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ABSTRACT  

• Background: Dynamic functional network analysis may add relevant information about the 

temporal nature of the neurocognitive alterations in PD patients with impulse control 

disorders (PD-ICD). Our aim was to investigate changes in dynamic functional network 

connectivity (dFNC) in PD-ICD patients, and topological properties of such networks.  

• Methods: Resting state fMRI was performed on 16 PD PD-ICD patients, 20 PD patients 

without ICD and 17 healthy controls, whose demographic, clinical and behavioral scores 

were assessed. We conducted a group spatial independent component analysis, sliding 

window and graph-theory analyses.  

• Results:  PD-ICD patients, in contrast to PD-noICD and HC subjects, were engaged across 

time in a brain configuration pattern characterized by a lack of between-network connections 

at the expense of strong within-network connections (State III) in temporal, frontoinsular and 

cingulate cortices, all key nodes of the salience network. Moreover, this increased 

maintenance of State III in PD-ICD patients was positively correlated with the severity of 

impulsivity and novelty seeking as measured by specific scales. While in State III, these 

patients also exhibited increased local efficiency in all the aforementioned areas. 

• Conclusions: Our findings show for the first time that PD-ICD patients have a  dynamic 

functional engagement of local connectivity involving the limbic circuit, leading to the 

inefficient modulation in emotional processing and reward-related decision-making.   These 

results provide new insights into the pathophysiology of ICD in PD patients and indicate that 

the dFC study of fMRI could be a useful biomarker to identify patients at risk to develop 

ICD. 
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1. INTRODUCTION 

Impulse control disorders (ICDs), occur in at least 13.6% of patients with Parkinson’s disease 

(PD) on dopaminergic medication. They have been conceptualized as ‘behavioral addictions’ and  

are the result of abnormal modulation of the mesocorticolimbic dopamine system [1]. 

Dopaminergic depletion in PD mainly involves the nigrostriatal ‘motor’ loop, but also  the 

ventral tegmental area (VTA) projecting to the ventral striatum (VS), amygdala and 

hippocampus (mesolimbic dopaminergic pathway), and to the orbitofrontal (OFC), frontoinsular, 

cingulate and prefrontal (PFC) cortices (mesocortical dopaminergic pathway). These regions are 

critically involved in the modulation of emotional processing, hedonic evaluation and reward-

related decision-making [2], all closely associated with ICDs. However, the pathophysiology of 

ICDs in PD patients is not well understood. Evidence from metabolic [3], functional magnetic 

resonance imaging (fMRI) [4,5] and morphometric neuroimaging studies [6] has demonstrated 

abnormalities within the mesocorticolimbic circuit in patients with PD and ICD (PD-ICD) 

although not always in the same direction and regions [7]. In particular, resting state fMRI (rs-

fMRI) studies, have produced controversial results in PD-ICD patients, with both weaker [4] and 

stronger [8] functional connectivity (FC) detected in cortical areas of the limbic circuit, as well 

as disrupted functional coupling in brain-wide networks such as the salience, executive and 

default-mode networks [9,10]. In addition, there have been very few studies into the topological 

characteristics of brain networks in these patients using graph theory analysis [11,12]. 

Significantly, most rs-fMRI studies on PD patients have investigated FC patterns as a static 

phenomenon, while recent evidence shows that FC may vary over time [13]. Such temporal 

fluctuations can be captured by dynamic functional network connectivity (dFNC) studies [14], 

providing greater insight into the fundamental properties of brain networks. In PD patients,  
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temporal  fluctuations in FC have been described as closely related to the severity of motor [15] 

and cognitive impairment [16,17], but its relation with impulsivity has not been studied. Given 

that previous static FC studies have shown that dopaminergic firing is able to alter limbic cortical 

signals to the VS, impairing the ability to change behavioral focus in response to change in 

stimulus salience [8,9,18], a dFNC approach may add relevant information as it represents the 

temporal changes of these connections [13]. For this reason, we hypothesized that PD-ICD 

patients would show specific dynamic functional connectivity (dFNC) changes in particular 

areas of the salience network/reward processing, possibly because these patients may continue to 

focus on those reward stimuli that have primarily induced the dopamine release, looping the 

cerebral areas implicated in hedonic evaluation of the stimulus and reward-based decision 

making. Therefore, the aim of this study was to evaluate differences in dFNC and topological 

metrics in PD patients with and without ICDs, utilizing a combination of dFNC analyses and 

graph-theory approaches (GTA) during rs-fMRI.  

2. MATERIALS AND METHODS 

2.1. Subjects 

The final study sample consisted of 62 participants took part from three groups: 20 PD-ICD 

patients, 22 PD patients without ICD symptoms (PD-noICD) and 20 healthy controls (HC). 

Participants in each group were matched on age, sex, education and premorbid Intelligence 

Quotient. All PD patients were diagnosed according to the UK Parkinson’s Disease Society 

Brain Bank criteria and recruited from the Movement Disorders Unit at the Hospital Donostia. A 

neurologist and a psychiatrist detected and confirmed ICD diagnosis based on the DSM-V and 

on the Questionnaire for Impulsive-Compulsive Disorders in Parkinson´s Disease (QUIP) [19]. 

ICD severity was scored using the QUIP-Rating Scale (QUIP-RS) [20]. The score of each ICD 
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subtype in every patient was above the established cut-off value (Supplementary Table 1). We 

excluded patients with dementia, cognitive impairment following the level II guidelines of the 

Movement Disorders Society (MDS) Criteria Task Force [21], dyskinesias, previous brain 

surgery, and patients with past ICD no longer symptomatic. HCs were recruited from the 

Basque Center on Cognition, Brain and Language (BCBL) participant pool. They were 

also evaluated by a neurologist and a psychiatrist and subjects with any neurological or 

psychiatric disorder were excluded. In addition, based on general population impulsivity 

scales, HCs with high scores at the higher end of the impulsivity scale were also excluded. 

Participants were evaluated using a battery of tests for motor, behavior and cognition (Table 1 

and Supplementary Table 2). PD patients were studied under the effect of their usual 

dopaminergic medication. The study was approved by the Local Ethics Committee and written 

informed consent was obtained from all subjects prior to their enrollment.  

2.2. MRI data acquisition and preprocessing 

The rs-fMRI and structural data were acquired on a 3T Siemens Magnetom TIM Trio MRI 

scanner (Siemens Medical Solutions, Erlangen, Germany) using a 32-channel head coil. Further 

information on the MRI data acquisition and preprocessing is included in the Supplementary 

Materials. Briefly, the Conn Functional Connectivity Toolbox v.17.f [22] running on Matlab™ 

9.1 (release R2016b) was used  to conduct standard preprocessing routines and analyses. None of 

the participants included in the study sample had white matter abnormalities in their T2-

weighted MRI images. 

2.3. Motion correction 

To minimize the potential effects of head movements on dFNC results, we applied stringent 

inclusion criteria [14] following previous articles published on dFCN in PD populations [15,16] 
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(see details in Supplementary Text). Briefly, subjects with a mean framewise displacement (FD) 

> 0.5 mm or with a maximum displacement > 3 mm in translation indexes x, y, or z or > 3° in 

rotation indexes were excluded from the analysis. Thus, nine participants (4 PD-ICDs, 2 PD-

noICDs, 3 HCs) were excluded. In addition, there were no statistical root mean square (RMS) 

movement differences between PD-ICD (0.1±0.09), PD-noICD (0.08±0.09) and HC (0.12±0.1) 

groups (p = 0.47). 

2.4. Identification of intrinsic connectivity networks 

The data were decomposed into functional networks by applying a spatial group independent 

component analysis (ICA) using the Group ICA of the fMRI Toolbox (GIFT v4.0a; 

http://icatb.sourceforge.net We chose relatively high model order ICA, each individual’s 

functional data was reduced to a total of 134 independent components (ICs) through a principal 

component reduction and subsequently, the concatenated subject-reduced data was reduced to 

100 ICs at the group level using the expectation maximization algorithm [23] included in GIFT. 

Of the 100 ICs, 40 were identified as meaningful by two independent reviewers (I.N. and J.K.), 

based on expectations that resting state networks should exhibit peak activations in gray matter, 

low spatial overlap with known vascular, ventricular, motion, and susceptibility artifacts, and 

time-courses dominated by low frequency fluctuations and with a high dynamic range [24]. Also, 

to examine potential between-group differences in gray matter we used participants’ T1-

weighted images to run Freesurfer’s mri_glmfit [25] on gray-matter volume, cortical 

thickness, and surface area. We found no significant differences in any of the group 

comparisons (PD-ICDs vs. PD-noICDs, PD-ICDs vs. HCs, PD-noICD vs. HCs).  

Using spatial correlation values between ICs and the template [26], we classified the selected 

components into the following seven functional networks: basal ganglia [BG], auditory [AUD], 
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sensorimotor [SMN], visual [VIS], cognitive-executive [ECN, including language and salience 

networks], default mode [DMN] and cerebellar networks (Figure 1A). The cognitive control 

network included IC components involved in directing and monitoring behavior and in mediating 

memory and language functions because of their overlap in several areas, as in previous works in 

the field [27].Pairwise Pearson’s correlations were computed and converted to z-scores using 

Fisher’s z-transformation to create the statistical FNC matrix (Figure 1B and 1C). For further 

details in identification of intrinsic connectivity networks see Supplementary Text.  

2.5. Dynamic functional network connectivity (dFNC) analysis  

dFNC was examined using the GIFT toolbox for dynamic FNC applying two approaches: a 

sliding window approach (changes in FNC across time) and k-means clustering (extracting 

reoccurring FNC patterns) First, we used a sliding-window approach, in which a sliding time 

window of the 22-repetition time (TRs) method was applied to each subject, with a Gaussian 

window alpha value of 3 and a step between windows of 1 TR, resulting in 270 consecutive 

windows. To promote sparsity in the estimations, a penalty was imposed on the L1 norm of the 

precision matrix. We also applied a k-means clustering algorithm to the 270 FC window FNC 

matrices for all the subjects, which was iterated 150 times. To reduce redundancy between 

windows and computational demands, windows consisting of local maxima in functional 

connectivity variance were used. In addition, we used the L1 distance for k-means computing to 

combine similar FC matrices from the different windows. We used age, sex and depression 

scores as covariates, the latter due to the significant differences between the groups (Table 1). 

The covariates were included in the clustering algorithm using the GIFT toolbox 

(http://icatb.sourceforge.net/groupica.htm). Based on the elbow criterion of the cluster validity 

index, the optimal number of clusters was determined to be four (k = 4), the so-called states I, II, 
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III and IV. Using the resultant four cluster centroids, all FNC matrices of each subject were then 

categorized as belonging to one of the four clusters or states based on their similarity to the 

cluster centroids. From these data, we obtained a state transition vector and final cluster centroids 

were obtained as the median of all state-assigned FCN matrices across time. The subject-specific 

centroid of each state was computed by calculating the median value of each FCN matrix for that 

state.  

We used three different indices to examine the temporal properties of the dFNC states: (1) 

Fractional window (FW), the proportion of time spent in each state; (2) mean dwell time (DT), 

represents how long the participant remained in a certain state; (3) the number of transitions, the 

total number of changes between states. The differences between groups were assessed using an 

ANOVA, applying a LSD post-hoc test. Moreover, the FC differences between the groups in 

each FC state were investigated with the network-based statistic (NBS) tool. A p value FDR 

corrected for multiple comparisons was calculated. The significance of FC differences were 

tested using an ANOVA test for the three group differences and post-hoc pairwise comparisons. 

Overall, the p values were false discovery rate (FDR) corrected for multiple comparisons (i.e.: q 

values). See Supplementary Text for more details about dFNC analysis. 

2.6. Graph-theory parameter analysis 

Graph characteristics of the networks were analyzed using GRETNA software v 2.0.0 

(http://www.nitrc.org/projects/gretna) in the FNC configuration. We investigated the topological 

characterization of brain connectivity, studying local (clustering coefficient, betweenness 

centrality and the local efficiency) and global (global efficiency and assortativity) metrics. For 

further details see Supplementary Text.  

2.7. Statistical analyses 
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Statistical methods for clinical variables are detailed in Supplementary Text. The threshold for 

statistical significance was p<0.05. We used a Pearson’s correlation analysis to explore the 

associations between the temporal properties and the clinical measures in PD-ICD patients, 

applying a post-hoc Bonferroni correction for multiple comparisons (IBM SPSS Statistics 

v16.0). 

3. RESULTS 

3.1. Sociodemographic and clinical data 

This analysis was carried out in 16 PD-ICD, 20 PD-noICD patients and 17 HC (nine participants 

were excluded from the initial sample because of motion criteria). PD-ICD patients had 

significantly higher novelty seeking personality traits, impulsivity and depression scores than the 

other groups. There were no other clinical or cognitive differences between the groups (Table 1 

and Supplementary Table 2).  

3.2. Intrinsic connectivity networks 

The spatial maps of the 40 ICs defined were established using the group ICA (see Figure 1 and 

Supplementary Table 3). Based on their anatomical and presumed functional properties, the ICs 

were grouped into the following networks: BG (IC 16, 22, 37); AUD (IC 34); SMN (IC 19, 4, 3, 

54, 68, 24, 12); VIS (IC 25, 42, 90, 93, 59, 40, 26, 44, 45); ECN (IC 78, 49, 62, 92, 47, 18, 35), 

encompassing the language (IC 43, 79) and salience networks (IC 85, 39, 56); DMN (IC 15, 23, 

88, 48, 66, 76); and the cerebellar network (IC 29, 31). 

3.3. Differences in dynamic FC  
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A k-means clustering algorithm identified four different dFNC matrix centroid configurations or 

states that were recurrent throughout the rs-fMRI acquisition and across subjects (Figure 2A and 

2B). The most frequent state (State III, 45% of acquisition time) appeared as a within-network 

FC configuration, particularly associated with the SMN, VIS and ECN networks which almost 

completely lacks between-network connectivity. By contrast, the other three states were more 

infrequent (State I 16%; State II 19%; State IV 19%), and they displayed between-network FC 

configurations that included positive correlations between the SMN and VIS networks, as well as 

anti-correlations between the SMN and DMN, and between the ECN and DMN networks. When 

the 5% of the FC network with the strongest connections was represented, State III had the most 

positive within-network coupling (Figure 2C). In States I, II and IV we observed that 60% of 

connections were between networks (VIS-SM, SM-cerebellum, VIS-DMN, DMN-SM, ECN-

VIS, BG-VIS, BG-ECN, etc.). However, in State III we observed 38 stronger within- and 

between-network connections of which only 30% were between-network connections. Thus, 

State III was predominantly characterized by within-network connections (particularly 

connections between independent components located in the ECN, VIS and SM networks). 

In terms of temporal properties, State III showed a trend to be more frequent (higher FW) in PD-

ICD patients (57±0.3) than in the PD-noICD subjects (40±0.3) or the HCs (39±0.2) (F (2,50) = 

2.41; p = 0.07). In parallel, these patients showed a significantly larger mean DT in State III 

(41.5±20.7) (F (2,50) = 3.88; p = 0.027), characterized by stronger local connectivity than PD-

noICD subjects (24.8±18.9; p = 0.028) and HCs (21.6±10.5; p = 0.013: Figure 3.1.; 

Supplementary Figure 1). There were no differences in transition number. When the FC 

differences were calculated between the PD-ICD, PD-noICD and HC groups for each dFNC state 

(q <0.05 FDR corrected: Supplementary Figure 2), we found that the within-network FC of the 
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salience network was enhanced in PD-ICD patients in State III, specifically in the superior 

temporal lobe, frontoinsular and cingulate cortices (q <0.05 FDR corrected). 

3.4. Relationship with clinical properties 

In PD-ICD patients, only in State III, the mean DT was positively correlated with the TCI-R NS4 

sub-score (disorderliness: r (14) = 0.519; p = 0.039) and with the non-planning sub-score of the 

BIS scale (r (14) = 0.541; p = 0.030), and the mean percentage FW was correlated with the non-

planning sub-score of the BIS scale (r (14) = 0.536; p = 0.032) and with the total score of the BIS 

scale (r (14) = 0.561; p = 0.024: Figure 3.2). These effects were not observed either in PD-noICD 

patients, or in HCs (ps ≥ 0.25). In addition, dopaminergic medication (LEDDTOTAL and LEDDA) 

was not correlated with any temporal property of State III (ps ≥ 0.34). 

3.5. Graph topological properties 

We found no differences in global network metrics, yet when regional properties were 

considered. The PD-ICD patients had greater local efficiency than PD-noICD subjects (the 

average shortest path connecting all neighbors of a node) in the superior temporal lobe (BA 48; 

salience network, SAL; p = 0.0440), frontoinsular (BA 6; SAL; p = 0.0384) and cingulate 

cortices (BA32; SAL; p = 0.0160), all of which belong to the salience network.	

4. DISCUSSION 

This is the first study investigating dFNC and graph properties in PD-ICD patients during rs-

fMRI. Our results reveal that in contrast to PD-noICD and HC subjects, PD-ICD patients were 

engaged across time in a brain configuration pattern characterized by a lack of between-network 

connections at the expense of strong within-network connections (State III) in temporal, 

frontoinsular and cingulate cortices, all key nodes in the salience network. Moreover, this 
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increased maintenance of State III in PD-ICD patients, reflected by its temporal dFNC properties 

(FW and DT), was positively correlated with impulsivity (BIS scale) and novelty-seeking 

personality (TCI-R NS) ratings. Importantly, PD-ICD patients also exhibited increased local 

efficiency in all the aforementioned areas, suggesting brain reorganization in regions responsible 

for emotional processing and hedonic evaluation and associated with reward-related decision 

making. 

FCs can be classified into long-range connections between different networks (between-network 

connectivity), allowing integration of long-distance information, and local connections within 

clusters of neurons (within-network connectivity) favoring local information processing. In our 

cohort, the dFNC analyses suggested four different connectivity patterns or states. State III was 

characterized by reduced expression of between-network coupling and a prominent within-

network connectivity, mainly in the SMN, VIS and ECN networks. Accordingly, State III could 

be interpreted as involving a lower degree of connectedness between regions whereas the other 

(States I, II and IV) showed stronger between-networks couplings.  

Few studies have investigated dFNC in PD patients showing higher between-network FNC in PD 

patients than in HCs, interpreted as a potential compensatory mechanism [15] and  reduced links 

between networks connectivity in PD patients with mild cognitive impairment [16,17], In our 

study, PD-ICD patients showed enhanced maintenance (DT) and a tendency towards remaining 

for higher proportion of time with functional connections (FW) in State III with respect to the 

other two groups.  This confirms our hypothesis that altered temporal properties in dynamic 

connectivity is associated with ICD in PD patients. Thus, PD-ICD patients gravitate toward 

configurations with predominantly within-network FNC patterns, characterized by stronger 

connectivity between critical hubs that make up the salience network responsible for anchoring 
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awareness through integration of contextual, hedonic, homoeostatic and interoceptive processes, 

and which partially overlaps with regions of the mesocorticolimbic circuit: the superior temporal 

lobe, and frontoinsular and cingulate cortices. The temporal predominance of this modular brain 

organization could reflect dopaminergic dysregulation of the emotional processing circuit in PD-

ICD patients, in line with a proposed theory linking the relevance of a specific cognitive process 

to the length of time spent in the state that facilitates this cognitive aspect [28]. This may leave 

PD-ICD patients permanently focused on rewarded stimuli, an effect primarily due to dopamine 

overstimulation which leads to abnormal reward weighting. Importantly, our result is especially 

relevant considering that PD patients with and without ICD had no cognitive differences in any 

cognitive domain. 

In addition, the FW and the DT in state III in PD-ICD patients were positively associated with 

the BIS scale, which measures different aspects of impulsivity, but also with the Novelty Seeking 

personality test evaluating exploratory activity in response to novel stimuli, highlighting the 

specificity of the findings. Accordingly, a recent static FC study demonstrated the presence of a 

specific pattern of intrinsic connectivity within and between the SAL, ECN and DMN at baseline 

in drug naïve PD patients who went on to develop ICD after treatment [10]. Our results 

emphasize the importance of dFNC studies, not only to analyze the pathophysiology of 

impulsivity in PD-ICD patients but also to assess its relevance in enhancing the drive to seek and 

explore novel stimuli. Such an effect deserves further study in drug-naïve PD patients, as it is a 

personality trait that could play a role in the development of ICDs.  

Specifically, PD-ICD patients only appear to exhibit stronger local connections and increased 

local efficiency in areas that belong to the salience network. This is a large-scale limbic-

paralimbic network that encompasses cortical areas which play an important role in orienting 
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attention to integrate salient, hedonic and interoceptive stimuli which facilitate goal-directed 

behavior, [29] such as the anterior cingulate cortex, bilateral insula, frontoinsular cortex, 

amygdala, VS, and substantia nigra/VTA [29]. Abnormal connectivity within this network has 

been associated with substance-related disorders and addictive behaviors, and interestingly, a 

recent dFNC study on the general population suggested that susceptibility to tempting stimuli is 

governed by individual differences in salience network dynamics [30].  

Graph theoretical methods provide a mathematical framework to study the topological properties 

of networks, indicating that while global network measures may exhibit greater temporal 

stationarity, regional network measures may be more susceptible to local cell dynamics [31]. To 

date, only two studies have reported disruptions in regional topology in PD-ICD patients: one 

revealed altered properties of connections to the mesocorticolimbic system [12], while the other, 

demonstrated stable topological properties irrespective of the state of medication [11], which is 

relevant to our study. dFNC alterations in PD-ICD patients were accompanied by  greater local 

efficiency in the PD-ICD group in areas of the salience network associated with stable global 

efficiency. Since local efficiency reflects the capacity for regional specialization in a network, it 

is plausible that dopaminergic treatment in PD-ICD patients specifically drives the functional 

reorganization of integrated brain networks, enhancing the aberrant coupling and looping of the 

reward system. 

The present study has some limitations. Similar to other studies in the field [9,10], the sample 

size can be considered relatively small. However, our groups were individually matched for age, 

sex, education and IQ in order to reduce variability. Although the fact that patients were studied 

on medication can be considered a limitation, we chose this study design because ICD is a 

complication associated with dopaminergic treatment. In addition, topological properties are not 
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affected by medication [11] and dopaminergic medication did not differ between groups or show 

any association with the temporal properties of dynamic FNC. Finally, even if the duration of the 

resting state session and the movement threshold might be considered somewhat liberal for 

studies in healthy populations, we have used the same methodology than studies of dFNC in 

special populations with neurodegenerative diseases (Alzheimer disease, frontotemporal 

dementia and PD patients) [15,16]. 

In conclusion, abnormal temporal patterns and stronger local topological properties in PD-ICD 

patients suggest a dynamic functional engagement of local connectivity involving the limbic 

circuit, leading to the inefficient modulation in emotional processing and reward-related 

decision-making. Moreover, these FNC alterations are not only coupled to impulsivity but also to 

a strong novelty seeking personality, suggesting that the above-mentioned functional 

abnormalities contribute to such traits. These findings suggests that a reorganization of the brain 

occurs in these patients such that regions involved in affection, reward processing and goal-

directed behavior acquire a more significant role relative to other neurocognitive processes. We 

believe this analysis of the temporal dynamics of functional connectivity provide new insights 

into the pathophysiology of ICD in PD patients and that could be a useful imaging biomarker to 

identify PD patients at risk to develop ICD.  
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Tables and figure legends 

Table 1.  Sociodemographic, clinical and behavioral characteristics of the sample 

 
PDICD 

n=16 
PDnoICD 

n=20 
HC 

n=17 p Post-hoc (Bonferroni or 
U Mann Whitney) 

Age 61.25 (8.1) 62.45 (8.8) 63.6 (9.9) 0.843
a
  

Sex, male (%) 14 (87.5%) 16 (84.2%) 14 (82%) 0.834
b
  

Education (years) 16 [9-18] 12 [9-13] 15 [8-20] 0.470
c
  

Premorbid IQ (WAIS-
III Vocabulary) 45.4 (9.4) 43.9 (13.8) 49.3 (8.3) 0.325

a
  

Disease duration 
(years) 7.47 (4) 6.65 (4.6) - 0.583

d
  

UPDRS-III 20.31 (9.6) 25.90 (7) - 0.122
d
  

H&Y stage 2 [1.5-2.5] 2 [1.5-3] - 0.492
b
  LEDDDA 395 [57.75-400] 300 [37.5-300] - 0.838

e
  LEDDTOTAL 1210 [613-1449] 725 [487-1131] - 0.089

e
  

PDQ-8 7.69 (4.9) 5.25 (2.9) 0.41 (0.9) 0.0001
a
 

PDICD>HC (p=0.0001) 
PDnoICD>HC (p=0.0001) 

MoCA 27 (2.2) 27.3 (3) 28.3 (1.7) 0.444
a
  

HADS total 8 [5-18.2] 4 [1.2-5.7] 5 [4-7] 0.015
c
 

PDICD>PDnoICD 
(p=0.007) 

PDICD>HC (p=0.048) 
HADS-anxiety 4.5 (3.2) 3.65 (2.1) 4.47 (2.6) 0.166

a
  

HADS-depression 3.5 [1-5.7] 1 [0-2.7] 1 [0-2.5] 0.003
c
 

PDICD>PDnoICD 
(p=0.003) 

PDICD>HC (p=0.004) 
QUIP-RS score 16 (12.2-26.7) - - -  TCI-R Novelty Seeking 
total 99 [92.2-108.5] 85 [73-92.7] 91.7 [86.5-97] 0.009

c
 

PDICD>PDnoICD 
(p=0.002) 

NS1 Exploratory 
excitability 29.2 (7.1) 25.1 (7) 27.7 (4) 0.148

a
  

NS2 Impulsiveness 25.8 (6.6) 18.1 (6.5) 23.5 (5.3) 0.002
a
 

PDICD>PDnoICD 
(p=0.002) 

NS3 Extravagance 26.9 (4.5) 22.9 (6.3) 25.9 (5.3) 0.085
a
  

NS4 Disorderliness 18.3 (6.4) 14.5 (5.1) 16.6 (3.8) 0.033
a
 

PDICD>PDnoICD 
(p=0.032) 

Barratt Impulsiveness 
total 40 [28.2-61.2] 29.5 [25.2-34.5] 33.5 [27.5-40.5] 0.020

a
 

PDICD>PDnoICD 
(p=0.020) 

Barratt Attention 13.9 (6.7) 9.4 (4.4) 12.8 (4.5) 0.031
a
 

PDICD>PDnoICD 
(p=0.040) 

Barratt Motor 
Impulsivity 15.3 (7.6) 10.1 (5) 13.4 (5) 0.024

a
 

PDICD>PDnoICD 
(p=0.037) 

Barratt Non-planning 14.8 (8.6) 9.6 (3.8) 11.2 (5.7) 0.045
a
 

PDICD>PDnoICD 
(p=0.042) 

Starkstein score 4.5 [1-14.7] 2.5 [1-6.7] 0 [0-3] 0.283
c
  

Values expressed in mean (SD) in parametric variables, in median and IQ range in non-parametric variables 
 a ANOVA  
b Chi-Square  
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c Kruskall-Wallis  
d Two-sample T-test 
 e U Mann Whitney 
Abbreviations: IQ = Intelligence Quotient; WAIS-III = Wechsler Adult Inteligence Scale-III; UPDRS = Unified Parkinson’s 
Disease Rating Scale; H&Y=Hoehn and Yahr scale; LEDDTOTAL= Total daily levodopa equivalent dose. LEDD was calculated 
using the following formula LED (mg) = (1 x levodopa) + [0.77 x levodopa controlled release (CR)] + (1.43 x levodopa + 
entacapone) + (1.11 x levodopa CR + entacapone) + (20 x ropinirole) + (20 x ropinirole ER) + (100 x pramipexole) + (30 x 
rotigotine) + (10 x bromocriptine) + (8 x apomorphine) + (100 x pergolide) + (67 x cabergoline)  (Parkin et al., 2002); LEDDDA: 
daily levodopa equivalent dose of dopamine agonist according to the same formula; HADS=Hospital Anxiety and Depression 
Scale; ; QUIP-RS= Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale; TCI-R=Revised 
Temperament and Character Inventory; NS=Novelty Seeking Subscales. 
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Figure 1. The 40 independent components (ICs) identified by a group ICA. (A) Spatial maps 
of the 40 ICs divided into seven networks. (B) Connectogram representing the connections 
between the ICs. Yellow lines represent positive functional connectivity, and blue lines represent 
negative functional connectivity (C) Group averaged static functional connectivity between IC 
pairs was computed using the entire resting state data. The value in the correlation matrix 
represents the Fisher’s z-transformed Pearson correlation coefficient. Each of the 40 IC was 
rearranged by network group based on the seven functional networks. Index numbers of 
independent components are written on the left and bottom side of the matrix. Correlations 
between the ICs are represented in a scale from red (higher) to blue (lower). 
 

 

	  

Figure 1. Spatial maps for the 40 ICs (A), the static FC between them (B) and the 

connectogram representation (C). (A) Spatial maps of the 40 ICs identified as RSNs (resting 

state networks). RNSs are divided into groups based on their anatomical and functional 

properties including BG= basal ganglia, AUD= auditory, SMN= sensorimotor, VIS=visual, 

DMN= default mode, CEN= cognitive executive and CB= cerebellar networks. (B) Functional 

network connectivity matrix. Pairwise correlations between RSN timecourses were Fisher z-

transformed and averaged across subjects. (C)  Connectogram FC network plot of the 40 ICs. 

For more details of the 40 ICs see Supplementary material. 
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Figure 2. Dynamic FNC states resulting from the clustering analysis. A) Functional network 
connectivity matrices for each state, indicating the total occurrences and the percentages. 
Correlations between the ICs are represented in a scale from red (higher) to blue (lower). B) 
Connectogram representing the connections between the ICs (Yellow lines represent positive 
functional connectivity, and blue lines represent negative functional connectivity). C) Only that 
5% of the functional connectivity matrix, representing the strongest connections (i.e. the largest 
absolute value correlation coefficients) is shown for each state. Red lines represent positive 
functional connectivity, and blue lines represent negative functional connectivity. 
 

 

 

 

	  

Figure 2. Dynamic FC states resulting of the clustering analysis. A) Cluster centroids and the total 

number of occurrences and the percentage of total occurrences are shown for each state B) Connectogram 

representations of the functional connectivity matrix in each state, each square colour represents one of the 7 

networks. C) Figure 2C shows only 5% of the functionally connected regions in each state, representing the 

strongest connections. Red= BG, dark blue= AUD, green= SM, pink= VIS, yellow=ECN, light blue= DMN, 

grey= CB. 
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Figure 3: A) Differences in the temporal properties of the dynamic functional network 
connectivity states between the groups. (1) Mean dwell time (DT) between the groups and the 
significant differences between the groups in State III (&= PD-ICD>HC; $=PD-ICD>PD-
noICD) (2) Mean fractional window (FW) spent by the subjects in each state. B) Correlation of 
the clinical features of the PD-ICD group with the temporal properties detected. (1) The 
mean dwell time (DW) of State III was positively correlated with the NS sub-scale of the TCI-R 
scale (Novelty Seeking) and with the non-planning sub-scale of the BIS scale (Barratt 
Impulsiveness scale). (2) The fractional window (FW) of State III was positively correlated with 
the non-planning sub-scale and with the total BIS score. 

 

 

Figure 3.  Differences between groups in temporal properties of dynamic functional 

connectivity states. (A) Mean dwell time between groups and significant differences between 

groups in State III (&= PDICD>HC; $=PDICD>PDnoICD) (B) the mean fractional window of 

total subjects spent in each state. 
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