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Abstract: In this paper, we introduce Suzuki-type (α, β, γg)−generalized and modified proximal
contractive mappings. We establish some coincidence and best proximity point results in fairly
complete spaces. Also, we provide coincidence and best proximity point results in partially ordered
complete metric spaces for Suzuki-type (α, β, γg)−generalized and modified proximal contractive
mappings. Furthermore, some examples are presented in each section to elaborate and explain the
usability of the obtained results. As an application, we obtain fixed-point results in metric spaces
and in partially ordered metric spaces. The results obtained in this article further extend, modify and
generalize the various results in the literature.
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1. Introduction and Preliminaries

S. Banach [1] stated and proved the Banach contraction principle. This principle has wide
applications due to its simple and constructive nature of proof. The constructive proof leads to
developing algorithms and can be easily applied in computer and data sciences (see in [2]) as well.
The application of this principle is not limited to these areas, it is extensively used in dynamically
programming ([3]) and biosciences as well. Due to wide range of applications, researchers around
the globe are attracted towards this principle to generalize, modify and extend this pioneer result
(for detail, see [4–12]). These modifications are consisting upon three pillars (1) generalizing the
contractive conditions, (2) generalizing the underlying space and (3) modifying the single valued
mapping with multivalued mapping. In all the three modifications, the Banach contraction principle
gets modification with three different aspects.

The "fixed point" q of a self-mapping M is actually a solution of an operator equation Mq = q

(i.e., d(q, Mq) = 0). Among these three aspects of generalization of "Banach contraction principle", it
would be quite interesting to discuss, if the operator equation Mq = q has no solution. In this case,
when d(q, Mq) 6= 0 then it is evident to minimize the distance between q and Mq which leads to the
following optimization problem:

min
q∈Y

d(q, Mq).
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Now, if M is non-self-mapping, so we cannot find the "fixed point" of M, in this case we can
optimize the distance between q and Mq, but in the case of non-self-mapping such that if M : Q → R
then we cannot reduce the d(q, Mq) to zero but it can minimize up to d(Q,R) (the distance between
set Q and set R). Any point q ∈ Q is called a "best proximity point" of mapping M, if it satisfies
d(q, Mq) = d(Q,R). Please note that if Q ∩ R is nonempty then any "best proximity point" of the
mapping M becomes a "fixed point" of the mapping M.

An element q ∈ Q is said to be a "coincidence best proximity point" of the pair of mappings (g, M),
if q satisfy d(gq, Mq) = d(Q,R), where M : Q → R and g : Q → Q. If g = IQ then "coincidence best
proximity point" becomes a "best proximity point" of mapping M.

One of the interesting generalizations of the "Banach contraction principle" was given by V.
Berinde ([13]) and proved the following result.

Theorem 1. ([13]) Let (Y, d) be a complete metric space and mapping M : Y → Y satisfies

d(Mq, Mr) ≤ αd(q, r) + βd(Mq, r),

for all q, r ∈ Y where α ∈ [0, 1) and β ∈ [0, ∞) then the mapping M has a "fixed point".

T. Suzuki ([14]) introduced “Suzuki contraction", which generalized the “Banach contraction" and
he proved the following “fixed-point theorem".

Theorem 2. ([14]) Let (Y, d) be a complete metric space and mapping M : Y → Y satisfies

1
2
d(q, Mq) < d(q, r) implies d(Mq, Mr) < d(q, r),

for all q, r ∈ Y then mapping M has a unique fixed point in Y.

In 2014, M. Gabeleh ([15]) revised and generalized the contractions presented in Theorem 1 and
in Theorem 2 to prove the single valued and multivalued “best proximity point results" . Recently S.
Basha ([16]) introduced the concept of "fairly and proximally complete spaces" and proved “best proximity
point results" in these spaces.

In this paper, we will modify Suzuki-type “best proximity point results" of M. Gabeleh ([15]) and
prove Suzuki-type “coincidence best proximity point results" in the setting of “fairly complete space" and
"partially ordered fairly complete space".

We will use the following notations in the entire article and assume that Q andR are nonempty
subsets of a metric space (Y, d), further

d(Q,R) = inf{d(q, r) : q ∈ Q and r ∈ R} (distance between two sets Q andR),

Q0 = {q ∈ Q such that d(q, r) = d(Q,R), for some r ∈ R},
R0 = {r ∈ R such that d(q, r) = d(Q,R), for some q ∈ Q},

also d∗(q, r) = d(q, r)− d(Q,R), for some q ∈ Q and r ∈ R.

Raj introduced the P−property in ([17]), which is defined as:

Definition 1. A pair (Q,R) is said to satisfy the P−property if and only if

d(q1, r1) = d(Q,R)
d(q2, r2) = d(Q,R)

}
implies d(q1, q2) = d(r1, r2),

for all q1, q2 ∈ Q and r1, r2 ∈ R.
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We recall the following notions of cyclically Cauchy sequence and fairly Cauchy sequence.

Definition 2. ([16]) Consider two sequences {qn} in Q and {rn} inR. The sequence {(qn, rn)} in (Q,R) is
said to be:

• A cyclically Cauchy sequence if there exists a natural number N such that

d(qm, rn) < d(Q,R) + ε,

for every ε > 0 and for all m, n ≥ N ∈ N
• A fairly Cauchy sequence if the following conditions are satisfied

(1) {(qn, rn)} is a cyclically Cauchy sequence,
(2) {qn} and {rn} are Cauchy sequences,

for all n ≥ N ∈ N.

Next, we recall a special type of completeness for a pair of nonempty subsets (Q,R) of (Y, d).

Definition 3. ([16]) A pair (Q,R) is a fairly complete space if and only if for every fairly Cauchy sequence
{(qn, rn)} converges in (Q,R), also the sequences {qn} and {rn} are converging in Q andR, respectively.

The notion of uniform M−approximation of a set is described in the following definition.

Definition 4. ([16]) Let M : Q → R be a mapping. The setR is said to have uniform M−approximation in
set Q if and only if there exist δ > 0 and ε > 0, such that

d(q1, Mr1) = d(Q,R)
d(q2, Mr2) = d(Q,R)
d(Mr1, Mr2) < δ

 implies d(q1, q2) < ε,

for all q1, q2, r1 and r2 in Q.

In 2012, Samet et al. ([18]) introduced α − ψ−contractive and α−admissible mappings and
established some fixed-point theorems for such mappings in complete metric spaces. Samet et al. ([18])
defined the notion of α−admissible mapping as follows.

Definition 5. A mapping M : Y → Y is said to be α−admissible if there exists α : Y×Y → [0, ∞) such that

α(q, r) ≥ 1 imply α(Mq, Mr) ≥ 1, (1)

for all q, r ∈ Y.

The concept of α−admissible mapping was generalized and extended in many directions. Jleli
et al. ([19]) introduced α−proximal admissible mapping as follows.

Definition 6. Let Q andR be the nonempty subsets of metric space (Y, d). A mapping M : Q → R is said to
be α−proximal admissible if there exists α : Y×Y → [0, ∞) such that

α(q1, q2) ≥ 1
d(r1, Mq1) = d(Q,R)
d(r2, Mq2) = d(Q,R)

 imply α(r1, r2) ≥ 1,

for all q1, q2, r1, r2 ∈ Q.
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Please note that if Q = R = Y then every α−proximal admissible mapping is an
α−admissible mapping.

Definition 7. ([20]) A mapping g : Q → Q satisfies the αR−property if there exists a function α : Q×Q →
[0, ∞) such that

α(gq, gr) ≥ 1 imply α(q, r) ≥ 1,

for all q, r ∈ Q.

Let CB(Y) be a closed and bounded subset of the metric space (Y, d). Then the Pompeiu–Hausdroff
metric ([21]) on CB(Y), is defined as

H(Q,R) = max{sup
q∈Q
D(q,R), sup

r∈R
D(r,Q)},

for Q,R ∈ CB(Y) where

D(q,R) = inf{d(q, r) : r ∈ R} (distance of a point q to a setR),

and

D∗(q, r) = D(q, r)− d(Q,R), for all q ∈ Q and r ∈ R.

2. Main Results

To obtain the main results, we need to define the Suzuki-type (α, β, γg)−generalized proximal
and Suzuki-type (α, β, γ)−generalized proximal contractions as follows:

Definition 8. 1. A pair (g, M) where g : Q → Q and M : Q → CB(R) is Suzuki-type
(α, β, γg)−generalized proximal contractive condition if γ ∈ (0, 1] such that 0 ≤ β < γ and

1
1 + β + γ

D∗(gq, Mq) ≤ d(gq, gr) imply α (q, r)H(Mq, Mr) ≤ γd(gq, gr) + βD∗(gr, Mq).

2. A mapping M : Q → CB(R) is Suzuki-type (α, β, γ)−generalized proximal contractive condition if
γ ∈ (0, 1] such that 0 ≤ β < γ and

1
1 + β + γ

D∗(q, Mq) ≤ d(q, r) imply α (q, r)H(Mq, Mr) ≤ γd(q, r) + βD∗(r, Mq),

where α : Q×Q → [0, ∞) and α(q, r) ≥ 1, for all q, r ∈ Q.

The constants γ and β satisfies the condition C, if γ ∈ (0, 1] and 0 ≤ β < γ such that 0 < β + γ ≤ 1.
In the first result we will prove that the pair (g, M) which satisfies the Suzuki-type

(α, β, γg)−generalized proximal contraction has a coincidence best proximity point in the frame
work of fairly complete spaces.

Theorem 3. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space and satisfy the P−property. Consider a pair (g, M) satisfying Suzuki-type
(α, β, γg)−generalized proximal contractive condition with M(Q0) ⊆ R0, Q0 ⊆ g(Q0) where mapping g

satisfy the αR−property and mapping M is an α−proximal admissible. Furthermore, suppose that there exist
some q0, q1 ∈ Q0 such that

D(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1.

Then the pair (g, M) possesses a coincidence best proximity point.
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Proof. Let q0, q1 ∈ Q0 such that D(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1. As Mq1 ∈ M(Q0) ⊆ R0,
there exists an element gq2 = q

′
2 ∈ Q0 ⊆ g(Q0) such that D(gq2, Mq1) = d(Q,R). As M is an

α−proximal admissible, it follows that α(gq1, gq2) ≥ 1. Since g satisfy the αR−property therefore
α(gq1, gq2) ≥ 1 imply α(q1, q2) ≥ 1. Since Mq2 ∈ M(Q0) ⊆ R0, there exists an element gq3 = q

′
3 ∈

Q0 ⊆ g(Q0) such that
D(gq3, Mq2) = d(Q,R),

as M is an α−proximal admissible, it follows that α(gq2, gq3) ≥ 1. Also g possesses the αR−property
therefore α(gq2, gq3) ≥ 1 implies α(q2, q3) ≥ 1. Continuing the same reasoning we get a sequence
{gqn} in Q0 such that

D(gqn+1, Mqn) = d(Q,R), (2)

with α(gqn, gqn+1) ≥ 1. Since mapping g satisfies the αR−property we have α(qn, qn+1) ≥ 1. We know
that if γ ∈ (0, 1] and 0 ≤ β < γ then 1 + β + γ ≥ 1 and 1

1+β+γ ≤ 1. Now consider the case when
qn+1 = qn then from Equation (2), we have D(gqn, Mqn) = d(Q,R), which proves the theorem. Now
if qn+1 6= qn for all n ∈ N then we have

1
1 + β + γ

D∗(gq1, Mq1) ≤ D∗(gq1, Mq1) = D(gq1, Mq1)− d(Q,R)

≤ d(gq1, gq2) +D(gq2, Mq1)− d(Q,R)
= d(gq1, gq2),

and so, the above inequality can be written as

1
1 + β + γ

D∗(gq1, Mq1) ≤ d(gq1, gq2).

Since α(q1, q2) ≥ 1 and the pair (g, M) satisfies Suzuki-type (α, β, γg)−generalized proximal
contraction which implies that

H(Mq1, Mq2) ≤ α(q1, q2)H(Mq1, Mq2) ≤ γd(gq1, gq2) + βD∗(gq2, Mq1),

above inequality becomes

H(Mq1, Mq2) ≤ γd(gq1, gq2) + β[D(gq2, Mq1)− d(Q,R)]
= γd(gq1, gq2).

Since the pair (Q,R) satisfy the P−property, using the P−property the above inequality can be
written as

H(Mq1, Mq2) ≤ γd(gq1, gq2) = γH(Mq0, Mq1), (3)

which shows thatH(Mq1, Mq2) ≤ γH(Mq0, Mq1). Continuing on the same lines for q2 we can verify
the following

1
1 + β + γ

D∗(gq2, Mq2) ≤ D∗(gq2, Mq2) = D(gq2, Mq2)− d(Q,R)

≤ d(gq2, gq3) +D(gq3, Mq2)− d(Q,R)
= d(gq2, gq3),

and so the above inequality can be written as

1
1 + β + γ

D∗(gq2, Mq2) ≤ d(gq2, gq3).
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Since α(q2, q3) ≥ 1 and the pair (g, M) satisfies Suzuki-type (α, β, γg)−generalized proximal
contraction which implies that

H(Mq2, Mq3) ≤ α(q2, q3)H(Mq2, Mq3) ≤ γd(gq2, gq3) + βD∗(gq3, Mq2),

which can be written as

H(Mq2, Mq3) ≤ γd(gq2, gq3) + β[D(gq3, Mq2)− d(Q,R)]
= γd(gq2, gq3).

The pair (Q,R) satisfy the P−property, using inequality (3) and the P−property in above inequality,
we obtain

H(Mq2, Mq3) ≤ γd(gq2, gq3) = γH(Mq1, Mq2) ≤ γ2H(Mq0, Mq1),

thus, for a sequence {Mqn} inR0 we have

H(Mqn, Mqn+1) ≤ γnH(Mq0, Mq1). (4)

Therefore
∞

∑
n=1

d(gqn+1, gqn+2) =
∞

∑
n=1
H(Mqn, Mqn+1) ≤

∞

∑
n=1

γnH(Mq0, Mq1),

which leads {Mqn} to be a Cauchy sequence inR and (Q,R) is a pair of nonempty closed subsets of
a complete metric space (Y, d) and so {Mqn} converges to some point q ∈ R0. In the same way, the
sequence {gqn} is convergent to some point gp ∈ Q0. So, we have

d(gp, q) = lim
n→∞

D(gqn, Mqn−1) = d(Q,R).

Using triangular inequality, we can write

D(gqm, Mqn) ≤ D(gqm, Mqm−1) +H(Mqm−1, Mqn) = d(Q,R) +H(Mqm−1, Mqn). (5)

If m− 1 < n then we have

D(gqm, Mqn) ≤ d(Q,R) +H(Mqm−1, Mqm) +H(Mqm, Mqm+1) + · · ·+H(Mqn−1, Mqn). (6)

By Equations (4) and (6) we have

D(gqm, Mqn) ≤ d(Q,R) + γm−1H(Mq0, Mq1) + γmH(Mq0, Mq1) + · · ·+ γn−1H(Mq0, Mq1)

= d(Q,R) + γm−1H(Mq0, Mq1)[1 + γ + · · ·+ γn−m]

= d(Q,R) + γm−1H(Mq0, Mq1)[
(1− γn−m+1)

(1− γ)
]

≤ d(Q,R) + γm−1

1− γ
H(Mq0, Mq1).

If n < m− 1 then the inequality (5) implies

D(gqm, Mqn) ≤ d(Q,R) +H(Mqn, Mqn+1) +H(Mqn+1, Mqn+2) + · · ·+H(Mqm−2, Mqm−1), (7)
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using inequality (4), the inequality (7) becomes

D(gqm, Mqn) ≤ d(Q,R) + γnH(Mq0, Mq1) + γn+1H(Mq0, Mq1) + · · ·+ γm−2H(Mq0, Mq1)

= d(Q,R) + γnH(Mq0, Mq1)[1 + γ + · · ·+ γm−n−2]

= d(Q,R) + γnH(Mq0, Mq1)[
(1− γm−n−1)

(1− γ)
]

≤ d(Q,R) + γn

1− γ
H(Mq0, Mq1).

Thus, {(gqm, Mqn)} is a cyclically Cauchy sequence. Since gqn → gp there exists N1 ∈ N such that

d(gqn, gp) ≤ 1
3
d(gq, gp), (8)

for all n ≥ N1 ∈ N. Since 1 + β + γ > 1 and 1
1+β+γ < 1 we can write

1
1 + β + γ

D∗(gqn, Mqn) ≤ D(gqn, Mqn)− d(Q,R)

≤ d(gqn, gp) + d(gp, gqn+1) +D(gqn+1, Mqn)− d(Q,R)
= d(gqn, gp) + d(gp, gqn+1)

≤ 1
3
d(gq, gp) +

1
3
d(gq, gp)

=
2
3
d(gq, gp)

= d(gq, gp)− 1
3
d(gq, gp)

≤ d(gq, gp)− d(gqn, gp) ≤ d(gqn, gq).

Since α(qn, q) ≥ 1 and the pair (g, M) satisfies Suzuki-type (α, β, γg)−generalized proximal contraction
which implies that

H(Mqn, Mq) ≤ α(qn, q)H(Mqn, Mq) ≤ γd(gqn, gq) + βD∗(gq, Mqn),

above inequality can be written as

H(Mqn, Mq) ≤ γd(gqn, gq) + βD∗(gq, Mqn). (9)

We can write

D(gp, Mq) = lim
n→∞

D(gqn, Mq) ≤ lim
n→∞

[D(gqn, Mqn−1) +H(Mqn−1, Mqn) +H(Mqn, Mq)], (10)

using inequalities (4) and (9), inequality (10) becomes

D(gp, Mq) ≤ lim
n→∞

[d(Q,R) + γn−1H(Mq0, Mq1) + γd(gqn, gq) + βD∗(gq, Mqn)]

= d(Q,R) + γd(gp, gq) + βd∗(q, gq),

after simplification above inequality can be written as

D∗(gp, Mq) ≤ γd(gp, gq) + βd∗(q, gq). (11)

From triangular inequality we have

D∗(gqn, Mqn) ≤ d(gqn, gp) +D∗(gp, Mqn). (12)
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Using inequality (11), inequality (12) becomes

D∗(gqn, Mqn) ≤ d(gqn, gp) + γd(gp, gqn) + βd∗(q, gqn)

≤ (1 + γ)d(gp, gqn) + β[D(q, Mqn−1) +D(Mqn−1, gqn)− d(Q,R)]
= (1 + γ)d(gp, gqn) + βd(gp, gqn)

= (1 + β + γ)d(gp, gqn),

after simplification we have

1
1 + β + γ

D∗(gqn, Mqn) ≤ d(gp, gqn).

Since α(qn, p) ≥ 1 and furthermore the pair (g, M) satisfy Suzuki-type (α, β, γg)−generalized proximal
contraction which implies that

H(Mqn, Mp) ≤ α(qn, p)H(Mqn, Mp) ≤ γd(gqn, gp) + βD∗(Mqn, gp),

further we have

H(Mqn, Mp) ≤ γd(gqn, gp) + βD∗(Mqn, gp)

≤ γd(gqn, gp) + β[D(Mqn, gqn+1) + d(gqn+1, gp)− d(Q,R)]
= γd(gqn, gp) + βd(gqn+1, gp),

since gqn → gp. In above relation if n → ∞ then we conclude that Mqn → Mp, that is, q = Mp and
we have

D(gp, Mp) = d(Q,R).

Therefore, p is a coincidence best proximity point of the pair (g, M).

The subsequent example corroborates the result proved in Theorem 3.

Example 1. Let Y = R2 be a metric space with Euclidean metric d. Suppose Q =

{(−1, 1), (−1, 0), (−1,−1)} andR = {(−4, 1), (−4, 0), (−4,−1)} are nonempty subsets of Y. After simple
calculation, we obtain d(Q,R) = 3 and the pair (Q,R) satisfy the P−property, also Q0 = Q andR0 = R.
Now define a mapping M : Q → CB(R) as:

M(q) =


{(−4, 0)}, if q ∈ {(−1, 1)}
{(−4, 1)}, if q ∈ {(−1,−1)}
{(−4, 0), (−4, 1)}, if q ∈ {(−1, 0)},

clearly M(Q0) ⊆ R0 and mapping g : Q → Q as:

g(q) =


(−1, 1), if q ∈ {(−1,−1)}
(−1,−1), if q ∈ {(−1, 0)}
(−1, 0), if q ∈ {(−1, 1)},

which satisfies Q0 ⊆ g(Q0). Now we must show that the pair (g, M) satisfies Suzuki-type
(α, β, γg)−generalized proximal contraction.
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Case 1. If q, r ∈ {(−1, 1), (−1,−1)} ⊆ Q then following condition of Suzuki-type (α, β, γg)−generalized
proximal contractive condition holds for all q, r ∈ {(−1, 1), (−1,−1)} for β = 0.5 and γ = 0.7.

1
1 + β + γ

D∗(gq, Mq) ≤ d(gq, gr). (13)

Now, we must show that the second condition of Suzuki-type (α, β, γg)−generalized proximal contraction holds
for all q, r ∈ {(−1, 1), (−1,−1)}.

α (q, r)H(Mq, Mr) ≤ γd(gq, gr) + βD∗(gr, Mq). (14)

Define α : Q×Q → [0, ∞) as α(q, r) = e
1

d(q,r)+5 . After calculation we have

α (q, r)H(Mq, Mr) = 1.15,

and
γd(gq, gr) + βD∗(gr, Mq) = 1.2,

inequality (14) holds.

Case 2. The inequality (13) holds for all q, r ∈ {(−1, 0), (−1,−1)} and

α (q, r)H(Mq, Mr) = 1.18,

for q = (−1, 0) and r = (−1,−1) we have

γd(gq, gr) + βD∗(gr, Mq) = 1.4,

when q = (−1,−1) and r = (−1, 0) we have

γd(gq, gr) + βD∗(gr, Mq) = 2.4,

inequality (14) holds.

Case 3. If q = (−1, 1) and r = (−1, 0) then inequality (13) holds and after simple calculation we have

α (q, r)H(Mq, Mr) = 1.18,

and
γd(gq, gr) + βD∗(gr, Mq) = 1.2,

inequality (14) holds. If we choose q = (−1, 0) and r = (−1, 1) then the inequality (13) does not holds.
This shows that the pair (g, M) satisfy Suzuki-type (α, β, γg)−generalized proximal contractive condition;
further remaining conditions of Theorem 3 holds, therefore the pair (g, M) has two coincidence best proximity
points (−1, 1) and (−1,−1). Please note that in this example the contractive condition of Theorem 3.1 of M.
Gabeleh ([15]) does not hold. Indeed, q = (−1, 1) and r = (−1, 0) we have

1 = H(Mq, Mr) ≤ γd(q, r) + βD∗(Mq, r) = 0.7.

M. Gabeleh in ([15]) proved the best proximity point results but did not discussed the uniqueness
of the best proximity point results. In this paper, we will need an additional condition C (2)
to prove the uniqueness of coincidence best proximity point results for Suzuki-type generalized
proximal contractions.
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Theorem 4. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space and satisfies the P−property. Consider a pair (g, M) satisfying Suzuki-type
(α, β, γg)−generalized proximal contractive condition with M(Q0) ⊆ R0,Q0 ⊆ g(Q0) where g is a one-to-one
mapping and satisfies the αR−property. Mapping M is an α−proximal admissible further suppose that there
exist some q0, q1 ∈ Q0 such that

D(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1.

If the constants β and γ satisfy the condition C (2) then the pair (g, M) possesses a unique coincidence best
proximity point.

Proof. Following arguments similar to those in the proof of Theorem 3, we get the existence of the
coincidence best proximity point of the pair of mappings (g, M). Now, we must prove the uniqueness
of coincidence best proximity point of the pair of mappings (g, M). On contrary suppose that q1, q2 ∈ Q
are two coincidence best proximity points of the pair of mappings (g, M) with q1 6= q2 that is

D(gq1, Mq1) = D(gq2, Mq2) = d(Q,R),

the pair (Q,R) possesses the P−property and g : Q → Q is a one-to-one mapping, we can write

H(Mq1, Mq2) = d(gq1, gq2) 6= 0. (15)

Since 1 + β + γ ≥ 1 and 1
1+β+γ ≤ 1 we have

1
1 + β + γ

D∗(gq2, Mq2) ≤ D∗(gq2, Mq2) = D(gq2, Mq2)− d(Q,R) = 0 < d(gq2, gq1).

As α(q2, q1) ≥ 1 and the pair (g, M) satisfies Suzuki-type (α, β, γg)−generalized proximal contraction
which implies that

H(Mq2, Mq1) ≤ α(q2, q1)H(Mq2, Mq1) ≤ γd(gq2, gq1) + βD∗(gq1, Mq2),

from above inequality it can be written as

H(Mq2, Mq1) ≤ γd(gq2, gq1) + βD∗(gq1, Mq2),

and by using Equation (15) the above inequality becomes

H(Mq2, Mq1) ≤ γH(Mq1, Mq2) + β[D(gq1, Mq1) +H(Mq1, Mq2)− d(Q,R)]
≤ γH(Mq1, Mq2) + βH(Mq1, Mq2).

After simple calculation we have 1 ≤ γ + β which is a contradiction. Hence, q1 = q2 and the pair
(g, M) possesses a unique coincidence best proximity point.

Let us visualize Theorem 4 with the example which follows.

Example 2. Let Y = R2 be a metric space with Euclidean metric d. Suppose that Q = Q0 =

{(−1, 1), (−1, 0), (−1,−1)} and R = R0 = {(−4, 1), (−4, 0), (−4,−1)} are nonempty subsets of Y.
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After calculation we can see that d(Q,R) = 3 and the pair (Q,R) satisfies the P−property. Define mappings
g : Q → Q, M : Q → CB(R) as:

g(q) =


(−1, 1), if q ∈ {(−1,−1)}
(−1, 0), if q ∈ {(−1, 0)}
(−1,−1), if q ∈ {(−1, 1)},

and

M(q) =

{
{(−4, 0), (−4, 1)}, if q ∈ {(−1,−1)}
{(−4, 1)}, else,

clearly Q0 ⊆ g(Q0), M(Q0) ⊆ R0 and g is an one-to-one mapping. Pair (g, M) satisfy the Suzuki-type
(α, β, γg)−generalized proximal contraction for β = 0, γ = 1 such that 0 < β + γ ≤ 1 and for function
α : Q×Q → [0, ∞) defined as α(q, r) = 1. Hence all the conditions of Theorem 4 hold and q = (−1,−1) is a
unique coincidence best proximity point of the pair of mappings (g, M).

The coincidence best proximity point results discussed below can be obtained directly from
Theorem 3.

Corollary 1. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space and satisfies the P−property. Consider g : Q → Q and M : Q → R satisfy
the following, if

1
1 + β + γ

d∗(gq, Mq) ≤ d(gq, gr) imply α (q, r) d(Mq, Mr) ≤ γd(gq, gr) + βd∗(gr, Mq), (16)

with M(Q0) ⊆ R0, Q0 ⊆ g(Q0) where mapping g satisfies the αR−property and M is an α−proximal
admissible mapping. Furthermore, suppose that there exists some q0, q1 ∈ Q0 such that

d(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1,

where α : Q×Q → [0, ∞). Then the pair (g, M) has a coincidence best proximity point.

Corollary 2. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space and satisfy the P−property. Consider g : Q → Q be a one-to-one mapping
and M : Q → R satisfy

1
1 + β + γ

d∗(gq, Mq) ≤ d(gq, gr) imply α (q, r) d(Mq, Mr) ≤ γd(gq, gr) + βd∗(gr, Mq), (17)

with M(Q0) ⊆ R0, Q0 ⊆ g(Q0) where mapping g satisfies the αR−property and mapping M is an
α−proximal admissible. Furthermore, suppose that there exist some q0, q1 ∈ Q0 such that

d(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1,

where α : Q×Q → [0, ∞). Then the pair (g, M) has unique coincidence best proximity point if the constants
β, γ satisfies the condition C (2).

The subsequent result is a best proximity point theorem for the Suzuki-type (α, β, γ)−generalized
proximal contraction in the framework of fairly complete space.

Theorem 5. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space and satisfy the P−property. Consider the mapping M satisfy the Suzuki-type
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(α, β, γ)−generalized proximal contractive condition with M(Q0) ⊆ R0 and M is an α−proximal admissible
mapping. Furthermore, suppose that there exist some q0, q1 ∈ Q0 such that

D(q1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1.

Then the mapping M has a best proximity point.

Proof. If we take g = IQ in Theorem 3 then Suzuki-type (α, β, γg)−generalized proximal mapping
becomes Suzuki-type (α, β, γ)−generalized proximal mapping, remaining aspects of Theorem 5 are
same as in the proof of Theorem 3. Hence we have a best proximity point of mapping M.

Corollary 3. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space and satisfies theP−property. Consider the mapping M satisfies the Suzuki-type
(α, β, γ)−generalized proximal contractive condition with M(Q0) ⊆ R0 and M is an α−proximal admissible
mapping. Suppose that there exist some q0, q1 ∈ Q0 such that

D(q1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1.

Furthermore, if the constants β, γ satisfy the condition C (2) then unique best proximity point of mapping
M exists.

The following example will illustrate the result presented in Corollary 3.

Example 3. Let Y = R2 be a complete metric space with metric d defined as in Example 1. Suppose that
Q = Q0 = {(−2, 2), (−2, 1), (−2,−2)} and R = R0 = {(−5, 2), (−5, 1), (−5,−2)} are nonempty
subsets of Y. After simple calculation, we have d(Q,R) = 3 and the pair (Q,R) satisfy the P−property.
Define M : Q → CB(R) as

M(q) =

{
{(−5, 1), (−5, 2)}, if q ∈ {(−2,−2)}
{(−5, 2)} else,

clearly M(Q0) ⊆ R0. Now we must show that the mapping M satisfy Suzuki-type (α, β, γ)−generalized
proximal contractive condition. The subsequent condition of Suzuki-type (α, β, γ)−generalized proximal
contractive condition holds for all q, r ∈ Q0 and for β = 0.4, γ = 0.6.

1
1 + β + γ

D∗(q, Mq) ≤ d(q, r).

Now we must show that the subsequent condition of Suzuki-type (α, β, γ)−generalized proximal contraction
holds for all q, r ∈ Q0.

α (q, r)H(Mq, Mr) ≤ γd(q, r) + βD∗(r, Mq). (18)

Define α : Q×Q → [0, ∞) as

α(q, r) = e
1

d(q,r) .

Case 1. If we take q, r ∈ {(−2, 2), (−2, 1)} then after simple calculation we have

α (q, r)H(Mq, Mr) = 0,

inequality (18) holds trivially.
Case 2. If we take q, r ∈ {(−2, 2), (−2,−2)} then we have

α (q, r)H(Mq, Mr) = 1.28.
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For q = (−2, 2), r = (−2,−2) we get

γd(q, r) + βD∗(r, Mq) = 4,

and for q = (−2,−2), r = (−2, 2) we get

γd(q, r) + βD∗(r, Mq) = 2.4,

for any choice of q and r, the inequality (18) holds.
Case 3. For q, r ∈ {(−2, 1), (−2,−2)} we get

α (q, r)H(Mq, Mr) = 1.4.

For q = (−2, 1), r = (−2,−2) we have

γd(q, r) + βD∗(r, Mq) = 3.4,

and for q = (−2,−2), r = (−2, 1) we have

γd(q, r) + βD∗(r, Mq) = 1.8,

inequality (18) holds. Hence, M satisfy Suzuki-type (α, β, γ)−generalized proximal contraction, remaining
aspects of Theorem 3 are fulfilled. Therefore, the mapping M has unique best proximity point (−2, 2).

The following results are the nice consequences of Theorem 5.

Corollary 4. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space and satisfy the P−property. Consider an α−proximal admissible mapping
M : Q → R satisfy the following contractive condition

1
1 + β + γ

d∗(q, Mq) ≤ d(q, r) imply α (q, r) d(Mq, Mr) ≤ γd(q, r) + βd∗(r, Mq), (19)

with M(Q0) ⊆ R0. Furthermore, suppose that there exist some q0, q1 ∈ Q0 such that

d(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1,

where α : Q×Q → [0, ∞). Then the mapping M has a best proximity point.

Corollary 5. If we add the condition (2) to the statement of Corollary 4 we obtain that the mapping M possesses
a unique best proximity point.

3. Suzuki-Type (α, β, γg)−Modified Proximal Contractive Mapping

We begin this section with the subsequent definitions.

Definition 9. 1. A pair of mappings (g, M) where g : Q → Q and M : Q → CB(R) is said to be Suzuki-type
(α, β, γg)−modified proximal contraction if γ ∈ (0, 1] such that 0 ≤ β < γ and

1
1 + β + γ

D∗(gq, Mq) ≤ d(gq, gr) imply α (q, r)H(Mq, Mr) ≤ γD∗(gq, Mq) + βD∗(Mq, gr).
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2. A mapping M : Q → CB(R) is said to be Suzuki-type (α, β, γ)−modified proximal contraction if γ ∈ (0, 1]
such that 0 ≤ β < γ and

1
1 + β + γ

D∗(q, Mq) ≤ d(q, r) imply α (q, r)H(Mq, Mr) ≤ γD∗(q, Mq) + βD∗(Mq, r),

where α : Q×Q → [0, ∞) and we have α(q, r) ≥ 1 for all q, r ∈ Q.

The following result is a coincidence best proximity point theorem for Suzuki-type
(α, β, γg)−modified proximal contraction in the setting of a fairly complete space.

Theorem 6. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is fairly complete space. Consider the pair of mappings (g, M) satisfy Suzuki-type (α, β, γg)−modified
proximal contraction with M(Q0) ⊆ R0, Q0 ⊆ g(Q0). SetR has the property of uniform M−approximation
in set Q and mapping g satisfy the αR−property. Furthermore, assume the existence of some q0, q1 ∈ Q0 such
that D(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1. Then the pair (g, M) possesses a coincidence best proximity
point.

Proof. If we follow the steps of Theorem 3 then we obtain a sequence {qn} in Q0 such that
D(gqn+1, Mqn) = d(Q,R) and α(qn, qn+1) ≥ 1 with qn 6= qn+1. Since 1 + β + γ ≥ 1 and 1

1+β+γ ≤ 1,
so for q1 we have

1
1 + β + γ

D∗(gq1, Mq1) ≤ D∗(gq1, Mq1) = D(gq1, Mq1)− d(Q,R)

≤ d(gq1, gq2) +D(gq2, Mq1)− d(Q,R)
= d(gq1, gq2),

above inequality can be written as

1
1 + β + γ

D∗(gq1, Mq1) ≤ d(gq1, gq2).

Since α(q1, q2) ≥ 1 and the pair (g, M) satisfy Suzuki-type (α, β, γg)−modified proximal contraction
which implies that

H(Mq1, Mq2) ≤ α(q1, q2)H(Mq1, Mq2) ≤ γD∗(gq1, Mq1) + βD∗(Mq1, gq2),

after simplification we have the following

H(Mq1, Mq2) ≤ γ[D(gq1, Mq0) +H(Mq0, Mq1)− d(Q,R)] + β[D(Mq1, gq2)− d(Q,R)] (20)

= γH(Mq0, Mq1).

On the same lines we can verify for q2

1
1 + β + γ

D∗(gq2, Mq2) ≤ D∗(gq2, Mq2) = D(gq2, Mq2)− d(Q,R)

≤ d(gq2, gq3) +D(gq3, Mq2)− d(Q,R)
= d(gq2, gq3),

above inequality becomes
1

1 + β + γ
D∗(gq2, Mq2) ≤ d(gq2, gq3).
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Since α(q2, q3) ≥ 1 and the pair (g, M) satisfy Suzuki-type (α, β, γg)−modified proximal contraction
which implies that

H(Mq2, Mq3) ≤ α(q2, q3)H(Mq2, Mq3) ≤ γD∗(gq2, Mq2) + βD∗(Mq2, gq3),

from above inequality we have

H(Mq2, Mq3) ≤ γ[D(gq2, Mq1) +H(Mq1, Mq2)− d(Q,R)] + β[D(Mq2, gq3)− d(Q,R)]
= γH(Mq1, Mq2),

using inequality (20), above inequality becomes

H(Mq2, Mq3) ≤ γH(Mq1, Mq2) ≤ γ2H(Mq0, Mq1).

Thus, for a sequence {Mqn} inR0, we have

H(Mqn, Mqn+1) ≤ γnH(Mq0, Mq1). (21)

Therefore
∞

∑
n=1
H(Mqn, Mqn+1) ≤

∞

∑
n=1

γnH(Mq0, Mq1),

which implies that {Mqn} is a Cauchy sequence and (Q,R) is a pair of nonempty closed subsets of a
complete metric space (Y, d), {Mqn} converges to some point q ∈ R. Therefore, we have for any δ > 0

H(Mqn, Mqn+1) < δ.

Since the set R has the property of uniform M−approximation in set Q which implies that
d(gqn+1, gqn+2) < ε, hence {gqn} is a Cauchy sequence and converges to gp ∈ Q and we have

d(gp, q) = lim
n→∞

D(gqn, Mqn−1) = d(Q,R).

Like Theorem 3 we can prove that {(gqm, Mqn)} is a cyclically Cauchy sequence. Since gqn → gp there
exists N1 ∈ N such that

d(gqn, gp) ≤ 1
3
d(gq, gp),

for all n ≥ N1 ∈ N. Now we can write for qn

1
1 + β + γ

D∗(gqn, Mqn) ≤ D(gqn, Mqn)− d(Q,R)

≤ d(gqn, gp) + d(gp, gqn+1) +D(gqn+1, Mqn)− d(Q,R)
= d(gqn, gp) + d(gp, gqn+1)

≤ 1
3
d(gq, gp) +

1
3
d(gq, gp)

=
2
3
d(gq, gp)

= d(gq, gp)− 1
3
d(gq, gp)

≤ d(gq, gp)− d(gqn, gp) ≤ d(gqn, gq).

Since α(qn, q) ≥ 1 and the pair (g, M) satisfies Suzuki-type (α, β, γg)−modified proximal contraction
which implies that

H(Mqn, Mq) ≤ α(qn, q)H(Mqn, Mq) ≤ γD∗(gqn, Mqn) + βD∗(gq, Mqn),
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after simplification, we have

H(Mqn, Mq) ≤ γD∗(gqn, Mqn) + βD∗(gq, Mqn). (22)

We can write

D(gp, Mq) = lim
n→∞

D(gqn, Mq) ≤ lim
n→∞

[D(gqn, Mqn−1) +H(Mqn−1, Mqn) +H(Mqn, Mq)],

using inequalities (21) and (22), above inequality becomes

D(gp, Mq) ≤ lim
n→∞

[d(Q,R) + γn−1H(Mq0, Mq1) + γD∗(gqn, Mqn) + βD∗(gq, Mqn)]

= d(Q,R) + γd∗(gp, q) + βd∗(gq, q).

After simplification, above inequality can be written as following

D∗(gp, Mq) ≤ γd∗(gp, q) + βd∗(gq, q). (23)

Using triangular inequality, we have

D∗(gqn, Mqn) ≤ d(gqn, gp) +D∗(gp, Mqn),

using inequality (23), above inequality becomes

D∗(gqn, Mqn) ≤ d(gqn, gp) + γd∗(gp, q) + βd∗(gqn, q)

≤ d(gqn, gp) + γ[d(gp, q)− d(Q,R)] + β[d(gqn, gp) + d(gp, q)− d(Q,R)]
= d(gqn, gp) + βd(gqn, gp)

≤ (1 + β + γ)d(gqn, gp),

after further simplification, we can write the above inequality as

1
1 + β + γ

D∗(gqn, Mqn) ≤ d(gqn, gp).

Since α(qn, p) ≥ 1 and the pair (g, M) satisfies Suzuki-type (α, β, γg)−modified proximal contraction,
which implies that

H(Mqn, Mp) ≤ α(qn, p)H(Mqn, Mp) ≤ γD∗(gqn, Mqn) + βD∗(Mqn, gp),

above inequality becomes

H(Mqn, Mp) ≤ γ[D(gqn, Mqn−1) +H(Mqn−1, Mqn)− d(Q,R)]
+β[D(Mqn, gqn+1) + d(gqn+1, gp)− d(Q,R)],

using inequality (21), we can write it as

H(Mqn, Mp) ≤ γn−1H(Mq0, Mq1) + βd(gqn+1, gp),

since gqn → gp. In above relation if n → ∞ then we conclude that Mqn → Mp, that is, q = Mp and
we have

D(gp, Mp) = d(Q,R).

Hence, p is a coincidence best proximity point of the pair (g, M).
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The following example is given to support the usability of Theorem 6.

Example 4. Let Y = R with metric d be defined as d(q, r) = |q− r|. Also suppose that Q = {2, 4, 6, 9, 12}
and R = {3, 5, 7, 8, 14} are the nonempty subsets of Y. We have d(Q,R) = 1, Q0 = {2, 4, 6, 9} and R0 =

{3, 5, 7, 8}, further the pair (Q,R) does not satisfy the P−property. Now consider mappings M : Q → CB(R),
g : Q → Q be defined as:

M(q) =

{
{7, 8}, if q ∈ {4}
{8}, else

and

g(q) =


q
2 , if q ∈ {4}

2q, if q ∈ {2}
q+ 3, if q ∈ {6}
q− 3, if q ∈ {9},

clearly M(Q0) ⊆ R0 and Q0 ⊆ g(Q0).
If we choose q = 4 and r = 2 then after simple calculation we can show that the following inequality

1
1 + β + γ

D∗(gq, Mq) ≤ d(gq, gr),

does not hold and for all the remaining cases above contraction holds for β = 0.3, γ = 0.4. Now it must be
shown that the subsequent condition of Suzuki-type (α, β, γg)−modified proximal contractive condition holds.

α (q, r)H(Mq, Mr) ≤ γD∗(gq, Mq) + βD∗(Mq, gr). (24)

Define α : Q×Q → [0, ∞) by

α(q, r) = e
1
qr .

Case 1. If we take q = 2, r = 4 then after calculation we have

α (q, r)H(Mq, Mr) = 1.13,

and
γD∗(gq, Mq) + βD∗(Mq, gr) = 2.7,

inequality (24) holds.
Case 2. If q, r ∈ {2, 6, 9} then after simple calculation we have

α (q, r)H(Mq, Mr) = 0,

inequality (24) holds trivially.
Case 3. Now consider q, r ∈ {4, 6} we have

α (q, r)H(Mq, Mr) = 1.04,

for q = 4, r = 6, we have
γD∗(gq, Mq) + βD∗(Mq, gr) = 1.6,

and for q = 6, r = 4, after calculation we have

γD∗(gq, Mq) + βD∗(Mq, gr) = 1.5,
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inequality (24) holds.
Case 4. If q, r ∈ {4, 9} then we have

α (q, r)H(Mq, Mr) = 1.03,

for q = 4, r = 9, we have
γD∗(gq, Mq) + βD∗(Mq, gr) = 1.6,

for q = 9, r = 4, we have
γD∗(gq, Mq) + βD∗(Mq, gr) = 1.9,

inequality (24) holds. Hence all the conditions of Theorem 6 hold and p = 6 is a coincidence best proximity point
of the pair (g, M). Please note that in above example, contractive condition of M. Gabeleh ([15]) is not satisfied
and so this is not applicable here. Indeed q = 4 and r = 6 we get

H(Mq, Mr) = 1 > 0.98 = γd(q, r) + βD∗(Mq, r).

The next coincidence best proximity point result follows from Theorem 6 directly.

Corollary 6. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space. Consider mappings g : Q → Q and M : Q → R satisfy the following
contractive condition

1
1 + β + γ

d∗(gq, Mq) ≤ d(gq, gr) imply α (q, r) d(Mq, Mr) ≤ γd∗(gq, Mq) + βd∗(Mq, gr), (25)

with M(Q0) ⊆ R0, Q0 ⊆ g(Q0). Set R has the property of uniform M−approximation in set Q and
mapping g satisfies the αR−property. Furthermore, suppose that there exist some q0, q1 ∈ Q0 such that
d(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1 where α : Q×Q → [0, ∞). Then the pair (g, M) has a coincidence
best proximity point.

Next example is given to corroborates the usability of Corollary 6.

Example 5. Consider Q = {−5, 0, 5, 7, 8} and R = {−3, 2, 3, 11, 12} are subsets of Y =

{−5,−4, . . . , 11, 12} with metric defined as in Example 4. After calculation we have d(Q,R) = 2,
Q0 = {−5, 0, 5} andR0 = {−3, 2, 3}. Consider mappings M : Q → R, g : Q → Q defined as follows:

M(q) =

{
2, if q ∈ {5}
3, else

and

g(q) = −q,

clearly M(Q0) ⊆ R0, Q0 ⊆ g(Q0) and the pair (Q,R) do not satisfy the P−property. Now we must show
that the pair (g, M) satisfy the inequality (25). The following part of inequality (25) holds for all q, r ∈ Q0 for
β = 0.46 and γ = 0.47.

1
1 + β + γ

d∗(gq, Mq) ≤ d(gq, gr).

Now it must be shown that the subsequent condition of a Suzuki-type (α, β, γg)−modified proximal contractive
condition holds for all q, r ∈ Q0.

α (q, r) d(Mq, Mr) ≤ γd∗(gq, Mq) + βd∗(Mq, gr). (26)
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Define α : Q×Q → [0, ∞) by

α(q, r) =

{
e|

q
r |, if q, r ∈ {−5, 0, 5} and r 6= 0

2, if r = 0.

Case 1. For q, r ∈ {−5, 0} we have
α (q, r) d(Mq, Mr) = 0,

inequality (26) holds trivially.
Case 2. If q, r ∈ {−5, 5} then we have

α (q, r) d(Mq, Mr) = 2.71,

and
γd∗(gq, Mq) + βd∗(Mq, gr) = 2.8,

inequality (26) holds.
Case 3. If q = 0 and r = 5 we get

α (q, r) d(Mq, Mr) = 1,

and
γd∗(gq, Mq) + βd∗(Mq, gr) = 3.23,

if q = 5 and r = 0 then
α (q, r) d(Mq, Mr) = 2,

and
γd∗(gq, Mq) + βd∗(Mq, gr) = 2.35,

inequality (26) holds. This shows that the pair (g, M) satisfies the inequality (25), further remaining conditions
of Corollary 6 hold true. Hence the pair (g, M) has a coincidence best proximity point q = −5.

The subsequent result is a best proximity point theorem for the Suzuki-type (α, β, γ)−modified
proximal contraction in the framework of fairly complete space.

Theorem 7. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
is a fairly complete space. Consider a mapping M is an α−proximal admissible and satisfy Suzuki-type
(α, β, γ)−modified proximal contraction with M(Q0) ⊆ R0. Further set R has the property of uniform
M−approximation in set Q and suppose that there exist some q0, q1 ∈ Q0 such that D(q1, Mq0) = d(Q,R)
with α(q0, q1) ≥ 1. Then mapping M possesses a best proximity point.

Proof. If we take g = IQ in Theorem 6, the remaining aspects follow from the same lines.

The next best proximity point result directly follows from Theorem 7.

Corollary 7. Let Q and R be nonempty closed subsets of a complete metric space (Y, d) such that the pair
(Q,R) is a fairly complete space. Consider a mapping M : Q → R satisfies the following contractive condition

1
1 + β + γ

d∗(q, Mq) ≤ d(q, r) imply α (q, r) d(Mq, Mr) ≤ γd∗(q, Mq) + βd∗(Mq, r), (27)

with M(Q0) ⊆ R0 and setR has the property of uniform M−approximation in set Q. Furthermore, suppose
that there exist some q0, q1 ∈ Q0 such that d(q1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1 where α : Q×Q →
[0, ∞). Then mapping M has a best proximity point.
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4. Some Results Related to Partially Ordered Metric Space

Here, we are concerned with coincidence best proximity point results for generalized and modified
Suzuki-type contractions in partially ordered metric space.

From now and onward ∆ defines:

∆ = {q, r ∈ Q such that q � r or r � q}.

Definition 10. ([22]) Suppose Y be a nonempty set, a triplet (Y, d,�) is called a partially ordered metric space
if it satisfies the following conditions:

1. d is metric on Y.
2. � is partial order on Y.

Definition 11. [22] A mapping M : Q → CB(R) is proximally order-preserving, if

r1 � r2

D(q1, Mr1) = d(Q,R)
D(q2, Mr2) = d(Q,R)

 imply q1 � q2,

for all q1, q2, r1 and r2 ∈ Q.

Definition 12. A pair (g, M) where g : Q → Q and M : Q → CB(R) is an:

1. Ordered Suzuki-type (β, γg)−generalized proximal contraction if

1
1 + β + γ

D∗(gq, Mq) ≤ d(gq, gr) implyH(Mq, Mr) ≤ γd(gq, gr) + βD∗(gr, Mq).

2. Ordered Suzuki-type (β, γg)−modified proximal contraction if

1
1 + β + γ

D∗(gq, Mq) ≤ d(gq, gr) implyH(Mq, Mr) ≤ γD∗(gq, Mq) + βD∗(gr, Mq),

for all (q, r) ∈ ∆ and γ ∈ (0, 1] such that 0 ≤ β < γ.

Theorem 8. Let Q and R are nonempty closed subsets of complete partially ordered metric space (Y, d,�).
Suppose that the pair (g, M) is an ordered Suzuki-type (β, γg)−generalized proximal contractive condition
with M(Q0) ⊆ R0,Q0 ⊆ g(Q0). Mapping g satisfies the αR−property and M is proximally order-preserving.
Also, the pair (Q,R) possesses the P−property. Further let the existence of some q0, q1 ∈ Q0 such that

D(q1, Mq0) = d(Q,R) and (q0, q1) ∈ ∆.

Then the pair (g, M) possesses a unique coincidence best proximity point.

Proof. Define α : Q×Q → [0, ∞) as

α(q, r) =

{
1, if (q, r) ∈ ∆,
0, otherwise.

Also, the mapping M is an α−proximal admissible
α(gq, gr) ≥ 1
D(gu, Mq) = d(Q,R)
D(gv, Mr) = d(Q,R),
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equivalently we have 
(gq, gr) ∈ ∆
D(gu, Mq) = d(Q,R)
D(gv, Mr) = d(Q,R).

As M is proximally order-preserving (gq, gr) ∈ ∆ that is, α(gq, gr) ≥ 1 we have

D(gq1, Mq0) = d(Q,R) and α(q0, q1) ≥ 1.

If (gq, gr) ∈ ∆ then α(gq, gr) = 1 otherwise α(gq, gr) = 0. As the mapping M satisfies ordered
Suzuki-type (α, β, γg)−generalized proximal contraction we have

1
1 + β + γ

D∗(gq, Mq) ≤ d(gq, gr) and α(q, r) ≥ 1,

which implies
α (q, r)H(Mq, Mr) ≤ γd(gq, gr) + βD∗(gr, Mq).

Let us consider {qn} as a sequence then α(qn, qn+1) ≥ 1 with qn → q as n → ∞ then it follows that
(qn, qn+1) ∈ ∆ with qn → q as n→ ∞. Hence remaining conditions of Theorem 3 fulfilled so that pair
(g, M) possesses a coincidence best proximity point.

Theorem 9. Let Q andR are the same sets as in Theorem 8. Suppose that the pair (g, M) where g : Q → Q
and M : Q → CB(R) satisfies an ordered Suzuki-type (β, γg)−modified proximal contractive condition with
all assumptions of Theorem 8. Then the pair (g, M) possesses a unique coincidence best proximity point.

5. Application to Fixed-Point Theory

Here, we will discuss some results about the fixed-point theory for generalized and modified
Suzuki-type contraction.

If Q = R = Y then the following contractive conditions can be define.

Definition 13. A mapping M : Y → CB(Y) is called a:

1. Suzuki-type (α, β, γ)−generalized contraction if

1
1 + β + γ

D(q, Mq) ≤ d(q, r) imply α (q, r)H(Mq, Mr) ≤ γd(q, r) + βD(r, Mq).

2. Suzuki-type (α, β, γ)−modified contraction if

1
1 + β + γ

D(q, Mq) ≤ d(q, r) imply α(q, r)H(Mq, Mr) ≤ γD(q, Mq) + βD(r, Mq),

where α : Q×Q → [0, ∞) and we have α(q, r) ≥ 1 for all q, r ∈ Y and γ ∈ (0, 1] such that 0 ≤ β < γ.

From Theorems 5 and 7 we can find following new fixed-point results.

Theorem 10. Suppose that if there exists q0 with α(q0, Mq0) ≥ 1 then the mapping M : Y → CB(Y) which
satisfy Suzuki-type (α, β, γ)−generalized contractive condition on a complete metric space (Y, d) has a unique
fixed point.

Proof. If we take Q = R = Y in Theorem 5 then proximal Suzuki-type (α, β, γ)−generalized
contraction implies Suzuki-type (α, β, γ)−generalized contraction. According to Theorem 5 we can
find point q which satisfies

D(q, Mq) = d(Q,R).
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However, here we have Q = R = Y, so we have D(q, Mq) = 0 and there exists a fixed point q of
Suzuki-type (α, β, γ)−generalized contraction of mapping M.

Theorem 11. Suppose that if there exists q0 with α(q0, Mq0) ≥ 1 then the mapping M : Y → CB(Y) which
satisfy Suzuki-type (α, β, γ)−modified contractive condition on a complete metric space (Y, d) has unique
fixed point.

Proof. If we take Q = R = Y in Theorem 7 then proximal Suzuki-type (α, β, γ)−modified contractive
condition implies Suzuki-type (α, β, γ)−modified contractive condition. According to Theorem 7 we
can find a point q satisfying

D(q, Mq) = d(Q,R),

but for self-mapping Q = R = Y. So, we have D(q, Mq) = 0 and there exists a fixed point q of
Suzuki-type (α, β, γ)−modified contraction of mapping M.

Definition 14. A mapping M : Y → CB(Y) is called an:

1. Ordered Suzuki-type (β, γ)−generalized contraction if

1
1 + β + γ

d(q, Mq) ≤ d(q, r) implyH(Mq, Mr) ≤ γd(q, r) + βd(r, Mq).

2. Ordered Suzuki-type (β, γ)−modified contraction if

1
1 + β + γ

d(q, Mq) ≤ d(q, r) implyH(Mq, Mr) ≤ γd(q, Mq) + βd(r, Mq),

for all (q, r) ∈ ∆ where γ ∈ (0, 1] such that 0 ≤ β < γ.

Theorem 12. If a mapping M : Y → CB(Y) satisfy an ordered Suzuki-type (β, γ)−generalized contractive
condition with q0 ∈ Y such that (q0, Mq0) ∈ ∆ on complete partially ordered metric space (Y, d,�) then
mapping M has unique fixed point.

Proof. By following the prove of Theorem 8, we can say that for self mapping every
ordered Suzuki-type (α, β, γ)−generalized contractive condition implies ordered Suzuki-type
(β, γ)−generalized contractive condition. The remaining aspects of Theorem 8 fulfilled on the same
lines and mapping M possesses a unique fixed point.

Theorem 13. If a mapping M : Y → CB(Y) satisfies an ordered Suzuki-type (β, γ)−modified contractive
condition with q0 ∈ Y such that (q0, Mq0) ∈ ∆ on complete partially ordered metric space (Y, d,�) then
mapping M possesses a unique fixed point.

6. Conclusions

In this article, we defined Suzuki-type (α, β, γg)−generalized and modified proximal contractive
mappings. Furthermore, some coincidence and best proximity point results are obtained in fairly
complete spaces, which generalized the result discussed by M. Gabeleh in ([15]). As an application, we
obtained some fixed point and coincidence point results in partially ordered metric spaces for modified
and generalized Suzuki-type contractions. Some illustrative examples are also provided to visualize
and support to the results obtained herein.

Author Contributions: Supervision and editing, N.S.; Investigation and Writing, I.H.; review, M.D.l.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Basque Government through Grant IT1207/19.

Conflicts of Interest: The authors declare no conflict of interest.



Computation 2020, 8, 17 23 of 23

References

1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fund Math. 1922, 3, 133–181. [CrossRef]

2. Saleem, N.; Abbas, M.; Raza, Z. Fixed Fuzzy Point Results of Generalized Suzuki Type F−contraction
Mappings in Ordered Metric Spaces. Available online: https://www.researchgate.net/publication/
321411875_Fixed_fuzzy_point_results_of_generalized_Suzuki_type_F-contraction_mappings_in_
ordered_metric_spaces (accessed on 16 March 2020).

3. Saleem, N.; Abbas, M.; Ali, B.; Raza, Z. Fixed points of Suzuki type generalized multivalued mappings in
fuzzy metric spaces with applications. Fixed Point Theory Appl. 2015, 1, 1–18. [CrossRef]

4. Ciric, L. Some Recent Results in Metrical Fixed Point Theory. Available online: https://carma.newcastle.edu.
au/resources/jon/Preprints/Papers/CAT(0)/Papers/kirk07.pdf (accessed on 16 March 2020).

5. Todorcevic, V. Harmonic Quasiconformal Mappings and Hyper-bolic Type Metrics. Available online:
https://www.springer.com/gp/book/9783030225902 (accessed on 16 March 2020).

6. Sen, M.; Abbas, M.; Saleem, N. On optimal fuzzy best proximity coincidence points of proximal contractions
involving cyclic mappings in non-Archimedean fuzzy metric spaces. Mathematics 2017, 5, 22. [CrossRef]

7. Abbas, M.; Saleem, N.; De la Sen, M. Optimal coincidence point results in partially ordered non-Archimedean
fuzzy metric spaces. Fixed Point Theory Appl. 2016, 1, 44. [CrossRef]

8. Abbas, M.; Saleem, N.; Sohail, K. Optimal coincidence best approximation solution in b-fuzzy metric spaces.
Commun. Nonlinear Anal. 2019, 6, 1–12.

9. Raza, Z.; Saleem, N.; Abbas, M. Optimal coincidence points of proximal quasi-contraction mappings in
non-Archimedean fuzzy metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 3787–3801. [CrossRef]

10. Shatanawi, W.; Mitrovic, Z.; Hussain, N.; Radenovic, S. On Generalized Hardy-Rogers type α−admissible
mapping in cone b-metric spaces over Banach algebras. Symmetry 2020, 21, 81. [CrossRef]

11. Abodayeh, K.; Shatanawi, W. Common fixed point for mappings under contractive condition based on
almost perfect functions and α−admissibility. Nonlinear Funct. Anal. Appl. 2018, 23, 247–257.

12. Saleem, N.; Abbas, M.; Raza, Z. Optimal coincidence best approximation solution in non-Archimedean fuzzy
metric spaces. Iran. J. Fuzzy Syst. 2016, 13, 113–124.

13. Berinde , V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal.
2004, 9, 43–53.

14. Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2004, 7, 5313–5317. [CrossRef]
15. Gabeleh, M. Best proximity point theorems for single and set-valued non-self mappings. Acta Math. Sci.

2014, 34, 1661–1669. [CrossRef]
16. Basha, S. Best proximity point theorems in the frameworks of fairly and proximally complete spaces. J. Fixed

Point Theory Appl. 2017, 19, 1939–1951. [CrossRef]
17. Raj, V.S. A best proximity theorem for weakly contractive non-self mappings. Nonlinear Anal. 2011, 74,

4804–4808.
18. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α− ψ−contractive type mappings. Nonlinear Anal.

2012, 75, 2154–2165. [CrossRef]
19. Jleli, M.; Karapinar, E.; Samet, B. Best Proximity Points for Generalized α− ψ−proximal Contractive Type

Mappings. Available online: https://www.hindawi.com/journals/jam/2013/534127/ (accessed on 16
March 2020).

20. Saleem, N.; Abbas, M.; Mohsin, B.B.; Radenovic, S. Pata type best proximity point results in metric spaces.
Mathematics 2019, 7, 1017. [CrossRef]

21. Rockafellar, T.R.; Wets, R.J.V. Variational Analysis; Springer: Berlin, Germany, 2005.
22. Basha, S. Best proximity point theorems on partially ordered sets. Optim. Lett. 2013, 7, 1035–1043. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4064/fm-3-1-133-181
https://www.researchgate.net/publication/321411875_Fixed_fuzzy_point_results_of_generalized_Suzuki_type_F-contraction_mappings_in_ordered_metric_spaces
https://www.researchgate.net/publication/321411875_Fixed_fuzzy_point_results_of_generalized_Suzuki_type_F-contraction_mappings_in_ordered_metric_spaces
https://www.researchgate.net/publication/321411875_Fixed_fuzzy_point_results_of_generalized_Suzuki_type_F-contraction_mappings_in_ordered_metric_spaces
http://dx.doi.org/10.1186/s13663-015-0284-7
https://carma.newcastle.edu.au/resources/jon/Preprints/Papers/CAT(0)/Papers/kirk07.pdf
https://carma.newcastle.edu.au/resources/jon/Preprints/Papers/CAT(0)/Papers/kirk07.pdf
https://www.springer.com/gp/book/9783030225902
http://dx.doi.org/10.3390/math5020022
http://dx.doi.org/10.1186/s13663-016-0534-3
http://dx.doi.org/10.22436/jnsa.009.06.28
http://dx.doi.org/10.3390/sym12010081
http://dx.doi.org/10.1016/j.na.2009.04.017
http://dx.doi.org/10.1016/S0252-9602(14)60112-0
http://dx.doi.org/10.1007/s11784-016-0324-x
http://dx.doi.org/10.1016/j.na.2011.10.014
https://www.hindawi.com/journals/jam/2013/534127/
http://dx.doi.org/10.3390/math7111017
http://dx.doi.org/10.1007/s11590-012-0489-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Main Results
	Suzuki-Type (,,g)-Modified Proximal Contractive Mapping
	Some Results Related to Partially Ordered Metric Space
	Application to Fixed-Point Theory
	Conclusions
	References

