

• For the Annealing Buffer (ABM) for each sample mix, 11.64 µl of Annealing Buffer and 0.36 

µl of primer at 10 mM were mixed and added to a blank plate. 

• The amplicon cleaning was performed in the vacuum workstation (Qiagen, Hilden, 

Germany) in the following way: 

o With the vacuum switch on, lower the vacuum tool into the wells of the PCR plate for 

15 sec to capture the beads with the amplification product. 

o With vacuum on, flush the tool with 70% EtOH (cuvette 1) for 5 sec. 

o With vacuum on, flush the tool with Denaturation Solution (cuvette 2) for 5 sec. 

o With vacuum on, flush the tool with Wash Buffer (cuvette 3) for 10 sec. 

o Align the vacuum tool with the blank plate that contains the ABM and switch the 

vacuum off.  

o Lower the vacuum tool into the wells and gently shake from side to side to release the 

beads. 

o Put the plate with the ABM and the clean amplicon in the thermoblock at 80 °C for 2 

min. 

o Remove the plate and let it cool down at room temperature for 4-5 min. 

o With vacuum on, clean the tool with Milli-Q water (cuvette 4) and flush the filter 

probes. 

• Prepare the reagents of the pirosequencing reaction by adding the corresponding 

quantities of enzyme, substratum and nucleotides in the Holder Box, with care of no 

leaving any air bubbles. 

• Prior to the startup of the pyrosequencer a dispensation test was made. 

• If the dispensation test is correct, introduce the pyrosequencing plate and start the 

machine. 

3.9 Development of multiplex systems for the analysis of Y-SNPs and Y-STRs 

3.9.1 Marker selection 

3.9.1.1 Study Number 4 

The selected Y-SNPs correspond to the diagnostic positions that determine the main 

subhaplogroups of the lineage R1b-DF27 and some sublineages of R1b-M269 above DF27. The 
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markers were chosen from the updated versions of the Y chromosome phylogenetic tree, as 

detailed in section 3.4.  

3.9.1.2 Study Number 5 

Y-STR markers were selected from the extensive study of Ballantyne and colleagues 151. The main 

criteria for the marker selection were a low mutation rate (~ 10-4 mutations/generation) 151, and 

a gene diversity generally > 0.4 according to the data reported in the literature 126,146,157,158,315–317. 

3.9.2 Primer design and optimization 

Amplification primer design was performed as described in section 3.5.1. For both multiplex 

panels, final optimal concentrations for each primer in the reaction mix were adjusted in line with 

the different electropherogram intensities.  

The miniprimers detailed in Study Number 4 were designed manually, and in order to assure the 

separation of the extension primers during capillary electrophoresis their lengths were adjusted 

by adding tails of neutral sequence on the 5’ end 318. Amplification fragments differed in 5 bp to 

allow a clear electrophoretic separation.  

The site-directed mutagenesis primers for DF19 and L881 in Study Number 4 were designed 

manually by inserting the necessary nucleotide to produce the derived variant in the primer 

sequence 319. The changed nucleotide was placed as close as possible to the 5’ extreme of the 

primer in order to prevent primer-DNA hybridation problems due to the mismatch produced by 

the changed nucleotide. 

The forward primers detailed in Study Number 5 were modified by the addition of a fluorescent 

dye at their 5’ end: 5-FAM (Abs. = 495 nm; Em. = 520 nm), YAKIMA YELLOW (Abs. = 530 nm; Em. 

= 549 nm), ATTO 550 (Abs. = 554 nm; Em. = 576 nm) and ATTO 565 (Abs. = 563 nm; Em. = 596 nm). 

The selected markers were distributed in the multiplex by the expected amplicon length, using a 

four-dye chemistry. The design was designed as an open system, where other markers of interest 

could be easily added along the four-dye layout in order to complement the multiplex if needed. 

3.9.3 Multiplex PCR 

PCR reaction of the Y-SNP 15-plex panel (Study Number 4) consisted of 5 μl of Qiagen Multiplex 

PCR Kit (Qiagen, Hilden, Germany), 1 μl of 10x primer mix, 3 μl of sterile Milli-Q water, and 1 ng of 

DNA in a final volume of 10 μl. Amplification was carried out in a C1000™ Thermal Cycler (Bio-Rad, 

Hercules, CA, USA) under the following conditions: 95 °C for 15 min; 3 cycles at 95 °C for 30 sec, 
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63 °C for 45 sec, and 72 °C for 30 sec; 15 cycles at 95 °C for 30 sec, 63 °C for 45 sec (with decrements 

of 0.2 °C per cycle) and 72 °C for 30 sec, 20 cycles at 95 °C for 30 sec, 60 °C for 45 sec, and 72 °C 

for 30 sec; and a final extension of 7 min at 72 °C.  

The multiplex amplification for the 6-plex Y-STR panel (Study Number 5) consisted of 5 μl of Qiagen 

Multiplex PCR kit (Qiagen, Hilden, Germany), 0.5 μl of primer mix (final concentration of 0.2 μM), 

1 ng of DNA, and Milli-Q water for a final reaction volume of 10 μl. The PCR was performed in a 

GeneAmp 9800 Thermal Cycler (Thermofisher Scientific, Wilmingtong, DE, USA) under the 

following cycling conditions: an initial denaturation at 95 °C for 15 min, followed by 30 cycles of 

94 °C for 30 sec, 65 °C for 90 sec, 72 °C for 90 sec, and a final extension at 72 °C for 10 min. 

Amplification success was assessed as described in section 3.6. From this point on the workflow 

follows as described in Figure 16 for each panel. 

3.9.4 Minisequencing reaction 

The multiplex minisequencing PCR contained 2 μl of SNaPshot™ Multiplex Kit reaction mix 

(Thermofisher Scientific, Wilmington, DE, USA), 0.7 μl of 10x minisequencing primer mix, 3.3 μl of 

sterile Milli-Q water, and 1 μl of purified multiplex PCR product (see section 3.7.1), in a final 

volume of 7 μl. The PCR was carried out in a C1000™ Thermal Cycler (Bio-Rad, Hercules, CA, USA) 

under the following conditions: 25 cycles at 96 °C for 10 sec; 50 °C for 5 sec; and 60 °C for 30 sec.  

3.9.5 Minisequencing purification 

For the elimination of the remaining dideoxinucleotides, the minisequencing products were 

purified adding 0.75 U of SAP (Takara Bio, Kusatsu, Japan) to 2 μl of minisequencing product and 

incubated for 60 min at 37 °C, followed by 15 min at 80 °C. 

3.9.6 Capillary electrophoresis 

The Y-SNP minisequencing products (Study Number 4) were analyzed by mixing 9.75 μl of Hi-DiTM 

Formamide (Thermofisher Scientific, Wilmington, DE, USA), 0.25 μl of GeneScanTM 120LIZ 

(Thermofisher Scientific, Wilmington, DE, USA) and 5 µl of purified product, and then denatured 

at 96 °C for 6 min. 

The Y-STR amplification products (Study Number 5) were analyzed mixing 1 μl of PCR product with 

9 μl of Hi-DiTM Formamide (Thermofisher Scientific, Wilmington, DE, USA) and 0.5 μl of GeneScanTM 

500LIZ (Thermofisher Scientific, Wilmington, DE, USA). 
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For both panels, capillary electrophoresis was carried out as detailed in section 3.7.4. Data 

interpretation was performed with GeneMapper ID v.4.0 software (Thermofisher Scientific, 

Wilmington, DE, USA). 

3.9.7 Reproducibility  

The reproducibility of both multiplex panels (Studies Number 4 and 5) was validated by the 

analysis of negative controls and DNA samples several times, by different researches, on different 

days, and in different thermal cyclers. Afterwards, the mobility of the peaks of the different allelic 

variants in the electropherograms, both Y-SNPs and Y-STRs, was compared. 

3.9.8 Sensitivity and stability assays  

In order to evaluate the robustness of the novel Y-STR panel (Study Number 5) sensibility and 

stability studies were conducted. Sensitivity indicates the ability to obtain reliable results from a 

range of DNA quantities that allows to determine the upper and lower limits of detection of the 

assay 320. To evaluate the minimum quantity of DNA required to obtain reliable results, that is, 

complete profiles, human control DNA 2800M (Promega® Corporation, Madison, WI, USA) was 

analyzed in triplicate in the following amounts of DNA: 10, 1.6, 1, 0.4, 0.2, 0.1, 0.05 and 0.025 ng.  

Stability states the ability to obtain reliable results from DNA recovered from biological samples 

deposited on various substrates and subjected to various environmental and chemical insults 320. 

To evaluate the stability of the panel presented in Study Number 5, 1 ng of human control DNA 

2800M (Promega® Corporation, Madison, WI, USA) was analyzed in duplicate in the presence of 

two common inhibitors in forensic casework: humic acid and haematin (Sigma-Aldrich 

Corporation, St. Louis, MO, USA). The study was performed using the following concentrations of 

inhibitors: 3,000, 2,000, 1,000, 500, 300, 250, 200, 100, 50 and 25 ng/μl. 

3.10 Statistical analyses 

3.10.1 Population genetic parameters 

The absolute and relative Y-SNPs frequencies were estimated by direct counting (Studies Number 

1, 2 and 3). In Study Number 3, individuals with partial genetic information were present. In order 

to estimate the probabilities of each individual with missing genotypes to belong to each possible 

subhaplogroup, information corresponding to full genotypes over R1b, S116 or Z195 was used 

applying the formulas below. 
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Let a be the absolute frequency of haplogroup M269 (xS116) in a sample of n Y chromosomes; 

similarly, let b: S116 (xDF27), c: DF27 (xZ195), d: Z195 (xL176.2, xZ220), e: L176.2 (xM167), f: M167, 

g: Z220 (xZ278), h: Z278 (xM153), and i: M153. Let s=a+b+c+...+i. We have three types of samples 

with partial information: R1b-M269 without further subtyping (let its frequency be j), S116 

(xU152, xM529, xZ195), but not typed for DF27 (call it k), and Z195 (xZ220), not typed for L176.2 

(l). j individuals may belong to any of the a,...,i subhaplogroups with probability a/s,...,i/s; k can be 

DF27 (xZ195) with probability c/(b+c), and Z195 (xZ220, xM167) can be either Z195 (xL176.2, 

xZ220) with probability d/(d+e) or L176.2 (xM167) with probability e/(d+e). Combining these 

probabilities and turning them into estimated relative frequencies (which we denote with a 

circumflex over each letter), we have 
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The frequencies corresponding to Y chromosome haplogroups were represented in contour maps 

using the software SURFER v.12 (Golden Software, Golden, CO, USA) by the krigging method. 

Allele and haplotype frequencies for Y-STRs were calculated by mere counting using the software 

Arlequin v.3.5 321. 
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3.10.2 Forensic parameters 

Genetic diversity (GD), defined as the probability that two randomly chosen haplotypes are 

different in the sample, was calculated using the software Arlequin v.3.5 321. The formula applied 

is described below. 
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where n is the number of gene copies in the sample, k is the number of haplotypes, and pi is the 

sample frequency of the ith haplotype 322.  

The discrimination capacity (DC), that is, the number of different haplotypes observed in a given 

population, was calculated by dividing the number of different haplotypes by the total number of 

individuals in the population.  

3.10.3 Population differentiation  

The pairwise genetic distances FST and RST, and the corresponding significance p values between 

the analyzed populations were calculated with Arlequin v.3.5 321(10,000 permutations). This 

method is based on estimating the proportion of genetic variation found within and between 

populations, since it allows quantitatively comparing the difference between different 

populations. The significant p values were adjusted with the sequential Bonferroni correction (α) 
323 in order to account for potential Type I errors due to the multiple comparisons performed. 

Values below α represent genetic heterogeneity, and higher values represent the absence of 

genetic heterogeneity. The formula applied is described below. 
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where n is the number of populations. 

To obtain a representation of the pairwise genetic distances, 2D- and 3D-nonmetric 

multidimensional scaling (NMDS) analysis were performed using the software PAST v.3.04 324, and 

the x-y-z coordinates were represented using the rgl package (http://cran.r-

project.org/package=rgl) for R software 325. 
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The genetic structure of the different populations was studied by analysis of molecular variance 

(AMOVA) with Arlequin software v.3.5 321 and factorial correspondence analysis (FCA) with 

Genetix v.4.05.2 326. In order to quantify patterns of population structure principal component 

analysis (PCA) was carried out with the software IBM SPSS Statistics v.19 (IBM Corporation, 

Armonk, NY, USA). Additionally, spatial genetic patterns were studied trough spatial PCA (sPCA) 

in Study Number 1, implemented using the algorithm provided in the R software package adegenet 

(http://adegenet.r-forge.r-project.org/) 327,328. This method calculates components based on the 

genetic variance between populations and their spatial autocorrelation. The most informative 

components are those with the absolute highest eigenvalues. For instance, the most positive are 

associated with positive spatial autocorrelation (global structure), and the most negative are 

associated with negative spatial autocorrelation (local structure). A global structure implies that 

each sampling location is genetically closer to its neighbors than randomly chosen locations, as 

occurs with spatial groups, clines or intermediate states. In contrast, a stronger genetic 

differentiation among neighbors than among random pairs of populations characterizes a local 

structure. 

3.10.4 Phylogenetic relationships 

Phylogenetic analysis allows to understand the evolutionary history and the relationships 

between lineages, as well as between different populations. These relationships can be 

ascertained thanks to phylogenetic reconstruction methods, which evaluate the heritable traits 

analyzed. Phylogenetic relationships were calculated through the Median Joining algorithm (MJ 

network) using the software Network v.5.0 329 in Studies Number 1 and 2. This software builds all 

the shortest and simplest phylogenetic trees possible for the analyzed individuals.  

3.10.5 TMRCA estimation 

The time to the most recent common ancestor (TMRCA) of different haplogroups was estimated 

with the algorithms Rho (ρ), implemented within Network software v.5.0 330, a weighted version 

of Rho computed with an ad hoc R script (http://github.com/fcalafell/weighted_rho), and the 

average square distance (ASD) by using the Kilin-Klyosov TMRCA calculator 331. For the calculations 

the following mutation rates were considered:  

• The evolutionary mutation rate (EMR) of 6.9 x 10-4 locus/25 years established by 

Zhivotovsky and colleagues 310 (Study Number 1). 

• A mean germ line mutation rate (GMR) of 1.37 x 10-3 per locus per generation for the Y-

STRs considered in the calculation obtained from the YHRD (https://yhrd.org) 223, and a 
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generation time of 30 years, which translates into a rate of 728 years/mutation (Studies 

Number 2 and 3) 

• A global Y chromosome mutation rate of 0.888 x 10-9 per year 165,332 taking into account 

the 10.36 Mb of the Y chromosome amenable to short read sequencing and SNP detection 
165, which translates into a rate of 108.7 years/mutation (Study Number 3). 

The Rho statistic (ρ) 302,333 is defined as the average number of mutations l along m unique 

haplotypes sampled from n individuals. Each line stems from a defined ancestral node given a 

resolved gene tree. Under the hypothesis that the phylogenetic tree under consideration is 

correct: 

𝜌𝜌 = (𝑛𝑛1𝑙𝑙1 + 𝑛𝑛2𝑙𝑙2 + ⋯+ 𝑛𝑛𝑚𝑚𝑙𝑙𝑚𝑚) 𝑛𝑛⁄  

with variance: 

𝜎𝜎2 = (𝑛𝑛12𝑙𝑙1 + 𝑛𝑛22𝑙𝑙2 + ⋯+ 𝑛𝑛𝑚𝑚2 𝑙𝑙𝑚𝑚)/𝑛𝑛2 

The weighted version of ρ, ρw, leverages on the relatively precise knowledge of the mutation rate 

of each Y-STR. Thus, it considers that mutations at slow mutating STRs take longer to accumulate 

than mutations at faster mutating STRs. It is defined as: 

𝜌𝜌𝑤𝑤 =
1
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where N is the number of chromosomes, k is the number of different haplotypes, ni is the absolute 

frequency of the ith haplotype, S is the number of different STRs, Xji is the allelic state of the ith 

haplotype at the jth STR, Xjm is the median allele at the jth STR, �̅�𝜇 is the average mutation rate and 

μj is the mutation rate of the jth STR. The standard deviation of ρw is given by: 

𝑠𝑠𝑑𝑑(𝜌𝜌𝑤𝑤) =
1
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and age, as in ref. 333, is estimated as: 

𝑇𝑇 = 𝜌𝜌𝑤𝑤 ∙ �̅�𝜇 

where �̅�𝜇 is now expressed in years per mutation. 

The average square distance (ASD) 334,335 is defined as: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑉𝑉𝐴𝐴 + 𝑉𝑉𝐵𝐵 + (𝜇𝜇𝐴𝐴 − 𝜇𝜇𝐵𝐵)2 
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where VA, VB, µA and µB are the variances and means, respectively, of allele size in populations A 

and B. In order to remove the dependence of ASD on population size and to decrease its variance 

the following distance, based on the Stepwise Mutation Model, was introduced 334,335: 

𝐴𝐴𝐴𝐴𝐴𝐴 (𝛿𝛿𝜇𝜇)2 = (𝜇𝜇𝐴𝐴 − 𝜇𝜇𝐵𝐵)2 

3.10.6 Demographic model evaluation 

In order to test alternative demographic models and to estimate their parameters approximate 

Bayesian computing (ABC) was performed in Study Number 3. ABC allows to deal with 

mathematical models where likelihood calculations have failed, and since it is a likelihood-free 

inference, the algorithms sample from the posterior distribution of the parameters by finding 

values that yield simulated data sufficiently resembling the observed data 336. 

One million simulations were run with the software fastsimcoal2 337,338, either with a constant 

population size (drawn from a lognormal distribution between 100 and 100,000), or with an 

exponential growth that started Tstart generations ago. In the growth model, the effective 

population sizes before (Na) and at the end (Nc) of the growth were drawn in the same way of the 

constant model and conditioned to Na < Nc. Na refers to a time Tstart drawn from a uniform 

distribution between 50 and 350 generations. Y-STR mutation rates were taken as fixed given the 

high precision with which they are known, but the value of the geometric parameter for the 

Generalized Stepwise Mutation model was sampled from a uniform distribution with limits (0; 

0.8). To summarize the data, the mean and the standard deviation over loci of four statistics were 

calculated: the number of different haplotypes (K), the haplotype diversity (H), the allelic range, 

and the Garza- Williamson’s index. Posterior probabilities of the models were calculated by means 

of the simple rejection algorithm 339 as well as of the weighted multinomial logistic regression 340, 

evaluating different thresholds for both methods to check the stability of the results as in Vai and 

colleagues 341. For parameter estimation, Euclidian distance was calculated between the simulated 

and observed summary statistics, and retained the 5% of the total simulations corresponding to 

the shortest distances. Posterior probability for each parameter was estimated using a weighted 

local regression 342, after a logtan transformation 343.  
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4. Results 
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4.1 Study Number 1 

‘New clues to the evolutionary history of the main European paternal lineage M269: dissection 

of the Y-SNP S116 in Atlantic Europe and Iberia’ 

The present study corresponds to the attainment of the objective 1: To analyze R1b-M269 

paternal lineage and its current sublineages in populations of Atlantic Europe and the Iberian 

Peninsula, which will allow to define in detail the distribution of M269 in Southwest Europe and to 

obtain new clues about its evolutionary history. 

As mentioned in the following study, the present genetic makeup of Europe is the result of several 

human migrations and settlements influenced primarily by climate, cultural development and 

historical conquests of territory. The origin and expansion of the paternal lineage R1b-M269, the 

most common haplogroup in West Europe, has been the subject of great controversy. Some 

authors placed its origin in the Paleolithic, during the post-glacial expansion from the Franco-

Cantabrian refuge or from Eastern Europe. Other authors, on the other hand, shifted the origin of 

M269 in Eastern Europe from the Paleolithic to the Neolithic due to the younger coalescent times 

obtained by applying germinal mutation rates rather than evolutionary mutation rates. In order 

to address this controversy and to complete the distribution of M269 along Southern Europe and 

the Atlantic coast this study offers the deepest dissection of S116, one of the main derived 

subhaplogroups of M269. 

In this study, a total of 1,560 individuals from the Iberian Peninsula (Galicia, Asturias, Cantabria, 

Basque Country, Barcelona, Alicante, Andalucía, Madrid, Portugal) and Atlantic Europe (Brittany, 

Ireland, Denmark) were genotyped for the Y-SNPs M269, L11, U106, S116, U162, M529, DF27, 

DF19, and L238 by TaqManTM assays or by High Resolution Melting (HRM). Pairwise FST values 

between the populations studied were calculated and Median Joining Networks, spatial principal 

component analysis (sPCA), and maps of haplogroup distribution were also constructed. 

Our results reveal that the M269 derived branch S116 displays frequency peaks and a spatial 

distribution that differs from the one previously proposed, which peaks in the Upper Danube basin 

and Paris. In contrast, our study shows that S116 displays the highest frequencies along the 

Atlantic coastline and the British Isles. Apart from that, the dissection of S116 in its sublineages 

revealed an outstanding frequency of DF27 in the Iberian Peninsula, which is located in a different 

geographic area than the rest of the S116 sublineages and displays a restricted distribution 

pattern. Finally, the frequency distribution of M269 subhaplogroups, the absence of sublineages 

over S116 in the Franco-Cantabrian area, the homogeneity of Y-STR diversity within M269 in 
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Europe, and the origin of new sublineages such as L11 on the migration wave of M269 support an 

origin of M269 in Eastern Europe, with the appearance of its sublineages, like S116, during the 

advance of the lineage through West Europe. 

In sum, the importance of continuing the dissection of M269 lineage in different European 

populations is reflected in the present research, since the discovery and study of new sublineages 

have provided new clues in the distribution and origin of M269. Until the release of this article, 

despite the number of previous studies conducted on this haplogroup, there was a still a need to 

collect more population data of Southwest European populations to properly characterize the 

distribution of the sublineages of M269. 

This study has resulted in an international publication in the journal European Journal of Human 

Genetics under the heading ‘New clues to the evolutionary history of the main European paternal 

lineage M269: dissection of the Y-SNP S116 in Atlantic Europe and Iberia’ in March 2016. Q1, IP: 

4.287. The publication is shown below. 
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Abstract 

The dissection of S116 in more than 1500 individuals from Atlantic Europe and the Iberian 

Peninsula has provided important clues about the controversial evolutionary history of M269. 

First, the results do not point to an origin of M269 in the Franco-Cantabrian refuge, owing to the 

lack of sublineage diversity within M269, which supports the new theories proposing its origin in 

Eastern Europe. Second, S116 shows frequency peaks and spatial distribution that differ from 

those previously proposed, indicating an origin farther west, and it also shows a high frequency in 
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the Atlantic coastline. Third, an outstanding frequency of the DF27 sublineage has been found in 

Iberia, with a restricted distribution pattern inside this peninsula and a frequency maximum in the 

area of the Franco-Cantabrian refuge. This entire panorama indicates an old arrival of M269 into 

Western Europe, because it has generated at least two episodes of expansion in the Franco-

Cantabrian area. This study demonstrates the importance of continuing the dissection of the 

M269 lineage in different European populations because the discovery and study of new 

sublineages can adjust or even completely revise the theories about European peopling, as has 

been the case for the place of origin of M269. 

Introduction 

The current genetic makeup of Europe is the result of many population migrations and 

settlements influenced principally by climate, cultural progress and the historical conquests of 

territory.1,2 The genetic evidence provided by the analysis of the Y chromosome (Ychr), which is a 

valuable tool for the study of the evolution of the paternal lineages because of its uniparental 

mode of inheritance, has revealed that a large majority of the individuals currently in Central and 

Western Europe (40–90%) belong to a single lineage, R-M269.2,3 The lineage M269 has its 

maximum frequency in the Franco-Cantabrian area, and it shows a cline of decreasing frequency 

with distance. This has led to numerous theories about the role of the Franco-Cantabrian region 

in European genetic history.  

To date, the most widely accepted theories have argued that this pattern of frequencies may be 

the result of origin in, and subsequent postglacial expansion from, the Franco-Cantabrian refuge.2–

4 Another theory, based on the variance of Y-STR haplotypes within M269, also supports its 

postglacial expansion but argues that M269 could have had a parallel expansion from a refuge in 

Eastern Europe (Anatolia).5 The new theory proposed by Balaresque et al,6 based on the higher 

diversity of Y-STR haplotypes in Eastern European M269 individuals than in Western European 

ones, concludes that there is a single origin for haplogroup M269 in Eastern Europe. In addition, 

the Balaresque et al6 theory shifts the origin from the glacial period to the Neolithic, because they 

apply germinal mutation rates rather than evolutionary, generating younger coalescence times.  

The arrival of M269 from Eastern Europe proposed by Balaresque et al6 has been strongly refuted 

by Busby et al.7 Busby et al recalculated the diversity of Y-STRs haplotypes within M269 in a larger 

and geographically broader sample, indicating not higher diversity in Eastern Europe but a 

homogeneous background of microsatellite variation in the whole European sample.7  
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The dissection of haplogroup M269 has shown a wide range of European areas possessing 

geographically located subhaplogroup expansions,8,9 which provides useful information for 

reconstructing the phylogeographic history of this lineage. However, the study of these 

sublineages, far from helping to find a consensus about the origin, growth and history of this great 

lineage, has increased the controversy. Myres et al9 analysed M269 and the sublineages M412, 

L11, U106, S116, U152 and M529. The obtained coalescence times and frequency distribution 

patterns led them to conclude that the current distribution of M269 sublineages is owing to allele 

surfing at the periphery of the westwards expansion of M269. Therefore, Myres et al9 proposed 

the origin of M269 in Eastern Europe, similar to Balaresque et al,6 but earlier during the Mesolithic 

period.  

Finally, a different theory, not supported to date, argues that M269 entered the Iberian Peninsula 

in the late Neolithic and that its subhaplogroups S116 and M529 would appear during the 

expansion of the Bell Beakers northwards.10  

This multi-sided debate affects not only European paternal lineages but also maternal lineages. In 

principle, the task of inferring the evolutionary histories of paternal lineages is actually more 

complicated than that of the maternal lineages, because the increased size and complexity of the 

Ychr makes the development of comprehensive and complete time-scaled phylogenetic trees 

more arduous than for mitochondrial DNA (mtDNA). In addition, mtDNA has more information in 

aDNA.  

However, despite this, there is currently a major controversy about the origin and expansion of 

maternal haplogroup H, which shares a similar pattern of frequencies with paternal haplogroup 

R, and for which a similar and contemporaneous history has been suggested3 (Supplementary Box 

1). 

The controversy cannot be more interesting. Efforts to unravel the evolutionary history of the 

most frequent haplogroups in Europe have generated a cordial and productive discussion about 

new calculation methods and new approaches for the study of these haplogroups and sub-

haplogroups.  

Our study goes deeply into the study of the M269 sublineages of the European Atlantic coast and 

the Iberian Peninsula. This territory has a high frequency of the still-unresolved paragroup S116* 

(×U152, ×M529) (data from7,9). Therefore, this study offers the deepest analysis of haplogroup 

S116 made to date in Europe. These new data, as well as their comparison when possible with 

previous Ychr and mtDNA data, resolve important questions and offer novel clues about the 
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evolutionary history of M269, in addition to finding new sublineages with important and restricted 

geographic locations. 

Materials and methods 

A total of 1560 healthy, unrelated males from the Iberian Peninsula (Galicia, Asturias, Cantabria, 

Basque Country, Barcelona, Alicante, Andalucía, Madrid, Portugal) and Atlantic Europe (Brittany 

(Brest), Ireland, Denmark) were studied (Supplementary Table S1). The Y-SNPs M269, L11, U106, 

S116, U152, M529, DF27, DF19 and L238 were analysed by TaqMan assays (Applied Biosystems, 

Carlsbad, CA, USA) or by High Resolution Melting Technology (for further details see 

Supplementary Box 2 and Supplementary Table S2). Individuals from Basque Country were also 

genotyped for a set of 17 Y-STR loci using the AmpFlSTR YfilerTM kit (Applied Biosystems). 

Maps of haplogroup frequency distribution were constructed using the Surfer Golden software v 

10.0.500 (Golden Software, Golden, CO, USA) by the kriging method. The spatial genetic patterns 

were studied through spatial principal component analyses (sPCAs) using the R software package 

adegenet (R Foundation for Statistical Computing, Vienna, Austria; http://adegenet. r-forge.r-

project.org/). Genetic distances (Fst) between populations based on haplogroup frequencies were 

calculated using the Arlequin v 3.1 (University of Bern, Bern, Switzerland) software and plotted in 

Multidimensional Scaling graphs using the PAST software (University of Oslo, Oslo, Norway). The 

phylogenetic relationships of Y-STR haplotypes were estimated by median joining networks using 

NETWORK v 4.5.1.6 (Fluxus Technology Ltd., Kiel, Germany). Higher phylogenetic weight was 

allocated to the loci with lower mutation rate,11,12 lower variance (VL, Kayser et al13) and higher 

linearity (D, Busby et al7; calculated with the actual range published in YHRD, Willuweit et al14; 

Supplementary Box 4). Coalescent times were estimated using the Network software and the 

evolutionary mutation rate 6.9 x 10-4/locus/25 years, established by Zhivotovsky et al15 and 

confirmed by Shi et al16 for the set of YSTRs analysed here. Further details about statistical 

treatment can be found in the Supplementary Box 2. 

Data generated in this study can be accessed in Supplementary Tables S1. The Basque Y-STR–Y-

SNP haplotype data have been uploaded to the public database YHRD under accession numbers 

YA003672-77, YA003718 and YA004063.14 

Results and discussion 

The Y-SNPs M269, L11, U106, S116, U152, M529, L238, DF19 and DF27 were analysed in 1560 

individuals from 12 different populations from the Atlantic Coast and the Iberian Peninsula 

(Supplementary Tables S1). 
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Surprisingly, the inclusion of new populations from the Atlantic Coast and Iberia in this study has 

identified a frequency distribution of haplogroup S116 that differs from the previously proposed 

distribution. Myres et al9 proposed a frequency peak in the Upper Danube Basin and Paris, with 

declining frequency towards Italy, Iberia, southern France and British Isles. By contrast, these new 

data show maximum frequencies in northern Iberia, the western coast of France and the British 

Isles, raising questions about the possible expansion of this lineage during the early Neolithic LBK 

culture (Linearbandkeramik or Linear Pottery culture), as proposed by Myres et al.9 

Supplementary Figure S1 shows distribution maps that compile all of the frequency data for 

M269 sublineages published to date (more than 16 000 male individuals;7,9,17 present study) 

but at a lower level of resolution than that achieved in the current study. From the maps, it 

can be appreciated that M269 sublineages show distinct areas of distribution in Europe: 

U106 is distributed in the countries of Central- Northern Europe, and S116 occurs in Western 

and South-western Europe. With regard to the sublineages of S116, U152 is more common 

in northern Italy and the Alpine region, whereas M529 is more common in the British Isles 

and Brittany. However, there is a large percentage of S116 individuals unassigned to any of 

these sublineages, described here as paragroup S116* (× U152, × M529). The frequency of 

this paragroup reaches approximately 50% in the Iberian Peninsula and exceeds 80% in the 

Basque region. It has also been observed in the area of Brittany and the British Isles, but 

the frequencies there do not exceed 20%. 

The dissection analysis of S116 has provided very informative results for further completing the 

history of M269. The paragroup S116* (× U152, × M529) has been largely resolved owing to the 

discovery of the highly frequent sublineage DF27 in the Iberian Peninsula. DF27 has a frequency 

of 40–48% in Iberia but reaches frequencies over 60% in the Franco-Cantabrian region, particularly 

in the Basque population. However, outside the Iberian Peninsula, the frequency is below 20% 

(Supplementary Figure S2 and Supplementary Table S1). Thus, the sublineage S116-DF27 is 

located in a different geographic area than that occupied by the other S116 sublineages M529 and 

U152 (Supplementary Figure S1). 

The DF19 and L238 sublineages show very low frequencies in Western Europe. The DF19 

sublineage was not detected in any individuals, and L238 was detected only in one individual from 

Brest (Brittany) (Supplementary Table S1). 

The new population data highlight the high frequencies of M529 found in Brest (>50%) 

(Supplementary Figure S1), outside the British Isles, which may raise doubts about whether it 

originated in the European continent or in the British Isles. 
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The sublineage U152 shows a striking distribution in the Iberian Peninsula (Supplementary 

Figure S1), where frequency peaks appear in the coastal corners in the SW (southern Portugal, 

13%), NW (Galicia, Asturias, 8%) and NE (Barcelona, Alicante, 6%), and the minimum lies in 

the Basque region (2%). In Europe, haplogroup U152 has its maximum in the Alpine region, 

and thus perhaps its frequency pattern could be explained by a migration from the Alpine 

region of origin to the Iberian Peninsula, along the coast, avoiding areas historically known 

to have remained more isolated, as is the case with Basque Country. 

After analysing all five sublineages so far known for S116 (U152, M529, L238, DF19 and DF27), 

some individuals remained who did not belong to any of these five sublineages, and they were 

assigned as belonging to the new, more concise S116* paragroup (× U152, × M529, × L238, × DF19, 

× DF27) (hereafter called S116*). The maximum frequency of S116* has been found in Irish (17%) 

and Basque (12%) populations. In both populations, the vast majority of individuals belonging to 

the S116 haplogroup belong to their respective M529 or DF27 sublineage, and those who do not 

belong to either of these sublineages belong almost entirely to paragroup S116* (Supplementary 

Table S1). Only the discovery of new Y-SNPs will determine whether these individuals can be 

assigned to new sublineages, which may be identical or different between Ireland and Basque 

country, providing more clues about the genetic relationship and evolution between the two 

populations. 

One of the main reasons leading to the proposal of the hypothesis of origin and/or expansion of 

M269 from the Franco-Cantabrian refuge is its maximum frequency and pattern of decreasing 

frequency with increasing distance from this area. The Basque population is located in the heart 

of the refuge area, and our results indicate that almost all of their M269 lineages belong to 

sublineage S116 (Basque Country; M269-82%; S116-80%, Supplementary Table S1). If M269 had 

originated in this area, it would seem logical to find higher variability of M269 sublineages, such 

as M269xL11, L11 or U106*. Thus, the dissection of M269 in the refuge area raises questions about 

its origin in this region. Unfortunately, the homogeneity in the variability of Y-STRs within M269 

makes it impossible to pinpoint a more likely origin,7 but the frequency distribution of M269 

sublineages in the European continent suggests an origin in the East with a subsequent migration 

westwards, with the appearance of its sublineages during the advance of the migration wave.9 

However, the Basque region has maximum frequencies of S116 and its sublineages S116* and 

DF27, the latter showing a decreasing gradient with distance. Meanwhile, M529 and U152 

frequencies are extremely low. This may indicate that this region is a source for S116 and its 

sublineage DF27. Myres et al9 proposed the Upper Danube basin and Paris area as the geographic 
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sources of S116. The patterns of frequencies obtained here also suggest that S116 emerged on 

the crest of the wave of migration but somewhere closer to the Franco-Cantabrian region. Thus, 

a possible evolutionary scenario of these lineages may be chronologically as shown in Figure 1: (1) 

origin of M269 in Eastern Europe; (2) origin of L11 on the wave of the westward advance of M269;9 

and (3) colonization of the entire continent by L11, as evidenced by the high frequency of L11* in 

different parts of the Atlantic coast, from the Baltic to the southern coast of Portugal (data from7,9) 

(L11 origin has been hypothesized in the map in Northern Europe); (4) origin of U106 from L11 

individuals who inhabited the southern coast of the North Sea; (5) origin of S116 from L11 

individuals inhabiting the Eastern Cantabrian coast, that is, the area of the Franco-Cantabrian 

refuge; and (6) origin of the DF27 sublineage from S116 individuals inhabiting the refuge area, 

while other S116 individuals spread to the rest of Iberia and Europe along the Atlantic and 

Mediterranean coasts, originating M529 and U152, respectively. Subsequently, (7) the U152, 

M529 and DF27 subtypes spread and came to occupy their present territories, with U152 and 

M529 re-entering the Iberian Peninsula (Figure 1). U152 and M529 may have re-entered the 

Iberian Peninsula during one of the numerous subsequent migrations to Iberia, during either 

Neolithic or historical times, that is, with the arrival of Phoenicians, Carthaginians, Romans, Goths 

or Vikings.18 

 

Figure 1 Evolutionary proposal for sublineages of M269 in Europe. Arrows start at the most likely places of origin and 
indicate the direction of expansion. The older the movement, the thicker the arrow. The thinner arrows indicate the 
current distribution of the younger sublineages here studied. 

To delve into the phylogenetic structure of S116 and DF27 haplogroups, a median joining network 

was performed with 15 Y-STR haplotypes of only M269 Basque native individuals (Supplementary 

Figure S3 and Supplementary Table S3). Thus, the study of the potentially ancient lineages that 

have inhabited the Franco–Cantabrian region until today is intended (Supplementary Box 3). 
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The phylogeny was constructed following carefully selected settings (Supplementary Box 4). The 

network showed a bipartite structure with two main groups corresponding to the individuals 

belonging to the S116* and DF27 haplogroups (Supplementary Figure S3). In addition, haplogroup 

DF27 appears to be split into two parts owing to the presence of two different haplotypes in the 

Y-STRs, DYS437/ DYS448 (Supplementary Figure S3). Both Y-STRs have low mutation rates, and 

they are therefore more robust in distinguishing Y-chr haplogroups or established phylogenetic 

splits within haplogroups. DYS448, aside from being the Y-STR with lower mutation rate11,12 and a 

small variance VL
19 in the Basque population, has a long hexanucleotide repeat unit, which gives 

even higher phylogenetic weight.19 This may indicate the presence of different sub-haplogroups 

within DF27 in the Basque population, indicating that continuing the dissection of DF27 may 

contribute new information regarding the evolutionary history of this region. 

Finally, a proper mutation rate was carefully selected for calculating TMRCAs, although the 

authors are aware of the lack of a definitive time scale for the Ychr; therefore, these calculations 

remain merely indicative. The classical mutation rate 6.9 ×10–4/locus/25 years, established initially 

by Zhivotovsky et al,15 was finally selected for being calibrated based on well-dated historical 

events and because its proper operation has been re-evaluated afterwards for the set of YSTRs 

analysed in this study.16 Concretely, Shi et al16 compared, in a very comprehensive study including 

a large panel of worldwide samples, the human male demographic inferences obtained with three 

different mutational rates: an observed mutation rate from the mutations counts in father–son 

pairs, the classical evolutionary mutation rate15 and a recalibrated evolutionary mutation rate 

(rEMR) corrected for the differences in variance of different sets of YSTRs. For the set of YSTRs 

analysed here, the evolutionary mutation rate and the rEMR were equivalent. Shi et al16 concluded 

that the rEMR provided the most comprehensive demographic inferences according to previous 

studies and actual geographical distributions. 

The obtained coalescence times date the origin of haplogroup S116 in the native Basque region 

11 673 ± 1962 ybp, and the origin of DF27 soon after, 10 468 ± 1831 ybp, which would place their 

origins after the last cold period of the Younger Dryas, that is, the early Holocene warm period, 

when weather conditions reached the current temperatures during the course of a few decades, 

encouraging population growth and expansion.3 

These phylogenies and dates were confirmed also including non-native individuals in the network 

analysis, which allowed reaching identical conclusions (Supplementary Figure S4). 

The spatial genetic patterns of the different haplogroups were deeply studied through sPCAs. 

Supplementary Figure S5 shows the sPCAs including the population data analysed here and data 
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compiled from the literature (and therefore at the same low level of resolution as the distribution 

maps of Supplementary Figure S1). The analysis detected four spatial patterns that explain most 

of the variance related to M529, S116*, U106 and U152 (Supplementary Figure S6). By increasing 

the level of resolution of the sPCAs, including only the more resolved Western European data from 

this study, a new spatial pattern was detected for DF27 in Iberia (Supplementary Figures S7–S9). 

Interestingly, the analysis finds strong affinity among all Iberian populations, with the exception 

of the Basque population, which shows little affinity with the populations both outside and inside 

the peninsula but appears to participate in the distribution patterns affecting both of those 

populations. This may indicate that the Basque country has been involved in the history of the 

different haplogroups that principally characterize both Western European regions (M529 and 

DF27), and this would support the previously proposed scenario (Figure 1), in which, first, S116 

expands outside the refuge and, second, U152 and M529 originate outside the peninsula and DF27 

inside. 

MDS representation of Fst genetic distances between populations, calculated based on 

haplogroup frequencies, shows results consistent with those obtained in the sPCAs 

(Supplementary Figure S10, Supplementary Table S4). 

In summary, this study provides new genetic evidence indicating the absence of diversity of M269 

lineages over S116 in the current population of what once was the refuge, the maximum 

frequencies of S116, S116* and DF27 in the refuge area and their spatial distributions in Iberia and 

Western European coast. This is in addition to the evidence from previous studies: the 

homogeneity in Y-STR diversity within M269 in Europe7 and the emergence of new sublineages 

such as L11 on the wave of the advance of M269 into Western Europe9 consistent with the 

scenario proposed in Figure 1. 

This scenario proposes an origin in the East for M269, in contrast to the classical theories.2,3 The 

controversy in calculating TMRCAs makes it impossible to reliably date these evolutionary 

episodes, at least until the more complete Ychr allows more accurate time scales and/or until 

genotyped and firmly dated archaeological remains become available. 

However, the authors believe that it is unlikely that an arrival to Europe of M269 during the 

Neolithic period has generated such a complex scenario of expansions for its sublineages, 

especially when genetic evidence of cultural diffusion has been found for Ychr in Anatolia20,21 and 

for mtDNA in the refuge.22 Thus, the spread of Neolithic culture would mean a lower demic 

movement. The theories that argue for an origin in the East and during the Neolithic period 
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assume a rapid expansion of M269 throughout Europe, replacing most of the previously settled 

haplogroups, which would be compatible with a main scenario of demic diffusion. 

The scenario proposed here would be most compatible with an arrival of M269 from the East 

occurring in Palaeolithic times. The Wurm glaciation had numerous ups and downs in temperature 

that would have led to the existence of multiple glacial refugia, which has been proposed both for 

mtDNA and Ychr.5,23 Improved weather conditions would allow colonization of more northern 

territories from all refuges simultaneously. Similarly, the mtDNA-H and Ychr-R lineages that 

evolved in the East from Palaeolithic times, could have expanded westwards during the Neolithic 

period, thereby mixing with other H and R lineages that arrived to Western Europe in Paleolithic 

times and evolved independently in these western territories. This may be one reason for the 

complexity of interpreting the results, in addition to the assumption that post-Neolithic 

movements may be masking and confounding the oldest traces. 

In this context, the genetic evidence found for the sister haplogroup of M269 in the maternal line, 

haplogroup H, has been helpful for complementing and giving clues about M269 history 

(Supplementary Box 5). 

In sum, this study demonstrates the importance of continuing the dissection of the M269 lineage 

in different European populations because the discovery and study of new sublineages can adjust 

or even completely rewrite the theories about European peopling, as has been the case with the 

place of origin of M269. Similarly, the future availability of complete sequences of the Ychr and of 

desirable Palaeolithic aDNA data may definitively reveal the complete and true history of this 

major lineage. 
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Box 1: Actual controversy about the origin and expansion of maternal haplogroup H (hg H) 

The most accepted theories for mitochondrial DNA (mtDNA) haplogroup H support its origin in 

the Franco-Cantabrian refuge and its postglacial expansion [1]. 

However, there has recently been much controversy with the new adjustments of the 

mitochondrial time-scales based on the information from complete mitochondrial genomes. 

Soares et al. [2] have proposed the departure dates for the H1 and H3 subgroups from the refuge 

after the last cold period, the Younger Dryas, i.e., the early Mesolithic. Fu et al. [3] obtained a 

sharp increase in the population size of hg H at approximately 5,000-9,000 ybp, and they 

associated these results with an expansion during the Neolithic, based on previous analyses 

showing that Neolithic remains have a high frequency of hg H, while this hg was absent in pre-

Neolithic remains, something that is no longer considered true since hg H has been detected in 

Upper Palaeolithic remains from the Franco-Cantabrian refuge [4]. Also interesting is that these 

dates would be Neolithic if the expansion is from Eastern Europe but Mesolithic if it is from 

Western Europe. In another possibility, Pala et al. [5] not only support the Palaeolithic origin of hg 

H in Western Europe, but their results point to a Palaeolithic entry age from east of the mtDNA 

haplogroups J and T, hitherto considered Neolithic. 

Other studies have recalculated the mitochondrial timescale by analysing complete mitochondrial 

genomes of firmly dated Neolithic remains [6,7]. Both studies obtained much higher mutation 

rates than previously estimated, indicating that all events so far dated for mtDNA seem to be 

younger. Thus, these authors are more supportive of a Neolithic expansion for hg H. Nevertheless, 

the authors are aware that their results do not rule out the theory of the postglacial expansion of 

hg H, as some of them concluded the year before in a study of the Basque population [8], in which 
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the results suggested the presence of hg H in Basques since pre-Neolithic times, something 

currently confirmed by aDNA analysis in the Franco-Cantabrian refuge [4,9]. 
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Box 2: Materials & Methods 

Population 

A total of 1,560 healthy, unrelated males from the Iberian Peninsula (Galicia, Asturias, Cantabria, 

Basque Country, Barcelona, Alicante, Andalucía, Madrid, Portugal) and Atlantic Europe (Brittany 

(Brest), Ireland, Denmark) were studied (Table S1). All participants provided written informed 

consent. The procedures were in accordance with the ethical principles of the Helsinki Declaration 

of 1975, as revised in 2000. 

 

Y-SNP analysis 

The Y-SNP M269 was analysed using a TaqMan® predesigned assay (Applied Biosystems) for 

rs9786153, following the manufacturer’s guidelines. Allelic discrimination analysis was performed 

with a 7000 Real-Time PCR System (Applied Biosystems). 
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The Y-SNPs L11, U106, S116, U152, M529, DF27, DF19 and L238 [1,2] were analysed by High 

Resolution Melting. YSNP characteristics and the primers used for the amplification of each Y-SNP 

are shown in Table S2. Y-SNPs were amplified with 0.5 µL of each primer (1 µM), 2.5 µL of SsoFast 

EvaGreen Supermix (BioRad) and 1 ng of DNA in a final volume of 5 µL. Amplification and melting 

were done in a C1000 thermocycler equipped with a CFX96 optic module (BioRad) under the 

following conditions: 98°C 10 sec; 35 cycles at 98°C 5 sec, corresponding annealing temperature 

(see Table S2) 20 sec; 95°C 30 sec, 60°C 2 min and finally the melting cycle from 65°C to 95°C with 

an increase of 0.2°C/sec, for detecting the different allelic variants. Data interpretation was 

performed using Precision Melt Analysis software (BioRad). Only high-quality amplification and 

melting curves with a cluster assignment over 95% of confidence were considered. The 

assignment of the corresponding allelic variants of every cluster was performed by using positive 

and negative controls previously detected by sequencing. 

Danish males were typed for M269, S116 and U106 using custom-designed TaqMan Assays 

(Thermo Fisher) and analysed on a 7900HT Fast Real-Time PCR System (Thermo Fisher). 

Problematic samples were reanalysed or sequenced when necessary. 

Amplifications for the sequencing of each Y-SNP were done with 2.5 µL of KAPA2GTM Fast 

HotStart Ready Mix (2X) (KAPA Biosystems), 0.5 µL of each primer at 1 µM (see Table S2) and 1 ng 

of DNA in a final volume of 5 µL. Amplification was conducted with the same conditions of 

amplification as previously described (without the melting cycle) in a C1000 thermocycler 

(BioRad). Sequencing reactions were carried out with BigDye Terminator v.3.1 Cycle Sequencing 

Kit (Applied Biosystems) following the manufacturer’s guidelines. 

 

Y-STR analysis 

Individuals from Basque Country were genotyped for a set of 17 Y-STR loci using the 

AmpFlSTR®YfilerTM kit (Applied Biosystems), following the recommendations of the 

manufacturer. Capillary electrophoresis took place in an ABI Prism 3130 Genetic Analyser, and 

fragment sizes were assigned using GeneMapper® v. 4.0 software. The nomenclature used is that 

of the latest recommendations for the DNA Commission of the International Society of Forensic 

Genetics, except for locus Y GATA H4, which was named on the basis of the allelic ladder supplied 

with the AmpFlSTR ® YfilerTM kit. 

 

Data analysis 

The maps of haplogroup frequency distribution were constructed using Surfer Golden Software v. 

10.0.500 by the kriging method. 
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The spatial genetic patterns were studied through spatial principal component analyses 

(sPCA), implemented using the algorithm provided in the R software package adegenet [3-6]. 

This method calculates the components based on the genetic variance between populations 

and their spatial autocorrelation. The components can be positive or negative. The most 

informative components are those with the absolute highest eigenvalues, i.e., the most positive 

(associated with positive spatial autocorrelation, global structure) and the most negative 

(associated with negative spatial autocorrelation, local structure). A global structure implies that 

each sampling location is genetically closer to its neighbours than randomly chosen locations, as 

occurs with spatial groups, clines or intermediate states. In contrast, a stronger genetic 

differentiation among neighbours than among random pairs of populations characterizes a local 

structure. 

Genetic distances (Fst) between populations based on haplogroup frequencies were calculated 

with the Arlequin v 3.1 software [7] with 10,000 permutations. They were plotted in 

Multidimensional Scaling graphs using PAST software [8]. 

The phylogenetic relationships of Y-STR haplotypes were estimated by median joining networks 

using NETWORK v 4.5.1.6 [9]. Higher phylogenetic weight was allocated to the loci with lower 

mutation rate [10,11], lower variance [VL, 12] and higher linearity [D, 13; calculated with the actual 

range published in YHRD, 14; Supplementary Box 4]. Coalescent times were estimated using 

Network software and the re-calibrated evolutionary STR mutation rate 6.9x10-4/locus/25 years 

revised for this set of 17 Y-STRs [15,16]. 
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Box 3: Special features of Basque population 

The Basque region has been historically subjected to genetic isolation and is therefore a possible 

stronghold of potentially ancient lineages. Moreover, the native language of the Basque region 

allows the differentiation of indigenous people by their surnames [1], so in this regard, the Basque 

population provides a unique opportunity to explore the oldest Y-chromosome genetic 

substratum of the population. Individuals arrived in the Basque Country during the last century 

with the Industrial Revolution, who are non-native Basques, can be recognized because of their 

non-Basque surnames and then be removed from the population sample for statistical purposes 

[2,3]. 

Table S1 shows how the haplogroup frequencies would vary depending on whether the total 

Basque population (native and non-native) or only the native population is assessed. The 

frequencies of S116 and DF27 are slightly higher in the native population than in the total 

population. However, in both cases, the frequencies of these haplogroups are the highest in 

Europe, which supports the evolutionary inferences made about DF27 and S116 in this population. 
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However, the strong isolation of the Basque territory could also have caused a loss in the diversity 

of lineages, due to phenomena such as genetic drift or bottlenecks between the populations of 

the valleys of the complex Basque orography. However, the analysis has shown that haplogroup 

frequencies of the populations adjacent to Basque Country show a logical continuation of the 

pattern of frequencies, which suggests that, indeed, S116 and DF27 are ancient lineages that 

originated in this region. 

Although the native Basque population offers a special opportunity for studying potential ancient 

lineages from the Franco-Cantabrian refuge (and has therefore been used for various phylogenetic 

approaches), in the statistical analysis, including population comparisons, the total Basque 

population sample (native and non-native Basques) has been assessed. This has been done 

because individual selection based on autochthonous surnames is difficult or impossible to do in 

other European populations, so the comparison between actual populations and only the native 

individuals of the Basque population would introduce bias into statistical calculations. 
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Box 4: Settings for constructing Y-STR phylogeny by median joining networks 

For constructing the phylogeny, native Basque individuals were selected. Moreover, the 

properties of the Y-STRs were carefully assessed. Busby et al. [1] warned that the attributes of the 

Y-STRs are rarely considered in phylogenetic reconstructions and calculations of TMRCA, altering 

the precision of the results. Here, we have prioritised the Y-STRs with higher phylogenetic weight. 

Thus, DYS385 and DYS389b were discarded for lacking phylogenetic interest, because it is not 

possible to assign a specific allele to each locus of DYS385 with the genotyping method used here 

and because DYS389b has a very complex and repetitive structure and may then have several 

allelic variants [2,3]. In contrast, we gave the highest phylogenetic weight to Y-STRs DYS390, 

DYS392, DYS393, DYS437, DYS438 and DYS448 for having the lower mutation rates of the Y-STRs 

analysed [4,5]. The Y-STRs DYS19, DYS391 and DYS635 have higher mutation rates than the 
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previous, but the same phylogenetic weight was applied because they have a very low variance VL 

in Basque population [6], and DYS635 also has a high linearity D [1], which gives them greater 

phylogenetic weight in this population. Finally, a minimum weight of 1 was given to the Y-STRs 

DYS389I, DYS439, DYS456, DYS458 and GATA H4 because they have much higher mutation rates. 
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Box 5: Inferences combining genetic evidence found for Ychr hg R-M269 and mtDNA hg H. 

The genetic evidence found for the sister haplogroup of M269 in the maternal line, hg H, could be 

helpful for giving clues about M269 history, although with cautiousness because non-

contemporaneous histories have also been proposed for these haplogroups [1]. However, it seems 

reasonable to consider that both haplogroups have coexisted at some point in their long 

evolutionary trees. For example, our results and other published data would allow for the 

coexistence of paternal S116 or DF27 haplogroups and maternal H1 and H3 in the Franco-

Cantabrian refuge [2,3]. 

Recently, Brotherton et al. [4] have shown that some subgroups of hg H seem to have different 

geographical locations in Europe. This differential distribution for subhaplogroups emulates the 

distribution of subgroups of hg R, although it is too soon to determine whether some of them 

share a geographic location. 

Moreover, Brotherton et al. [4] analysed remains from the early, mid and late Neolithic (ENE, MNE 

and LNE, respectively), concluding that the remains from the ENE show genetic discontinuity with 
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MNE/LNE remains. In fact, the authors report similarities between ENE remains and current 

populations from Eastern Europe and between MNE/LNE remains and current Central/SW Europe, 

respectively. This east-west genetic discontinuity could be interpreted as demic diffusion not 

reaching the western part of the continent. That is, the presence of hg H in Palaeolithic remains 

of the Franco-Cantabrian refuge would indicate the arrival of this haplogroup in Western Europe 

before the Neolithic. The Neolithic wave could bring early farmers belonging to subgroups of hg 

H that evolved independently in the East and different to those present in Europe in pre-Neolithic 

times. The demic diffusion would have been short in expansion because it was soon superseded 

by cultural diffusion. Thus, the Western European Palaeolithic populations were neolithised 

mainly by culture diffusion, and now the genetic substrate mainly present in Western and Central 

Europe would correspond with the Palaeolithic genetic substrate. 

Brotherton et al. [4] relates the dominant maternal gene pool of current Western Europe with the 

expansion of the Neolithic culture Bell Beaker from Iberia in the LNE, as Klyosov [5] does for Ychr. 

We consider that this would also be consistent with the scenario proposed here. Bell Beaker 

Culture is believed to have emerged from the megalithic cultures, and it is believed that the 

Atlantic megalithic cultures arose from the ancient inhabitants of the European Atlantic coast [6-

7]. The apogee of the megalithism has been linked to the arrival of new models of social 

organization or even to newcomers, which produced a sense of territoriality in the original 

inhabitants. This led them to build huge stone monuments. The ancient clans of hunter-gatherer-

fishers, who inhabited the Atlantic coast from the Upper Palaeolithic, were spread across the 

Portuguese coast, Cantabrian Sea, western and northern coast of Europe, islands and even Baltic 

Sea coast. It is believed that they were the source of megalithic cultures. These ancient individuals 

could be carriers of L11 lineages. Evidence of this could be the actual maximum frequencies of 

L11* in these same Atlantic territories. This would imply a genetic continuity in SW Europe from 

Palaeolithic times, with a minor influence of Neolithic lineages arrived from the East. 

The dates of origin and expansion of the U106 and S116 subtypes originated from these L11 

individuals remain uncertain. Our calculations, which were made including all precautions 

reported so far, point to an origin and expansion at the beginning of the Holocene, as suggested 

previously by Myres et al. [8] and Soares et al. [2] for mtDNA. This would make sense because the 

improved weather conditions would have led to a large enough population explosion to allow its 

expansion and generation of new variability, illustrated by the M529, U152 and DF27 sublineages. 

Thus, the presence in the network of undiscovered DF27 variability suggests that there may exist 

still more expansion events and unknown histories. 
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Supplementary Tables (collected in the Supplementary Excel File) 

Table S1. Y-SNP frequencies (%) in the analysed samples of population. For each haplogroup/column, the higher the 

frequency, the more intense the colour. Below, detailed characteristics of the Basque population sample. 

 

xM269 M269 U106 S116 U152 M529 L238 DF19 DF27 L11a S116* N
Northern Europe, Atlantic Coast

Denmark 62,64 37,36 17,82 16,67 · · · · · · · 174
Western Europe, Atlantic Coast

Ireland 18,49 81,51 6,16 74,66 2,05 54,11 0,00 0,00 0,68 81,51 17,81 146
Brest (Brittany, France) 13,10 86,90 4,14 80,69 4,14 52,41 0,69 0,00 17,24 · 6,21 145

Iberian Peninsula, Portugal
Portugal 37,27 62,73 2,73 50,91 3,64 2,73 0,00 0,00 40,91 · 3,64 110

Iberian Peninsula, Spain
Alicante 35,34 64,66 4,31 56,90 6,03 0,00 0,00 0,00 43,10 · 7,76 116

Andalucía 37,00 63,00 3,00 59,00 4,00 0,00 0,00 0,00 46,00 · 9,00 100
Asturias 42,86 57,14 0,00 57,14 7,94 6,35 0,00 0,00 42,86 · 0,00 63

Barcelona 31,00 69,00 2,00 65,00 6,00 1,00 0,00 0,00 48,00 · 10,00 100
Cantabria 31,25 68,75 2,08 61,46 4,17 6,25 0,00 0,00 44,79 · 6,25 96

Galicia 38,57 61,43 4,29 55,71 8,57 7,14 0,00 0,00 40,00 · 0,00 70
Madrid 31,31 68,69 2,02 60,61 4,04 1,01 0,00 0,00 48,48 · 7,07 99

Basque Country 17,60 82,40 1,47 80,06 2,05 2,05 0,00 0,00 63,34 82,40 12,61 341
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Table S2. Y-SNP characteristics, primer sequences and analysis conditions. 

 

Table S3. 17 YSTR-YSNP haplotype data from the Basque sample of population. 

Corresponds to Attached Table 1 in Appendix section. 

 

 

   

   

  
  

  

 

Details of the Basque sample of population

In relation to the place of sampling
Rural Basques 7,77 92,23 0,52 91,71 2,59 1,55 0,00 0,00 71,50 92,23 16,06 193
Urban Basques 30,41 69,59 2,70 64,86 1,35 2,70 0,00 0,00 52,70 69,59 8,11 148

In relation to the Basque surnames
Native Basques (with Basque surname, found both in 
rural and urban sampling) 7,83 92,17 1,30 90,87 2,17 2,17 0,00 0,00 70,87 92,17 15,65 230
Non native Basques (without Basque surname, found 
only in urban sampling) 37,84 62,16 1,80 57,66 1,80 1,80 0,00 0,00 47,75 62,16 6,31 111

aL11 was analyzed only in two populations for confirming it follows the last proposed phylogeny [1,2].
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Y-SNP Primers (5´- 3´) Method*
Mutation 
(anc/der)

rs SNP ID
Y chr position 
GRCh37/hg19

FW: ACATGGTATCACAATAGAAGGG Seq
RV: TTTCACCATGTTAGCCTGGA Seq
FW: GTGTGATGTCTTTCTCCACC HRM & Seq
RV: GCAAGGATTGTCTCTTAGAACAG HRM & Seq
FW: TTCCTGAATAGCAAATCCCA HRM & Seq
RV: GCTGTATGTGTCTTCCTGTG HRM & Seq
FW: TCCTGCTAATGTATCTGCTG HRM & Seq
RV: CTCATTTATCACCTCAGTGC HRM & Seq
FW: AGAAACATTCCACGCTTGAG HRM & Seq
RV: ATGGTAGTTTAATGGGAGTAGC HRM & Seq
FW: TAAACCCTCCTCAGCAACAG HRM & Seq
RV: GGAAGCATTCAGAAGCAGGT HRM & Seq
FW: AAGAAATGTCAACGGTACAGAG HRM & Seq
RV: CATACACATTCACAGCAGGT HRM & Seq
FW: AAAGGGCACTCTTGATAGGAC HRM & Seq
RV: TCCCTATTCGCCATCTTAGC HRM & Seq
FW*: TTGGCTGGATATGAAATTCTGGA HRM & Seq
RV*: GGAAGCCCATCAGATTAACAGA HRM & Seq

** Seq: Sequencing, HRM: High Resolution Melting
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rs9786153 22739367

rs9786076 17844018

rs16981293 8796078

rs35199432 21253443

_ 14301499

_ 21380200

rs34276300 22157311

rs1236440 15333149

rs11799226 15654428

60.5 95 G/T

DF27 61 124 G/A

* These primers are nested primers of a longer amplicon amplified with the primers FW:GGGAATTTGATCCTGTCGTTG and RV: 
GAACAAAGCCTCCAAGAAATATGAGG [1] with the same annealing temperature.

M529 60.5 150 C/G

L238 60.5 125 A/G

DF19

61 115 C/A

U152 60.5 103 G/A

S116

T/C

Annealing 
Temperature

Amplicon Size

M269 60.5 216

L11 60.5 85 T/C

U106 60.5 96 C/T
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Table S4. Genetic Fst distances based on Y-SNP haplogroup frequencies (above diagonal) and p values (below diagonal). 

Statistically significant values after Bonferroni correction are shaded in blue. 

 

Supplementary Figures 

 

Fig. S1. Frequency distribution maps of the data compiled in this study (blue stars) and the data from Myres et al. (2011), 

Larmuseau et al. (2011) and Busby et al. (2012) (red points). This Fig. S1 represents the comparisons performed at a 

lower level of tree resolution than in Fig. S2 (exclusively data from present study), because no higher resolution data is 

available in the literature and a broadly geographical overview of European continent was intended in this 1st 

representation. The Y-SNPs used for the construction of these Fig. S1 maps are highlighted in bold in the upper right 

tree. 

Madrid Barcelona Andalucía Galicia Asturias Portugal Brest Ireland Alicante Cantabria Basques
Madrid * -0.00896 -0.00673 0.00856 0.00817 -0.00084 0.24527 0.31059 -0.00442 -0.00699 0.03029

Barcelona 0.93832+-0.0025 * -0.00657 0.00883 0.01040 0.00170 0.23246 0.29363 -0.00539 -0.00670 0.03109
Andalucía 0.75369+-0.0039 0.76299+-0.0039 * 0.00267 0.00195 -0.00614 0.24210 0.29736 -0.00867 -0.00516 0.05344

Galicia 0.15860+-0.0040 0.15177+-0.0040 0.26987+-0.0042 * -0.01233 -0.00605 0.19592 0.25614 -0.00077 -0.00158 0.09160
Asturias 0.17295+-0.0040 0.14058+-0.0034 0.29819+-0.0045 0.88714+-0.0026 * -0.00827 0.21871 0.27967 0.00066 0.00024 0.09597
Portugal 0.37462+-0.0055 0.28789+-0.0051 0.72102+-0.0040 0.64954+-0.0049 0.74349+-0.0045 * 0.23391 0.29142 -0.00548 -0.00355 0.07448

Brest 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 * 0.02754 0.23392 0.20177 0.29326
Ireland 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00297+-0.0005 * 0.28829 0.26648 0.37065

Alicante 0.61123+-0.0046 0.70755+-0.0045 0.97070+-0.0016 0.38828+-0.0048 0.33195+-0.0043 0.70399+-0.0045 0.00000+-0.0000 0.00000+-0.0000 * -0.00437 0.05841
Cantabria 0.77339+-0.0042 0.77606+-0.0042 0.64182+-0.0050 0.41501+-0.0045 0.34125+-0.0047 0.53876+-0.0054 0.00000+-0.0000 0.00000+-0.0000 0.61845+-0.0047 * 0.04150
Basques 0.00347+-0.0006 0.00297+-0.0005 0.00000+-0.0000 0.00010+-0.0001 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00000+-0.0000 0.00010+-0.0001 0.00099+-0.0003 *
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Fig. S2. Frequency distribution maps of M269, S116 and DF27 in the Atlantic Coast and Iberian Peninsula. The stars in 

M269 map indicate the samples of population analysed. The upper right tree includes the Y-SNPs used for constructing 

the distribution maps. 

 

Fig. S3. Median joining network of the M269 haplogroup in the Basque native population (bearing Basque surnames). 

The blue arrows indicate a phylogenetic split of DF27 haplogroup into two groups bearing the alleles 14/18 and 15/19 

in the Y-STR haplotype DYS437/DYS448. 

YxM269

S116*S116

M269

M269 U106
S116 U152

M529
L238
DF19
DF27

DF27
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Fig. S4. Median joining network of the total Basque population, including both native and non-native individuals. 

The network from Fig. S3 was assembled only for native individuals, with the aim of studying the 

ancestral gene pool of the population, in this case M269 ancestral lineages. 

It is well known that Basque population is a genetic isolate. This may have caused a loss of diversity 

of lineages, which may affect the calculation of coalescence times and introduce errors in 

inferences. 

In addition, the native Basque sample has been selected on the basis of the Basque surnames. 

This way of selection could remove part of the gene flow occurred during recent years, which may 

further reduce the diversity and alter the calculations. 

To ensure the reliability of the calculations done with the native sample of population, a 

comparison of TMRCA results was done between the phylogeny constructed in Fig. S3 (including 

only native individuals) and a parallel phylogeny constructed including the total current Basque 

population (native and non native males, i.e. a random actual sampling in Basque Country without 

selection of individuals by surnames). This phylogeny of the actual Basque population is presented 

in Fig. S4.  

The results in both cases were similar and identical conclusions were reached with both sets of 

population samples. So, the inclusion of non-native individuals did not alter the structure of the 

S116 and DF27 haplogroups. The blue arrows indicate the phylogenetic split of the DF27 

haplogroup into two groups bearing the alleles 14/18 and 15/19 in the Y-STR haplotype 

DYS437/DYS448. 
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The dates obtained (S116: 10659.31 +/- 1511 YBP; DF27: 9988 +/- 1374.YBP) were only slightly 

lower, and they do not modify the prehistoric window period inferred in with the native Basque 

population. 

These analyses demonstrate the reliability and robustness of the results obtained in the native 

sample of population, and state that the genetic isolation of Basque Country and/or the sampling 

strategy have not altered the demographic inferences. 

 

Fig. S5. Spatial PCAs based on haplogroup frequencies of the analysed populations and data compiled from Myres et al. 

(2011), Larmuseau et al. (2011) and Busby et al. (2012). Here, the level of resolution of the analysis is lower because 

S116 is not completely dissected in the literature data. The Y-SNPs used for the analysis are marked in bold in the tree. 

All the components of the analysis have positive eigenvalues (global structures). The spatial analyses of the most 

representative 4 principal components are presented. The colour plot corresponds to the spatial representations of the 

2 principal components that explain the maximum variance. The colours make easier the identification of the different 

haplogroup spatial patterns found by the analysis. 
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Fig. S6. Contributions of the alleles to the principal components 1, 2, 3 and 4 (PC1, PC2, PC3 and PC4, respectively) of 

sPCA of Fig. S5. The order of the Y-SNPs in the graph: (1) M269 (xL11), (2) L11 (xU106 xS116), (3) U106, (4) S116 (xM529 

xU152), (5) M529 and (6) U152. 

 

Fig. S7. Spatial PCAs based on haplogroup frequencies of the analysed populations. The bar plot indicates the 

eigenvalues obtained for every component. Single-population scores of the 2 positive eigenvalues (red) (PC1 and PC2) 

and the negative eigenvalues (blue) (PC3) are represented with black/white squares, associated with positive/negative 

values, respectively. Square size is proportional to the absolute value, indicating the degree of differentiation. 
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Fig. S8. Contribution of the alleles to the principal components 1, 2 and 3 (PC1, PC2 and PC3, respectively) of the sPCA 

of Fig. S7. The order of the Y-SNPs in the graph: (1) xM269, (2) U106, (3) U152, (4) M529, (5) L238, (6) DF27 and (7) 

S116*. 

 

Fig. S9. Colour plot of the 2 principal positive components of the sPCA from Fig. S7. The colours make easier the 

identification of the different haplogroup spatial patterns found by the analysis. In this case, the red-orange dots identify 

the spatial pattern found for DF27 in Iberia, and the green dot for M529 in Ireland. 

 

Fig. S10. Multidimensional scaling of genetic Fst distances calculated on the basis of Y-SNP haplogroup frequencies. 

Stress 0.048. 
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Iberian populations appear more clustered due to the absence of statistically significant 

differences between them, with the exception of the Basque population, which statistically differs 

both from Iberia (with the exception of the neighbouring Cantabria population and the 

cosmopolitan cities Madrid and Barcelona) and from Brest and Ireland (see Table S4). 
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4.2 Study Number 2 

‘Characterization of the Iberian Y chromosome haplogroup R-DF27 in Northern Spain; Dissection 

of the DF27 paternal lineage’ 

The Study Number 2 corresponds to the attainment of the first part of the objective 2 of the 

present doctoral thesis: To characterize the structure and spatial distribution of the Iberian near-

specific paternal lineage R1b-DF27 in Southwest European populations through the dissection in 

its sublineages, with the aim to estimate its time of origin, as well as to model its expansion in the 

phylogenetic context and the related demographic events. 

The dissection of R1b-M269 lineage in its sublineages and their analysis in Southwest European 

populations has revealed that the sublineage R1b-P312 (also known as S116) is split into 

geographically localized subhaplogroups. Among them, DF27 turned out to be near-specific of the 

Iberian Peninsula, where it most likely originated. Given the forensic interest of inferring the bio-

geographical origin of a sample, knowing the distribution of DF27 lineage, as well as its structure, 

would be helpful for forensic casework. Despite the high interest DF27 created in the community, 

very few academic publications could be found in the literature, and only concerning a couple of 

its subhaplogroups in some populations. For that reason, a detailed dissection of this lineage was 

still necessary. 

The objective of the present study was the characterization of DF27 lineage through the dissection 

in its sublineages. For that purpose, we analyzed the Y-SNPs DF27, Z195, Z196, L617, L881, Z220, 

Z278, M153, L176.2, S68, M167, and DF17 in 591 individuals from the population that previously 

displayed the highest frequencies for DF27 (Basque Country), along with other three surrounding 

populations (Asturias, Cantabria and Aragón) located in the North of the Iberian Peninsula. 

Additionally, we also collected frequency data from the reference populations in the 1,000 

Genomes Project. We calculated Pairwise FST distances between the four populations and 

estimated the phylogenetic relationships of the related Y-STR haplotypes (extracted from 

previously reported data) by median joining networks. Time to the most Recent Common Ancestor 

(TMRCA) was estimated from 15 Y-STRs using the algorithms Rho (ρ) and the average square 

distance (ASD) with a mean germline mutation rate. 

Our results revealed high frequencies of DF27 (34-70%) and its subhaplogroups in the analyzed 

populations. Accordingly, similar frequencies to those of the Iberian Peninsula were also observed 

in some of the populations from America extracted from the 1,000 Genomes database. The Y-STR 

haplotypes disclosed a phylogenetic split of Z196-Z220 from the bulk of DF27 due to the differing 
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haplotypes for DYS437-DYS448 related to the presence of sublineage Z220. Strikingly, despite the 

high subhaplogroup diversity displayed by DF27, the age estimated by TMRCA points to a recent 

origin approximately 4,000 years ago, in the early Bronze Age. 

In view of the obtained findings, the need for further analysis including more coverage of the 

Iberian Peninsula in addition to other Southwest European populations is clear, since it will shed 

light on the origin and expansion of DF27. 

This study has resulted in: 

1. An international publication in the journal Forensic Science International: Genetics under 

the heading ‘Characterization of the Iberian Y chromosome haplogroup R-DF27 in 

Northern Spain’ in March 2017. Q1, IP: 5.637. 

2. A publication reporting the first stages of this study in the journal Forensic Science 

International: Genetics Supplement Series in September 2015 under the heading 

‘Dissection of the DF27 paternal lineage’. 

The above-mentioned publications are shown below. 
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Abstract 

The European paternal lineage R-DF27 has been proposed as an haplogroup of Iberian origin due 

to its maximum frequencies in the Iberian Peninsula. In this study, the distribution and structure 

of DF27 were characterized in 591 unrelated male individuals from four key populations of the 

north area of the Iberian Peninsula through the analysis of 12 Y-SNPs that define DF27 main 

sublineages. Additionally, Y-SNP allele frequencies were also gathered from the reference 

populations in the 1000 Genomes Project to compare and obtain a better landscape of the 

distribution of DF27. Our results reveal frequencies over 35% of DF27 haplogroup in the four North 

Iberian populations analyzed and high frequencies for its subhaplogroups. Considering the low 

frequency of DF27 and its sublineages in most populations outside of the Iberian Peninsula, this 

haplogroup seems to have geographical significance; thus, indicating a possible Iberian patrilineal 

origin of vestiges bearing this haplogroup. The dataset presented here contributes with new data 
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to better understand the complex genetic variability of the Y chromosome in the Iberian 

Peninsula, that can be applied in Forensic Genetics. 

Keywords: Y chromosome; R haplogroup; Iberia; DF27; Z195. 

1. Introduction 

The inference of bio-geographical ancestry using markers with population-differentiated variation 

can provide investigative leads in forensic cases when eyewitness testimony or a database hit are 

not available [1]. A first step in forensic ancestry inference may be the analysis of the Y 

chromosome or the mitochondrial DNA (mtDNA), as they are uniparental markers differentiated 

geographically. Both lineages are not affected by recombination and correlate with continental 

regions [1,2]. Y chromosome and mtDNA, along with autosomal ancestry informative markers 

(AIMs) can be used for inferring the bio-geographical origin of a vestige, as they are tools that 

complement each other. 

The analysis of Y chromosome SNPs (Y-SNPs) has revealed the existence of specific lineages in 

human populations at continental and regional levels [3]. The Y chromosome diversity analysis 

performed in multiple European populations disclosed the existence of significant frequency 

clines in the major patrilineal lineages [4]. The most frequent paternal lineage in Europe is R1b [5], 

being haplogroup R-M269 the most common in Central and Western Europe [6,7], with 

frequencies ≈0.4 in Italy and Germany, ≈0.6 in Britain, France, and the Iberian Peninsula; and up 

to >0.8 in Ireland and the Basque Country [7]. 

The origin of R-M269 has been the subject of great controversy [6–8], as it was originally believed 

to have originated in the Palaeolithic [9,10]. More recent analysis [11,12] suggested that this 

lineage had a Neolithic origin, but this claim was challenged [7] due to the Y-STR choice for 

computing the coalescence times and sample ascertainment. The last studies involving next-

generation sequencing (NGS) of the Y-chromosome [8,13] and the analysis of ancient DNA [14] 

bring light to the debate, as they support more recent origin and continentwide expansion of the 

main European patrilineages, including R-M269 (≈5 KYA, middle Neolithic). 

R-M269 is split into geographically localized sublineages, being the main branches U106 (more 

frequent in Central-Northern Europe) and P312 (Western and South Western Europe) [6,7]. The 

latter, in turn, trifurcates into U152, M529, and DF27. U152 is common in northern Italy and the 

Alpine region, while M529 is nearly restricted to the British Isles and Britanny [6,7,12]. DF27, 

instead, shows its maximum frequencies in the Basque Country, from where it decreases gradually 
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into the rest of the Iberian Peninsula; elsewhere, it is much rarer. Therefore, it has been suggested 

that DF27 is a distinctive Iberian ancestry haplogroup, where it likely first originated [6]. 

Given the forensic interest that derives from the near-specificity of DF27 in Iberia, we have 

characterized the structure and distribution of the DF27 lineage through the dissection in its 

sublineages [15–17]. For that purpose, we have analyzed the population that showed the highest 

frequency for DF27 [6], along with other four surrounding populations from the north of the 

Iberian Peninsula. In order to reach this aim, the Y-SNPs defining DF27 and its sublineages, Z195, 

Z196, L617, L881, Z220, Z278, M153, L176.2, S68, M167, and DF17 were genotyped. Additionally, 

Y-STR data from the Northern Iberia populations here analyzed were compiled from other studies 

[6,18–20]. 

2. Materials and methods 

2.1 Sample collection 

A total of 591 healthy unrelated males from four different populations from Northern Iberia (from 

West to East: Asturias, Cantabria, Basque Country, and Aragon) were obtained. Informed consent 

was obtained from all individuals participating in the study. Human DNA samples were extracted 

from saliva (Asturias and Basque Country), peripheral blood (Cantabria and Basque Country) or 

blood stains collected on FTA paper (Aragon). Samples from Cantabria and Aragon were provided 

by the collection of the University of Cantabria and from the University of Zaragoza, respectively. 

Samples from Asturias were provided by the Spanish National DNA Bank-Carlos III (BNADN). 

Favorable ethical reports were obtained (Faculty of Pharmacy UPV/EHU, September 26th 2008; 

CEISH/119/2012, BNADN Ref. 12/0031). Fig. 1 shows the geographic location of the selected 

populations. 

The Basque population was treated as two separate groups, native and resident Basques. 

Significant genetic differences were found between the two Basque groups, so it is not 

recommended to treat these populations as a single sample [21]. The inclusion criteria used in 

order to define natives was the Basque origin of surnames and birthplaces of the individuals and 

their ancestors going back at least three generations. The resident group corresponds to those 

individuals that live in the Basque Country but whose paternal ancestors are not native Basques, 

coming from elsewhere in Spain. 
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Fig. 1. Geographic location of the studied populations in Northern Spain. 1: Asturias; 2: Cantabria; 3: Basque Country; 

4: Aragon. 

2.2 Y-SNP analysis 

The samples were genotyped in a hierarchical manner for the following Y-SNPs within the RDF27 

haplogroup: DF27, Z195, Z196, Z220, Z278, M153, L176.2, M167 (also known as SRY2627 [16]), 

S68, DF17, L617, and L881 [15,22]. More details about the phylogeny are represented in Fig. 2. 

The Y-SNPs selected in this study correspond to the diagnostic positions that determine the main 

sublineages of DF27 haplogroup. These positions were chosen following the minimal reference 

phylogeny for the human Y chromosome [22], supplemented when necessary with the more 

detailed tree maintained by the International Society of Genetic Genealogy [23]. 

 

Fig. 2. Phylogenetic tree of R-DF27 paternal lineage. The assignment of haplogroups follows the minimal reference 

phylogeny for the human Y chromosome [22], supplemented when necessary with the more detailed tree maintained 

by the International Society of Genetic Genealogy [23]. 
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SNPs were genotyped with High Resolution Melting (HRM) technology, Sanger sequencing and 

pyrosequencing. Y-SNP details, primers used for amplification and further technical details on 

techniques are shown in Table S1.  

Y-SNPs DF27, Z195, Z196, Z220, Z278, L176.2, M167, S68, and L881 were analyzed by HRM, while 

M153 and DF17 were analyzed by Sanger sequencing. The amplification, melting and sequencing 

conditions were previously described [6].  

SNP L617 was genotyped through pyrosequencing. PCR amplification was performed by using Hot 

Start Taq®Plus DNA Polymerase (Qiagen), 7.5 μM biotinylated primer, 15 μM nonbiotinylated 

primer and 1 ng DNA. The quality and quantity of the PCR product was confirmed with agarose 

gel (1.5%) electrophoresis. Pyrosequencing was carried out using the PyroMark Gold Q96 reagents 

(Qiagen) on a PyroMark 96MD Pyrosequencer (Qiagen). Output data was interpreted with 

PyroMark Q96 MD Software (Qiagen). 

2.3 Y-STR data for Northern Iberian populations 

In order to further study the genetic variability of the Northern Iberian populations, data from 16 

Y-STRs (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS438, DYS439, DYS437, 

DYS448, DYS456, DYS458, DYS635, DYS385ab, and YGATA H4) for a selected sub-population of 203 

Basques (154 native and 49 residents), 30 Cantabrian, 26 Asturian and 29 Aragonese were 

collected from previously reported data [6,18,19]. 

2.4 Statistical analysis 

The absolute and relative frequencies for each SNP were manually counted. Genetic distances FST, 

haplotype diversity (HD) and haplogroup diversity (HGD) were calculated using Arlequin v 3.5 

software [24]. Significance p values were obtained after the Bonferroni correction (α = 0.05/{[(1 + 

n)/2] × n}; n = number of populations) [25]. The phylogenetic relationships of Y-STR haplotypes 

were estimated with median joining networks using Network v 5.0.0.0 [26]. Phylogenetic weight 

was assigned to each locus proportionally to the inverse of the repeat size variance. Anti-

reticulation options implemented within the software, such as the shortest trees option, were 

performed if necessary. For the network construction, alleles at DYS389I were subtracted from 

those at DYS389II and DYS385ab was excluded. 

Time to the Most Recent Common Ancestor (TMRCA) was estimated using Rho, as implemented 

within Network v 5.0.0.0 [26]; and average square distance (ASD) [27,28], by using the Kilin-

Klyosov TMRCA Calculator [29] with some modifications. Mean germ-line mutation rates for the 

Y-STRs (μ = 1.37 × 10−3 per locus per generation) were obtained from the compilation in the YHRD 
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(Y-STR Haplotype Reference Database) database (www.yhrd.org, accessed on Feb. 17th 2016) 

given the mutation rate of a set of 14 Y-STR; with a generation time for men of 30 years [30], this 

yields one mutation per haplotype per 728 years. Limitations discussed in [7] were considered 

when using Y-STRs for the estimation of TMRCA. 

The Y-STR dataset used in this study can be consulted online on the yhrd.org website [31] with the 

accession number YA003887 and YA003047 for Asturias; YA004015 for Cantabria; YA003672-

3677, YA003718 and YA004016-4018 for the Basque Country; and YA003046 for Aragon. New Y-

SNP results were updated for each population dataset. 

3. Results and discussion 

This is the first study that presents the dissection of the Y chromosome haplogroup DF27 for its 

immediately known subhaplogroups: L617, L881, and Z196 and their corresponding 

subhaplogroups, in a representative sample of populations from the North Iberian Peninsula 

where DF27 haplogroup shows a peak of maximum frequency. SNP Z195 was also genotyped, but 

according to its phylogenetic position [22] it should be redundant with SNP Z196; indeed, Z195 

and Z196 results are consistent in all samples. 

The resulting Y-SNP frequencies and Y-SNP/STR haplotypes are shown in Table 1 and 

Supplementary Tables S2-S3. The DF27 lineage reaches frequencies over 40% in all the populations 

analyzed except Aragon, where it is slightly lower (35%). The frequency peak displayed in native 

Basques (70%) is particularly striking. This could be due to the Basque Country being the place of 

origin of DF27 but, on the other hand, it could also be explained by the effect of genetic drift due 

to the geographical and cultural isolation of this population. L617 was not represented in Northern 

Iberian populations except in native Basque population, where it was rare (2%). L881 was absent 

in all of the 591 individuals assayed. In contrast, the Z196 derived allele was present in frequencies 

between 38-13% in all the populations analyzed. 

The frequent Z196 haplogroup was further studied for their subhaplogroups Z220, L176.2, and 

DF17; significant differences in their frequency distribution along the North of the Iberian 

Peninsula were observed. DF17 was found only in extremely low frequencies in Aragon and native 

Basques (0-1%). However, the Y-SNPs Z220 and L176.2 virtually resolved almost all the variability 

within Z196, resulting in low frequencies of the paragroup Z196* in all populations. SNP Z220, 

specifically, reaches maximum frequencies in Basques and Cantabria (>28% in native Basques and 

17% in Cantabria), while L176.2 reaches its maximum frequency in Aragon (11%). Similarly, the 

frequencies of the analyzed Z220 and L176.2 subhaplogroups maintain their maximum 
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frequencies in the same geographical area as their parent haplogroup. The Z220-Z278 

subhaplogroup nearly resolves all the variability within Z220, whereas Z220-M153 shows a peak 

frequency in native Basques, being almost restricted to this population. SNPs L176.2-M167 and 

L176.2-S68 show the highest frequencies in Aragon and Basques, being completely absent in the 

western population of Asturias (Table 1). 

Table 1. Y-SNP frequencies in the analyzed samples of population. For each haplogroup/column, the higher the 

frequency, the more intense the color.  

 

The remaining DF27 individuals not belonging to Z196 (with the exception of the few L617 

Basques) were within the paragroup DF27*, reaching maximum frequencies in native Basques and 

Asturias (30%), and a frequency over 15% in the rest of Northern Iberian populations analyzed. 

We also compared the frequency of the DF27 lineage and its sublineages of the populations we 

analyzed with 15 other populations extracted from the literature [32], including the Iberian 

Peninsula (Table S2). We selected populations from Europe, America, Africa, and Asia to obtain a 

better landscape of the distribution of this haplogroup over the world. The frequency of DF27 in 

the Iberian Peninsula (44%) is similar to what we obtained in our analyses. However, in other 

European populations (Britain, Italy and Finland) the frequency is much lower (0-13%), which 

suggests that the DF27 haplogroup decreases away from Iberia; this decrease is even steeper 

when subhaplogroups of DF27 are considered, as in the case of Z220, with frequencies 18% in 

Iberia and 0-2% in the other European populations. In the Americas, DF27 displays similar 

frequencies to those of the Iberian Peninsula in Colombia and Puerto Rico, and shows lower 

frequencies in Mexico and Peru. These areas have been a destination of the historically known 

Spanish migration [33–36], therefore the frequency of this haplogroup may actually be an 

indication of the degree of patrilineal Spanish versus Native American admixture. Given the 

dispersion of the Spanish population throughout history, it would be of great interest to study the 

presence of DF27 in other areas of the world that have been former Spanish European possessions 

(such as Southern Italy, Sardinia, Sicily, and Flanders) or overseas colonies (such as the 

Philippines). SNP DF27 is absent in populations from Africa (Sierra Leone and Kenya) and Asia 

(Japan and Vietnam), and it is present in low frequencies (2-3%) in African Caribbean from 

Barbados and Americans of African ancestry in Southwest United States (USA) where they could 

signal limited periods of Spanish admixture. 
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The high frequencies of DF27 and its subhaplogroups in the Iberian Peninsula, together with the 

low frequencies observed outside of this area point out the geographical distinctiveness of DF27; 

thus, individuals bearing this haplogroup would have a high probability of having a patrilineal 

Iberian origin. This is especially useful in forensic genetics, since a vast majority of crimes where 

DNA evidence is helpful involve males as perpetrators, and determining the lineage or likely 

geographical origin of a male individual may be helpful [37]. Y-SNPs are also quite informative for 

evolutionary studies and kinship analyses because of the lack of recombination and their low 

mutation rate. They are usually employed in forensics for missing person cases or mass disaster 

identifications, especially in instances where the reference sample(s) and the evidence sample are 

separated by several generations [2]. SNP DF27 could be useful for contributing to the information 

of the origin of individuals from the Iberian Peninsula or of Hispanic origins. In particular, data are 

available for four populations sampled in the US: European Americans from Utah, African 

Americans from the Southwest, Mexicans from Los Angeles, and Puerto Ricans. While the 

persistence of the Native American substrate in Mexicans seems to have brought down the DF27 

frequency to levels similar to those in European Americans, it is 3.5 times higher in Puerto Ricans; 

conversely, it is 2.6 times smaller in African Americans (Table S2). Thus, DF27 and its 

subhaplogroups show some potential for suggesting an origin of a sample of unknown source in 

some Hispanic subpopulations. Nevertheless, complementing the information with other markers 

such as Ancestry AIMs may be needed in order to ascertain the origin of a vestige. 

Haplogroup diversity based on Y-SNPs was obtained (Table S4). The populations from Basque 

Country and Cantabria displayed the highest diversity values, 0.789 ± 0.015 (native Basques); 

0.659 ± 0.037 (residents Basques) and 0.609 ± 0.046, respectively. Asturias and Aragon showed 

lower diversities, 0.584 ± 0.047 and 0.550 ± 0.057 respectively. This could be explained by the 

absence of some sublineages of DF27, like in the case of Asturias (e.g. L176.2). If the main YSNPs 

(other than DF27) are added, higher diversities are observed, in a range from 0.85 to 0.91 (Table 

S4). The diversities for these same populations obtained by Y-STRs [18,19] are higher than the 

ones obtained by Y-SNPs, with values between 0.99 and 1, as it would be expected mainly due to 

the larger allelic range and higher mutation rate of the Y-STRs [38]. 

In order to study the genetic relationships between the populations analyzed in this study, genetic 

distances (FST) and their corresponding p-values were obtained (Table S5). Significant differences 

(p<0.005) were found between native Basques and the rest of the populations studied. The native 

Basque population is composed only by autochthonous individuals and has been subjected to a 

long isolation that has minimized the contribution of non Basque Y chromosomes to their lineages; 

therefore, this kind of differentiation is to be expected since most of their patrilineages may have 
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a Basque origin. The distinctiveness of the Basque population has also been observed in other 

studies based on Y-SNPs and Y-STRs [6,18,21], X chromosome STRs [39] and mitochondrial DNA 

[40,41]. The rest of the analyzed populations did not show statistically significant differences 

between each other. These results are consistent with other studies that show a similar population 

structure of Y-SNP and Y-STR at the level of M269 lineage for other populations from the Iberian 

Peninsula [6,18,42]. 

 

Fig. 3. Median joining network of DF27 haplogroup in the populations of Asturias, Cantabria, native Basques, resident 

Basques, and Aragon. The phylogenetic split for DF27 haplogroup is due to differing haplotypes for DYS437/DYS448 Y-

STRs. 

Additionally, median joining networks were built with 14 Y-STR haplotypes to further characterize 

the structure of the DF27 lineage (Fig. 3 and Supplementary Figs. S1-S3). The phylogenetic split of 

Z196-Z220 from the bulk of DF27 Y-STR haplotypes was previously detected by network analyses 

[6], but now it can be confirmed by Z220 subhaplogroup (Fig. 3). The phylogenetic split is due to 

differing haplotypes for DYS437/DYS448 Y-STRs. The right-hand part of the split in the network 

included principally Z278, M153 and Z220* individuals and bears haplotype 14/18, whereas the 

left-hand part of the split, which includes the remaining DF27 subhaplogroups, bears the 15/19 

haplotype, which is also the most prevalent in the rest of R1b-M269 chromosomes [42]. The 

present network has also showed divergent branches from DF27 node groups, which includes 

almost exclusively native Basque individuals (Fig. 3, A). The Z220 node groups also show divergent 

branches, whereas this branch contains individuals from Cantabria and native Basques (Fig. 3, B). 
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This could indicate some degree of independent evolution of some of the paternal lineages from 

each of the regions, probably due to the isolation of the populations in the mountain area of 

Northern Iberia. 

The DF27 paragroup was further studied in order to determine possible patterns of internal 

variability (Figs. S1-S3). The network (Fig. S1) showed a non homogeneous star-like structure, 

where the core appears highly reticulated and is composed mainly of native Basque individuals. 

Two short branches (Fig. S1, A and B) appear to diverge from the core haplotype. Branch A is 

composed mainly by native Basque individuals (except a few Cantabrian, Asturian and resident 

Basque individuals) and can be traced by the Y-STR alleles DYS391*10 and DYS393*12. Branch B 

is composed by the few DF27* individuals that share the haplotype DYS437/DYS448 14/18, which 

is more distinctive of the Z220 lineage and its sublineages. Those samples can also be traced by 

the Y-STR alleles DYS391*11 and DYS393*13. A more simplified version of DF27* network (Fig. 

S2), made by using the anti-reticulation options included within the Network software, shows a 

more clear structure of the core and some divergent branches, which could be due to the intrinsic 

variability of the Y-STR loci or to a greater divergence, which may have resulted in the presence of 

yet undiscovered SNPs. Nonetheless, the artificial simplification of the structure of DF27 

paragroup by the Network software should be also considered. Two main branches (Figs. S2, A 

and B) are distinguished by the DYS456 15 and 16 alleles, respectively. Since the core of DF27* 

network is composed mainly of native Basque individuals, a separate network of DF27* lineage 

was constructed for the native Basque population (Fig. S3), which conserved a similar structure to 

the previous network and, interestingly, practically has no median vectors. The absence of median 

vectors could be due to the exhaustive sampling of such a young paragroup. The presence of such 

variability of DF27* Y-STR haplotypes in the analyzed populations and the fact that the core of the 

network is composed mainly by native Basque individuals could be evidence for the origin of DF27 

in the northern area of the Iberian Peninsula. 

Finally, we estimated the TMRCAs of the DF27 haplogroup and its subhaplogroups Z196, Z220, 

L176.2, Z278, M153, and M167. The ages of M269 lineage and its sublineages have been the 

subject of controversy [6–8,14]; however, recent studies [8,13,43] place the age of M269 in the 

Middle Neolithic (5 KYA). Using a “pedigree” Y-STR mutation rate based on direct detection of 

mutations in father-son pairs [43], our results for the age of DF27 and its subhaplogroups are 

consistent with this period. DF27 (4176 ± 696 years) seems to have originated in the early Bronze 

Age probably somewhere in the Iberian Peninsula. Its main sublineage Z196 (3173 ± 502) arose 

early after DF27, and the same pattern is observed with the rest of its sublineages Z220 (2904 ± 

474), L176.2 (2935 ± 514), Z278 (2817 ± 515), M153 (1627 ± 535), and M167 (2141 ± 437). Similar 
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results are obtained when estimating the TMRCAs using ASD (DF27: 3862 ± 372; Z196: 3575 ± 436; 

Z220: 3155 ± 464; L176.2: 3352 ± 631; Z278: 2767 ± 411; M153: 1260 ± 232; and M167: 2595 ± 

744). 

A further analysis of the Iberian lineages together with other lineages located in different areas of 

Europe and/or the world may be helpful in order to establish more accurately the origin of DF27 

haplogroup. 

4. Conclusion 

The analysis of 591 individuals from Northern Iberia reveals a high frequency of the DF27 

haplogroup and its subhaplogroups in four North Iberian populations and increase the available 

information of the structure and distribution of this lineage. The results of the dissection of DF27 

here performed suggest a recent origin of this lineage. A deeper knowledge of the variability 

within DF27 paragroups and subhaplogroups would provide new data about even younger 

subhaplogroups related to the Iberian people that inhabited the Peninsula during more recent 

times, which would be of great value to elucidate the complex population movements and 

mixtures along the history of the Iberian Peninsula. 

The data presented in this research will be valuable in the field of the forensic genetics due to the 

usefulness of DF27 and its subhaplogroups for indicating the Iberian origin of forensic evidences. 
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Table S1. Y-SNP characteristics, primer sequences and analysis conditions. 

 

  

Y-SNP Primers (5´- 3´) Method** Mutation (anc/der) db SNP ID Y chr position GRCh37

FW*: TTGGCTGGATATGAAATTCTGGA HRM & Seq

RV*: GGAAGCCCATCAGATTAACAGA HRM & Seq

FW: AACTGTAAGTCTATGCTGCT HRM & Seq

RV: ACAGACTGGTTCTGCTTATGT HRM & Seq
FW: CATTGCAAGGCTCCAACCAC HRM & Seq
RV: CGGCATAACCCTGATTTCAACC HRM & Seq
FW: TCTCTAACTTCTGGCTTCAAGTG HRM & Seq
RV: TGGAATGATATCAGCTTCCATGTC HRM & Seq

FW: AAGGAGAATGATTGCATCAGTC HRM & Seq

RV: GGAATGTTTGTTTACAATGTGGT HRM & Seq
FW: ATTGTCTCCTTTAAGTGGGT Seq
RV: TTAATCTGACTTGGAAAGGG Seq
FW: ACCCAGTGTTAATTACCCGT HRM & Seq
RV: GAGCCTCAGGATTCAAAGGA HRM 
RV2: CTATCATTATTGAGGGCTGGA Seq
FW: GGAGTGACAACCAAGAAGAG HRM & Seq
RV: TTTCAAGCTCTGGTTCTGTG HRM & Seq
FW: TGTCAGATGCTTAATTGTGTTTC HRM 
RV: CAGGAGTTATGTGAGGACCC HRM & Seq
FW2: TGCTTGAAACCGAGTTTGTA Seq
FW: ATTAGCCAACTGTAATCTTGGTTA Seq
RV: TCTTATTCCATCACCCAGGC Seq
FW*: /5Biosg/TCATCTTCACCCTTGAGAAGC
RV*: TAATGGCAGAAACCATGACAAA
S: CCAAGGTGGAGAAGTG
FW: TGGCTGTGGCTTTACTTTCTG HRM & Seq
RV: GCAGGACAACCCTTCTTTGA HRM & Seq

8466862Pyroseq 60/45 84  G/A ̶

* These primers are nested primers of a longer amplicon. DF27 was amplified with the primers FW:GGGAATTTGATCCTGTCGTTG and RV:GAACAAAGCCTCCAAGAAATATGAGG [1] with the same annealing temperature. 
L617 was amplified with the primers FW: AATGGTCTGGTGTTGAAGTGG and RV: GGTTGCGTGAAATAATTGGGT with the same temperature of annealing.

L881 60 211 A/G ̶

229 G/A rs1800865 2658271

M153

**Seq: Sequencing, HRM: High Resolution Melting, Pyroseq: Pyrosequencing

21842521

60.5 113 A/T rs375151448 21706360

M167

DF17 60 125  T/G rs754186919 6631746

L617

60.5

16310705

Z195 61 144 G/A rs568477247 17922066

Z220 60 102 G/A rs538725564

AT/del ̶

21380200DF27 61 124 G/A rs577478344

21033704..21033705Z196 60.5 HRM: 106 ; Seq: 104

Annealing Temperature Amplicon Size

HRM: 63 ; Seq: 60.5 HRM: 79/84 ; Seq: 109/114 6AAAAC/7AAA
AC

̶ 21779256..21779257L176.2

S68 HRM: 63 ; Seq: 60.5 HRM: 62 ; Seq: 141 C/T rs775040950 21930315

A/G rs1469371 18167479Z278 58 156
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Table S2. Y-SNP frequencies in the analyzed samples of population. For each haplogroup/column, the higher the 

frequency, the more intense the colour. * These populations are extracted from the 1000 Genomes Project [19] 

 

Table S3. Y-SNP and Y-STR haplotypes for all the analyzed samples of population. 

Corresponds to Attached Table 2 in Appendix section. 

Table S4. Sample size (N), number of haplotypes (K), and haplogroup diversity (HGD) in the populations analyzed. *For 

HGD*, besides DF27 and its subhaplogroups, M2, M35, P15, M253, P37, M223, M267, M410, M12, M184, M420, M343, 

M269, U106, P312, U152 and M529 were considered (data not shown). 

 

 

 

 

 

 

 

Population N K HGD HGD*
Asturias 63 5 0.5842±0.0474 0.8652±0.0291

Cantabria 96 7 0.6086±0.0460 0.8803±0.0247
Native Basques 229 11 0.7890±0.0149 0.8477±0.0137

Resident Basques 111 8 0.6591±0.0373 0.9093±0.0177
Aragon 92 9 0.5499±0.0567 0.8970±0.0175
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Table S5. Genetic Fst distances based on Y-SNP haplotypes and p-values. Statistically significant differences after 

Bonferroni correction are shaded in yellow. Bonferroni: 0.005. 

 

Supplementary Figures 

 
Figure S1. Median Joining Network of individuals belonging to DF27*. 

 

 

 

Fst values
Asturias Cantabria Native Basques Resident Basques Aragon

Asturias 0.00000
Cantabria 0.01387 0.00000

Native Basques 0.11407 0.06055 0.00000
Resident Basques 0.01476 -0.00384 0.05174 0.00000

Aragon 0.00817 0.00644 0.10425 0.00569 0.00000

p values
Asturias Cantabria Native Basques Resident Basques Aragon

Asturias *
Cantabria 0.11454+-0.0034 *

Native Basques 0.00000+-0.0000 0.00030+-0.0002 *
Resident Basques 0.09940+-0.0029 0.55697+-0.0054 0.00020+-0.0001 *

Aragon 0.17127+-0.0037 0.17681+-0.0035 0.00000+-0.0000 0.17563+-0.0044 *
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Figure S2. Simplified median joining network of individuals belonging to DF27*. 

 

 
Figure S3. Median joining network of DF27* in the native Basque population. 
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Abstract 

The genetic evidence provided by the analysis of the Y chromosome is a valuable tool for the study 

of the evolution of paternal lineages. The dissection of S116, the major M269 subhaplogroup in 

Western and South-Western Europe uncovered an outstanding frequency of DF27 sublineage in 

the Basque region. In this study, a dissection of DF27 haplogroup was performed to the highest 

resolution to date in 340 individuals from the Basque Country. Our results describe frequency 

distribution patterns for some DF27 sublineages for the first time, and reveal a possible 

substructure of its paragroups. 

Keywords 

Y-SNPs; Paternal lineages; DF27. 

1. Introduction 

The analysis of Y chromosome SNPs (Y-SNPs) reveals the existence of specific lineages in human 

population at continental and regional level [1]. Currently a large majority of individuals in Central 

and Western Europe (40–90%) belong to a single lineage: R-M269 [2]. 

The dissection of the lineage M269 in European populations has shown a broad range of areas 

that possess geographically located subhaplogroup expansions. S116 is distributed in western and 

south-western Europe. Regarding S116 sublineages, DF27 show a high frequency in the Iberian 

Peninsula while M529 is more common in the British Isles and U152 in northern Italy and the 
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Alpine region. DF19 and L238 show very low frequencies in Western Europe [2–3]. This provides 

useful information in Forensic Genetics. 

The objective of our study is to dissect the DF27 sublineage in the Basque population, where the 

DF27 frequency is the highest found to date in Europe. With this aim, the Y-SNPs Z195, Z196, 

L176.2, M167, S68, S356, M153, DF17, L881 and L617 were analyzed. These new data contribute 

to know the frequencies of these sublineages and it may be of interest in forensic casework. 

2. Material and methods 

2.1 Population sample 

Blood or saliva samples from autochthonous (N = 229) and resident (N = 111) men were taken in 

the Basque Country after informed consent. 

2.2 Molecular analysis 

DNA concentration was adjusted to 1 ng/µL. 

The Y-SNPs DF27, Z195, Z196, L176.2, M167, S68, S356 and L881 were analyzed by high resolution 

melting (HRM). M153 and DF17 were typed by Sanger sequencing. Finally, L617 was analyzed by 

pyrosequencing. The amplification, melting, sequencing and pyrosequencing conditions are 

described in www.BiomicsResearchGroup.net. 

2.3 Statistical analysis 

The absolute and relative frequencies for each SNP were manually estimated. Frequencies of Y-

STR haplotypes [4] were calculated using Arlequin v 3.1 software [5]. The phylogenetic 

relationships of Y-STR haplotypes were estimated using Network v 4.6.1.3 [6]. Phylogenetic 

weights were assigned in a manner inversely proportional to observed mutations. 

3. Results and discussion 

The observed frequencies are shown in Table 1. 

The dissection of this haplogroup reveals Z196 as the main sublineage of DF27 in Basque 

population, with frequencies up to 38%. In autochthonous Basques the frequency was quite 

higher (38%) than in non autochthonous population (23%), being a common trend the differences 

in frequency between the two samples of this population. This is consistent with the previous data 

of Valverde et al. [7], which places the origin of S116 in the Iberian Peninsula. 
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Z196 is divided in the subhaplogroups S356 (the most frequent), L176.2 and DF17. Compared to 

previous studies the frequencies of M153 and M167 sublineages of S356 are lower than in other 

Pyrenean populations [8]. 

Table 1 

Frequencies of Y-SNP lineages (%) in the analyzed population samples. 

 

The frequency of DF27* was quite higher in the Basque region, showing frequencies between 31% 

and 24% in the two population samples. In the same sense, the paragroup of S356 (S356*) draws 

attention because of its striking frequency. The high frequencies of DF27* and S116* paragroups 

indicate a probable existence of new subhaplogroups supporting the subdivision of both of them. 

 

Fig. 1. MJN of the DF27 haplogroup in the autochthonous Basque population sample. Two phylogenetic splits into DF27* 

and S356* paragroups can be observed. 

This hypothesis was supported by the structure of the median joining network (MJN) (Fig. 1). The 

MJN showed two main groups corresponding the individuals belonging to DF27* and S356* 

haplogroups characterized by the Y-STR haplotypes DYS437/DYS448 bearing the alleles 15/19 and 

14/18, respectively. Moreover, DF27 lineage appears to be split in two groups that differ in the 
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locus DYS391. DF27*a samples bear the allele 10 whereas DF27*b samples share the allele 11. On 

the other hand, S356* shows two principal groups, S356*a and S356*b that bear the alleles 13/12 

and 14/13 in the haplotype DYS393/DYS438. 

4. Conclusion 

Our results reveal a high frequency of DF27 lineage in Basque population that may be an indicator 

or a possible Iberian origin of this lineage and its sublineages. The high proportion of individuals 

in the paragroups DF27* and S356*, as well as the subdivision of DF27* and S356* haplotypes, 

makes clear the need to continue the searching of new Y-SNPs in order to attain a better resolution 

of their respective subhaplogroup. 
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4.3 Study Number 3 

‘Analysis of the R1b-DF27 haplogroup shows that a large fraction of the Iberian Y-chromosome 

lineages originated recently in situ’ 

The third study of the present work corresponds to the attainment of the second part of the 

objective 2: To characterize the structure and spatial distribution of the Iberian near-specific 

paternal lineage R1b-DF27 in Southwest European populations through the dissection in its 

sublineages, with the aim to estimate its time of origin, as well as to model its expansion in the 

phylogenetic context and the related demographic events.  

To properly characterize the distribution and structure of a lineage it is required to analyze a large 

number of individuals from several locations, which is of utmost importance in the field of forensic 

genetics where the ancestry of an evidence could be linked to a geographic location. In the case 

of the paternal lineage R1b-DF27, the preceding findings unveiled the interest in improving the 

coverage of the Iberian Peninsula in addition to other Southwest European populations to get a 

detailed view of its distribution, structure and origin.    

The present work has a dual aim. On the one hand, to further characterize the special distribution 

of DF27 haplogroup by analyzing more populations. On the other hand, to estimate its time of 

origin and model its expansion considering both its phylogenetic context and the demographic 

events that influenced the genetic variability of West Europe around 4,500 years ago. For that 

purpose, a total of 1,072 male individuals were genotyped in 26 populations from Spain, Portugal, 

and France for the Y-SNPs M269, S116, DF27, Z195, L176.2, M167, Z220, Z278, and M153. Basic 

descriptive statistics, principal component analysis (PCA), AMOVA, and times to the most recent 

common ancestor (TMRCA) were calculated. We used Approximate Bayesian Computing (ABC) to 

test alternative models of demographic expansion for DF27 and to estimate their parameters. 

The findings of this study complete the distribution landscape of DF27, reconfirming its presence 

in Iberian populations with frequencies around 40%, as previously observed, and adding 

information regarding France, where the frequencies drop to 6-20%. The analysis of DF27 

sublineages reveal certain degree of geographic structure, since the subhaplogroup L176.2 is more 

frequent in East Iberia and Z220, in turn, peaks in North-Central Iberia. These domains could be 

reminiscent of previous partitions of the Iberian region, such as the pre-roman Iberian/Celtic 

division of the Iberian Peninsula, or of the Christian Kingdoms in the Middle Ages. By and large, 

the age of DF27 was estimated at 4,200 years ago, at the transition between the Neolithic and the 

Bronze Age. Regarding the place of origin of DF27, North-East Iberia (Basque Country, Aragon) is 
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the most likely option considering the frequencies and the Y-STR internal diversity. Finally, the 

Approximate Bayesian Computing (ABC) results suggest that the demography of DF27 is more 

compatible with population growth than with stationarity, being the start of this growth closer to 

the TMRCA of the haplogroup. 

In conclusion, the present study has contributed valuable genetic data for the understanding of 

the phylogeography of DF27. However, a global characterization of the whole sequence diversity 

of this haplogroup as well as sampling more locations in Atlantic Iberia would be desirable to 

obtain a more accurate picture of DF27 haplogroup. 

This study has resulted in an international publication in the journal Scientific Reports under the 

heading ‘Analysis of the R1b-DF27 haplogroup shows that a large fraction of the Iberian Y-

chromosome lineages originated recently in situ’ in August 2017. Q1, IP: 4.122. The publication is 

shown below. 
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Abstract 

Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, 

R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have 

genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population 

samples from Spain, Portugal and France in order to further characterize this lineage and, in 

particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. 

We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in 

Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at 

~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y 

chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in 

Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age 

estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within 

R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-

Roman Celtic/Iberian division, or of the medieval Christian kingdoms.  

Introduction 

Although it contains ~1% of the genome length in a human male cell, the lack of recombination 

along most of the Y chromosome makes constructing phylogenies for genetic variation relatively 

easy. Coupled with a robust geographic differentiation, this trait has provided a comprehensive 

phylogeography of Y chromosome haplotypes (usually referred to as haplogroups), that has been 

thoroughly characterized. Thus, the origin, dispersal, and geographic spread of many haplogroups 

are known. Moreover, both the genotyping of fast-mutating short tandem repeats (STRs) in the 

non-recombining region of the Y chromosome (NRY), and the recent availability of ascertainment-

bias-free whole sequences of the NRY have reliably added a temporal scale to the deployment of 

the Y-chromosome diversity. One of the most salient features of the recent evolutionary history 

of human Y chromosomes is that it seems to have happened in bursts, with haplogroups rising to 

high frequency in the wake of major lifestyle shifts and technological innovations such as the 

advent of the Neolithic or the recently acknowledged demographic upheaval caused by the Bronze 

Age in Europe1, 2. 

The most frequent Y-chromosome haplogroup in W Europe is R1b-M269, with frequencies ranging 

from 41% (Germany) to 83% (Ireland)3. Precisely, the higher frequency of this haplogroup in W 

Europe rather than in E Europe or W Asia led previous authors to believe it had a post-glacial 

Palaeolithic origin4, 5; however, a larger STR variance in SE European and W Asian R1b-M269 

chromosomes and direct TMRCA dating pointed to R1b-M269 having surfed the Neolithic wave of 
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advance3, 6, the evidence for which other authors did not find conclusive7. Finally, direct dating 

from NRY sequence variation puts the origin of R1b-M269 in the Early Bronze Age, ~4500 years 

ago (ya)1, 8, consistent with the growing ancient DNA record, where a surge in R1b-M269 is indeed 

seen at that time2, 9. Note, though, that R1b-M415, a branch ancestral to R1b-M269, was found as 

early as 14,000 ya in Italy10 and 7,000 ya in Spain2. Moreover, lack of structure of STR variation 

within R1b-M26911, 12 points also to an explosive growth. 

 

Figure 1. Simplified phylogenetic tree of the R1b-M269 haplogroup. SNPs in italics were not analyzed in this manuscript. 

The most important branches of R1b-M269 are R1b-U106, particularly frequent in the Low 

Countries and NW Germany3, 13, and R1b-S116 (also known as R1b-P312), which is common 

throughout W Europe3. The latter trifurcates in turn into U152 (frequent in N Italy and 

Switzerland13), L21 (also known as M529, abundant in the British Isles7), and DF27 (Fig. 1; 

Supplementary Figure 1). DF27 was first discovered by citizen scientists14 and, although among 

the burgeoning amateur genetic genealogy it is known to be frequent in Iberian populations and 

their overseas offshoots, few academic publications have been devoted to it. It was found in the 

1000 Genome Project populations at a frequency of 49% in Iberians, 6% in Tuscans, 7% in British, 

and it was absent elsewhere except for admixed populations in the Americas: Colombia (40%), 

Puerto Rico (36%), Mexico (10%), Perú (8%), African-Americans (4%) and Afro-Caribbeans (2%)14, 

15. It was first genotyped specifically in a few Iberian populations, Brittany and Ireland as part of a 

study on R1b-S11616, which indeed confirmed that R1b-DF27 is present at frequencies >40% in 

Spain and Portugal. Subsequently, 12 SNPs within DF27 were genotyped in four N Spanish 
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populations17, confirming its high frequency and hinting at some substructure within the Iberian 

Peninsula. As for its presence elsewhere, the frequency of R1b-S116 (xL21, U152) can be used as 

an upper bound for the frequency of R1b-DF27. R1b-S116 (xL21, U152) was found at frequencies 

0–10% in Germany3, 18, 7% in the Netherlands3, 8–12% in Flanders19, 6–12% in Switzerland3, and 

1–12% in Italy3, 20. 

Here, by extending population sampling to cover France as well as by improving coverage in the 

Iberian Peninsula, we aim to i) further characterize the spatial distribution of R1b-DF27, ii) 

estimate its time of origin, and iii) explicitly model its expansion in relation both to its phylogenetic 

context, and to the demographic events that thoroughly reshaped the genetic diversity of W 

Europe around 4500 ya. 

Results 

Over one thousand individuals carrying DF27 were typed for six additional SNPs (Table 1, Fig. 1) 

and 17 Y-STRs. DF27 itself was found at frequencies 0.3–0.5 in Iberia (with a mean of 0.42), with 

the notable exception of native Basques, where it reached 0.74 (for this and all subsequent 

frequency values, see Fig. 2 and Supplementary Table 1). In France, it dropped to a range of 0.06–

0.20 and a mean of 0.11. Elsewhere, it was 0.15 in Britain (but <0.01 in Ireland) and 0.08 in 

Tuscany. Most (50–100%, with a proportion that dropped from East to West) DF27 Y 

chromosomes were also derived for Z195; thus, the highest frequencies of Z195 (0.29–0.41) were 

reached both in the Basque Country and in E Iberia (Catalonia, Valencia), and it becomes as rare 

in Portugal as it is in France. Conversely, the highest frequencies of R1b-DF27* (xZ195) are found 

in Native Basques and Western Iberian populations such as Asturias, Portugal and Galicia, which 

may harbor yet unknown branches of R1b-DF27. In turn, Z195 splits into two branches, namely 

L176.2 and Z220 (Fig. 1). Note that L176 is a recurrent mutation that defines two clades in the Y 

phylogeny: L176.1 within R1a, and L176.2 under R1b-DF27; throughout this manuscript, we will 

refer exclusively to the latter. L176.2 and Z220 peak, respectively, in E Iberia and the Basque 

Country. L176.2 is further subdivided into M167 (SRY2627, ref. 21), with the highest frequencies 

in Catalonia and the lands settled from Catalonia in the 13th century (Valencia, the Balearics). This 

marker had been typed in a number of Iberian and other European populations4, 18–20, 22–25, and the 

overall frequency pattern found (Supplementary Figure 1) confirms a distribution centered in the 

eastern half of Iberia, although with higher frequencies (up to 0.16) in the upper Ebro river valley 

and the Pyrenees. As mentioned above, Z220 is most frequent in the Basque Country (0.28), and 

a similar pattern is found for its successive nested clades, namely Z278 and M153. For the latter, 

available additional data22, 23, 25 showed it confined to the Iberian Peninsula, with frequencies 
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0.06–0.40 among Basque subpopulations, but rarely above 0.01 elsewhere (Supplementary Figure 

1). 

 

Table 1. Populations sampled and their original sources. Region: higher population grouping used in some analyses. (1): 

Chromosomes predicted to be R1b but without further SNP typing; (2): Chromosomes known to be R1b-P312* (xZ195, 

U152, L21) but without further typing; (3): Chromosomes known to be R1b-Z195 (xM167, Z220), but not typed for L176. 

The subhaplogroup frequencies were summarized in a PC plot (Fig. 3). The first PC separated the 

Iberian populations (save for the three westernmost samples, namely Portugal, Galicia, and 

Asturias) from the rest, explained 68.6% of the total variation, and was positively correlated with 

DF27 and all of its subhaplogroups. On the contrary, PC2 (20.9%) was positively correlated with 

L176.2 and M167 and most negatively correlated with Z278 and M153, and separated most 

Eastern Iberian populations from the rest. 
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Figure 2. Contour maps of the derived allele frequencies of the SNPs analyzed in this manuscript. Population 

abbreviations as in Table 1. Maps were drawn with SURFER v. 12 (Golden Software, Golden CO, USA). 

In order to quantify the structure of subhaplogroup frequencies, we performed AMOVA with 

several population groupings. Thus, if we compared Iberian populations vs. the rest, the 

proportion of the variance explained by the differences among these two groups (i.e., FCT) was 
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12.40% (p < 10−4), while the proportion of the variance found within groups (i.e., FSC) was 3.20% 

(p < 10−4). If the native Basques were split from the Iberians, then FCT = 13.57% (p < 10−4) and FSC = 

1.37% (p < 10−4). Finally, if Eastern Iberians are also split from the rest of Iberians, then FCT = 11.68% 

(p < 10−4) and FSC = 0.31% (p = 0.0106). In conclusion, the differences among the groups that are 

apparent in the PCA plot are highly statistically significant. 

 

Figure 3. Principal component analysis of subhaplogroup frequencies. Population abbreviations as in Table 1. Circles: 

Iberian populations; squares: non-Iberian populations. 

Haplotypes comprising 17 Y-STRs were available for 758 individuals (Table 2). AMOVA among this 

set of populations gave RST = 0.72% (p = 0.00386), while, for the same populations, subhaplogroup 

frequencies yielded FST = 8.33% (p < 10−4). Thus, Y-STRs seem to capture much less 

phylogeographic structure than SNPs themselves, as described for R1b-M26911, 12. Still, some Y-

STR structure may be present within R1b-DF2712, 17. Since a median-joining tree with 688 different 

haplotypes is unmanageable, we resorted to principal component analysis (PCA) among 

haplotypes (Fig. 4). The first PC explained 15.1% of the STR variation and correlated mostly with 

DYS437 (r = 0.865), DYS448 (r = 0.858), and YGATAH4 (r = 0.724), and separated haplotypes that 

carried the derived allele for Z220 (that is, belonging to R1b-Z220*, R1b-Z278* and R1b-M153) 

from the rest. PC1 coordinates were highly significantly different by subhaplogroup (p ~ 10−150, 

ANOVA). The median haplotype for Z220-derived chromosomes was 11-14-18 at YGATAH4-

DYS437-DYS448 while it was 12-15-19 for the rest of DF27 chromosomes (other STRs showed the 

same median allele). PC2 explained 8.6% of the STR variation and correlated with DYS390 (r = 

0.647) and DYS456 (r = −0.544), and separated R1b-Z220* from R1b-Z278* chromosomes; overall, 
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R1b-DF27 subhaplogroups had significantly different PC2 coordinates (p = 9.12 × 10−4). The same 

PC results can also be analyzed by population (Fig. 4b): PC1 coordinates are statistically 

significantly different by population (ANOVA, p = 0.00512), with the French samples having higher, 

positive values in this PC, while PC2 is not significant across populations (p = 0.781). These results 

can be explained by the very low frequency of Z220-derived chromosomes outside of Iberia. 

Population N K Dhap Var sd (Var) 

All 758 688 0.9996 0.330 0.215 

Alacant 57 56 0.9994 0.377 0.400 

Alsace 5 5 1 0.260 0.292 

Aragón  29 29 1 0.372 0.218 

Asturias 26 26 1 0.283 0.274 

Auvergne 5 5 1 0.187 0.125 

Native Basques 154 122 0.9951 0.282 0.174 

Barcelona 184 178 0.9995 0.348 0.226 

Cantabria 30 30 1 0.403 0.364 

Castelló 23 23 1 0.294 0.213 

Girona 33 33 1 0.306 0.183 

Île-de-France 8 8 1 0.323 0.204 

Lleida 39 39 1 0.314 0.187 

Mallorca 21 21 1 0.341 0.280 

Midi-Pyrénées 7 7 1 0.308 0.314 

Nord-Pas-de-Calais 7 7 1 0.432 0.459 

Provence–Alpes-Côte 
d’Azur 

3 3 1 0.156 0.278 

Pyrenees 17 17 1 0.443 0.328 

Resident Basques 49 49 1 0.285 0.188 

Tarragona  38 38 1 0.351 0.276 

Valencia 23 23 1 0.337 0.152 

 

Table 2. Diversity parameters for STR variation within R1b-DF27 chromosomes. K: number of different haplotypes; 

Dhap: haplotype diversity; Var: average STR allele repeat size variance; sd: standard deviation across loci of Var. 
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Figure 4. Principal component analysis of STR haplotypes. (a) Colored by subhaplogroup, (b) colored by population. 

Larger squares represent subhaplogroup or population centroids. 

Internal diversity and ages of DF27 and its derived subhaplogroups 

The average STR variance of DF27 and each subhaplogroup is presented in Suppl. Table 2. As 

expected, internal diversity was higher in the deeper, older branches of the phylogeny. If the same 
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diversity was divided by population, the most salient finding is that native Basques (Table 2) have 

a lower diversity than other populations, which contrasts with the fact that DF27 is notably more 

frequent in Basques than elsewhere in Iberia (Suppl. Table 1). Diversity can also be measured as 

pairwise differences distributions (Fig. 5). The distribution of mean pairwise differences within 

Z195 sits practically on top of that of DF27; L176.2 and Z220 have similar distributions, as M167 

and Z278 have as well; finally, M153 shows the lowest pairwise distribution values. This pattern is 

likely to reflect the respective ages of the haplogroups, which we have estimated by a modified, 

weighted version of the ρ statistic (see Methods). 

 

Figure 5. Cumulative distributions of the number of pairwise absolute differences in repeat size among individuals, by 

subhaplogroup. 

We estimated an age of 4190 ± 140 ya for the whole of DF27. This figure is remarkably similar both 

to the estimate (4128 ± 71 ya) that can be produced from whole Y-chromosome sequence 

variability in the 88 DF27-derived individuals present overall in the 1000 genomes project dataset, 

and to the age estimated from 201 individuals in our dataset for which 21 non-duplicated Y-STRs 

from the Powerplex Y23 System were available26 (3880 ± 165).  

Z195 seems to have appeared almost simultaneously within DF27, since its estimated age is 

actually older (4570 ± 140 ya). Of the two branches stemming from Z195, L176.2 seems to be 

slightly younger than Z220 (2960 ± 230 ya vs. 3320 ± 200 ya), although the confidence intervals 

slightly overlap. M167 is clearly younger, at 2600 ± 250 ya, a similar age to that of Z278 (2740 ± 

270 ya). Finally, M153 is estimated to have appeared just 1930 ± 470 ya. 
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Haplogroup ages N age 95% CI 

DF27 

total  758  4194  (4055, 4333)  
Aragón  29  4527  (3831, 5223)  
Basques  154  3931  (3617, 4245)  
Catalonia  311  4367  (4163, 4571)  
France  35  3428  (2911, 3945)  
Mallorca  21  4091  (3360, 4822)  
N. Central Spain  105  3614  (3293, 3935)  
Valencia  103  4525  (4166, 4884)  

Z195 

total  510  4569  (4398, 4740)  
Aragón  18  4177  (3293, 5061)  
Basques  83  3257  (2869, 3645)  
Catalonia  246  4584  (4349, 4819)  
France  34  3450  (2923, 3977)  
Mallorca  14  4028  (3081, 4975)  
N. Central Spain  44  3917  (3407, 4427)  
Valencia  71  4541  (4114, 4968)  

L176.2 

total  189  2964  (2737, 3191)  
Aragón  10  2759  (1626, 3892)  
Basques  14  3059  (2222, 3896)  
Catalonia  108  2931  (2651, 3211)  
France  15  3016  (2273, 3759)  
Mallorca  7  1465  (440, 2490)  
N. Central Spain  8  2365  (1465, 3265)  
Valencia  27  2933  (2370, 3496)  

M167 

total  137  2602  (2351, 2853)  
Aragón  4  3458  (1919, 4997)  
Basques  7  1221  (217, 2225)  
Catalonia  81  2597  (2289, 2905)  
France  12  2812  (2010, 3614)  
Mallorca  6  1626  (466, 2786)  
N. Central Spain  6  2050  (1082, 3018)  
Valencia  21  2404  (1818, 2990)  

Z220 

total  267  3318  (3114, 3522)  
Aragón  7  1956  (1080, 2832)  
Basques  62  2693  (2291, 3095)  
Catalonia  123  3380  (3094, 3666)  
Mallorca  7  3198  (2079, 4317)  
N. Central Spain  27  3718  (3105, 4331)  
Valencia  40  3683  (3166, 4200)  

Z278 

total  130  2745  (2475, 3015)  
Aragón  3  1716  (464, 2968)  
Basques  46  2298  (1877, 2719)  
Catalonia  41  2425  (1994, 2856)  
N. Central Spain  20  3417  (2733, 4101)  
Valencia  20  3084  (2369, 3799)  

M153 

total  34  1926  (1454, 2398)  
Basques  15  1582  (933, 2231)  
Catalonia  9  1202  (438, 1966)  
Valencia  8  2504  (1393, 3615)  

 

Table 3. Haplogroup ages estimated from STR variation with the weighted ρ method. 95% CI: 95% confidence interval. 

Haplogroup ages can also be estimated within each population, although they should be 

interpreted with caution (see Discussion). For the whole of DF27, (Table 3), the highest estimate 

was in Aragon (4530 ± 700 ya), and the lowest in France (3430 ± 520 ya); it was 3930 ± 310 ya in 

Basques. Z195 was apparently oldest in Catalonia (4580 ± 240 ya), and with France (3450 ± 269 
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ya) and the Basques (3260 ± 198 ya) having lower estimates. On the contrary, in the Z220 branch, 

the oldest estimates appear in North-Central Spain (3720 ± 313 ya for Z220, 3420 ± 349 ya for 

Z278). The Basques always produce lower estimates, even for M153, which is almost absent 

elsewhere. 

R1b-DF27 and demography 

We tested the dynamics of R1b-DF27 by means of Approximate Bayesian Computing (ABC). In 

particular, we compared two simple models: constant population size vs. growth since time Tstart. 

Both the rejection and the regression method undoubtedly favoured the growth model, with 

associated posterior probabilities that were never lower than 0.99. The principal component 

analysis (PCA) of the first 3,000 best simulations from each model (i.e. the 3,000 simulation closest 

to the observed dataset that are generated by each model) actually shows that the point 

corresponding to the observed data falls in the middle of the results obtained simulating growth, 

thus confirming that the growth model is also able to generate the observed variation (Suppl. Fig. 

2). We then estimated the demographic parameters associated with the growth model. The 

median value for Tstart has been estimated at 103 generations (Table 4), with a 95% highest 

probability density (HPD) range of 50–287 generations; effective population size increased from 

131 (95% HPD: 100–370) to 72,811 (95% HPD: 52,522–95,334). Considering patrilineal generation 

times of 30–35 years27, our results indicate that R1b-DF27 started its expansion ~3,000–3,500 ya, 

shortly after its TMRCA. 

As a reference, we applied the same analysis to the whole of R1b-S116, as well as to other common 

haplogroups such as G2a, I2, and J2a. Interestingly, all four haplogroups showed clear evidence of 

an expansion (p > 0.99 in all cases), all of them starting at the same time, ~50 generations ago 

(Table 4), and with similar estimated initial and final populations. Thus, these four haplogroups 

point to a common population expansion, even though I2 (TMRCA, weighted ρ, 7,800 ya) and J2a 

(TMRCA, 5,500 ya) are older than R1b-DF27. It is worth noting that the expansion of these 

haplogroups happened after the TMRCA of R1b-DF27. 

R1b-DF27 Mean Median Mode 95% HPD-LowB 95% HPD-UppB 

Tstart 128 103 75 50 287 

Na 162 131 100 100 350 

Nc 72685 72812 73624 52523 95334 

GSM 0.047 0.046 0.044 0.004 0.089 

R1b-S116 

Tstart 50 50 50 50 52 

Na 182 134 110 100 370 

Nc 99844 99854 99860 99690 100000 
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GSM 0.239 0.240 0.246 0.094 0.380 

G2a 

Tstart 82 61 51 50 175 

Na 145 122 100 100 340 

Nc 10448 7984 5865 1549 25267 

GSM 0.179 0.177 0.179 0.023 0.325 

I2 

Tstart 82 67 58 50 136 

Na 178 140 100 100 370 

Nc 40622 37366 28135 9162 81946 

GSM 0.036 0.027 0 0 0.099 

J2a 

Tstart 55 52 51 50 61 

Na 154 129 100 100 350 

Nc 94264 95421 96953 85633 100000 

GSM 0.022 0.017 0.000 0.000 0.069 

 

Table 4. ABC results for R1b-DF27 and reference haplogroups. GSM: Generalized Stepwise Mutation; HPD: Highest 

Probability Density. 

Discussion 

We have characterized the geographical distribution and phylogenetic structure of haplogroup 

R1b-DF27 in W. Europe, particularly in Iberia, where it reaches its highest frequencies (40–70%). 

The age of this haplogroup appears clear: with independent samples (our samples vs. the 1000 

genome project dataset) and independent methods (variation in 15 STRs vs. whole Y-chromosome 

sequences), the age of R1b-DF27 is firmly grounded around 4000–4500 ya, which coincides with 

the population upheaval in W. Europe at the transition between the Neolithic and the Bronze Age2, 

9. Before this period, R1b-M269 was rare in the ancient DNA record, and during it the current 

frequencies were rapidly reached2, 9, 10. It is also one of the haplogroups (along with its daughter 

clades, R1b-U106 and R1b-S116) with a sequence structure that shows signs of a population 

explosion or burst1. STR diversity in our dataset is much more compatible with population growth 

than with stationarity, as shown by the ABC results, but, contrary to other haplogroups such as 

the whole of R1b-S116, G2a, I2 or J2a, the start of this growth is closer to the TMRCA of the 

haplogroup. Although the median time for the start of the expansion is older in R1b-DF27 than in 

other haplogroups, and could suggest the action of a different demographic process, all HPD 

intervals broadly overlap, and thus, a common demographic history may have affected the whole 

of the Y chromosome diversity in Iberia. The HPD intervals encompass a broad timeframe, and 

could reflect the post-Neolithic population expansions from the Bronze Age to the Roman 

Empire28. 
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While when R1b-DF27 appeared seems clear, where it originated may be more difficult to 

pinpoint. If we extrapolated directly from haplogroup frequencies, then R1b-DF27 would have 

originated in the Basque Country; however, for R1b-DF27 and most of its subhaplogroups, internal 

diversity measures and age estimates are lower in Basques than in any other population. Then, 

the high frequencies of R1b-DF27 among Basques could be better explained by drift rather than 

by a local origin (except for the case of M153; see below), which could also have decreased the 

internal diversity of R1b-DF27 among Basques. An origin of R1b-DF27 outside the Iberian 

Peninsula could also be contemplated, and could mirror the external origin of R1b-M269, even if 

it reaches there its highest frequencies. However, the search for an external origin would be 

limited to France and Great Britain; R1b-DF27 seems to be rare or absent elsewhere: Y-STR data 

are available only for France, and point to a lower diversity and more recent ages than in Iberia 

(Table 3). Unlike in Basques, drift in a traditionally closed population seems an unlikely explanation 

for this pattern, and therefore, it does not seem probable that R1b-DF27 originated in France. 

Then, a local origin in Iberia seems the most plausible hypothesis. Within Iberia, Aragon shows the 

highest diversity and age estimates for R1b-DF27, Z195, and the L176.2 branch, although, given 

the small sample size, any conclusion should be taken cautiously. On the contrary, Z220 and Z278 

are estimated to be older in North Central Spain (N Castile, Cantabria and Asturias). Finally, M153 

is almost restricted to the Basque Country: it is rarely present at frequencies >1% elsewhere in 

Spain (although see the cases of Alacant, Andalusia and Madrid, Suppl. Table 1), and it was found 

at higher frequencies (10–17%) in several Basque regions25; a local origin seems plausible, but, 

given the scarcity of M153 chromosomes outside of the Basque Country, the diversity and age 

values cannot be compared. 

Within its range, R1b-DF27 shows same geographical differentiation: Western Iberia (particularly, 

Asturias and Portugal), with low frequencies of R1b-Z195 derived chromosomes and relatively 

high values of R1b-DF27* (xZ195); North Central Spain is characterized by relatively high 

frequencies of the Z220 branch compared to the L176.2 branch; the latter is more abundant in 

Eastern Iberia. Taken together, these observations seem to match the East-West patterning that 

has occurred at least twice in the history of Iberia: i) in pre-Roman times, with Celtic-speaking 

peoples occupying the center and west of the Iberian Peninsula, while the non-Indoeuropean 

eponymous Iberians settled the Mediterranean coast and hinterland; and ii) in the Middle Ages, 

when Christian kingdoms in the North expanded gradually southwards and occupied territories 

held by Muslim fiefs. 
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The relevance and possible applications of R1b-DF27 

Although R1b-DF27 as a whole has remained relatively obscure in the academic literature, two of 

the SNPs it contains, namely M167 (SRY2627) and M153 have accrued quite a number of studies. 

Thus, excluding this paper, M153 has been typed in 42 populations, for a total of 3,117 samples22, 

23, 25, 29, 30; M167 has been typed in at least 113 populations and 10,379 individuals4, 18–20, 22–25, 29–31. 

It is not obvious then why both markers are absent from Y-phylotree 

(http://www.phylotree.org/Y/tree/index.htm, ref. 32), which is the current academic Y-

chromosome haplogroup reference tree and which contains within DF27 a number of much more 

obscure SNPs. 

Potentially, a SNP with relatively high frequencies in Iberian and Iberian-derived populations and 

rarer elsewhere could be applied in a forensic genetics setting to infer the biogeographic origin of 

an unknown contributor to a crime scene33. However, neither the specificity nor the sensitivity of 

such an application would guarantee significant investigative leads in most cases. When compared 

to the 1000 genomes CEU sample of European-Americans15, R1b-DF27 is just 4.19 times more 

frequent in Iberians than in CEU, a ratio that raises to 6.82 for R1b-Z220 (which, though, has a 

frequency of only 13.9% in Iberians). Probably, other types of evidence of the involvement of a 

person of interest of Iberian descent would be needed to justify tying R1b-DF27. 

R1b-DF27 may also be used to trace migratory events involving Spanish or Portuguese men, 

particularly outside of Western Europe; a clear example can be seen the Latin American 

populations (see the Introduction section), where R1b-DF27 seems to correlate with the amount 

of male-mediated Spanish admixture: it is clearly less frequent in the populations with a stronger 

Native American component, such as Mexico and Peru. Even within Europe, Y haplogroup 

frequencies have been used to detect short-range migration events, such as that from Northern 

France to Flanders34. Thus, the traces of the medieval expansion of the Aragon kingdom towards 

the Mediterranean in the 14th–15th centuries, or the Castilian occupation of Flanders in the 17th 

century may be traced through the male lineages, R1b-DF27 in particular. 

Finally, the Y chromosome in often studied in connection with surnames, since the latter are also 

often transmitted through the male line35. For that, Y-STR haplotypes are analyzed, and, given the 

Y-STR mutation rates, similarity in Y-STR haplotypes between men sharing the same surname is 

taken as indicative of a shared genealogical origin36, 37. However, diversity in Y-STR haplotypes 

within the R1b-M269 branch is rather small11, 12, and the sole use of Y-STRs may result in 

homoplasy, rather than shred origin, causing Y-STR haplotype convergence. Thus, particularly 

within Iberia, R1b-DF27 should be used when trying to ascertain the founding events of surnames. 
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No SNP deeper than R1b-M269 was typed in a survey of Spanish surnames38, while some SNPs in 

the R1b-DF27 branch (Z195, Z220, Z278, M153 and M167) were used in a similar study27. 

Although we have contributed to the understanding of the phylogeography of R1b-DF27, which 

makes up a dominant fraction of Iberian (and Latin American) Y chromosomes, better tools and 

designs would be needed to solve some of the issues we discussed above. In particular, we 

genotyped pre-ascertained SNPs, and a global characterization of the whole sequence diversity of 

this haplogroup would allow more precise statistical analyses to be run. Also, a more 

comprehensive sampling scheme, including more information from Atlantic Iberia, would be 

desirable to obtain a more accurate picture of this haplogroup. 

Methods 

Samples/ethics 

The population samples we analyzed comprised a total of 2990 individuals, of which 1072 carried 

the derived allele at the DF27 SNP. Additionally, 55 individuals with partial information were used 

to estimate subhaplogroup frequencies (see below). These samples cover the Iberian Peninsula 

and France, and were originally described in16, 27, 39 (Table 1, Fig. 2). Also, subhaplogroup 

frequencies were estimated for the British (GBR) and Tuscan (TSI) samples of the 1000 genomes 

project15. Informed consent for study participation was obtained from all the subjects; Internal 

Review Board approval for this work was granted by Faculty of Pharmacy UPV/EHU, September 

26th 2008; CEISH/119/2012, BNADN Ref. 12/0031; and CEIC-PSMAR ref. 2016/6723/I. This 

research was conducted under the principles of the Helsinki declaration. 

SNP genotyping 

All samples were typed for SNPs/indels M269, S116 (P312), DF27, Z195, L176, M167 (SRY2627), 

Z220 (S356), Z278, and M153 (Fig. 1). DF27, Z195, L176, M167, Z220, Z278, and M153 were typed 

in samples from Portugal, Andalusia, Galicia, Madrid, and part of the Alacant and Barcelona 

samples as described in ref. 17. The original genotyping of the French samples (except Brittany)39 

was supplemented with the SNPs in the Open Array panel described in ref. 27. Subsequently, the 

French samples plus others from Eastern Iberia (see Table 1) were genotyped for DF27 and L176 

by Sanger sequencing, since these polymorphisms were not part of the original Open Array panel. 

Both were amplified using 2.5 μl buffer, 2 μl dNTPs, 1.25 μl each of forward/reverse primers, 1.5 

μl MgCl2, 0.2 μl Taq polymerase, 1.5 μl DNA, and 14.8 μl H2O. DF27 was first amplified with a 

nested PCR to reduce non-specific amplifications. The nested PCR involves two sets of primers 

used in two successive PCR amplifications, namely outer DF27 forward: 
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GGGAATTTGATCCTGTCGTTG, outer DF27 reverse: GAACAAAGCCTCCAAGAAATATGAGG, M13F-

tagged nested DF27 forward: TGTAAAACGACGGCCAGTTATTTTATTTCTCCTTCACTTATA, nested 

DF27 Reverse: ATCCAGGAGAACTTCCCCAATC. In the first PCR, 30 cycles were performed at 95 °C 

(30 sec), 60.5 °C (30 sec), and 72 °C (40 sec); in the second PCR, the annealing temperature was 

lowered to 59.2 °C. For L176, primers were L176 Forward: CAACAGGCCAGAAGGAACAG and L176 

reverse: TTACAGGTGGAATGGGGTGT; the annealing temperature was 58.3 °C, and times and 

number of cycles were the same as in DF27. 

Genotypes for 17 short tandem repeats (STRs) contained in the AmpFlSTR®YFiler® PCR 

Amplification kit (Applied Biosystems) were available for most populations (see Table 1)16, 26, 27, 39–

41. The dataset generated during the current study is available from the corresponding author on 

reasonable request. 

Statistics 

For most populations, the frequencies of DF27 and its subhaplogroups were estimated by direct 

counting. However, in some populations, individuals with partial information were present: in 

some cases, no SNP information was available, but they could be inferred to carry R1b from their 

STR haplotypes42, 43; further subhaplogroup inference is precluded by the high homogeneity of STR 

haplotypes within R1b-M26911, 12. In other cases, individuals were known to be S116 (xZ195, L21, 

U152) or Z195 (xM167, Z220), but further genotyping for DF27 or L176 failed. The relative 

proportions of cases with full genotypes over R1b, S116 or Z195 were used to estimate the 

probabilities of each individual with missing genotypes to belong to each possible subhaplogroup. 

Using these probabilities as frequencies, the frequency of each subhaplogroup was estimated. 

Detailed formulas for each subhaplogroup are given in Supplementary note 1. Individuals with 

missing information were used only to refine the estimation of subhaplogroup frequencies. 

Haplogroup frequency maps were drawn with SURFER v. 12 (Golden Software, Golden CO, USA) 

by krigging. Principal component analysis was performed with IBM SPSS Statistics v. 19. Basic 

descriptive statistics, as well as AMOVA, were computed with Arlequin 3.544. Haplogroups were 

dated from STR variation with ρw, a weighted version of ρ45 that leverages on the relatively precise 

knowledge of the mutation rate of each Y-STR. Thus, it takes into account that mutations at slow 

STRs take longer to accumulate than mutations at faster STRs. It is defined as 

𝜌𝜌𝑤𝑤 =
1
𝑁𝑁
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where N is the number of chromosomes, k is the number of different haplotypes, ni is the absolute 

frequency of the ith haplotype, S is the number of different STRs, Xji is the allelic state of the ith 

haplotype at the jth STR, Xjm is the median allele at the jth STR, �̅�𝜇 is the average mutation rate and 

μj is the mutation rate of the jth STR. The standard deviation of ρw is given by 

𝑠𝑠𝑑𝑑(𝜌𝜌𝑤𝑤) =
1
𝑁𝑁
��𝑛𝑛𝑖𝑖2 ����𝑋𝑋𝑗𝑗𝑖𝑖 − 𝑋𝑋𝑗𝑗𝑚𝑚�� ∙

�̅�𝜇
𝜇𝜇𝑗𝑗

𝑆𝑆

𝑗𝑗=1

�
𝑘𝑘

𝑖𝑖=1

 

and age, as in ref. 45, is estimated as 

𝑇𝑇 = 𝜌𝜌𝑤𝑤 ∙ �̅�𝜇 

where �̅�𝜇 is now expressed in years per mutation. ρW was computed with an ad hoc R script, which 

is available in github (http://github.com/fcalafell/weighted_rho). Mutation rates were retrieved 

from the Y-Chromosome STR Haplotype Database (YHRD, www.yhrd.org) on Feb. 1, 2017. DYS385 

was omitted from the calculations, and DYS389I was subtracted from DYS389II. Additionally, 

outlier individuals were detected and removed from the estimate as suggested in ref. 20. 

Unweighted ρ was used to estimate the age of DF27 by using the whole Y chromosome sequences 

of the 88 unrelated individuals derived for this SNP and present in the 1000 genomes project 

dataset. The mutation rate considered was 0.888 × 10−9 per year1, 46, which, taking into account 

the ~10.36 Mb of the Y chromosome amenable to short-read sequencing and SNP detection1, 

translates to a rate of 108.7 years/mutation. 

Approximate Bayesian Computing (ABC) was used to test alternative demographic models and to 

estimate their parameters. One million simulations were run with fastsimcoal247, 48, either with a 

constant population size (drawn from a lognormal distribution between 100 and 100,000), or with 

an exponential growth that started Tstart generation ago. In the growth model, the effective 

population sizes before (Na) and at the end (Nc) of the growth were drawn in the same fashion of 

the constant model, and conditioned to Na < Nc. Na refers to a time Tstart drawn from a uniform 

distribution between 50 and 350 generations. STR mutation rates were taken as fixed given the 

high precision with which they are known, but the value of the geometric parameter for the 

Generalized Stepwise Mutation model was sampled from a uniform distribution with limits (0; 

0.8). To summarize the data, we calculated the mean and the standard deviation over loci of four 

statistics: the number of different haplotypes (K), the haplotype diversity (H), the allelic range and 

the Garza- Williamson’s index. We calculated posterior probabilities of the models by means of 

the simple rejection algorithm49 as well as of the weighted multinomial logistic regression50, 
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evaluating different thresholds for both methods to check the stability of the results as in ref. 51. 

For parameter estimation, we calculated the Euclidian distance between the simulated and 

observed summary statistics and retained the 5% of the total simulations corresponding to the 

shortest distances. Posterior probability for each parameter was estimated using a weighted local 

regression52, after a logtan transformation53. 
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Supplementary Note 

Let a be the absolute frequency of haplogroup M269 (xS116) in a sample of n Y chromosomes; 

similarly, let b: S116 (xDF27), c: DF27 (xZ195), d: Z195 (xL176.2, xZ220), e: L176.2 (xM167), f: M167, 

g: Z220 (xZ278), h: Z278 (xM153), and i: M153. Let s=a+b+c+...+i. We have three types of samples 

with partial information: R1b-M269 without further subtyping (let its frequency be j), S116 

(xU152, xM529, xZ195), but not typed for DF27 (call it k), and Z195 (xZ220), not typed for L176.2 

(l). j individuals may belong to any of the a,...,i subhaplogroups with probability a/s,...,i/s; k can be 

DF27 (xZ195) with probability c/(b+c), and Z195 (xZ220, xM167) can be either Z195 (xL176.2, 

xZ220) with probability d/(d+e) or L176.2 (xM167) with probability e/(d+e). Combining these 

probabilities and turning them into estimated relative frequencies (which we denote with a 

circumflex over each letter), we have 

Population N other R1b-M269 R1b-P312 R1b-DF27 R1b-DF27* R1b-Z195 R1b-Z195* R1b-L176.2 R1b-L176.2* R1b-M167 R1b-Z220 R1b-Z220* R1b-Z278 R1b-Z278* R1b-M153
Alacant 142 0,3451 0,6549 0,5845 0,4225 0,1620 0,2606 0,0000 0,1127 0,0141 0,0986 0,1479 0,0704 0,0775 0,0282 0,0493
Alsace 80 0,4125 0,5875 0,3875 0,0750 0,0000 0,0750 0,0500 0,0250 0,0125 0,0125 0,0000 0,0000 0,0000 0,0000 0,0000
Andalucía 100 0,3700 0,6300 0,6000 0,4700 0,2800 0,1900 0,0400 0,0200 0,0000 0,0200 0,1300 0,0500 0,0800 0,0400 0,0400
Aragón 92 0,3370 0,6630 0,6087 0,3696 0,1522 0,2174 0,0217 0,1196 0,0761 0,0435 0,0761 0,0435 0,0326 0,0217 0,0109
Asturias 63 0,4286 0,5714 0,5714 0,4286 0,3016 0,1270 0,0794 0,0000 0,0000 0,0000 0,0476 0,0159 0,0317 0,0317 0,0000
Auvergne 89 0,4719 0,5281 0,4944 0,0562 0,0112 0,0449 0,0337 0,0112 0,0000 0,0112 0,0000 0,0000 0,0000 0,0000 0,0000
Barcelona 571 0,3047 0,6953 0,6162 0,3979 0,0987 0,2992 0,0202 0,1364 0,0444 0,0920 0,1426 0,0957 0,0468 0,0360 0,0108
Brittany 145 0,1310 0,8690 0,8345 0,1931 0,0966 0,0966 0,0069 0,0483 0,0276 0,0207 0,0414 0,0414 0,0000 0,0000 0,0000
Cantabria 96 0,2813 0,7188 0,6250 0,4479 0,2292 0,2188 0,0208 0,0313 0,0104 0,0208 0,1667 0,0417 0,1250 0,1250 0,0000
Castelló 49 0,3265 0,6735 0,6283 0,4717 0,0660 0,4058 0,0292 0,1839 0,0558 0,1282 0,1926 0,0674 0,1252 0,1042 0,0210
Galicia 70 0,3857 0,6143 0,5571 0,4000 0,2429 0,1571 0,0714 0,0000 0,0000 0,0000 0,0857 0,0429 0,0429 0,0429 0,0000
GBR (1000 genomes) 46 0,2609 0,7391 0,5217 0,1522 0,0652 0,0870 0,0217 0,0652 0,0217 0,0435 0,0000 0,0000 0,0000 0,0000 0,0000
Girona 131 0,3969 0,6031 0,5022 0,2874 0,0593 0,2281 0,0081 0,1098 0,0161 0,0937 0,1102 0,0939 0,0163 0,0084 0,0079
Île-de-France 91 0,4396 0,5604 0,4693 0,1026 0,0000 0,1025 0,0900 0,0124 0,0000 0,0121 0,0000 0,0000 0,0000 0,0000 0,0000
Ireland 146 0,1849 0,8151 0,7466 0,0068 0,0000 0,0068 0,0000 0,0068 0,0068 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Lleida 104 0,2788 0,7212 0,6518 0,4146 0,1080 0,3066 0,0102 0,1287 0,0395 0,0892 0,1677 0,1279 0,0398 0,0299 0,0099
Madrid 99 0,3131 0,6869 0,6162 0,4949 0,2121 0,2828 0,0303 0,1010 0,0707 0,0303 0,1515 0,0404 0,1111 0,0808 0,0303
Mallorca 48 0,3125 0,6875 0,6875 0,4587 0,1671 0,2917 0,0000 0,1250 0,0208 0,1042 0,1667 0,1667 0,0000 0,0000 0,0000
Midi-Pyrénées 67 0,4030 0,5970 0,5351 0,1070 0,0000 0,1069 0,0313 0,0756 0,0000 0,0754 0,0000 0,0000 0,0000 0,0000 0,0000
Native Basques 229 0,0786 0,9214 0,9214 0,7380 0,3450 0,3930 0,0393 0,0699 0,0393 0,0306 0,2838 0,0786 0,2052 0,1397 0,0655
Nord-Pas-de-Calais 68 0,3824 0,6176 0,4935 0,1251 0,0000 0,1249 0,0484 0,0616 0,0300 0,0316 0,0149 0,0149 0,0000 0,0000 0,0000
Portugal 109 0,3761 0,6239 0,5046 0,4037 0,3211 0,0826 0,0275 0,0459 0,0275 0,0183 0,0092 0,0000 0,0092 0,0092 0,0000
Provence–Alpes-Côte d’Azur 45 0,4444 0,5556 0,5235 0,1223 0,0000 0,1220 0,0731 0,0486 0,0000 0,0478 0,0000 0,0000 0,0000 0,0000 0,0000
Pyrenees 46 0,3043 0,6957 0,6957 0,4241 0,0763 0,3478 0,0217 0,1522 0,0435 0,1087 0,1739 0,1087 0,0652 0,0652 0,0000
Resident Basques 111 0,3784 0,6216 0,5766 0,4775 0,2432 0,2342 0,0450 0,0721 0,0090 0,0631 0,1171 0,0270 0,0901 0,0811 0,0090
Tarragona 120 0,3583 0,6417 0,5750 0,3459 0,0292 0,3167 0,0364 0,1052 0,0136 0,0917 0,1750 0,0917 0,0833 0,0667 0,0167
TSI (1000 genomes) 53 0,5472 0,4528 0,3774 0,0755 0,0189 0,0566 0,0377 0,0000 0,0000 0,0000 0,0189 0,0000 0,0000 0,0000 0,0000
València 79 0,2911 0,7089 0,6669 0,4076 0,1251 0,2826 0,0438 0,0785 0,0479 0,0306 0,1602 0,1070 0,0532 0,0400 0,0133

N Var sd N Var sd N Var sd N Var sd N Var sd N Var sd N Var sd
All 758 0,330 0,215 510 0,326 0,198 189 0,287 0,213 137 0,245 0,190 267 0,293 0,211 130 0,225 0,141 34 0,146 0,115
Aragón 29 0,372 0,218 18 0,314 0,140 10 0,304 0,225 4 0,239 0,297 7 0,200 0,161 3 0,222 0,272 1
Basques 154 0,282 0,174 83 0,263 0,179 14 0,300 0,315 7 0,254 0,421 62 0,216 0,209 46 0,177 0,132 15 0,107 0,106
Catalonia 311 0,346 0,218 246 0,343 0,208 108 0,285 0,209 81 0,241 0,172 123 0,319 0,245 41 0,231 0,182 9 0,122 0,151
France 35 0,299 0,207 34 0,302 0,212 15 0,363 0,345 12 0,336 0,330 1
Mallorca 21 0,341 0,280 14 0,354 0,321 7 0,292 0,325 6 0,311 0,360 7 0,295 0,408
North Central Spain 105 0,319 0,249 44 0,306 0,262 8 0,248 0,271 6 0,220 0,254 27 0,312 0,325 20 0,279 0,245 1
València 103 0,349 0,280 71 0,324 0,252 27 0,246 0,233 21 0,192 0,192 40 0,318 0,246 20 0,271 0,180 8 0,188 0,172

M153DF27 Z195 L176.2 M167 Z220 Z278
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Supplementary Figures 

 

Supplementary Figure 1. R1b-DF27 in the context of the Y-SNP tree compiled in ref. 32 and available from 

http://www.phylotree.org/Y/tree/index.htm. In red, SNPs typed in this work. In parentheses, SNPs absent from 

phylotree-Y. Comas separate different SNPs falling the same phylogenetic branch, while slashes indicate alternate 

names for the same SNP. 
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Supplementary Figure 2. Additional frequency contour maps of paragroups, and of SRY2627 and of M153 with 

additional data from the literature. Maps were drawn with SURFER v. 12 (Golden Software, Golden CO, USA). 
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Supplementary Figure 3. Principal component analysis of summary statistics in stationary and growth ABC simulations; 

the observed value falls clearly within the cloud of growth simulations. 
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4.4 Study Number 4 

‘Effective resolution of the Y chromosome sublineages of the Iberian haplogroup R1b-DF27 with 

forensic purposes’ 

The Study Number 4 of the present work corresponds to the attainment of the objective 3: To 

design and optimize a new minisequencing method that allows the simultaneous analysis of 15 Y-

SNPs for the fine subtyping of the Iberian paternal lineage R1b-DF27, with applicability in both 

forensic and population analysis. 

In this study a new 15 Y-SNP multiplex was designed and optimized for the fine-resolution 

subtyping of the haplogroup R1b-DF27 in a single minisequencing reaction. DF27 displays high 

frequencies in Iberia and Iberian influenced populations, and some of its subhaplogroups show 

moderate geographical differentiation, which is of interest in forensic genetics in order to link a 

sample with the bio-geographical origin.  

The 15-plex minisequencing panel includes 15 Y-SNPs (U106, P312, U152, M529, L238, DF19, 

DF27, Z196, L617, L881, DF17, Z220, M153, M167, and S68) strategically chosen based on their 

ability to resolve the major branches of R1b-DF27, as well as other common Southwest European 

lineages above DF27. Additionally, we used site-directed mutagenesis with the purpose of 

producing the derived variants of L881 and DF19, the least common lineages included in the panel. 

The reproducibility of the assay was assessed by analyzing DNA samples and negative controls 

several times, by different researchers and using different thermal cyclers.  

The obtained results reveal that the 15-plex minisequencing panel is a robust method for 

subtyping DF27 lineage in a single multiplex reaction. The obtained site-directed mutagenesis 

products are compatible with minisequencing, making this technique suitable to ascertain the 

genotyping of rare variants when samples harboring these variants are not available. 

Furthermore, the short length of the amplicons makes this panel suitable to use with degraded 

DNA, critical in forensic samples. Finally, the resolution accomplished with this tool enables to 

improve male lineage discrimination in Iberia, Southwest Europe, and other large areas of the 

world, as well as making further detailed biogeographical and evolutionary inferences. The 

geographical differentiation of the sublineages Z220 and M167, included in the panel, could allow 

to link a vestige with a more specific location in the Iberian Peninsula or with Iberian ancestry. 

To conclude, the developed panel is an effective and reproducible method for subtyping DF27 

lineage from a minimal quantity of DNA, suitable for the inference of bio-geographical origin and 

of easy implementation in most forensic and population genetics laboratories. 
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This study has resulted in an international publication in the journal International Journal of Legal 

Medicine under the heading ‘Effective resolution of the Y chromosome sublineages of the Iberian 

haplogroup R1b-DF27 with forensic purposes’ in September 2018. Q1, IP:2.382. The publication is 

shown below.  
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Abstract 

Single-nucleotide polymorphisms (SNPs) found within the non-recombining region of the Y 

chromosome (NRY) represent a powerful tool in forensic genetics for inferring the paternal 

ancestry of a vestige and complement the determination of biogeographical origin in combination 

with other markers like AIMs. In the present study, we introduce a panel of 15 Y-SNPs for a fine-

resolution subtyping of the haplogroup R1b-DF27, in a single minisequencing reaction. This is the 

first minisequencing panel that allows a fine subtyping of R1b-DF27, which displays high 

frequencies in Iberian and Iberian-influenced populations. This panel includes subhaplogroups of 

DF27 that display moderate geographical differentiation, of interest to link a sample with a specific 

location of the Iberian Peninsula or with Iberian ancestry. Conversely, part of the intricacy of a 

new minisequencing panel is to have all the included variants available to test the effectiveness 

of the analysis method. We have overcome the absence of the least common variants through 

site-directed mutagenesis. Overall, the results show that our panel is a robust and effective 

method for subtyping R1b-DF27 lineages from a minimal amount of DNA, and its high resolution 

enables to improve male lineage discrimination in Iberian and Southwest European descent 

individuals. The small length of the amplicons and its reproducibility makes this assay suitable for 

forensic and population genetics purposes. 
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Introduction 

The usefulness of Y chromosome polymorphisms is well established in many different scientific 

areas. The nonrecombining region of the Y chromosome (NRY) allows to reconstruct patrilineal 

lineages as it is transmitted unchanged from fathers to their sons, except for occasional mutations 

that accumulate over time and remain reflected in the evolutionary record [1]. Y chromosome 

SNPs (Y-SNPs) display low mutation rates and possess a hierarchical structure [2], which makes 

them informative for evolutionary as well as for forensic studies. Since their geographical 

distribution is nonrandom [3], they can be employed for inferring the paternal biogeographic 

ancestry of an unknown contributor to a crime scene [4], an analysis of particular interest in cases 

where other markers (like Y-STRs) have failed or when the DNA is degraded. 

In West Europe, the most common haplogroup is R1b-M269, with frequencies ranging from 40 to 

80% [5]. The most important sub-branches of R1b-M269 are U106, more frequent in NC Europe 

[5, 6], and P312, which is more common in SW Europe [5]. P312, likewise, is divided in the 

following sublineages: U152, in North Italy and Switzerland [6]; M529 in the British Isles [7]; L238, 

in Scandinavia [8]; DF27, in the Iberian Peninsula [8, 9]; and DF19, of unknown distribution. DF27, 

firstly discovered by citizen scientists [8], remained relatively unnoticed in the academic 

bibliography until not long ago. However, during the last years, the scientific community has 

grown largely interested in this paternal lineage [10, 11], revealing its near-specificity in the 

Iberian Peninsula and a potential application in forensic genetics for the determination of 

biogeographical origin. The recent study of DF27 published by Villaescusa et al. and Solé-Morata 

et al. [10, 11] has described the different distributions of the sublineages of this paternal lineage 

in the Iberian Peninsula. Given the geographical differentiation of some of these subhaplogroups 

(i.e., Z220, in North-Central Spain and M167, in East Iberia), the subtyping of DF27 (L617, L881, 

Z196, DF17, Z220, M153, M167, and S68; Supplementary Fig. S1) could be considered a powerful 

tool in forensics for inferring paternal biogeographical ancestry in the Iberian Peninsula. 

Numerous technologies are available for SNP genotyping [2, 12], but the most commonly applied 

methodology to forensic and population studies is the minisequencing or single-base extension 

(SBE) genotyping due to its sensitivity and multiplexing capability. Many Y-SNP minisequencing 

panels or assays are available, which include major haplogroups or some European lineages [12], 
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but most of them require more than one multiplex reaction and do not achieve high phylogenetic 

resolution. 

In order to examine the behavior of the SBE primers on the minisequencing panel, it is significant 

to test its ability to detect all the alleles of the SNPs included in the design. Even though finding 

samples from the most common allelic variants is easy, obtaining the least frequent ones can be 

challenging. In this particular issue, site-directed mutagenesis may be a helpful tool to overcome 

this inconvenience [13], which we used for subtyping DF19 and L881 subhaplogroups. 

In the present study, we design and optimize a minisequencing method for a fine subtyping of the 

Iberian near-specific paternal lineage R1b-DF27 to the highest phylogenetic resolution to date in 

a single multiplex reaction. The selected 15 Y-SNPs (U106, P312, U152, M529, L238, DF19, DF27, 

Z196, L617, L881, DF17, Z220, M153, M167, and S68) were strategically chosen based on their 

ability to resolve the major branches of R1b-DF27 and provide a good approximation of the 

biogeographical origin. Additionally, we also used site-directed mutagenesis to produce the least 

common variants. 

Materials and methods 

For the development and optimization of the 15-plex minisequencing panel, DNA samples from 

male individuals with European background were used. Human DNAs were extracted from saliva 

or peripheral blood samples from healthy male donors who gave their informed consent. Ethical 

approvals were obtained for this study from the Faculty of Pharmacy UPV/EHU (September 26, 

2008, CEISH/119/2012 UPV/EHU), and Spanish DNA National Bank (Ref. 12/0031). 

The Y-SNPs selected for the 15-plex minisequencing assay correspond to the diagnostic positions 

that determine the main subhaplogroups of the paternal lineage R1b-DF27 and some branches 

above DF27 (Supplementary Fig. S1). The positions were chosen from the updated version of the 

minimal reference phylogeny for the human Y chromosome PhyloTree Y (9 March 2016) [14] and 

the more detailed tree maintained by the International Society of Genetic Genealogy (v 12.53; 28 

February 2017) [15]. 

The primers used for amplification (Supplementary Table S1) were designed with Perl Primer 

v1.1.21 [16]. The specificity of the primers and their non-homology with the X chromosome and 

other genome regions were confirmed with Primer-BLAST. Potential unfavorable interactions 

between primers were checked with the web-based version of AutoDimer [17]. 

Minisequencing primers (Supplementary Table S1) were designed manually. To assure the 

separation of the extension primers during capillary electrophoresis, their lengths were adjusted 
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by adding tails of neutral sequence on the 5′-end [18]. Amplification fragments differed in 5 bp in 

order to allow a clear electrophoretic separation. Unfavorable interactions between 

minisequencing primers and their specificity to the Y chromosome were checked as described 

above. Final optimal concentrations for each primer mix were readjusted in line with the different 

electropherogram intensities. 

DF19 and L881 site-directed mutagenesis primers (Supplementary Table S1) were designed 

manually, by inserting in the primer sequence the necessary nucleotide to produce the derived 

variant [13]. Each mutagenesis primer was paired with the other end of the amplification primer 

of its respective Y-SNP, and the suitability of both pairs of primers was checked as described above 

[17]. 

PCR, minisequencing, and site-directed mutagenesis primers were synthesized by Integrated DNA 

Technologies (IDT) and Eurofins. Amplification and mutagenesis primers were purified by standard 

desalting and minisequencing primers by HPLC. More details on primers are shown in 

Supplementary Table S1. 

PCR multiplex amplification was carried out as follows: 5 μL reaction mix (2×) (Qiagen Multiplex 

PCR Kit, Qiagen), 1 μL of 10× primer mix, 3 μL of sterile mQ water (Millipore Corporation), and 1 

ng of DNA (final volume 10 μL). Thermal cycling was performed in a C1000™ Thermal Cycler (Bio-

Rad) in the following conditions: 95 °C for 15 min; 3 cycles at 95 °C for 30 s, 63 °C for 45 s, and 72 

°C for 30 s; 15 cycles at 95 °C for 30 s, 63 °C for 45 s (with decrements of 0.2 °C per cycle) and 72 

°C for 30 s, 20 cycles at 95 °C for 30 s, 60 °C for 45 s, and 72 °C for 30 s; and a final extension of 7 

min at 72 °C. Site-directed mutagenesis was used to produce the derived variants for DF19 and 

L881. Each mutagenesis reaction was carried out in the following conditions: 8.9 μL of mQ water 

(Millipore Corporation), 0.6 μL dNTPs (10 mM) (Bioline), 0.6 μL MgCl2 (50 mM) (Bioline), 1.5 μL 

buffer 10× (Bioline), 0.3 μL bovine serum albumin (10×) (Roche), 0.45 μL of each primer at 10 μM, 

0.2 μL Taq polymerase (5 U/μl) (BIOTAQ™ DNA polymerase), and 2 ng of DNA. Amplification 

success of the mutagenesis derived variants was assessed as described.  

PCR products were migrated in 1.5% agarose gels with GelRed (Biotinum) at 100 V for 30 min and 

visualized with UV light in an UVIdoc gel documentation system (Uvitec Cambridge). Next, PCR 

products were purified using 0.28 U of exonuclease I (Exo) (Takara) and 0.72 U of shrimp alkaline 

phosphatase (SAP) (Takara) to 2 μL of PCR product and incubated for 45 min at 37 °C followed by 

15 min at 80 °C. 
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The multiplex minisequencing reaction contained the following: 2 μL of SNaPshot™ Multiplex Kit 

reaction mix (Applied Biosystems), 0.7 μL of 10× minisequencing primer mix, 3.3 μL of mQ water 

(Millipore Corporation), and 1 μL purified multiplex PCR product, in a total volume of 7 μL. 

Thermocycling conditions in a C1000™ Thermal Cycler (Bio-Rad) were the following: 25 cycles at 

96 °C for 10s; 50 °C for 5 s; and 60 °C for 30s. Minisequencing products were purified adding 0.75 

U of SAP (Takara) to 2 μL of product and incubated for 60 min at 37 °C followed by 15 min at 80 

°C. 

Finally, a mixture of 1 μL of cleaned minisequencing product, 9.75 μL Hi-DI formamide (Applied 

Biosystems), and 0.25 μL of Gene-Scan 120LIZ (Applied Biosystems) was prepared and denatured 

at 96 °C for 6 min. The samples were analyzed using ABI PRISM® 3130 Genetic Analyzer (Applied 

Biosystems) with a capillary of 36 cm. For optimization, a polymer POP-7® was used. In addition, 

the final design was also tested with POP-4® polymer. Results were analyzed using GeneMapper® 

Software v4.0 (Applied Biosystems). 

To assess the reproducibility of the 15-plex minisequencing assay, DNA samples and negative 

controls were analyzed several times by different researchers, on different days and in different 

thermal cyclers. Afterwards, the mobility of the peaks for the different allelic variants in the 

electropherograms was compared. 

Results 

The 15-plex minisequencing panel developed herein includes 15 Y-SNPs (U106, P312, U152, M529, 

L238, DF19, DF27, Z196, L617, L881, DF17, Z220, M153, M167, and S68) that allow to 

simultaneously genotype the diagnostic positions of the paternal lineage DF27 and its 

subhaplogroups, along with other common Southwest European R1b branches above DF27 

(Supplementary Fig. S1). More details on frequencies for each Y-SNP in Europe are included in 

Supplementary Table S2 [5, 8, 10, 11, 19, 20]. 

The design of the minisequencing assay was optimized to analyze jointly these 15 Y-SNPs in a 

unique multiplex reaction with up to 1 ng of template DNA (Fig. 1). Moreover, the size of the 

fragments amplified in the first PCR is short, between 62 and 230 bp, which allows applying this 

assay to forensic samples. Primer concentrations for both PCRs, the first multiplex amplification 

and the subsequent minisequencing reaction, were adjusted based on the lowest fluorescent 

allele signal, in order to obtain balanced intensities for every Y-SNP in the electropherogram. 

While optimizing this panel, some spurious peaks and high background noise were observed 

mainly in the green and blue channels of the electropherogram (Supplementary Fig. S2). In order 
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to solve it, we adjusted the amount of primer mix in the amplification and minisequencing PCRs. 

Information on how to interpret the electropherograms is included in Supplementary Fig. S3 and 

Supplementary Table S3. 

 

Fig. 1 Electropherogram obtained with the 15-plex minisequencing panel from a male sample belonging to Z220 

haplogroup, characterized by the Y-SNPs P312, DF27, Z196, and Z220. Derived allelic variants appear underlined 

The effectiveness of this 15-plex for inferring patrilineal biogeographical origin was assessed by 

analyzing at least two samples displaying haplogroups detectable by our design, except for L238 

lineage, of which only one sample was analyzed. For that purpose, we selected individuals from 

different Southwestern European populations previously analyzed that displayed the haplogroups 

included in the minisequencing assay (more details about the origin and geographical region of 

these samples are included in Supplementary Table S4). We analyzed individuals from the 

branches U106 and P312 and verified that those variants were detected and that no positive 

results were obtained for the remaining Y-SNPs included in the panel. Similarly, within DF27, we 

followed the same procedure and observed the same positive results we got by previous 
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genotyping technologies like high-resolution melting (HRM) and sanger sequencing. Additionally, 

samples not displaying any of the derived variants included in the design were analyzed. Thus, we 

ascertained that the 15-plex is able to correctly assign the haplogroup of all the previously 

genotyped samples [8, 10, 11]. 

Forasmuch as we were unable to find individuals of the rare lineages DF19 and L881, we generated 

their derived variants by site-directed mutagenesis in order to verify whether this panel is able to 

detect them. The resulting electropherograms showed that both mutagenesis products carried 

the mutated variants (Fig. 2). Thus, we confirmed that the assay would be able to analyze correctly 

samples belonging to haplogroups DF19 or L881. 

 

Fig. 2 Electropherogram that shows the position of the mutated variants of L881 and DF19 obtained by site-directed 

mutagenesis. We obtained this electropherogram by mixing the mutagenesis products of both Y-SNPs. The variants 

generated by mutagenesis appear underlined and with an asterisk. The ancestral alleles of both Y-SNPs can also be 

observed in the electropherogram 
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The reproducibility of the assay was confirmed by analyzing some of the samples twice by two 

different researchers and using different thermal cyclers, C1000™ Thermal Cycler (Bio-Rad) and 

9800 Fast Thermal Cycler (Applied Biosystems). The electropherograms obtained from the same 

DNA samples showed identical results. 

Overall, these results confirm the guiding quality of the method for subtyping haplogroup R1b-

DF27 and its potential to be used with forensic samples. 

Discussion 

In the present study, we introduce a set of 15 Y-SNPs (U106, P312, U152, M529, L238, DF19, DF27, 

Z196, L617, L881, DF17, Z220, M153, M167, and S68) for fine-resolution subtyping of the Iberian 

near-specific haplogroup R1b-DF27 in a single minisequencing reaction. Furthermore, this is the 

first multiplex assay that offers a deep dissection of the paternal lineage DF27, which displays 

frequencies over 40% in the Iberian Peninsula [8, 10, 11]. The inclusion of its subhaplogroups is of 

great interest as some of them, like M167 and Z220, show moderate geographical differentiation, 

being more frequent in Eastern Iberia or North Central Spain respectively. Thus, the typing of DF27 

and/or its derived sublineages in forensic samples, in combination with other markers like Y-STRs 

or ancestry informative markers (AIM), could be of interest for inferring the paternal 

biogeographical origin of an unknown contributor in a crime scene. 

Additionally, the present minisequencing panel can be of special use for the study of Southwest 

European population introgression in the Latin American populations, as they have been a 

destination of the historically known Spanish and Portuguese migration [21–23] and other world 

areas historically influenced by the Spanish presence, like Flanders, Sardinia, or Sicily, or overseas 

regions like the Philippines.  

Conversely, the inclusion in the 15-plex of other R1b- M269 sublineages above DF27 (i.e., U106, 

P312, U152, M529, L238, and DF19) is also significant since it also allows the analysis of other 

common Southwest European lineages that are geographically localized [6, 7]. Moreover, given 

the dispersion of some Southwest European populations (such as Great Britain, Spain, France, or 

Portugal) over large areas of America, Asia, and Africa throughout history, our panel could allow 

the study of the European paternal contribution to the genetic substrate of different populations. 

Previous Y-SNP panels include haplogroup R1b but not many of its derived subhaplogroups [24–

26]; therefore, our design can complete the above mentioned panels in order to provide an 

increased power of population discrimination with minimal DNA sample consumption. Likewise, 

the supplementation of this 15-plex minisequencing panel for the Y chromosome with the analysis 
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of the mitochondrial DNA lineage would complete the information on biogeographical ancestry, 

which could be of particular interest in the study of admixed individuals. 

On the other hand, in the development of any multiplex minisequencing reaction, it is essential to 

test all the variants. However, this can be difficult when some of the variants display scarce allele 

frequencies or no samples are available. Therefore, a method should be applied to allow such 

variants to be included during the optimization of the assay. This is the case with the less frequent 

haplogroups DF19 and L881. For that reason, we applied site-directed mutagenesis in order to 

obtain these Y-SNPs. The obtained results confirm that site-directed mutagenesis is a highly 

appropriate tool to generate rare Y-SNP variants for minisequencing detection, as previously 

suggested on a mitochondrial DNA minisequencing design [13]. 

Finally, an advantage of the assay here presented is the reduced number of coamplified 

fragments, which facilitates the optimization of the method in any forensic laboratory and 

minimizes the competition effects during the amplification of samples with small quantities of 

DNA, critical in forensic samples. The size of the PCR amplicons must also be considered. Since it 

is usual to deal with degraded samples in the forensic routine, short length amplicons are 

preferred. However, designing amplification primers for the Y chromosome involves additional 

challenge due to the complex structure of this chromosome. For that reason, we tried to make 

the amplicon sizes of this assay as short as possible, not exceeding 230 bp. Besides, this design 

also tried to make the length of the minisequencing primers as short as possible, not exceeding 

more than 70 bp. This makes this assay a cost-effective approach for genotyping R1b-DF27 and its 

subhaplogroups, as well as other common Southwest European lineages. Furthermore, although 

the polymer POP-4® is the most appropriate separation matrix for this type of analysis, we used 

POP-7®, as it allows both the analysis of fragments and sequences. In any case, the assay was also 

tested in POP-4®, ensuring that no information was lost and that reliable results are obtained using 

either polymer. 

Conclusion 

The 15-plex minisequencing panel provides a robust method for subtyping R1b-DF27 lineage in a 

single multiplex reaction. We verified that the site-directed mutagenesis products are compatible 

with minisequencing and, thus, can be used to ascertain the genotyping of the rare variants when 

control individuals harboring these variants are not available. The high resolution accomplished 

with this tool enables to improve male lineage discrimination in Iberia, Southwest Europe, and 

other large areas of the world, as well as further detailed biogeographical and evolutionary 

inferences. Thus, it can be of relevance for forensic and human population genetics, as well as for 
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genealogical studies. The short length of the amplicons, its simplicity, and reproducibility allows 

an easy implementation of the minisequencing panel here presented in most genetic laboratories. 
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Electronic supplementary material 

Supplementary Tables 

Supplementary Table S1. Characteristics of the primers and miniprimers used in the 15-plex minisequencing panel. 

 

Y-SNP db SNP ID
PCR 

reaction Sequence (5'-3')
Primer 
Sense

Final 
concentration 

(µM)

Amplicon 
size (bp) P P+T

TTCCTGAATAGCAAATCCCA FW
GCTGTATGTGTCTTCCTGTG RV

Minisec. GACAATAGCAAATCCCAAAGCTCCA FW 0.1
TCCTGCTAATGTATCTGCTG FW
CTCATTTATCACCTCAGTGC RV

Minisec. CTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAGCTAATGTATCTGCTGCACTG FW 0.3
TTGGCTGGATATGAAATTCTGG FW
GAAGCCCATCAGATTAACAGAG RV

Minisec. GACAATGGCTTGTAGAGTTTCTGCC FW 0.2
AGAAACATTCCACGCTTGAG FW
ATGGTAGTTTAATGGGAGTAGC RV

Minisec. TGAAAGTCTGACAATCTATACATTACTTTGAGAAGTATGG FW 0.3
TAAACCCTCCTCAGCAACAG FW
GGAAGCATTCAGAAGCAGGT RV

Minisec. ACTAGGTGCCACGTCGTGAAAGTCTGACAAAACAACCGCTCTCTCAGACA FW 0.1
AAGAAATGTCAACGGTACAGAG FW
CATACACATTCACAGCAGGT RV

Minisec. ACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAACACATTCACAGCAGGTAACTG RV 0.2
Mutagen. GTGAGGGGCCAATAACGG FW

AAAGGGCACTCTGATAGGAC FW
TCCCTATTCAGCCATCTTAGC RV

Minisec. AGGTGCCACGTCGTGAAAGTCTGACAAGTCCGTTATTGGCCCCTC RV 0.1
AACTGTAAGTCTATGCTGCT FW
ACAGACTGGTTCTGCTTATGT RV

Minisec. AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAACCCAATGGGACACATCACAC RV 0.1
TGGCTGTGGCTTTACTTTCTG FW
GCAGGACAACCCTTCTTTGA RV

Mutagen. TACCCGGGGTGCTTCTG RV
Minisec. GCCACGTCGTGAAAGTCTGACAATCCTCAGAAGCACCCCG FW 0.1

ACAACAGCACTACTGGACAC FW
TCCCTTCATCCTGAGCTTCA RV

Minisec. GTGAAAGTCTGACAAGAAGCCAGTCCAAGGTGTGA FW 0.3
TCTCTAACTTCTGGCTTCAAGTG FW
TGGAATGATATCAGCTTCCATGTC RV

Minisec. CTGACAACACCTCGGCCTCTGTTTTATAA FW 0.1
ATTGTCTCCTTTAAGTGGGT FW
TTAATCTGACTTGGAAAGGG RV

Minisec. AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAACACCAATGGTCCTATCTTAATGAA FW 0.3
GGAGTGACAACCAAGAAGAG FW
TTTCAAGCTCTGGTTCTGTG RV

Minisec. AGTCTGACAAAAGGAAGCCCCACAGGGTGC RV 0.2
TGTCAGATGCTTAATTGTGTTTC FW
CAGGAGTTATGTGAGGACCC RV

Minisec. AAGTCTGACAATGTCAGATGCTTAATTGTGTTTCC FW 0.1
ATTAGCCAACTGTAATCTTGGTTAC FW
AGACAGAATCTTATTCCATCACCC RV

Minisec. TAGGTGCCACGTCGTGAAAGTCTGACAAGGATTGTGTCACTGCGC FW 0.2

*These primers are used only for the directed mutagenesis of this Y-SNP. 
Amplif.: Amplification primer
Minisec.: Minisequencing primer
Mutagen.: Mutagenesis primer
P: lenght of the primer (bp).
P+ T: minisequencing product lenght, including primer and tag (bp).
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Supplementary Table S2. Frequencies (%) of the Y haplogroups included in the 15-plex minisequencing panel in some 

populations from South, West and Central Europe extracted from the literature. 

 

Supplementary Table S3. Ancestral and derived alleles of all the 15 Y-SNPs included in the minisequencing assay. A 

colour key to facilitate the interpretation of the results in the electropherograms is also provided. 

 

Population N U106 P312¹ U152 M529 L238 DF19 DF27² Z196³ L617 L881 DF17 Z220⁴ M153 M167 S68 Reference
Spain

Alicante 115 4,3 7,8 6,0 0,0 0,0 0,0 43,1 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 8
Alicante 2 142 ‒ 16,2 ‒ ‒ ‒ ‒ 16,2 1,4 ‒ ‒ ‒ 9,9 4,9 9,9 ‒ 11
Andalucía 100 3,0 13,0 4,0 0,0 0,0 0,0 28,0 4,0 ‒ ‒ ‒ 9,0 4,0 2,0 ‒ 8, 11
Aragon 92 ‒ 26,1 ‒ ‒ ‒ ‒ 15,2 5,4 0,0 0,0 1,1 6,5 1,1 4,4 1,1 10
Asturias 63 0,0 0,0 7,9 6,3 0,0 0,0 30,2 11,1 0,0 0,0 0,0 1,6 0,0 0,0 0,0 8, 10
Barcelona 1 100 2,0 10,0 6,0 1,0 0,0 0,0 48,0 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 8
Barcelona 2 571 ‒ 21,8 ‒ ‒ ‒ ‒ 9,9 6,5 ‒ ‒ ‒ 13,2 1,1 9,2 ‒ 11
Basque Country Natives 229 1,3 15,8 2,2 2,2 0,0 0,0 31,0 5,2 1,8 0,0 0,4 21,8 6,6 3,1 0,9 8, 10
Basque Country Residents 111 1,8 6,3 1,8 1,8 0,0 0,0 24,3 5,4 0,0 0,0 0,0 10,8 0,9 6,3 0,0 8, 10
Cantabria 96 2,1 7,3 4,2 6,3 0,0 0,0 22,9 3,1 0,0 0,0 0,0 16,7 0,0 2,1 0,0 8, 10
Castelló 49 ‒ 15,7 ‒ ‒ ‒ ‒ 6,6 8,5 ‒ ‒ ‒ 17,2 2,1 12,8 ‒ 11
Galicia 70 4,3 0,0 8,6 7,1 0,0 0,0 24,3 7,1 ‒ ‒ ‒ 8,6 0,0 0,0 ‒ 8, 11
Girona 131 ‒ 21,5 ‒ ‒ ‒ ‒ 5,9 2,4 ‒ ‒ ‒ 10,2 0,8 9,4 ‒ 11
Lleida 104 ‒ 23,7 ‒ ‒ ‒ ‒ 10,8 5,0 ‒ ‒ ‒ 15,8 1,0 8,9 ‒ 11
Madrid 99 2,0 7,1 4,0 1,0 0,0 0,0 21,2 10,1 ‒ ‒ ‒ 12,1 3,0 3,0 ‒ 8, 11
Mallorca 48 ‒ 22,9 ‒ ‒ ‒ ‒ 16,7 2,1 ‒ ‒ ‒ 16,7 0,0 10,4 ‒ 11
Pyrenees 46 ‒ 27,2 ‒ ‒ ‒ ‒ 7,6 6,5 ‒ ‒ ‒ 17,4 0,0 10,9 ‒ 11
València 79 ‒ 25,9 ‒ ‒ ‒ ‒ 12,5 9,2 ‒ ‒ ‒ 14,7 1,3 3,1 ‒ 11

Portugal
Porto 109 2,7 10,1 3,6 2,7 0,0 0,0 32,1 5,5 ‒ ‒ ‒ 0,9 0,0 1,8 ‒ 8, 11
Lisbon 100 7,0 38,0 3,0 3,0 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5

France
Alsace 80 ‒ 31,3 ‒ ‒ ‒ ‒ 0,0 6,3 ‒ ‒ ‒ 0,0 0,0 1,3 ‒ 11
Auvergne 89 ‒ 43,8 ‒ ‒ ‒ ‒ 1,1 3,4 ‒ ‒ ‒ 0,0 0,0 1,1 ‒ 11
Brittany 145 ‒ 6,2 4,1 52,4 0,7 0,0 9,7 3,5 ‒ ‒ ‒ 4,1 0,0 2,1 ‒ 8, 11
Île-de-France 91 ‒ 36,7 ‒ ‒ ‒ ‒ 0,0 9,0 ‒ ‒ ‒ 0,0 0,0 1,2 ‒ 11
Midi-Pyrénées 67 ‒ 42,8 ‒ ‒ ‒ ‒ 0,0 3,2 ‒ ‒ ‒ 0,0 0,0 7,5 ‒ 11
Nord-Pas-de-Calais 68 ‒ 36,8 ‒ ‒ ‒ ‒ 0,0 7,8 ‒ ‒ ‒ 1,5 0,0 3,2 ‒ 11
Provence–Alpes-Côte d’Azur 45 ‒ 40,1 ‒ ‒ ‒ ‒ 0,0 7,4 ‒ ‒ ‒ 0,0 0,0 4,8 ‒ 11
Var (coastal, E of Rhone) 68 5,9 35,3 19,1 2,9 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5
Vaucluse (upstream Rhone) 61 6,6 29,5 14,8 8,2 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5
Bouches du Rhone (at mouth) 207 8,2 32,4 16,9 6,3 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5
Alpes de Haute Provence 31 12,9 29,0 12,9 19,4 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5

Switzerland (Lower Rhone Valley 51 11,8 7,8 15,7 2,0 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5
Netherlands 87 36,8 6,9 3,4 5,7 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5
Belgium (Flanders) 1087 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 4,1 ‒ 1,0 ‒ 20
Austria 18 22,2 0,0 0,0 5,6 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5
Germany (West) 100 24,0 10,0 14,0 1,0 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 5
Italy (TSI) 53 3,8 3,8 26,4 0,0 ‒ ‒ 1,9 3,8 ‒ ‒ ‒ 1,9 0,0 0,0 ‒ 19
England (GBR) 46 19,6 8,7 8,7 19,6 ‒ ‒ 6,5 4,4 ‒ ‒ ‒ 0,0 0,0 4,4 ‒ 19
Ireland 146 6,2 17,8 2,1 54,1 0,0 0,0 0,0 0,7 ‒ ‒ ‒ 0,0 0,0 0,0 ‒ 8, 11
Denmark 174 17,8 16,7 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 8

¹: P312 (xU152xM529xDF27xL238xDF19)

²: DF27 (xZ196xL617xL881)

³: Z195 (xDF17xZ220xM167xS68)

⁴: Z220 (xM153)

Ancestral Derived
U106 C/T FW C T
P312 C/A FW C A
DF27 G/A FW G A
U152 C/T FW C T
M529 C/G FW C G
L238 A/G RV T C
DF19 G/T RV C A
Z196 T/C (2bp deletion) RV A G
L881 A/G FW A G
L617 G/A FW G A
Z220 G/A FW G A
M153 A/T FW A T
M167 G/A RV C T
S68 C/T FW C T

DF17 T/G FW T G

Y-SNP MUT Sense
Key to electropherogram
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Supplementary Table S4. Origin and genotyping information of the samples used to test the 15-plex minisequencing 

panel. 

 

Supplementary Figures 

 

Supplementary Fig. S1 Phylogenetic tree of the Y-SNPs included in the 15-plex minisequencing panel. 

 

Analyzed population sample YHRD accesion number 
of the population sample

Genotyping 
technique

Y-SNP db SNP ID Geographic distribution

British islands and Britanny [7, 8]

Scandinavia [8, 9]-

*

U152

-

DF19- rs753249165

HRM & Sequencing rs1236440

Generated by site-directed mutagenesis

M529HRM & Sequencing

L238HRM & Sequencing

-

Basque Country, Iberian Peninsula [8]

rs11799226Basque Country, Iberian Peninsula [8]

rs35199432Britanny, France [8]

*

Central Europe, North and Central Italy and the Alps [5-8]

YA004063

YA004063

*

Basque country, Catalonia, Pyrenees [10, 11]

YA004063

YA004063

S68HRM & Sequencing rs775040950Basque Country, Iberian Peninsula [10]

DF17Sequencing rs754186919Basque Country, Iberian Peninsula [10]

M167HRM & Sequencing rs1800865Barcelona, Iberian Peninsula [11]

M153HRM & Sequencing rs375151448Basque Country, Iberian Peninsula [10]

Iberian Peninsula, Basque Country [10, 11] 

Basques, Gascons, Iberian Peninsula [10, 11] 

YA004063

YA004063

Basque Country, Iberian Peninsula [10]

*

*

Z220HRM & Sequencing rs538725564

L617Sequencing -Basque Country, Iberian Peninsula [10]

Z196HRM & Sequencing -Basque Country, Iberian Peninsula [10]

YA004063

YA004063

L881- -Generated by site-directed mutagenesis

Iberian Peninsula and South-West France, Latin American populations [8, 10, 11]

*

YA004063

-

Basque Country, Iberian Peninsula [8, 10]

North and Central Europe [5, 6]

South-Western Europe [5, 8]

DF27HRM & Sequencing rs577478344

U106HRM & Sequencing rs16981293Basque Country, Iberian Peninsula [8]

P312HRM & Sequencing rs34276300Basque Country, Iberian Peninsula [8]

-

YA004063
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Supplementary Fig. S2 Electropherogram obtained during the optimization of the 15-plex minisequencing assay, where 

spurious peaks and pull-ups (circled) can be observed. 

 

Supplementary Fig. S3 Diagram of the theoretical positions of the Y-SNPs included in the 15-plex minisequencing panel. 

Ancestral alleles appear in bold letters; Derived alleles appear underlined. 
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4.5 Study Number 5 

‘Assessment of a subset of Slowly Mutating Y-STRs for forensic and evolutionary studies’ 

The present study corresponds to the attainment of the objective 4: To design, optimize and 

validate a novel panel of six Slowly Mutating Y-STRs, which can be used in conjunction with the 

existing multiplex commercial kits for forensic casework, particularly in complex kinship cases and 

in optimizing the prediction of paternal ancestry based on currently Y-STR panels with medium-

high mutation rate. 

The Y-STRs commonly included in commercial kits are highly polymorphic in most populations. In 

the last years the need to distinguish among close male relatives stimulated the search for Y-STRs 

with higher mutations rates, known as Rapidly Mutating (RM) Y-STRs. However, these type of Y-

STRs are not the best candidates to be included in phylogenetic studies, since they could 

accelerate the molecular clock estimations due to their higher mutations rates. For that reason, 

the need to use more stable Y-STRs with lower mutation rates, called Slowly Mutating (SM) Y-

STRs, arose in the forensic community, which could complement the routine Y-STR panels 

especially in exclusion cases where minimal discrepancies are critical.  

In the present work a subset of six SM Y-STR loci (DYS388, DYS426, DYS461, DYS485, DYS525 and 

DYS561) were selected and evaluated in 628 individuals from Asia (Thailand), Central and South 

America (Amerindians from Guatemala; Hispanics from Colombia and Nicaragua), Africa (Malawi) 

and Europe (Spain). The sensitivity of the panel was assessed by analyzing serial dilutions of human 

control DNA. Stability was evaluated by adding two common inhibitors, humic acid and hematin, 

in the reactions. Additionally, we also analyzed the genetic variability of the selected SM Y-STRs 

as well as Y-SNPs to assess the correspondence between SM Y-STRs haplotypes and haplogroups 

through the populations. 

The obtained results demonstrate that the novel set of SM Y-STR is a reproducible, sensitive and 

robust multiplex system for forensic applications in combination with the common commercial 

panels, particularly for confirming exclusions in biological kinship cases with minimal discrepancies 

in one or a few loci, since mutation events are rarer to occur in these markers. The SM Y-STR 

multiplex provided a moderate discrimination power between haplotypes in most of the studied 

populations, despite the low mutation rate. In addition to that, although the use of the SM Y-STRs 

for the prediction of Y chromosome haplogroups is not able to reach the same resolution as the 

Y-STRs included in current panels, the use of our multiplex in combination with them may help 
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optimize the resolution of the phylogenetic relationships as these markers are more stable than 

other common Y-STR markers. 

Overall, the SM Y-STRs panel has demonstrated to be a robust tool for forensic applications and 

can be useful in conjunction with current common Y-STR panels. Furthermore, our study also 

provided an extensive Y-STR haplotype and allele reference dataset for future use in forensics. 

This study has resulted in an international publication in the journal Forensic Science International: 

Genetics under the heading ‘Assessment of a subset of Slowly Mutating Y-STRs for forensic and 

evolutionary studies’ in May 2018. Q1, IP: 5.637. The publication is shown below.  
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Abstract 

Y-specific short tandem repeat (Y-STR) loci display different mutation rates and consequently are 

suitable for forensic, genealogical, and evolutionary studies that require different levels of 

timelines and resolution. Recent efforts have focused on implementing Rapidly Mutating (RM) Y-

STRs to assess male specific profiles. However, due to their high mutation rate their use in kinship 

testing or in phylogenetic studies may be less reliable. In the present study, a novel Slowly 

Mutating Y-STR (SM) panel, including DYS388, DYS426, DYS461 (Y-GATA-A7.2), DYS485, DYS525, 

and DYS561, has been developed and evaluated in a sample set of 628 unrelated males from 

different worldwide populations. This panel is reproducible, sensitive, and robust for forensic 
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applications and may be useful in conjunction with the common multiplexes, particularly in 

exclusion of kinship cases where minimal discrimination is reported employing the rapidly 

mutating Y-STR systems. Furthermore, SM Y-STR data may be of value in evolutionary studies to 

optimize the resolution of phylogenetic relationships generated with current Y-STR panel sets. In 

this study, we provide an extensive Y-STR allele and haplotype reference dataset for future 

applications. 

Keywords 

Slowly mutating Y-STRs; Allele and haplotype reference dataset; Kinship; Phylogenetic trees 

analyses. 

1. Introduction 

Y chromosome markers are suited for forensic and genealogical applications, as well as for 

ascertaining human evolution and migration events through paternal lineages [1–3]. The non-

recombining nature of the male-specific region of the Y chromosome (MSY), as well as the 

reliability of the molecular clock, enables the reconstruction of haplotype genealogies thorough 

history [4–6]. The so-called molecular clock is based on the fact that average mutation rates in 

haplotypes are nearly constant over time. Mutations seem to occur randomly, not depending on 

particular haplogroups, populations, or time periods [7]. 

The commonly used Y-STR (Short Tandem Repeat) loci are highly polymorphic in most populations, 

largely due to their hypermutability, and display mutation rates with values between 10−4 and 10−2 

per locus per generation (Y-Chromosome STR Haplotype Reference Database, YHRD). Until 

recently, most of the Y-STRs selected for evolutionary, forensic, and genealogical studies exhibit 

low to midrange mutation rates (∼ 10−3), allowing to identify closely related male lineages. 

However, the need to distinguish among close male relatives has stimulated the search for Y-STR 

markers with higher mutation rates [8,9]. These markers, known as Rapidly Mutating (RM) Y-STRs, 

display mutation rates of ∼ 10−2 per locus per generation. Despite the fact that some of these new 

loci are already included in widely expanded commercial kits, their application in paternity testing 

or in missing person identification (when comparison with potential relatives is performed) may 

not be reliable, due to false exclusions resulting from their high mutation rate [10]. 

Similarly, RM Y-STRs do not constitute the best candidates to be included in phylogenetic studies, 

as they could accelerate the molecular clock estimations. In addition, the development of new 

panels which include more stable or Slowly Mutating (SM) Y-STRs may be useful as a 

complementary tool to the current Y-STR panels in forensic casework [10], particularly in exclusion 



 185 

cases where minimal discrepancies are considered critical and reported as exclusions. Likewise, 

the low mutation rate of SM Y-STRs may provide a higher refinement in the construction of 

phylogenetic trees linking Y chromosome lineages, since the chance of a random convergence of 

SM haplotypes is lower compared to other Y-STR markers. Thus, stronger phylogenetic signals may 

be detected as the number of reticulations and complexities in the networks are reduced [11]. 

In the present study, we selected a subset of six SM Y-STR loci (DYS388, DYS426, DYS461, DYS485, 

DYS525, and DYS561) and evaluated its performance in a large number of individuals of Caucasian, 

Native American, Hispanic, Asian, and African ancestry. 

2. Materials and methods 

2.1 Selection of Y-STR markers and primer design 

Six Y-STR markers with suitable characteristics were selected from the 186 Y-STRs examined in the 

extensive study of mutability of Ballantyne and cols. [9]: DYS388, DYS426, DYS461 (Y-GATA A7.2), 

DYS485, DYS525, and DYS561. The main criteria for marker selection were a low mutation rate (∼ 

10−4 mutations/generation) [12], as well as a gene diversity generally > 0.4 according to the data 

reported in the literature [13–19]. The primers for the six Y-STRs were designed in order to obtain 

amplicons under 250 pb using PerlPrimer software v.1.1.21 [20] (Supplementary Table S1). The 

lack of interactions between primers and specificity for the Y chromosome was checked with 

Autodimer v.1.0 software [21] and BLASTN alignment tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), respectively. Forward primers for each marker were 

modified by the addition of a fluorescent dye at their 5′ end: 5-FAM (Abs. = 495 nm; Em. = 520 

nm), YAKIMA YELLOW (Abs. = 530 nm; Em. = 549 nm), ATTO 550 (Abs. = 554 nm; Em. = 576 nm), 

and ATTO 565 (Abs. = 563 nm; Em. = 592 nm) (Eurofins Genomics, Ebersberg, Germany) 

(Supplementary Table S1). Selected Y-STRs were distributed in the multiplex by expected amplicon 

length, using a four-dye chemistry. The purpose of this design was to create an open system, 

where other markers of interest could be easily fitted along the four-dye layout, if needed, in order 

to complement the multiplex. 

2.2 Singleplex reaction 

Each primer pair was initially tested in a singleplex PCR reaction using the 2800M control DNA 

(Promega Corporation, Madison, WI). The reaction consisted of 5 μl of QIAGEN Multiplex PCR kit 

(Qiagen, Valencia, CA), 0.5 μl of primer mix (final concentration of 0.2 μM), 1 ng of genomic DNA, 

and Milli-Q water for a final reaction volume of 10 μl. PCR was performed in a GeneAmp 9800 

(AB/LT/TFS: Applied Biosystems™, Life Technologies, ThermoFisher Scientific, Waltham, MA, USA) 
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under the following cycle conditions: an initial denaturation at 95 °C for 15 min was followed by 

30 cycles of 94 °C for 30 s, 65 °C for 90 s, 72 °C for 90 s, and a final extension at 72 °C for 10 min. 

DNA amplification success was evaluated by gel electrophoresis on 1.5% agarose gels, visualized 

with GelRed (3% μL/ml) (Biotium Inc., Hayward, USA) and UV light (UVItec Cambridge). PCR 

products were purified using 0.5 μl EXO (Exonuclease I) and 2.5 μl SAP (Shrimp Alkaline 

Phosphatase) (Takara Bio Inc., Japan) in 10 μl of PCR product. Sequencing was performed using 

the BigDye Terminator v3.1 Cycle Sequencing Kit (AB/LT/TFS) to confirm the specific amplification 

of each Y-STR loci. Capillary electrophoresis was conducted on an ABI3130 Genetic Analyzer using 

the Sequencing Analysis 5.2 software (AB/LT/TFS). 

2.3 Multiplex PCR amplification, electrophoresis, and data analysis 

The multiplex PCR amplification was carried out following the same conditions described for the 

singleplex reaction, using 0.2 μM of each PCR primer (Supplementary Table S1). Fluorescently 

labeled PCR products (1 μl) were mixed with 0.5 μl of Genescan 500 LIZ size standard (AB/LT/TFS) 

and 9 μl Hi-Di formamide and separated by capillary electrophoresis on an ABI3130 Genetic 

Analyzer (AB/LT/TFS). Fragment size determination and allele designation was performed with 

GeneMapper ID v.4.0 software (AB/LT/TFS) and Gene Scan 500 LIZ (AB/LT/TFS) as internal size 

standard. Panel for GeneMapper ID software were constructed through the electrophoresis 

analysis of reference samples with alleles of known size, since they were previously sequenced. 

Bins were updated when new alleles were found in the population study. Y-STR typing quality 

control was assured with the simultaneous electrophoresis analysis of samples with known SM Y-

STR profile. 

2.4 Sensitivity and stability studies 

For the sensitivity study serial dilutions of the 2800M human control DNA were analyzed in 

triplicate: 10 ng/μl, 1.6 ng/μl, 1 ng/μl, 400 pg/μl, 200 pg/μl, 100 pg/μl, 50 pg/μl, and 25 pg/μl. To 

examine the stability and robustness of the SM Y-STR multiplex, two common PCR inhibitors, 

humic acid and haematin, which may be found in forensic casework samples, were added to the 

amplification reactions. The study was performed using duplicate samples with 1 ng of 2800M 

control DNA and the following concentrations of inhibitors: 5000 μM, 3000 μM, 1500 μM, 1000 

μM, 750 μM, 500 μM, 300 μM, 150 μM, and 100 μM of haematin (Sigma-Aldrich Corporation, St. 

Louis, MO, USA); and 3000 ng/μl, 2000 ng/μl, 1000 ng/μl, 500 ng/μl, 300 ng/μl, 250 ng/μl, 200 

ng/μl, 100 ng/μl, 50 ng/μl, and 25 ng/μl of humic acid (Sigma-Aldrich Corporation, St. Louis, MO, 

USA). 
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2.5 Population study 

In order to determine the genetic variability of the six Y-STRs analyzed herein, relevant population 

groups were studied for these markers. A total of 628 samples of unrelated males were included 

from populations of Asia (Thailand, Bangkok, N = 102), Central and South America (native 

Americans from Guatemala, Mayans, N = 50; Hispanics from Colombia, N = 60; and from 

Nicaragua, N = 66), Africa (Chewas from Malawi, Lilongwe, N = 31), and Europe (Caucasians from 

Spain: Alicante, N = 50; Barcelona, N = 54; Madrid, N = 62; resident and autochthonous individuals 

from the Basque Country, N = 53 and N = 100, respectively). Two different groups (resident and 

autochthonous) were considered for Basque Country population according to previous reports 

[22,23], which described significant differences among them. The inclusion criteria used in order 

to define autochthonous Basques were the Basque origin of the surnames of the individuals and 

the geographical origins of their ancestors (at least until the third generation back) within the 

Basque area. The resident group corresponds to those individuals that live in the Basque Country 

but whose paternal ancestors are not native Basques. 

All samples were collected from healthy volunteer donors after informed consent according to 

the ethical guidelines of the Helsinki Declaration. Samples from Alicante were provided by the 

University Miguel Hernández (Spain), and samples from Aragon and Nicaragua were obtained 

from the University of Zaragoza (Spain). Samples from Madrid and Barcelona were provided by 

the Spanish National DNA Bank Carlos III (BNADN Ref. 12/0031) (Spain), and samples from 

Thailand, Colombia, and Africa were provided by Colorado College (US), University of Antioquia 

(Colombia), and University of Santiago de Compostela (Spain), respectively. Samples from the 

Basque Country and Guatemala were part of the collection from BIOMICs Research Group of the 

University of Basque Country (Spain). The study was approved with the favorable ethical reports 

from the Faculty of Pharmacy of the University of the Basque Country, signed on 26th September 

2008, the Independent Ethics Committee Zugueme No PROZU315-12 (Guatemala C.A.) in 2012 

and the Colorado College IRB on August 29, 2014. 

Extracted genomic DNA was quantified by using the Scientific NanoDrop™ 1000 

Spectrophotometer (ThermoFisher Scientific Inc., Wilmington, DE) and then diluted to a 1.5 ng/μl 

concentration. 

2.6 Forensic parameters and statistical analysis 

Allele frequencies and genetic diversity (GD) for each locus were calculated using Arlequin 

software v.3.5.2.2 [24]. Pairwise allelic comparisons were calculated as the number of alleles 
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which differ between all possible pairs of samples in each population group, using an in-house 

developed macro in Microsoft Excel 2016. The discrimination capacity (DC) (number of different 

haplotypes observed in a given population) was calculated by dividing the number of different 

haplotypes by the total number of individuals in the population. Pairwise RST genetic distances and 

the corresponding p values between the populations were determined employing Arlequin 

software. Significance p values were adjusted with the sequential Bonferroni correction (α = 

0.05/{[(1+n)/2]*n}; n=number of populations) [25] in order to account for potential Type I errors 

due to the multiple comparisons performed. Pairwise RST genetic distances were visualized by a 

heatmap plot obtained with the R statistical package included in Arlequin. A Non-Metric Multi-

Dimensional-Scaling plot (NMDS), based on pairwise RST genetic distances, was obtained using 

PAST software v.3.04 [26] and the x-y-z coordinates were represented using the rgl package 

(http://cran.r-project.org/package=rgl) for R software [27]. 

2.7 Y-SNP analysis 

In order to evaluate the correspondence of the SM Y-STR haplotypes and Y chromosome single 

nucleotide polymorphism (Y-SNP) haplogroups across populations, 319 samples, which were not 

previously YSNP typed, were analyzed for the following Y-SNPs: CDEF-M168, DE-M145, C-M130, 

E-P170, H1-M69, G-M201, IJ-P126, I-M258, KLT-M9, T-M272, L-M11, N-M231, O-M175, P1-M45, 

Q-M242, Q1a2-M3, R-M207, and R1b-M269. The nomenclature of the genotyped mutations 

follows the minimal reference phylogeny for the human Y chromosome [28], supplemented with 

the ISOGG v12.166 haplogroup tree (http://www.isogg.org/tree). The analysis was performed 

using the 16 Y-SNP multiplex PCR-minisequencing assay described in Valverde and cols. [29] or 

High Resolution Melting (HRM). The primers used for the amplification of each Y-SNP in HRM with 

the corresponding annealing temperature are shown in Table S2. The conditions for the HRM 

analysis of Y-SNPs are described in Villaescusa and cols. [23]. Y-SNP data from the remaining 

samples (N=309) can be found in [23,30,31]. The Factorial Correspondence Analysis was computed 

using the software Genetix v.4.05.2 [32], showing relationship among the multilocus genotypes 

and the sample haplogroup. 

3. Results and discussion 

In the present study, the development and evaluation of a novel panel including six Slowly 

Mutating (SM) Y-STRs are reported. Parameters of forensic and phylogenetic interest were 

obtained for this subset of markers in populations from four different continents. 
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3.1 Multiplex development and validation studies  

The novel multiplex developed herein includes six Y-STR loci (DYS388, DYS426, DYS461, DYS485, 

DYS525, and DYS561), which were selected among the 186 Y-STRs included in the comprehensive 

study of mutability of Ballantyne and cols. [9]. 

The main criterion for the marker selection was to choose relatively stable or SM Y-STRs with a 

low mutation rate of ∼ 10−4 mutations/generation [9]. Furthermore, as a second condition, the Y-

STRs selected should present intra-population gene diversity in groups from different origin. The 

six best candidate loci selected mostly displayed a gene diversity > 0.4 in different worldwide 

population groups, according to the scarce data reported in the literature for these markers [13–

19]. Given the priority to the stability criterion, candidates with higher gene diversity were not 

found. Detailed information for the six Y-STRs selected is outlined in Supplementary Table S1 and 

the final multiplex design is displayed in Fig. S1. The distribution of the 6 SM Y-STR allows the 

addition of other potential Y-STR markers of interest. 

Sensitivity and stability studies were performed to evaluate the performance of the panel for 

forensic casework (Fig. S2). Sensitivity studies of the multiplex system allowed setting up the 

minimum quantity of DNA recommendable to obtain complete genetic profiles. Complete profiles, 

with peak heights above 50 RFU, were obtained with DNA input starting from 200 pg. Lower 

sample inputs resulted in allelic drop-out events. The stability of the new panel in the presence of 

two common inhibitors in forensic casework, such as humic acid and haematin, was also 

evaluated. Full genetic profiles were obtained with ≤ 500 ng/μl of humic acid or ≤ 500 μM of 

haematin using replica samples. These results demonstrated the sensitivity and robustness of this 

new multiplex panel. 

3.2 Y-STR population study 

A total sample set of 628 males representing populations from four different continents was 

studied to examine the allele diversity of the new set of SM Y-STRs (DYS388, DYS426, DYS461, 

DYS485, DYS525, and DYS561). The haplotypes obtained with the novel panel are provided in 

Supplementary Table S3. Populations from Spain were pooled together since non- significant 

differences were observed among them (p > 0.0033, after Bonferroni correction for multiple 

comparisons), with the exception of autochthonous Basques which shown significant differences 

and, therefore, it was treated as a single group.  

Allele frequency and gene diversity for each locus in the analyzed populations are given in 

Supplementary Table S4. The number of alleles for each locus in the whole dataset and in each 
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population is compared in Fig. S3. In the whole population sample set, the six loci exhibited a 

range of alleles up to 9. The gene diversity per locus ranged from 0.42 to 0.54, except for the 

marker DYS388, which displayed the lowest average gene diversity value (∼ 0.29). The most 

discriminative marker differed among the analyzed populations: DYS461 was the most variable 

locus for the Thailand, Spain, and the autochthonous Basque groups; DYS485 for the three 

American populations; and DYS561 for Malawi. 

Haplotype diversity (HD) and the haplotype discrimination capacity (DC) were evaluated for each 

population, in addition to the number of different haplotypes (Supplementary Table S5). The 

populations from Africa and Asia displayed the highest haplotype diversity values for the SM Y-

STR multiplex (0.9527 ± 0.0213 and 0.9493 ± 0.0132, respectively). Among the Latin American 

populations, the group from Nicaragua displayed higher diversity (0.9235 ± 0.0281) than the 

Hispanic group from Colombia (0.8949 ± 0.0353) and Native Americans from Guatemala (0.8392 

± 0.0463). Finally, for the Caucasian groups, the general population from Spain showed a diversity 

markedly higher (0.8437 ± 0.0246) than the Basques autochthonous, which displayed the lowest 

values (0.6990 ± 0.0505) of all the studied populations. The differences observed in haplotype 

diversity are expected given the different evolutionary and demographic histories of the 

populations here studied. High diversity values were displayed by populations which historically 

have experienced important complex demographic events, such as the Hispanic groups [33,34] or 

the Asian and African populations analyzed [35,36]. On the other hand, lowest values were 

obtained for those populations, such as the Native American or Basque groups, that have been 

characterized as genetic isolates due to cultural or/and geographic barriers [37,38]. 

The capacity of the 6-plex SM Y-STR panel to discriminate among male haplotypes differed among 

the analyzed populations. In the Latin American groups, i.e. the admixed groups from Nicaragua 

and Colombia, the novel panel allowed the differentiation of more than half of the haplotypes, 

obtaining DC values of 0.6212 and 0.5167, respectively. Most of the haplotypes were distinguished 

by at least three locus differences (65.22% in Nicaragua and 57.46% in Colombia) (Fig. 1). Similar 

results were obtained for the African (DC = 0.6129) and Asian (DC = 0.4902) groups, where around 

half of the haplotypes could be discriminated using this multiplex and most of haplotypes 

exhibited two or three differences among them. In the Native American population from 

Guatemala, the DC was more limited given that only 19 haplotypes were observed in the 50 

individuals analyzed (DC = 0.3800), 12 of these haplotypes were unique. In this population, around 

half of the individuals possessed haplotypes differing in two or three loci (51.84%). The Caucasian 

populations showed also low DC values, in particular the autochthonous Basque group (DC = 

0.220) compared to the general Spanish population (DC = 0.3653). In this last group 80 out of 219 
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individuals could be differentiated using this 6-loci multiplex, with 59 unique haplotypes. In this 

case, the distribution of haplotypes, with 62.34% of them differing in two or more loci, is indicative 

of an influx of different male lineages in the gene pool. On the other hand, in the autochthonous 

Basque group, only 22 different haplotypes (13 unique ones) were identified among the 100 

individuals. In fact, most of the haplotypes in this sample set displayed only one (34.55%) or two 

(21.62%) locus differences among them. This result is in agreement with previous reports that also 

indicated a limited influx of male lineages from other regions in the autochthonous group [38]. 

 

Fig. 1. Distribution of the number of locus differences between pairs of individuals in the analyzed population sets. 

Populations are: THA: Asians from Thailand; COL: Hispanics from Colombia; GUA: Native Americans from Guatemala; 

NIC: Hispanics from Nicaragua; MW: Africans from Malawi; SPA: European Caucasians from Spain; and ABA: European 

Caucasians Autochthonous Basques. 

The 6-plex SM Y-STR panel provided a moderate power of discrimination between male 

haplotypes in most populations, despite of the low mutation rate. Yet, the inclusion of SM Y-STR 

markers in casework may be a valuable tool in exclusion of kinship cases where minimal 

discrepancies have been found using the routine panels, and when de novo mutations may 

account for the allele inconsistencies. The presence of one or more discrepancies in the SM Y-STRs 

may offer further evidence for the genuine exclusion of the biological parenthood, since mutation 

events are rarer to occur in these markers among close relatives. 

3.3 Population-specific and shared Y-STR haplotypes across populations 

Population-specific SM Y-STR haplotypes (only found in a single population) were mostly identified 

in the Asian, African, and Native American groups, with values of 80.00%, 78.95%, and 63.16%, 

respectively. On the other hand, in the groups from Spain and Latin America a higher number of 

Y-STR haplotypes in common is observed. This is expected given the relatively common European 

ancestral genetic pool of these populations. 
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Overall, among the shared SM Y-STR haplotypes, it is noticeable that the haplotype 12-12-11-15-

10-10 (DYS388-DYS426-DYS461-DYS485-DYS525-DYS561) was the most abundant in the general 

population from Spain (39.27%) and autochthonous Basques (54%), as well as in the Latin 

American groups from Colombia (31.67%) and Nicaragua (27.27%). In contrast, no individuals with 

this haplotype were found in the Asian population from Thailand and neither in the African 

population from Malawi, and only one male carried this haplotype in the Native American 

population from Guatemala. The Y-SNP typing revealed that individuals carrying this haplotype 

belonged to the R1b haplogroup. In the Native American population from Guatemala the most 

common haplotype, assigned to the Q haplogroup according to Y-SNPs, was shared by 19 

individuals (12-12-11-14-9-10), and it was also present in one Nicaraguan individual. In the case 

of the African population, the most frequent haplotype was detected in 5 males (12-11-12-14-10-

11), and it was also seen in one Colombian male. This haplotype was associated to the E 

haplogroup according to Y-SNP typing. Finally, in the Asian group the most recurrent haplotype, 

which corresponded to the O haplogroup, was observed in 19 individuals (12-11-10-15-9-10) and 

it was specific from this population. 

3.4 Y-STR population comparison 

The pairwise RST genetic distances indicate that the Africans from Malawi, Asians from Thailand 

and Native Americans from Guatemala exhibit significant differences from all groups (p ≤ 0.0018) 

(Supplementary Table S6 and Fig. 2A). On the other hand, the two Hispanic groups from Nicaragua 

and Colombia did not show significant differences between them, neither from general Spanish 

population. Therefore, the data from this novel multiplex system demonstrates the permanence 

of male Spanish genetic ancestry in the Hispanic groups sampled. Significant differences were 

observed from all the other groups in the case of the autochthonous Basque group, despite low 

RST values were observed from general Spanish population. 

The Non-Metric Multi-Dimensional-Scaling plot (NMDS), based on pairwise RST genetic distances, 

shows the segregation among the groups from different continents (Fig. 2B). The populations from 

Africa, Asia and Native Americans are found apart from each other and the rest of the populations. 

On the other hand, the Spanish population plots close to the admixed Latin-American groups, and 

further apart from the autochthonous Basque group. 
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Fig. 2. A) Heat plot of pairwise RST values between all populations (blue=high values; white=low values). *Indicates 

significant difference after Bonferroni correction (P = 0.0009). B) Non-metric Multi-Dimensional-Scaling (NMDS) (3D 

projection with minimum stress of 0.0723) representation of genetic distances based on RST estimates. Populations 

are: THA: Asians from Thailand; COL: Hispanics from Colombia; GUA: Native Americans from Guatemala; NIC: Hispanics 

from Nicaragua; MW: Africans from Malawi; SPA: European Caucasians from Spain; and ABA: European Caucasians 

Autochthonous Basques. gr2ce Analysis of SM Y-STRs haplotypes in a three-Dimensional plot colored by haplogroups. 

3.5 Congruency between SM Y-STR haplotypes and Y-SNP haplogroups across populations 

A Factorial Correspondence Analysis 3D plot was constructed including the most abundant 

haplogroups identified in the study (in decreasing frequency: R, O, E, Q, J, I, G, and T) to visualize 

the correspondence of the 6 SM Y-STR haplotypes and Y-SNP haplogroups across populations (Fig. 

S4). Moderate clustering was observed for the different haplogroups along the axes, being 74.49% 

of the variance explained by the first three dimensions. 

A more detailed analysis indicated that most individuals which displayed an identical SM Y-STR 

haplotype belonged to the same Y-SNP haplogroup (82.67%) (Supplementary Table S3). Different 

level of Y-STR haplotype diversification was detected within the haplogroups. High SM Y-STR 

haplotype resemblance was observed within haplogroups such as R, particularly in R-M269, 

observing mostly haplotypes identical (zero differences) to the most abundant haplotype or near 

identical (one mutation-step difference). These results are in accordance to previous studies that 

reported haplotype similarity within R-M269 [11,39]. Other haplogroups, such as E, J, and I 

displayed higher diversification, which could be due to a stronger differentiation at the 

subhaplogroup level [40,41]. 

Therefore, these results do not necessarily point to the capacity of unambiguous assignation of 

individuals in haplogroups using SM Y-STRs, as it has previously been stated for other Y-STRs 
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markers [30,42]. However, it shows that inclusion of these SM Y-STR loci in the analyses, together 

with conventional Y-STRs, may help to optimize the phylogenetic signals over current Y-STR 

panels. 

4. Conclusions 

In light of the findings in this study the novel set of Slowly Mutating Y-STRs (DYS388, DYS426, 

DYS461, DYS485, DYS525, and DY561) has demonstrated to be a reproducible, sensitive and robust 

multiplex system. This panel may be used in conjunction with the existing commercial multiplexes 

for forensic casework, particularly for confirming the exclusions in kinship cases where minimal 

discrepancies in one or few loci are reported using the regularly employed panels. The assessment 

of additional disparities in the SM Y-STRs may provide further evidence for the genuine exclusion 

of the biological kinship, since mutation events are rarer to occur in these markers. Furthermore, 

SM Y-STR data can be used to optimize and to increase the resolution of the phylogenetic trees 

based only on the current Y-STR panel sets. In addition, the results obtained in this study highlight 

the potential of combining mixed systems (slowly and rapidly mutating Y-STRs) to address 

different evolutionary time windows. In this study, we have provided an extensive Y-STR allele and 

haplotype reference dataset for future applications. 
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Electronic supplementary material 

Supplementary Tables 

Supplementary Table S1. Loci information, mutation rate, number of alleles observed, allele range size (in bp), PCR 

primers and final concentrations, and fluorescent dyes. 

 

Supplementary Table S2. Y-SNP characteristics, primer sequences and analysis conditions. 

 

Supplementary Table S3. Y-STR haplotypes from the studied population groups. N: number of individuals. [1] Núñez et 

al. 2012; [2] Valverde et al. 2015; [3] Villaescusa et al. 2017. 

Corresponds to Attached Table 3 in Appendix section. 

 

 

 

 

 

 

 

 

Locus Repeat motif Mutation ratea 

(per locus per generation )
No. of alleles 

observed
Allele range size 

(in bp)b Primer Sequences (5'-3')c Primer concentration 
(µM)

Dye (in F 
primer)

F: GTGAGTTAGCCGTTTAGCGA 5'-FAM
R: TAGTCCCAGCTACTCAGCAG
F: GAAGCTCAACTGTTTGTAATCTGG 5'-ATTO 550
R: CTGGGTGACAAGACGAGAC
F: GCAGAGGATAGATGATATGGATAG 5'-ATTO 565
R: CAGGTAAATCTGTCCAGTAGTGA
F: ACTTCGCCACTACATAATATGTCC 5'-YAKYE
R: AAGGCTGAGGCTTAAGAATCAC
F: GATAGGGAGATGATACATAGAAG 5'-ATTO 550
R: CATCCATCTGTTTATCTTCCCA
F: TTAATGCTTGCCTGATGCCA 5'-ATTO 565
R: AGTGATCTATGATCCCAACAACTG

0.2

174-190

181-193

191-215

216-234

206-226

207-223

0.2

0.2

0.2

0.2

0.2

4.04 x 10-4

DYS388 (ATT)n 10-18

DYS426 (GTT)n 10-14

4.25 x 10-4

3.98 x 10-4

DYS525 (AGAT)n 8-13

DYS561 (GATA)n(GACA)4 8-12

9.78 x 10-4

9.41 x 10-4

DYS461 
(Y-GATA-A7.2)

(TAGA)n 9-13

DYS485 (TTT)0-1(TTA)n 12-18

9.89 x 10-4

Y-SNP Primer Sequences (5'-3')a Methodb Annealing 
Temperature (Cº)

Amplicon 
Size (in bp)

Mutation 
(anc/der) db SNP ID Y chr position hg19 Reference

F: TTGTTTCCTTTGGCAAACTG
R: GGCATTTCCACAAATACACTG
F: TGTCAAATTGTGACACTGCA
R: CTTCATCCAACACTAAGTACCT
F: CTCCAGACAAATCTCGTCTC
R: CCTTTACCAAGTAGTCACCTG
F: CAGGATTTGTCAAGGATGGG
R: GCTATGACTAAGAGGGATTCCA
F: ATTACTCTTTGCTCTCCCGA
R: CCCAGAATACACTTTATCCTCC
F: TTAAACTCTCTGAATCAGGCACAT
R: TGATACCTTTGTTTCTGTTCATTC
F: TCTACGGCATAGAAAGTTTGTG
R: CTAGAACAACTCTGAAGCGG
F: AGGGCATCTTTCATTTTAGG
R: GTGGATTTGCTTTGTAGTAGG
F: GGGCAAATGTAAGTCAAGCA
R: CACTTCAACCTCTTGTTGGA
F: ACATGGTATCACAATAGAAGGG
R: TCCAAGGTGCTGGGATTAC

a F: forward ; R: Reverse
b Detection method: Seq (Sequencing) and HRM (High Resolution Melting)

Valverde et al 2013

G-M201 HRM & Seq. G/T rs2032636 15,027,529 Valverde et al 2013

55

57

109

149

E-P170 HRM & Seq. G/A rs9786025 15,021,522

rs9341301 15,023,364 Valverde et al 2013

IJ-P126 HRM & Seq. C/G rs17250163

Q-M242 HRM & Seq. C/T rs8179021

22,738,775

55 15,018,582

O-M175 HRM & Seq. TTCTC/Del - 15,508,704..15,508,712

T-M272 HRM & Seq. A/G rs9341308

HRM & Seq. G/A rs3894 19,096,363 Present study

Valverde et al 2015

R-M207 HRM & Seq. A/G rs2032658

Valverde et al 2013

Q1a2-M3 156

81

216

138

59,5

56

60.5

15,581,983 Valverde et al 2013

R1b-M269 HRM & Seq. T/C rs9786153 22,739,367

90

106

114

70

56

55

55

56

Valverde et al 2013

Present study

21,225,770 Valverde et al 2013

I-M258 HRM & Seq. T/C
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Supplementary Table S4. Allele frequencies and gene diversity (GD) for each of the 6 Y-STR markers in the studied 

population samples. N: number of individuals. 

 

 

Supplementary Table S5. Diversity parameters obtained for the populations analyzed with the six Y-STR multiplex. 

 

 Population        Asians 
from Thailand 

Native Americans 
from Guatemala 

Hispanics 
from Colombia  

Hispanics 
from Nicaragua 

Africans 
from Malawi

European 
Caucasians 
from Spain

European 
Caucasians

Autochthonous 
Basques 

N 102 50 60 66 31 219 100

10 0.1275 ± 0.0332 0.0167 ± 0.0167 0.0323 ± 0.0323
11 0.0098 ± 0.0098 0.0400 ± 0.0280 0.0100 ± 0.0100
12 0.7745 ± 0.0416 0.8400 ± 0.0524 0.8167 ± 0.0504 0.7576 ± 0.0532 0.9355 ± 0.0449 0.8402 ± 0.0248 0.9400 ± 0.0239
13 0.0490 ± 0.0215 0.1000 ± 0.0429 0.0667 ± 0.0325 0.0758 ± 0.0328 0.0323 ± 0.0323 0.0639 ± 0.0166 0.0200 ± 0.0141
14 0.0196 ± 0.0138 0.0455 ± 0.0258 0.0365 ± 0.0127 0.0200 ± 0.0141
15 0.0333 ± 0.0234 0.0455 ± 0.0258 0.0365 ± 0.0127
16 0.0196 ± 0.0138 0.0200 ± 0.0200 0.0167 ± 0.0167 0.0606 ± 0.0296 0.0228 ± 0.0101 0.0100 ± 0.0100
17 0.0333 ± 0.0234 0.0152 ± 0.0152
18 0.0167 ± 0.0167
GD 0.3844 0.2882 0.3311 0.4187 0,1269 0,2881 0.1166

10 0.0046 ± 0.0046
11 0.9412 ± 0.0234 0.0400 ± 0.0280 0.3500 ± 0.0621 0.4242 ± 0.0613 1.0000 ± 0.0000 0.2740 ± 0.0302 0.0500 ± 0.0219
12 0.0588 ± 0.0234 0.9600 ± 0.0280 0.6500 ± 0.0621 0.5758 ± 0.0613 0.7032 ± 0.0309 0.9400 ± 0.0239
13 0.0137 ± 0.0079
14 0.0046 ± 0.0046 0.0100 ± 0.0100
GD 0.1118 0.0784 0.4627 0.4960 0,0000 0,4322 0.1150

9 0.0588 ± 0.0234 0.2000 ± 0.2000 0.0303 ± 0.0213 0.0320 ± 0.0119
10 0.4118 ± 0.0490 0.2000 ± 0.2000 0.2000 ± 0.0521 0.1364 ± 0.0426 0.0645 ± 0.0449 0.1096 ± 0.0212 0.1500 ± 0.0359
11 0.4118 ± 0.0490 0.8000 ± 0.0571 0.6667 ± 0.0614 0.6515 ± 0.0591 0.2581 ± 0.0799 0.7260 ± 0.0302 0.7600 ± 0.0429
12 0.0784 ± 0.0268 0.1400 ± 0.0496 0.1333 ± 0.0443 0.1667 ± 0.0462 0.5484 ± 0.0909 0.1005 ± 0.0204 0.0900 ± 0.0288
13 0.0392 ± 0.0193 0.2000 ± 0.2000 0.0152 ± 0.0152 0.1290 ± 0.0612 0.0320 ± 0.0119
GD 0.6562 0.3461 0.5062 0.5361 0,6323 0,4508 0.3958

12 0.0600 ± 0.0339 0.0303 ± 0.0213 0.0320 ± 0.0119 0.0200 ± 0.0141
13 0.0098 ± 0.0098 0.0400 ± 0.0280 0.0303 ± 0.0213 0.0183 ± 0.0091 0.0500 ± 0.0219
14 0.0294 ± 0.0168 0.6000 ± 0.0700 0.2000 ± 0.0521 0.1667 ± 0.0462 0.8065 ± 0.0721 0.0868 ± 0.0191 0.0800 ± 0.0273
15 0.6765 ± 0.0466 0.2000 ± 0.0571 0.6667 ± 0.0614 0.5303 ± 0.0619 0.0645 ± 0.0449 0.7717 ± 0.0284 0.8200 ± 0.0386
16 0.2451 ± 0.0428 0.1000 ± 0.0429 0.0833 ± 0.0360 0.1212 ± 0.0405 0.0968 ± 0.0540 0.0548 ± 0.0154 0.0200 ± 0.0141
17 0.0392 ± 0.0193 0.0500 ± 0.0284 0.1212 ± 0.0405 0.0320 ± 0.0119 0.0100 ± 0.0100
18 0.0323 ± 0.0323 0.0046 ± 0.0046
GD 0,4846 0.5967 0.5147 0.6699 0,3462 0,3934 0.3210

    
            
              
              
        
      

  
              
              
              
      

DYS388

DYS426

DYS461

DYS485

8 0.0294 ± 0.0168 0.0091 ± 0.0064
9 0.7549 ± 0.0428 0.7400 ± 0.0627 0.0606 ± 0.0296 0.0968 ± 0.0540 0.0320 ± 0.0119 0.0200 ± 0.0141
10 0.1863 ± 0.0387 0.2200 ± 0.0592 0.7333 ± 0.0576 0.6818 ± 0.0578 0.7097 ± 0.0829 0.7854 ± 0.0278 0.9500 ± 0.0219
11 0.0098 ± 0.0098 0.0400 ± 0.0280 0.1833 ± 0.0504 0.1818 ± 0.0478 0.1935 ± 0.0721 0.1461 ± 0.0239 0.0300 ± 0.0171
12 0.0098 ± 0.0098 0.0667 ± 0.0325 0.0606 ± 0.0296 0.0228 ± 0.0101
13 0.0098 ± 0.0098 0.0167 ± 0.0167 0.0046 ± 0.0046
GD 0.3982 0,4106 0.4311 0.5021 0,4645 0,3618 0.0972

8 0.0046 ± 0.0046
9 0.0392 ± 0.0193 0.0200 ± 0.0200 0.1167 ± 0.0418 0.1212 ± 0.0405 0.1290 ± 0.0612 0.1096 ± 0.0212 0.0700 ± 0.0256
10 0.6275 ± 0.0481 0.8200 ± 0.0549 0.7500 ± 0.0564 0.7273 ± 0.0552 0.4839 ± 0.0912 0.7534 ± 0.0292 0.8700 ± 0.0338
11 0.3137 ± 0.0462 0.1600 ± 0.0524 0.1000 ± 0.0391 0.1515 ± 0.0445 0.3548 ± 0.0874 0.1324 ± 0.0230 0.0600 ± 0.0239
12 0.0196 ± 0.0138 0.0333 ± 0.0234 0.0323 ± 0.0323
GD 0.5110 0.3078 0.4198 0.4401 0,6430 0,4046 0.2370

DYS525

DYS561

Population N Different 
haplotypes

Unique 
haploypes

Population 
specific 

haplotypes 
HD DC

Asians 
from Thailand 102 50 34 40 0.9493 ± 0.0132 0,4902

Native Americans 
from Guatemala 50 19 12 12 0.8392 ± 0.0463 0,3800

Hispanics 
from Colombia  60 31 22 11 0.8949 ± 0.0353 0,5167

Hispanics 
from Nicaragua 66 41 34 16 0.9235 ± 0.0281 0,6212

Africans 
from Malawi 31 19 13 15 0.9527 ± 0.0213 0,6129

European Caucasians 
from Spain 219 80 59 42 0.8437 ± 0.0246 0,3653

European Caucasians
Autochthonous Basques 100 22 13 7 0.6990 ± 0.0505 0,2200
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Supplementary Table S6. Pairwise RST value estimates (under the diagonal) and their significance (above the diagonal) 

between all populations, based on the 6 Y-STR loci studied. Significant values (p<0.0018 after Bonferroni correction) are 

highlighted in bold italics. 

 

Supplementary Figures 

 

Supplementary Figure S1. A) Diagram of the panel developed in the present study. (B) A representative 

electrophoregram showing the profile of 1.5 ng control DNA amplified at the optimized PCR conditions. The peaks 

correspond to: DYS388 (blue), DYS485 (green), DYS426 (black), DYS525 (black), DYS461 (red), and DYS561 (red). The 

GeneMapper ID-X plots are presented as combined all dyes. 

 

Asians 
from Thailand 

Native Americans 
from Guatemala 

Hispanics 
from Colombia  

Hispanics 
from Nicaragua 

Africans 
from Malawi

European 
Caucasians 
from Spain

European 
Caucasians

Autochthonous 
Basques 

Asians 
from Thailand * 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

Native Americans 
from Guatemala 0,2856 * 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

Hispanics 
from Colombia  0,2418 0,2305 * 0.8677±0.0039 0.0000±0.0000 0.2784±0.0037 0.0000±0.0000

Hispanics 
from Nicaragua 0,2262 0,2188 -0,0107 * 0.0000±0.0000 0.0529±0.0020 0.0000±0.0000

Africans 
from Malawi 0,3183 0,2988 0,1966 0,1806 * 0.0000±0.0000 0.0000±0.0000

European 
Caucasians 
from Spain

0,2409 0,1897 0,0025 0,0126 0,2159 * 0.00109±0.0003

European 
Caucasians

Autochthonous 
Basques 

0,3030 0,2123 0,0730 0,0936 0,3698 0,0250 *
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Supplementary Figure S2. Number of alleles determined in the six SM Y-STRs for each population and the whole dataset. 

Populations are: THA: Asians from Thailand; COL: Hispanics from Colombia; GUA: Native Americans from Guatemala; 

NIC: Hispanics from Nicaragua; MW: Africans from Malawi; SPA: European Caucasians from Spain; and ABA: European 

Caucasians Autochthonous Basques. 

 

Supplementary Figure S3. Performance testing of the 6 SM Y-STRs multiplex measured as average (%) of loci detected. 

A) Sensitivity test of template DNA (2800M DNA) ranging from 10 ng to 25 pg. B) Inhibitory effects of humic acid ranging 

from 25 ng to 3000 ng. C) Inhibitory effects of haematin ranging from 100 µM to 5000 µM. 
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Supplementary Figure S4. Factorial Correspondence Analysis of SM Y-STRs haplotypes in a three-Dimensional plot 

colored by haplogroups. 
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5. Discussion 
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5.1 The paternal genetic landscape of Southwestern Europe 

The present doctoral thesis work has focused on the study of the paternal lineage R1b-M269 

through the dissection in its sublineages by the analysis of Y chromosome SNPs (Y-SNPs) in order 

to reconstruct the most probable evolutionary scenario of its origin, which has provided valuable 

results of forensic and population interest. In addition to that, with the purpose of responding to 

the demand of more multiplex tools of forensic application, two novel panels of Y-SNPs and Y-

STRs were developed that have enabled, respectively, to attain higher haplogroup resolution of 

the branch M269 and to resolve particular cases that conventional Y-STR panels are not able to. 

5.1.1 Haplogroup composition of Southwestern Europe 

The paternal genetic landscape of Europe is defined by haplogroup R, to which more than 50% of 

the men belong to. R lineage is mainly subdivided in the sub-branches R1a-M420 and R1b-M343, 

which are more common in East Europe and West Europe respectively (Figure 17). However, the 

genetic landscape of Southwestern Europe is also defined by other haplogroups apart from R, like 

E, G, I, J, and N 258,344.   

 

Figure 17. Simplified phylogenetic tree of the R1b-M343 haplogroup and geographic location of the main 

subhaplogroups, if known. In red bold letters are represented the Y-SNPs analyzed in the present doctoral thesis work. 

In the present doctoral thesis work, we studied the most common West European paternal 

lineage, the R1b derived branch R1b1a1b-M269, and its sublineages. Even though the distribution 

and structure of the other less frequent European haplogroups were already defined, in the case 

of M269, its structure and how it expanded was still not completely known 257. For that reason, 

the information provided by the present thesis is of high value, as it has allowed us to refine the 
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distribution of M269 and its subhaplogroups in populations from Southwestern Europe (Study 

Number 1). Understanding the distribution of this lineage and its sublineages in Europe, as well as 

in other regions of European influence, is of great interest not only in population genetics but also 

for forensic purposes. M269 can be used as a marker of West European ancestry, as its detection 

in a vestige would point to European paternal biogeographical origin and, thus, allow to connect 

a crime contributor to a more concrete geographical area. Furthermore, it could also allow to trace 

European migrations to other areas of the world.   

5.1.2 Dissection and structure of M269 

Previous studies by Balaresque and colleagues, and Myres and colleagues 257,258, revealed that 

most of the male individuals that currently inhabit Central and Western Europe belong to the 

paternal lineage R1b-M269, in frequencies between 40-90%. This haplogroup displays the highest 

frequencies in the Franco-Cantabrian area and shows a west-east decreasing frequency cline with 

distance (Figure 18). Our results in Study Number 1 reveal frequencies for M269 concordant with 

the previous studies, and improves the coverage in populations from Southwestern Europe, 

especially from the Atlantic Coast.  

 

Figure 18. Frequency distribution maps of the data compiled in Study Number 1 (blue stars) and the data from 258,259,345 

(red points). The Y-SNPs used for the construction of these maps are highlighted in bold in the upper right tree. 

 



 209 

 

Figure 18. Continuation. Frequency distribution maps of the data compiled in Study Number 1 (blue stars) and the data 

from 258,259,345 (red points). The Y-SNPs used for the construction of these maps are highlighted in bold in the upper right 

tree. 

The two main M269 subhaplogroups, namely U106 and S116 (also known as P312), showed 

distinct areas of distribution in Europe: U106 is more frequent in Central and Northern Europe 

while S116 is the dominant subtype in Western and Southwestern Europe (Figures 18, 19). 

Surprisingly, the distribution of S116 found in our study differs from the one proposed by Myres 

and colleagues 258. Myres and colleagues 258 detected a frequency peak for S116 in the Upper 

Danube Basin and Paris, with a declining frequency towards Italy, Southern France, the Iberian 

Peninsula, and the British Isles. In contrast, our data shows maximum frequencies in Northern 

Iberia, the French western coast, and the British Isles, which raised questions on the possible 

expansion of S116 during the early Neolithic LBK culture (Linearbandkeramik or Linear Pottery 

culture) as Myres and colleagues 258 proposed. These discrepancies in the frequency distributions 

with Myres and colleagues 258 could be due to the inclusion of new populations form the Atlantic 

coast and Iberia, with allowed a better coverage of those European areas. Furthermore, a more 

recent study has suggested that the dissemination of S116 throughout most of its present-day 

distribution may be linked to individuals of the Bell Beaker culture 346, a more recent culture linked 

to the early Bronze Age.   

Regarding the sublineages of S116, as previously noted 258,259, U152 is more common in Northern 

Italy and the Alpine region, whereas M529 is more frequent in the British Isles and Brittany. Our 

results reveal a striking distribution of U152 in Iberia, displaying frequency peaks in the coastal 

corners in the Southwest (13%), Northwest (8%), and Northeast (6%). This pattern could be 
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explained by migration from the Alpine region, where this haplogroup peaks, to the Iberian 

Peninsula following a coastal route. As for M529, our new population data revealed high 

frequencies (>50%) of this Y-SNP in Brest (Brittany), outside the British Isles, which raises questions 

whether it originated in the British Isles (where it is most common nowadays) or somewhere else 

in the European continent (Figure 18).  

 

Figure 19. Frequency distribution maps of M269, S116, and DF27 in the Atlantic Coast and Iberian Peninsula obtained 

in Study Number 1. The stars in M269 map indicate the samples of population analysed. The upper right tree includes 

the Y-SNPs used for constructing the distribution maps. 

Considering all of the discussed above, the dissection analysis of the M269 sublineage S116 

provided informative results that allowed further completing the history of M269 lineage. Owing 

to the discovery of the highly frequent sublineage DF27, first described by Rocca and colleagues 
224, the paragroup S116* (xU152, xM529) was largely resolved. Previous studies of S116 lineage 

and sublineages in populations from Southwestern Europe 258,259 found the highest frequencies of 

the paragroup S116* in Iberia, between 28-52%. Study Number 1 confirms that most of those 

frequencies correspond to the lineage DF27. Furthermore, the median joining network analyses 

constructed from Y-STRs showed a bipartite structure corresponding to the individuals belonging 

to S116* and DF27 haplogroup (Figure 20). DF27 was found in frequencies between 40-48% in 

Iberia, reaching peak values in the Basque Country (>60%). Thus, the haplogroup DF27 occupies a 

different geographic area from that of the other S116 sublineages U152 and M529.  

YxM269

S116*S116

M269

M269 U106
S116 U152
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L238
DF19
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Figure 20. Median joining network of the M269 haplogroup in the Basque native population (bearing Basque surnames) 

obtained in Study Number 1. The blue arrows indicate a phylogenetic split of DF27 haplogroup into two groups bearing 

the alleles 14/18 and 15/19 in the Y-STR haplotype DYS437/DYS448. 

5.1.3 The origin and controversy of M269 

The origin and expansion of M269 has been the subject of heated debate due to the differences 

in the time to the most recent common ancestor (TMRCA) estimated by various authors 257,258,295. 

The most widely accepted theories argued that M269 originated in the Franco-Cantabrian refuge, 

and that the current pattern of frequencies is the result of its postglacial expansion during the 

Paleolithic 294,295,347. Other theories proposed its origin in Eastern Europe during the Neolithic, 

based on the higher diversity of Y-STR haplotypes in that area 257, or during the Mesolithic period 

considering coalescence times and frequency distribution 258.  

The differences on the estimated TMRCA for M269 based on Y-STR markers is mainly due to the 

fact that estimates are sensitive to the calibration of the mutation rates and to the mathematical 

model applied to perform the inference 348. In order to facilitate the discussion in the present 

thesis work, the mentioned TMRCAs were detailed in the same time scale (years ago, ya), although 

the authors used different ways to express it. Balaresque and colleagues 257 used a germinal 

mutation rate (GMR) and obtained TMRCAs for M269 between 5,500 and 8,000 ya, which would 

agree with a Neolithic expansion. Conversely, Morelli and colleagues 295 used the evolutionary 

mutation rate (EMR) and obtained much older TMRCAs, between 14,800-32,600 ya, supporting a 

Paleolithic origin. Two studies 258,349 obtained TMRCAs (8,590-11,950 ya and 8,500-12,500 ya, 

respectively) more compatible with a Neolithic expansion also employing the EMR. Overall, it is 

clear that age estimates based on Y-STR variation have proven to be a difficult topic since, apart 

from the mutation rate and the mathematical model, the set of Y-STR markers used for the 
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estimation and the individuals selected for the calculation are also critical. In Study Number 1, 

making the calculations with all the precautions reported so far, we obtained coalescent times 

selecting the EMR that dated the origin of S116 lineage 9,711-13,635 ya, which would place the 

origin of this lineage, and M269, in the Paleolithic. 

Given the controversy in calculating TMRCAs, in Study Number 1 we considered that time 

estimates should be taken with caution until more complete Y chromosome sequencing allowed 

more accurate time scales, and/or genotyped and reliably dated archaeological remains became 

available. In that context, since our TMRCA results were more compatible with an origin of M269 

during the Paleolithic, an arrival of M269 to Europe during the Neolithic was regarded to be 

unlikely, since it would assume the creation of a complex scenario of expansions of sublineages in 

a relative short time. Moreover, the advent of M269 during the Neolithic would also assume a 

rapid expansion of the lineage throughout Europe, replacing most of the previously settled 

lineages. 

Regarding the place of origin and/or expansion of M269, classical theories located it in the Franco-

Cantabrian refuge, in the Paleolithic, due to its maximum frequencies and the pattern of 

decreasing frequency with increasing distance from that area. However, our dissection of M269 

in the refuge area in Study Number 1 raises questions about its origin in that region. The Basque 

population inhabits the core of the Franco-Cantabrian region and almost all of their M269 

sublineages belong to the subhaplogroup S116. If M269 had originated in that area, it would be 

logical to find more M269 sublineage variability. Considering all of the above, in the present thesis 

work, we considered more likely a place of origin and/or expansion of M269 in Eastern Europe 

with a subsequent migration to the west, with the appearance of its sublineages during the 

advance of the lineage through West Europe over the time. Nonetheless, the homogeneity in the 

variability of the Y-STRs within M269 made it difficult to pinpoint a more likely origin 259. The 

maximum frequencies of S116 and DF27 lineages in the Basque region, with its pattern of 

decreasing frequency gradient with distance, and the extremely low frequencies of M529 and 

U152, suggest that this area could be the source for S116 and its subhaplogroup DF27. Thus, we 

proposed the following scenario (Figure 21):  

1. Origin of M269 in Eastern Europe. 

2. Origin of L11 on the way of westward expansion of M269 258. 

3. Spread of L11 throughout West Europe, as suggested by the frequencies of L11* in 

different parts of the Atlantic coast 258,259. 

4. Origin of U106 around the southern coast of the North Sea. 
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5. Origin of S116 in the Franco-Cantabrian area. 

6. Origin of DF27 sublineage from individuals inhabiting the Franco-Cantabrian area, while 

other S116 individuals spread to the rest of Iberia and Europe along the Atlantic and 

Mediterranean coast giving rise to the subhaplogroups M529 and U152, respectively. 

7. U152, DF27 and M529 spread and occupied their current territories, with M529 and U152 

re-entering the Iberian Peninsula during subsequent migrations. 

 

Figure 21. Evolutionary proposal for sublineages of M269 in Europe proposed in Study Number 1. The older the 

movement, the thicker the arrow. The thinner arrows indicate the current distribution of the younger sublineages here 

studied. 

Finally, thanks to the last published studies of Y chromosome resequencing and analysis of ancient 

DNA, it has been possible to obtain bias-free whole sequences of the male specific region of the Y 

chromosome (MSY) that have reliably added a temporal scale to the spread of the Y chromosome 

diversity. One of the most outstanding features of the recent evolutionary history of the Y 

chromosome is that it appears to have happened in bursts, with lineages rising to high frequencies 

in the wake of major changes in lifestyle and technological innovations, such as the arrival of the 

Neolithic or the recently acknowledged demographic upheaval caused by the Bronze Age in 

Europe 165,350.  

The direct dating performed from MSY sequence variation has put the origin of M269 in the early 

Bronze Age, around 4,500 years ago (ya) 165,168, which is consistent with the information provided 

by the ancient DNA record where the first R1b-M269 ancient individuals have appeared in 

archaeological sites from the late Neolithic and early Bronze Age 346,350–352. The studies of Haak and 

colleagues350, and Allentoft and colleagues351 associated M269 lineage with the arrival of Yamnaya 

steppe migrants in Central and Northern Europe after 5,000-4,500 ya, as a surge in this lineage is 
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indeed seen at that time. Furthermore, Poznik and colleagues 165 observed evidence of population 

bursts in Western Europe around 4,800-5,900 ya associated to lineages within R1b-L11 (a R1b-

M269 sublineage). The later time also coincides with the origins of the Corded Ware culture in 

Eastern Europe and the Bell-Beakers in Western Europe 350, the latter associated with M269 

lineage and the spread of its sublineage S116 throughout most of its present-day distribution 346. 

Moreover, Martiniano and colleagues 352 detected a discontinuity in the Y chromosome during the 

Bronze Age in the Iberian Peninsula after analyzing Neolithic and Bronze Age samples from 

Portugal. These last findings have finally brought light to the M269 controversy, and although our 

TMRCA estimation in Study Number 1 was not reliable due to using the EMR, our proposed 

dispersion scenario of M269 arriving to West Europe from Eastern Europe seems more or less 

compatible with the last reported findings about the origins and expansion route of M269.   

5.2 The Iberian near-specific paternal lineage DF27 

5.2.1 Paternal lineages in the Iberian Peninsula 

In the Iberian Peninsula, which nowadays hosts the countries of Spain and Portugal, the most 

common paternal lineage is the West European R1b-M269 in frequencies over 50%, as shown by 

Study Number 1 and Myres and colleagues 258. Among the M269 branches present in Iberia, the 

one that stands out the most is the haplogroup DF27, as described in Studies Number 1, 2, and 3, 

which occurs in frequencies over 30% in that area. Apart from that main R1b sublineage, other 

minor paternal lineages are observed like J2 (8%), E1b1b (7%), I2a (4.5%), and G (3%), among 

others 240,353–355. 

The highest contribution of paternal lineages to the Iberian Peninsula seem to have been from 

Late Neolithic and/or Bronze Age origin 346,352, apparent by the prevalence of M269 and its derived 

sublineages, as detailed in Studies Number 1, 2, and 3. Later migrations to the Iberian Peninsula 

may have also contributed with more lineages due to the influence of different historical groups 

such as Phoenicians, Carthaginians, Jews, Romans, Vikings, and Levantine Arabs, but in a smaller 

proportion 353–356. Considering all of the above, it is clear that the Iberian Peninsula seems to 

possess a complex genetic structure defined by different human migrations. For that reason, the 

fine knowledge of the paternal landscape of this region is of high interest, as it would allow making 

more reliable biogeographic inferences in Forensic Genetics. In this regard, the results provided 

by Studies Number 1, 2, and 3 are of great value for forensic, population and evolutionary genetics.  

The paternal lineage DF27 was first reported in the study of Rocca and colleagues 224 conducted 

by citizen scientists, which discovered new variants within haplogroup R1b-L11 using the data of 
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the 1,000 Genomes Project 357. This lineage was known among the burgeoning amateur genetic 

genealogy community, although no publications were devoted to it until the publication of the 

Studies Number 1, 2, and 3.  

5.2.2 Distribution and structure of DF27 haplogroup 

The research conducted by Rocca and colleagues 224 first reported that out of 49 samples 

previously categorized as belonging to S116* (xU152, xM529) 42 belonged to the newly defined 

Y-SNP DF27. Most of the DF27 derived samples were from Iberian or Latin American populations 

and linked the newly discovered variant to the previously unclassified S116* (xU152, xM529) 

reported in Iberia and some regions of France 259. 

The Studies Number 1, 2, and 3 analyzed the haplogroup DF27 and/or its sublineages in 

populations from Spain, Portugal, and France, and collected frequencies from the 1,000 Genomes 

Project 357 (Figure 22A). DF27 was found at frequencies 30-50% in Iberia, displaying maximum 

values in the Native Basque population (70%). Outside of Iberia, the frequencies drop to a range 

of 6-20%. Thus, we confirmed that DF27 is located in different geographic area that the one 

occupied by the other two major S116 sublineages U152 and M529, as discussed in the previous 

section. The dissection of DF27 in its main sublineages (Figure 22B) performed in Studies Number 

2 and 3, allowed us to obtain a detailed picture of its distribution and phylogenetic structure in 

West Europe, observing a pattern of distribution similar to its mother haplogroup. The same 

studies revealed that the sublineages of DF27 show a moderate geographical differentiation: 

Western Iberia (especially Asturias, Portugal, and Galicia) is characterized by low values of R1b-

Z195 derived chromosomes and relatively high frequencies of the paragroup DF27* (xZ195, xL881, 

xL617); North-Central Spain (Basque Country and Cantabria) displays relatively high frequencies 

of the subhaplogroup Z220 compared to the branch L176.2, which is more abundant in Eastern 

Iberia (Catalonia, Valencia, and Balearic Islands) (Figure 22A).  
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Figure 22. A) Contour maps of the derived allele frequencies of the SNPs analyzed in Study Number 3. B) Simplified 

phylogenetic tree of the R1b-M269 haplogroup.  

The Z220 sublineages Z278 and M153 display a similar pattern of frequency distribution and peaks 

as Z220. In the case of M153, our results and other available studies 256,354,358 show that it is 

confined in the Iberian Peninsula, with higher frequencies among the Basque population but rarely 

present at frequencies >1% elsewhere. Conversely, the L176.2 sublineage M167 (also known as 

SRY2627) peaks in Catalonia and the lands settled from Catalonia in the 13th Century 359, Valencia 

and the Balearic Islands. In addition to the typing of this Y-SNP performed on Studies Number 2 

and 3, other authors also analyzed this haplogroup in Iberian and other European populations 
247,256,354,358,360–363, confirming its distribution centered in the eastern half of Iberia. Considering all 

together, the geographic differentiation of DF27 subhaplogroups observed in Study Number 3 

remind of past historical East-West patternings of Iberia:  

1) In the pre-Roman era, the Iberian Peninsula was divided in two areas due to the presence 

of two types of peoples speaking different languages. The Indo-European Celts occupied 

the center and the West of the Iberian Peninsula while the non-Indo-European 

eponymous Iberians inhabited the Mediterranean Coast and hinterland (Figure 23) 364,365. 

A
 

B
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Figure 23. Peoples inhabiting the Iberian Peninsula in the pre-Roman era and their relative position. Adapted from 365. 

2) In the Middle Ages, when the Christian kingdoms in the north part of Iberia expanded 

southwards and regained control of the lands held by the Muslims (Figure 24) 366. 

 

Figure 24. Overview of the territory partition at the end of the Christian Reconquista in the Iberian Peninsula between 

the years 1,250-1,350. Extracted from 367. 

On the other hand, in Study Number 2 we gathered frequency data of DF27 and its subhaplogroups 

from the 1,000 Genomes Project 357 in order to get a better picture of the global distribution of 
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DF27. Until the releases of Studies Number 1, 2, and 3 the presence of DF27 in the academic 

literature was rather obscure, it was not directly genotyped in any study, and only scarce 

information concerning two of its subhaplogroups (M167 and M153) was available. The 

bibliographic search included several populations from Europe, America, Asia, and Africa. The 

frequencies found in other European populations (Britain, Italy, Finland) verified the decreasing 

frequency pattern with distance detected for DF27 in Studies Number 1, 2, and 3. Furthermore, 

we also detected the presence of DF27 in Latin America, finding frequencies similar to those 

observed in the Iberian Peninsula in Mestizo populations from the areas associated with a strong 

Iberian influence during the Colonial period (especially Colombia and Puerto Rico). The present 

finding raised the interest of using DF27 as an indicative of the degree of patrilineal Iberian versus 

Native American admixture. As expected, DF27 was absent in the populations from Asia and 

Africa, although it was found in very low frequencies in African-Americans and Afro-Caribbeans. 

 

Figure 25. Frequency contour map of DF27* obtained in Study Number 3. 

Conversely, the frequency of the paragroup of DF27* (xZ195, xL881, xL617) was the highest in the 

Native Basques (30%) and Western Iberian populations like Asturias, Galicia, and Portugal (Figure 

25). The high frequency of the paragroup could mean that these individuals may harbor yet 

unknown branches of DF27. The median joining networks constructed in Study Number 2 with 

individuals from the paragroup did not show any pattern of internal variability, not hinting the 

presence of new subhaplogroups not yet found. Likewise, it is also feasible that these individuals 

may just harbor individual variations. Since we genotyped pre-ascertained SNPs, a global 

characterization of the whole sequence diversity of DF27 haplogroup through next generation 

sequencing would allow to solve the paragroup and to run more precise statistical analyses.  
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The networks constructed in Study Number 1 to evaluate the Y-STR variation within DF27 

haplogroup hinted to a bipartite structure owing to the presence of three different haplotypes in 

the Y-STRs DYS437, DYS448, and YGATAH4. Studies Number 2 and 3 confirmed the phylogenetic 

split that separated the haplotypes that carried the derived allele for Z220 (that is, belonging to 

Z220*, Z278*, and M153) from the rest of DF27 chromosomes (that is, belonging to DF27*, Z196*, 

L176.2*, M167, and S68). The median haplotype for the Z220 derived chromosomes was 11-14-

18 at YGATAH4-DYS437-DYS448 while it was 12-15-19 for the rest of the DF27 chromosomes 

(Figure 26). These same results were also confirmed by principal component analysis (PCA) among 

Y-STR haplotypes. In addition to that, Z220 node groups also showed divergent branches that 

separated Z220* chromosomes from Z278* due to differing haplotypes in DYS390 and DYS456. 

 

Figure 26. Median joining network of DF27 haplogroup in the populations of Asturias, Cantabria, native Basques, 

resident Basques, and Aragon obtained in Study Number 2. The phylogenetic split for DF27 haplogroup is due to differing 

haplotypes for YGATAH4-DYS43-DYS448 Y-STRs. 

5.2.3 Origin and evolution of DF27 

The age of DF27 haplogroup seems clear considering the TMRCA estimations performed in Studies 

Number 2 and 3 with independent samples (our samples versus 1,000 Genomes Project 357) and 

independent methods (variation in 14-15 Y-STRs versus whole Y chromosome sequences). DF27 

appeared around 4,000-4,500 ya, which coincides with the population upheaval in West Europe 

at the transition between the Neolithic and the Bronze Age 350,351. As discussed in the previous 

section, the estimates obtained in Study Number 1 using the EMR were not considered to be 

reliable.  
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Regarding the population dynamics of DF27, the Y-STR diversity in the Study Number 3 dataset is 

much more compatible with a population growth model than with stationarity, as shown by the 

Approximate Bayesian Computing (ABC) results. However, contrary to other lineages such as S116, 

G2a, I2, or J2a, the start of its growth is closer to the TMRCA of the haplogroup. These results 

indicate that DF27 started its expansion around 3,000-3,500 ya, shortly after its origin. The median 

time for the start of the expansion is older in DF27 in comparison with other groups, which could 

suggest the effect of a different demographic process. Nevertheless, all the highest probability 

density (HPD) intervals broadly overlap and thus, suggest that a common demographic history 

may have affected the whole of the Y chromosome diversity in the Iberian Peninsula. The HPD 

intervals cover a broad timeframe, and could reflect the post-Neolithic population expansions that 

occurred from the early Bronze Age to the Roman Empire 366.  

While when the DF27 lineage appeared seems clear, where it might have originated has been 

more difficult to determine, as shown in Studies Number 2 and 3. If we considered only haplogroup 

frequencies, DF27 would seem to have appeared in the Basque Country. However, Y-STR internal 

diversity measures and age estimates for DF27 and most of its sublineages were lower in the 

Basque Country than in the other populations. The high frequencies found in the Basques could 

be better explained by genetic drift due to geographical and cultural isolation rather than by an 

origin in that area, something that could have also decreased the internal diversity of DF27 among 

the Basque people. We also considered an origin for this lineage outside of the Iberian Peninsula, 

which would be similar to the external origin of M269, even if DF27 reaches the highest frequency 

in that region. This search for an external origin would be limited to France or Great Britain, as 

DF27 is rare or absent elsewhere. The Y-STR data available for France (no data was available of 

Great Britain) pointed to a lower diversity, and the obtained TMRCAs were younger than in Iberia. 

We consider unlikely that DF27 originated in France since unlike in the case of the Basques, genetic 

drift in a traditionally isolated population would seem an improbable explanation for this pattern. 

For that reason, the most plausible hypothesis would be a local origin of DF27 in the Iberian 

Peninsula.  

Within Iberia Aragon showed the highest diversity and the oldest age estimates for DF27, Z195, 

and L176.2. Nonetheless, since the sample size was small, any conclusion should be taken with 

caution. By contrast, the TMRCA estimations for lineages Z220 and Z278 were older in populations 

from North-Central Spain. Concerning the sublineage M153, since it seems almost restricted to 

the Basque Country, a local origin in that area seems possible, although the diversity and age 

values cannot be compared due to the scarcity of M153 chromosomes outside of that region. 
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5.2.4 Relevance and forensic applicability of DF27 

As discussed in detail in the present doctoral thesis work, DF27 possess relatively high frequencies 

in Iberia and Iberian-derived populations and is rare elsewhere. For that reason, a potential 

Forensic Genetics application for this Y-SNP would be for inferring the paternal biogeographic 

origin of an unknown male contributor to a crime scene. This could be helpful in missing person 

cases, mass disaster identifications, and cases where the person of interest is of Iberian descent, 

especially when dealing with admixed populations composed of individuals of diverse origin. The 

finding of a vestige that possess DF27 paternal lineage could point to an individual of Iberian 

ancestry, particularly if a sublineage within DF27 is also found, since they are uncommon outside 

of Iberia. Apart from that, Study Number 3 showed that some of the sublineages of DF27, like Z220 

and L176.2, display moderate geographical differentiation inside the Iberian Peninsula, being 

more frequent in Eastern Iberia or North Central Spain respectively. The presence of these 

lineages could vaguely point to some concrete areas of the Iberian Peninsula, although it should 

be considered with caution.  

Despite the potential interest to use the Y-SNP DF27 as a marker of Iberian ancestry for forensics, 

there are some limitations concerning its specificity and sensitivity that should be taken into 

account. If we compare the frequency of DF27 in Iberia with the CEU sample (Utah residents with 

Northern and Western European ancestry) of Europeans-Americans from the 1,000 Genomes 

Project 357, DF27 is just 4.19 times more frequent in Iberians than in CEU, a ratio that increases to 

6.82 for the sublineage Z220. Thus, the analysis of DF27 alone could not guarantee significant 

investigative leads in many cases. Part of this limitation derives from the intrinsic qualities of the 

Y chromosome and the Y-SNPs, lack of recombination and low mutation rate that ends up in their 

transmission practically unchanged from fathers to sons, preventing to discriminate between male 

individuals from the same paternal lineage. In addition to that, we cannot disregard the effect of 

recent migrations, which has led to populations growing more diverse and the dissemination of 

paternal lineages previously restricted to more specific geographic areas.  

Hence, we consider that DF27 is a potentially useful marker in Forensic Genetics for determining 

paternal biogeographical ancestry that could be used in conjunction with other markers such as 

AIMs (Ancestry Informative Markers) and/or mitochondrial DNA in order to ascertain the ancestry 

of a vestige.  

Apart from the evident forensic application for DF27 and its sublineages, these haplogroups may 

also be used to trace migratory events involving Spanish or Portuguese men, particularly outside 

of Europe. A clear example of this can be observed in the Latin American populations, where DF27 
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seems to correlate with the amount of male-mediated Spanish admixture, as it is clearly less 

frequent in the populations with a stronger Native American component, such as Peru and Mexico 
357. Furthermore, even within Europe DF27 can still be informative to detect short-range migration 

events such as that from Northern France to Flanders 368, or from Spain to the Low Countries 369. 

Thus, using DF27 in particular could serve to trace other migration events even within the Iberian 

Peninsula, such as the medieval expansion of the Aragon kingdom towards the Mediterranean in 

the 14th-15th centuries, or the Castilian occupation of Flanders in the 17th century. In this regard, 

the study published by Larmuseau and colleagues 369 analyzed the impact of the presence of 

Spaniards during the Dutch Revolt on the genetic variation in the Low Countries. By the analysis 

of the DF27 subhaplogroups Z195 and M167 it could be verified that there was no higher 

occurrence of Iberian specific lineages associated with a historical gene flow event in the Low 

Countries like the one that happened during the 16th century with the Spanish Furies 370,371. The 

use of DF27 served to assess the impact of those circumstances on the genetic variation in the 

current autochthonous populations of the Low Countries.  

Finally, DF27 could also be relevant in genealogical studies, particularly in the study of the Y 

chromosome in connection with surnames, since the latter is often transmitted through the male 

line 159. For this purpose, Y-STRs are usually analyzed and, considering the Y-STR mutation rates, 

the similarity in Y-STR haplotypes between men sharing the same surname is usually taken as 

indicative of a shared genealogical origin. However, in the case of M269, the most common 

European paternal lineage, the diversity within the haplogroup is rather small 361,372 and using only 

Y-STRs may result in homoplasy, rather than shared origin, causing Y-STR haplotype convergence. 

For that reason, Y-SNPs are much more informative in the case of surnames connected to M269 

lineage, as individuals belonging to different M269 subhaplogroups cannot be distinguished from 

each other based solely on Y-STR haplotype variation. In this context, when trying to ascertain the 

founding events of surnames within Iberia, that is, to study the history of surnames from this 

region, the Y-SNP DF27 should be used instead of Y-STRs. Since the majority of the male individuals 

from this geographic area belong to the lineage M269, the analysis of Y-STRs would not be 

informative enough for the study of Iberian surnames and, thus, analyzing the Iberian near-

specific DF27 would provide much more information.  
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5.3 Estimating the time to the most recent common ancestor of Y-SNPs 

5.3.1 Interest 

The estimation of the time to the most recent common ancestor (TMRCA) is a popular method to 

measure the age of a concrete DNA mutation, such as genetic markers associated to paternal or 

maternal lineages. The inference of the divergence time between different populations has been 

of great interest in the study of population evolution. The availability of genome-wide data thanks 

to the advent of next generation sequencing (NGS) has provided an unprecedented opportunity 

to study the demographic changes and migration patterns throughout the history of the human 

populations 373. Many of the existing population genetics inference methodologies have been built 

on the basis of the coalescent theory 374,375, although these can be generally classified according 

to the type of genetic data used as input and the assumptions about population demography. 

Some methods assume a model for the genealogy while others do not 376.  

Several studies have provided refined Y chromosome phylogenies 165,168 where the branch lengths 

are proportional to time allowing, thus, the direct estimation of the TMRCA of the nodes. 

Furthermore, the coalescence of their branches can be used to trace the effective population size 

back in time. These studies have allowed obtaining reliable TMRCAs for several Y-SNPs from whole 

Y chromosome sequences 168. On the other hand, Y-STRs are also commonly used in population 

genetics since they exhibit a higher degree of variation and, owing to that, can be a great tool for 

discriminating between closely related chromosomes. Though their mutation processes can be 

rather complex and saturate much faster than SNPs, Y-STR markers can also provide good 

estimates for relative recent events 140. 

The estimation of the TMRCA in Studies Number 2 and 3 allowed us to estimate reliably the age 

of the lineage DF27 and its sublineages both from Y-STRs and from whole Y chromosome 

sequences present in the 1,000 Genomes Project dataset 357. The comparison of the ages 

estimated through different genetic data (Y-STRs vs. whole chromosome) enabled us to verify the 

quality of the method used for the TMRCA calculation. Thanks to the solid estimation obtained 

with the algorithm Rho by following the advised precautions and using suitable mutation rates, 

we could understand the historical context of the origin of DF27 and its demography, how such a 

young haplogroup gave rise to a great diversity of sublineages in a relatively short time. Some of 

its subhaplogroups, like Z195, originated almost simultaneously with appearance of DF27, and the 

other two main subbranches appeared around 1,000-1,500 years after the TMRCA of DF27 

(Studies Number 2 and 3).  
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5.3.2 Limitations of TMRCA estimation from Y-STRs 

As discussed in the previous sections, the estimation of the TMRCA has been a controversial issue 

in population genetics mainly due to the methods, since it has been difficult to assess their 

reliability due to the lack of datasets where the true time of interest is known 233. The main reason 

of the discrepancies between the obtained TMRCAs is the selected mutation rate, as well as the 

mathematical model applied to perform the inference 233,348. Mutation rate assumptions have a 

large impact on molecular dating. By using the evolutionary mutation rate (EMR) proposed by 

Zhivotovsky 310,311 considerably older TMRCAs are obtained in comparison with the ones obtained 

using the germinal mutation rate (GMR) 349. Another three variables that should be considered are 

the generation time, whose values in the literature range from 15 to 30 years, the set of Y-STRs 

used, and the presence of ‘outlier’ individuals. Concerning this last variable, Boattini and 

colleagues stated that the presence of ‘outlier’ haplotypes could inflate significantly the ages of 

haplogroups and suggested that for dating purposes these haplotypes should be detected and 

removed 362. 

In the present thesis work, the TMRCA for several Y-SNPs was estimated using four approaches:  

1) Using Rho (ρ) statistic selecting the EMR with a set of Y-STRs (Study Number 1). 

2) Using ρ statistic selecting a mean GMR adjusted to the set of Y-STRs used for the 

estimation (Study Number 2). 

3) Using a weighted ρ statistic, which takes into account that mutations at slow STRs take 

longer to accumulate than mutations at faster STRs, selecting a mean GMR adjusted to 

the set of Y-STRs (Study Number 3). 

4) Using ρ statistic with a mutation rate adjusted to the ~ 10.36 Mb of the Y chromosome 

amenable to short-read sequencing and SNP detection 165 (Study Number 3).  

In this way, we obtained older TMRCAs for S116 and DF27 using the EMR, placing their origin in 

the Paleolithic (11,673 ± 1,962 and 10,468 ± 1,831 years ago respectively). However, with the 

approaches II and III, which used a GMR adjusted to our set of Y-STRs, we obtained TMRCAs for 

DF27 around 4,000-4,500 ya, transferring its origin at the transition between the Neolithic and the 

Bronze Age. Furthermore, using whole genome sequence variability with approach IV we obtained 

remarkably similar estimations to those obtained with Y-STRs, verifying the quality of the method 

and confirming that Y-STRs can also provide good time estimations if we consider a suitable 

mutation rate, among other variables. 



 225 

Finally, we selected the ρ statistic for inferring the TMRCA. The accuracy of this method has been 

highly perceived as independent of demographic parameters, but this assumption is false 377 and 

has often led to wrong TMRCA estimates. Taken that into account, we consider that using ρ 

properly adjusted and selecting a suitable set of Y-STRs and mutation rate, this method can 

provide reliable estimations for relative recent times. Nevertheless, we are aware of the 

limitations of this statistic, and recommend to use it with caution since demography has proven 

to be a strong confounding factor in estimating molecular dates accurately, especially for 

populations in which bottlenecks, founder events, and size changes have played important 

historical roles 377. 

5.4 Evaluation of the new 15 Y-SNP minisequencing multiplex 

5.4.1 Assessment of the 15 Y-SNP minisequencing panel 

 

Figure 27. Diagram of the theoretical positions of the Y-SNPs included in the 15-plex minisequencing panel presented 

in Study Number 4. Ancestral alleles appear in bold letters; Derived alleles appear underlined. 

In Study Number 4 a novel Y-SNP minisequencing multiplex was developed for the fine subtyping 

of the Iberian paternal lineage DF27 in a unique reaction (Figure 27). This panel was designed for 

its application in forensic and population genetics, specifically for the inference of paternal 

biogeographical ancestry. In forensic casework, DNA is not always in optimal condition due to 

degradation, low copy number, or the presence of inhibitors 378–380. These factors, alone or 

altogether, may give raise in incomplete or null genetic profiles and, therefore, robust panels with 
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short length amplicons are preferred in forensic routine. With that in mind, we carefully designed 

the 15-plex to obtain the shortest length of amplicons, with the additional challenge that involves 

designing primers for the analysis of the Y chromosome owing to its complex structure 110,118. 

Besides, we also made the length of the minisequencing primers as short as possible to make this 

method a cost-effective approach of easy implementation. Moreover, the reduced number of 

coamplified fragments enables the optimization of the assay in any forensic laboratory and 

minimizes competition effects during the amplification of samples with low quantities of DNA. 

On the other hand, the development of any multiplex minisequencing assay is a complex process 

where apart from the reaction conditions and marker selection, it is critical to test all the included 

variants. This entails that the minisequencing panel must able to detect all the alleles of the 

markers included in the assay, which is usually verified by analyzing samples that display all the 

alleles of the selected variants. However, this can prove to be a difficult task when some of the 

variants display scarce frequencies or no samples of the particular allelic variant are available. 

Therefore, a method is necessary to allow such variants to be included during the optimization of 

the minisequencing assay. The application of site-directed mutagenesis in Study Number 4 allowed 

us to confirm that the 15-plex Y-SNP panel was able to detect the derived allelic variants of the 

rare Y-SNPs DF19 and L881 by producing them in vitro. We placed the changed nucleotide as close 

as possible to the 5’ extreme of the primer in order to prevent primer-DNA hybridization problems 

due to the mismatch produced by the changed nucleotide. These results confirm that site-directed 

mutagenesis is a highly appropriate tool to produce variants in vitro for minisequencing reactions, 

as was also suggested on a mitochondrial DNA minisequencing assay 319.  

5.4.2 Applicability of the novel 15-plex minisequencing panel 

The new 15-plex is a reproducible method that allows subtyping the Iberian near-specific lineage 

DF27 in a single reaction to the highest phylogenetic resolution to date. Some of the included 

DF27 subhaplogroups, such as Z220 and M167, display moderate geographical differentiation, as 

discussed in previous sections and Study Number 3. Thus, the typing of DF27 and its 

subhaplogroups in forensic samples by the use of the present multiplex, in combination with other 

markers like Y-STRs or AIMs, could be of interest for inferring the paternal biogeographic origin of 

an unknown contributor to a crime scene. Moreover, given the lower dispersion of the DF27 

sublineages the detection of one of them in an area outside of the Iberian Peninsula could hint a 

suspect of Iberian ancestry, which would be useful in admixed populations composed of different 

ethnic groups (such as the United States or some Latin American countries).  
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Conversely, the inclusion in the 15-plex of other common M269 sublineages above DF27 (i.e., 

U106, S116, U152, M529, L238, and DF19) that are geographically localized in West Europe (as 

described in Study Number 1), makes this multiplex also applicable to a broader range of samples, 

as it also detects West European lineages. Therefore, the present 15-plex could be used for 

forensic purposes as well as for the study of the European paternal contribution to the genetic 

substrate of different population groups given the dispersion of some West European populations 

(such as Great Britain, France, Spain, or Portugal) over large areas of America, Asia, and Africa 

throughout history 366. 

Previous Y-SNP minisequencing panels include the European haplogroup R1b but not many of its 

derived sublineages 177,179,180,183, hence, our 15-plex can be combined with those panels in order 

to provide an increased power of paternal lineage discrimination. Likewise, this Y-SNP multiplex 

could also be combined with the analysis of the mitochondrial DNA lineage to complete the 

information on biogeographical ancestry, both paternal and maternal, which would be of 

particular interest in the study of admixed populations or individuals.  

5.4.3 Application of the 15-plex to real cases 

Y-SNPs possess some characteristics that makes them suitable for their use in forensics 74,95 and 

have certain advantages over other makers. In certain cases where the genotyping of other 

markers has failed due to the DNA being degraded or in low copy number, or no suspects are 

known, is where the analysis of Y-SNPs can provide valuable clues by inferring the paternal 

biogeographic ancestry of a vestige 95. Therefore, the new 15-plex for the subtyping of DF27, which 

has demonstrated to be a highly useful and efficient multiplex, has been incorporated to the 

Diagnostic Service of the Biological Parentage, Genetic Identification, and Ancestry Identification 

of the DNA Bank of the University of the Basque Country UPV/EHU. Within this service, it has also 

been applied in paternal biogeographical ancestry inference of skeletal remains exhumed from 

mass graves of the Spanish Civil War and posterior dictatorship by our group. 

5.5 Evaluation of the novel Slowly Mutating Y-STR panel 

5.5.1 Efficiency of the novel multiplex 

In Study Number 5 a new Slowly Mutating (SM) Y-STR panel was developed and evaluated for 

forensic purposes (Figure 28). We selected the best candidate makers with a low mutation rate (~ 

10-4 mutations/generation) 151 and an intra-population gene diversity >0.4 in different world 

population groups. The sensitivity studies performed allowed setting a minimum quantity of DNA 
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of 200 pg where complete genetic profiles are obtained with peak heights above 50 RFU, which 

makes this multiplex suitable for forensic samples. We also evaluated the stability of the panel in 

the presence of two common inhibitors in forensic casework, such as hematin and humic acid, 

obtaining complete profiles with ≤ 500 ng/µl of both inhibitors. The obtained results 

demonstrated the robustness and sensitivity of this new multiplex panel for forensic use. 

 

Figure 28. A) Diagram of the panel developed in Study Number 5. (B) A representative electropherogram showing the 

profile of 1.5 ng control DNA amplified at the optimized PCR conditions. The peaks correspond to: DYS388 (blue), DYS485 

(green), DYS426 (black), DYS525 (black), DYS461 (red), and DYS561 (red). The GeneMapper ID-X plots are presented as 

combined all dyes. 

The population study revealed that the SM Y-STR panel provides a moderate power of 

discrimination between male haplotypes in most populations in spite of the low mutation rate. 

Nevertheless, the inclusion of SM Y-STR markers in forensic casework in combination with routine 

panels may be a valuable tool in exclusion of kinship cases since mutation events are rare to occur 

in these markers among close relatives. The panel allowed the differentiation of half of the 

haplotypes in the Latin American populations, and similar results were obtained for the African 

and Asian groups. The Native American populations, as well as the Europeans, showed lower 

discrimination capacity, the first ones due to their genetic isolation attributable to cultural or/and 

geographic barriers 381, and the seconds owing to the high resemblance of Y-STR haplotypes 

belonging to M269 lineage 361,372.  

In the same way, we observed relative correspondence of SM Y-STR haplotypes to concrete Y-

SNPs, particularly in the case of the haplogroups R1b, Q, and O. These results do not point to the 

capability of an unambiguous prediction of haplogroups using only SM Y-STRs, as it has been 
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previously sated for other Y-STRs 163,382, but hints their potential to be included in routine analysis 

with conventional Y-STRs to help optimize Y chromosome haplogroup prediction. It is necessary 

to consider that haplogroup prediction from Y-STR haplotypes is not always trustworthy and does 

not work well for the prediction of some lineages due to the scarcity of reference data 163. In this 

sense, both conventional Y-STRs and SM Y-STRs are limited in their prediction capability. 

5.5.2 Applicability of the SM Y-STR panel 

The 6-plex panel was designed considering the potential utility of SM Y-STRs in forensic casework, 

particularly in exclusion cases where minimal discrepancies are considered to be critical and end 

up reported as exclusions. In this sense, the inclusion of SM Y-STR markers may be a useful tool in 

exclusion kinship cases where minimal discrepancies were found using the conventional Y-STR 

panels, and when de novo mutations may account for the allele inconsistencies. The presence of 

one or more discrepancies in the SM Y-STRs may offer further evidence for the truthful exclusion 

of the biological parenthood, considering that mutations occur more infrequently in these 

markers. 

 Likewise, the low mutation rate of the SM Y-STRs pointed that they could also be used for 

phylogenetic studies. Although the sole analysis of SM Y-STRs does not allow an unambiguous 

assignation of individuals in haplogroups, we consider that the inclusion of these loci in the 

analyses, together with the conventional Y-STRs, may be helpful to optimize the phylogenetic 

signals upon current Y-STR panels since they are more stable than other common Y-STR markers 

(although less stable than Y-SNPs), and allow constructing more robust phylogenetic relationships. 

Overall, we consider that the present multiplex has demonstrated that it is a reproducible, 

sensitive and robust method to be used in tandem with the existing commercial multiplexes for 

forensic casework, and highlights the potential of combining mixed Y-STR systems (slowly and 

rapidly mutating) to address distinct time windows.  

5.5.3 Application if the SM Y-STR panel to real cases 

The use of the SM Y-STR multiplex in conjunction with other commercial multiplexes show 

potential for particular kinship cases as well as for optimizing and increasing the resolution of the 

phylogenetic relationships based only on the conventional Y-STR panel sets. Considering this, the 

SM Y-STR panel has been added to the Diagnostic Service of the Biological Parentage and Genetic 

Identification of the DNA Bank of the University of the Basque Country UPV/EHU. The 6-plex has 

been applied in samples from skeletal remains exhumed from mass graves of the Spanish Civil 



 230 

War and posterior dictatorship for concrete kinship cases where minimal discrepancies were 

found with current Y-STR panels. 
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6. Conclusions
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Conclusions  
1) The characterization of the paternal landscape of Southwestern Europe by the analysis of 

Y-SNPs in population samples from Spain, Portugal, France, Ireland, and Denmark has 

revealed that the predominant lineage is R1b-M269 with a distribution in concordance 

with previous studies. As previously described, we confirmed the geographical location of 

the main M269 sublineages, being U106 more frequent in Northern and Central Europe 

while S116 is more common in Southwestern Europe.  

 

2) S116 haplogroup presents a different distribution from the one proposed before by other 

authors, displaying a decreasing gradient with distance from Northern Iberia, the French 

western coast, and the British Isles. The maximum frequencies of S116, S116*, and DF27 

in the Franco-Cantabrian region, the diversity of S116 sublineages, and their spatial 

distributions in the Iberian Peninsula and Atlantic coast point to the origin of S116 in the 

Franco-Cantabrian area. Finally, the paragroup S116* was largely resolved by haplogroup 

DF27, which is located in a different geographic area that the ones occupied by the other 

two major S116 subhaplogroups, U152 and M529.  

 

3) The paternal lineage DF27 displays an Iberian near-specific distribution, with frequencies 

over 30-50% in Iberia that quickly drop to a range of 6-20% outside of that region, being 

absent in populations from Asia and Africa. Likewise, DF27 is also present in Latin America 

in areas associated with Iberian or European influence during the Colonial period, such as 

Colombia and Puerto Rico, being less frequent in populations with stronger Native 

American component like Mexico or Peru.  

 

4) The high frequencies of the paragroup DF27* could point to the existence of yet unknown 

subhaplogroups of DF27, although no pattern of internal variability was observed in the 

median joining networks constructed with the individuals from the paragroup. 

Nevertheless, only a global characterization of the whole sequence diversity of DF27 

through next generation sequencing would allow eventually resolving the paragroup. 

 

5) The TMRCA estimations performed from Y-STRs and whole Y chromosome sequences 

date the origin of DF27 lineage 4,000-4,500 years ago, overlapping with the population 

upheaval in West Europe at the transition between the Neolithic and the early Bronze 
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Age. Considering the age of DF27 in the different populations and the internal diversity of 

the Y-STRs, the most feasible theory is that DF27 originated in the northeast Iberian 

Peninsula, although it has not been possible to point out a more specific location within 

Iberia. However, caution should be taken when estimating TMRCAs because the 

calculation methods, mutation rates, and the demographic history of each population 

could affect the accuracy of the estimated times to a high degree.  

 

6) DF27 is a potentially useful marker in Forensic Genetics for determining paternal 

biogeographical ancestry that could be used in conjunction with other markers such as 

AIMs and/or mitochondrial DNA to ascertain the Iberian or European paternal ancestry of 

a vestige. In addition to that, the analysis of DF27 and its sublineages could also be 

relevant for the study of migratory events involving Spanish or Portuguese men, short-

range migrations events within Europe, and genealogical studies involving founding 

events of surnames within Iberia. 

 

7) A new Y-SNP multiplex system for the analysis of 15 Y-SNPs allowing the fine subtyping of 

the haplogroup DF27 has been developed. The high resolution accomplished by this panel 

makes it suitable for paternal biogeographic inference, particularly for Iberian and 

Southwest European paternal ancestry. Additionally, site-directed mutagenesis proved to 

be a highly appropriate tool to produce genetic variants in vitro for minisequencing 

reactions, allowing the inclusion of all variants during the optimization process. Thus, this 

new minisequencing panel has proven to be a robust and reproducible method of easy 

implementation in most forensics or population genetics laboratories.  

 

8) A novel Slowly Mutating (SM) Y-STR panel that includes six markers with a low mutation 

rate has been developed for its application in forensic casework in conjunction with the 

existing commercial multiplexes. The SM Y-STRs panel could be helpful for confirming 

exclusions in kinship cases where minimal discrepancies in one or a few loci are reported 

using the regular Y-STR panels, as well as for evolutionary studies, optimizing and 

increasing the resolution of the haplogroup prediction solely based on the conventional 

Y-STR panel sets. The SM Y-STR panel proved to be a reproducible, sensitive, and robust 

system for forensic use through its validation studies, and provided an extensive allele and 

haplotype reference dataset for future applications.  
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13

11
,1

4
12

13
15

18
16

18
24

11
27

0
Ur

ba
n_

no
n 

na
tiv

e
DF

27
1

1
0

1
1

0
0

0
0

14
14

31
24

11
13

13
11

,1
3

12
12

14
18

15
17

23
11

27
1

Ur
ba

n_
no

n 
na

tiv
e

DF
27

1
1

0
1

1
0

0
0

0
14

14
30

24
11

13
13

12
,1

5
12

11
14

18
15

17
23

11
27

2
Ur

ba
n_

no
n 

na
tiv

e
DF

27
1

1
0

1
1

0
0

0
0

14
13

29
24

11
12

13
11

,1
2

12
12

14
18

16
16

23
11

27
3

Ur
ba

n_
no

n 
na

tiv
e

DF
27

1
1

0
1

1
0

0
0

0
14

14
31

24
11

13
13

11
,1

4
12

12
14

18
16

16
23

11
27

4
Ur

ba
n_

no
n 

na
tiv

e
DF

27
1

1
0

1
1

0
0

0
0

14
14

30
24

10
14

13
12

,1
4

12
12

14
18

15
17

23
12

27
5

Ur
ba

n_
no

n 
na

tiv
e

DF
27

1
1

0
1

1
0

0
0

0
14

13
30

23
11

13
13

11
,1

4
11

11
15

19
16

18
23

12
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 C
or
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em
en
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 T
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le
 S

3 
fr
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 N
um

be
r 2

. 

 

ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

S1
A

ST
1

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
12

28
24

11
13

13
12

12
15

19
16

15
23

12
S2

A
ST

10
A

st
ur

ia
s

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
12

13
13

13
14

14
20

15
17

23
12

S3
A

ST
16

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

18
16

15
23

12
S4

A
ST

2
A

st
ur

ia
s

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
10

13
13

12
12

14
19

16
17

23
13

S5
A

ST
20

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

13
15

19
16

16
23

12
S6

A
ST

21
A

st
ur

ia
s

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

24
11

13
13

12
12

15
19

16
17

23
12

S7
A

ST
23

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
23

10
13

13
12

11
15

18
15

17
23

12
S8

A
ST

24
A

st
ur

ia
s

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

25
10

13
13

12
13

15
19

16
17

23
12

S9
A

ST
36

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
16

16
23

11
S1

0
A

ST
46

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

15
13

28
23

11
13

13
12

12
15

19
15

18
23

12
S1

1
A

ST
51

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
15

16
13

29
24

11
12

14
12

11
15

19
15

17
23

12
S1

2
A

ST
53

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
22

11
13

13
13

13
15

19
15

17
23

12
S1

3
A

ST
54

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
13

16
13

29
24

11
13

13
12

12
15

19
16

17
23

13
S1

4
A

ST
58

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
24

11
13

13
11

13
14

19
16

17
23

12
S1

5
A

ST
60

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
16

16
23

12
S1

6
A

ST
61

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

20
15

17
23

12
S1

7
A

ST
64

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

12
15

19
15

17
23

12
S1

8
A

ST
8

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

15
13

28
24

10
13

13
12

13
14

19
15

16
24

12
S1

9
A

ST
9

A
st

ur
ia

s
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
15

17
23

12
S2

0
A

ST
30

A
st

ur
ia

s
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

16
13

29
24

11
13

13
12

13
15

19
16

16
23

11
S2

1
A

ST
35

A
st

ur
ia

s
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

17
14

31
24

11
13

13
12

11
15

19
15

17
23

12
S2

2
A

ST
37

A
st

ur
ia

s
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

16
13

29
25

11
13

13
12

12
15

21
16

17
23

12
S2

3
A

ST
55

A
st

ur
ia

s
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

15
12

27
24

11
13

13
12

13
15

19
15

16
23

12
S2

4
A

ST
25

A
st

ur
ia

s
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

14
30

24
11

13
13

12
12

14
18

16
20

23
11

S2
5

A
ST

62
A

st
ur

ia
s

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

17
14

31
24

11
13

13
12

12
14

18
15

15
23

11
S2

6
A

ST
65

A
st

ur
ia

s
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

24
11

13
13

12
12

14
18

15
15

23
11

A
ST

5
A

st
ur

ia
s

1
1

0
0

0
1

1
0

0
0

0
0

0
S2

89
A

ST
11

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

15
16

23
11

11
12

9
12

16
20

13
18

14
16

21
11

S2
90

A
ST

12
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
17

15
25

9
11

13
10

13
15

21
14

16
12

12
22

11
S2

91
A

ST
13

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

23
10

13
13

9
11

14
19

16
17

14
16

21
11
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

S2
92

A
ST

14
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
22

10
14

11
10

12
15

20
15

15
13

17
22

12
S2

93
A

ST
17

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
9

11
13

10
10

14
20

16
18

12
14

21
12

S2
94

A
ST

18
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
23

10
11

12
9

11
14

21
15

17
13

17
21

11
S2

95
A

ST
19

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

13
17

23
10

11
13

10
13

14
19

16
16

16
16

21
11

S2
96

A
ST

26
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
22

10
11

13
10

12
16

20
15

15
13

14
22

11
S2

97
A

ST
27

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

22
10

11
14

10
11

16
22

16
21

13
15

21
11

S2
98

A
ST

28
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
15

16
24

9
11

12
9

11
14

21
16

15
12

17
23

12
S2

99
A

ST
29

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

14
16

23
10

11
12

9
11

14
21

15
18

12
17

22
11

S3
00

A
ST

3
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
13

18
24

10
11

13
10

12
14

20
15

17
16

18
24

11
S3

01
A

ST
31

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

23
10

14
13

9
11

14
20

15
17

14
18

21
12

S3
02

A
ST

34
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
13

17
24

10
11

13
10

12
14

20
16

17
18

18
21

12
S3

03
A

ST
38

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

13
17

24
11

11
12

11
12

14
20

15
19

16
17

25
12

S3
04

A
ST

39
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
15

17
23

10
11

12
9

11
15

20
14

16
13

14
22

13
S3

05
A

ST
4

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

17
15

23
10

11
13

10
12

15
21

14
18

12
12

22
12

S3
06

A
ST

41
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
13

16
23

10
11

14
10

13
14

21
15

15
17

17
21

11
A

ST
42

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

S3
07

A
ST

43
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
15

16
22

10
11

12
9

12
15

21
15

15
13

15
21

11
S3

08
A

ST
44

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

14
16

23
10

11
12

10
11

16
20

14
15

13
15

21
11

S3
09

A
ST

48
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
11

13
10

11
16

19
14

16
13

14
22

10
S3

10
A

ST
49

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

23
10

11
14

10
11

16
21

15
14

14
15

23
12

S3
11

A
ST

50
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
15

17
21

10
11

14
10

11
16

21
16

16
13

15
21

11
S3

12
A

ST
52

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

15
16

24
10

11
12

9
11

15
19

13
18

14
14

21
11

S3
13

A
ST

56
A

st
ur

ia
s

0
0

0
0

0
0

0
0

0
0

0
0

0
15

18
23

10
13

13
9

11
14

19
15

17
14

16
21

11
S3

14
A

ST
7

A
st

ur
ia

s
0

0
0

0
0

0
0

0
0

0
0

0
0

15
18

24
10

11
13

10
11

14
20

18
15

19
19

20
12

S3
15

A
ST

15
A

st
ur

ia
s

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

12
13

13
12

11
14

18
15

17
12

14
23

12
S3

16
A

ST
22

A
st

ur
ia

s
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

25
10

13
14

12
12

15
19

16
17

11
14

23
12

S3
17

A
ST

32
A

st
ur

ia
s

1
0

0
0

0
0

0
0

0
0

0
0

0
15

17
23

11
13

13
12

11
15

19
15

17
11

13
23

12
S3

18
A

ST
33

A
st

ur
ia

s
1

0
0

0
0

0
0

0
0

0
0

0
0

14
15

24
11

13
13

12
12

15
19

15
17

11
14

22
12

S3
19

A
ST

47
A

st
ur

ia
s

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
25

10
13

14
12

12
15

19
16

17
11

14
23

12
S3

20
A

ST
57

A
st

ur
ia

s
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

23
11

13
13

12
12

15
19

15
15

11
14

24
13
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

S3
21

A
ST

59
A

st
ur

ia
s

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
23

11
13

13
12

13
15

19
15

15
11

14
24

12
S3

22
A

ST
6

A
st

ur
ia

s
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

14
18

15
17

12
14

23
12

S3
23

A
ST

63
A

st
ur

ia
s

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

12
15

20
14

16
11

14
24

12
C

27
29

1x
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

23
12

13
13

12
12

15
19

15
17

22
12

C
28

30
8x

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

10
13

13
11

11
15

19
15

17
23

12
C

29
a3

90
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

25
10

13
13

12
12

15
19

16
19

23
11

C
30

a3
95

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
15

16
13

29
24

11
13

13
12

12
15

19
19

18
24

11
C

31
a4

55
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

14
31

24
11

13
13

12
13

15
19

15
17

23
12

C
32

a4
57

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
23

10
14

13
12

12
15

19
15

17
23

12
C

33
a4

64
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

15
16

13
29

25
11

13
13

12
12

14
18

15
17

23
12

C
34

a4
65

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
24

10
13

13
12

12
14

18
16

17
24

11
C

35
a4

66
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
14

12
13

15
18

16
12

23
11

C
36

a4
71

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
22

10
13

12
12

13
15

19
15

17
24

13
C

37
a4

77
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

15
18

23
12

C
38

a4
78

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
14

31
24

10
13

13
12

11
14

18
15

18
23

11
C

39
a4

80
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

17
16

12
28

23
11

13
13

12
13

15
19

16
16

23
11

C
40

a4
91

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
12

28
24

11
13

13
12

12
14

18
16

18
23

11
C

41
a4

92
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

25
11

13
13

12
12

15
18

15
17

23
12

C
42

a4
93

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
25

11
13

13
12

12
14

18
16

16
24

11
C

43
a4

96
C

an
ta

br
ia

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
14

12
14

15
19

17
17

23
12

C
44

a5
21

C
an

ta
br

ia
1

1
0

0
0

1
1

1
0

0
0

0
0

L1
76

.2
14

16
13

29
24

11
13

13
12

14
15

19
16

17
23

12
C

45
a4

98
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

17
13

30
23

11
13

13
12

13
15

20
16

17
23

11
C

46
a5

01
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
13

29
24

10
13

13
12

11
15

20
16

18
23

12
C

47
a5

03
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
25

11
13

13
12

12
15

19
16

19
24

11
C

48
a5

04
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
15

16
13

29
24

12
13

13
12

13
15

18
15

16
24

12
C

49
a5

05
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
13

29
25

10
13

13
12

12
15

19
16

17
24

12
C

50
a5

14
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
25

11
13

13
12

12
14

18
15

18
23

11
C

51
a5

15
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
14

30
25

11
12

13
12

11
14

18
15

17
23

12
C

52
a5

18
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
24

12
13

13
12

12
15

20
16

17
23

12
C

53
a5

20
C

an
ta

br
ia

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

10
13

13
12

12
14

18
16

17
25

11
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

C
54

a5
23

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

24
11

13
13

12
12

15
19

15
18

23
12

C
55

a5
41

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

24
10

13
13

12
12

15
19

15
18

23
12

C
56

a5
48

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

23
11

13
13

12
12

14
18

15
17

23
11

a4
68

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

a4
84

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

a5
13

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
0

0
0

a5
16

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
0

0
0

a5
08

C
an

ta
br

ia
1

1
0

0
0

1
1

1
0

1
0

0
0

a5
22

C
an

ta
br

ia
1

1
0

0
0

1
1

1
0

1
0

0
0

a5
00

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
1

1
0

a5
02

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
1

1
0

a5
19

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
1

1
0

a5
32

C
an

ta
br

ia
1

1
0

0
0

1
1

0
0

0
1

1
0

C
32

4
a2

26
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
22

10
11

13
10

11
16

20
12

15
13

15
22

11
C

32
5

a2
37

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

13
17

23
10

11
13

10
13

14
20

17
15

16
19

22
12

C
32

6
a2

94
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
14

17
24

10
13

12
10

11
14

20
17

17
.2

17
18

23
10

C
32

7
a3

01
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
13

16
24

9
11

13
10

10
14

20
16

17
14

16
21

12
C

32
8

a3
35

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

14
16

22
10

11
13

10
11

16
20

14
15

14
14

21
11

C
32

9
a3

37
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
15

17
23

10
13

13
9

11
14

19
16

18
14

16
21

11
C

33
0

a3
40

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

14
16

22
11

11
13

10
11

16
20

14
15

12
13

22
11

C
33

1
a3

47
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
15

17
25

10
11

12
11

10
14

20
16

15
11

14
23

12
C

33
2

a3
50

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
9

11
13

10
10

14
19

16
19

13
14

21
12

C
33

3
a3

54
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
13

17
24

10
11

12
10

12
14

20
15

17
.2

12
17

21
10

a3
58

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
66

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
94

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

a4
99

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

a5
06

C
an

ta
br

ia
1

1
0

0
0

0
0

0
0

0
0

0
0

C
33

9
a2

90
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

12
16

18
.2

15
18

11
14

23
13

C
34

0
a3

02
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
15

16
24

11
13

13
12

12
15

19
15

16
11

14
23

12
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

C
34

1
a3

45
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

13
15

19
15

17
11

15
23

12
C

34
2

a3
51

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
10

13
13

12
11

15
19

16
17

11
14

23
12

C
34

3
a3

55
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
15

17
23

11
12

14
10

11
14

20
15

15
15

16
21

11
C

34
4

a3
60

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

24
11

13
13

12
11

14
18

15
17

11
15

23
11

C
34

5
a3

61
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
13

17
24

10
11

13
10

12
14

21
17

15
16

17
24

12
C

34
6

a3
69

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

24
10

13
13

12
11

15
19

15
18

11
15

23
12

C
34

7
a3

70
C

an
ta

br
ia

0
0

0
0

0
0

0
0

0
0

0
0

0
13

16
24

9
11

13
10

10
14

20
14

19
13

14
21

11
C

34
8

a3
52

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
13

15
19

15
18

11
14

23
10

C
34

9
a3

86
C

an
ta

br
ia

1
0

0
0

0
0

0
0

0
0

0
0

0
14

17
24

11
13

13
12

12
14

18
16

20
11

14
23

12
C

35
0

a3
89

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

14
18

15
17

12
14

23
11

C
35

1
a3

92
C

an
ta

br
ia

1
0

0
0

0
0

0
0

0
0

0
0

0
15

15
24

10
11

13
10

12
15

20
15

18
12

12
20

13
C

35
2

a3
96

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

17
15

23
10

11
13

10
11

15
21

14
17

12
12

22
12

C
35

3
a4

53
C

an
ta

br
ia

1
0

0
0

0
0

0
0

0
0

0
0

0
14

17
24

11
13

13
12

12
15

19
15

17
11

14
23

13
C

35
4

a4
54

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

15
17

23
10

13
13

9
11

14
19

15
18

14
16

21
11

C
35

5
a4

63
C

an
ta

br
ia

1
0

0
0

0
0

0
0

0
0

0
0

0
15

17
22

10
11

14
10

12
16

21
17

16
14

15
21

12
C

35
6

a4
69

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
11

13
13

12
12

15
20

17
18

11
14

23
12

C
35

7
a4

70
C

an
ta

br
ia

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
11

13
12

11
15

19
17

18
11

14
24

14
C

35
8

a4
75

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

14
15

24
11

13
13

12
12

15
19

16
17

11
15

23
12

C
35

9
a4

76
C

an
ta

br
ia

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

12
13

13
12

12
14

18
17

18
11

15
23

11
C

36
0

a4
83

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

14
17

24
11

13
13

12
12

15
19

15
13

11
14

24
12

C
36

1
a4

85
C

an
ta

br
ia

1
0

0
0

0
0

0
0

0
0

0
0

0
15

17
24

11
13

12
12

11
15

19
15

17
11

14
23

12
C

36
2

a6
36

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

14
17

24
10

13
13

12
12

15
19

17
17

11
14

23
12

a2
92

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
48

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
49

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
53

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
56

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
67

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
68

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
71

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

a3
72

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
73

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
74

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
76

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
77

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
78

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a3
80

C
an

ta
br

ia
0

0
0

0
0

0
0

0
0

0
0

0
0

a4
56

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

a5
17

C
an

ta
br

ia
1

0
0

0
0

0
0

0
0

0
0

0
0

V
57

1f
tv

A
Pa

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

13
30

24
11

13
13

12
11

15
19

16
17

23
12

V
58

3v
f2

sP
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

16
16

23
12

V
59

5s
7z

m
Pa

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

25
11

13
13

12
12

15
19

15
17

23
12

V
60

94
78

3P
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

24
11

13
13

12
12

15
19

16
16

23
11

V
61

A
R

T0
08

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

24
11

13
13

12
12

15
19

16
16

23
12

V
62

A
R

T0
17

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

24
11

13
13

12
12

15
19

16
16

23
12

V
63

A
R

T0
20

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

24
11

13
13

12
12

15
19

15
17

23
12

V
64

A
R

T0
27

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

25
11

13
13

12
12

15
19

15
17

23
12

V
65

eL
r0

2P
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

23
10

13
13

12
11

15
19

17
19

23
12

V
66

ER
E0

03
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
15

16
14

30
23

10
13

13
12

13
15

19
18

18
23

13
V

67
ER

E0
15

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

25
10

13
12

12
13

15
19

15
17

23
13

V
68

ER
E0

30
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

10
13

13
12

12
14

19
16

17
23

13
V

69
ER

E0
33

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

24
10

13
13

12
12

15
19

18
17

23
12

V
70

G
85

e 
10

8
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

11
15

19
17

17
23

12
V

71
G

85
e 

14
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

10
13

13
12

12
15

19
15

16
23

11
V

72
G

85
e 

16
8

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
14

12
12

15
19

15
16

23
13

V
73

G
85

e 
17

1
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
25

10
13

12
12

13
15

19
15

17
23

12
V

74
G

85
e 

21
1

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

12
29

24
11

13
13

12
13

15
19

16
16

23
12

V
75

G
85

e 
21

2
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

13
15

19
15

17
23

12
V

76
G

85
e 

77
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

10
13

12
12

13
15

19
15

18
23

12
V

77
G

85
e 

90
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
23

11
13

13
12

13
14

18
16

16
23

11
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

V
78

G
85

e 
96

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

13
17

13
30

26
11

13
13

12
13

15
19

16
17

25
12

V
79

G
85

e 
98

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
10

13
14

12
11

15
19

15
17

23
13

V
80

Gh
X

O
GP

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
23

10
13

13
12

13
15

19
17

18
23

12
V

81
gK

6X
gP

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
23

10
13

13
12

13
15

19
17

18
23

12
V

82
go

u1
3

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

15
17

23
12

V
83

Jv
eh

sP
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
13

15
19

15
17

23
12

V
84

K
O

R
00

4
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

12
15

19
16

17
23

13
V

85
K

O
R

01
9

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

16
16

23
12

V
86

K
O

R
02

6
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
15

17
23

12
V

87
K

O
R

02
7

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
10

13
12

12
13

15
19

15
17

23
12

V
88

K
O

R
03

7
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

10
13

13
12

13
15

19
15

16
23

12
V

89
kW

Fi
T

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

15
17

23
12

V
90

N
A

B
00

2
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
16

16
23

12
V

91
N

A
B

00
5

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

12
29

24
11

13
13

12
13

15
19

16
16

23
12

V
92

N
A

B
00

6
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
12

29
24

11
13

13
12

13
15

19
16

16
23

12
V

93
N

A
B

01
4

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

14
19

15
16

23
12

V
94

N
A

B
02

2
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
12

28
24

11
13

13
12

12
15

19
15

16
23

12
V

95
P7

U
z5

Pa
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
25

10
13

12
12

13
15

20
16

17
23

12
V

96
Pr

G3
PP

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
15

17
23

12
V

97
q6

hK
Q

Pa
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
25

11
13

13
12

12
15

19
15

17
23

11
V

98
qB

ln
4

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

15
17

23
12

V
99

TX
 2

40
5

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

16
16

23
12

V
10

0
TX

 4
29

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

15
18

23
11

V
10

1
U

SA
00

2C
H

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

10
14

13
12

11
15

19
16

18
23

12
V

10
2

U
SA

00
2R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

24
11

13
13

12
12

15
19

16
16

23
12

V
10

3
U

SA
00

3B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

12
15

19
16

18
23

12
V

10
4

U
SA

02
2C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

24
11

13
13

12
12

15
19

16
16

23
12

V
10

5
U

SA
03

1R
EN

D
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
10

12
15

19
16

15
23

12
V

10
6

U
SA

03
8R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
18

13
31

23
10

13
13

12
12

15
19

14
19

26
12

V
10

7
U

SA
04

0B
0I

D
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

10
13

13
12

12
15

19
16

17
23

12
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Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

V
10

8
U

SA
05

2B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
12

28
24

11
13

13
12

11
15

19
16

16
23

12
V

10
9

U
SA

05
3B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

24
11

14
14

12
12

14
19

17
16

23
12

V
11

0
U

SA
08

1B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

12
15

19
16

17
23

13
V

11
1

U
SA

08
7B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

13
30

24
11

13
13

12
12

15
19

16
17

23
13

V
11

2
U

SA
09

4B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
15

17
23

12
V

11
3

U
SA

09
6B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

23
11

13
13

12
12

15
19

16
16

23
12

V
11

4
U

SA
11

0B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2
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14
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13
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23

11
13

13
12
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15
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16

16
23

12
V

11
5

U
SA

11
7B

O
ID

V
0

N
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e 
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es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

16
17

23
12

V
11

6
U

SA
12

6B
O

ID
V

0
N
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iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
23

10
13

13
12

13
15

19
16

18
23

12
V

11
7

U
SA

14
3B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

15
18

23
12

V
11

8
U

SA
15

4B
O

ID
V

0
N

at
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e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

13
12

12
15

19
15

17
23

12
V

11
9

U
SA

17
2B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

25
11

11
13

12
12

15
19

17
19

23
12

V
12

0
U

SA
18

2B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

12
15

19
15

16
23

12
V

12
1

U
SA

18
5B

O
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V
0

N
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iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

13
30

24
10

13
13

12
12

15
19

16
17

23
13

V
12

2
U

SA
18

8B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

12
14

19
16

17
23

12
V

12
3

Y3
TV

GP
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

14
31

25
10

13
12

12
12

15
19

15
17

23
12

V
12

4
A

R
T0

24
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

17
13

30
23

11
13

13
12

12
15

19
15

18
21

12
V

12
5

ER
E0

18
N

at
iv

e 
B

as
qu

es
1

1
0

0
1

1
1

0
0

0
0

0
0

D
F1

7
16

16
13

29
23

11
13

13
12

13
14

18
16

19
23

12
V

12
6

G
85

e 
10

3
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

16
14

30
24

11
13

13
12

12
14

18
16

16
23

11
V

12
7

G
85

e 
22

2
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

16
13

29
24

11
13

13
12

12
15

19
16

16
23

11
V

12
8

N
A

B
01

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

17
13

30
24

11
13

13
12

12
15

19
16

17
23

13
V

12
9

U
SA

01
6R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

0
0

0
Z1

96
p

14
15

12
27

24
11

13
13

12
12

15
19

15
16

23
12

V
13

0
U

SA
13
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O
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V

O
N

at
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e 
B
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qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96
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16
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24

11
13

13
12

12
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16

16
23

12
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13
1

G
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e 
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N
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B
as
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1
1

0
0

0
1

1
1

0
0

0
0

0
L1

76
.2

p
14
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12
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24

11
13

13
12

11
15

19
15

17
23

13
V

13
2

H
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N
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iv
e 

B
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1
1

0
0

0
1

1
1

0
0

0
0

0
L1
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p
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13

29
24

11
13

13
13

13
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12
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3
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N
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e 
B
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qu
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1

1
0

0
0

1
1

1
0

0
0

0
0

L1
76
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p

14
18
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24
11

13
13

12
12

15
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16
17

23
12

V
13

4
U

SA
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6B
O
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V

0
N
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e 
B
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qu
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1

1
0

0
0

1
1

1
0

0
0

0
0

L1
76
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23
11

13
14

12
12

14
19

17
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5
U

SA
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0
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e 
B
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1

1
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0

1
1

1
1
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0
0

S6
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16

13
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24
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13

12
12

15
19

15
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23
12

V
13

6
U

SA
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O
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V

0
N
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e 
B
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1

1
0

0
0

1
1

1
0

0
0

0
0

L1
76
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14
17
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31

24
11

13
13

12
12

14
18

15
17

23
11

V
13

7
U

SA
19

0B
O

ID
V

0
N
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e 
B
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qu

es
1

1
0

0
0

1
1

1
1
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0
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0
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14
18
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13
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Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

V
13

8
0n

w
9j

Pa
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

16
13

29
24

10
13

13
12

11
15

19
16

17
22

12
V

13
9

ER
E0

16
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

16
14

30
24

11
13

13
12

12
15

19
15

17
23

12
V

14
0

K
O

R
01

4
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

16
13

29
24

11
13

13
12

12
15

19
16

16
23

11
V

14
1

K
O

R
02

5
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

19
13

32
24

11
13

13
12

12
15

19
15

16
23

12
V

14
2

K
O

R
03

5
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

16
13

29
24

11
13

13
12

12
15

19
16

16
23

11
V

14
3

K
O

R
04

1
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

16
13

29
24

11
13

13
12

12
15

19
16

16
23

11
V

14
4

N
A

B
02

3
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

16
13

29
24

11
13

13
13

12
15

19
15

19
23

12
V

14
5

0Y
3T

Pa
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

24
11

13
13

12
11

14
18

16
17

24
11

V
14

6
34

ad
jP

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

24
11

13
13

12
12

14
18

16
17

23
12

V
14

7
3v

22
sP

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

14
31

24
10

13
13

12
11

14
18

15
17

23
11

V
14

8
5Q

23
5P

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

14
30

23
11

13
14

12
13

14
18

17
17

23
11

V
14

9
7e

56
0P

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

24
11

12
13

12
11

14
18

15
17

23
11

V
15

0
8T

10
Q

Pa
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

24
11

13
13

12
11

14
18

16
18

23
11

V
15

1
99

ps
YP

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

24
10

13
13

12
11

14
18

15
17

23
11

V
15

2
9k

78
2P

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

24
11

13
13

12
12

14
18

15
17

23
11

V
15

3
A

R
T0

03
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

23
11

13
14

12
13

14
18

16
18

23
11

V
15

4
A

R
T0

06
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

14
31

24
11

13
13

12
12

14
18

16
17

23
11

V
15

5
A

R
T0

18
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

24
11

13
13

12
12

14
18

15
17

23
11

V
15

6
A

R
T0

23
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

24
11

13
13

12
13

14
18

15
16

24
11

V
15

7
A

R
T0

25
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
18

14
32

24
10

13
13

12
12

15
18

15
18

24
11

V
15

8
B2

n7
BP

a
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

15
17

15
32

25
10

13
13

12
12

14
18

15
17

23
11

V
15

9
D

aM
W

yP
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

11
13

13
12

12
14

18
15

18
24

11
V

16
0

ER
E0

06
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

15
31

24
11

13
13

12
12

14
18

15
17

23
11

V
16

1
ER

E0
08

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
15

16
14

30
25

11
13

13
12

12
14

18
15

17
23

11
V

16
2

ER
E0

20
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

14
30

23
11

13
14

12
13

14
18

16
17

23
11

V
16

3
ER

E0
26

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
12

28
23

11
13

14
12

13
14

18
16

17
23

11
V

16
4

G5
Tc

JP
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
23

10
13

14
12

14
14

18
16

19
23

11
V

16
5

G
85

e 
14

1
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

15
31

23
11

13
14

12
13

14
18

16
17

23
11

V
16

6
G

85
e 

15
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
14

30
23

11
13

14
12

13
14

18
16

17
23

11
V

16
7

K
O

R
01

5
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

13
29

23
11

13
14

12
12

14
18

15
17

23
11
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ID
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code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

V
16

8
K

O
R

01
8

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

17
14

31
24

11
13

13
12

12
14

18
16

17
23

11
V

16
9

K
O

R
04

4
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

15
17

15
32

25
11

14
13

12
12

14
18

15
17

23
11

V
17

0
K

O
R

04
9

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

17
14

31
24

11
13

13
12

12
14

18
16

17
23

11
V

17
1

K
O

R
05

3
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

13
29

24
11

13
13

12
12

14
18

16
17

23
11

V
17

2
K

O
R

05
6

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
13

29
24

11
13

14
12

13
14

18
16

17
23

12
V

17
3

n6
fio

Pa
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

14
31

23
11

13
13

12
12

14
18

16
17

23
11

V
17

4
N

A
B

01
7

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
23

11
13

14
12

14
14

18
16

18
23

11
V

17
5

N
A

B
02

4
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

13
29

24
10

13
13

12
13

14
18

16
18

23
11

V
17

6
S1

N
Q

D
Pa

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
13

29
25

11
13

14
12

12
14

18
15

17
23

12
V

17
7

U
SA

00
1R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
13

29
24

10
13

13
12

12
14

18
15

17
24

12
V

17
8

U
SA

00
7C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

17
14

31
25

11
13

13
12

12
14

18
15

16
23

11
V

17
9

U
SA

01
5C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

11
13

13
12

11
14

18
15

16
23

11
V

18
0

U
SA

01
6C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
13

29
24

10
13

13
12

12
14

18
15

17
23

12
V

18
1

U
SA

01
8R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

11
14

13
12

12
14

18
15

18
23

11
V

18
2

U
SA

02
1R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

17
13

30
24

11
14

13
12

13
14

18
16

16
24

11
V

18
3

U
SA

05
0C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

11
13

13
12

14
14

18
15

17
23

11
V

18
4

U
SA

06
9B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
15

16
14

30
24

11
12

13
12

13
14

17
16

17
23

11
V

18
5

U
SA

08
3B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

17
14

31
24

11
13

12
12

12
14

18
15

16
23

11
V

18
6

U
SA

10
1B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
23

10
13

14
12

14
14

18
16

18
23

11
V

18
7

U
SA

10
9B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
23

11
13

14
12

14
14

18
16

18
23

11
V

18
8

U
SA

12
7B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
23

11
13

14
12

14
14

18
16

18
23

11
V

18
9

U
SA

13
1B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
14

30
24

10
13

13
12

13
14

18
15

16
23

11
V

19
0

U
SA

17
3B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

10
13

13
12

11
14

18
17

18
23

11
V

19
1

U
SA

17
5B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

17
14

31
24

11
13

13
12

12
14

18
15

17
23

11
V

19
2

6b
45

yP
a

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

1
M

15
3

14
17

13
30

24
11

13
13

12
12

14
18

15
17

23
12

V
19

3
A

R
T0

21
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
13

29
23

11
13

14
12

12
14

18
16

18
23

12
V

19
4

ER
E0

05
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
14

30
24

11
13

13
12

11
14

18
15

17
23

11
V

19
5

G
85

e 
11

5
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
14

30
24

11
13

13
12

11
14

18
15

17
23

11
V

19
6

G
85

e 
17

5
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
14

30
24

10
13

13
12

11
14

18
15

17
23

11
V

19
7

G
85

e 
20

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

1
M

15
3

14
16

13
29

24
11

13
13

12
12

14
18

15
17

24
12



 293 

  

At
ta

ch
ed

 T
ab

le
 2

. C
on

tin
ua

tio
n.

 

 

ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

V
19

8
G

85
e 

42
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
14

30
24

11
13

13
12

11
14

18
16

17
23

11
V

19
9

K
O

R
00

2
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
13

29
24

11
13

13
12

11
14

18
16

17
23

12
V

20
0

N
A

B
02

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
13

29
24

11
13

13
12

11
14

18
16

17
23

12
V

20
1

U
SA

05
6B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

1
M

15
3

14
16

13
29

24
11

13
13

12
11

14
18

16
17

23
12

V
20

2
U

SA
05

7B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
13

29
24

10
13

13
12

12
14

18
16

17
23

12
V

20
3

U
SA

05
9B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

1
M

15
3

14
16

13
29

24
11

13
14

12
12

14
18

16
17

23
11

V
20

4
U

SA
10

5B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
13

29
24

11
13

14
12

12
14

18
16

17
23

12
V

20
5

U
SA

16
1B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

1
M

15
3

14
16

13
29

24
11

13
14

12
12

14
18

16
17

23
12

V
20

6
U

SA
16

7B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
14

30
24

11
13

13
12

11
14

18
16

17
23

11
V

20
7

6v
D

j6
Pa

N
at

iv
e 

B
as

qu
es

1
1

1
0

0
0

0
0

0
0

0
0

0
L6

17
14

17
13

30
24

10
13

13
12

11
15

19
16

16
23

12
V

20
8

m
U

z3
6P

a
N

at
iv

e 
B

as
qu

es
1

1
1

0
0

0
0

0
0

0
0

0
0

L6
17

14
16

13
29

24
11

13
13

12
11

15
19

16
17

23
12

V
20

9
U

SA
00

5R
EN

D
V

0
N

at
iv

e 
B

as
qu

es
1

1
1

0
0

0
0

0
0

0
0

0
0

L6
17

14
17

13
30

24
11

13
13

12
11

15
19

16
17

23
12

V
21

0
Z2

M
vc

Pa
N

at
iv

e 
B

as
qu

es
1

1
1

0
0

0
0

0
0

0
0

0
0

L6
17

14
16

13
29

23
11

13
13

12
11

15
19

16
17

23
13

G
85

e 
12

3
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

G
85

e 
16

9
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

G
85

e 
81

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
U

SA
03

9R
EN

D
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

K
O

R
02

2
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

G
85

e 
43

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
K

O
R

00
3

N
at

iv
e 

B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
U

SA
08

5B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

0
0

V
36

3
A

R
T0

05
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

22
11

11
14

10
12

16
21

15
16

14
14

20
12

V
36

4
G

85
e 

47
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

17
15

23
10

11
13

10
12

15
21

14
16

12
12

22
11

V
36

5
G

85
e 

97
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
16

25
10

11
12

10
12

14
19

14
16

13
16

22
11

V
36

6
H

hw
9C

Pa
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
18

23
10

12
14

10
11

14
20

13
14

14
15

21
10

V
36

7
K

O
R

00
1

N
at

iv
e 

B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

17
23

10
12

12
10

11
15

20
15

17
.2

13
15

20
11

V
36

8
K

O
R

04
5

N
at

iv
e 

B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
22

10
11

13
10

11
16

20
13

15
13

14
21

11
V

36
9

TX
 3

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

16
19

25
11

11
13

11
10

14
21

15
15

11
15

23
13

V
37

0
U

SA
00

8B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

16
16

23
11

12
13

10
11

15
20

17
15

14
15

20
11

V
37

1
U

SA
01

7C
H

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

16
15

24
10

11
13

10
11

15
21

14
17

12
12

22
12
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

V
37

2
U

SA
01

7R
EN

D
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
16

22
10

11
13

10
11

16
20

15
17

13
13

21
14

V
37

3
U

SA
03

5B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

16
19

25
11

11
13

11
10

14
20

15
15

11
15

23
13

V
37

4
U

SA
03

8C
H

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
9

11
13

10
10

14
20

18
17

13
14

21
12

V
37

5
U

SA
04

2R
EN

D
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

23
10

12
13

9
11

14
18

16
17

15
15

21
11

V
37

6
U

SA
08

9B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
9

11
13

10
10

14
20

16
18

13
14

21
12

V
37

7
U

SA
13

7B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

23
11

12
15

10
11

14
20

15
15

15
15

21
11

V
37

8
U

SA
17

6B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

16
16

23
9

11
12

9
12

15
21

16
15

13
16

22
12

V
37

9
U

SA
18

0B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

21
10

11
15

10
11

16
22

15
17

13
15

21
11

V
38

0
w

A
c2

7P
a

N
at

iv
e 

B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
17

15
24

9
11

13
10

13
14

21
14

16
12

12
20

11
V

38
1

G
85

e 
23

0
N

at
iv

e 
B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
16

23
11

13
13

12
11

15
19

16
17

11
14

23
12

V
38

2
TX

 5
02

N
at

iv
e 

B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

12
15

19
15

17
11

13
25

13
V

38
3

U
SA

05
4B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
23

13
13

13
12

12
15

19
16

17
11

14
23

13
V

38
4

36
uC

IP
a

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
13

16
24

11
13

13
12

12
15

19
15

15
11

14
23

13
V

38
5

6q
Y3

3P
a

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

18
11

14
23

11
V

38
6

7e
o6

bP
a

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

11
15

20
16

17
11

14
24

12
V

38
7

A
R

T0
11

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

16
11

15
23

12
V

38
8

A
R

T0
13

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

11
14

19
16

20
11

14
24

12
V

38
9

A
R

T0
22

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

17
12

14
23

12
V

39
0

ER
E0

01
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
17

11
15

23
12

V
39

1
ER

E0
11

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

17
11

17
23

12
V

39
2

ER
E0

27
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
17

12
14

23
12

V
39

3
ER

E0
34

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

12
15

19
16

17
12

14
23

12
V

39
4

F6
0C

5P
a

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

18
11

15
24

11
V

39
5

G
85

e 
10

2
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
19

12
17

23
12

V
39

6
G

85
e 

11
3

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

19
11

14
23

11
V

39
7

G
85

e 
11

6
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
18

11
14

23
12

V
39

8
G

85
e 

12
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

12
15

19
17

17
11

14
23

12
V

39
9

G
85

e 
15

4
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
17

12
14

23
12

V
40

0
G

85
e 

17
4

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
16

15
12

15
23

12
V

40
1

G
85

e 
21

4
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
17

24
11

13
12

12
11

15
19

15
17

11
14

23
12
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

V
40

2
J7

EG
6P

a
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
17

24
10

13
13

12
13

15
20

15
16

11
14

23
12

V
40

3
K

O
R

00
5

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

17
24

10
13

13
12

12
14

19
16

17
11

14
23

12
V

40
4

K
O

R
04

0
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
18

11
14

23
11

V
40

5
N

A
B

02
1

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

18
11

14
23

11
V

40
6

nV
B3

q
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
19

11
14

23
11

V
40

7
p5

z3
4P

a
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
19

11
14

23
11

V
40

8
r7

ilr
Pa

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
25

11
13

13
12

12
15

19
15

17
11

14
23

11
V

40
9

U
SA

00
8C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

11
15

19
15

18
11

14
23

11
V

41
0

U
SA

00
8R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

17
24

11
13

13
12

13
15

19
16

18
14

14
24

13
V

41
1

U
SA

01
1R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

12
15

18
16

16
11

12
23

13
V

41
2

U
SA

01
3R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
15

16
24

11
13

13
12

11
15

19
16

16
12

14
23

12
V

41
3

U
SA

01
4B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

14
15

20
16

17
11

14
23

12
V

41
4

U
SA

01
4C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

12
14

19
15

17
11

14
24

12
V

41
5

U
SA

02
4R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

17
24

11
13

13
12

11
15

19
15

17
11

13
24

12
V

41
6

U
SA

03
2C

H
ID

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

18
11

14
23

12
V

41
7

U
SA

04
1B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

18
11

14
23

13
V

41
8

U
SA

04
6B

O
ID

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

11
15

19
15

19
11

14
23

11
V

41
9

U
SA

05
0R

EN
D

V
0

N
at

iv
e 

B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
16

17
23

10
12

15
10

10
14

20
14

16
15

17
18

.3
14

V
42

0
U

SA
05

6C
H

ID
V

0
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
18

16
17

11
13

23
12

V
42

1
U

SA
06

6B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
10

13
13

12
12

15
19

15
17

11
14

24
12

V
42

2
U

SA
06

8B
O

ID
V

O
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

15
16

24
11

13
13

12
11

15
19

16
17

12
14

23
12

V
42

3
U

SA
08

6B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
18

11
14

23
12

V
42

4
U

SA
09

3B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

25
11

14
13

12
13

15
18

17
17

11
13

23
12

V
42

5
U

SA
09

9B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
19

15
18

12
14

24
11

V
42

6
U

SA
10

6B
O

ID
V

0
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
10

13
13

12
12

15
19

16
17

11
14

23
12

V
42

7
ya

PS
YP

a
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
17

12
14

23
12

V
42

8
yK

tv
gP

a
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
10

13
13

12
11

15
20

16
17

11
14

24
12

V
42

9
yO

ps
zP

a
N

at
iv

e 
B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
11

15
19

15
19

11
14

23
11

F2
11

A
 3

75
2

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
14

12
12

15
19

16
16

23
12

F2
12

A
 3

76
2

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

24
10

13
13

12
11

15
19

15
17

23
11
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

F2
13

A
 3

76
5

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
18

15
17

23
12

F2
14

A
 3

80
3

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
10

13
13

10
11

14
19

16
17

23
12

F2
15

A
 3

82
7

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

23
11

13
13

12
12

15
19

16
16

23
12

F2
16

A
 3

87
1

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

14
30

23
11

13
13

12
12

15
19

15
17

23
12

F2
17

A
 3

92
7

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
10

13
13

12
12

15
19

15
15

23
12

F2
18

G
85

e 
10

9
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
12

28
24

11
13

13
12

12
15

19
16

16
23

13
F2

19
G

85
e 

14
2

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

12
28

24
11

13
13

12
12

15
19

16
16

23
12

F2
20

G
85

e 
14

3
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

11
13

12
12

12
15

19
15

18
23

12
F2

21
G

85
e 

17
7

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

15
17

14
31

24
11

13
14

12
11

15
20

15
17

23
12

F2
22

G
85

e 
23

5
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

10
13

13
12

12
15

19
15

17
23

12
F2

23
G

85
e 

52
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
24

11
13

13
12

11
14

18
15

17
23

11
F2

24
G

85
e 

60
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
23

10
13

13
12

13
15

19
17

17
23

12
F2

25
G

85
e 

79
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
24

11
13

13
12

13
15

18
16

19
23

12
F2

26
G

85
e 

8
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
12

28
24

11
13

13
12

13
15

19
17

16
23

12
F2

27
G

85
e 

92
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
24

10
13

13
12

11
15

19
16

17
23

11
F2

28
G

85
e 

94
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

17
13

30
23

11
13

13
12

11
15

19
15

17
24

12
F2

29
TX

 1
09

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

23
11

13
14

12
12

15
19

15
16

23
12

F2
30

TX
 2

42
5

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

25
11

13
13

12
12

15
19

15
17

23
11

F2
31

TX
 5

29
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
23

10
13

13
12

13
15

19
18

17
23

12
F2

32
TX

 6
2

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
10

13
13

12
12

15
19

15
17

23
13

F2
33

TX
 6

7
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

15
12

27
24

10
13

13
12

12
15

19
17

17
23

11
F2

34
TX

 8
7

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

16
17

23
13

F2
35

TX
 9

6
R

es
id

en
t B

as
qu

es
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
24

13
13

13
12

13
15

19
15

18
23

12
F2

36
A

 3
73

6
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
15

17
14

31
24

11
13

13
12

12
15

19
16

18
23

11
F2

37
A

 3
79

0
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

16
13

29
24

10
13

13
12

11
15

19
16

18
23

12
F2

38
A

 3
96

1
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
0

0
0

Z1
96

p
14

16
14

30
25

11
13

13
12

12
14

18
15

18
23

11
F2

39
G

85
e 

17
8

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

0
0

0
Z1

96
p

14
17

13
30

23
11

13
13

11
11

15
19

16
18

23
12

F2
40

G
85

e 
93

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

0
0

0
Z1

96
p

14
16

13
29

24
11

13
13

12
11

15
19

16
16

23
12

F2
41

A
 3

91
8

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
1

0
0

0
0

0
L1

76
.2

14
16

14
30

24
10

13
13

12
12

14
18

16
18

24
11

F2
42

A
 3

73
7

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
1

0
1

0
0

0
M

16
7

14
15

13
28

24
11

13
13

12
13

15
19

16
18

24
13
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

F2
43

A
 3

81
5

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
1

0
1

0
0

0
M

16
7

14
15

13
28

24
10

13
13

12
12

15
19

16
17

23
12

F2
44

A
 3

88
0

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
1

0
1

0
0

0
M

16
7

14
16

13
29

24
10

13
15

12
12

15
19

16
18

23
12

F2
45

G
85

e 
15

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
1

0
1

0
0

0
M

16
7

14
16

13
29

24
11

13
13

12
11

15
19

15
18

23
12

F2
46

TX
 3

09
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

16
13

29
24

10
13

13
12

11
15

19
16

16
24

11
F2

47
TX

 5
18

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
1

0
1

0
0

0
M

16
7

14
16

13
29

24
11

13
13

12
12

15
19

16
17

23
12

F2
48

A
 3

75
3

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

10
13

13
12

12
14

18
16

17
24

11
F2

49
A

 3
79

6
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

15
32

24
11

13
13

12
12

14
18

15
17

24
11

F2
50

A
 3

82
4

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
24

11
13

13
12

13
14

18
16

16
23

11
F2

51
A

 3
84

2
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

22
11

14
13

12
12

14
18

15
17

23
11

F2
52

A
 3

87
2

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
0

0
Z2

20
14

16
13

29
24

12
13

13
12

13
15

18
16

18
24

11
F2

53
A

 3
89

0
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

13
30

24
11

13
13

12
13

14
18

15
17

23
11

F2
54

A
 3

92
2

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
13

29
24

10
13

13
12

12
15

20
16

18
24

12
F2

55
A

 3
75

8
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

14
31

24
11

13
13

12
12

14
18

15
17

23
11

F2
56

TX
 2

09
9

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

0
Z2

78
14

16
14

30
24

11
13

13
12

11
14

18
15

17
23

11
F2

57
TX

 2
53

8
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

13
29

24
11

12
13

12
12

14
18

16
16

23
11

F2
58

TX
 5

9
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

14
31

24
11

13
13

12
12

14
18

16
16

23
11

F2
59

A
 3

95
1

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
0

0
0

1
1

1
M

15
3

14
16

13
29

24
11

13
13

12
13

15
19

15
15

23
12

A
 3

94
0

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
G

85
e 

16
7

R
es

id
en

t B
as

qu
es

1
1

0
0

0
0

0
0

0
0

0
0

0
G

85
e 

13
0

R
es

id
en

t B
as

qu
es

1
1

0
0

0
1

1
1

0
1

0
0

0
A

 3
91

2
R

es
id

en
t B

as
qu

es
1

1
0

0
0

1
1

0
0

0
1

1
0

F4
30

A
 3

75
9

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
16

17
25

11
11

13
11

10
14

20
15

15
11

14
23

12
F4

31
A

 3
76

8
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

16
18

25
11

11
13

11
10

14
20

15
15

11
15

23
12

F4
32

A
 3

77
1

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
16

14
25

11
11

13
10

11
15

20
14

16
13

17
23

10
F4

33
A

 3
78

5
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
16

22
10

11
12

10
13

14
18

15
13

12
12

24
11

F4
34

A
 3

79
7

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
15

17
21

10
11

14
10

11
16

21
15

16
14

15
22

11
F4

35
A

 3
89

6
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

16
17

25
11

11
13

11
10

14
20

16
15

12
14

23
12

F4
36

A
 3

93
3

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
22

10
11

13
10

11
16

20
15

15
12

14
22

11
F4

37
A

 3
95

8
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

23
10

13
14

9
11

14
19

15
18

14
16

21
11

F4
38

G
85

e 
11

2
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
9

11
13

9
10

14
20

15
18

13
14

21
11
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

F4
39

G
85

e 
11

4
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
17

25
10

11
12

9
11

16
19

13
16

13
17

22
11

F4
40

G
85

e 
11

9
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
9

11
13

10
10

14
20

15
18

13
14

21
11

F4
41

G
85

e 
12

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
16

16
25

10
11

13
10

12
15

21
14

16
13

16
22

10
F4

42
G

85
e 

12
2

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
16

18
25

11
11

13
10

10
14

20
15

15
11

14
23

12
F4

43
G

85
e 

13
9

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
23

10
11

13
10

11
16

20
14

16
14

14
22

11
F4

44
G

85
e 

15
2

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
13

16
24

9
11

13
10

10
14

20
15

17
14

14
21

12
F4

45
G

85
e 

17
6

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
15

15
23

10
14

13
9

11
14

19
15

15
14

16
21

10
F4

46
G

85
e 

33
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
16

23
11

11
12

9
9

16
20

15
16

15
17

23
11

F4
47

G
85

e 
41

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
15

16
23

10
11

12
9

11
14

21
17

14
13

16
22

12
F4

48
G

85
e 

57
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

15
15

23
11

12
13

10
12

15
21

17
17

12
12

22
13

F4
49

G
85

e 
58

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
16

18
23

10
11

12
10

11
14

20
15

17
.2

13
18

20
10

F4
50

G
85

e 
70

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
13

15
23

10
13

13
9

12
14

19
15

16
13

15
21

11
F4

51
G

85
e 

74
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

17
15

24
10

11
12

10
12

15
21

16
17

12
12

25
11

F4
52

G
85

e 
83

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

9
11

13
10

10
14

20
17

17
.2

13
14

21
12

F4
53

G
85

e 
89

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
16

16
23

10
11

13
11

10
14

20
15

17
11

15
25

13
F4

54
TX

 1
11

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
15

17
23

10
13

13
9

11
14

19
15

20
14

16
21

11
F4

55
TX

 2
07

7
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

23
10

11
12

10
13

14
21

15
17

.2
13

15
21

11
F4

56
TX

 2
41

7
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

23
10

11
12

10
11

14
19

15
17

.2
13

19
20

11
F4

57
TX

 2
51

3
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

23
10

11
13

10
13

14
19

17
16

15
15

22
11

F4
58

TX
 3

06
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

23
8

11
12

9
11

14
20

16
15

14
19

21
11

F4
59

TX
 3

19
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

13
17

23
10

11
12

10
12

14
19

15
12

.2
9

19
22

13
F4

60
TX

 3
31

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
15

18
21

11
11

14
11

13
14

21
14

17
15

17
20

11
F4

61
TX

 3
32

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
22

10
11

13
10

12
16

20
14

15
13

14
21

11
F4

62
TX

 3
7

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

17
23

11
11

12
9

12
15

20
13

15
14

19
21

11
F4

63
TX

 4
23

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
13

16
24

9
11

13
10

10
14

20
16

17
13

14
21

12
F4

64
TX

 5
20

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
15

16
21

10
11

16
10

12
16

20
15

15
15

16
21

11
F4

65
TX

 5
36

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
17

15
23

10
11

13
10

12
15

21
14

17
12

12
22

11
F4

66
TX

 5
60

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
15

18
23

10
11

13
9

12
14

20
15

15
13

16
23

11
F4

67
TX

 6
0

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

17
23

10
11

12
11

11
14

20
15

19
.2

13
18

20
11

F4
68

A
 3

73
1

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

10
13

13
12

12
15

19
16

17
11

14
23

12
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

F4
69

A
 3

88
4

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
23

11
13

13
12

12
15

19
15

18
11

14
23

11
F4

70
G

85
e 

12
1

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
14

16
23

11
13

13
12

13
16

19
15

18
11

15
25

12
F4

71
TX

 2
24

2
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
15

23
11

13
13

12
12

15
19

15
17

11
15

23
13

F4
72

TX
 5

35
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

25
10

13
13

11
13

15
19

15
18

11
14

23
12

F4
73

A
 3

74
2

R
es

id
en

t B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
23

11
13

13
12

12
15

19
15

17
11

14
24

12
F4

74
A

 3
88

9
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
19

15
18

10
14

23
12

F4
75

G
85

e 
10

4
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

13
16

23
10

11
14

10
13

14
21

15
16

17
17

21
11

F4
76

G
85

e 
14

0
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

25
11

13
13

13
12

15
19

16
18

11
14

23
12

F4
77

G
85

e 
23

8
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

11
12

14
19

16
17

13
14

23
12

F4
78

G
85

e 
24

3
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
17

25
11

13
13

12
12

15
19

15
17

11
14

23
12

F4
79

G
85

e 
53

R
es

id
en

t B
as

qu
es

1
0

0
0

0
0

0
0

0
0

0
0

0
14

16
24

11
13

13
12

12
15

19
16

17
11

14
23

11
F4

80
TX

 2
08

2
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

25
11

13
13

12
12

14
18

17
17

11
14

24
12

F4
81

TX
 4

17
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

14
13

12
11

15
19

15
17

11
14

23
13

F4
82

TX
 4

43
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

16
16

24
11

13
13

12
12

15
18

16
17

10
15

23
12

F4
83

TX
 8

0
R

es
id

en
t B

as
qu

es
1

0
0

0
0

0
0

0
0

0
0

0
0

15
16

24
10

13
13

13
13

15
19

14
17

11
16

23
12

A
 3

92
8

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
G

85
e 

17
3

R
es

id
en

t B
as

qu
es

0
0

0
0

0
0

0
0

0
0

0
0

0
TX

 2
30

2
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

TX
 5

8
R

es
id

en
t B

as
qu

es
0

0
0

0
0

0
0

0
0

0
0

0
0

R
26

0
A

RA
00

7
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
12

28
24

11
13

13
12

11
15

20
15

16
23

12
R

26
1

A
RA

04
2

A
ra

go
n

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
17

14
31

24
11

13
12

12
12

15
19

15
17

25
12

R
26

2
A

RA
05

4
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
13

29
24

12
13

13
12

12
15

19
16

17
23

11
R

26
3

A
RA

07
2

A
ra

go
n

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

13
16

13
29

23
10

13
13

9
12

15
19

17
20

21
11

R
26

4
A

RA
07

6
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
25

11
13

13
12

11
14

19
15

20
23

11
R

26
5

A
RA

08
9

A
ra

go
n

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

15
18

23
12

R
26

6
A

RA
09

8
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
24

11
13

13
12

11
15

18
16

17
24

12
R

26
7

A
RA

11
4

A
ra

go
n

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

14
16

13
29

24
11

13
13

12
12

15
19

16
19

23
12

R
26

8
A

RA
12

0
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
25

11
13

13
12

12
15

18
14

17
23

12
R

26
9

A
RA

14
1

A
ra

go
n

1
1

0
0

0
0

0
0

0
0

0
0

0
D

F2
7p

15
16

13
29

23
11

15
13

12
12

15
19

16
18

23
12

R
27

0
A

RA
14

6
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

D
F2

7p
14

16
14

30
24

11
13

13
12

11
15

19
15

17
24

12
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

R
27

1
A

RA
05

0
A

ra
go

n
1

1
0

0
1

1
1

0
0

0
0

0
0

D
F1

7
15

16
13

29
23

11
14

13
12

11
15

18
15

17
23

12
R

27
2

A
RA

00
9

A
ra

go
n

1
1

0
0

0
1

1
1

0
0

0
0

0
L1

76
.2

14
16

14
30

24
10

13
13

12
14

15
19

17
17

23
12

R
27

3
A

RA
01

3
A

ra
go

n
1

1
0

0
0

1
1

1
0

0
0

0
0

L1
76

.2
14

16
13

29
24

11
13

13
12

12
15

19
16

17
23

13
R

27
4

A
RA

07
3

A
ra

go
n

1
1

0
0

0
1

1
1

0
0

0
0

0
L1

76
.2

14
16

14
30

24
10

13
13

9
12

14
18

15
17

24
11

R
27

5
A

RA
08

7
A

ra
go

n
1

1
0

0
0

1
1

1
0

0
0

0
0

L1
76

.2
14

16
13

29
24

10
13

13
12

12
15

20
16

17
23

12
R

27
6

A
RA

16
0

A
ra

go
n

1
1

0
0

0
1

1
1

0
0

0
0

0
L1

76
.2

14
15

13
28

24
11

13
13

12
11

15
19

16
17

23
12

R
27

7
A

RA
16

1
A

ra
go

n
1

1
0

0
0

1
1

1
1

0
0

0
0

S6
8

14
15

13
28

25
11

13
12

12
12

15
20

16
17

23
12

R
27

8
A

RA
03

6
A

ra
go

n
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

15
13

28
24

11
13

13
12

12
15

19
16

17
23

12
R

27
9

A
RA

06
4

A
ra

go
n

1
1

0
0

0
1

1
1

0
1

0
0

0
M

16
7

14
16

13
29

24
11

14
13

12
12

15
19

16
19

22
12

R
28

0
A

RA
08

8
A

ra
go

n
1

1
0

0
0

1
1

1
0

1
0

0
0

M
16

7
14

17
13

30
24

10
13

13
12

12
15

20
15

17
23

12
R

28
1

A
RA

13
9

A
ra

go
n

1
1

0
0

0
1

1
1

0
1

0
0

0
M

16
7

14
16

14
30

24
11

12
13

12
12

15
19

15
18

23
12

R
28

2
A

RA
01

0
A

ra
go

n
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
16

14
30

24
10

13
13

12
12

14
18

16
16

23
11

R
28

3
A

RA
02

0
A

ra
go

n
1

1
0

0
0

1
1

0
0

0
1

1
0

Z2
78

14
17

13
30

25
11

13
13

12
12

14
18

15
18

24
11

R
28

4
A

RA
03

7
A

ra
go

n
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

15
16

13
29

24
11

13
13

12
13

14
18

16
17

23
11

R
28

5
A

RA
13

2
A

ra
go

n
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
17

13
30

24
11

13
13

12
12

14
18

16
17

23
11

R
28

6
A

RA
13

4
A

ra
go

n
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

14
30

24
11

13
13

12
12

14
18

17
17

24
11

R
28

7
A

RA
14

3
A

ra
go

n
1

1
0

0
0

1
1

0
0

0
1

0
0

Z2
20

14
16

12
28

23
11

13
14

12
13

14
18

16
17

23
11

R
28

8
A

RA
05

1
A

ra
go

n
1

1
0

0
0

1
1

0
0

0
1

1
1

M
15

3
14

16
13

29
24

10
13

13
12

12
14

18
15

17
23

12
A

RA
02

7
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

A
RA

11
5

A
ra

go
n

1
1

0
0

0
0

0
0

0
0

0
0

0
A

RA
11

6
A

ra
go

n
1

1
0

0
0

0
0

0
0

0
0

0
0

R
48

4
A

RA
00

1
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

23
11

13
13

12
12

15
19

16
18

11
15

23
12

R
48

5
A

RA
00

5
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

15
16

24
10

13
13

12
12

14
19

16
17

11
14

23
14

R
48

6
A

RA
02

5
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
19

16
16

11
14

23
12

R
48

7
A

RA
03

1
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

13
16

24
10

13
13

12
12

16
19

15
18

11
11

23
12

R
48

8
A

RA
03

5
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

25
11

13
13

12
13

15
19

16
16

11
15

23
12

R
48

9
A

RA
06

7
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
17

23
11

13
13

12
12

15
21

16
16

11
16

23
12

R
49

0
A

RA
07

1
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
10

13
13

12
12

15
19

14
18

11
14

23
12

R
49

1
A

RA
09

0
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

25
11

13
13

12
12

15
19

17
17

11
14

23
13

R
49

2
A

RA
09

2
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
19

16
16

11
14

23
11
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ID

Original 
code

Population

S116

DF27

L617

L881

DF17

Z195

Z196

L176.2

S68

M167

Z220

Z278

M153

Final 
Haplogroup

DYS19

DYS389

389I

389II

DYS390

DYS391

DYS392

DYS393

DYS438

DYS439

DYS437

DYS448

DYS456

DYS458

DYS635

GATAH4

R
49

3
A

RA
10

2
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
10

14
13

11
11

16
19

15
19

11
14

23
11

R
49

4
A

RA
10

6
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

23
11

13
13

12
12

15
19

15
17

11
14

23
12

R
49

5
A

RA
11

9
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

25
11

13
13

12
11

15
19

15
16

11
15

23
12

R
49

6
A

RA
12

1
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
19

15
15

11
14

23
12

R
49

7
A

RA
12

4
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

15
17

25
11

13
13

12
14

15
19

16
17

11
12

23
12

R
49

8
A

RA
12

5
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

26
11

13
12

12
12

15
19

16
17

11
13

23
12

R
49

9
A

RA
14

4
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
19

14
16

10
15

23
10

R
50

0
A

RA
14

5
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
12

15
19

16
16

10
14

23
12

R
50

1
A

RA
14

7
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
16

24
11

13
13

12
13

15
19

16
18

11
14

23
12

R
50

2
A

RA
16

5
A

ra
go

n
1

0
0

0
0

0
0

0
0

0
0

0
0

14
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