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ABBREVIATIONS 
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MARF: Minor allele relative frequency 

MDH: Malate dehydrogenase 

LD: Linkage disequilibrium 

PEPC: Phosphoenolpyruvate carboxylase 

QTL: Quantitative trait locus 

ROS: Reactive oxygen species 

SB: Shoot biomass 
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RESUMEN DE LA TESIS DOCTORAL 

 

Nuevos factores genéticos y metabólicos asociados con la respuesta al 

amonio de Arabisdopsis thaliana 

Asier Sarasqueta 

 

Contexto general 

Las plantas necesitan nitrógeno para su crecimiento y desarrollo, siendo la concentración de 

este elemento el mayor factor limitante en el suelo para la producción vegetal. Los suelos de 

uso agrícola continuo suelen carecer de las concentraciones adecuadas de este elemento, y los 

agricultores se ven obligados a introducirlo mediante el uso de fertilizantes. Los fertilizantes se 

enriquecen principalmente con nitrato (NO3
-) y amonio (NH4

+). Desgraciadamente, el uso 

excesivo de fertilizantes tiene efectos medioambientales nocivos como la eutrofización de 

acuíferos derivada de la lixiviación del nitrato (su carga negativa facilita su pérdida ya que los 

propios suelos están negativamente cardados y lo repelen) y de la emisión de compuestos 

gaseosos como los óxidos de nitrógeno. Entre ellos el N2O, que se producen desde el NO3
- por 

desnitrificacion en condiciones anaerobias y desde el NH4
+ por nitrificación (proceso mediante 

el cual el NH4
+ es oxidado por los microorganismos del suelo hasta NO3

-), tiene un gran poder 

efecto invernadero, entre 265 y 298 veces superior al del CO2, contribuyendo de manera 

importante al calentamiento global. Por otra parte, la pérdida de una parte del nitrógeno 

aplicado al medio ambiente se traduce en una disminución del uso eficiente de nitrógeno por 

parte de las plantas, una de las razones por las cuales es necesario su continuo aporte. Los 

fertilizantes con una fuente de nitrógeno basado en el amonio y combinado con inhibidores de 

la nitrificación se usan de manera común para mantener el nitrógeno en el suelo por periodos 

más largos de tiempo. Se ha visto que el uso de este tipo de combinaciones (amonio junto con 

inhibidores de la nitrificación) es capaz de reducir significativamente los efectos 

medioambientales negativos causados por los fertilizantes comunes con alto contenido en 

nitrato.  

En teoría, debido al menor estado de reducción en el que se encuentra el amonio respecto del 

nitrato su asimilación requiere de menor gasto energético que el necesario para la asimilación 
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del nitrato. Sin embargo, , muchas plantas muestran síntomas de estrés cuando crecen con 

una fuente de nitrógeno basada exclusivamente en el amonio. Estos síntomas, entre otros, 

incluyen clorosis foliar, desbalance iónico, desregulación hormonal, desordenes en la 

regulación del pH interno y cambios en el metabolismo. Cuando analizamos la planta en su 

conjunto, es evidente que la reducción del crecimiento de la planta es un efecto común de la 

nutrición amoniacal, la cual es considerada como situación de estrés común en el reino vegetal 

ya que afecta a prácticamente todas las especies vegetales. Con todo, el grado de estrés 

amoniacal puede ser diferente y se observa variabilidad en su tolerancia tanto entre especies 

como entre genotipos de la misma especie. A pesar de que los mecanismos mediante los 

cuales las plantas responden al estrés amoniacal se han estudiado durante décadas, a día de 

hoy, aun no se conocen en su totalidad y solo se han identificado algunos componentes 

genéticos y moleculares asociados a la nutrición amoniacal.  

Objetivos  

El objetivo general del presente estudio es llegar a un mejor entendimiento de los mecanismos 

metabolicos y genéticos asociados a la tolerancia al amonio utilizando Arabidopsis thaliana 

como especie modelo. 

Este objetivo general está dividido en tres objetivos específicos, cada uno correspondiente a 

un capítulo diferente: 

1.  Explorar la variabilidad intraespecífica en la tolerancia del amonio de Arabidopsis 

thaliana centrándonos en especial en los mecanismos de asimilación del N. 

 

2. Identificar genes relacionados con la variabilidad natural en la tolerancia del amonio 

en Arabidopsis thaliana mediante un estudio de asociación de genoma completo. 

 

3. Entender el ajuste metabólico  de Arabidopsis thaliana al estrés amoniacal en función 

del pH del medio externo. 
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1. Explorando la tolerancia al amonio en un colección de accesiones naturales de 

Arabidopsis thaliana 

Metodologia 

Para determinar la existencia de la variabilidad natural en la tolerancia al amonio en A. 

thaliana, en primer lugar llevamos a cabo un análisis de 47 accesiones naturales de Arabidopsis 

crecidas con una fuente de N exclusivamente amoniacal o nítrica.. El rendimiento de cada una 

de las accesiones naturales utilizadas se determinó en función de la biomasa de la roseta. Por 

otro lado, el grado de tolerancia al amonio de cada accesión, lo determinamos basándonos en 

el ratio de la biomasa de la roseta de las plantas crecidas con amonio entre lla de las plantas 

crecidas con nitrato. Además, también analizamos diversas características relacionadas con el 

metabolismo del nitrógeno, como el contenido total de amonio y amino ácidos y las 

actividades enzimáticas nitrato reductasa (NR), , glutamina sintetasa (GS) y , glutamato 

deshidrogenasa (GDH) en sentido aminante y desaminante.  

Resultados y conclusiones 

En este estudio, quedó de manifiesto que Arabidopsis thaliana muestra una gran variabilidad 

intraespecífica a la tolerancia al amonio. Entre los parámetros determinados, la acumulación 

de amonio en los tejidos resulto determinante para la biomasa de las rosetas, 

independientemente de la fuente de nitrógeno con la que se desarrollaban las plantas. Por 

otro lado, se observó que las actividades enzimáticas no tienen ningún efecto sobre la 

variación de la biomasa, a pesar de que su actividad era modificada por la fuente de nitrógeno. 

En este sentido, la actividad en sentido aminante de la glutamato deshidrogenasa era mayor 

cuando la fuente de nitrógeno con las que crecían las plantas era el amonio, mientras que su 

actividad desaminante era mayor cuando la fuente de nitrógeno era el nitrato. En general, 

parece que la acumulación del NH4
+ juega un papel importante en la variabilidad en la 

tolerancia al amonio de Arabidopsis thaliana, siendo este factor más relevante que la 

capacidad que tienen sus células para su asimilación. 
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2. Un estudio de asociación de genoma completo revela un nuevo locus en 

Arabidopsis thaliana relacionado con la variabilidad natural del uso eficiente del 

amonio. 

Metodología 

Para estudiar las bases genéticas que explican la variabilidad natural en la tolerancia al amonio 

de Arabidopsis thaliana, crecimos en las condiciones anteriormente descritas, de un colección 

de 337 accesiones naturales y llevamos a cabo un estudio de asociación de genoma completo 

utilizando la biomasa obtenida de las rosetas en función de la fuente de nitrógeno como 

carácter cuantificable para así identificar regiones del genoma relacionadas con la variabilidad 

en la tolerancia al amonio. Con los datos de biomasa obtenidos llevamos a cabo diferentes 

estudios de asociación de genoma completo independientes, separando las accesiones en 

función de su procedencia geográfica para así tener en cuenta la posible variabilidad 

adaptativa a la nutrición amonical en función de la escala geográfica. 

Resultados y conclusiones 

Al igual que en el estudio previo, observamos una gran variabilidad intraespecífica en todas las 

escalas geográficas estudiadas, desde una escala local hasta la global. Además, cuando 

analizamos los resultados obtenidos del estudio en la escala geográfica de Francia, 

identificamos un pico de asociación significativo relacionado con la biomasa de las rosetas 

obtenidas bajo un régimen nutricional amoniacal, que no aparecía en el análisis de esa misma 

escala geográfica realizado con plantas crecidas con nitrato como fuente de nitrógeno. Este 

pico de asociación, corresponde a una región del genoma en la que se encuentran situados en 

tándem un grupo de 19 genes, correspondientes a la familia de las “Cysteine-rich receptor-like 

kinases” (CRKs). Las CRKs son una familia compuesta por 44 miembros, distribuidos por en 

todo el genoma, relacionados con la respuesta de las plantas a estreses bióticos y abióticos. 

Para validar la implicación potencial de las CRKs en la tolerancia al amonio, utilizamos líneas 

mutantes de tipo T-DNA para cada uno de los genes CRKs situados en la región de interés que 

crecimos en condiciones nutricionales iguales a las usadas para la obtención de los valores de 

biomasa de las rosetas utilizados para el análisis de asociación de genoma completo. En este 

estudio, no observamos ningún fenotipo en las líneas mutantes que se diferenciase al de Col-0, 

el genotipo salvaje del que derivan. También realizamos un análisis de la expresión génica de 

las diferentes CRKs en Col-0 crecidas bajo nutrición nítrica o amonical. Así, observamos que 
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algunos de los genes se inducían en las plantas crecidas en condiciones amoniacales, lo que 

vuelve a sugerir la potencial participación de estos genes en la respuesta al amonio de A. 

thaliana. Sin embargo, la probable redundancia funcional de las CRK impide confirmar su 

implicación real en la respuesta de las plantas ante el estrés amoniacal. 

3. La interacción de la fuente de nitrógeno y del pH del medio externo afecta de 

manera diferente al metabolismo o de Arabidopsis en parte aérea y raíz. 

Metodología 

Para el estudio de la adaptación de Arabidopsis thaliana al estrés amoniacal en función del pH 

del medio externo, crecimos plantas de Arabidopsis variando la fuente de nitrógeno (NH4
+ o 

NO3
-), su concentración (2 mM o 10 mM) y el pH (5.7 o 6.7) del medio nutricional de las 

plantas. Analizamos en parte aérea y raíz, parámetros relacionados con el estrés amoniacal 

como el crecimiento, el contenido de algunos metabolitos, la acividad de enzimas relacionadas 

con la asimilación del nitrógeno así como el de encimas envueltas en el metabolismo del 

carbono. 

Resultados y conclusiones 

Los resultados obtenidos revelaron que el grado de estrés amoniacal que sufren las plantas, 

depende delrégimen nutricional. La maquinaria encargada de la asimilación del amonio, así 

como de la actividad de las enzimas anapleróticas asociadas al ciclo de los ácidos tricarboxílicos 

(TCA) según el tejido analizado (parte aérea o raíz) y del régimen nutricional respondían a los 

cambios rpovocados en el medio externo. El mayor grado de estrés amoniacal fue detectado 

en las condiciones nutricionales de pH 5.7, las cuales estaban asociadas con una mayor 

acumulación de NH4
+. Este estrés no pudo evitarse a pesar del incremento de la actividad de la 

maquinaria de asimilación del amonio (GS, GDH) y de las enzimas anapleróticas asociadas al 

TCA. Además, los resultados obtenidos, sugieren roles específicos para las distintas isoformas 

de GS y GDH en función del régimen nutricional. En general hemos visto que la acumulación de 

amonio en los tejidos vegetales es la causante del estrés amoniacal y que esta acumulación no 

parece estar relacionada con el desajuste de la asimilación del nitrógeno.  
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ABSTRACT 

Plants are exogenous nitrogen (N) dependent. To provide plants with the necessary N, 

fertilizers are enriched mostly with nitrate (NO3
-) and (NH4

+). However, the excessive supply of 

N in soils has negative environmental effects as water eutrophication due to nitrate leaching 

and greenhouse gas emissions which contribute to global warming. Ammonium-based 

fertilizers formulated with nitrification inhibitors are commonly used to maintain the N 

available in the soil for longer periods and their use is known to greatly mitigate the 

environmental effects associated to nitric fertilization. Paradoxically, although NH4
+ 

assimilation requires less energy than that of NO3
-, many plants display symptoms of stress 

when grown with NH4
+ as the sole N source. These symptoms include, among others, leaf 

chlorosis, ion imbalance, hormone deregulation, disorder in pH regulation, and changes in 

metabolite levels. At the whole-plant level, a reduction in plant growth is a common effect of 

ammonium nutrition. Indeed, ammonium nutrition is considered as a universal stressful 

situation, virtually affecting every plant species. However, the degree of stress it generates is 

variable and intra- and inter-specific variability towards ammonium nutrition has been 

reported. Although the mechanisms through plants respond to ammonium stress have been 

studied for decades, they are not well understood yet and very few molecular components 

associated with ammonium nutrition have been identified. In this context, the present 

pretends to go deeper unlocking the metabolic and genetic mechanisms associated to 

ammonium sensitivity/tolerance using Arabidopsis thaliana as a model. To fulfill this purpose 

we carried out two different approaches. Firstly, we aimed exploiting the potential natural 

intraspecific variability of Arabidopsis in ammonium tolerance. Secondly, since ammonium 

stress is related with pH deregulation we aimed understanding the metabolic adaptation of 

Arabidopsis to ammonium stress in function of the external medium pH. 

Regarding natural variability, we first analyzed a panel of 47 natural accessions of Arabidopsis 

and observed large intraspecific variation in ammonium tolerance using rosette biomass as a 

marker of plant performance and the ratio between rosette biomass under NH4
+ and NO3

– 

conditions to estimate ammonium tolerance. We also determined several traits related to N 

metabolism: NH4
+ and total amino acid content, and nitrate reductase (NR), glutamine 

synthetase (GS) and glutamate dehydrogenase (GDH) enzyme activities. Among the 

determined parameters, tissue NH4
+ accumulation resulted determinant for shoot biomass 

independently of the N source provided. Enzymes activities did not have an effect on biomass 

variation but their activities were modified by the N source. In this sense GDH aminating 
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activity was enhanced under ammonium nutrition and GDH deaminating activity was higher 

under nitrate nutrition. Overall, NH4
+ accumulation seems to be an important player in 

Arabidopsis natural variability in ammonium tolerance rather than the cell NH4
+ assimilation 

capacity.  

To further understand the genetic basis of the observed natural variability of Arabidopsis 

thaliana in ammonium tolerance. We enlarged the analysis, using this time a panel of 337 

natural accessions with the aim to carry out a genome wide association study (GWAS) that 

could help us to identify genomic regions associated with ammonium tolerance. To do so, we 

took into account the potential spatial scale of adaptive variation by performing independent 

GWAS in function of the geographical origin of the accessions studied. Overall, we observed 

great intraspecific variability at every scale studied, from local scale to a world scale. When 

performing the GWAS, at French geographical scale we identified a significant peak of 

association in relation with shoot biomass under ammonium nutrition that was absent in the 

analysis performed with shoot biomass under nitrate nutrition. This association peak 

corresponds to a genomic region that encompasses a tandem array of nineteen genes 

encoding Cysteine-rich receptor-like kinases (CRKs). CRKs are a family of 44 members that have 

been suggested important in plant response to biotic and abiotic stress. To validate the 

potential implication of these CRK genes we analyzed a complete panel of T-DNA mutant lines 

covering the mentioned region. We did not observe any phenotype regarding ammonium 

tolerance of this lines respect to Col-0 wild type plants. Nevertheless, we also analyzed their 

gene expression and observed that some of these genes were induced upon ammonium 

nutrition, suggesting again their potential role during ammonium nutrition. Overall, the 

probable redundancy in their function did not allow confirming the true implication of any of 

the CRK members in Arabidopsis thaliana ammonium tolerance. 

Regarding the metabolic adaptation to ammonium stress in function of the external medium 

pH we grew Arabidopsis plants under different nutritional regimes by varying the nitrogen 

source (NO3
− and NH4

+), its concentration (2 and 10mM) and the pH of the external medium 

(5.7 and 6.7). The results obtained revealed changes in ammonium assimilation machinery and 

in the activity of the anaplerotic enzymes associated to tricarboxylic acids (TCA) cycle 

depending of the analyzed organ and in function of the nutritional regime that provoked a 

different degree of ammonium stress. A greater stress severity at pH 5.7 was associated with 

NH4
+ accumulation and could not be circumvented in spite of the stimulation of GS, GDH and 

TCA cycle anaplerotic enzymes. Furthermore, this work suggests specific roles for different GS 
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and GDH isoforms in function of the nutritional regime. Overall, NH4
+ accumulation triggering 

ammonium stress appears to bear no relation to nitrogen assimilation impairment. 
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INTRODUCTION 

 

1. PLANT NUTRITION AND THE IMPORTANCE OF NITROGEN 

 

Plants growth is controlled by different factors as light, CO2, water and mineral nutrients 

availability, which in turn determine the yield of a cropland. When some of the cited factors 

availability is modified it usually has an effect on growth, e.g. with nutrients supply (Figure I). 

Plants take up the nutrients they need from the environment. Mineral nutrients and water are 

incorporated from the root medium to the plant, although they can be incorporated also 

through leaves, and carbon (C) is obtained from the atmosphere (Table I). Once the nutrients 

are inside the plant, they can be stored, metabolized or transported to different cells, tissues 

or organs. A great number of studies have determined the positive relation between the 

concentration of available nutrients in the root medium and growth. However, an excessive 

nutrient supply may cause the contrary effect, provoking an inversion point as it is shown in 

Figure 1 for micronutrients. Inversion points can be caused by different factors, as the  toxicity 

caused by a nutrient per se or the induction of a deficiency of another nutrient among others 

(Engels et al., 2011). 

 

 

 

 

 

 

 

 

Nutrient level maintaining in agricultural field is fundamental to obtain an optimum production 

and this is achieved by an appropriate fertilization. In general fertilizers could be divided in two 

categories: organic and inorganic (or synthetic). Organic fertilizers are composed by animal 

Figure I. Representation of yield response curves for N, P and micronutrients. 

Adapted from Engels et al., 2011) 
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and vegetable wastes and also from the synthesis of different organic compounds as amino 

acids. Inorganic fertilizers are made with mineral compounds extracted from rocks among 

others. The exception of this general classification is urea (CO(NH2)2), which is one of the most 

used N source and is classified into inorganic fertilizers although it has animal origin (Rach et 

al., 2016).  

Among the nutrients absorbed by roots, N is the major growth limiting factor. The importance 

of N resides in the fact that it is the central component of different structural biomolecules 

such as nucleic acids and amino acids. Therefore, to maintain the productivity agriculture has 

the need to replace the lost nutrients, especially N, the most abundant component of 

fertilizers, which is lost by different chemical and biological pathways. 

 

 

 

2. NITROGEN CYCLE  

 

N is one of the most abundant elements in nature and it can be found in different reservoirs as 

in the atmosphere and in terrestrial and marine ecosystems. The biogeochemical reactions 

that allow the N interchange among the different N reservoirs form the N cycle. The largest N 

pool in the biosphere is the atmosphere where it is found in form of gas nitrogen (N2) and 

represents 78 % of the dry air composition. N2 is formed by a triple bound that binds two N 

Classification of plant nutrients

Nutrient Uptake Biochemmical function

Group 1

C, H, O, N, S As CO2, HCO3
-, H2O, O2, NO3

-, NH4
+, N2, SO4

2-, SO2

ions from the soil solution, gases from the
atmosphere

Major constituents of organic material. Essential
elements of atomic groups involved in enzymatic
processes.
Assimilation by oxidation-reduction reactions.

Group 2

P, B, Si As phosphates, boric acid or borate, silic acid
from the soil solution

Esterification with alcohol groups. Phosphate
esters involved in energy transfer reactions.

Group 3

K, Na, Ca, Mg, Mn, Cl As ions from the soil solution Non-specific functions establishing osmotic
potential.
More specific functions for optimal confirmation
of enzymes (enzyme activation).
Bridging of reaction partners.
Balancinganions.
Controlling membrane permeability and
electrochemical potentials.

Group 4

Fe, Cu, Zn, Mo As ions or chelates from the soil solution In chelated form in prosthetic groups of enzymes.
Enable electron transport by valency change.

Table I. Classification of plant nutrients. Modified from Kirkby, (2011). 
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atoms. This triple bound makes it a very stable molecule, and because of that, most organisms 

are unable to metabolize it. However, N2 is breakable by a few natural processes as lightings 

and more commonly by N2-fixing microbes (Figure II), and by non natural processes as Haber-

Bosch ammonium synthesis process (Robertson and Groffman, 2015; Robertson and Vitousek, 

2009). The greatest difference of N respect to other macro-elements as K, P, and Ca and other 

elements required in lesser amounts such as Mg and B, is that there is not a mineral bound in 

the soil to replace the loss of the N. N is lost by the harvesting of vegetables, which do not 

return to the soil, by the transformation of N into volatile N forms, lost in the atmosphere, or 

into NO3
- which is leached. In consequence, the N has to be replaced from outside of the soil-

plant system (Robertson and Vitousek, 2009). Different N sources can enrich the soil from 

outside. In general, most of the N proceeds from the atmospheric N fixed by N2-fixing microbes 

and from fertilizers added by agriculturists, although, in very polluted regions, N from the 

rainwater and from dry depositions onto leaf and soil surfaces can be important (Robertson 

and Vitousek, 2009; Xu et al., 2012; Hoffman et al., 2014; Robertson and Groffman, 2015 ) .  
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Figure II. Schematic representation of the major elements of the terrestrial nitrogen cycle. Those 

processes mediated by soil microbes appear in red. Gases appear in brackets (Modified diagram from 

Robertson and Groffman, (2015). 
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2.1. Nitrogen fixation  

 

Biological N fixation 

Biological N fixation occurs thanks to the activity of the nitrogenase, an enzyme complex 

synthesized by some microorganisms that catalyzes the conversion of atmospheric N2 to NH4
+ 

(Hoffman et al., 2014; McGlynn et al., 2012). N fixing microorganisms are included into the 

group of diazotrophs, composed by some bacteria and archaea.  This group is divided into two 

different subgroups depending on whether they are free-living diazotrophs or they are forming 

symbiotic associations with other organisms. The first subgroup is formed by organisms as 

some bacterial species of Clostridium, Klebsiella, Azotobacter or Nostoc genera among others 

(Cooper and Scherer, 2012). The second one is formed by bacteria as Rhizobium, Frankia and 

Burkholderia genera that form symbiotic interaction with different types of plants. In 

agricultural systems, the most relevant N fixation comes from legume plants (Paramasivan et 

al., 2016; Walker et al., 2015). 

Industrial N fixation  

Industrial N fixation comes from the Haber-Bosch process, in which atmospheric nitrogen is 

reduced to produce NH3, which then, can be oxidized to form NO3
- by Ostwald process 

(Kandemir et al., 2013; Offermans et al., 2006). This industrial NH3  allows to replace the 

removed N during crops harvest easily and more economically than with more traditional 

methods such as adding organic manures and wastes which are only profitable in places where 

there is cattle industry and the transport of the organic fertilizers is viable (Robertson and 

Vitousek, 2009).  

 

2.2. N losses from soil are promoted by different processes 

 

Soil microorganisms are able to metabolize different N sources. Through the mineralization of 

organic N compounds, it is produced NH4
+, which nitrifiers can oxidize up to NO3

-. Denitrifiers 

can use NO3
-  as electron acceptor in respiration processes producing more reduced N forms as 

N2, and furthermore, anammox bacteria carry out the NH4
+ anaerobic oxidation producing N2 

(Britto and Kronzucker, 2002; Hayatsu et al., 2008; Xu et al., 2012).   
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NO3
- and NH4

+ concentrations in the soil are extremely variable. The NH4
+/ NO3

- ratio depends 

on a variety of edaphoclimatic factors, as oxygenation state pH or temperature, that affect the 

microbial community living in the soil (Sanz-Cobena et al., 2017). In soils containing a low rate 

of oxygen, as in waterlogged soils, nitrification is inhibited and denitrification is promoted and 

NH4
+ can be accumulated. In contrast, in well aerated soils, the nitrification process is rapid, 

and NH4
+ is fast transformed into NO3

- (Robertson and Groffman, 2015; Sanz-Cobena et al., 

2017). These processes are important due to they determine the NH3/NH4
+ and NO3

- 

concentrations in the soil, which are the main N sources that are lost from soil to the 

environment, through processes in which are implicated soil microbes, ion leaching and 

volatilization. 

 NH3 losses from soil to atmosphere 

NH4
+can be deprotonated to NH3 which can be lost in the atmosphere. NH3 volatilization is a 

relevant process due to in addition of its effect on climate change (see page 20, section 

“Environmental problems related with agriculture”), it can be a great source of N loss in 

agriculture. Most important factors affecting NH3 volatilization process are the type and 

amount of the applied fertilizer, soil pH and temperature (Chen et al., 2015).  

Conversion of urea to biologically available N 

When N is in form of urea, it can be rapidly converted to biologically available N. Urea is 

hydrolyzed, in a reaction catalyzed in the soil by urease enzyme, to form NH3 and CO2 

(Reaction 1) (Robertson and Vitousek, 2009).  

   Reaction 1. (NH2)2 CO + H2O −−−−−−−→ 2NH3 + CO2 

The generated NH3 can be lost in the atmosphere or can be rapidly transformed to NH4
+ in non 

alkaline soils, which is soluble and well retained, but, it can suffer transformations as 

nitrification and anammox oxidation provoking N loss and detrimental effects in the 

environment (explained below) (Hayatsu et al., 2008; Robertson and Groffman, 2015; 

Robertson and Vitousek, 2009). 

Nitrification  

The nitrification process is based in the transformation of NH4
+ into more oxidized N forms, 

principally nitrite (NO2
-) and NO3

-. In soils the process is carried out by different microbes from 

archaeal, bacterial and fungal live kingdoms (Robertson and Groffman, 2015). During the 

process, previously deprotonated NH4
+ is oxidized forming hydroxylamine (NH2OH) by 

urease 
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ammonia mono-oxygenase enzyme (AMO). Then, NH2OH is oxidized to NO2
- by hydroxylamine-

oxidoreductase (HAO), and finally the NO2
- is oxidized to NO3

- by nitrite oxidoreductase (NOR). 

During the process,  volatile N forms, as nitrogen oxides (NOx) and nitrous oxide (N2O), may be 

produced (Figure III) (Robertson and Groffman, 2015). Although there are autotrophic and 

heteretrophic nitrifiers, autotrophic nitrification is the dominant form in most soils (Robertson 

and Groffman, 2015).  

 

 

 

 

 

Anammox (anaerobic ammonium oxidation) 

It is the biological process in which NH4
+ is oxidized anaerobically. This oxidation pathway is 

carried out by some microorganisms known as Anammox bacteria. Anammox bacteria known 

species are divided into five genera belonging in the order Brocadiales, which is constituting a 

monophyletic clade, inside the Planctomicetes phylum (Jetten et al., 2001; Kartal et al., 2012). 

The reaction is given by the combination of NH4
+ and NO2

- which under anaerobic conditions 

form N2 (Hayatsu et al., 2008). 

The process is driven by hydrazine hydrolase (HH), hydrazine oxidizing enzyme (HZO) and 

nitrite reducing enzymes (NR) in the bacterial organelle known as anammoxsome (Figure IV).  

 

 

 

 

 

 

NH2OH

NO

NH3

NO

NO2NHOH

HNO3

N2O

NO

NO2
- NO3

-
AMO HAO NOR

Figure III. Autotrophic nitrification pathways. Dashed lines indicate unconfirmed reactions (diagram modified from 

Robertson and Groffman, 2015) 

Figure IV. Mechanism of anaerobic ammonium 

oxidation. NR is a nitrite-reducing enzyme 

(NH2OH is the assumed product); HH(hydrazine 

hydrolase) condenses hydrazine out of ammonia 

and hydroxylamine; HZO is a hydrazine-oxidizing 

enzyme (which might be equivalent to 

hydroxylamine oxidoreductase). Diagram 

retrieved from Jetten et al., (2001). 
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Denitrification 

Denitrification is the process in which NO3
- is transformed to more reduced N forms (Figure V). 

The organisms able to carry out this process are globally known as denitrifiers and include 

facultative anaerobes, principally Pseudomonas and Alcaligenes, and to a lesser extent, 

Bacillus, Agribacterium, and Flavibacterium. Denitrification is given by reduction of NO3
- to 

NO2
- that is further reduced to NON2O and finally to N2 (Figure V). The denitrification takes 

place in low O2 level environments when oxidized forms of N are used as electron acceptor in 

the respiration process to the obtaining of ATP. 

 

 

 

 

Each step is driven by an enzyme: the first step by nitrate reductase (NAR), the second by 

nitrite reductase (NIR), then acts the nitric oxide reductase (NOR) and finally the nitrous oxide 

reductase (NOS). Until the formation of N2, intermediates as nitric oxide (NO) or/and N2O can 

also be exchanged to the atmosphere (Jackson et al., 2008; Robertson and Groffman, 2015; 

Robertson and Vitousek, 2009).  

2.3. Environmental problems related with agriculture 

 

Agriculture has to face the challenge of increasing the global food production to be able to 

feed the increasing world population (Alexandratos and Bruinsma, 2012). Unfortunately, 

intensive agricultural practices can have consequences in human health and a great 

detrimental impact in the environment. The most evident environmental impact comes from 

the conversion of a natural ecosystem to an anthropic one. Besides, there are other 

environmental costs as the pollution caused from the excessive use of agricultural fertilizers or 

from pesticides. Fertilizers can provoke acidification of croplands and the entry of nutrients to 

natural ecosystems provoking detrimental effects. Regarding to N, agriculture systems are 

highly inefficient in N conservation in the field and great quantities of this nutrient are lost in 

the environment during crops growth because of gas emissions and leaching. These N losses 

provoke environmental damages which comes from the biological activity of N compounds in 

soils and its reactivity in the atmosphere (Robertson and Vitousek, 2009; Stocker et al., 2013).  

2NO2
-2NO3

- 2NO
nar nir

N2O N2
nor nos

Figure V. Bacterial denitrification pathway. Each step is enacted by individual enzyme. Small arrows show steps 

in which intermediates products are released to the atmosphere. 
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Soil acidification derived from excessive N fertilization 

The excessive use of N fertilizers can decrease soil pH. On the one hand, during the nitrification 

of NH4
+ to NO3

-, 2H+ are formed (Robertson and Groffman, 2015), and furthermore, the NH4
+ 

uptake can also acidify soils due to when it is taken up, it generates a charge unbalance that is 

compensated stoichiometrically with H+ exchanged from plants to soil (Britto and Kronzucker, 

2002). In addition, the volatile NO produced through N transformations could form nitric acid 

in the atmosphere, which can be deposited on soils decreasing the pH (Jackson et al., 2008; 

Robertson and Vitousek, 2009). 

Soil acidification has multiple effects on ecosystem health, including the mobilization of toxic 

metals as aluminum ions and the loss of important cations for plants. Also acidic soils are 

related with P deficiency and reduced biodiversity and productivity (Blake et al., 1994).   

Nitrate accumulation in vegetables 

High concentration of NO3
- in the soil can promote a great absorption of NO3

- by roots and its 

accumulation in the plants tissues. When plants NO3
- content exceed a threshold, the 

vegetable consumption could be harmful to human. Due to this toxic aspect, the NO3
- content 

in human foodstuff is rigorously regulated (Bryan and Loscalzo, 2011). 

When NO3
- arrives to human organism, it is metabolized to nitrosamine. Nitrosamine 

formation process can be carcinogenic and could result in methemoglobinemia or blue baby 

syndrome, a condition found especially in infants, which is characterized by the reduced ability 

of blood cells to carry oxygen to the different tissues (Bryan and Loscalzo, 2011; Yusof et al., 

2016). 

Gas emissions derived from soil N and their environmental effects  

Croplands with an excessive N supply can generate great N lost to the atmosphere in form of 

NH3 or nitrogen oxides, as NOx and N2O (equation 4 and Figure III) generated by soil microbial 

activity (Robertson and Groffman, 2015; Robertson and Vitousek, 2009; Torralbo et al., 2017).  

In alkaline pH soils, the NH4
+/NH3 ratio is lower and consequently the volatilization of NH3 

increases and it can be transferred as reactive N to downwind ecosystems (Robertson and 

Vitousek, 2009). Regarding to nitrogen oxides, on the one hand, the excessive release of NOx 

to the atmosphere can cause the photochemical production of O3. O3 is both, a greenhouse gas 

and an oxidant that harms human health and plant growth at concentrations that are reached 

frequently in high NOx regions (Robertson and Groffman, 2015; Robertson and Vitousek, 
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2009). On the other hand, N2O is a greenhouse effect gas with a warming potential 265–298 

fold higher than CO2. Additionally, N2O is the most important O3 destroyer in the atmosphere 

and has negative impact in the ozone layer. Currently the great amount of the anthropogenic 

emissions of N2O comes from agriculture (70-80%) (Stocker et al., 2013).  

Aquatic systems pollution derived from N compounds 

NH4
+ and NO3 are soluble, in the case of NO3

-, because of its anionic properties, its retention on 

the normally negatively charged soil is much lower compared to NH4
+ (Robertson and 

Groffman, 2015). Excess of NO3
- is commonly lost through leaching. When NO3

- is leached, or 

NH4
+ in lower concentration, it arrives to aquatic systems and raises the total available nutrient 

concentration in the media causing eutrophization (Robertson and Groffman, 2015; Robertson 

and Vitousek, 2009; Xu et al., 2012). This increasing of nutrients allows algae to present higher 

growth rates than naturally can occur. This alga can precipitate to the bottom of the aquatic 

system. Where they precipitated algae are decomposed by bacteria in an aerobic process, in 

which the dissolved oxygen is consumed leading to hypoxia and the reduction of the deeper 

water organisms that require oxygen (Robertson and Vitousek, 2009). Moreover, in the case of 

NO3
-, it could reach water sources for human consumption. This aspect of the N movement can 

be relevant due to high levels of NO3
- can adversely affect human health, causing 

methemoglobinemia or blue baby syndrome (Bryan and Loscalzo, 2011).  

 

3. STRATEGIES TO REDUCE N IMPACT IN AGRICULTURE 

 

Key aspects towards a more environmental friendly agriculture are, among others, to obtain 

higher yields per cropland, to reduce the conversion of natural ecosystems into agricultural 

systems and to improve the nutrient use efficiency of plants reducing the nutrient inputs by 

fertilizers. Those strategies can match perfectly to the approaches focused on the problems 

derived from the excessive use of N in the agriculture, which can be faced by the developing of 

crops with better nitrogen use efficiency (NUE) by plants or the use of fertilization methods 

that would help to improve this plant trait. 

NUE refers to the total biomass or grain yield produced per unit of applied N fertilizer (Xu et 

al., 2012). N loss is in part responsible of the low NUE in agriculture. This loss has economic 

and environmental impact, in the first case because of the high amount of resources needed to 

the production of N fertilizers, and in the second, due to the described detrimental effects that 
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it can provoke in the environment. For these reasons to achieve a better NUE in plants is a key 

aspect to obtain a more friendly agriculture with the environment.  

Although there are multiple ways to achieve better NUE, the approaches to improve the plant 

NUE can be classified into the following four main options: i) a proper selection of the crop 

varieties with high NUE and its rotations could improve the uptake of the available N. To do so, 

it is fundamental to understand the genetic and molecular mechanisms involved in NUE and its 

components characteristic. ii) to apply the correct amounts of N, adjusting the fertilization to 

the crop requirements, and to avoid the fertilization below of the root zone, iii) a good 

programming of the timing and placement and iv) the appropriate manage of watersheds to 

decrease N losses downstream from cropland (Cherry et al., 2008; Robertson and Vitousek, 

2009; Xu et al., 2012). 

 

The use of urease and nitrification inhibitors 

Nitrification and denitrification are the main sources of N volatile forms to the atmosphere and 

thus, main N loss factors. Nitrification can be inhibited by natural or human made nitrification 

inhibitors which can be useful in mitigation the N compound emissions (Torralbo et al., 2017). 

The great amount of the available commercial nitrification inhibitors are derived from 

pyridines, pyrimidines, amino-triazoles and sulfur compounds (Coskun et al., 2017). The most 

regularly used and best understood are 2-chloro-6-(trichloromethyl)-pyridine (nitrapyrin), 

dicyandiamide (DCD), and 3,4-dimethylpyrazole phosphate (DMPP). The inhibition process has 

a big agricultural potential value due to it has the ability to maintain the NH4
+ for longer time in 

the soil avoiding some of the negative effects caused by the lost of N, notably as NO3
- leached 

and as N2O emission. (Torralbo et al., 2017).  

Urease inhibitors inhibit the transformation of urea into NH3/ NH4
+. There are various types of 

urease hydrolase inhibitors, with a validated effectiveness avoiding the N lost to the 

environment (Abalos et al., 2012; Sanz-Cobena et al., 2012). The most common commercial 

urease inhibitor is N-(n-butyl) thiophosphorictriamide (NBPT). As in the case of nitrification 

inhibitors, urease inhibitors also have a great agricultural value due to they can maintain this N 

source for longer time in the soil enhancing the NUE of plants. Furthermore, the reduction of 

urease enzyme activity also mitigate NH3 volatilization and the generation of NO3
- leaching and 

denitrification processes (Sanz-Cobena et al., 2017). 
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4. NITROGEN METABOLISM 

4.1. Plants can use different N forms  

 

Plants can use a wide array of N forms as N source, ranging from simple inorganic N 

compounds as NH4
+ and NO3

-, to organic N compounds such as amino acids, peptides and also 

proteins (Paungfoo-Lonhienne et al., 2008). 

 

 

 

Proteins as N source are taken up by different ways. One way is based on the exudation of 

proteolytic enzymes from root cells to the root medium to digest soil proteins into smaller 

peptides or amino acids, which then are taken up. This process takes place in the root surface 

and possibly in the apoplast of the root cortex. The second way is based on protein 

endocytosis by root cells, which then are catabolised. The endocytic uptake pathway has been 

observed in different plant species such as Arabidopsis thaliana or Hakea actites (Paungfoo-

Lonhienne et al., 2008). Other N sources, as short peptides and amino acids, are taken up via 

membrane transporters into root cells (Näsholm et al., 2009; Paungfoo-Lonhienne et al., 

2012). As example of peptide uptake, Komarova et al., (2008) have described in Arabidopsis 

the function of Arabidopsis thaliana peptide transporter 1 (AtPTR1) protein, a peptide 

transporter localized in the plasma membrane of root cells, able to take up peptides from the 

root media. Similarly, amino acids also can be taken up by membrane transporters in roots. 

There are several transporters already identified in the absorption of amino acids from the 

root media as lysine histidine transporter 1 (LHT1) or amino acid permease 1 (AAP1) among 

others (Kant et al., 2011). Once the amino acids are inside of the plant cells, they can be 

directly incorporated into proteins, or metabolized for the later synthesis of other 

biomolecules (Näsholm, 2009). 

Figure VI. Plant N sources in soil. Root-derived enzymes contribute to organic matter depolymerization. The 

generated composes could be taken up as organic polymers and oligomers, which are directly incorporated into 

roots, or can be totally mineralized until NH4
+ and NO3

-. Figure modified from Paugfoo-Lonhienne et al. (2012). 
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At present, modern agriculture has a great dependence on the use of inorganic N fertilizers 

(Graham and Miller, 2006; Matson et al., 1997) and because of that research on plant N 

nutrition has had a strong focus on inorganic N forms. This focus is motivated by the 

prominent role of inorganic N in agriculture soils and the dependence of many crops on this N 

source (Nasholm 2009). In this context, increasing the knowledge of the mechanisms through 

which plants acquire and assimilate inorganic N is fundamental. 

4.2. Nitrate and ammonium acquisition and assimilation  

 

Nitrate (NO3
-) and ammonium (NH4

+) comprise the main inorganic forms of N absorbed by 

plants. The preference for either NO3
- or NH4

+ as the N source is an important ecological 

determinant which affects plant diversity; while this aspect has not yet been precisely defined, 

it is however known to depend on the one hand, on the genetic background, and on the other 

hand on environmental features, such as soil properties (including pH) and plant physiology 

(van den Berg et al., 2005). N transfer from soil to plant is carried out by plasma membrane-

localized transport proteins. Taken up N will be stored or assimilated covering plants N 

demands during their development. For that purpose, plants have the availability of a great set 

of N transporters, which allows plant´s root adjusting N transport to soil environmental 

fluctuations, including N composition and concentration or pH fluctuations. In this sense it is 

important to highlight that pH fluctuates widely between natural and agricultural soils and 

represents an important feature that may limit N availability and the plant´s capacity to absorb 

essential nutrients (Hawkesford et al., 2011). 

Today, it is thought that different N transporters and downstream N assimilatory systems 

could have in common some regulatory mechanisms, which need to be understood because 

they may be essential to improve the ability of plants to use soil N (Plett et al., 2017; Tegeder 

and Masclaux-Daubresse, 2018). 

NO3
- transport:  

 

In Arabidopsis, nitrate transporter genes are encoded, at least, by four gene families, nitrate 

transporter 1 (NRT1) or peptide transporter (PTR) gene, nitrate transporter 2 (NRT2), chloride 

channel (CLC), and slow anion channels and their homologs (SLAC1, SLAH) (Fan et al., 2017). 

However, nitrate is mainly taken up by transporters of the NRT1 and NRT2 families, which are 

low affinity nitrate transporters (LATS) and high affinity nitrate transporters (HATS), 

respectively (Fan et al., 2017).  Most nitrate transporters are proton coupled importers, but 
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there are some exceptions as, the NPF7.3/NRT1.5 transporter, which participates in NO3
- 

loading into the xylem and that is bidirectional (Lin et al., 2008), the NPF2.7/Nitrate Excretion 

Transporter1 (NAXT1), which mediates nitrate efflux (Segonzac et al., 2007), or the transporter 

of nitrate found in Chloride Channel (CLC) family, which works as anion channel or anion-

proton exchangers (De Angeli et al., 2006). 

 

LATS are characterized due to their ability to take up NO3
- when high soil NO3

- concentrations 

are available, normally higher than 250 µM (Plett et al., 2017). However, there are exceptions 

in some plants in which a member of NRT1 family function as high and low affinity transporter 

simultaneously (e.g. NPF6.3/NRT1.1 in Arabidopsis and NRT1.1B in rice (Oryza sativa))  (Huang 

et al., 1999; Liu et al., 1999; Wang et al., 1998). On the other hand, NRT2 are HATS and carry 

out their function under low NO3
- soil concentration, below 250 µM (Plett et al., 2017). In A. 

thaliana six NRT transporters have been linked to HATS and LATS NO3
- transporter systems. 

Under high soil NO3
- concentration, NPF6.3/NRT1.1 (also called Chlorate-resistance Protein 1 

(CHL1)) and NPF4.6/NRT1.2 are the responsible of NO3
- acquisition, while under low NO3

- 

concentration, the transporters identified in NO3
- uptake are NRT2.1, NRT2.2, NRT2.4 and 

NRT2.5 (Plett et al., 2017). LATS take up around 95% of the total N, furthermore among the 

LATS transporters, NRT2.1 and NRT2.2 are the mayor contributors of the NO3
- uptake 

(Lezhneva et al., 2014). 

 

NO3
- uptake by transporters is regulated, at least, at transcriptional and post-translational 

level. At transcriptional level, it has been observed that changing NO3
- availability, from 

starvation status to optimum NO3
- supply and vice versa, genes as NRT2.1 and NRT2.2 are 

differentially transcribed, decreasing their transcription level in high N availability conditions 

and increasing under NO3
- starvation conditions (Plett et al., 2017; Ruffel et al., 2014). NO3

- 

itself, through NRT1.1/NPF6, which besides transporting NO3
- also functions as NO3

- sensor, is 

able to trigger a  signaling cascade that controls the NRT2.1 gene expression (Plett et al., 2017; 

Ruffel et al., 2014). Post translational regulation is also an important regulatory mechanism in 

the NO3
- uptake control.  As example and as previously mentioned, AtNRT1.1 (CHL1/NPF6.3) 

has been described as a dual affinity transporter under post-translational control. 

Phosphorylated AtNRT1.1 functions as high affinity NO3
- transporter, but when it is 

dephosphorylated, it functions as low affinity transporter (Plett et al., 2017). 
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NH4
+ transport:  

 

Ammonium is taken up by plants in two forms, the protonated form NH4
+ and the electro-

neutral form NH3. The form in which the ammonium is presented in the root medium depends 

of the pH of the soil; but due to its pKa is 9.25 (Figure VII), in most soils, the predominant form 

is NH4
+ (Straub, 2016; Van Den Berg et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As NO3
-, NH4

+ can be taken up directly from soil by high affinity transporters system (HATS), 

which are able to transport NH4
+ in the range of µM and by low affinity transporters (LATS)  

responsible of the NH4
+ transport in the mM range (Wang et al., 1993).  

 

In the µM range, the responsible of NH4
+ absorption are members of the Ammonium 

transporter/methylamine permease/rhesus (AMT/Mep/Rh) superfamily (HATS system). This 

family is composed by proteins of the clades AMT, MEP and Rh (McDonald et al., 2016). HATS 

is a saturable system, that catalyses the thermodynamically secondary active uptake of 

ammonium against a chemical gradient when the external concentration is low (Wang et al., 

1993). Thanks to the crystal structures obtained of AMTB ammonium transporters from 

Aquifex aeolicus and Escherichia coli  (Andrade et al., 2005; Khademi et al., 2004; Zheng et al., 

2004), it is known that these proteins are homotrimeric structures and that each homomer 

contains an hydrophobic channel composed by trasmembrane domains which are proposed as 

the responsible of the NH3 transport. It is though that the transporters are able to deprotonate 

Figrure VII. Schematic model of ammonium (NH4
+) and ammonia (NH3) proportions dependent on pH. In acidic 

solutions and also the neutral cell cytosol, the ammonium ion is the most abundant species. Neutral ammonia 

could be dominant in highly alkaline soils (Diagram retrieved from Straub, 2016). 
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the NH4
+ into NH3 to then, facilitate the transport of NH3 (Khademi et al., 2004; Zheng et al., 

2004). To enhance the plant environmental adaptability, plants codify different activity HATS 

transporters, with different characteristics (McDonald et al., 2016). Among these transporters, 

Mep genes which encodes for AMT2 proteins, are electroneutral ammonium carriers, and 

drive ammonium in favor of its chemical gradient (Neuhäuser et al., 2009). AMT genes encodes 

for AMT1 proteins. These kind of transporters are electrogenic ammonium transporters, and 

function thanks to the  negative cell membrane potential (Mayer et al., 2006). A. thaliana 

genomes encode 6 AMT proteins divided into five AMT1 members and a single AMT2 

transporter. It is important to mention that AMT2 transporters do not contribute to NH4
+ 

absorption from soil. It is thought that its function consists in the transport of ammonium 

among the apoplast and simplast (Sohlenkamp et al., 2002). Transcriptional control of AMTs in 

response to N and C nutritional status is considered their major regulatory mechanism in 

plants (Gazzarrini et al., 1999; Lejay et al., 2003; Loqué et al., 2006). For example, under N 

starvation, increases of the  transcript levels of AMT1;1, AMT1;2 and AMT1;3 have been 

detected (Lanquar et al., 2009). In addition,  It has been shown that the overexpression of 

AtAMT1;1 in transgenic tobacco can be used to increase ammonium uptake capacity (Yuan et 

al., 2006). Ammonium HATS can be also regulated post-translationally.  It is known that AMT 

transporters are regulated by phosphorylation, in this sense, it is mentionable the function of 

CIPK23 (CBL-interacting protein kinase 23), which is able to phosphorylate AMT1;1 and AMT1;2 

regulating their NH4
+ flux (Straub et al., 2017).  

 

Regarding LATS, they operate next to mM range (Nacry et al., 2013) a non saturable system 

that exhibits linear increase of its activity as ammonium concentration increases (Wang et al., 

1993). It is important to highlight that the genetic identity of transport proteins responsible for 

the LATS pathway is not sufficiently understood, but it is known that among the responsible to 

acquire NH4
+ at high concentrations are some aquaporins (AQP) (Kirscht et al., 2016), some K+ 

channels (Hoopen et al., 2010) and some non-selective cation channels (NSCCs) (Balkos et al., 

2010). AQP family members are highly expressed in roots and it is thought that the ability of 

this kind of transporters to transport NH4
+ comes from the structural similarity between NH3 

and H2O (Maurel et al., 2015).  As example of NH4
+ LATS, the AQP TIP2 (Tonoplast Intrinsic 

Protein 2) is a known NH3 permeation facilitator who is involved, at least, in sequestering 

ammonium into cell vacuoles to control ammonium homeostasis in the cytosol and whose 

expression is up-regulated under N starvation conditions (Kirscht et al., 2016).  
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4.3. N assimilation 

 

When N is taken up as NO3
- , it is reduced to NH4

+  by nitrate reductase (NR), which catalyses 

the transference of two electrons producing NO2
- and by nitrite reductase (NiR), which 

transforms NO2
- to NH4

+ in a six electron transfer process (Figure VIII). NO3
- reduction into NO2

- 

happens by the NR in the cytosol together with three co-factors, flavine adenine dinucleotide 

(FAD), a heme (bound to a domain which resembles a family of cytochromes) and 

molybdopterin (a molybdenum containing co-factor) which participate in the electron transfer 

from NADH/NAD(P)H to nitrate (Figure IX). Then, the NO2
- generated, is transported to plastids 

where it is reduced into NH4
+ by NiR, expressed only in plastids. The electron donor in this case 

is the ferredoxin (Hawkesford et al., 2011). NR activity can be regulated both transcriptionally 

and post-translationally. It has been shown that expression of the nitrate reductase genes are 

induced by nitrate, generating active protein rapidly after addition of NO3
- (Patterson et al., 

2016). Post-transcriptional regulation is given by the phosphorylation and dephosphorylation 

of nitrate reductase depending of the presence of light among others (Lea et al., 2006). 

 

Figure VIII. Schematic representation of plant NO3
-, NH4

+ and K+ transporters and their principal regulatory 

elements (figure retrieved from Coskun et al., 2017) 
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Inorganic nitrogen is only incorporated into biomolecules as NH4
+. Ammonium can be directly 

taken up from the soil, it can be produced from the reduction of NO3
- or generated through 

deamination steps in different metabolic pathways. Independently of its origin, NH4
+ follows 

the same assimilation pathway and is  mainly incorporated into amino acids via the glutamine 

synthetase/ glutamate synthase (GS/GOGAT) cycle (figure X) (Masclaux-Daubresse et al., 

2010). Although it is still under debate, asparagine synthetase (AS) and glutamate 

dehydrogenase (GDH) have also been described as enzymes with the capacity to directly 

assimilate ammonium (Figure X)(Ferraro et al., 2015; Skopelitis et al., 2007). 

GS/GOGAT cycle  

 

The assimilation process begins with the condensation of NH4
+ with glutamate (Glu) into 

glutamine (Gln) in ATP-dependent reaction catalyzed by glutamine synthase (GS) enzyme.  

Then, the produced Gln is used as amide source to transfer it to 2-oxoglutarate (2-OG), a 

reaction in which two Glu are generated (Forde and Lea, 2007; Lea and Miflin, 2010). The 

generated products are used by plants as precursor of other N biomolecules (Figure X).  There 

are two GS enzyme isoforms, GS1 and GS2. GS1 is expressed in cytosol, and it is responsible for 

the primary NH4
+ assimilation in roots and also for the reassimilation of the NH4

+ generated in 

the cytosol during amino acids catabolism (Guan et al., 2016; Lothier et al., 2011). GS2 is 

expressed in plastids and it is responsible of the assimilation of the NH4
+ produced from the 

Figure IX. Schematic representation of the sequence of nitrate reduction process (Diagram retrieved from Hawkesford et al., 

2011). 
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reduction of NO3
-, which as described above finalizes inside the plastids. Furthermore, GS2 also 

has the functions of assimilating the NH4
+ produced during photorespiration (Bernard and 

Habash, 2009).  

GS1 is encoded by a multi gene family composed by a variable number of genes depending of 

the plant species. For example, in Arabidopsis thaliana genome, there are five GS1 genes, from 

GLN1:1 to GLN1:5, and a single gene encoding GS2 enzyme (Ishiyama et al., 2004a). The 

regulation of the expression of the different GS genes is different depending of the analyzed 

cell, tissue, the physiological stage of the plant and the circumstances in which the plant is 

growing (Bernard and Habash, 2009; Lothier et al., 2011; Orsel et al., 2014). GS function is 

regulated at the transcriptional, translational and post-translational level by different factors 

including external and internal N availability, light and abiotic and biotic stresses. For example, 

it has been shown that GS1 isoenzymes expression and activity are dependent on nitrogen 

availability in A. thaliana (Ishiyama et al., 2004b). On the other hand the addition of sucrose to 

the growth medium causes the induction of GLN1;1, GLN1;2, and GLN1;3 expression. This 

induction was attenuated by the external supply of amino acids, suggesting that a metabolic 

regulation of GS1 is associated with the relative abundance of carbon skeleton versus amino 

acids content in the root tissue (Ishiyama et al., 2004b). Glutamine 2-oxoglutarate 

aminotransferase (GOGAT) is the other fundamental piece of the ammonium assimilation 

pathway. It is presented in two forms, the ferredoxin dependent GOGAT (Fd-GOGAT), encoded 

by GLU1 and GLU2 genes and the NADH dependent GOGAT, which is codified by GLT gene 

(Potel et al., 2009). Fd-GOGAT is the predominant isoform in plastids of photosinthetically 

active tissues and its main function is to reassimilate the NH4
+ generated during the 

photorespiration coupled with GS2 (Forde and Lea, 2007). The NADH-GOGAT is expressed in 

photosinthetically non active tissues, and besides, it is important in the NH4
+ assimilation when 

this N source is predominant in soil (Konishi et al., 2014). GOGAT enzyme is induced in 

response to ammonium supply, condition in which the transcription of NADH-GOGAT is 

induced (Konishi et al., 2014).  

 

NH4
+ assimilatory alternative pathways 

 

Asparagine synthetase (AS) is an enzyme that catalyzes the transference of the amide group 

from Gln to aspartate (Asp) to produce asparagine (Asn) (Figure X). AS is a cytosolic enzyme 

and in A. thaliana, it is codified by three genes, ASN1, ASN2 and ASN3 (Gaufichon et al., 2016).  
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It has been suggested that under special circumstances, as under an exclusive NH4
+ based 

nutrition, it could be involved in the direct assimilation of NH4
+ (Gaufichon et al., 2016). AS 

activity is dependent on its substrate availability and therefore AS needs a proper Asp supply. 

In this sense, Asp synthesis, driven by Aspartate amino transferase (AAT), is essential and thus, 

the coordinated action between AAT, GS and AS is the final responsible of Asn synthesis 

(Leasure and He, 2015). In addition, AS activity is also known to be regulated at transcriptional 

level, for example; it has shown that the transcription of ASN2 is induced by low content of 

sucrose at the end of the night, whereas sucrose accumulation in the light repressed ASN2 

expression (Gaufichon et al., 2013). 

Glutamate dehydrogenase (GDH) is also an enzyme implicated in N metabolism that catalyzes 

the reversible deamination of the glutamate (Glu) to NH4
+ and 2-Oxoglutarate (2-OG). There is 

controversy about its role in plants, but it is accepted that GDH activity in vivo is primarily 

directed towards 2-OG production (Fontaine et al., 2012; Labboun et al., 2009). In this line, it is 

thought that its main function is to support plant metabolism under C- limitation 

circumstances providing 2-OG (Fontaine et al., 2012). Although controversial, it is thought that, 

under some circumstances NADH-GDH might also be collaborating in the direct amination of 2-

OG to form glutamate, such as during fruit ripening (Ferraro et al., 2015) or ammonium stress 

(Skopelitis et al., 2006) (Figure X). NAD(H)-GDH, in Arabidopsis, is encoded by three genes 

(GDH1 to GDH3), which are expressed in mitochondria, and by a fourth gene encoding an 

NADP(H)-dependent GDH isoform, expressed in plastids, although it is an inactive isoform 

(Fontaine et al., 2012). In Arabidopsis, GDH is a hexameric protein composed by combination 

of α, β and γ subunits leading to different 28 possible isoenzymes by their combination 

(Fontaine et al., 2013). GDH expression can be regulated by external conditions; for example, 

under stress conditions it is induced. Besides, GDH isoforms are differentially expressed 

depending of N availability, for instance, when plants are grown exclusively with an 

ammoniacal N source, its expression and activity is greatly induced (Qiu et al., 2009; Tercé-

Laforgue et al., 2015). 
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4.4. Interaction between C and N metabolisms 

 

N assimilation depends on many factors, obviously in N availability, but also in the access to C-

skeletons, energy and appropriate amount of reducing power essential to assimilate inorganic 

nitrogen into a wide array of organic nitrogenous compounds (Nunes-Nesi et al., 2010). 

Indeed, several studies have highlighted the importance of a suitable C supply to alleviate NH4
+ 

toxicity by controlling environmental conditions in order to favor C assimilation (Roosta and 

Schjoerring, 2008; Setién et al., 2013; Vega-Mas et al., 2015). In this sense, it is known that the 

TCA cycle and its associated anaplerotic enzymes play a central role (re)generating 2-OG for 

NH4
+ assimilation through GS/GOGAT cycle (Figure XI). TCA cycle is a fundamental process for 

all aerobic organisms. It takes place in the mitochondria, where organic compounds are 

oxidized to generate reducing equivalents (NADH and FADH2) that could be used to ATP 

production through the oxidative phosphorylation (Sweetlove et al., 2010). Furthermore, TCA 

cycle provides other metabolic pathways with substrates, as in the case of the N assimilatory 

pathway that needs C-skeletons, mainly 2-OG and oxaloacetate (OAA) (Figures IX and X). 

Anaplerotic enzymes are key actors in maintaining TCA with intermediates. On the one hand, 

phosphoenolpyruvate carboxylase (PEPC) is an anaplerotic enzyme that catalyzes the 

carboxilation from phosphoenol pyruvate (PEP) to OAA. On the other hand, NAD(H) dependent 

malate dehydrogenase (MDH) anaplerotic enzyme, reduces malate into OAA in a reversible 
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Figure X. Schematic representation of different N sources uptake and their metabolizing processes. Red arrows 

show the hypothetical GDH dependent assimilatory pathway. 
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reaction of the TCA cycle. Finally, closing the circle among PEP, OAA and malate, it is the malic 

enzyme (ME), which can decarboxylate the malate into pyruvate by the NADP-dependent ME 

(NADP-ME), expressed in plastids and in cytosol, or by NAD-depending ME (NAD-ME) in 

mitochondria (Drincovich et al., 2001) (Figure XI).  

TCA enzymes, function as crossroad between N and C metabolism and their regulation 

depends on the availability of N. Different authors have shown how PEPC is induced under 

NH4
+ supply (Ariz et al., 2013; Setién et al., 2014). PEPC activity is linked to GS activity due to its 

function depends on the Gln/Glu ratio, which in turns depends on the activity of the GS (Britto 

and Kronzucker, 2005). As expected, TCA cycle enzymes regulation is coordinated. For 

example, it is described that the overexpression of the PEPC induces the expression of 

enzymes as NADP-ME, NAD-ME and also NADP-dependent isocitrate dehydrogenase (ICDH) or 

that they respond coordinately to stress conditions (Doubnerová and Ryšlavá, 2011; Häusler et 

al., 2001). Furthermore, it has been observed that  ICDH and MDH enzymes are induced under 

NH4
+  supply, contributing to its assimilation in cases in which PEPC is not induced (Vega-Mas et 

al., 2015).  
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5. AMMONIUM TOXICITY 

 

When inorganic N is taken up from the root medium, before of being assimilated, it is 

necessary to convert it into NH4
+. NH4

+ is in lower redox state than NO3
− and because of that 

plants have not the need to reduce it in an energetically expensive process. The energy 

required to reduce one molecule of NO3
−  into NH4

+ is of 15 ATP equivalents (Salsac et al., 

1987). Even though N is only incorporated into biomolecules as NH4
+, paradoxically, an 

elevated abundance of this cation is toxic for plants, especially when it is supplied as the sole N 

source, although the toxicity threshold greatly depends on NH4
+ concentration (Britto and 

Kronzucker, 2002; Li et al., 2014). In spite of, a robust classification of plants species adapted 

to NO3
− or NH4

+ does not exist, it appears that most non-bred plants preferentially take up 

NH4
+ (Bloom et al., 1993; Kronzucker et al., 2001).  

Figure XI.TCA cycle and anaplerotic routes: The diagram shows TCA intermediates and substrates (black) and 

the enzymes responsible of the conversion from one intermediate to other one (red). Discontinuous and 

continuous arrows, in the first case anaplerotic route and in the second classical route, show the direction of 

the reactions. 
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5.1. Ammonium nutrition effects on plants 

 

Ammonium toxicity syndrome in plants include several symptoms and physiological effect as, 

leaf chlorosis, ion imbalance, hormones deregulation, disorders in pH regulation, decrease in 

net photosynthesis and changes in metabolite levels and oxidative stress among others. These 

alterations together, provoke a reduction in plant growth. Indeed, growth inhibition with 

increasing external NH4
+ concentrations, as compared with NO3

− nutrition, is probably the best 

indicator of NH4
+ stress as it is a comprehensive measure of the physiology of the plant as a 

whole (Ariz et al., 2011b; Cruz et al., 2006; Domínguez-Valdivia et al., 2008). Importantly, NH4
+ 

specially affects plant at root level, where root elongation, lateral branches production, root 

gravitropism, and root hair development are inhibited (Li et al., 2014). 

  

One of the consequences of NH4
+ nutrition is the cationic imbalance caused in plants. Nutrients 

content, as K+, Mg2+ and Ca2+, decreased in the plant, among others, because of the 

competition that these cations have with NH4
+ to enter into the cell, due to, they share some 

ion transporters (Szczerba et al., 2008). In this sense, it is known that under K+ limiting 

conditions increasing the K+ concentration of the nutritional solution could reduce the NH4
+ 

toxicity (Balkos et al., 2010). 

 

Plants grown in NH4
+ stress conditions also show altered hormone homeostasis. Different 

studies have reported that cytokinins, auxins, ethylene and ABA levels change in response to 

this nutrition (Li et al., 2011a, 2012, 2013; Liu et al., 2013; Rahayu et al., 2005). The importance 

of these changes resides in the functions that hormones perform in plants development; for 

example, it is well established that auxins and ethylene play a fundamental role in the correct 

development of the roots, whose growth, as previously mentioned, is inhibited during NH4
+ 

stress (Li et al., 2011a, 2013). Furthermore, it is thought that under NH4
+ nutrition, the 

alleviation of the toxicity mediated by adding NO3
- in the root media, could be due to the 

positive effect NO3
- has on cytokinin signaling (Hachiya et al., 2012; Roosta and Schjoerring, 

2008). 

 

Under NH4
+ nutrition plants produce more reactive oxygen species (ROS) than under NO3

- or 

mixed nutrition. It is thought that due to NH4
+ is already reduced, the reductive power that is 

destined to reduce NO3
- into NH4

+ is over-accumulated, and thus, the oxidized forms of these 

molecules are not available in electron chain reactions to be reduced provoking the production 
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of ROS molecules with the damages linked to the excessive presence of these molecules 

(Podgórska et al., 2013). 

5.2. Plant strategies to face ammonium  stress 

  

Several studies have compared the growth of different plant species under NH4
+ and NO3

- 

nutrition, showing that most of them grow better under NO3
- or mixed nutrition than under 

exclusively NH4
+ nutrition. Under NH4

+ nutrition plants accumulate more NH4
+ in their tissues 

(Britto et al., 2001), in this way, it is interesting to highlight that plants shown a correlation 

between the NH4
+ accumulated in their tissues and the growth reduction (Lasa et al., 2001, 

2002). In general NH4
+ is assimilated in the root to avoid the detrimental effects that it causes 

in photosynthetic active tissues. In this sense, roots may act as a kind of barrier. As other 

strategies to control NH4
+ levels, the isolation of NH4

+ inside the vacuole or NH4
+ efflux  to the 

rhizosphere are alternative strategies to control cytosolic NH4
+ levels. In general, an enhanced 

activity of these processes contributes to improve the plant NH4
+ tolerance. However, these 

strategies are linked to biomass reduction because of carbohydrate limitation for growth due 

to excessive sugars consumption during NH4
+ assimilation and to the great energy cost of NH4

+ 

influx/efflux, known as futile transmembrane NH4
+ cycle (Coskun et al., 2013). The futile NH4

+ 

cycle is a plasma membrane cycle of NH4
+ uptake and efflux through cell roots. In a context of 

NH4
+ toxicity, in which NH4

+ would be the principal N source, NH4
+ futile cycle is a continuous 

process to avoid the NH4
+ tissue accumulation and its detrimental effects. It is energetically 

expensive process, and it is said that because of that, plants has to employ resources in the 

NH4+ detoxification instead of in other processes  causing growth inhibition (Britto et al., 

2001). Afterwards, the same research group suggested that the futile cycling was probably in 

form of NH3 and thus, without requiring the energy consumption of active NH4
+ transport 

(Coskun et al., 2013). 

 

The increase of the assimilation of NH4
+ is another detoxification strategy in plants. It is known 

that under NH4
+ nutrition enzymes involved in the N assimilation processes, as GS1, are 

induced, mainly in roots where most of the N assimilation happens (Guan et al., 2016; Lothier 

et al., 2011). However, GS activity can be overfilled in excessive NH4
+ concentration since it has 

been observed that when amino acids level increases assimilation capacity of the GS1 is 

saturated (Prinsi and Espen, 2015). Besides, NH4
+ assimilatory capacity is highly dependent on 

C-skeletons supply, due to that, as already mentioned, TCA anaplerotic enzymes are related to 

plant tolerance capacity providing 2-OG and OAA when they are needed (Setién et al., 2014). 
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Plants can isolate toxic compounds into vacuoles. Due to vacuole pH is ca. two units more 

acidic than the cytosol pH, it can contain 100 fold higher NH4
+ concentration. The transport of 

NH4
+ from the cytosol to the lumen of the vacuole is mediated by passive transport and by 

membrane bound ATP-driven pumps. In the case of the passive transport, this is mediated by 

aquaporins, which transport NH4
+ only as NH3. Once in the vacuole, the NH3 is protonated to 

NH4
+, and consequently it is trapped inside (Bittsánszky et al., 2015).  

5.3. pH control: fundamental factor in ammonium stress response  

 

Soil pH fluctuates widely between natural and agricultural soils and represents an important 

feature that may limit N availability and the plant´s capacity to absorb essential nutrients 

(Marschner and Rengel, 2011). Moreover, pH alterations may have an influence on cellular 

expansion (Cosgrove, 1999) and water conductance in roots besides other effects (Kamaluddin 

and Zwiazek, 2004). Furthermore, H+s also play a role as second messengers in cell signaling 

cascades and so internal pH control is essential for the fine tuning of cells functioning (Felle, 

2001). High NH4
+ content is common in acidic soils and the connection between NH4

+ stress 

and pH alteration has been known from a long time (Chaillou et al., 1991; Gerendas and 

Ratcliffe, 2000). It is known that ammonium-tolerant plants commonly tolerate acidic 

conditions, and that by controlling external medium pH, it is possible to mitigate NH4
+ toxicity 

(Li et al., 2014). NH4
+ uptake is known to induce acidification of the rhizosphere and apoplast 

through proton extrusion coupled to the NH4
+ transport into the cells (Kronzucker et al., 2001). 

On the other hand, NO3
- uptake promotes external alkalinization. Further to this, it has been 

suggested that NH4
+ uptake causes cytosolic alkalinization, while NO3

- uptake provokes 

cytosolic acidification (Hawkesford et al., 2011). However, this potential cytosolic alteration 

associated to N uptake is transient, because of when the uptake and assimilation are 

considered as a whole process, both NO3
- and NH4

+ nutritions tend to alkalinize cell cytosol 

(Britto and Kronzucker, 2005). Indeed, although intracellular pH is sensitive to external pH, 

cytosolic pH is extremely stable thanks to the fine tuning of cell metabolism. This is evidenced 

by several studies, which observed that external pH changes over a range of pH 4-10 had very 

little impact on internal cytosolic pH (Gerendás and Ratcliffe, 2013; Hartung and Ratcliffe, 

2002). A further example is the work of Hachiya et al., (2012), who by the use of A. thaliana 

plants expressing a cytosolic fluorescent pH sensor, observed that although apoplast pH 

decreased upon NH4
+ stress, cytosolic pH remained stable. Indeed, cell metabolic adjustment 
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in response to changes in soil medium parameters, such as N source and availability, is crucial 

for plants in order to maintain their growth rates and fitness.  

5.4. Genes identified in the response to ammonium stress 

 

Recent genetic approaches have been useful to identify new molecular players involved in the 

signaling pathways that lead to NH4
+ sensitivity or tolerance. However, still few genetic 

components of the ammonium perception and signaling have been identified. 

Genes encoding NH4
+ transports and regulators of these transporters are, as expected, closely 

related with cellular NH4
+ homeostasis. In this sense through the analysis of Arabidopsis 

mutants for AMT transporters, it has been observed that AMT1;3 has a major role in the plant 

NH4
+ tolerance response. Under a exclusive NH4

+ N source, plants with a mutation in AMT1;3 

are smaller than WT plants, and furthermore, amt1:3 mutants present improper root 

development under NH4
+ nutrition (Lima et al., 2010). AMT transporters are regulated by 

phosphorylation (Lanquar et al., 2009). Straub et al. (2017), reported that, CIPK23 kinase is 

able to phosphorylate, among others, AMT1;1 and AMT1;2 transporters, decreasing their 

activity when phosphorylated. Accordingly, NH4
+ uptake was induced in cipk23 mutants and 

therefore, these mutants show more sensitive phenotype under NH4
+ nutrition (Straub et al., 

2013). In this context, also observed that mutants of CBL1 (calcineurin B-like binding protein 

1), protein required for the CIPK23-dependent phosphorylation of the potassium transporter 

AKT1, also displayed increased sensitivity towards ammonium nutrition (Straub et al., 2017). 

In addition to NH4
+ transporters, NO3

- transporters have also a role in the plant response to 

NH4
+ stress. For example, NRT1.1 gene that encodes the most studied nitrate transporter has 

been shown to be related with low pH tolerance in plants because of NO3
- uptake is coupled to 

H+ uptake, which promotes the increasing of the rhizosphere pH (Fang et al., 2016). 

Interestingly, nrt1.1 mutant is more tolerant to NH4
+ stress in a pH-dependent manner 

(Hachiya et al., 2011). Other NO3
- transporters also implicated in the alleviation of the NH4

+ 

toxicity are NRT2.1, NRT1.5 or SLAH3, which are NO3
- efflux channels. The plant mutants to 

these  genes displayed a growth decrease under mixed or exclusive NH4
+ nutrition (Krouk et al., 

2006; Meng et al., 2016; Zheng et al., 2015). 

As previously mentioned, subcellular NH4
+ compartmentalization is another strategy to avoid 

NH4
+ toxicity. In this context, it has been shown that the [Ca2+]cyt-associated receptor protein 

kinase (CAP1) is located the tonoplast and that is involved in the ammonium homeostasis in 
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Figure XII. A) Transceptor model: At low external ammonium concentration, the transporter senses 

the extracellular NH4
+ 

status and T460 is not phosphorylated. NH4
+
 can enter the cell through the 

transporter. When ammonium levels increase, the transporter senses the high NH4
+
 external status. A 

kinase is recruited and phosphorylation shuts down NH4
+
 import via the allosteric trans-regulatory 

mechanism. (B) Receptor kinase model: At low ammonium concentration, a receptor kinase senses 

the extracellular NH4
+
 status and T460 is not phosphorylated. When ammonium increases, the 

receptor kinase senses the high NH4
+
 external status and triggers phosphorylation of T460. The 

transporter is converted to the shut conformation. Retrieved from Lanquar et al., (2009). 

the cytosol facilitating the NH4
+ isolation inside de vacuole through the regulation of NH4

+ 

transporters in the tonoplast (Bai et al., 2014). 

N-molecules in general, and NH4
+ in particular, besides of being essential nutrients, are 

important signals in plants and regulates a great number of functions in relation with nutrient 

uptake, metabolic balance and plant development, among others. As previously said, there are 

several mechanisms under the influence of the presence of NH4
+, for example the AMT family 

proteins functioning, which are phosphorylated responding to external NH4
+ concentration  

(Lanquar et al., 2009). Two different models have been proposed to explain NH4
+ sensing and 

signaling: the transceptor model and the receptor kinase model (Figure XII). In the transceptor 

model, which is based on protein that possesses both transporter and receptor functions at 

the same time, when there is a high external NH4
+ concentration, AMT1 proteins are 

phosphorylated and shut down NH4
+ transport. In this sense, it is known CIPK23 directly 

phosphorylates AMT1;1 and AMT1;2 in a complex with CBL1 (calcineurin B-like protein) 

regulating the transport activity (Straub, 2016). In the receptor kinase model, AMT1 only 

functions as a transporter when a receptor kinase senses high external NH4
+ concentration and 

phosphorylates the transporter interrupting the NH4
+ flux (Lanquar et al., 2009).  
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The correct coordination between hormones and nutrient signaling is essential for proper 

plant development. Hormonal status is influenced by N-availability but N-sensing, uptake and  

assimilation is under hormones control (Krouk et al., 2011). NH4
+ stress promotes hormonal 

imbalances that may cause roots and shoots growth inhibition in many plant species including 

Arabidopsis thaliana. In this context, auxin is the most studied hormone and there are several 

studies showing the interaction between NH4
+ and this hormone. For example Yang et al., 

(2015), showed how auxin response decreases under (NH4)2SO4  nutrition provoking impaired 

root growth, which was rescued by external auxin supply. In this sense, the same study reveals 

that the Arabidopsis knock-out mutants for  auxin resistant 1 (AUX1) and pin formed 2 (PIN2) 

genes, which encode for auxin transporters, have an altered root growth under NH4
+ nutrition 

compared to wild type (WT), which is rescued when are supplied with external auxins. Other 

hormone influenced by NH4
+ nutrition is abscisic acid (ABA). Indeed, an Arabidopsis mutant for 

the plastid metalloprotease  (Ethylene-dependent Gravitropism-deficient and Yellow-green-

like Protein 1), displayed hypersensitivity to NH4
+ stress in relation with impaired ABA signaling  

(Li et al., 2012). 

NH4
+ assimilation is a known plant strategy to reduce the detrimental effects of NH4

+ nutrition. 

In this sense the correct functioning of N metabolism related enzymes is essential to maintain 

cellular NH4
+ homeostasis. For example, gln1;2 mutants show higher NH4

+ accumulation than 

WT plants and are more to NH4
+ nutrition, (Lothier et al., 2011). NADH-GOGAT is also 

fundamental in NH4
+ stress response. For instance, Konishi et al., 2014 reported that 

Arabidopsis nadh-gogat-2 mutant developed smaller rosettes than the WT plants when grown 

under NH4
+ nutrition. 

GDP-mannose participates in both L-ascorbic acid (AsA) and in N-glycoprotein synthesis. It has 

been shown that Arabidopsis vtc1 mutant, which does not express GDP-mannose 

pyrophosphorylase enzyme (GMPase), is hypersensitive to NH4
+ stress (Qin et al., 2008). Thus 

suggest that GMPase plays a role in NH4
+ tolerance process. Barth et al., (2010) showed that 

effective protein glycosylation in the roots, rather than decreased AsA content, was linked to 

the hypersensitivity of vtc1 to NH4
+. 

The toxicity of NH4
+ has been related with changes in the cellular redox state. The cellular 

oxidant/antioxidant balance, among others, is under the control of electron transport chains. 

Podgórska et al., (2015) have studied how in A. thaliana fro1 plants, which have a defective 

mitochondrial respiratory chain complex I and consequently accumulate more ROS, are able to 

grow better under NH4
+ nutrition than WT plants, probably because of compensation in 
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energetic metabolism. In rice, another gene related with NH4
+ tolerance is OsSE5 

(PHOTOPERIOD SENSITIVITY 5) which encodes a Heme-oxygenase 1 (HO1) protein. HO1 is 

involved in rice antioxidant defense, and OsSE5 RNAi-transgenic plants revealed NH4Cl-

hypersensitive phenotype with impaired antioxidant defense. In agreement, the 

overexpression of OsSE5 in A. thaliana conferred enhanced NH4
+ tolerance linked to a higher 

antioxidant capacity (Xie et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

48 
 

 

 

  



 

49 
 

  

GENERAL OBJECTIVES 



 

50 
 



Objectives 

 

51 
 

OBJECTIVES 

 

The increase of the world population supposes a great challenge for agriculture, which, among 

others, is forced to increase the agricultural soil and to improve the fertilizer management in 

order to cover the food demand augmentation. The intensive use of fertilizers is associated to 

environmental pollution, which is mostly linked to nitrogen compounds. The reduction of the 

pollution caused by nitrogen compounds in agriculture is a key aspect that humanity has to 

face at present. In this line, the use of NH4
+ as N source, in combination with nitrification 

inhibitors, has been shown more efficient to preserve the environment compared to the more 

traditional use of NO3
-
 as N source. However, ammonium nutrition represents a stressful 

situation and provokes a number of problems for plants health.  

In this context, the general objective of the current study is to better understand plant 

metabolic and genetic mechanisms associated to ammonium tolerance using Arabidopsis 

thaliana as a model. 

This general objective is divided in three specific objectives, each one corresponding to a 

different chapter:  

4. To explore Arabidopsis thaliana intraspecific natural variability in ammonium tolerance 

with a special focus on N assimilation mechanisms. 

 

5. To identify genes related to Arabidopsis thaliana natural variability in ammonium 

tolerance through genome wide association analysis. 

 

6. To understand Arabidopsis thaliana metabolic adjustment to ammonium stress in 

function of the external medium pH. 
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1. ABSTRACT 

 

Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH4
+), together with 

nitrate (NO3
-), is one of the main nitrogenous compounds available in the soil. Paradoxically, 

although NH4
+ assimilation requires less energy than NO3

-, many plants display toxicity 

symptoms when grown with NH4
+ as sole N source. However, besides the species-specific 

ammonium toxicity, intra-specific variability has also been shown. Thus, the aim of this work 

was to study the intra-specific ammonium tolerance in a large panel of Arabidopsis thaliana 

natural accessions. We grew plants either with 1 mM NO3
- or NH4

+ as N source, and we 

determined several parameters related to ammonium tolerance and assimilation. Overall, high 

variability was observed in A. thaliana shoot growth under both N nutritions. From the 

parameters determined tissue ammonium content was the one with the highest impact on 

shoot biomass, and interestingly this was also the case when N was supplied as NO3
-. Enzymes 

of nitrogen assimilation did not have an impact on A. thaliana biomass variation, but the N 

source affected their activity. GDH aminating activity was, in general, higher in NH4
+-fed plants. 

In contrast, GDH deaminating activity was higher in its deaminating direction in NO3
--fed 

plants, suggesting a differential role of this enzyme in function of the N form supplied. 

 

2. INTRODUCTION 

 

Plants have a fundamental dependence on inorganic nitrogen (N) and intensive agriculture 

requires the use of N compounds to supplement the natural supply from the soil. Indeed, more 

than 100 million metric tonnes of nitrogenous fertilizers are added to the soil worldwide 

annually (Good and Beatty, 2011). In part because of the intense use of fertilizers, agriculture 

is now a dominant force behind many environmental threats, including climate change and 

degradation of land and freshwater (Foley et al., 2011; Tilman et al., 2011)). Moreover, recent 

studies suggest that agricultural output would need to roughly double to meet the expected 

demand associated with world population increase (FAO, 2009).  

Nitrate (NO3
−) and ammonium (NH4

+) are the main forms of N available for plants. There is 

serious concern regarding NO3
− loss in the field, giving rise to soil and water pollution. 

Moreover, incomplete capture and poor conversion of nitrogen fertilizer also causes global 

warming through emissions of nitrous oxide. Due to these detrimental effects of adding high 
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NO3
− concentrations to ecosystems (Gruber and Galloway, 2008) the potential of NH4

+ as N 

source for agriculture has been reconsidered alongside the search to improve N use efficiency 

while mitigating agriculture impact (IPCC 2007). Similarly, lowering fertilizer input and 

breeding plants with better nitrogen use efficiency without affecting yield is a main goal for 

research in plant nutrition (Xu et al., 2012).  

Plants have differential N-source preference, but it depends not only of their genetic 

background but also on a wide and dynamic range of environmental variables including soil 

pH, temperature, etc. Thus, a robust classification of plants species adapted to NO3
− or NH4

+ 

does not exist. However, it appears that most non-bred plants preferentially take up NH4
+ 

(Bloom et al., 1993; Kronzucker et al., 2001). Moreover, crop species have traditionally been 

bred under nitric or combined nitrogen nutrition, provoking a negative selection pressure 

towards NH4
+ assimilation and this is surely one of the reasons they prefer NO3

−, although NO3
− 

must be taken against electrochemical gradient and then be reduced to NH4
+ with the 

consequent energy cost (Kronzucker et al., 2001). In this sense, NH4
+ nutrition has been 

generally considered as toxic for plants, particularly when NH4
+ is supplied as the sole N 

source. Indeed, NH4
+ is also toxic to animals and fungi when present in excess amounts (Britto 

and Kronzucker, 2002). 

Ammonium toxicity syndrome in plants include several symptoms, among others leaf chlorosis, 

ion imbalance, hormones deregulation, disorder in pH regulation, decrease in net 

photosynthesis and changes in metabolites levels including amino acids, organic acids and 

carbohydrates. At whole-plant level, a reduction in plant growth with increasing external NH4
+ 

concentrations, as compared with NO3
− nutrition, is a common effect of NH4

+ nutrition (Cruz et 

al., 2006). Biomass reduction has been associated with carbohydrate limitation for growth due 

to excessive sugars consumption for NH4
+ assimilation and to the energy costs of futile 

transmembrane NH3/ NH4
+ cycling in root cells (Coskun et al., 2013). Indeed, plant growth is 

probably the best indicator of NH4
+ stress as it is a comprehensive measure of the physiology 

of the plant as a whole (Ariz et al., 2011a; Cruz et al., 2006; Domínguez-Valdivia et al., 2008).  

Substantial variations in NH4
+ tolerance have been observed amongst closely related species 

(Monselise and Kost, 1993) and even within species (Cruz et al., 2011; Li et al., 2011b), 

suggesting the evolution of highly distinct mechanisms to cope with this stress. The strategies 

plants deploy to avoid NH4
+ toxicity include enhancing NH4

+ assimilation and increasing the 

efflux outside the cell or into the vacuole. Nevertheless, at present there is no consensus on 

which traits confers NH4
+ tolerance or sensitivity to plants. Ammonium assimilation mainly 
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occurs via glutamine synthetase / glutamate synthase cycle (GS/GOGAT). However, it seems 

that other alternative pathways could be involved in ammonium assimilation when NH4
+ is 

supplied as the sole source of N. Although controversial, under these conditions, glutamate 

dehydrogenase (GDH), that catalyzes the reversible deamination of glutamate (Glu) to 2-

oxoglutarate, might be collaborating in NH4
+ assimilation (Setién et al., 2013; Skopelitis et al., 

2006). 

Arabidopsis thaliana and the Brassicaceae family are considered to be a species, and a family, 

sensitive to NH4
+. Most of the works focused on NH4

+ toxicity in Arabidopsis have compared 

plants fed with NO3
− versus plants fed with a combined nutrition of NO3

− supplemented with 

increasing concentrations of NH4
+. The works that have grown Arabidopsis under long-term 

ammonium supply as sole N-source are rare and have shown how NH4
+ causes a retardation of 

seedlings growth or a dramatic reduction in plant biomass (Helali et al., 2010; Hoffmann et al., 

2007). Besides, recent genetic approaches have been useful to identify new molecular actors 

involved in the signalling pathways that lead to NH4
+ sensitivity, for example a GDP-

mannosepyrophosphorylase enzyme (Qin et al., 2008) or the ammonium transporter AMT1:3 

(Lima et al., 2010).  

Overall, the evolutionary trade-off between high productivity, adaptation to low-nutrient 

environments and the use of ammonium as fertilizer is a challenge to most plant cultivars that 

have been selected under non-limiting NO3
− or combined NH4

+ / NO3
− fertilization (Presterl et 

al., 2003; Xu et al., 2012). In this sense, approaches based in intra-specific natural variation 

have become an important mean to study plants adaptation to the environment. Thus, the 

present work evaluates the natural variability of A. thaliana grown under a low NO3
− or NH4

+ 

supply focusing on the importance of N assimilation mechanisms in relation to the differential 

N-source provided. 
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3. MATERIALS AND METHODS 

 

Experimental procedures and growth conditions 

 

Forty seven Arabidopsis thaliana world natural accessions lines (http://public-

lines.versailles.inra.fr/naturalAccession/index) were used throughout the study. Seeds were 

directly sown in 37 cm3 pots containing a perlite:vermiculite substrate mixture (1:1, v:v).   

Seeds were cold-treated during 4 days in the dark at 4ºC and then transferred into a controlled 

conditions phytotron : 14 h day, 200 µmol.m-2.s-1 light intensity, 60% RH and 22ºC day 

conditions and 70% RH and 18ºC night conditions. Pots were initially misted with a modified 

MS solution containing 0.5 mM of NH4NO3. Nine days after transfer into the growth chamber a 

single seedling was retained per pot and treatment was initiated. Plants were irrigated three 

times a week with a modified MS solution (3 mM CaCl2, 1.25 mM KH2PO4, 1.5 mM MgSO4, 5 

mM KCl, 0.085 mM Na2EDTA, 0.5 mM MES, 5µM KI, 0.1 µM CuSO4, 100 µM MnSO4, 100 µM 

H3BO3, 0.1 µM CoCl2, 100 µM FeSO4, 30 µM ZnSO4 and 0.1 µM Na2MoO4) with 0.5 mM 

Ca(NO3)2 or 0.5 mM (NH4)2SO4 as N source. NH4
+-fed plants were supplemented with 1 mM 

CaSO4 to compensate the Ca2+ supplied together with the NO3
-.  

 

Thirty days after transfer into the growth chamber, rosette biomass was recorded and leaves 

were immediately frozen in liquid nitrogen and stored at -80ºC. 

 

Determination of ammonium and total amino acids content 

Aliquots of ca. 25 mg of frozen material were ground to powder with liquid nitrogen and 

homogenised with 800 µL of ultrapure water. Samples were then incubated at 80ºC during 5 

minutes and centrifuged 20 min at 4000 g and 4ºC and supernatants were recovered. 

 

Total free amino acids were determined by the ninhydrin method (Yemm et al., 1955). 

Ammonium content was determined by using the colorimetric method based in the phenol 

hypochlorite assay (Berthelot reaction).  

Protein extraction 

Proteins were extracted as described in Gibon, (2004). Briefly, leaves (about 40 mg\sample) 

were homogenised in a mortar and pestle with 0.8 mL of extraction buffer (10 mM MgCl2, 1 
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mM EDTA, 1 mM EGTA, 10 mM DTT, 0.1% Triton X-100, 10% Glycerol, 0.05% BSA, 0.5% PVPP, 

50 mM HEPES pH 7.5) in presence of a cocktail of proteases inhibitors (1 mM PMSF, 1 mM ε-

aminocaproic acid, 10 µM leupeptin, 1 mM benzamidin). Samples where then centrifuged at 

4000 g for 30 min at 4ºC and the supernatants recovered. Protein content of the supernatants 

was quantified by the Bradford assay (Bradford, 1976). 

 

Enzyme activities 

GS reaction was measured at 30ºC in a reaction buffer containing: 50 mM Tris-HCl (pH 7,6), 20 

mM MgSO4, 8 mM sodium glutamate, 6 mM hydroxylamine, 4 mM Na2-EDTA and 8 mM ATP. 

The reaction was stopped by adding 0.12 M FeCl3, 0.5 M TCA and 2 N HCl. Samples were 

centrifuged at 13,200 g for 5 min, and the absorbance of γ-glutamyl monohydroxamate (γ-

GHM) was measured at 540 nm. 

GDH activity was carried out in the aminating sense in a reaction buffer containing 100 mM 

Tris-HCl  (pH 8), 1 mM CaCl2, 13 mM 2-oxoglutarate, 50 mM (NH4)2SO4 and 0.25 mM NADH, 

and in the deaminating sense in 100 mM Tris-HCl (pH 9), 1 mM CaCl2, 30 mM glutamic acid and 

0.25 mM NAD. Both kinetic activities were monitored spectrophotometrically at 30ºC by 

consumption of NADH (aminating sense) or appearance of NADH (deaminating sense) at 340 

nm. 

NR activity was measured at 30ºC. The reaction medium consisted of 50 mM HEPES-KOH, pH 

7.6, 5 mM KNO3, 0.2 mM NADH, 10 µM flavin adeninedinucleotide phosphate, 1 mM DTT, 20 

mM EDTA. The reaction was started by adding 50 µl of protein extract to 250 µL of reaction 

medium and stopped by adding 32 µL of 50 mM zinc acetate. Then, samples were centrifuged, 

100 µL of supernatant was recovered, 8 µL of phenacin metosulfate 50 mM added and the 

samples incubated during 20 min at room temperature. Finally, 80 µL of sulfanilamide 1% in 3 

M HCl and 80 µL of 0.02% N-(1-naftyl) ethylenediamine dihydrochloride were added and the 

absorbance determined at 546 nm. 

Western blotting  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed in a 1.5-

mm thick 10% (w/v) resolving gel and a 4.6% acrylamide (w/v) stacking gel in a vertical 

electrophoresis cell (Mini- Protean III; Bio-Rad) at 150 V during 150 min. Gels were 

electroblotted onto nitrocellulose membrane during 75 min at 100 V in a Mini Trans-Blot 
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Electrophoretic Transfer Cell (Bio-Rad). Blots were blocked in 5% (w/v) skim milk in 20 mM Tris 

buffered saline at 4°C during 1 hour. We used α-GDH (1:5000), α-GS (1:2000) and α-NR 

(1:1000; Agrisera, Sweeden) as primary antibodies. The secondary antibody was goat anti-

rabbit horseradish peroxidase conjugate (1:50000, Sigma-Aldrich). Immunoreactive bands 

were visualized with a highly sensitive chemiluminescent substrate for peroxidase detection 

(GE Healthcare Europe GmbH, Freiburg, Germany). 

 

Data analysis 

Data analyses were carried out using the SPSS 17.0 (Chicago, IL). Statistical differences 

between nitrate and ammonium nutrition for each accession and variable were assessed 

comparing the mean values by paired t-test. To test the connectivity between variable, 

Pearson’s correlation coefficient was calculated for P ≤ 0.05. Multiple regressions provided a 

view of the relationship between a trait and shoot biomass independent of other correlated 

traits. Multiple regression estimations can suffer from multicollinearity wherein highly 

correlated traits might act redundantly. Thus, to help our interpretation we also used Akaike´s 

information criterion (AIC) to determine the “best” model by rewarding added explanatory 

power but penalizing the inclusion of additional terms. This provides the simplest model with 

the least collinearity and thus, supposedly, the best estimation of selection (Shaw and Geyer, 

2010).   

4. RESULTS  

To evaluate plants nitrogen use efficiency with ammonium as sole N-source we compared 

Arabidopsis rosette biomass after three weeks of growth under 1 mM NH4
+ (0.5 mM (NH4)2SO4) 

or 1 mM NO3
- (0.5 mM Ca(NO3)2) and we used the ratio between shoot biomass under NH4

+ 

and NO3
- conditions (SB NH4

+/ NO3
-) to estimate ammonium tolerance as it has been previously 

used in other works (Ariz et al., 2011a; Cruz et al., 2006). In general, Arabidopsis is a species 

sensitive to NH4
+ and nearly every ecotype analysed showed shoot biomass inhibition in 

response to NH4
+. Twenty four out of the forty seven accessions analysed experienced a 

significant growth inhibition upon NH4
+ nutrition (Fig. 1.1A). The accession Te-0 was the one 

showing the lowest SB NH4
+/ NO3

-ratio (< 0.4), which was significantly lower than the next 

most sensitive accession to NH4
+ (Rubenzhnoe-1; SB NH4

+/ NO3
- 0.56). Only three accessions 

had a SB NH4
+/ NO3

- ratio higher than one but without significant differences between both 

nutritions (Akita, Enkheim-T and Gre-0; Fig. 1.1B). Overall, intra-specific shoot growth 
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variability under contrasted N-source is evident by the use of this accessions collection (Fig. 

1.1B). 

 

 

 

 

The content of ammonium and free amino acids (Supp. Table 1.1) as well as NR, GS and GDH 

enzyme activities (Supp. Table 1.2A-Supp. Table 2D) were determined. GDH activity was 

measured both in the aminating (GDHam) and deaminating (GDHdeam) directions).  Regarding 

NH4
+ content, overall, plants under NH4

+ nutrition significantly contained more NH4
+ compared 

to plants fed with NO3
-. Eight accessions (Enkheim-T, Gre-0, Ishikawa, Jea, Ms-0, Ran, Ta-0 and 

Tsu-0) did not show significant differences among both treatments (Supp. Table 1). Amino 

acids content followed a similar trend as NH4
+ content (Supp. Fig. 1.1) and every accession 

under NH4
+ nutrition significantly contained more amino acids compared with NO3

- nutrition 

(Supp. Table 1; Supp. Fig. 1.1). Concerning the enzyme activities, as expected, every accession 
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Fig. 1.1. Natural variation of Arabidopsis thaliana growth under nitrate or ammonium as N source. (A) Shoot biomass. (B) Ratio 
between shoot biomass under NH4

+ and NO3
– nutrition. Means and standard errors were calculated from 8–12 plants. 

Significant differences between shoot biomass under ammonium compared with nitrate nutrition are indicated for each 
accession (*P<0.05; **P>0.01) 
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under NO3
- nutrition had a higher NR activity (Supp Table1, Fig. 1.2B). GS activity was similar 

for every accession under both nutritions, except for Mt-0 and Ct-1 that showed a slightly 

higher GS activity under NO3
- nutrition and for Rld-2, N7 and N14 that experienced a small 

increase under NH4
+ nutrition (Supp. Table 1, Fig. 1.2A). GDH activity was higher in its 

aminating sense under NH4
+-nutrition in 35 out of the 47 accessions. On the contrary, the 

activity in its deaminating sense was higher under NO3
- nutrition in every accession except for 

Akita, Ishikawa, Rld-2, Pa-1 and Sah-0, which did not show significant differences between 

both forms of nutritions (Supp. Table 1; Fig. 1.2C and D). 
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Table 1.1.  Pearson correlations between the determined parameters in Arabidopsis thaliana plants under NH4
+ nutrition. SB 

means shoot biomass and SB NH4
+ / NO3

- denotes de shoot biomass ratio between NH4
+ - and NO3

- -fed plants. 

 

 

 

To investigate the connectivity between the different parameters we performed a Pearson 

correlation analysis for each parameter pair. Values are given for the correlation coefficient (r2) 

and the significance (P). The results are presented separately for the plants grown under NH4
+ 

(Table 1) and NO3
- nutrition (Table 2). Shoot biomass both under ammonium or nitrate 

nutrition was negatively correlated with NH4
+ and free amino acids content (Tables 1, 2; Fig. 

1.3A), which is reasonable because it could mean that the absorbed N is not been used for 

growth, and ammonium accumulation inside plant tissues is known to be deleterious for plant 

performance (Britto and Kronzucker, 2002; Ludewig et al., 2007). None of the parameters 

determined in NH4
+-fed plants showed any correlation with the SB NH4

+/ NO3
- ratio (Table 1). In 

contrast, in NO3
--fed plants, NH4

+ and amino acids content, together with GDHam activity, 

were positively correlated with SB NH4
+/ NO3

- ratio (Table 2). 

 

 

 

 

 

 

 
 

SB 
NH4

+/NO3
- 

SB NH4
+ 

Amino  
acids 

NR  
activity 

GS  
activity 

GDHam  
activity 

GDHdeam  
activity 

SB NH4
+ / NO3

- 
r2 
P 

1 
 

 
      

SB 
r2 
P 

-0.524** 
0.000 

1 
       

NH4
+ content 

 
r2 
P 

0.547** 
0.000 

-
0.566** 
0.000 

1 
      

Amino acids content 
r2 
P 

0.478** 
0.001 

-
0.544** 
0.000 

0.496** 
0.000 

1 
     

NR activity 
r2 
P 

0.124 
0.403 

-0.138 
0.349 

0.340* 
0.018 

0.085 
0.567 

1 
    

GS activity 
r2 
P 

0.029 
0.845 

-0.105 
0.478 

0.139 
0.346 

-0.014 
0.927 

0.335* 
0.020 

1 
   

GDHam activity 
r2 
P 

0.438** 
0.002 

-0.238 
0.103 

0.389* 
0.006 

0.326* 
0.024 

0.162 
0.271 

0.066 
0.655 

1 
  

GDHdeam activity 
r2 
P 

0.048 
0.744 

0.146 
0.321 

0.078 
0.596 

-0.187 
0.204 

0.220 
0.133 

0.489** 
0.000 

0.156 
0.288 
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Table 1.2.  Pearson correlations between the determined parameters in Arabidopsis thaliana plants under NO3
- nutrition. SB 

means shoot biomass and SB NH4
+ / NO3

- denotes de shoot biomass ratio between NH4
+ - and NO3

- -fed plants. 

 

 

 

Regarding the enzyme activities, in NH4
+-fed plants, neither GS nor NR activity showed any 

correlation with none of the parameters determined (Table 1.1). GDH activities in both 

directions were positively correlated among each other, suggesting that when a genotype 

shows high GDH activity, it occurs in both aminating and deaminating directions.  Both, 

GDHam and GDHdeam activities were positively correlated with amino acids content; but only 

GDHam was positively correlated with NH4
+ content (Table 1.1).  In NO3

--fed plants, NR activity 

was positively correlated with NH4
+ content and with GS activity (Table 1.2). Besides, GS 

activity was also correlated with GDH activity in both the aminating and deaminating 

directions.  Interestingly, and similarly to NH4
+-fed plants, in NO3

--fed plants GDHam activity 

was also correlated with ammonium and amino acids content (Table 1.2).  

In order to better understand the relationships between the ratio SB NH4
+/ NO3

- and the 

different determined parameters, we applied a multiple regression full model and Akaikes´s 

information best model (AIC-selected). The full model only indicated a significant selection for 

the ammonium content in NO3
--fed plants (Table 1.3) and explained the 23% of the variance in 

SB NH4
+/ NO3

-. In the best model the percentage of the variance in SB NH4
+/ NO3

- explained 

increased up to 38%. From the four traits retained in the best model (ammonium content both 

in NH4
+- and NO3

--fed plants;  amino acids content in NO3
--fed plants and NR activity under 

NH4
+ nutrition) NH4

+ and amino acids accumulated in NO3
--fed plants were significantly 

retained. Interestingly, NH4
+ content explained the 53% of the best model.  
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NH4
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activity 
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activity 
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activity 
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- r2 
P 
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SB r2 
P 

  0.43** 
0.00 

1 
       

NH4
+  

 
r2 
P 

-0.14 
0.33 

-0.45** 
0.00 

1 
      

Amino acids  r2 
P 

-0.00 
0.99 

-0.41** 
0.00 

  0.55** 
0.00 

1 
     

NR activity  r2 
P 

-0.01 
0.93 

-0.19 
0.19 

0.10 
0.51 

0.05 
0.74 

1 
    

GS activity  r2 
P 

0.11 
0.48 

-0.02 
0.91 

-0.12 
0.43 

0.00 
0.99 

0.25 
0.09 

1 
   

GDHam  
activity  

r2 
P 

0.21 
0.15 

0.01 
0.94 

0.33* 
0.02 

0.32* 
0.07 

0.06 
0.70 

0.05 
0.72 

1 
  

GDHdeam activity  r2 
P 

0.14 
0.36 

-0.05 
0.72 

0.27 
0.07 

0.31* 
0.04 

0.14 
0.35 

0.01 
0.95 

  0.69** 
0.000 
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We performed the same analysis for the shoot biomass under both nutritions. For NH4
+ -fed 

plants the models only indicated selection for ammonium content, and both the full and best 

models only explained the 19% of the variance in shoot biomass (Supp. Table 1.3). For NO3
--fed 

plants both the full and the best model explained 39 % of the variance in shoot biomass. The 

full model indicated selection for ammonium and amino acids content (Supp. Table 1.2) and 

both models retained significant the ammonium and amino acids content (Supp. Table 1.2). 

According to the importance given both by Pearson correlations and the multiple regression 

models, we represented the correlation of ammonium content both with shoot biomass and 

with SB NH4
+/ NO3

- was illustrated (Fig. 1.3). As shown by Pearson analysis (Tables 1.1, 1.2) 

ammonium content was negatively correlated with shoot biomass both under NH4
+- or NO3

- -

nutritions (Fig. 1.3A). Interestingly, and as suggested by the multiple regression model,  only 

ammonium content in NO3
--fed plants was correlated with SB NH4

+/ NO3
- ratio (Fig. 1.3B). 
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biomass under NH4

+ and NO3
-. Linear regression and Pearson r2 are given only if P was <0.05. 
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To understand further the behaviour of the N-assimilating enzymes determined, we 

represented the enzyme activities  and we performed a western blotting analysis for the 

accessions Te-0 and Gre-0, the most sensitive and tolerant accessions to ammonium, 

respectively (Fig. 1.3). This analysis did not show any difference for any of the three enzymes 

under both nutritions. However, it was useful to ascertain that although there were not 

significant differences in GS activity, the GS1 isoform content was clearly accumulated upon 

ammonium nutrition (Fig. 1.3E). NR protein content, in agreement with NR activity, was 

dramatically induced in NO3
--fed Te-0 and Gre-0 plants. Finally, both GDH α and β isoforms 

content increased in NH4
+-fed plants, according to GDHam activity increase (Fig. 1.3C). In 

contrast, although both isoforms were induced upon ammonium nutrition, as described above 

GDHdeam activity increased in NO3
--fed plants (Fig. 1.3D). However, it must be noted that 

under NH4
+ nutrition the average of GDHam activity was around eight times higher than 

GDHdeam activity, whilst under NO3
- nutrition GDHam was about three times higher than 

GDHdeam activity. 

 

 

 

  SB NH4
+ / NO3

- 

  Full model AIC-selected best model 

Trait Treatment β ± SE P value β ± SE P value 

NH4
+ A -0.037 ± 0.029 0.214 -0.033 ± 0.020 0.108 

NH4
+ N  0.155 ± 0.045 0.002 0.106 ± 0.041 0.002 

NO3
- A -0.001 ± 0.003 0.848 - - 

NO3
- N -0.001 ± 0.002 0.651 - - 

Amino acids A  0.001 ± 0.002 0.630 - - 

Amino acids N  0.010 ± 0.005 0.081 0.008 ± 0.004 0.040 

NR activity A -0.882 ± 1.064 0.412 -1.266 ± 0.795 0.119 

NR activity N -0.031 ± 0.183 0.867 - - 

GS activity A -0.053 ± 0.172 0.760 - - 

GS activity N -0.042 ± 0.143 0.773 - - 

GDHam activity A -0.005 ± 0.009 0.594 - - 

GDHam activity N  0.010 ± 0.008 0.215 - - 

GDHdeam activity A  0.021 ± 0.048 0.669 - - 

GDHdeam activity N -0.004 ± .0.022 0.852 - - 

      r2  0.23 r2  0.38 

Table 1.3. Full and Akaikes information criterion (AIC)-selected best multiple regression models of Arabidopsis thaliana 

ammonium tolerance based in the ratio of the rosette biomass between plants grown under NH4
+ or NO3

- nutritions. Selection 

gradients (β) and standard errors (SE) are presented along with P-values. Significant selection gradients are presented in bold. A 

means ammonium-fed plants and N means nitrate-fed plants. 
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5. DISCUSSION 

 

Plant response to N availability depends on the genotype, the N source and N fertilization level 

and the limiting steps in N metabolism are different at low and high N supply (Chardon et al., 

2012; Xu et al., 2012). Overall, NUE is higher when N supply is limiting. In general, adaptation 

to low-nitrogen environments is challenging to most cultivars, because they have been 

selected under high-nutrient environments but plants in natural field conditions are faced to 

environmental changes where N availability varies and the better NUE under low N conditions 

is a competitive advantage (Kant et al., 2011). Moreover, reducing N fertilizers input in the soil 

while maintaining productivity is an unavoidable strategy to reduce agriculture impact in the 

environment. Thus, in this work, a low-N dose (1 mM) was used throughout the study. 

Moreover, since Arabidopsis, and Brassicaceae family, has been described as a very susceptible 

species to ammonium nutrition. Indeed, because of this high sensitivity, most of the studies 

about ammonium toxicity in Arabidopsis have been performed with a mixed nutrition and 

thus, long-term ammonium-based nutrition studies involve the use of a low ammonium 

concentration.  

Approaches based in intra-specific natural variation have become an important mean to study 

plants adaptation. Regarding nitrate nutrition, studies based in natural variation have already 

been used in several species including maize (Coque and Gallais, 2007) and rice (Namai et al., 

2009). Arabidopsis natural variation has also been studied for example under nitrate supply 

under limiting and ample N supply (Chardon et al., 2010; North et al., 2009) and to evaluate 

the capacity of different genotypes for nitrogen remobilization during seed filling (Masclaux-

Daubresse and Chardon, 2011). In contrast, the studies focused in intra-specific variation of N 

use with ammonium as sole N-source are more scarce although there exist examples studying  

four maize cultivars (Schortemeyer, 1997), a collection of rice inbred lines (Obara et al., 2010) 

or four pea cultivars (Cruz et al., 2011). In this work, we have collected data from 47 natural 

accessions of Arabidopsis and we have measured several traits related to N-metabolism to 

determine the natural variation of Arabidopsis growth and N metabolism (ammonium and 

amino acids content and NR, GS, and GDH activities) under two different N sources (nitrate or 

ammonium). Biomass is considered as the best indicator of plant performance because it 

integrates every aspect of the plant metabolism, nutrient uptake to its assimilation and we 

considered the ratio of the shoot biomass under ammonium versus nitrate nutrition as 

indicator of the plant tolerance/sensitivity to ammonium as it has been previously used in 

other works (Ariz et al., 2011a; Cruz et al., 2006). Arabidopsis N1438 accession grown under 
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2.5 mM NH4
+ during 21 days showed three times less biomass compared with plants grown 

under NO3
- and the authors suggested ionic imbalance as a major cause of this toxicity (Helali 

et al., 2010). Similarly Hoffmann et al., (2007) reported a retardation of Arabidopsis Col-0 

seedlings growth in NH4
+- nutrition compared to NO3

- nutrition. The present study confirms an 

overall sensitivity or Arabidopsis to ammonium, since out of the 47 genotypes, 44 had a ratio 

below one (23 accessions showing significant differences in shoot biomass between both 

nutritions). However, this study highlights great intra-specific variation of ammonium 

tolerance expressed as SB NH4
+/ NO3

-, which varied between 0.36 and 1.18. These values are in 

harmony with the values registered by Ariz et al., (2011) working with 7 different species and 

ammonium concentrations. Thus, the present study, working with a low ammonium 

concentration, reveals a similar degree of intra-specific Arabidopsis variability in ammonium 

tolerance than the inter-specific degree of ammonium tolerance variability. This underscores 

the high variability within a single species and the powerfulness of natural variation 

approaches for plants adaptation studies. 

Ammonium accumulation affects plant growth 

Ammonium “excessive” accumulation is toxic to cells. However, the concept of “excessive” is 

extremely variable depending on the plant species and on soil NH4
+ concentration. In fact, 

ammonium toxicity is considered to be “universal” even in species labeled as “NH4
+ specialists” 

(Li et al., 2014). Excess ammonium unbalances among others pH homeostasis, ionic 

equilibrium and primary metabolism (Britto and Kronzucker, 2002). Ammonium accumulation 

might come from its direct uptake but also from amino acids deamination, protein degradation 

and photorespiration. To prevent cells cytosol from ammonium overload plants deploy 

different strategies including AMT-type ammonium transporters regulation (Lanquar et al., 

2009) or increasing ammonium assimilation (Setién et al., 2013). In our work, as expected, 

NH4
+-fed plants accumulated more NH4

+ and amino acids than NO3
--fed plants and this NH4

+ 

accumulation was negatively correlated with Arabidopsis rosette biomass (Fig. 1.2A). 

Interestingly, this correlation was found both plants under NH4
+ nutrition and under NO3

-

nutrition, suggesting that ammonium accumulation negatively influences plant growth even 

under nitric nutrition. NH4
+ accumulation under low-N supply might be due to a lack of proper 

carbohydrate supply for ammonium assimilation or by the toxicity provoked by the excess of 

NH4
+ as stated above. Anyway, to our knowledge, this is the first time that a correlation 

between plant shoot growth under NO3
- as sole N source and the accumulation of NH4

+ in 

leaves has been reported, which evidences the extreme sensitivity of Arabidopsis to 

ammonium.  
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Regarding SB NH4
+/NO3

- ratio, out of the parameters determined only ammonium, amino acids 

content and GDHam from NO3
--fed plants showed a significant correlation (Table 2). Multiple 

regressions full and best models retained ammonium and amino acids content, which both 

show a strong correlation (Sup. Fig. 1.1), as significant factors explaining the variation in SB 

NH4
+/NO3

- ratio (Table 1.3). Interestingly, NH4
+ content of NH4

+-fed plants did not show any 

significant correlation with SB NH4
+/NO3

- ratio. Thus, the fact that NO3
--fed plants that 

accumulate more NH4
+ present a smaller rosette biomass (Fig. 1.2A) could explain the 

relationship between ammonium content of NO3
--fed plants with SB NH4

+/NO3
- ratio (Fig. 

1.2B). Alternatively, it can be speculated that evolutionarily a plant that under NO3
- nutrition is 

able to accumulate more ammonium could be genetically better adapted to an ammonium 

based nutrition. 

NR, GS and GDH role in Arabidopsis response to ammonium  

After NO3
- and NH4

+ uptake, N can be reduced to ammonia or directly assimilated for plant 

growth. As expected, NR activity was induced upon NO3
- exposure but it was not related to 

differential plant growth. Indeed, NR or nitrite overexpression in tobacco, potato or 

Arabidopsis did not increase plant biomass, thus nitrate reduction does not seem to be a 

limiting step for plant growth (Masclaux-Daubresse et al., 2010; Pathak et al., 2008). 

Ammonium assimilation in normal conditions is mainly assimilated in plants via de GS/GOGAT 

cycle. There are two different GS isoforms. GS1 is encoded by five genes in Arabidopsis and 

functions primarily in assimilating ammonia during nitrogen remobilization. GS2 is encoded by 

a single gene in Arabidopsis and has been involved in assimilating the ammonia coming from 

nitrate reduction or photorespiration (Xu et al., 2012). In general, plants with higher GS 

activities are considered more tolerant to ammonium and Cruz et al., (2006) showed a 

relationship between GS activity in the dark and ammonium tolerance. In this work, we found 

no difference in GS activity in almost every accession between NH4
+- and NO3

--fed plants 

(Supp. Table 1.2, Fig. 1.3A) and there was no correlation between GS activity and shoot 

biomass in plants under both nutritions (Table 1.1, 1.2). We performed a western blot analysis 

in two accessions with contrasted ammonium tolerance (Te-0 and Gre-0) and in both cases 

there was a clear accumulation of GS1 isoform in response to ammonium nutrition. Overall, 

total GS activity does not seem to be crucial for ammonium tolerance in Arabidopsis; however 

GS1 could have an important role when ammonium is supplied as N-source. Moreover, out of 

the five genes encoding for GS1 in Arabidopsis GS1,2 is the most highly expressed in leaves and 

it is induced by ammonium (Lothier et al., 2011). Indeed, an Arabidopsis mutant lacking GS1,2 

expression exhibited reduced growth under a seven-day ammonium treatment compared to 
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the wild type (Lothier et al., 2011). Similarly, a rice mutant in GS1;1 gene was also more 

sensitive upon ammonium nutrition (Kusano et al., 2011). Thus, it remains to be determined 

whether GS1,2 and the rest of  GS isozymes, are related to Arabidopsis variability under 

ammonium nutrition. Besides, very recently NADH-GOGAT has been suggested to play an 

important role in ammonium assimilation under ammonium nutrition (Konishi et al., 2014).  

GDH enzyme is able to catalyze the in vitro reversible amination of 2-oxoglutarate to 

glutamate. In vivo, the existence of the GDH N assimilating capacity is controversial and in the 

last years several proofs are accumulating in favor of the major role of GDH deamination, 

among others, by the use of 15N-NMR-labeling studies showing that there was no direct 

incorporation of ammonia into Glu when GS was inhibited (Labboun et al., 2009; Tercé-

Laforgue et al., 2013). However, although in unstressed plants GDH ammonia assimilating 

capacity seems to be negligible, it appears that under stress conditions and under ammonium 

nutrition, GDH could be incorporating NH4
+ (Setién et al., 2013; Skopelitis et al., 2006). In this 

work, we found a contrasted behavior of GDH activity. GDHam was generally induced upon 

NH4
+ exposure and GDHdeam was repressed (Supp. Table 1.2, Fig. 1.3D). Moreover, both in 

NH4
+ and NO3

--fed plants ammonium and amino acids content was positively correlated with 

GDHam activity, and not with GDHdeam (Tables 1.1, 1.2). Thus, our data suggest that NH4
+ 

accumulation might be stimulating  GDH ammonium incorporating capacity rather than being 

a consequence of NH4
+ release associated to GDH Glu deamination. Anyway, experiments 

designed to ascertain the actual GDH aminating activity in conditions of plant growth under an 

exclusive ammoniacal nutrition such as 15N-NMR-labeling are necessary. 

GDH is traditionally accepted to form seven isoenzymes composed of α and β homo- or 

heterodimers. In our work, after SDS-PAGE we were able to differentiate α and β subunits and 

both subunits were accumulated under ammonium nutrition (Fig. 1.3E). Recently, it has been 

shown the existence in Arabidopsis of a third gene encoding for a γ subunit (Fontaine et al., 

2012). However, the activity of this γ isoenzyme was exclusive from root (Fontaine et al., 

2012), which is in line with the hypothesis that each of the GDH subunits may have specific 

biological functions (Purnell et al., 2005; Tercé-Laforgue et al., 2013). An accumulation of GDH 

polypepetides has already been reported in several species including wheat (Setién et al., 

2013), pea (Ariz et al., 2013) and tomato (Setién et al., 2014). The overall data indicate a key 

role for GDH in Arabidopsis under NH4
+ nutrition.  

Concluding remarks and future prospects 

Overall, the results obtained in this work reveal that there exists high natural variation in A. 
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thaliana growth in function of the N source. This variation was partially due to the differential 

tissue NH4
+ and amino acids accumulation both in NO3

-fed and NH4
+-fed plants. Similarly, 

significant natural variability was detected in NH4
+ tolerance expressed as SB NH4

+/NO3
- ratio, 

and interestingly NH4
+ accumulation in NO3

-fed was the parameter showing the highest 

relevance. Although plant NH4
+ assimilation capacity is known to be a key aspect for 

ammonium tolerance, GS and GDH enzymes does not seem to be responsible of the variability 

shown in A. thaliana. However, we clearly observed the modulation of GDH activity in function 

of the supplied N source which suggests an important role of this enzyme in NH4
+ assimilation.  

Similarly the observed GS1 isoform higher content in NH4
+-fed plants could be also 

contributing to NH4
+ assimilation. Besides, the quality of the root system has also been 

suggested to partly explain the differences in nitrogen uptake and use efficiency (Loudet et al., 

2005). Furthermore, several works have highlighted the importance of the root in NH4
+ 

tolerance (Sasaki and Kojima, 2018; Setién et al., 2013, 2014). Thus, future works leading with 

root metabolism will be useful to ascertain whether N assimilation in this organ could be 

related to A. thaliana natural variability in NH4
+ tolerance. Besides, approaches leading with 

bigger A. thaliana natural populations in combination with genome wide association studies 

(Atwell et al., 2010) will surely be very helpful to elucidate the genetic basis underlying the 

Arabidopsis intra-specific variability in ammonium tolerance. 
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6. SUPPLEMENTAL INFORMATION 

 

Supplemental Table 1.1.A. Ammonium content. Attached file. 

Supplemental Table 1.1.B. Amino- acid content. Attached file. 

Supplemental Table 1.2.A. NR activity. Attached file. 

Supplemental Table 1.2.B. GS activity. Attached file. 

Supplemental Table 1.2.C. GDH aminating activity. Attached file. 

Supplemental Table 1.2.D. GDH deaminating activity. Attached file. 

 

 

 

Supplemental Table 1.3. Full and Akaikes information criterion (AIC)-selected best multiple 
regression models of Arabidopsis thaliana rosette biomass under NH4

+ or NO3
- nutritions. 

Selection gradients (β) and standard errors (SE) are presented along with P-values. Significant 
selection gradients are presented in bold. 
 

 Biomass (NH4
+-fed) Biomass (NO3

--fed) 

 Full model AIC-selected best model Full model AIC-selected best model 

 β ± SE P 
value 

β ± SE P 
value 

β ±SE P 
value 

β ± SE P 
value 

NH4
+  

-6,011± 2,717 0,033 
-7,382 ± 

2,185 
0,002  -12,27 ± 5,64 0,006 

-14,307 ± 
5,161 

0,008 

Amino acids -0,284 ± 
0,183 

0,128 - - 
-1,246 ± 

0,561 
0,032 -1,474 ± 0,528 0,008 

NR activity -94,95 ± 
86,21 

0,337 - - 13,24 ± 20,19 0,316 - - 

GS activity -3,081 ± 
15,16 

0,586 - - 
-22,84 ± 

15,88 
0,158 - - 

GDHam activity 0,792 ± 0,713 0,274 - - 0,094 ± 0,757 0,902 - - 

GDHdeam 
activity 

0,013 ± 4,160 0,824 - - 4,523 ± 2,569 0,086 - - 

     r2 0.19     r2 0.19     r2 0.39     r2 0.39 

 

 

 

 

 

 

 



Ammonium stress variability in A. thaliana 

 

73 
 

0,00 

10,00 

20,00 

30,00 

40,00 

50,00 

60,00 

70,00 

80,00 

90,00 

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 

A
m

in
o

 a
ci

d
s 

co
n

te
n

t 
(µ

m
o

l G
lu

ta
m

in
e.

 g
FW

-1
) 

Ammonium content (µmol NH4
+ . g FW-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1.1. Scatter plots of amino acids versus ammonium content of leaves of 
Arabidopsis thaliana grown under NH4

+ and NO3
-. Linear regression equations and person r2 are 

given. 

 

 

 

 

 

 

 

 

 

 

y = 12,828x + 0,716 
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CHAPTER 2. 

Genome-wide association study reveals a new locus 
involved in Arabidopsis thaliana natural variation in 

ammonium use efficiency 
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1. ABSTRACT 

 

The use of ammonium as nitrogen source together with nitrification inhibitors has been 

evidenced as good alternative to reduce some of the negative effects of nitric fertilizers. 

However, ammonium nutrition often entails a stressful situation. Although ammonium stress is 

considered as universal, different species show contrasting ammonium tolerance. Moreover, 

variability has also been observed among genotypes of the same species. In this work, we took 

advantage of the natural variability of Arabidopsis thaliana natural populations and studied a 

panel of 337 natural accessions to identify genomic regions associated with ammonium 

tolerance following a genome wide association (GWA) approach. To do so, we took into 

account the potential spatial scale of adaptive variation. Overall, we observed great 

intraspecific variability at every geographical scale studied. At French geographical scale we 

identified a significant peak of association in chromosome IV related with shoot biomass under 

ammonium nutrition that was absent in the analysis performed with shoot biomass under 

nitrate nutrition. This association peak corresponds to a genomic region that encompasses a 

tandem array of 19 genes encoding for Cysteine-rich receptor-like kinases (CRKs). CRKs are a 

family of 44 members that have been suggested important in plant response to biotic and 

abiotic stress. To validate the potential implication of these CRK members we analyzed a 

complete panel of T-DNA mutant lines covering the mentioned region and in two microRNA 

lines targeting five of the members located in the identified region. No differences in 

ammonium tolerance were observed in any of these lines respect to Col-0 wild type plants. We 

also analyzed their gene expression in wild type plants and observed that some of these genes 

were induced upon ammonium nutrition, suggesting again their potential role during 

ammonium nutrition. Overall, the probable redundancy in CRKs function did not allow 

confirming the true implication of any of the CRK members in Arabidopsis thaliana ammonium 

tolerance. 

2. INTRODUCTION 

 

In agricultural soils nitrogen (N) is a major growth limiting factor for plants and thus, there is a 

constant need of supplying soils with N fertilizers to sustain crops yield. Importantly, a great 

part of the applied N fertilizers is lost to the environment and causes important environmental 

problems including water eutrophication and greenhouse gases emissions. Plants take up N 

mostly in inorganic form, essentially nitrate (NO3
-) or ammonium (NH3/NH4

+). NO3
-, being 

negatively charged, is prone to be leached while NH4
+, with positive charge, tends to be 
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retained in soil clays (Lin et al., 2001). Besides, microbial NO3
- denitrification and NH4

+ 

nitrification processes provoke the emission of nitrogenous gases including nitrous oxide 

(N2O), a greenhouse gas with a global warming potential, 265-298 times higher than CO2 for a 

100-year timescale (IPCC 2014). The use of NH4
+ based fertilizers formulated together with 

nitrification inhibitors, which maintain NH4
+ stable in the soil for long periods, have been 

proven efficient to reduce both NO3
- leaching and N2O emission; therefore, improving plants N 

use efficiency (Ruser and Schulz, 2015).  

  

When the plant takes up N as NO3
-, in order to be incorporated into amino acids it needs to be 

reduced to NH4
+ in an energetically expensive manner. NH4

+ is then assimilated via the 

glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, which is intertwined with the 

respiratory metabolism. In this sense, tricarboxilic Acids (TCA) cycle and its associated 

anaplerotic enzymes, provide the needed carbon skeletons for NH4
+ assimilation. In theory, the 

direct uptake of NH4
+ by the root, thus bypassing the mandatory nitrate reduction, is 

advantageous for plant performance. However, when NH4
+ is present in the soil, or root 

medium, at high concentrations plants commonly suffer the so-called ammonium stress. The 

symptoms associated to this stress are, among others, deficiency of competing cationic 

nutrients, deregulation in hormone homeostasis, changes in amino acids, organic acids and 

carbohydrates levels, disorders in pH regulation, or decrease in net photosynthesis. The most 

evident consequence of these symptoms, comparing to plants grown under nitrate nutrition, is 

the reduction of the plant growth and even the appearance of leaf chlorosis (Britto and 

Kronzucker, 2002). Although ammonium sensitivity is considered as universal, virtually 

affecting every species, great variation in ammonium tolerance or sensitivity has been 

reported between closely related species (Monselise and Kost, 1993) and also within the same 

species (Cruz et al., 2011; Di et al., 2018). In Arabidopsis thaliana several authors have 

reported the existence of intraspecific variability upon ammonium nutrition (Li et al., 2011b; 

Menz et al., 2018; Rauh et al., 2002; Sarasketa et al., 2014 corresponding to Chapter 1). 

Interestingly, in Chapter 1  (Sarasketa et al., 2014) studying a panel of 47 natural accession of 

A. thaliana, we observed that the accumulation of free NH4
+ in the leaves was correlated with 

ammonium tolerance. In fact, the excessive accumulation of NH4
+ in cells´ cytosol has been put 

forward as the most probable cause of the biomass reduction typically observed in plants 

subjected to ammonium stress. In fact, growth reduction would be a trade-off of the energy 

consumed by the cell to deal with free NH4
+, through its assimilation into organic molecules, its 

efflux outside the cell or its confinement inside the vacuole (Coskun et al., 2013; Kirscht et al., 

2016).  
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Physiological effects of ammonium stress have been greatly studied; nevertheless, the genetic 

basic underlying ammonium stress or sensitivities remain barely explored (Li et al., 2014). The 

relationship between Arabidopsis genotype and its phenotype upon exposure to high 

concentrations of ammonium has been studied for instance with quantitative trait loci (QTL) 

mapping using RIL population to identify chromosomal regions associated for instance to root 

development (Rauh et al., 2002; Sasaki and Kojima, 2018). In addition, the use of mutant 

screenings appeared efficient strategy to identify molecular actors governing Arabidopsis 

response to ammonium stress such as GDP-mannose pyrophosphorylase (Qin et al., 2008) or 

the metalloprotease AMOS1/EGY1 (Li et al., 2012). In the present work, as a mean to further 

dig into plants ammonium tolerance, we took advantage of naturally occurring variability to try 

identifying new molecular players potentially involved in the plants response to ammonium 

stress by means of Genome-Wide Association (GWA) mapping. The great genetic diversity of 

Arabidopsis thaliana and its relative rapid decay of linkage disequilibrium (LD; ~10 kb) together 

with the available genotypic data based on 250K SNP array with a marker density higher than 

supports a mapping resolution close to the gene level made Arabidopsis to emerge as an 

excellent species for GWA studies (Bergelson and Roux, 2010; Brachi et al., 2013; Horton et al., 

2012). Multiple studies have revealed the power of GWA to study the phenotypic variation 

observed at broad geographical scale for instance in relation with plant development, plant 

response to pathogens and also in relation with plant nutrition and metabolism. For instance, 

Rosas et al., (2013) found that Pi exporter PHOSPHATE 1 was associated to Arabidopsis root 

system plasticity in response to nitrate and Fusari et al., (2017) using GWA studies described 

genetic associations with enzyme activities and primary metabolites levels.  

  

Plant biomass is considered as the best marker of ammonium stress (Britto and Kronzucker, 

2002; Cruz et al., 2006; Sarasketa et al., 2014). Thus, we performed a GWA study analyzing 

rosette biomass of 349 diverse Arabidopsis accessions grown under the exclusive supply of 1 

mM NH4
+ or NO3

- as N source. The study revealed a genomic region in chromosome IV 

significantly associated with shoot biomass when plants were grown under ammonium 

nutrition that was absent when grown under nitrate nutrition. Intriguingly, this region 

encompasses a tandem array of twenty genes encoding Cysteine-rich receptor-like kinases 

(CRKs). CRKs have been suggested important in plant response to biotic and abiotic stress 

(Bourdais et al., 2015) and thus, we assessed the potential implication of these CRK genes 

through gene expression and T-DNA mutant analysis. 
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3. MATERIALS AND METHODS 

 

Plant material 

 

We analyzed a set of 337 Arabidopsis thaliana accessions of the French RegMap panel (Horton 

et al., 2012). According to the geographical scales described in Brachi et al., (2013) we 

distributed these 337 accession in the following sets: WORLD (n = 145), EUROPE (n = 124), 

FRANCE (n = 180), BURGUNDY (regional scale, n = 110), MIB and TOU (two local populations in 

Burgundy; n = 48 and n = 62, respectively). 

 

Regarding A. thaliana mutants, all the lines studied were in Col-0 background. The mutants 

crk5, crk6, crk7-1, crk8, crk10-2, crk11, crk12, crk13, crk16, crk17, crk20, crk21-1, crk22, crk23-

2, crk24 were previously described (Bourdais et al., 2015). The mutants crk14-2 

(SALK_005139), crk14-3 (SALK_144908), crk15-2 (GK-008C04), crk19-3 (SALK_004196), crk19-4 

(SALK_105919), were obtained from the Nottingham Arabidopsis Stock Center (NASC) and 

characterized (Fig. S2.1) with the primers described in Table S2.1. crk6/7/8/10/15 -1 and 

crk6/7/8/10/15 -2 ami-RNA lines were described in (Idänheimo et al., 2014). 

 

Growth conditions and phenotyping 

 

For accessions phenotyping, plants were sown on previously autoclaved 1:1 perlite:vermiculite 

mixture in trays of 104 individual cells (37 cm3/cell) using a split-plot design arranged as a 

randomized complete block design. Twelve rounds of phenotyping were performed each one 

with one individual per accession and per treatment. To control micro-environmental 

variations within blocks (trays), 96 different accessions were randomly sown per tray and in 

the resting eight cells four individuals of Einkheim-T and Oy-0 were grown. Seeds were cold-

stratified for 4 d at 4 °C and then transferred to a controlled conditions growth chamber (14 h 

day, 200 µmol.m-2.s-1 light intensity, 60% RH and 22°C day conditions and 70% RH and 18°C 

night conditions). The substrate mixture was initially misted with a modified MS solution 

(Sarasketa et al., 2014) containing 0.5 mM NH4NO3. Nine days after transfer, seedlings were 

thinned to one per port and the nitrogen nutrition treatment was initiated. To do so, trays 

were bottom-watered three times per week with modified MS-solution containing as exclusive 

nitrogen source 0.5 mM Ca(NO3)2 or 0.5 mM (NH4)2SO4 for nitrate-fed and ammonium-fed 

plants, respectively. NH4
+-fed plants were supplemented with 0.5 mM CaSO4 to compensate 
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the Ca2+ supplied together with the NO3
–. 21-days after the onset of the treatment rosette 

biomass was recorded.  

 

Gene expression analysis 

 

RNA was extracted with the Nucleospin RNA plant kit (Marcharey-Nagel), out of 25 mg of 

frozen Arabidopsis Col-0 leaf or root tissue. After checking RNA quality, 1 µg of RNA was 

retrotranscribed to cDNA  (PrimeScriptTM RT; Takara Bio Inc.). Gene expression was analyzed by 

quantitative PCR using SYBR Premix ExTaq™ (Takara Bio Inc.) in a Step One Plus Real Time PCR 

System (Applied Biosystems).The PCR program was 95 °C for 5 min followed by 40 cycles (94 °C 

for 15 s and 60 °C for 1 min) and a melting curve (40–95 °C with one fluorescence read every 

0.3 °C).  Relative expression was calculated using SAND family (At2g28390) and β-tubulin 4 

(At4g44340) as housekeeping genes. The primers used are described in Table S2.1). 

 

Data analysis 

 

All accessions have been previously genotyped using a custom Affymetrix SNP tiling array 

(AtSNPtile1), which surveys 248,544 SNPs that provides a marker density is on average 1 SNP 

every 500 bp (Horton et al., 2012; http://bergelson.uchicago.edu/regmap-data/). GWA 

analyses were performed using a mixed-model (Efficient Mixed-Model Association eXpedited; 

EMMAX) (Kang et al., 2010). This model efficiently controls population structure and 

relatedness by including an identity-by-state kinship matrix among the accessions. To minimize 

bias due to rare alleles, we only considered SNPS with minor allele frequency (MARF) bigger 

that 10%. Analyses were based on best linear unbiased predictions (BLUPs) obtained by the 

statistical model described in the following equation using the PROC MIXED procedure in SAS 

(SAS Institute Inc., Cary, NC, USA). 

 

Y       biomass   block    genotype   covMicro          

 

 Where “Y” in the trait studied, " " is the overall mean, block accounts for differences among 

the trays, “covMicro” is a covariate accounting for the microenvironmental effects within 

blocks (Einkheim-T and Oy-0 biomass were used as a covariate) and “ɛ” is the residual term.  
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For gene expression analysis and mutants phenotyping, statistical analysis of normality and 

homogeneity of variance were analyzed by Kolmogorov-Smirnov and Levene tests and the 

significance of the results was assessed using independent samples t-test. 

 

4. RESULTS AN DISCUSSION 

 

A. thaliana accessions display extensive natural variation in their response to growing with 

ammonium or nitrate as N source independently of their geographical origin 

 

Previous research with Arabidopsis thaliana accessions reported the existence of natural 

variability in Arabidopsis NUE (Rauh et al., 2002; Chardon et al., 2010; Masclaux-Daubresse and 

Chardon, 2011). In Chapter 1 (Sarasketa et al., 2014) we also confirmed that variability, under 

both ammonium and nitrate as N source. Regarding the ability to grow with ammonium as N 

source Rauh et al., (2002) and Sasaki and Kojima, (2018) identified, respectively, 5 and 6 QTLs 

analyzing a RIL population of the cross Columbia-4 × Landsberg erecta (Ler). However, in both 

cases no positional cloning or candidate gene analysis was performed. Menz et al., (2018) 

compared the nitrogen source preference of Col-0, considered an accession with low NUE, vs. 

Tsu-0, considered of higher NUE. Although, Tsu-0 showed superior shoot growth stimulation 

by nitrate than Col-0 Menz et al., (2018) concluded that the differences the observed in NUE 

were independent of the reported N-source preference. Overall, the genes underlying 

Arabidopsis preference towards ammonium or nitrate is still far to be understood. 

 

An increasingly number of works extensively demonstrated the convenience of GWA analysis 

to finely map and identify the genetic basis underlying natural variation respect to different 

traits (e.g. Atwell et al., 2010; Brachi et al., 2013; Fusari et al., 2017; Rosas et al., 2013). 

Therefore, to advance in the molecular players associated to ammonium tolerance, we carried 

out a GWA study using as quantitative trait/phenotype the biomass of the rosette of A. 

thaliana plants grown under exclusive ammonium or nitrate nutrition. We phenotyped 337 

natural accessions (Table S2.2) and observed significant genetic variation in rosette biomass 

(Table S2.3, S2.4) with high variability under both ammonium (Fig 2.1A) and nitrate nutrition 

(Fig 2.1B). In agreement with the widely reported high sensitivity of A. thaliana towards 

ammonium nutrition almost every accession displayed reduced rosette biomass accumulation 

when grown with ammonium nutrition but with a differential degree in their sensitivity (Fig. 



GWAS reveals a new locus involved in ammonium stress 

 

83 
 

2.1C). Indeed, the interaction between the 337 accessions and the received treatment (nitrate 

vs. ammonium nutrition) was highly significant (Table S2.3).  

 

 

 

 

 

 

 

 

 

Multiple studies have shown the power of GWA studies to identify the genetics of phenotypic 

variation at broad geographical scale (Atwell et al., 2010; Chao et al., 2012). In this line, we 

firstly performed a GWA mapping considering all the phenotyped accessions but we did not 

detect any significant genetic association between rosette biomass either when plants were 

grown under ammonium or nitrate nutrition (Fig S2.2). Secondly and based on the assumption 

that populations may be adapted to local environmental conditions and thus, that a certain 

phenotype may depend upon the geographical scale considered because of different selection 

pressure acting at each scale (Brachi et al., 2013), we shorted the phenotyped accessions into 

different subpopulations depending on the geographical scale (World, Europe, France, 

Burgundy, MIB and TOU). Interestingly, we also observed strong variability in rosette biomass 

at every scale, from worldwide scale to local scale (Fig. 2.2 and Fig S2.3). Therefore, suggesting 

that natural selection related to growth with ammonium or nitrate as N source acted at spatial 

scale. Genetic mapping at different scale may reduce some of the limitations of GWA mapping 

such as detecting rare alleles, potentially acting at smaller geographical scale, which may be 

difficult to detect at larger and worldwide scale (Atwell et al., 2010) or reducing the 

confounding by population structure that may introduce false negatives and positives (Brachi 

et al., 2010). 
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Figure 2.1.  Distribution of rosette biomass based on BLUPs calculated for each one of the 337 accessions grown under 

ammonium (A) or nitrate nutrition (B). (C) Plot representing the relation between the two nutritions. Count refers to the 

number of accessions.  
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Figure 2.2. Natural variation in function of the geographical scale for rosette biomass based on BLUPs calculated for each 

accession grown under ammonium or nitrate nutrition. World includes 145 accessions, France 180, Burgundy 110, TOU 62 

and MIB 48.  

GWA mapping at different geographical scale reveals a genetic association between 

ammonium nutrition and members of the CRK family  

 

Accordingly, we also performed GWA mapping at the different geographical scales (Fig.S2.4). 

We only detected significant associations in France population where we identified 34 

significant SNPs associated with rosette biomass growth under ammonium nutrition (Table 

S2.5). Out of them, 18 were located within a genomic region of 22,718 bps of chromosome IV 

(4_12138079 to 4_12160796 bp) being the most highly associated SNP located in the position 

4_12155356 (p-value 2.29.10-6).  Importantly, this association peak was absent when the GWA 

mapping was performed in France population grown under nitrate nutrition (Fig. 2.3); 

therefore, suggesting the specific relationship of this genomic region with the use of 

ammonium as N source.  

 

When studying ammonium tolerance the biomass ratio between plants grown under 

ammonium compared when grown under nitrate nutrition has been sometimes used as a 

proxy to somehow estimate the ammonium tolerance degree of a certain genotype (Ariz et al., 

2011a; Esteban et al., 2016). We calculated the rosette biomass ratio for every genotype 

(Table S2.2) and used it as a phenotypical trait for GWA mapping (Fig. S2.5). This time, we 

identified 12 significant SNPs in France population and 6 in MIB population (Table S2.6). 

Importantly, 3 of the 6 SNPs identified in MIB population were also located within the region 

identified using rosette biomass under ammonium nutrition (4_12142581, 4_12143177, 

4_12143292). This result, reinforces the potential role of a gene/genes located in this genomic 

region as important for A. thaliana growth upon ammonium nutrition. The preference for an N 
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source and in particular ammonium tolerance has an important contribution for ecosystems 

functioning and the structure of communities (Boudsoq et al., 2012; Dias et al., 2014; Van Den 

Berg et al., 2005). Indeed, a number of environmental attributes such as light incidence or soil 

N pools (organic, NH4
+, NO3

-) and pH (Britto and Kronzucker, 2013) have been associated with 

plants ammonium tolerance. For instance, at soil pH below 6 nitrogen can remain as 

ammonium, becoming the predominant form (Gödde and Conrad, 2000) and the local 

adaptation of a certain species or genotype to soil acidity has been show of relevance to 

determine its ammonium tolerance capacity (Van Den Berg et al., 2005; Wang et al., 2016). 

Thus, the finding of different genetic association in function of the geographical scale studied 

may be related to plan adaptation to specific edaphoclimatic conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The association peak identified in France population is encompassed within a genomic region 

that harbors a gene cluster almost exclusively formed by genes of the Cysteine-rich receptor-

like kinase (CRK) family, which occupy a chromosomic region of 74.2 kb. (Chr4: 12117491 to 

12191702) (Fig.2.4). Arabidopsis genome contains 44 CRK genes (plus the truncated CRK9 and 

Figure 2.3.Manhattan plots of Arabidopsis thaliana rosette biomass based on BLUPs calculated for each accession grown 

under ammonium (A and B) or nitrate nutrition (C) at France geographical scale. The peak representing the genomic region 

associated with NH4
+ tolerance is highlighted by a grey arrow. B plot is a detailed plot of the genomic region associated with 

NH4
+ tolerance with the significant SNPs marked in black. The x-axis indicates the position along each chromosome. The five 

chromosomes are presented in a row along the x-axis in different degrees of grey. The y-axis indicates the –log10 p-values 

using the EMMAX method. Minor allele relative frequency (MARF) >10%.  
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the pseudogene CRK35) (Bourdais et al., 2015; Chen, 2001). Out of them, 38 are located in 

different clusters in Chromosome IV (Bourdais et al., 2015) being the cluster identified in this 

study the largest one and contains 19 CRK members, from CRK5 to CRK24 (CRK9 is truncated 

and excluded), in a tandem array (Fig 2.4). CRK family is a large subfamily of Arabidopsis RLKs, 

and as most RLKs, they possess an extracellular domain, a transmembrane domain and an 

intracellular Ser/Thr protein kinase domainch (Chen, 2001). In Arabidopsis, tandem duplication 

represents one of the major mechanisms of RLK expansion and 210 genes of Arabidopsis RLKs 

are found in tandem repeats representing 33.6% of all RLKs (Shiu and Bleecker, 2003). CRKs 

extracellular domain is characterized because it has two copies of domain of unknown function 

26 (DUF26, recently renamed to stress-antifung PF01657). This domain has a conserved C-X8-

C-X2-C motif with three Cys that have been predicted to potentially act as sensor of apoplastic 

redox modifications (Bourdais et al., 2015; Wrzaczek et al., 2010).  

 

 

 

 

 

 

 

The induction of CRK family members in response to pathogen attack, salicylic acid or to 

abiotic stresses, including ozone and UV light has been previously reported (Bourdais et al., 

2015; Chen et al., 2004; Wrzaczek et al., 2010), suggesting their potential role in stress sensing 

and/or signal transduction. Although, in view of their similarity, high redundancy among CRK 

members is expected, knocked-out mutants of individual genes have already displayed 

phenotypes related to different plant functions revealing that some CRKs have specific and 
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Figure 2.4. Location of CRK genes and the SNPs significantly related with NH4
+ tolerance in Arabidopsis thaliana. A. CRK gene 

positioning in the largest arm of the chromosome IV forming a 19 genes cluster arranged in a tandem array. B. Details of the 

genomic region where the SNPs associated with CRK genes are located, from the GWA studies from rosette values under 

ammonium nutrition in French population (black vertical lines) and from ratio values in MIB subpopulation (red vertical lines). 

Top SNP is indicated by asterisk (*). 
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even are antagonistic. Notably Bourdais et al., (2015) analyzed the phenotype of a panel of T-

DNA mutants, covering almost the whole CRK family, upon exposure to different stresses and 

observed that some individual mutants displayed altered response for instance to pathogen 

infection or salt stress, again, in agreement with the idea that CRKs may be key actors in stress 

adaptation and in extracellular stimuli perception. 

 

In this line, and to check the hypothesis of any of these 19 genes that compose the CRK5-

CRK24 cluster could be causal for the observed variability in ammonium tolerance, we 

analyzed their gene expression (Fig. 2.5) and obtained individual mutants for every CRK 

members localized in our cluster except for CRK18 since we did not find any T-DNA mutant 

displaying altered expression for this gene (Bourdais et al., 2015 and Fig. S2.1). Regarding gene 

expression, we observed significant differences in the transcript levels of 8 out of the 19 genes 

located in the association peak. The expression of CRK5, CRK6, CRK10, CRK17, CRK20, CRK22 

and CRK23 was enhanced under ammonium nutrition while the expression of CRK13 was 

reduced (Fig. 2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. CRK gene expression profile of Arabidopsis Col-0 wild type grown under NH4
+ (grey bars) or NO3

- (white bars) 

nutritional regimes. Asterisks (*) indicates significant differences between both nutrition. Data were analyzed by t-test 

(p<0.05). Columns represent the average of the expression values of ± SE (n=7-9).  

 

0

0,5

1

1,5

2

2,5

C
R

K
5

C
R

K
6

C
R

K
7

C
R

K
8

C
R

K
1

0

C
R

K
1

1

C
R

K
1

2

C
R

K
1

3

C
R

K
1

4

C
R

K
1

5

C
R

K
1

6

C
R

K
1

7

C
R

K
1

8

C
R

K
1

9

C
R

K
2

0

C
R

K
2

1

C
R

K
2

2

C
R

K
2

3

C
R

K
2

4

R
e

la
ti

ve
 e

xp
re

ss
io

n

*

*

*

* *
*

*

*

NO3
-

NH4
+



GWAS reveals a new locus involved in ammonium stress 

 

88 
 

Regarding mutant analysis, we recorded the biomass of the aerial part of every mutant when 

grown, in the same conditions used for the accessions phenotyping, under the exclusive access 

to ammonium as N source and compared it to Col-0 wild type plants. Significant differences 

were only obtained for crk5 mutant, whose biomass was notably reduced compared to Col-0 

(Fig. 2.6). Moreover, its expression in Col-0 was increased ca. 40 % in ammonium respect to 

nitrate nutrition (Fig. 2.5). Previous studies already reported that crk5 displays a 

developmental phenotype showing decreased growth rate respect to Col-0 (Bourdais et al., 

2015; Burdiak et al., 2015). Moreover, crk5 showed accelerated senescence in response to 

darkness and UV radiation (Bourdais et al., 2015; Burdiak et al., 2015). Besides, CRK5 function 

has been associated with stress adaptation among others in relation with abscisic acid 

signaling for example participating in stomatal closure control (Bourdais et al., 2015; Burdiak et 

al., 2015; Lu et al., 2016). To check the potential specificity of crk5 mutant phenotype grown 

under ammonium nutrition, we grew crk5 under nitrate conditions and observed a similar 

phenotype as under ammonium conditions, thus potentially discarding its development 

phenotype with plant N source preference (Fig. S2.6). 
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Figure 2.6. Box plots of the rosette biomass of different crk mutant lines grown under NH4
+ nutritional regime. t-test (p<0.05) 

revealed differences among mutants and Col-0. Asterisks (*) indicates significant difference in each mutant rosette biomass 

respect to Col-0. Data were analyzed by t-test (p<0.05). Boxes represent the rosette biomass distribution among 11-40 

individual.  
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Phylogeny of the CRK family based on the whole protein sequence or in the intracellular kinase 

or extracellular region differentiates five groups (I-V) (Bourdais et al., 2015). Out of the 7 CRK 

genes induced five of them (CRK5, CRK6, CRK10, CRK20 and CRK23) are closely related and 

located within the Group V as established by Bourdais et al., (2015). This could suggest 

potential functional redundancy between CRKs members of the Group V. Indeed, among these 

genes, CRK5 has been suggested to work redundantly with its closest homologues CRK4 and 

CRK19 in ABA signaling (Lu et al., 2016). Besides, the transcript abundance of CRK6 an CRK10, 

which show 79,6 % of protein similarity, was also higher under ammonium nutrition. CRK6 and 

CRK10 are within a phylogenetic subgroup with CRK7, CRK8 and CRK15 (Bourdais et al., 2015). 

This group of CRKs has been suggested to be involved in the coordination of Arabidopsis 

response to stress-induced alterations in extracellular reactive oxygen species (ROS) 

(Idänheimo et al., 2014). Interestingly, ammonium stress is commonly associated with ROS 

overproduction and thus, the stimulation of cell antioxidant machinery (Podgórska and Szal, 

2015).Taking advantage of two ami-RNA lines (crk6/7/8/10/15-1 and crk6/7/8/10/15-2) 

tackling members of this CRK group (Idänheimo et al., 2014) we tried to deal with the potential 

redundancy among these genes . Idänheimo et al., (2014) described a variable efficiency of 

these two lines to reduce CRK expression. For examples crk6/7/8/10/15-1 displayed a 

reduction of ca. 90 % in the expression of CRK6 and CRK8 but an insignificant reduction in 

CRK10 and CRK15 expression (Idänheimo et al., 2014). We assessed the growth of these two 

lines upon ammonium nutrition but as with individual mutants, we did not observe any 

significant difference respect to Col-0 wild type plants. 

 

The large number of CRKs together with their redundancy and overlapping functions among 

CKRs is likely a result of evolutionary pressure to guarantee plant flexibility to adapt to 

changing environmental conditions. Although, some works have assigned specific functions for 

individual CRKs (Bourdais et al., 2015; Hunter et al., 2018; Lu et al., 2016), different studies 

have tha this redundancy between CRK family members would be the main reason for the 

sometimes lack of phenotypes in single CRK loss-of- function mutants (Acharya et al., 2012; 

Chen et al., 2004; Yeh et al., 2015). 

 

Overall, in this work we observed high natural variability in Arabidopsis ammonium tolerance 

at every geographical scale that together with GWA mapping suggests that the selective agents 

shaping individuals ammonium tolerance could be particular to every geographical scale. The 

association peak identified in France population together with gene expression results 

supports the potential involvement of CRKs in plant response to ammonium. However, further 

* 



GWAS reveals a new locus involved in ammonium stress 

 

90 
 

experiments are required to confirm the true involvement of members of the CRK family in 

Arabidopsis. Among others, the study of over-expression lines, the generation of knocked-out 

mutants for several genes with the use for instance of CRISPR/Cas technology or studying CRKs 

gene-function in a genetic background other than Col-0 would be surely helpful to confirm and 

understand the involvement of CRKs in plants ammonium tolerance. 
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5. SUPPLEMENTARY INFORMATION 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 2.1. crk14-2 (SALK_005139), crk14-3 (SALK_144908) crk15-2 (GK-008C04) crk19-3 (SALK_004196) 

and  crk19-4 (SALK_105919) mutant lines characterization. (A) Gene structures indicating with a triangle the position of 

the T-DNA insertions. Arrows indicate the position and orientation of the primers used for mutant genotyping, F means 

forward and R reverse. (B) crk mutants characterization. Upper panel shows T-DNA insert detection, middle panel 

shows the absence of genomic amplification confirming the homozygousness of the mutant lines and low panel shows 

the absence of transcript detection of the corresponding genes.  
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Supplementary figure 2.2. Manhattan plots of Arabidopsis thaliana rosette biomass based on BLUPs calculated for 

each accession grown under ammonium (A) or nitrate nutrition (B) in all the phenotyped natural accessions. The x-axis 

indicates the position along each chromosome. The five chromosomes are presented in a row along the x-axis in 

different degrees of grey. The y-axis indicates the –log10 p-value using the EMMAX method. Minor allele relative 

frequency (MARF) >10%.  
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Supplementary figure 2.3. Distribution of rosette biomass based on BLUPs calculated for each one accessions at the 

studied geographical scales grown under ammonium (left) or nitrate (right) nutrition. Count refers to the number of accessions. 
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Supplementary figure 2.4. Manhattan plots of Arabidopsis rosette biomass based on 

BLUPs, under ammonium (left) and nitrate nutrition (right) in function of the different 

geographical scales. The x-axis indicates the position along each chromosome. The five 

chromosomes are presented in a row along the x-axis in different degrees of grey. The 

y-axis indicates the –log10 p-value using the EMMAX method. Minor allele relative 

frequency (MARF) >10%.  
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Supplementary figure 2.5. Natural variability of the ratio between the rosette 

biomass calculated from BLUPS for each accession grown under ammonium vs 

nitrate nutrition at different geographical scales (left histograms). Right plots are 

the manhattan plots generated from the GWA mapping of the ratio as trait of 

study. The x-axis of the manhattan plots indicates the position along each 

chromosome. The five chromosomes are presented in a row along the x-axis in 

different shades of grey. The y-axis indicates the –log10 p-values using the EMMAX 

method. MARF >10%. 
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Supplementary figure 2.6. Rosette biomass based on BLUPs of crk5 mutant line (white 

boxes) and Col-0 ecotype (grey boxes) under ammonium or nitrate nutrition. Boxes 

represent the rosette biomass distribution among 19-20 individuals. 
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Supplementary table 2.1. Primer list 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene name Primer name Sequence Efficiency 

RT-PCR 

SAND  
At2g28390 

qPCR-HK-F AACTCTATGCAGCATTTGATCCACT 
2 

qPCR-HK-R TGATTGCATATCTTTATCGCCATC 

Beta-Tub 4 
At4g44340 

qPCR-HK-F GAGGGAGCCATTGACAACATCTT 
2 

qPCR-HK-R GCGAACAGTTCACAGCTATGTTCA 

CRK5  
At4g23130 

qPCR-CRK5-F TTGTTGTGCCAGTCGCTATCTCAGT 
1.98 

qPCR-CRK5-R ACCCTGCAGTTGTGATGTCATCCTC 

CRK6  
At4g23140 

qPCR-CRK6-F AGTAACATTCTCCTAGATGCGGATATAAA 
2 

qPCR-CRK6-R TATTCTGCTTGTGTTATCTTGGG 

CRK7  
At4g23150 

qPCR-CRK7-F GCTTTATCGAGACAGATGACGCACA 
2 

qPCR-CRK7-R TGGCTGGACGTTTTACAGGATCTTC 

CRK8 
At4g23160 

qPCR-CRK8-F GCGCACCAAACACATCGAAAGT 
2 

qPCR-CRK8-R CCCCCTCAAGATGGGAGAAAGATAC 

CRK10 
At4g23180 

qPCR-CRK10-F ATCTACGCGTTTTACACCGAAT 
2 

qPCR-CRK10-R TTTGAATTCCCATCTTTTCCA 

CRK11 
At4g23190 

qPCR-CRK11-F ATGCGATGCATGGTCAATACTCCA 
2 

qPCR-CRK11-R CTCCAAAGCCTCGAAGCATAAGTGA 

CRK12  
At4g23200 

qPCR-CRK12-F GCTTCTTGGGTACTGTCTGGA 
2 

qPCR-CRK12-R GCCCTTGCTTTGTAGGATCA 

CRK13 
At4g23210 

qPCR-CRK13-F CCGGTTTGCTCGGAAGGAAAAA 
1.97 

qPCR-CRK13-R CAGGCAACCTTCCCTTGAAAACA 

CRK14 
At4g2322099 

qPCR-CRK14-F GTGGGAGCTTTTTCCCTTCTCTGA 
2 

qPCR-CRK14-R ATGATTGCCCAGACAATTCCTATCG 

CRK15  
At4g23230 

qPCR-CRK15-F TGGAATGGACCAAACCCAGGAAAAC 
1.86 

qPCR-CRK15-R TGCGCCGTCTGTCTCGTAAAAG 

CRK16  
At4g23240 

qPCR-CRK16-F CCTCCCGAATATGTGGCGAACG 
1.68 

qPCR-CRK16-R GCCGGGTCTACAAGTTCCAAGAATG 

CRK17  
At4g23250 

qPCR-CRK17-F AGCCCGAGCTGTTATATGCGATG 
1.92 

qPCR-CRK17-R CAAGAGCAACAGTGATTCCGAGGAT 

CRK18 
 At4g23260 

qPCR-CRK18-F GGCGTTATGTCAAGGCCAAACTG 
1.72 

qPCR-CRK18-R TTGCTGCGATTTTTCCTCCTGAT 

CRK19  
AT4G23270 

qPCR-CRK19-F AACGAATCTAATGTTGGAACACC 
2 

qPCR-CRK19-R GAGGAGTTTCCACCTTTTCCA 

CRK20  
At4g23280 

qPCR-CRK20-F ACCCTACGATGCAAGGGCAGCTAGACT 
1.67 

qPCR-CRK20-R TCGTATTGGCTTCTGTTTGGTCCATC 

CRK21  
At4g23290 

qPCR-CRK21-F GTCGTCGTGAGCACTGTACTGCTTG 
2 

qPCR-CRK21-R AGCGAACCTGAGGACGCTGTAAGAT 

CRK22  
At4g23300 

qPCR-CRK22-F TGCTGGCAACTTGGTTACCTATGC 
2 

qPCR-CRK22-R TGGTTGACAACTTTGGACGGTCTT 

CRK23  
At4g23310 

qPCR-CRK23-F TTGATTACATGTTTAAGCGC 
2 

qPCR-CRK23-R GCAATAATTATGACAGAGGA 

CRK24  
At4g23320 

qPCR-CRK24-F GGATCGGGGAACATCCAAACAGA 
1.96 

qPCR-CRK24-R CGGCAACATGACCTATACTCAACCA 

Genotyping/Expression analysis 

CRK14 
At4g2322099 

crk14 genotyping-R GAACAATGTCTCACTGGAATAGC 

 crk14 genotyping-F TGCACAATCCAAAGGCTGTC 

CRK15  
At4g23230 

crk15 genotyping-R ACAGACTTGGTGGTCGTTGG 

 crk15 genotyping-F TGGAATGGACCAAACCCAGGAAAAC 

CRK19  
AT4G23270 

crk19 genotyping-R GCATGAAAAATCAGCGTGAG 

 crk19 genotyping-F AACGAATCTAATGTTGGAACACC 

Salk T-DNA Salk lines genotyping-LB CCCTTTAGGGTTCCGATTTAGTGCT 

 Gabi-Kat T-DNA GK-lines genotyping-RB GTGGATTGATGTGATATCTCC 

CRK14  
expression  

CRK14-semiquantitative-R GAACAATGTCTCACTGGAATAGC 

 CRK14-semiquantitative-F GTGGGAGCTTTTTCCCTTCTCTGA 

CRK15  
expression  

CRK15-semiquantitative-R ACAGACTTGGTGGTCGTTGG 

 CRK15-semiquantitative-F TGGAATGGACCAAACCCAGGAAAAC 

CRK19  
expression  

CRK19-semiquantitative-R GGTTGGACGATCTTCAGCATCTTCCT 

 CRK19-semiquantitative-F AACGAATCTAATGTTGGAACACC 
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Model terms F or LRT P 

Block 5.19 0.005 

Treatment 44.17 < 0.0001 

Accession 245.00 < 0.0001 

Treatment*Accession 36.90 < 0.0001 

Control Enkheim-T 82.56 < 0.0001 

Control Oy-0 41.49 < 0.0001 

Model terms AMMONIUM NITRATE 

 F or LRT P F or LRT P 
Block 175.00 < 0.0001 161.50 < 0.0001 

Accession 620.20 < 0.0001 686.60 < 0.0001 
Control Enkheim-T 83.06 < 0.0001 89.69 < 0.0001 
Control Oy-0 60.18 < 0.0001 37.08 < 0.0001 

Supplementary Table 2.3. Biomass variation among 337 natural accessions. Model random 
terms were tested with likelihood ratio tests of models with and without these effects. 
Random effects are in italic. 

Supplementary Table 2.4. Biomass variation among accessions within each treatment 
(ammonium and nitrate). Model random terms were tested with likelihood ratio tests of 
models with and without these effects. Random effects are in italic. 

Supplementary Table 2.2. List of the natural accessions, indicating their geographical origin, 
used providing the phenotypic values obtained for each accession (rosette biomass under 
ammonium or nitrate nutrition and the ratio between both nutrition). Available as attached 
.xls file. 
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Geographical scale Analyzed trait SNP_id p-value MARF 

France Ammonium 1_26403649 5,69E-05 0,4611 

France Ammonium 1_26404546 6,79E-05 0,4111 

France Ammonium 1_26404879 3,51E-05 0,4222 

France Ammonium 1_26413906 9,93E-05 0,2833 

France Ammonium 1_29342131 8,99E-05 0,3278 

France Ammonium 1_29343282 3,08E-05 0,3111 

France Ammonium 1_29344040 3,90E-05 0,3056 

France Ammonium 1_29346750 6,51E-05 0,3056 

France Ammonium 4_11939116 5,54E-06 0,3333 

France Ammonium 4_12138079 7,31E-05 0,4278 

France Ammonium 4_12138380 5,83E-05 0,4333 

France Ammonium 4_12138515 3,27E-05 0,4389 

France Ammonium 4_12139160 4,10E-05 0,4278 

France Ammonium 4_12139564 4,48E-05 0,4333 

France Ammonium 4_12151678 3,01E-05 0,2444 

France Ammonium 4_12152075 8,91E-06 0,2389 

France Ammonium 4_12152155 2,62E-05 0,2556 

France Ammonium 4_12152513 2,62E-05 0,2556 

France Ammonium 4_12155356 2,29E-06 0,2222 

France Ammonium 4_12156188 6,57E-05 0,1722 

France Ammonium 4_12157351 1,76E-05 0,1944 

France Ammonium 4_12157779 6,27E-05 0,2611 

France Ammonium 4_12158031 9,88E-06 0,2333 

France Ammonium 4_12158261 4,58E-05 0,25 

France Ammonium 4_12159123 1,03E-05 0,2389 

France Ammonium 4_12160582 9,88E-06 0,2333 

France Ammonium 4_12160796 4,07E-06 0,2389 

France Ammonium 5_12620456 2,03E-05 0,1944 

France Ammonium 5_1607457 5,14E-05 0,2278 

France Ammonium 5_19706020 4,80E-05 0,4889 

France Ammonium 5_25739673 3,33E-05 0,3778 

France Ammonium 5_6587431 1,35E-05 0,3222 

France Ammonium 5_6809568 7,97E-05 0,4944 

France Ammonium 5_9896114 8,98E-05 0,3167 

Supplementary table 2.5. Significant SNPs associated with rosette biomass under ammonium 

nutrition at France geographical scale. The SNPs corresponding to the identified CRK genomic 

region in Chromosome IV Are highlighted in bold 
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Geographycal scale Analyzed trait SNP_id p-value MARF 

France Ratio 1_25637119 6,88E-05 0,3167 

France Ratio 1_28110050 1,94E-05 0,15 

France Ratio 3_11611598 9,11E-05 0,1056 

France Ratio 4_10242761 6,03E-05 0,4833 

France Ratio 4_17147820 2,93E-05 0,1889 

France Ratio 4_17148493 4,59E-05 0,1833 

France Ratio 4_17148748 3,18E-06 0,2333 

France Ratio 4_2495314 7,41E-05 0,4389 

France Ratio 4_9007859 2,65E-07 0,2222 

France Ratio 4_9036259 9,08E-05 0,4778 

France Ratio 5_21075331 3,96E-05 0,04444 

France Ratio 5_814779 2,61E-05 0,3111 

MIB Ratio 1_16669946 9,97E-05 0,125 

MIB Ratio 4_10288102 4,91E-05 0,3333 

MIB Ratio 4_11946439 6,63E-07 0,4583 

MIB Ratio 4_12142581 6,11E-05 0,25 

MIB Ratio 4_12143177 6,11E-05 0,25 

MIB Ratio 4_12143292 6,11E-05 0,25 

Supplementary table 2.6. Significant SNPs associated with the ratio values rosette biomass 

under ammonium and nitrate nutrition at France geographical scale and with the MIB 

subpopulation  
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CHAPTER 3. 

Nitrogen sources and external medium pH modulates 
Arabidopsis thaliana ammonium tolerance and 

metabolic adaptation 

Sarasketa A, González-Moro MB, González-Murua C and Marino D (2016)  
Frontiers in Plant Science 7:29 

doi: 10.3389/fpls.2016.00029 
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1. ABSTRACT  

 

Ammonium nutrition often represents an important growth-limiting stress in plants. Some of 

the symptoms that  plants present under ammonium nutrition have been associated with pH 

deregulation, in fact external medium pH control is known to improve plants ammonium 

tolerance. However, the way plant cell metabolism adjusts to these changes is not completely 

understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root 

respond to different nutritional regimes by varying the nitrogen source (NO3
- and NH4

+), 

concentration  (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper 

understanding of cell metabolic adaptation upon altering these environmental factors. The 

results obtained evidence changes in the response of ammonium assimilation machinery and 

of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant 

organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 

5.7 was related to NH4
+ accumulation; this could not be circumvented in spite of the 

stimulation of glutamine synthetase, glutamate dehydrogenase and TCA cycle anaplerotic 

enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms 

based on the nutritional regime. Overall, NH4
+ accumulation triggering ammonium stress 

appears to bear no relation to nitrogen assimilation impairment. Finally, this work also 

highlights the importance of taking external medium pH into account when optimizing 

ammonium nutrition. 

 

2. INTRODUCTION 

 

Nitrate (NO3
-) and ammonium (NH4

+) comprise the main inorganic forms of nitrogen (N) 

absorbed by plants. The preference for either  NO3
- or NH4

+ as the N source is an important 

ecological determinant which affects plant diversity; while this aspect has not yet been 

precisely defined, it is however known to depend on environmental features such as soil 

properties (including pH), plant physiology and genetic background (Van Den Berg et al., 2005). 

Regardless of the N source, nitrogen is only incorporated into biomolecules as NH4
+; however, 

paradoxically, an elevated abundance of this cation is toxic for plants, although the toxicity 

threshold greatly depends on ammonium concentration (Li et al., 2014). Symptoms 

experienced by plants when facing ammonium stress include chlorosis, ionic imbalance, 
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reduced photosynthetic activity, changes in NH4
+, amino acids, organic acids and 

carbohydrates pool or pH deregulation.  

 

Soil pH fluctuates widely between natural and agricultural soils and represents an important 

feature that may limit N availability and the plant´s capacity to absorb essential nutrients 

(Marschner, 2012). Moreover, pH alterations may have an influence on cellular expansion 

(Cosgrove, 1999) and water conductance in roots  (Kamaluddin and Zwiazek, 2004), besides 

other phenomena. Furthermore, H+s also play a role as second messengers in cell signaling 

cascades and so internal pH control is essential for the fine tuning of cells functioning (Felle, 

2001). High ammonium content is common in acidic soils and the connection between 

ammonium stress and pH alteration has been known from a long time (Chaillou et al., 1991; 

Gerendas and Ratcliffe, 2000). Indeed ammonium-tolerant plants can sometimes also tolerate 

acidic conditions and controlling external medium pH has been shown to mitigate ammonium 

toxicity (Li et al., 2014).  

 

NH4
+ uptake is known to induce acidification of the rhizosphere/apoplast, whereas NO3

- uptake 

promotes external alkalinization. Further to this it has been suggested that NH4
+ uptake causes 

cytosolic alkalinization, while NO3
- uptake provokes cytosolic acidification (Marschner, 2012). 

However, this potential cytosolic alteration associated to N uptake is transient because when 

uptake and assimilation are considered as a whole process both nitrate and ammonium 

nutritions tend to alkalinize cell cytosol (Britto and Kronzucker, 2005). Indeed, although 

intracellular pH values are sensitive to external pH values, cytosolic pH is extremely stable 

thanks to the fine tuning of cell metabolism. This is evidenced by several studies which 

observed that external pH changes over a range of pH 4-10 had very little impact on internal 

cytoplasmic pH (Gerendás and Ratcliffe, 2013; Hartung and Ratcliffe, 2002). A further example 

is the work of Hachiya et al., (2012) who, by the use of A. thaliana plants expressing a cytosolic 

fluorescent pH sensor, observed that although apoplast pH decreased upon ammonium stress, 

cytosolic pH remained stable. Indeed, cell metabolic adjustment in response to changes in soil 

medium parameters, such as N source and availability, is crucial for plants in order to maintain 

their growth rates and fitness.  

 

NO3
- is reduced to NH4

+ by nitrate and nitrite reductases; subsequently ammonium is mainly 

incorporated into amino acids via the glutamine synthetase/glutamate synthase (GS/GOGAT) 

cycle in which both nutrition pathways (NO3
- and NH4

+) converge. Nevertheless, it has been 

proposed that under some circumstances NADH-glutamate dehydrogenase (GDH), enzyme 
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that catalyzes the reversible deamination of glutamate to 2-oxoglutarate (2-OG) could also 

collaborate in NH4
+ assimilation (Ferraro et al., 2015). Nitrogen assimilation is intertwined with 

the respiratory metabolism; and it is known that the Tricarboxilic Acids (TCA) cycle and its 

associated anaplerotic enzymes play  a central role (re)generating 2-OG for NH4
+assimilation. 

Indeed, several studies have highlighted the importance of a suitable carbon supply to 

alleviate NH4
+ toxicity by controlling/modulating environmental conditions in order to favor 

carbon assimilation (Roosta and Schjoerring, 2008; Setién et al., 2013; Vega-Mas et al., 2015). 

 

To develop a deeper understanding of how plants respond to ammonium nutrition in relation 

to external medium pH changes and to study how cell carbon and nitrogen metabolism adapts 

to these changes, we have grown Arabidopsis thaliana Col-0 plants in liquid in vitro conditions 

providing ammonium or nitrate as N source at concentrations of 2 or 10 mM and external 

medium pHs of 5.7 or 6.7. Moreover, in this work we studied not only shoot but also root 

metabolism, an organ not often considered in Arabidopsis studies concerned with metabolic 

adaptation to ammonium stress. The overall results reveal that pH determines the degree of 

ammonium stress with respect to NH4
+ tissue accumulation and how TCA anaplerotic and 

ammonium assimilating enzymes adjust to these changes. 

 

3. MATERIALS AND METHODS 

 

Experimental procedure and growth conditions 

 

 Arabidopsis thaliana Col-0 seeds were surface sterilized and sown in 0.6% agar Petri 

dishes with a modified MS solution (2.25 mM CaCl2, 1.25 mM KH2PO4, 0.75 mM MgSO4, 5 mM 

KCl, 0.085 mM Na2EDTA, 5 µM KI, 0.1 µM CuSO4, 100 µM MnSO4, 100 µM H3BO3, 0.1 µM CoCl2, 

100 µM FeSO4, 30 µM ZnSO4 and 0.1 µM Na2MoO4; 20.5 mM MES, pH 5.9) containing 1 mM of 

NH4NO3 and 0.5% sucrose. Plates were kept during 4 days in the dark at 4 ºC and then moved 

into a controlled conditions phytotron: 14 h, 200 µmol m-2 s-1 light intensity, 60% RH and 22 ºC 

day conditions and 10 h, 70% RH and 18 ºC night conditions.  

 

Nine day-old seedlings were transferred to 24-well plates containing 1 ml of nutrient 

solution (1 plant/well). Eight different treatments were assayed, all of them with the same MS-

solution used for germination but varying pH (5.7 or 6.7), N-source (NH4
+ or NO3

-) and N 

concentration (2 and 10 mM). NH4
+ was provided as (NH4)2SO4 and nitrate as Ca(NO3)2. To 
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properly compare different N nutritions, NH4
+-fed plants were supplemented with 1 or 5 mM 

CaSO4 to compensate the Ca2+ supplied together with the NO3
-. 

 

Plates were kept under continuous shaking (120 rpm) during 12 days. The nutrient 

solution was renewed in days 5 and 9 and the evolution of the pH of the external medium 

monitored (Figure S1) Sterility was maintained until harvest. Six independent experiments 

were performed. In each experiment six 24-well plates were analyzed, each plate containing 3 

plants per treatment. When harvesting, shoots and roots were dried with paper towels, 

biomass recorded and immediately frozen in liquid nitrogen and stored at -80ºC. Biomass was 

determined as the mean value of three plants grown in the same plate as one biological 

replicate. 

 

Ammonium and total amino acids determination 

 

Tissue accumulation of ammonium and total amino acid content were determined as 

described in Sarasketa et al., (2014) following ninhydrin method for free amino acids 

determination and phenol hypochlorite assay for ammonium quantification. Glutamine was 

used as standard for the calibration curve for total amino acid content determination. 

 

Protein extraction and quantification  

 

Leaves and roots were homogenized using a mortar and pestle with 20 µL of extraction 

buffer per mg of FW [10 mM MgCl2, 1 mM EDTA,1 mM EGTA, 10 mM dithiothreitol (DTT), 0.1% 

Triton X-100, 10% glycerol, 0.05% bovine serum albumin (BSA), 0.5% polyvinylpolypyrrolidone 

(PVPP), 50 mM HEPES pH 7.5] in the presence of a cocktail of proteases inhibitors [1 mM 

phenylmethylsulfonyl fluoride (PMSF), 1 mM ε-aminocaproic acid, 10  M leupeptin]. 

Homogenates were then centrifuged at 4,000 g for 30 min at 4 ºC and the supernatants 

recovered. Soluble protein content was determined by a dye binding protein assay (Bio-Rad 

Bradford Protein assay) with BSA as standard for the calibration curve. 

Enzyme activities 

 

For all the enzymes determined, except for glutamine synthetase (GS), 20 µL of protein 

extraction supernatants were incubated with 280 µL of reaction buffer in 96-well microplates 

and the evolution of NAD(P)H was spectrophotometically monitored at 340 nm during 20 min 

at 30 ºC. The reaction buffers were for NAD(H)-GDH: 100 mM Tris-HCl (pH 8), 1 mM CaCl2, 13 
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mM 2-oxoglutarate, 50 mM (NH4)2SO4 and 0.25 mM NADH; for NADH-dependent glutamate 

synthase (GOGAT): 100 mM Tricine-KOH (pH 8.6), 0.2 mM NADH, 10 mM DTT, 1 mM 2-

oxoglutarate, 3 mM glutamine;  for phosphoenolpyruvate carboxylase (PEPC): 100 mM Tricine-

KOH (pH 8), 5 mM MgCl2, 5 mM NaF, 0.25 mM NADH, 6.4 U/mL MDH, 2 mM NaHCO3 and 3 

mM phosphoenolpyruvate; for MDH: 100 mM HEPES-KOH pH (7.5), 5 mM MgSO4, 0.2 mM 

NADH, 2 mM oxaloacetate; for NAD-dependent malic enzyme (NAD-ME): 50 mM HEPES-KOH 

(pH 8), 0.2 mM EDTA-Na2, 5 mM DTT, 2 mM NAD, 5 mM malate, 25 µM NADH, 0.1 mM acetyl 

Coenzyme A, 4 mM MnCl2; for NADP-dependent malic enzyme (NADP-ME):  100 mM Tris-HCl 

(pH 7), 10 mM MgCl2, 0.5 mM NADP and 10 mM malate; for NADP-dependent isocitrate 

dehydrogenase (ICDH): 100 mM Tricine-KOH (pH 8), 0.25 mM NADP, 5 mM MgCl2 and 5 mM 

isocitrate. In the case of malate dehydrogenase (MDH) due to its high activity supernatants 

were diluted 30 times. 

 

For GS, 50 µL of sample supernatants were incubated during 30 min at 30ºC with 100 

µL of reaction buffer [50 mM Tris-HCl (pH 7.6), 20 mM MgSO4, 80 mM sodium glutamate, 6 

mM hydroxilamine, 4 mM Na2-EDTA and 8 mM ATP] and the reaction stopped with 150 µL of 

acid ferric mixture [0.5 M TCA, 2 N HCl, 120 mM FeCl3]. Samples were centrifuged at 2,128 g 

for 5 min, and γ-glutamylmonohydroxamate (γ-GHM) colorimetrically quantified in the 

supernatants at 540 nm.  

 

Gel blots 

 

Sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS/PAGE) was 

performed with a 12% acrylamide resolving gel and a 4.6% (w/v) stacking gel in a vertical 

electrophoresis cell (Mini-Protean III;Bio-Rad). Equal amounts of proteins were loaded in each 

well and separated at 150 V for 150 min. Proteins were then transferred into nitrocellulose 

membranes by wet electroblotting (Bio-Rad). Antibodies used were anti-GS (1:2,000) and anti-

GDH (1:5,000) and goat anti-rabbit IgG-HRP as secondary antibody (1:20,000). Proteins were 

visualized using the Pierce ECL Western Blotting substrate (Thermo Scientific). Two bands were 

detected with anti-GS corresponding to GS1 and GS2. With anti-GDH we only detected a single 

band. The densitometry of the bands was calculated using the Image J software. The relative 

quantification was done respect to the most intense band of each blot (value “1”). 
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RNA Extraction and Q-RT-PCR Analysis 

 

Leaves and roots were homogenized in liquid nitrogen and total RNA was isolated 

using the Nucleospin RNA plant kit (Macherey-Nagel) according to the manufacturer’s 

recommendations. RNA quality was checked and 1  g of RNA retrotranscribed into cDNA using 

the PrimeScriptTM RT reagent Kit (Takara Bio Inc.). Gene expression was measured by 

quantitative PCR in a 15  L reaction using the SYBR Premix ExTaqTM Takara Bio Inc.) in a Step 

One Plus Real Time PCR System (Applied Biosystems) and 2 µL of cDNA diluted 1:10. The 

primers used for gln and gdh expression are described in Lothier et al., (2011a) and Fontaine et 

al., (2012a), respectively. The PCR program used was as follows: polymerase activation (95 °C 

for 5 min), amplification and quantification cycles repeated 40 times (94 °C for 15 s, 60 °C for 1 

min), and melting curve (40–95 °C with one fluorescence read every 0.3 °C). Relative 

expression was calculated as the ∆Cp between each gene and the average of the housekeeping 

genes SAND family (At2g28390) and β-tubulin 4 (At5g44340) with the primers described in  

(Marino et al., 2013). Average ∆Cp was calculated from 3 samples (each one representing a 

pool of three plantlets).  

 

Statistical analysis 

 

Data were analysed using SPSS 17.0 (Chicago, IL, USA). Statistical analysis of normality 

and homogeneity of variance were analysed by Kolmogorov-Smirnov and Levene tests. 

Analysis of significant differences within each nitrogen dose included one-way ANOVA and 

comparison of means (Duncan´s test). Nitrogen dose effect was carried out by t-student 

statistical analysis. Relationships between variables were tested by Pearson’s correlation. 

Additional details about statistical analyses and significance levels are presented in figure 

legends. 

  

4. RESULTS 

 

Arabidopsis thaliana Col-0 plants were grown for 12 days under ammonium nutrition 

in axenic hydroponic conditions to avoid the possibility of nitrification. Nitric nutrition was 

used as a reference for comparison. It should be noted that due to Arabidopsis thaliana´s 

sensitivity to ammonium nutrition most of the studies published in relation to ammonium 



Nitrogen sources and external medium pH modulates ammonium tolerance and metabolic adaptation. 

 

111 
 

stress applied a mixed nutrition of nitrate with increasing concentrations of ammonium; 

however, as stated earlier, in this work ammonium was applied as the sole N-source.  

 

Biomass accumulation is surely the most comprehensive parameter used to evaluate 

plants performance in response to a long-term stressful situation. As expected, Arabidopsis 

thaliana shoot biomass was overall reduced in ammonium-fed plants  compared to equivalent 

nitrate-fed plants (Figure 3.1). This inhibition depended on the pH, since biomass accumulation 

was lower at pH 5.7, particularly at 10 mM dose. With respect to NO3
--fed plants, at 2 mM they 

grew at an equal rate in a pH independent manner whereas with 10 mM supply shoots 

biomass only presented a significant increase under pH 5.7 (Figure 3.1A). Root biomass and 

length responded to the different nutritional regimes in a similar manner as the shoots;  

however, these parameters were lesser at 10 mM according to the reduced need of surface 

exploration to acquire nutrients (Figure 3.1B; Figure S3.2).  

 

 

 

 

 

 

 

NH4
+ content in both shoots and roots increased in NH4

+-fed plants mainly under 10 mM dose. 

Interestingly, the degree of ammonium stress, estimated from the biomass, correlated to NH4
+ 

accumulation; under pH 5.7 ammonium accumulation was around six and five times higher in 

shoots and roots, respectively, in comparison with plants grown at pH 6.7 (Figure 3.2A, 3.2B). 

An increase in the total free amino acid content is a typical response to ammonium nutrition 

(Britto and Kronzucker, 2002; Sarasketa et al., 2014). When the supplied nitrogen dose was 10 

mM the increase in amino acid content under ammonium nutrition compared to nitrate 

nutrition was evident (Figure 3.2C, 3.2D). However, no differences were detected when 

comparing the effects of pH. Besides, amino acid content was always higher in roots compared 
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Figure 3.1. Shoot (A) and root (B) biomass of plants grown under different conditions of pH (5.7 or 6.7), N source (NO3
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+) 

and dose (2 or 10 mM). Letters represent significant differences between treatments within the same N dose (p < 0.05). Asterisk 
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se (n=25-35). 
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to shoots (Figure 3.2C, 3.2D). Protein accumulation did not show any clear trends in function of 

the different nutritional conditions (Figure 3.2E, 3.2F); nevertheless, protein accumulation was 

notably greater in some ammonium treatments compared to nitrate counterparts, such as in 

shoots grown at 2 mM pH 5.7 and at 10 mM pH 6.7 (Figure 3.2E). Interestingly, the roots 

revealed a capacity to accumulate high levels of amino acids, while leaves preferentially 

accumulated NH4
+ in the form of soluble proteins (Figure 3.2). 

 

 

 

 

 

 

 

The GS/GOGAT cycle is the main ammonium assimilation pathway. GS activity in shoots did not 

vary in response to the N source, dose or pH (Figure 3.3A).  Contrastingly, in roots at 10 mM 

dose, GS activity was greater- under pH 6.7 compared to pH 5.7, regardless of the N source 

(Figure 3.3B). Control over the cycle has mainly been attributed to GS but a recent paper 

reported that the NADH-GOGAT enzyme in roots could be involved in ammonium tolerance 
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+) and concentration (2 or 10 mM). Letters 

represent significant differences between treatments within the same N dose (p < 0.05). Asterisk represents the effect of N-

dose between plants grown under the same pH and N source (p < 0.05). Columns represent mean ± se (n=3). Each sample is a 

pool of three plants. 
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(Konishi et al., 2014) and so we also included this enzyme in our study. NADH-GOGAT activity 

increased in both roots and shoots in response to N dose independent of the N source and pH 

(Figure 3.3C, 3.3D). On the other hand, GDH enzyme activity was clearly induced under 

ammonium nutrition compared with nitrate nutrition (Figure 3.3E, 3.3F). Overall, this induction 

was consistently more marked at pH 5.7 than pH 6.7. For instance, at 2 mM regime at pH 5.7 

GDH activity in both shoots and roots of ammonium-fed plants was twice that of their nitrate 

counterpart (Figure 3.3E, 3.3F). Similarly, at 10 mM dose and pH 5.7 GDH activity in NH4
+-fed 

shoots was nearly eight times higher than in those under nitrate nutrition, whereas at pH 6.7 

the activity was only three times higher (Figure 3.3E). In roots, at high NH4
+-dose GDH activity 

doubled that of those cultured with nitrate regardless of the external medium pH (Figure 3.3F). 

Interestingly, GDH activity in shoots was correlated with tissue NH4
+ accumulation highlighting 

the tight relationship between these two parameters (Figure S3.3). GDH activity determined in 

its deaminating sense showed a similar trend as the one observed in its aminating sense 

(Figure S3.4). 
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To further analyze how pH and N-source affected GS and GDH and how their activity relates to 

the different isoforms we determined their protein content and gene expression when grown 

under 10 mM nitrogen concentration. We chose this condition because at this N dose the 

effect of external medium pH on plants response under ammonium stress was more evident. 

In A. thaliana the cytosolic GS1 isoform is encoded by five genes (gln1;1 to gln1;5). In shoots 

gln1;1 and gln1;2 were the genes that showed higher expression levels, while in roots gln1;3 

expression was also remarkable (Figure 3.4A, 3.4B). Ammonium nutrition provoked gln1;2 

induction in both shoots and roots under both pH regimes (Figure 3.4A). In addition, gln1;3 

was also induced by ammonium nutrition in shoots; however, in roots grown at pH 5.7 the 

expression was higher under nitrate nutrition (Figure 3.4A, 3.4B). According to gln1 genes 

expression, GS1 protein content accumulated in both tissues when cultured under ammonium 
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 Figure 3.3. GDH (A,B), GOGAT (C,D) and GS (E,F) enzyme activities of shoot (A,C,E) and root (B,D,F) of plants grown under 
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+) and dose (2 or 10 mM). Letters represent significant differences 
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the same pH and N source (p < 0.05). Columns represent mean ± se (n=3-6). Each sample is a pool of three plants. 
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nutrition particularly when the external medium pH was pH 5.7 (Figures 3.4C, 3.4D). Nitrate 

nutrition induced the expression of plastidic GS2 in both  shoots and roots (Figure 3.4A, 3.4B). 

However the content of GS2, as detected by western blotting, was only higher in the shoots of 

NO3
--fed plants (Figure 3.4). As expected, the most abundant GS isoform in shoots was GS2, 

while in roots it was GS1; however, due to the induction of gln1 genes, GS1 and GS2 were 

present at similar levels in shoots of ammonium-fed plants at pH 5.7 (Figures 3.4C, 3.4D).  
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 Figure 3.4. GLN gene expression patterns of shoot (A) and root (B) and GS enzyme content of shoot (C) and 

root (D) of plants grown under different conditions of pH (5.7 or 6.7), N source (NO3
- or NH4

+) and 10 mM N 

dose. Letters represent significant differences between treatments within the same N dose (p < 0.05). Asterisk 

represents the effect of N-dose between plants grown under the same pH and N source (p < 0.05). Columns 

represent mean ± se (n=3). Each sample is a pool of three plants. In Supplementary Figure 6 a zoom of gln 4;4 

and gln 1;5 genes expression is available. 
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NAD(H)-GDH in Arabidopsis is encoded by three genes (gdh1 to gdh3). A fourth gene encoding 

an NADP(H) dependent GDH isoform has been described but this isoform seems to be inactive 

(Fontaine et al., 2012). In this work, gdh2 was the most expressed gene in both shoots and 

roots while ammonium nutrition further induced its expression in both tissues (Figures 3.5A, 

3.5B). Again, this induction was more pronounced at pH 5.7, the conditions under which 

biomass was more affected by ammonium stress. Moreover, gdh1 expression was also induced 

in ammonium-fed plants but only at pH 5.7. Interestingly, the gdh3 gene, whose expression 

was much lower than that of gdh1 and gdh2, was induced in both shoots and roots under 

nitrate nutrition (Figures 3.5A, 3.5B). According to the increased expression of genes, GDH 

protein content was also greater under ammonium nutrition in both shoots and roots,  with 

the highest induction observed in shoots at pH 5.7 (Figures 3.5C, 3.5D). 
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 Figure 3.5. GDH gene expression patterns of shoot (A) and root (B) and GDH enzyme content of shoot (C) and 

root (D) of plants grown under different conditions of pH (5.7 or 6.7), N source (NO3
- or NH4

+) and 10 mM N 

dose. Letters represent significant differences between treatments within the same N dose (p < 0.05). Asterisk 

represents the effect of N-dose between plants grown under the same pH and N source (p < 0.05). Columns 

represent mean ± se (n=3). Each sample is a pool of three plants. 
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TCA cycle anaplerotic enzymes presented a differential behavior depending on the organ. 

ICDH, MDH, NAD-ME and NADP-ME activities were all induced in the shoots of plants grown 

under ammonium nutrition regardless of the external medium pH (Figure 3.6). This induction 

was generally greater under regimes which involved a higher degree of ammonium stress. For 

example, at 2 mM dose, ICDH and MDH  induction was significant at pH 5.7, while at pH 6.7 it 

remained at the same level as that of nitrate-fed plants (Figures 3.6C, 3.6I). On the other hand, 

the effect of a higher ammonium concentration on the induction of TCA enzymes was evident; 

for example, it can be observed that NAD-ME activity remained stable at 2 mM dose while it 

was clearly induced under 10 mM ammonium dose (Figure 3.6E). Conversely, PEPC activity was 

greater in shoots of NO3
--fed plants, particularly when cultured at 10 mM concentration 

(Figure 3.6A). In roots, NADP-ME and ICDH activities responded in a similar manner as to the 

behavior observed in shoots, with the highest level of induction reported at 10 mM NH4
+ and a 

pH of 5.7 (Figures 3.6B, 3.6F). Interestingly, the behavior of NAD-ME and PEPC changed 

significantly when comparing shoots against roots. NAD-ME activity was induced in shoots 

under ammonium nutrition, while in roots it was higher under nitrate nutrition (Figures 3.6E, 

3.6F); and PEPC activity, which was greater in nitrate-fed shoots, was induced in ammonium-

fed roots at 10 mM dose and pH 5.7 (Figure 3.6A, 3.6B). 
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 Figure 3.6. PEPC (A,B), ICDH (C,D), MDH (E,F),  NAD+-ME and NADP+-ME  enzyme activities of shoot (A,C,E, I) and root 

(B,D,F, J) of plants grown under different conditions of pH (5.7 or 6.7), N source (NO3
- or NH4

+) and dose (2 or 10 

mM). Letters represent significant differences between treatments within the same N dose (p < 0.05). Asterisk 

represents the effect of N-dose between plants grown under the same pH and N source (p < 0.05). Columns 

represent mean ± se (n=3-6). Each sample is a pool of three plants.  
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5. DISCUSSION 

 

The control of external medium pH has been shown to improve Arabidopsis tolerance to 

ammonium-induced stress (Britto and Kronzucker, 2002; Hachiya et al., 2012; Zheng et al., 

2015). As expected, in our work we also found that the growth of ammonium-fed plants was 

improved when cultured at pH 6.7 compared to pH 5.7 (Figure 3.1). Indeed, the importance of 

pH regarding ammonium stress has also been highlighted by the use of Arabidopsis mutants 

with an altered ammonium tolerance. For instance, vtc1, mutant deficient in GDP-mannose 

pyrophosphorylase (Kempinski et al., 2011); frostbite1, mutant of mitochondrial respiratory 

chain Complex I (Podgórska et al., 2015); or slah3, mutant of the anion channel SLAC1 

Homologue 3 (Zheng et al., 2015), all showed phenotypes under ammonium nutrition that 

were at least partially related to the control of external medium pH . Besides, Arabidopsis is a 

very sensitive to ammonium nutrition and ammonium stress has commonly been induced by 

applying increasing concentrations of ammonium concomitantly with nitrate usually in 

proportions of between 4:1 and 12:1 (ammonium:nitrate). The reasons behind the nitrate-

dependent alleviation of ammonium stress are not yet fully understood, but it has been 

suggested that it could be related to pH regulation (Hachiya et al., 2012). In addition, plasma 

membrane H+-ATPases activity is closely related to ion uptake compensating charge 

movements and the energy needed to feed H+-ATPases has been associated with poor root 

growth in a species-dependent manner at acidic pH values of around 3.5 (Yan et al., 1992, 

1998). Indeed, one reported response of ammonium nutrition is to increase H+-ATPase activity 

(Yamashita et al., 1995; Zhu et al., 2009) and thus the energy consumed to maintain H+-ATPase 

could be involved in the higher stress degree commonly observed at acidic pHs. Therefore, all 

these data underline the importance of studying the relation between external medium pH 

and ammonium nutrition. In the present study, we focused,  mainly by examining NH4
+ 

assimilation and TCA cycle anaplerotic enzymes, on how the metabolism of Arabidopsis plants, 

adapts to different degrees of ammonium stress. 

 

At pH 6.7 the ammonium stress was alleviated and so at this pH Arabidopsis plants responded 

positively to an increase in external ammonium concentration whereas at pH 5.7 plants 

yielded a reduced biomass (Figure 3.1). At pH 6.7 nitrate-fed plants did not respond to an 

increase in N-dose and were therefore significantly smaller than those grown at the same 

concentration of nitrate but at pH 5.7 (Figure 3.1). Previous studies have also observed 

impaired growth of nitrate-fed plants in response to medium alkalinization across similar pH 

ranges, for example, in maize (Schortemeyer et al., 1993), Typha latifolia (Brix et al., 2002) or 
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tomato (Zhao and Ling, 2007). Thus, it seems that the availability of essential nutrients could 

be responsible for this pH-dependent growth effect in plants fed with 10 mM nitrate. In our 

study, we did not observe any significant alterations in the metabolic parameters analyzed that 

could explain such growth differences (Figures 3.2-3.5). Future work will help to elucidate the 

negative effect that certain plant species experience in relation to nitrate nutrition and 

external medium alkalinization.  

 

In several works, acidic pHs have been shown to induce ammonium uptake or accumulation in 

tissues (Chaillou et al., 1991; Coskun et al., 2013; Ortiz-Ramirez et al., 2011; Søgaard et al., 

2009). In our study, the degree of ammonium stress was correlated with NH4
+ tissue 

accumulation since both roots and shoots accumulated much more ammonium at pH 5.7 

compared to pH 6.7 (Figure 3.2). And so NH4
+ accumulation could be due to ammonium 

transport rather than a result of impairing the metabolic pathways involved in its assimilation, 

as the contents of both amino acids and proteins were at similar levels in ammonium-fed 

plants regardless of the external medium pH (Figure 3.2).  

 

It is known that ammonium assimilation is mainly driven by the GS/GOGAT cycle. Concerning 

GDH, there is still controversy about its role in plants but it is now accepted that GDH activity 

in vivo is primarily directed towards 2-oxoglutarate production (Fontaine et al., 2012; Labboun 

et al., 2009). However, under some circumstances it seems that GDH might also be 

collaborating in the direct amination of 2-OG to form glutamate, such as during fruit ripening 

(Ferraro et al., 2015) or ammonium stress (Skopelitis et al., 2006). It is apparent that an 

increased capacity to assimilate ammonium would help to prevent NH4
+ content rising to toxic 

levels while simultaneously increasing plant growth potential. Indeed, GS1 overexpression in 

tobacco plants accumulated less NH4
+ than wild-type plants under nitrate-based nutrition 

(Oliveira et al., 2002). Similarly, it has been proposed that plants which are capable of 

maintaining high levels of GS activity in the dark present an enhanced tolerance to ammonium 

stress (Cruz et al., 2006). In the present work, neither GS nor NADH-GOGAT activities 

presented any response to a different N-source. Contrastingly, GDH clearly showed an overall 

induction under ammonium nutrition. This induction was greatest in shoots at pH 5.7, where 

ammonium accumulation was higher; suggesting that GDH induction in the shoot depends on 

stress severity (Figure 3.3).  

 

Different functions have been proposed for different GS and GDH isoforms (Guan et al., 2015; 

Lothier et al., 2011; Marchi et al., 2013). The main function of GS2 has been associated to the 
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reassimilation of photorespiratory ammonium in photosynthetic tissues (Pérez-Delgado et al., 

2015) and primary nitrogen assimilation in green tissues (Xu et al., 2012). Considering that NO2
- 

is reduced to NH4
+ in the chloroplasts, we expected to encounter higher GS2 levels in nitrate-

fed plants compared to ammonium-fed plants (Figure 3.4) was as this has previously been 

observed in other plants including Arabidopsis (Sarasketa et al., 2014) or maize (Prinsi and 

Espen, 2015). GS1 content was only higher under the more toxic ammonium treatment in 

relation with increased gln1;2 and gln1;3 gene expression. Interestingly, Arabidopsis gln1;2 

mutants grown in vitro were about 20% smaller than wild-type plants grown under ammonium 

nutrition (Lothier et al., 2011). Similarly, rice mutants lacking OsGS1:1 experienced growth 

retardation under ammonium nutrition (Kusano et al., 2011). Overall, GS1 is essential under 

ammonium nutrition and different isoforms present non-overlapping functions. However, GS 

activity is subjected to tight post-transcriptional and post-translational regulation by, among 

others, phosphorylation (Prinsi and Espen, 2015) or nitration (Melo et al., 2011); and these 

regulatory mechanisms could explain the observation that GS activity did not vary in function 

of the N-source (Figure 3.2), contrary to its genes expression levels or protein content (Figure 

3.4).  

 

Ammonium has been known to induce GDH activity for decades, while heavier hexamers 

(enriched in α subunits) are often induced by ammonium (Cammaerts and Jacobs, 1985; 

Skopelitis et al., 2006). In our work, gdh1 and gdh2 were induced in response to ammonium 

nutrition, but interestingly gdh1 was only induced at pH 5.7, and gdh2 induction in shoots was 

greater at pH 5.7 than pH 6.7. This suggests that that the observed increase in GDH protein 

content and activity was due to the induction of both genes (Figures 3.3 and 3.5). Interestingly, 

expression of the until recently unstudied gdh3 gene was higher in nitrate-fed plants, thus 

revealing a differential behavior for this isoform. Whether GDH3 could be playing a specific 

role under nitrate nutrition is still unknown. However, Marchi et al., (2013) proposed a role for 

GDH3 in nutrient remobilization during the Arabidopsis reproductive phase; furthermore, they 

showed gdh3 induction by cytokinins, hormones known to regulate plant growth in response 

to nitrate (Krouk et al., 2011). Thus, our data suggest specific functions for the different GDH 

isoforms depending on both the type of N source and the degree of ammonium stress. Future 

research is still required to decipher the importance of GDH with regards to ammonium 

nutrition and to reveal the functional specificity of each isoform in plant metabolism. Overall, 

GS1, gdh1 (encoding GDHβ) and gdh2 (encoding GDHα) seem to be responding to the level of 

ammonium stress, which occurs to a higher extent at pH 5.7, and collectively suggest an 

important role of increased nitrogen assimilation capacity during ammonium nutrition. 
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However, the content of total protein and amino acids did not accumulate at pH 5.7 compared 

to pH 6.7 suggesting that induction of N assimilation enzymes was not sufficient to scavenge 

the excess of ammonium into biomolecules. On the other hand, ammonium-fed plants may 

suffer from carbon limitation for NH4
+ assimilation (Ariz et al., 2011a; Setién et al., 2013; Vega-

Mas et al., 2015) and it has been shown that the main function of GDH activity is to provide 2-

oxoglutarate when C becomes limiting (Fontaine et al., 2012). In the present work, when 

correlating GDH activity with NH4
+ accumulation (Supplementary Figure S3.3), we found a 

negative correlation in shoots for nitrate nutrition (r = -0.994, p= 0.006), while under 

ammonium nutrition this correlation was positive (r = 0.969, p= 0.031), which could be a sign 

that the role of GDH induction is directed towards 2-OG production to meet GS/GOGAT 

demand. However, the induction of GDH in response to NH4
+ accumulation to collaborate in its 

assimilation cannot be discarded and future work using isotopic labeling together with mutant 

analysis under ammonium stress will surely help to shed more light on GDH function.  

 

TCA cycle anaplerotic enzymes induction has been revealed important in order to counteract 

the depletion of TCA intermediates diverted to NH4
+ assimilation; thus, they are crucial upon 

ammonium nutrition. Indeed, organic acids and malate pools decline in correlation with an 

increase in amino acid content has often been observed under ammonium nutrition (Britto 

and Kronzucker, 2005; Setién et al., 2013). In the present work, MDH, NAD-ME and NADP-ME 

were induced in shoots and could play a role in organic acids consumption (Figure 3.5). 

Furthermore, shoot NAD-ME and root NADP-ME induction was greater under a harsher degree 

of ammonium stress. Interestingly, NAD-ME levels in the roots were induced by nitrate 

nutrition and the plastidic and mitochondrial localization of this enzyme (Maier et al., 2011) 

may suggest a differential localization or function of malate pool in function of the N source. 

ICDH is a key enzyme in the provision of 2-OG, in the present study it was also induced in 

response to ammonium nutrition (Figure 3.5), as it has been observed in other plants such as 

pea (Ariz et al., 2013). In line with ICDH´s key role in 2-OG production, the amino acids content 

in shoots was observed to correlate with ICDH activity (Supplementary Figure S3.5). The 

importance of this enzyme was evident in plants lacking total or partial ICDH expression, since 

they presented reduced pools of 2-OG under carbon limitation (Boex-Fontvieille et al., 2013). 

On the other hand, ammonium nutrition is known to provoke redox alterations (Podgórska et 

al., 2013) and ICDH function supplying NADPH has also been related to redox homeostasis 

control (Marino et al., 2007; Mhamdi et al., 2010), thus the possibility that ICDH induction 

could also be related to cell redox control cannot be ruled out. With regards to PEPC, it has 

recently been shown that ammonium assimilation was impaired in the Arabidopsis PEPC 
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double mutant ppc1/ppc2 grown in standard 1/2 MS medium (Shi et al., 2015) and, although 

disparate results have been found in different species, PEPC is known to be induced under 

ammonium stress, mainly in roots (Ariz et al., 2013; Britto and Kronzucker, 2005; Lasa et al., 

2002). In the present study, higher PEPC activity in shoots of nitrate fed-plants will corroborate 

the need to replenish carbon intermediates in shoots when nitrate is the N source, whereas 

under ammonium stress, NH4
+ assimilation would preferentially occur in the roots. Thus, fine 

regulation of TCA anaplerotic enzymes appears to be a key aspect when trying to improve 

plants NH4
+ assimilation capacity under ammonium stress.  

 

Final conclusions 

 

Variations in the pH of the external medium are known to affect plants N nutrition. Regarding 

ammonium nutrition, pH control appears to play a key role in determining plant ammonium 

tolerance or sensitivity. In Arabidopsis, external medium buffering or medium alkalinization 

has been shown to mitigate some of the detrimental effects associated with ammonium stress, 

but how plant cell metabolism adapts to those changes has barely been studied, especially in 

the roots. In the present work, the higher degree of ammonium stress was related to NH4
+ 

accumulation at pH 5.7 which could not be circumvented by the induction of ammonium 

assimilation machinery, including TCA cycle anaplerotic enzymes. Moreover, this study 

suggests specific roles for different GS and GDH isoforms in function of the nutritional regime. 

Similarly, anaplerotic enzymes seem to play an important role at the interface between carbon 

and nitrogen metabolism and future studies into ammonium nutrition with the use of 

knockout mutants in the different TCA cycle anaplerotic enzymes will be extremely helpful in 

gaining a better understanding of their role in ammonium stress. Finally, fluxomic analysis, 

paying special attention to metabolites subcellular localization, will elucidate the changes 

occurring in plant cell metabolism under ammonium-based nutrition. 
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6. SUPPLEMENTARY INFORMATION 

 

 

 

  

Supplementary Figure 3.1. External medium pH monitoring during Arabidopsis plants growth under different conditions of pH (5.7 

or 6.7), N source (NO3
- or NH4

+) and concentration (2 or 10mM). 

Supplementary Figure 3.2. Root length of plants grown under different conditions of pH (5.7or6.7), N source (NO−3 or NH 4), and 

concentration (2 or10mM). Statistical analysis was described in Figure 1. Columns represent mean  ± se (n = 25–35). 
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Supplementary Figure 3.3. Pearson correlations between GDH activity and  tissue NH4
+  content in roots and leaves of plants 

grown under nitrate or ammonium as nitrogen source. Correlationlinesarepresentedonlyif p < 0.05. 

Supplementary Figure 3.4. GDH enzyme activity measured on its deaminating sense from shoots (A) and roots (B) of plants grown 

under different conditions of pH (5.7 or 6.7), N source (NO3
- or NH4

+), and concentration (2 or 10mM). Statistical analysis was 

described in Figure 1. Columns represent mean ± se (n = 3). Each sample is a pool of three plants. 
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Supplementary Figure 3.6. Zoom of gln1-4 and gn1-5 genes expression shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pH 5.7

NO3
- NH4

+ NH4
+NO3

-

pH 6.7 pH 5.7

NO3
- NH4

+ NH4
+NO3

-

pH 6.7

0.000

0.001

0.002

0.003

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

3.10-3

2.10-3

1.10-3

0

R
e

la
ti

ve
e

xp
re

ss
io

n

a

a

a

a

a

ab

a

a

a

ab

b

a

9.10-3

6.10-3

3.10-3

0

b

ab
ab

0.000

0.003

0.006

0.009

0.012

a

ROOTSHOOT

R
e

la
ti

ve
e

xp
re

ss
io

n

0

20

40

60

80

gln1;1 gln1;2 gln1;3 gln1;4 gln1;5 gln2
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Supplementary Table 3.1. Primer list 

Primer List 

Primer 
Function 

Primer name Sequence Lenght 
TAIR gene 

Code 
Efficiency 

β-tubulin 4 
quantification 

qPCR-β-TUB-F GAGGGAGCCATTGACAACATCTT 23 
At5g44340 2 

qPCR-β-TUB-R GCGAACAGTTCACAGCTATGTTCA 24 

SAND 
quantification 

qPCR-SAND-F AACTCTATGCAGCATTTGATCCACT 25 
At2g28390 2 

qPCR-SAND-R TGATTGCATATCTTTATCGCCATC 24 

GDH1 
quantification 

qPCR-GDH1-F TGGCTCAAGCTACCATTCTCAGA 23 
At5g18170 

Not 
calculated 

qPCR-GDH1-R CCTCTAAGCCAAAGTAGGAGGATAAA 26 

GDH2 
quantification 

qPCR-GDH2-F GTGGTTGGGAAGCTTAATTCAGTT 24 
At5g07440 

Not 
calculated 

qPCR-GDH2-R CCATTTCGGAAAGCTCAATGAT 22 

GDH3 
quantification 

qPCR-GDH3-F TCGCTCAAGCTACCACTATCAG 22 
At3g03910 

Not 
calculated 

qPCR-GDH3-R CTGCAATTAGCACATAGTTTTTATTACTC 29 

GLN1.1 
quantification 

qPCR-GLN1.1-F CAACCTTAACCTCTCAGACTCCACT 25 
AT5G37600 

Not 
calculated 

qPCR-GLN1.1-R CAGCTGCAACATCAGGGTTGCTA 23 

GLN1.2 
quantification 

qPCR-GLN1.2-F TAACCTTGACATCTCAGACAACAGT 25 
At1g66200 

Not 
calculated 

qPCR-GLN1.2-R TCAGCAATAACATCAGGGTTAGC 23 

GLN1.3 
quantification 

qPCR-GLN1.3-F TAACCTCAACCTCACCGATGCCACC 25 
AT3G17820 

Not 
calculated 

qPCR-GLN1.3-R CTTGGCAACGTCGGGGTGGCTG 22 

GLN1.4 
quantification 

qPCR-GLN1.4-F CAATCTCGATCTCTCCGATTCCACT 25 
AT5G16570 

Not 
calculated 

qPCR-GLN1.4-R GGCGACAACACTAGGGTCTTCA 22 

GLN1.5 
quantification 

qPCR-GLN1.5-F CCTAAACCTTGATCTATCAGACACC 25 
AT1G48470.1 

Not 
calculated 

qPCR-GLN1.5-R GCCTTCACATTGGGATGATCG 21 

GLN2 
quantification 

qPCR-GLN2-F CCAACATGTCAGATGAGAGTGCC 23 
AT5G35630 

Not 
calculated 

qPCR-GLN2-R CCAGGTGCTTGACCGGTACTC 21 
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GENERAL CONCLUSIONS 

 

1. Arabidopsis thaliana shows great intraspecific variability in ammonium tolerance using 

rosette biomass as a marker of plant performance. 

 

2. Intraspecific variability was observed at different geographical scales, from worldwide 

scale to local scale, suggesting that adaptative variation towards ammonium tolerance 

acted at every spatial scale. 

 

3. NH4
+ accumulation seems to be an important player in Arabidopsis natural variability in 

ammonium tolerance rather than the cell NH4
+ assimilation capacity. 

 

4.  NH4
+ accumulation was negatively associated with shoot growth independently of the N 

source provided. 

 

5. Genome wide association mapping at French geographical scale identified a significant 

peak of association in relation with shoot biomass under ammonium nutrition that was 

absent in the analysis performed with shoot biomass under nitrate nutrition. This 

association peak corresponds to a genomic region that encompasses a tandem array of 

nineteen genes encoding Cysteine-rich receptor-like kinases (CRKs). 

 

6. The study of crk T-DNA mutant lines covering the identified genomic region did not 

provide any clue regarding CRK implication on ammonium tolerance. However, CRK gene 

expression analysis on Col-0 shows that the expression of some CRK members was induced 

upon ammonium nutrition. Thus, suggesting again their potential role during ammonium 

nutrition. Overall, the probable redundancy in their function did not allow confirming the 

true implication of any of the CRK members in Arabidopsis ammonium tolerance. 

 

7. External medium pH has a key impact on Arabidopsis response to ammonium nutrition. 

 

8. Arabidopsis shoot and root metabolism differentially adapts to the nutritional regime in 

function of the external medium pH, N source and concentration, adjusting the NH4
+ 

assimilation machinery and carbon metabolism in function of ammonium stress degree. 
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9. The greatest stress severity at pH 5.7 was associated with NH4
+ accumulation and could 

not be circumvented in spite of the stimulation of GS, GDH and TCA cycle anaplerotic 

enzymes. Thus, NH4
+ accumulation triggering ammonium stress is not due to N assimilation 

impairment. 
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