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Abstract

Background: Microarray technology provides the expression level of many genes. Nowadays, an important issue is
to select a small number of informative differentially expressed genes that provide biological knowledge and may be
key elements for a disease. With the increasing volume of data generated by modern biomedical studies, software is
required for effective identification of differentially expressed genes. Here, we describe an R package, called
ORdensity, that implements a recent methodology (Irigoien and Arenas, 2018) developed in order to identify
differentially expressed genes. The benefits of parallel implementation are discussed.

Results: ORdensity gives the user the list of genes identified as differentially expressed genes in an easy and
comprehensible way. The experimentation carried out in an off-the-self computer with the parallel execution enabled
shows an improvement in run-time. This implementation may also lead to an important use of memory load. Results
previously obtained with simulated and real data indicated that the procedure implemented in the package is robust
and suitable for differentially expressed genes identification.

Conclusions: The new package, ORdensity, offers a friendly and easy way to identify differentially expressed
genes, which is very useful for users not familiar with programming.

Availability: https://github.com/rsait/ORdensity

Keywords: Differentially expressed gene, Multivariate statistics, Outlier, Parallel implementation, Quantile, R package

Background
Analysis of gene expression using microarray or RNA-Seq
technologies is a very important task and the main goal
is to identify a small number of informative genes whose
patterns of expression differ according to the experimen-
tal conditions. An important challenge is the discovery
of these differentially expressed genes (DEGs). This is
because there is a large number of genes, a relatively
small number of samples and it is important to iden-
tify which genes, independent of the sample studied of
the same disease, are selected as DE genes. In order to
identify a list of DEGs, different procedures were intro-
duced in the scientific community. Significance Analysis
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of Microarrays (SAM) [1] works with a modified t-test
introducing a factor to minimize the effect of small per-
gene variances. An integrated solution for analyzing data
from gene expression experiments is provided by limma
[2, 3], an R package for Bioconductor [4]. The empir-
ical Bayes method (eBayes) [5] also uses moderated t-
statistics, where, instead of the global or single gene esti-
mated variances, a weighted average of the global and
single-gene variances is used. A different approach, the
ORdensity procedure, was recently introduced [6]. This
method returns three measures which are related to the
concepts of outlier and density of false positives in a neigh-
bourhood, and this allow us to identify the DEGs with
high classification accuracy. The first measure is an index
called OR, previously introduced in [7, 8], that identi-
fies outliers; the other two measures, called false positives
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in a neighbourhood (FP), and density of false positives
in a neighbourhood (dFP) were introduced in [6]. This
new procedure has been implemented in the ORdensity
package described below.
Ideally, effective software making the identification of

differentially expressed genes possible on desktop com-
puters should facilitate data manipulation and should be
easy to carry out. It should also offer understandable
outputs to give access to a wide range of users. Further-
more, due to the large dimensionality of the data sets
used it should implement fast procedures. With these
objectives in mind, we developed the ORdensity software
implemented as an R package and offers a friendly and
easy-to-use tool to perform the ORdensity method.

Implementation
In this section, the structure of the package and the
functions implemented are explained. The ORdensity
package was developed for the free statistical R environ-
ment (http://www.r-project.org) and runs under all major
operating systems. We do not delve into details of the
underlying statistical methodology that can be consulted
in [6], and only the main results are presented.

Background
LetM be an n×smatrix containing the expression level of
n genes under two experimental conditionsmeasured in s1
and s2 samples for experimental condition 1 and 2, respec-
tively (s1 + s2 = s). Let Xg and Yg be the random variables
representing the expression level of gene g in conditions 1
and 2, respectively (g = 1, ..., n). The proposed approach
focuses on the differences of quantiles between samples:
Vgp = F−1

Xg
(p) − F−1

Yg (p), p ∈ Cp where Cp is a set of
probabilities. As we can observe in Fig. 1, a gene g, whose
expressions under the two conditions were considered not
differentially expressed (left) would verify that F−1

Xg
(p) =

F−1
Yg (p), where F is the cumulative distribution function,

and p ∈[ 0, 1]. Otherwise, gene g is differentially expressed
or it is important (right). Therefore, matrixV = (vgp)with
vgp = F̂−1

Xg
(p) − F̂−1

Yg (p), for g = 1, . . . ,G and p ∈ Cp
must contain small values corresponding to the major-
ity of no DEGs. The most differentially expressed genes
should show a different behaviour, hence, they can be con-
sidered as outliers in V. Thus, the approach attempts to
find outliers in V which can be identified as differentially
expressed genes. In a first step, given a fixed α ∈ (0, 1), the
procedure reduces the number of genes selecting poten-
tial differentially expressed genes. In a second step, the
method identifies the differential expressed genes among
the potential ones using three indexes. The index OR,
previously introduced in [7, 8], which identifies outliers,
and two measures called false positives in a K-Nearest
Neighbourhood (FP) and density of false positives in a K-

Nearest Neighbourhood (dFP) that are related with the
false positives obtained by the permutation sampling (see
[6] for more details about these indexes, Subsections 2.1
and 2.2). Furthermore, the procedure clusters the poten-
tial DE genes according to the values of these indexes.
The motivation behind the clustering is to distinguish
those false positive genes that score high in OR and low
in mean FP and density, but are similar to simulated per-
muted cases and we can therefore conclude they are not
genuinely DEGs.

Input
The input data are the corresponding expression level of
n genes under two experimental conditions measured in
s1 and s2 samples. Let M1 and M2 be the two n × s1 and
n× s2 matrices containing the samples for the experimen-
tal conditions 1 and 2, respectively. As the package does
not include any pre-processing algorithm, if it is neces-
sary, matrices M1 and M2 must be previously normalized
or transformed in a convenient way. The aforementioned
first step of the method is carried out by building the
object called ORdensity.
ORdensity object
The ORdensity object is an S4 class created to gather
the potential differentially expressed genes given a value
α ∈ (0, 1). The object has the following slots:

• Slots
Exp_cond_1 = "matrix", Exp_cond_2 =
"matrix", the two matrices M1 and M2 (n × s1 and
n × s2) containing the expression level for each gene
under the two experimental conditions.
labels, vector of characters identifying the genes,
by default rownames(Exp_cond_1) is inherited.
If NULL, the genes are named ‘Gene1’, . . . , ‘Genen’
according to the order given in Exp_cond_1.
B = "numeric", by default the method considers
100 permutations in order to generate values
associated with genes which are not differentially
expressed (see [6], Subsection First step: finding
potential differentially expressed genes).
scale = "logical", by default scale =
TRUE. It is advisable to scale the differences between
quantiles when the variability of genes among
different types of samples is different.
alpha = "numeric", by default alpha =
0.05 is the value used by the method to calculate the
percentile (1 − α)100% of all the elements of the
matrix with the permuted samples. Only genes with
OR value above the (1 − α)100% percentile in the
permuted distribution are considered as potential
DEGs.
fold = "numeric", by default fold = 10 (see
[6], Subsection Second step: identifying differentially
expressed genes and Note 3).
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Fig. 1 Visualization of F̂−1
Xg

(p)− F̂−1
Yg

(p) differences for p ∈ Cp = {0.25, 0.5, 0.75} for two genes. In the left side, a gene whose expressions in conditions
X and Y are not differentially expressed (No DE gene); in the right side, a gene that is differentially expressed in conditions X and Y (DE gene)

probs = "numeric", by default probs =
c(0.25, 0.5, 0.75) are the considered
quantiles.
weights = "numeric", by default weights =
c(0.25, 0.5, 0.25) are the weights given to
the considered quantiles in probs. It may be
interesting to give greater importance to some of
them, therefore different weights can be introduced.
numneighbours = "numeric", number of
Nearest-Neighbours to consider, by default.
numneighbours = 10
numclustoseek = "numeric", maximum
number of clusters that are considered when looking
for the best partition, by default numclustoseek
= 10.
parallel = "logical", by default, no
parallelizing is enabled. To enable it, set parallel
= TRUE.
nprocs = "numeric", number of processes
launched when the option parallel is enabled.
The default value is the number of processors.

replicable = "logical" and seed
="numeric", it is also possible to enable or disable
replicability, and to pass the seed to the
pseudorandom number generator. The default values
are replicable = TRUE, seed = 0 with the
function using the given seed to set the random
generator. If replicable = FALSE, no seed is
used.

• Usage
Following the standard procedure in R, an instance of
a class ORdensity is created via the new()
constructer function:
new("ORdensity", Exp_cond_1 = M1,
Exp_cond_2 = M2)
Slots Exp_cond_1 and Exp_cond_2 are
compulsory since they contain the expression level of
genes. When a slot is not specified, the default value
is considered. First, the S4 object of class
ORdensitymust be created. Then, the potential
DEGs are identified and gathered in the object itself.
The rest of the functions in the package are based on
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this object so that useful information for the user is
extracted and computed.

Function summary
Once the potential DEGs genes are in the object
ORdensity, it is important to find out what the main
patterns among them are. That means to look for clus-
ters of genes that have similar OR, FP and dFP val-
ues. The motivation of the clustering is to distinguish
those false positives that score high in OR and low in
mean FP and density, but are similar to other known
false positives obtained by the permutation sampling.
The potential genes are clustered using the Partition
Around Medoids (PAM) method [9] based on indexes
OR, FP and dFP once they are scaled. By default, the
number of clusters is selected according to the silhou-
ette analysis [10]. Function summary provides a general
overview of the obtained clusters. It returns the num-
ber of potential genes in each cluster, the characteristics
of the clusters in terms of the indexes OR, FP and dFP
and also the identification labels of the genes in the
cluster.

• Usage
summary(object, numclusters)

• Arguments
object, an object of class ORdensity.
numclusters, optional, an integer number
indicating the number of clusters the genes are
partioned. By default NULL, the number of clusters is
calculated according to silhouette index as
mentioned before.

• Value
A list of k lists where k is the best number of clusters
found. The clusters are ordered based on their
importance, that is, the first one is the most important
and the last one is the least important, in the sense
that the most differentially expressed genes will be in
the first cluster, and so on. Each list has the elements:
numberOfGenes, number of genes in the cluster.
CharacteristicsCluster, matrix with mean
values and standard deviation of variables OR, FP
and dFP for each cluster.
genes, identification of the genes in the cluster.

Function findDEgenes and function
preclusteredData
We should also check a more detailed summary of the
object and obtain the genes identified as DE genes. Fol-
lowing [6], two types of differentially expressed gene
selection can be made:

ORdensity strong selection: take as differentially
expressed genes those with a large OR value and with FP
and dFP equal to 0.

ORdensity relaxed selection: take as differentially
expressed genes those with a large OR value and with
small FP and dFP values. As a reference to look for small
values of FP and dFP, the expected number of false posi-
tive neighbours is computed.

Function findDEgenes gives the genes identified as
DE according to the strong and relaxed selection. The
genes are presented in the clusters obtained, by default,
using the PAM method and the silhouette index as previ-
ously mentioned. For those users that want to study differ-
ent clustering methods, function preclusteredData
offers the description of all the potential DE genes in
terms of indexesOR, FP and dFP in only one table. There-
fore, the user can easily apply different approaches in
order to discover similar gene patterns.
2.3.2.1 Function findDEgenes

• Usage
findDEgenes(object, numclusters)

• Arguments
object, an object of class ‘ORdensity’.
numclusters, optional, an integer number
indicating the number of clusters the genes are
partitioned. By default NULL, the number of clusters
is calculated according to the silhouette index as
previously mentioned.

• Value
The function returns a list with the following
elements:
neighbours, number of Nearest-Neighbours
considered (inherits from slot numneighbours of
the ORdensity object).
expectedFalsePositiveNeighbours,
number of False Positive Neighbours expected within
the Nearest Neighbourhood under the uniform
distribution that corresponds to the proportion
permuted cases among all the potential DEGs and
permuted cases (see [6], Subsection Second step:
identifying differentially expressed genes).
clusters, a list of data.frames. Each
data.frame corresponds to a cluster gathering the
indexes: OR, FP, dFP as well as the labels obtained by
the aforementioned Strong and Relaxed selection
criteria.

2.3.2.2 Function preclusteredData

• Usage
preclusteredData(object)

• Arguments
object, an object of class ‘ORdensity’.

• Value
The function returns a data.frame with all
potential DEGs, indicating which are identified as
DEGs by the strong and the relaxed selection.
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Function plot
A plot with a representation of the potential genes based
on OR, FP and dFP can also be obtained using function
plot.

• Usage
plot(object, numberclusters)

• Arguments
object, an object of class ‘ORdensity’.
numclusters, optional, an integer number
indicating the number of clusters the genes are
partitioned. By default NULL, the number of clusters
is calculated according to the silhouette index as
previously mentioned.

• Value
This function returns a plot with a representation of
the potential genes based on OR (vertical axis), FP
(horizontal axis) and dFP (size of the symbol is
inversely proportional to its value). Moreover, genes
identified as DE by the relaxed selection are
represented by the symbol “�”.

Installation
The package is hosted in GitHub and to install the pack-
age from the repository, just run the following code
library(devtools)
install_github(’rsait/ORdensity’)

This package requires the cluster library to be
installed; otherwise it will automatically install and load it.
Likewise, the parallel, foreach and doRNG libraries
are used for parallelization. For the computation of the
distances, the distances library is used.
To start working with the package, just load it in the R

environment with the following command
library(ORdensity)

Parallel implementation
An intrinsic computational issue in this context is the
enormous computational burden that is involved. Let us
take into account that to compute the median of the dis-
tances between every pair of genes in a set of n genes,
n(n + 1)/2 distances need to be calculated and stored.
The running time of the fastest algorithm to find the
median of a list ([11]) is O(k) on average and O(k2) in
the worst case, where k is the number of elements in
the list. As the number of distances is n2/2, and there
are B permutation replicates, the average running time of
the median of all the replicates is O(Bn2), with O(Bn4)
in the worst case. The space requirements are of n2/2
8-byte floating point numbers to store the distances. As
the implementation uses a R dist object that has to be
converted into a matrix before computing the median

with Rfast::med, the actual space requirement dou-
bles. For example, in the case of the distances between
10,000 genes, an object with a size of 762.9 Mb is cre-
ated in each replication. Furthermore, more temporary
space allocation is done during the execution, as for exam-
ple when performing subsetting over a matrix, or when
computing the median. Due to R being an interpreted lan-
guage, the memory management is not so efficient as in
other compiled languages as C.
We alleviated this problem by means of a parallel imple-

mentation of the bootstrap procedure. R uses a garbage
collection mechanism to claim unused memory when
needed, and the release of memory by individual pro-
cesses when working in parallel has not been optimized.
These facts make the parallel execution being sometimes
slower than the sequential version due to an intensive
use of swap memory. The parallel execution can be acti-
vated calling the ORdensity objects constructor with
the parameter parallel = TRUE. By default, it is set
to FALSE. When parallel execution is selected, the func-
tion uses the libraries parallel, foreach and doRNG.
The first two are needed for parallel execution of the
code, while doRNG enables replicability of pseudoran-
dom number generations in a parallel environment.When
the parallel option is enabled, the user can choose the
number of processes to be run in parallel. When no
number is specified, a number of processes equal to the
number of processors in the machine is launched. This
improves the speed, but at the cost of a higher memory
load, because several objects containing the list of dis-
tances of each permutation replication will coexist in the
memory at the same time. The researcher will have to
take into account this trade-off, and be wary of possible
memory crashes due to RAM exhaustion or of serious
slowing down due to intensive use of swap memory. We
conducted a series of experiments to assess the runtime.
We used data sets involving different numbers of genes,
from 1,000 to 15,000, and we considered different num-
bers of bootstrap samples, where B is equal to 100, 500
and 1,000, respectively. All the experimentation was per-
formed on a personal computer (Intel i7-7700, 8 cores,
3.60GHz, 16 GB of RAM and 7.5 GB of swap space) run-
ning Ubuntu 16.04. Without the memory management
issues previously described, based on the time complex-
ity of the algorithm, the execution time should increase
linearly with the number of bootstrap replicates, quadrat-
ically with the number of genes (estimating average time
for the computation of the median), and should decrease
linearly with the number of processes. In our experimen-
tal setup we observe that when working in the low range of
the number of genes, processes and bootstrap replications
the expected behaviour is obtained. Nevertheless, in the
high end of the values of the aforementioned parameters
there is a clear decrease in the performance. Even in some
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cases, the execution crashed due to exhaustion of RAM
and swap space. For instance, when N = 1, 000, using
up to 5 or 6 cores the execution times reduces roughly as
expected (using 6 cores, the execution is 5.4 times faster
than the sequential execution; 51.5 sec. and 280.02 sec.,
respectively). For N = 10, 000 genes, the improvement is
observed up to 4 cores (with 4 cores the execution time
is 3.7 times lower compared to the sequential implemen-
tation; 2093.1 sec. and 7662.7 sec., respectively). For big
number of genes (N = 15, 000) the execution in paral-
lel offers an improvement when only 2 cores are working
being the execution in parallel 2 times faster (8157.5 sec
and 16477.6 sec., respectively). When more cores were
working the previously mentioned memory issues prevail.
See Fig. 2 for details.

Results and case of use
In addition to the experiments performed in our own
computer, a code capsule has been created to allow the
readers to experiment without having to install any-
thing in their machines. The code capsule runs Ubuntu
18.04, and the versions of the installed software are the
following: R 3.5.3, libgsl-dev 2.4+dfsg-6,
Rfast 1.9.3, cluster 2.0.8, distances
0.1.7, doParallel 1.0.14, doRNG 1.7.1,
foreach 1.4.4 and rngtools 1.3.1. The
ORdensity package ensures reproducibility for a given
configuration. In particular, the results of sequential and
parallel computation could differ slightly due to the use of
a different pseudorandom generator, but several sequen-
tial executions would return the same results, as well as
several parallel executions even using different number of
processes.
ORdensity stands out for its simplicity and ease of use.

For example, consider the following simulated data, called
simexpr, included in the package. We assumed a total of
1000 genes, among which 100 were generated as differen-
tially expressed genes. The expression levels of all no DE
genes were generated by N(0, 1) distribution in both con-
ditions 1 and 2. The DE genes were generated using the
N(0, 1) and N(μg , 1) distributions for conditions 1 and 2,
respectively, with |μg | = �. Parameter � sets the impor-
tance of gene g, where the bigger � is, the more important
gene g is. We considered � in {1.5, 2, 3}.
To summarize, each row g in simexpr corresponds to

a simulated gene. The first column indicates whether gene
g is DE or not. The second column contains � values.
Columns 3-32 and 33-62 have the expression levels under
experimental condition 1 and 2, respectively.
First, we extract the samples from each experimental

condition from the simexpr database, and the created
S4 object which was stored in myORdensity.

x <- simexpr[, 3:32]

y <- simexpr[, 33:62]

EXC.1 <- as.matrix(x)

EXC.2 <- as.matrix(y)

myORdensity <- new("ORdensity", Exp_cond_1=

EXC.1, Exp_cond_2=EXC.2, replicable = TRUE,

seed = 0)

myORdensity

The ORdensity method has detected 107

potential

DE genes

Thus far, the first step of the procedure is performed,
and it detected 107 genes as potential DEGs that are
stored. The identified potential genes turned out to be
clustered in two clusters:

out <- summary(myORdensity)

The ORdensity method has found that the

optimal

clustering of the data consists of 2

clusters

We applied the summary function without specifying
the number of clusters the genes are partitioned and we
got a message informing that the best number of clusters
is 2. As a result, a description of the clusters is calculated.
For instance,
out

$Cluster1$numberOfGenes [1] 83

$Cluster1$CharacteristicsCluster

OR FP dFP mean 63.58152 0.6361446 2.090888

sd 40.60755 1.0377718 3.577757

$Cluster1$genes

[1] "Gene1" "Gene10" "Gene100" "Gene11"

"Gene12" "Gene13" "Gene14" "Gene15"...

$Cluster2

$Cluster2$numberOfGenes [1] 24

$Cluster2$CharacteristicsCluster

OR FP dFP mean 11.114243 7.504167 42.69873

sd 3.318156 1.964794 20.47935

$Cluster2$genes

[1] "Gene104" "Gene18" "Gene19" "Gene277"
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Fig. 2 Running times for simulated data with different numbers of genes, different numbers of cores and different number of permutations used in
the bootstrap procedure. In the vertical axis the type of execution: sequential or the number of processes working

"Gene31" "Gene33" "Gene38" "Gene399"...

Thus, the procedure considers 107 genes as potential
DEGs and clustered them in two clusters with 83 and 24
genes respectively. As the clusters are ordered in decreas-
ing order according to the value of the mean of the OR
statistic, we can see that the mean is higher in the first
cluster (63.58) than in the second one (11.11), which
means that the first group is made up of genes whose
expression is very different in the two groups. The second
is composed of genes with expressions that do not differ
so much between groups.
Using plot(myORdensity) the user can visualize

the clusters. Figure 3 shows the values of indexes OR, FP,
and dFP for the potential selected genes. In the verti-
cal and horizontal axes, values OR and FP, are presented
respectively. The size of the symbols is inversely propor-
tional to dFP. As we can observe, the first cluster has
genes with very high OR values as well as low FP and
dFP values. Therefore, as we have pointed out, this cluster
contains, as expected, the most differentially expressed
genes.

In order to determine which genes are considered as
DEGs, we calculatedmore detailed clustering output with,
clusters <- findDEgenes(myORdensity)

The information is shown in slots, along with the
obtained partition of genes:
clusters

$neighbours [1] 10

$expectedFalsePositiveNeighbours [1]

8.237232

clusters$clusters

[[1]]

id OR FP dFP Strong Relaxed

62 Gene62 175.04322 0.0 0.0000000 S R

50 Gene50 172.28779 0.0 0.0000000 S R

61 Gene61 155.53626 0.0 0.0000000 S R

...
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Fig. 3 For the simexpr data set, representation of the potential genes based on OR (vertical axis), FP (horizontal axis) and dFP (size of the circle is
inversely proportional to its value). Genes identified by the relaxed selection as DEGs are indicated by the symbol “�”; in red and blue, genes
belonging to cluster 1 and cluster 2, respectively

$clusters[[2]]

id OR FP dFP Strong Relaxed

46 Gene46 14.632071 4.3 15.79809 - R

31 Gene31 17.597946 4.9 19.29094 - R

45 Gene45 14.734285 4.9 20.34821 - R

With this data, the package gives the following information,
$expectedFalsePositiveNeighbours is 8.24. Thus,
for a gene and according to a uniform distribution, on average,
the expected number of false positives among the 10-nearest
neighbours is 8.24, because considering all data, the proportion
of permuted samples is 82.37%. As this is the threshold used for
the relaxed selection, with this selection the procedure identi-
fies 97 DEGs, where 12 of themwere also selected by the strong
selection.
As we can observe in Table 1, 83 of these 97 genes identi-

fied as DEGs are in cluster 1 (#cluster 1 = 83) and 14 of them
are in cluster 2 (#cluster 2 = 24). In this simulated data, we
know by construction which genes were generated as DEGs
and it is easy to check that 96 of the 97 genes identified as
DEGs by the relaxed selection are truly DEGs, so, we only
find one false positive. The 4 genes simulated as DEGs but not
selected by the procedure (false negatives) were associated to
the smallest value � = 1.5, one of them was not considered
as potential DE gene and the other 3 were considered potential
genes.

In order to evaluate the impact in the results of different
initial seeds (in sequential and parallel executions the ran-
dom seeds are handled differently), we repeated 100 times,
with different inital seeds, and analyzed the results on the
simexpr database. The mean number of genes detected as
potential DE genes was 106.94 with 0.62 as standard devia-
tion, and 891 genes never were considered potential DE genes.
Regarding the 100 DE genes, one of them never was consid-
ered as potential DE gene, while the other 99 were always
included in the set of potential DE genes. Between these
99 genes, 2 never were identified as DE genes; 1 was only
detected as DE gene in less than 25 runs, and the other 96
genes were always identified as DE genes. The assignation of

Table 1 Using the simexpr data set, distribution among the
two clusters of the genes identified by ORdensity as DEGs

n � Identified DEGs

True DE genes Cluster 1 Cluster2

35 3 34 (9S/25R) 1 (0S/1R)

32 2 31 (2S/29R) 0

33 1.5 18 (1S/17R) 12 (0S/12R)

Not true DE

900 - 0 1 (0S/1R)

In brackets the number of DEGs selected by strong (S) and relaxed (R) criterion,
respectively
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the label “strong” leads to a bigger variability because in fact
it is a discretization of a quantitative variable (FP) given a
threshold value at 0. Nevertheless, the variability of each DE
gene concerning his FP values among the 100 repetitions is
low: the minimum value for the standard deviation was 0.00
and the maximum 0.67, for variable FP that ranges between
0 and 10.

Discussion
As we have shown, our ORdensity package requires minimal
user intervention and obtains results in only a few instructions.
The user can identify DEGs with data sets containing large
number of genes (< 20, 000). When the user runs ORdensity
can get, in addition to the results, one graph which shows
the values of the three indexes used for the DEGs identifi-
cation. Furthermore, ORdensity allows the user to modify
the weights of the quantiles if some of them are considered
more important than the others. Users can also change the
cluster method and the number of clusters that, by default,
are calculated using PAM procedure and the silhouette crite-
rion. Because to guarantee reproducible analysis the method
uses permutation sampling, the user can fix the seed to set the
random generation. Moreover, to analyze a large number of
genes and to have small run-times, parallelization across the
permutation sampling procedure was implemented. However,
one limitation of the method is the long execution time when
the number of genes is large (> 10000), an issue that is only
partially improved with the parallelization, although it allevi-
ates this inconvenience. Furthermore, like many permutation-
based methods, the program requires large amount of memory
to store intermediate data and the replicates of the origi-
nal data matrix. Although this fact may limit the use of the
program, ORdensity should be understood as an alternative
program to the existing ones. Since its approach is innovative
and different to other methods, it can shed light to iden-
tify interesting genes that would not be detected with other
techniques. Moreover, the method for identifying DE genes
implemented in the package, as it was pointed out in [6], avoids
some of the shortcomings of the individual gene identifica-
tion and it is stable when the original sample is changed by
subsamples.
As future work, we intend to improve the running time and

needed memory space by two different ways. The first one is
to develop a version that makes use of Nvidia GPUs for the
computation of distance matrices, and the second one is to
test median approximations not so demanding computation-
ally. GPU computation could lower the computation time when
building the distance matrix, but it would still be needed to
store the whole matrix in order to find the median. On the
other hand, the remedian [12] algorithm (median of medi-
ans) could reduce drastically the needed memory, but at the
expense of returning only an approximation to the median.
Further experiments would need to be conducted to test if
the ORdensity results are similar using the median or the
remedian.
Although due to sequential and parallel computation, the use

of a different pseu-dorandom generator may slightly affect the
results, the biological impact that it can have is small, since

the results vary very slightly and only affect those very poorly
expressed genes.
Finally, it is worth to remark that ORdensity allows prac-

titioners to perform their applied research in a user-friendly
environment.

Conclusions
ORdensity is a free and comprehensible R package avail-
able to the biomedical community. This computational tool is
designed to identify DEGs following the method introduced
in [6]. In few sentences, this tool executes an efficient and
accurate analysis producing a list of differentially expressed
genes, it requires a minimal user expertise and it displays the
results in an easy way to interpret them. All these features make
ORdensity powerful software for studies of DEGs.

Availability and requirements
Project name: ORdensity
Project home page: https://github.com/rsait/ORdensity
Operating system(s): Platform independent
Programming language: R 3.5.3 or higher
Other requirements: Rfast 1.9.3 or higher, cluster 2.0.8 or
higher, distances 0.1.7 or higher, doParallel 1.0.14 or higher,
doRNG 1.7.1 or higher, foreach 1.4.4 or higher, rngtools 1.3.1
or higher
License: GNU GPLv2+
Any restrictions to use by non-academics: no restrictions
Abbreviations
DE: Differentially Expressed; DEGs: Differentially Expressed Genes; dFP: Average
density of false positive permuted cases in k-NN; FP: Average number of false
positive permuted cases in k-NN; limma: Linear models with Empirical Bayes
statistic; OR: Outlier Robust index; PAM: Partition Around Medoids clustering
method; SAM: The Significant Analysis of Microarrays
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