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Graphical abstract

Previous studies have only assessed brain responses to trained words and novel non-words, 
and hence do not provide sufficient information on how the brain mediates the recognition of 
word-like units versus mere statistical regularities within sequences. The present study 
addresses this issue, as well as determines whether learning of statistical regularities 
embedded into a continuous sensory input and discrete constituents comprising this input, and 
subsequent recognition of extracted constituents, relies on the same mechanisms. 

Abstract

Statistical learning is a set of cognitive mechanisms allowing for extracting regularities from the 
environment and segmenting continuous sensory input into discrete units. The current study 
used functional MRI (N = 25) in conjunction with an artificial language learning paradigm to 
provide new insight into the neural mechanisms of statistical learning, considering both the 
online process of extracting statistical regularities and the subsequent offline recognition of 
learned patterns. Notably, prior fMRI studies on statistical learning have not contrasted neural 
activation during the learning and recognition experimental phases. Here we found that learning 
is supported by the superior temporal gyrus and the anterior cingulate gyrus, while subsequent 
recognition relied on the left inferior frontal gyrus. Besides, prior studies only assessed the brain 
response during the recognition of trained words relative to novel non-words. Hence a further 
key goal of this study was to understand how the brain supports recognition of discrete 
constituents from the continuous input vs. recognition of mere statistical structure that is used to 
build new constituents that are statistically congruent with the ones from the input. Behaviorally, 
recognition performance indicated that statistically congruent novel tokens were less likely to be 
endorsed as parts of the familiar environment than discrete constituents. fMRI data showed that 
the left intraparietal sulcus and angular gyrus support the recognition of old discrete constituents 
relative to novel statistically congruent items, likely reflecting an additional contribution from 
memory representations for trained items.

Keywords: statistical learning; segmentation; statistical generalization; fMRI; sensory input; 
information

Introduction
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Statistical learning allows agents to detect regularities in the world around them. These 

statistical cues can be used to split the continuous flow of sensory information (visual, auditory, 

tactile) into discrete constituents, a process called segmentation. The neural mechanisms 

underlying segmentation are evolutionary ancient1–4 and shared by a diverse range of species5–

8. Segmentation based on statistical cues contained in the sensory input operates across 

different domains. In humans, this includes splitting speech into words and phrases9, separating 

distinct rhythms and other musical properties [in musical compositions]10–12, parsing sequences 

of events as well as discerning discrete sequences of actions in a continuous series of human 

activities13,14. For example, while viewing a series of still images representing a continuous 

dynamic activity, viewers´ gaze tends to dwell longer on those slides that illustrate the 

boundaries between unfolding events: dwell times are longer for slides that show the grasp of a 

glass has been completed than those that show the grasping action still unfolding. This 

segmentation takes place at various levels: slides that depict boundaries between distinct 

higher-level actions, for example, the boundary between emptying a dishwasher (which includes 

the lower-level action of grasping a glass to take it out of the machine) and starting a new 

sequence of sweeping the floor, attracts even longer gazes15. It is more difficult to predict 

actions that follow boundaries so they attract more attention. By contrast, when the next action 

can be easily predicted based on previously observed events, less attention is required – and 

dwell times diminish – because the further unfolding of events is highly predictable. These 

results were interpreted within the framework of statistical learning16. Besides, it has been 

suggested that the segmentation of actions, of continuous sensory input across modalities, and 

segmentation of speech into linguistic constituents like words and phrases – all rely on the same 

cognitive processes related to statistical learning14,16.

Statistical learning operates on a variety of cues, including (but not limited to) conditional 

regularities known as transitional probabilities (TPs). TPs refer to the probability of an event B 

happening given that event A has occurred. Higher TPs characterize the events that commonly 

happen sequentially one after another, while lower TPs are aligned with the boundaries 

between the sequences of commonly co-occurring events. Thus, the differences between high 

and low TPs between events allow breaking continuous flow of events into discrete sequences, 

with events within sequences being more predictable than those spanning the edges of these 

sequences. Although this tokenization, or segmentation mechanism has been shown to operate 

across domains (see references above), it has been most extensively studied in the context of 

speech processing. For instance, during speech processing, continuous stream of syllables (i.e., 

events) can be segmented into separate words by calculating transitional probabilities (TPs) 
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between adjacent syllables1. For example, in the phrase “pretty baby”, the probability that the 

syllable “ty” will follow syllable “pret” is higher than the probability “ba” will follow “ty”. Minima in 

TPs between adjacent syllables, compared to surrounding TPs (i.e., local minima), are aligned 

with word boundaries. They can be used by infants learning their first language or adults 

exposed to a foreign language to segment a sequence of syllables into discrete words17.

What is still debated, however, is how new constituents are identified. Do listeners detect 

word boundaries between consecutive constituents based on lower TPs, or do they merge 

smaller frequently co-occurring units into a single constituents9? Some researchers advocate for 

clustering mechanisms18,19, while others argue in favor of boundary-finding mechanisms20–22. 

Some studies demonstrate that both human and non-human animals employ various strategies, 

which might rely on different neural mechanisms, and show that the choice of the strategy is 

determined by individual preferences, peculiarities of sensory input, and environmental 

circumstances9,23.

The use of statistical cues in speech segmentation is usually studied within the artificial 

language learning paradigm24. A set of artificial words is concatenated into a continuous 

acoustic stream, with each word in the stream recurring multiple times. The syllable pairs with 

lower inter-syllabic TPs are more likely to straddle word boundaries than syllable pairs with 

higher TPs, which, in turn, are more likely to be confined within word boundaries. This enables 

the segmentation of the continuous syllable stream into words. Performance in speech 

segmentation tasks is tested by habituating the listener to the constructed acoustic stream, then 

administering a recognition test, in which participants need to endorse or reject test tokens as 

word candidates. Test tokens can either be statistical words from the learning stream, or 

sequences that violate the statistical regularities embedded in the habituation stream. Empirical 

studies convincingly demonstrate that words are endorsed as legal word candidates, while 

syllabic sequences that violate statistical regularities are rejected25. We aim to explore the 

neural bases of statistical learning in the context of this speech segmentation paradigm using 

the interesting case of so-called phantom words. Phantoms are test tokens that conform to the 

acquired statistical regularities but never occurred during habituation. For instance, listeners 

may be exposed to recurrent syllabic triplets, including XYA and BYZ triplets, with 0.5 

transitional probabilities between syllables within triplets. Although syllabic pairs XY and YZ 

frequently occur in the familiarization stream, the sequence XYZ is never presented during 

habituation. It is still not clear if or how the brain differentiates between familiar structural units 

(i.e. artificial words) and novel units that are structurally congruent with the old ones. Addressing 

this question promises to provide important insights into the neurocognitive bases of statistical 
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learning, namely, whether the brain relies on structural regularities, memory representations or 

a mixture of both while endorsing different types of tokens as legitimate candidates as discrete 

constituents in a continuous environmental input. Observing differences in brain responses to 

words and phantoms would suggest that different cognitive mechanisms are employed in the 

recognition of these tokens, notably, even when tokens of both types are not differentiated 

behaviorally. Phantoms can only be endorsed based on the recognition of their congruence with 

the statistical regularities embedded in the sensory input, while words may additionally rely on 

memory representations of whole discrete elements.

To date, there is conflicting evidence as to whether, after exposure to artificial language, 

phantoms emerge as perceptual units during recognition. Not all researchers have observed 

that phantoms are confused with holistic triplets (i.e. word-like structures)21,26. Furthermore, 

individual differences and the native language of the listener can influence whether or not 

phantoms are confused with words22,27. A key goal of the present study is to provide novel 

insights into the mechanisms supporting statistical learning using a novel behavioral and 

neuroimaging protocol to partial out the processing of words, phantoms and pseudorandom 

sequences during learning and subsequent recognition.

Earlier studies have shown that learning based on transitional probabilities (TPs) in the 

auditory modality is supported by the superior temporal gyrus (STG)28–31 and inferior frontal 

gyrus (IFG)28,32,33, mainly – but not exclusively – in a left-lateralized network. These studies have 

suggested that the STG is involved in learning TPs in the acoustic input, while the IFG is 

hypothesized to support the learning of word-like units28. As learning progresses, brain 

responses to occasional violations of statistical regularities can also be observed in 

frontoparietal cortex34,35, particularly in the control network, which includes the right angular and 

bilateral anterior cingulate gyri28,29,35,36. Detection of violations of statistical structure during 

training is also supported by the temporoparietal junction34,37, in line with its established role in 

attentional re-orienting to unexpected stimuli38.

However, previous studies have only assessed brain responses to trained words and 

novel non-words. Hence, they do not provide sufficient information on how the brain mediates 

the recognition of word-like units versus the recognition of mere statistical regularities (i.e., TPs) 

within sequences. The present study addresses this issue for the first time. A second key 

objective of this study is to determine whether learning of statistical regularities embedded into a 

continuous sensory input and discrete constituents comprising this input on the one hand, and 

subsequent recognition of extracted constituents on the other hand relies on the same 

mechanisms9,28,35. This is an issue that is hard to tackle using behavioral measures alone. 
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Cognitive processes related to memory encoding and retrieval may rely on shared neural 

mechanisms39,40. However, most prior fMRI studies that used a statistical learning paradigm 

only recorded brain activity online (during learning) or offline (later, during recognition). Critically, 

brain responses were not recorded during both learning and recognition within the same 

experiment. Additionally, the only fMRI study that examined both the learning and recognition 

stages29 did not test for neural differences between these two phases. Here, we recorded BOLD 

responses during both the learning and recognition phases in order to determine whether online 

statistical learning and subsequent offline recognition were supported by similar or different 

brain substrates.

Methods

Participants

We analyzed the data from 25 native Spanish participants (11 males between 20 and 33, 

average age 25.5 years, SD = 3.29). MRI data from one participant was discarded because he 

did not follow instructions (i.e. during the recognition test he pressed the same button for all 

responses). All participants had acquired Basque in childhood after the age of two as their 

second language and were using it daily. We note that prior studies have not revealed 

differences between monolingual Spanish and bilingual Spanish-Basque participants in the 

segmentation of statistical units in off-line recognition tests41,42. Also, to mitigate the possibility 

that individual differences related to bilingualism might influence statistical learning processes, 

we homogenized our sample by matching participants by proficiency and age of acquisition (2–3 

years) of the second language, as well as the self-reported extent of their daily exposure to and 

use of Basque. None of the participants had any prior history of neurological disorders. The 

experiment was approved by the BCBL ethical committee. All participants provided informed 

consent.

Experimental materials and procedures

Learning phase. The habituation stream was composed of alternating structured and random 

blocks. Structured blocks consisted of concatenated syllable triplets, so that higher TPs 

between syllables within these triplets and lower TPs between syllables straddling the triplet 
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boundaries allow for predicting the following syllable after both triplet-initial and triplet-medial 

syllables, but not after triplet-final syllables. Random blocks consisted of the same syllables 

unsystematically concatenated so that the TPs between them were uniform throughout and 

therefore did not allow for segmentation. 

The habituation stream was synthesized using MBROLA, with ES1 voice and 

fundamental frequency invariably set to 110Hz. We used a set of 18 consonant-vowel syllables. 

The duration of each syllable was 240 ms (100 ms for consonants and 140 ms for vowels). 

These syllables were used to construct 12 trisyllabic statistical words, with TPs between 

syllables within triplets set to 0.5. These triplets were randomly concatenated 21 times with the 

restriction that the same word was never repeated consecutively. TPs between syllables 

straddling triplet boundaries were approximately 0.16. The difference in TPs between syllables 

within triplets and TPs straddling triplet boundaries provided statistical cues for the 

segmentation of the continuous stream of syllables into recurrent trisyllabic sequences (words). 

This procedure was repeated three times to create three structured blocks of 181.44 sec. We 

also pseudorandomly concatenated all 18 syllables from the artificial language syllabic inventory 

six times, such that no syllable was ever repeated consecutively. We prepared three 

pseudorandom blocks of 25.92 sec each. The same syllable inventories were used during 

structured and pseudorandom blocks because our goal was to test for differences in brain 

responses to the presence or absence of statistical structure without introducing any confounds 

due to differences between the acoustic properties of the stimuli.  Also, we elected not to use 

rest periods as the baseline but rather contrasted activity in structured and pseudorandom 

blocks during learning. It was likely that overall brain state in pseudorandom blocks would be 

more similar to that in structured blocks than during rest. Therefore, we could be confident that 

any differences in neural responses to random and structured blocks were elicited because 

structured blocks included recognizable structure with extractable and learnable constituents. 

Contrasting structured blocks to rest would also have introduced the problem of individual 

variability because mental activity during rest can vary, engaging different mechanisms and 

different networks43.

The habituation syllabic stream was prepared by alternating structured and 

pseudorandom blocks three times. At the end of the stream, we added an additional 36 

randomized syllables (each of the 18 syllables from the inventory repeated twice for a total of 

8.64 sec) and applied a fade-out filter. A fade-in filter was also applied at the beginning of each 

stream, thus preventing any potential anchoring effects of stream-initial and stream-final 

syllables on segmentation. As statistical learning mechanisms are constantly operating on 
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incoming sensory input, it is possible – though unlikely, given the difference in exposure time to 

structured and random blocks – that participants collapsed conditional statistics across 

conditions. However, this possibility does not undermine the validity of the cues for statistical 

segmentation since the syllable pairs with higher TPs were more likely to fall within the recurrent 

triplets.

We prepared two similar habituation streams which had unique orders for recurrent 

triplets within structured blocks and for syllables within pseudorandom blocks. Streams 1 and 2 

were used for the first and second runs of the learning session. During the learning phase, 

participants were asked to listen to an “extraterrestrial language” and to try to detect and 

memorize the words from that language.

Recognition phase. The recognition test was comprised of four test runs each comprising 63 

trials. In each trial, we randomly concatenated either 4 different triplets from the habituation 

stream, 4 different phantoms – triplets that fit the statistical regularities of the habituation input 

but had never occurred in the learning stream as whole constituents, or 4 non-words (i.e., 

triplets composed of syllables that never occurred consecutively in the habituation stream). 

Each run included 21 trials of each type. The duration of the stimuli in the recognition test was 

2880 ms. Each triplet was used an equal number of times across all trials. The stimuli were 

preceded and followed by 200 ms silence. After each stimulus presentation, participants were 

asked to decide whether that acoustic sequence had been presented during the learning 

session, and then to rate their confidence in the given response, on a 4-point scale. The period 

for each response was fixed to 2000 ms. The trials were separated by a jittered time interval 

according to a pseudo-exponential distribution from 3000 ms to 5000 ms in steps of 500 ms.

Both the learning and recognition phases were performed inside the scanner. The sound 

was played via in-ear Sensimetrics S14 headphones. A pair of headphones was placed above 

the in-ear headphones in order to dampen the noise of the scanner and to enable 

communication with the experimenter. The stimuli were back projected onto a screen by a 

mirror on the head coil. The area between the participant’s head and the coil was padded with 

foam to make the participant more comfortable and to minimize head movements. We asked 

the participants not to move during scanning.

To familiarize the participants with the procedure and the experimental protocol and 

interface, a brief training session was organized outside the scanner, with a 40-second 
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familiarization stream and 4 recognition trials. The syllables for this training session were 

different from those used in the actual experiment. The list of statistical words, phantoms and 

non-words are given in Table 1. The structure of the learning runs and recognition trials is 

illustrated in Figure 1.

Functional and structural MRI data acquisition

Whole-brain MRI data acquisition was conducted in a 3T MAGNETOM PRISMAfit MR scanner 

using a 64-channel coil. T1-weighted images were acquired using MP-RAGE sequences with 

the following parameters: TR = 2530 ms, TE = 2,36 ms, FoV = 256 mm, flip angle = 7 degrees, 

acquiring 176 contiguous 1 cubic mm slices per run. Functional images were acquired using a 

multi-band acceleration factor of 6 (multi-slice interleaved mode), with 66 contiguous 2.4 cubic 

mm slices, TR = 850 ms, TE = 35 ms, flip angle = 56 degrees. We achieved whole-brain 

coverage.

FMRI data pre-processing

Image pre-processing was performed in FSL 5.0.9 using the FEAT module. First, we used the 

brain extraction tool (BET44) to separate the brain matter from non-brain tissues. The first 11 

volumes of each run, both in learning and in recognition tests, were discarded to control for 

magnetic saturation effects and allow for MR signal stabilization. We used a high-pass filter 

cutoff of 100 sec for the learning runs and of 60sec for the testing runs following FSL manual 

instructions for blocked and event-related designs. Scans were realigned by using MCFLIRT 

motion correction (spatial smoothing with a 6-mm FWHM Gaussian kernel applied). Translation 

parameters did not exceed half a voxel in any direction for any participant in any run. Functional 

images were registered to T1 structural images (7 degrees of freedom for testing runs and using 

the boundary based registration BBR algorithm45 for the learning runs). Then, the images were 

registered to the standard MNI152 template using affine registration with 12 degrees of 

freedom, using full search setting.

FMRI data analysis
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Learning phase. Statistical analysis for the learning stream was performed within the 

framework of the general linear model in the individual native space first, with statistical maps 

normalized to the standard space prior to higher-level analyses. Each pseudorandom block was 

entered as a separate explanatory variable (EV). Critically, chunks with duration of 25.92 

seconds of structured blocks immediately preceding the pseudorandom blocks (also 25.92 

seconds) were entered as separate EVs in order to match the two conditions in the number of 

scans so that the amount of data for the comparison of the BOLD responses during structured 

and pseudorandom blocks is equated. The numbers of scans were equated in order to have a 

similar signal for the contrast of blood oxygen level dependent (BOLD) differences between 

structured and pseudorandom blocks. See Rosenthal et al.46 for detailed methodological 

justifications for the necessity to equate the amount of data while comparing the BOLD 

response between two conditions.

Each EV specified the onset of the pseudorandom block or the onset of the structured 

chunk. The EVs were introduced in the model along with their temporal derivatives. We applied 

FILM pre-whitening47. Standard and extended motion parameters were introduced in the GLM 

model as additional regressors of no interest48. Furthermore, we used the FSL motion outliers 

function (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers) and included the regressors 

corresponding to the motion outliers in the design matrix in order to deal with the effect of 

intermediate-to-large motions that could potentially corrupt images beyond the level that the 

extended motion parameter regression methods could deal with. To detect the volumes 

containing motion outliers, we calculated the root mean square (RMS) head position difference 

to the reference volume and compared the 75 percentile +1.5 inter-quartile range of the 

distribution of RSM values for each run. A confound matrix was generated and used in the GLM 

to completely remove the effects of these timepoints on the analysis.

Parameter estimates were calculated for the following contrasts in which brain activity 

was higher for pseudorandom relative to structured blocks (R1>S1, R2>S2, R3>S3, R4>S4, 

R5>S5, R6>S6, where “R” stands for pseudorandom, “S” stands for structured, and the number 

indicates the sequential number of the pseudorandom block or immediately preceding 

structured chunk, i.e., R1, R2, and R3 are parts of run 1 and R4, R5, and R6 are parts of run 2. 

The resulting 6 contrasts of parameter estimates reflect acquisition of relevant sequence 

knowledge.

We then performed a second level, fixed-effects analysis within each participant using 

the 6 parameter estimates noted above. Here we tested for different temporal profiles of 
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learning related activity (S<R and S>R) across the training phase. We assessed a logarithmic 

trend (specified using the following contrast: -3.125, -1.0, 0.5, 1.0, 1.25, 1.375) and an 

exponential increase (specified using the following contrast: -1.375, -1.25, -1.0, 0.5, 1.0, 3.125). 

The logarithmic increase suggests that the difference in BOLD change on pseudorandom and 

structured blocks is larger at the beginning of the learning phase and attenuates as learning 

progresses. This trend can be caused by faster learning at the beginning of exposure, with the 

learning rate then decelerating. Exponential increase is a reciprocal function, which, on the 

contrary, suggests that learning is slower at the beginning, and accelerates with time, causing 

the differences in the BOLD response on pseudorandom and structured blocks to increase more 

rapidly as habituation progresses.

The output of the contrasts was fed into a mixed-effect model using the FLAME 1 

algorithm in FSL49 in order to test for the consistent effect across participants (group Z >2.3, 

cluster significance threshold P = 0.05, corrected using Gaussian field theory).

Recognition test. Statistical analysis for the recognition test was first conducted within the 

framework of the general linear model in native space, with statistical maps normalized to the 

standard space prior to higher-level, group analyses. We created the EVs for words endorsed 

as words (words_acc), rejected non-words (nonw_rej), rejected and endorsed phantoms 

(correspondingly phan_rej and phan_acc). We modelled the onset of each EV with durations 

that corresponded to the length of the stimulus (2.88 secs). Regressors of no interest were 

introduced into the design matrix as separate EVs to control for variation in decision response 

time both for the first recognition response (i.e., whether the stimulus was presented during the 

learning session) and for the confidence rating. The EVs were introduced along with their 

temporal derivatives. We applied FILM pre-whitening with standard and extended motion 

parameters and introduced an additional EV for the motion outliers.

We then estimated contrasts of parameter estimates that were relevant to our study 

goals.  In particular, we assessed the brain substrates that support (1) the recognition of words 

vs. non-words and critically (2) the recognition of words vs phantoms. In these analyses we 

used trials with correct responses (i.e. words_acc vs. nonw_rej for (1) and words_acc vs. 

phantoms_rej as well as words_acc vs. phantoms_acc for (2). The contrasts were estimated in 

both directions, i.e., for the contrast words_acc vs. nonw_rej we estimated contrasts of 

parameter estimates both for words_acc > acc-nonw_rej and words_acc < nonw_rej. We 

reasoned that accepting words can rely both on the recognition of word-like structural 
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information present in the memory traces of the triplets and the statistical structure contained in 

the lower-level TPs. The comparison of the BOLD signal change between words and phantoms 

ought to reveal the brain substrates that support the recognition of word-like structural 

information. The trials with phantoms involve analysis of statistical structure and making 

decisions based only on statistical congruency. Alternatively, rejecting phantoms may rely on 

the fact that they are not supported by memory representations because the phantoms were not 

encountered and extracted as whole units during the learning phase. Hence, we expected the 

memory network to be more activated for accepted words than both rejected and accepted 

phantoms. 

We performed within-subject, cross-run (fixed effects) analysis to estimate the individual 

mean of each contrast across all runs of the recognition test. In order to find effects that were 

consistent across subjects, all contrasts were fed into a mixed effect model for the whole-brain 

group analysis using FLAME 1, thresholding the statistic images (Z >2.3, P = 0.05 corrected 

using Gaussian Random Field theory49,50.

Results

Behavioral results

Behavioral data was acquired only during the recognition test. We estimated the percentage of 

endorsed words, phantoms and non-words. Also, we calculated the mean confidence rating 

assigned to endorsed and rejected words, non-words and phantoms. Although the percentage 

of correct responses might seem somewhat lower than what is usually reported in artificial 

language learning experiments, it is not extraordinarily low. The environment, in which 

participants had to do the task was more challenging (i.e. performed inside the scanner against 

strong background noise), the number of discrete constituents was larger (12 triplets) than what 

is usually used in similar experiments (4 triplets), and the differences in TPs between syllables 

within words and between syllables spanning word boundaries was less pronounced (50% vs. 

16%) than what is usually used (100% vs. 33%). All these factors increased the difficulty of the 

task. In addition, the interleaved random blocks could also have had a detrimental effect on 

learning.

We performed one-sample t-tests comparing the percentage of endorsed tokens in each 

condition (words, phantoms and non-words) with chance level performance (50%). The results 
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(Fig. 2) show that the percentage of endorsed words is significantly above what would be 

expected by chance, t(24) = 3.224, P = 0.004, M (mean difference) = 12.08%, 95%CI [4.35: 

19.81], d = 0.645. The percentage of endorsed non-words is significantly below what would be 

expected by chance, (t(24) = -6.379, P < 0.0005, M = -23.63%, 95%CI [-34.27: -15.98], d = 

1.276. The percentage of endorsed phantoms is not significantly different from chance, t(24) = 

1.285, P = 0.211, M = 10.71%, 95%CI [-3.25: 13.95], d = 0.257.

Repeated-measures ANOVA revealed significant differences in the percentage of 

endorsed words, phantoms and non-words, F(2, 48) = 60.009, P < 0.0005, ηp
2 = 0.714 (p value 

corrected with the Greenhouse-Geisser method, df are reported uncorrected). Pairwise 

comparison (with the Bonferroni correction applied) showed that the proportion of endorsed 

words was significantly higher than that of endorsed phantoms, t(24) = 3.371, P = 0.008, M = 

6.72%, 95%CI[2.6: 10.84], d = 0.674. The percentage of endorsed phantoms was also 

significantly higher than the percentage of endorsed non-words, t(24) = 7.245, P < 0.0005, M = 

28.98%, 95%CI[20.73: 37.24], d = 1.449. Unsurprisingly, the proportion of endorsed words was 

also significantly higher than the proportion of endorsed non-words, t(24) = 8.922, P < 0.0005, 

M = 35.71%, 95%CI[27.45: 43.97], d = 1.785.

We then analyzed the confidence ratings. The results showed that endorsed words were 

assigned significantly higher confidence ratings compared to incorrect, rejected words, t(23) = -

4.253, P < 0.0005, M = 0.334, 95%CI [-0.497: -0.172], Cohen’s d = 0.96. The same pattern was 

found for non-words, t(24) = -2.428, P = 0.023, M = -0.23, 95%CI [-0.425: -0.035], Cohen’s d = 

0.65. Interestingly, the level of confidence assigned to endorsed phantoms was significantly 

higher than rejected phantoms, t(24) = 4.451, P < 0.0005, M = 0.353, 95%CI [0.189: 0.517], 

Cohen’s d = 0.812. As Figure 3 shows, the level of confidence for accepted phantoms matches 

that of accepted words, t(24) = 1.118, P = 0.275. Similar results were found for confidence 

ratings on trials with rejected words and rejected phantoms, t(24) = 0.237, P = 0.814. 

Taken together, these results show that participants have learnt discrete constituents 

from the auditory input and reliably endorse them later during the test, while rejecting those 

sequences which violated the statistical regularities embedded in the familiarization stream. 

However, when participants encountered phantoms, which were consistent with the statistical 

probabilities defining the structural constituents but had never been presented as holistic units 

during the learning phase, participants were at a loss, and could not unambiguously accept or 

reject them. They responded randomly, at a chance level, which resulted in a significantly higher 

proportion of accepted words than accepted phantoms. However, once a decision was made, 

participants assigned higher ratings to accepted than to rejected phantoms, showing that the 
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metacognitive system treated acceptance of phantoms as a correct response. This lack of 

difference in confidence ratings assigned to correctly endorsed words and accepted phantoms 

suggests that metacognitively phantoms were treated as words, even though the cognitive 

system treated words and phantoms differently.

fMRI results

Learning phase.  Our goal here was to delineate the neural correlates of learning related 

changes during the study phase. Accordingly, we tested the effect of training on the differences 

in BOLD response between the successive structured (S) and pseudorandom (R) chunks (i.e. 

our index of learning). We compared two types of models in which (1) learning related activity 

mainly occurred during the first training run and then remained constant during the second 

training run, and (2) learning related changes emerged in the second training run (see 

Methods). Based on prior research on perceptual sequence learning, we elected to focus our 

analyses on the S<R contrast46,51–53. For the sake of completeness, we also conducted a similar 

analysis based on S>R parameter estimates (as was done in Ref. 28), however, here we did not 

find any significant results at the group level.

The significant fit of learning related activity with a logarithmic trend indicates that 

learning-related brain activity builds faster at the beginning of the exposure and is then 

attenuated as training progresses. This was found in three clusters: (1) superior-frontal gyrus 

(SFG) extending to the paracingulate gyrus; (2) right superior temporal gyrus (STG); and (3) left 

STG. Figure 4 illustrates these results. Table 2 provides information regarding the peak voxels 

in MNI coordinates of the different contrasts. We did not find any evidence for linear or 

exponential increases in learning related activity across the two training runs suggesting that 

learning increases did not continue as training progressed further in the second run of the 

learning phase.

Recognition phase. Following the learning phase, participants were presented with a 

recognition test. On each trial, previously studied words, phantoms or non-words appeared for 

an old/new recognition decision followed by confidence ratings. Our key goal was to isolate the 

neural substrates implementing recognition of word units relative to phantoms (i.e. statistically 

congruent tokens that were not embedded in the learning input). We therefore ran three 

contrasts. First, we compared BOLD activity changes when words were accepted relative to 
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when non-words were rejected. This contrast is similar to comparing pseudorandom and 

structured blocks during the learning phase. Most crucially, we then compared BOLD activity 

changes when words were endorsed relative to when phantoms were rejected as well as when 

words were endorsed relative to when phantoms were endorsed. These contrasts aimed to 

isolate the brain substrates activated by the recognition of word-like units as whole constituents 

relative to the recognition of merely statistical structure. We reasoned that phantoms may be 

accepted as legitimate elements of an artificial language due to their statistical congruency with 

word-like constituents22,27. Rejecting phantoms may therefore rely on the fact that they are not 

supported by memory representations; phantoms were not encountered and extracted as whole 

units during the learning phase. Hence, we reasoned that by splitting the tokens into accepted 

and rejected the chances of dissociating the brain basis of words vs phantom processing would 

increase. 

Endorsed words, compared to rejected non-words (words_acc > non-words_rej), elicit 

BOLD response changes in the left inferior frontal gyrus (LIFG) around BA44, pars opercularis 

extending to par triangularis in BA45 (see Table 2). Critically, endorsed words relative to 

rejected phantoms (words_acc > phan_rej) elicited BOLD increases in the anterior part of the 

cingulate cortex, posterior division of the STG (strongly right lateralized), and in the left 

hemisphere in a cluster that involved the posterior division of the angular gyrus and anterior part 

of the intra-parietal sulcus (see Table 3). Figure 5 illustrates these results.

Finally, we report that no differences were found when comparing accepted words vs. 

accepted phantoms, which suggests that the recognition of equally familiar tokens may have a 

similar neural underpinning, whether the recognition is based merely on statistical congruency, 

or strengthened by memory representations of word-like units. This result is in line with the 

behavioral data on confidence, showing that accepted words are treated as accepted phantoms, 

and that participants processed the trials, in which they endorsed phantoms, as correct 

responses. 

Comparison of learning and recognition phases. In order to compare neural substrates 

supporting online statistical learning with offline recognition of holistic constituents, we 

compared the brain activity maps associated with learning-related activity for structured vs. 

pseudorandom blocks, and the brain activity maps associated with the recognition of words 

relative to non-words. Note that structured/pseudorandom blocks during learning equate to the 

presentation of words/non-words during recognition, both acoustically and statistically. Hence, 
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contrasting the recognition effect with the learning effect in terms of the associated BOLD 

activity maps will reveal whether these processes are supported by similar neural substrates.

Learning and recognition contrasts of parameter estimates were fed into a whole-brain 

mixed effects model paired t-test with subjects as random factors. We found that learning-

related activity was stronger in the left STG and the right superior frontal gyrus, extending to the 

anterior cingulate cortex  (Z > 2.3, P = 0.05 with a corrected significance level using Gaussian 

Random Field theory49,50). Table 4 and Figure 6 illustrates these results.

Discussion

The key objectives of the current study were (1) addressing the common and distinct neural 

substrates that support online statistical learning and the subsequent offline recognition of the 

learned constituents, and (2) defining the neural substrates that support the recognition of 

holistic constituents (learned words) as opposed to recognition of merely statistical structure 

(phantoms). Behaviorally, we found that participants could successfully recognize words vs non-

words in terms of discrimination accuracy and response confidence. Higher confidence ratings 

were assigned to correctly endorsed words and correctly rejected non-words compared to the 

corresponding incorrect responses. The proportion of accepted words was also significantly 

higher than that of phantoms. Importantly, rejected phantoms were assigned lower confidence 

rating compared to endorsed phantoms, showing that on rejected phantoms participants 

estimate the likelihood of making an error to be higher than on accepted phantoms. At the same 

time, endorsed phantoms and words were assigned similar confidence. Overall, the results 

show that accepted phantoms were treated as accepted words, metacognitively, although in 

terms of accuracy (i.e., cognitive decisions), they were not confused with words. One of the 

driving forces that underlie endorsing sensory input as part of the environment is the 

concordance with the statistical regularities the individuals are familiar with. This motivates their 

response to both words and phantoms. Memory representations further strengthen the 

recognition of word-like units. Sometimes, phantoms are endorsed despite the lack of memory 

support for these tokens as whole constituents, suggesting that memory does not play a crucial 

role in the recognition of legitimate constituents21,54. The fact that statistically congruent tokens 

are sometimes endorsed in the absence of memory representations would allow for the transfer 

of processing skills from recently encountered to novel situations, as long as these novel 

situations exhibit recently encountered statistical features. 
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We turn now to the neuroimaging results. We found that the bilateral STG supports the 

online extraction of conditional statistical cues during learning. This is in keeping with a number 

of earlier studies both in the auditory and visual modalities29,31,34 and with prior work 

demonstrating a role for STG in associative learning and relational memory55,56, here related to 

statistical structure and the acquisition of the relational positions of syllables in a stream. 

Learning was also mediated by the cognitive control network. The level of processing load 

during auditory perception is known to regulate activity in the control network, especially in the 

paracingulate and anterior cingulate gyri57. Accordingly, we found an increased activity in these 

areas when pseudorandom sequences were presented during learning following structured 

sequences.

Notably, we did not observe that activity in the IFG changed differently for 

pseudorandom and structured blocks during the learning phase. This result seems at odds with 

the study of Abla and Okanoya32, who showed that online segmentation of recurrent tone 

sequences in a continuous tone stream elicits higher levels of activity in the LIFG. Karuza et 

al.28 however, found involvement of the LIFG for learning forward speech but not backward 

speech, and suggested that the results by Abla and Okanoya32 and their own results28 reveal 

the role of the LIFG in TP calculation and the formation of structural representations. 

Importantly, in the Abla and Okanoya’s32 study, participants were first trained on three-tone 

sequences presented in isolation, and later these tone triplets were concatenated in a 

continuous stream and presented in alternation with the same tones randomly concatenated 

(i.e., not built into triplets). As participants were already familiarized with the recurrent triplets 

prior to the exposure, the activation in the LIFG could actually indicate a neural response to the 

recognition of the already learnt constituents rather than the process of formation of new 

representations. The role of the LIFG in the recognition of learned constituents rather than 

online segmentation of TPs is shown by Turk-Browne et al.56, who correlated familiarity ratings, 

assigned to discrete constituents during the recognition test with activity in the LIFG during 

learning exposure. Higher activity in the LIFG was observed for those constituents which were 

later rated as more familiar, indicating that neural responses in the LIFG differed for recognized 

vs. unrecognized tokens embedded into a continuous sensory input. Our findings are also in line 

with the hypothesis that activation in the LIFG is related to the recognition of discrete 

constituents rather than to the online segmentation of continuous input. By assessing learning 

and recognition processes independently within the same paradigm, our study allowed us to 

isolate the contributions of the left STG and the anterior cingulate cortex to learning, while the 

left IFG was critically involved in subsequent, offline recognition processes. We believe that the 
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LIFG is implicated in monitoring that statistically congruent sequences are indeed discrete 

constituents learned from the environment, which is in line with its proposed role as a general 

domain and modality independent sequence processor28. The right STG seems to be equally 

involved in learning and recognition. The conclusion that statistical learning and recognition are 

supported by different neural substrates also agrees with previous studies in other domains and 

modalities, which have shown differences in the neural networks supporting successful 

encoding (i.e., learning) and successful retrieval (i.e., recognition) of semantic and perceptual 

associations55. The lack of differential involvement of the IFG in the present study during 

learning and recognition is in keeping with the proposed account. 

For the first time, in a functional MRI of statistical learning, phantom sequences were 

included in the recognition test phase alongside words. This allowed us to determine whether 

the processing of phantoms and words is mediated by a similar neurocognitive mechanism. Our 

behavioral evidence suggests that participants are confused by phantom cases and are as likely 

to accept as to reject them. Hence, we tested the extent to which processing of words and 

phantoms could be dissociated in brain responses. Overall, BOLD responses to endorsed 

words and endorsed phantoms did not differ, confirming the conclusion that accepted phantoms 

are metacognitively considered to be correct responses, and that once a phantom is accepted, it 

is processed as a legitimate structural constituent. However, when we compared BOLD 

responses for accepted words and rejected phantoms, we found stronger responses in the left 

angular gyrus and intraparietal sulcus associated with endorsed words. This reveals active 

activation of the memory network39 elicited by retrieving memory representations of words as 

whole constituents presented during learning. Also, we found that the level of neural activity 

associated with accepted words and rejected phantoms differed in the anterior division of the 

cingulate cortex (ACC), which is frequently related to error detection and conflict resolution59. A 

significant difference in neural activation in the ACC for accepted words vs rejected phantoms 

suggests that on the trials in which phantoms were rejected a competing response was present, 

and thus the participants estimated the likelihood of making an error on such trials as high. This 

is manifested in the low confidence ratings assigned to rejected phantoms. Absence of 

difference in neural activation between accepted words and phantoms confirms our earlier 

conclusion, based on the behavioral results: accepted phantoms are treated as correctly 

endorsed words. This pattern of results also invites a tentative explanation, which nevertheless 

needs to be further empirically tested. We propose that the tokens are accepted mainly based 

on recognition of statistical structure, while rejection is based on the lack of memory 

representation. Thus, it is possible that memory representations do not yield additional support 
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for recognizing constituents from the sensory input. It is rather the absence of memory 

representations that leads to the rejection of some statistically congruent items. We believe 

these findings are important considering that prior behavioral studies have not consistently 

observed that phantoms are confused with holistic triplets (i.e. word-like structures). Hence this 

work lays the foundation for future studies to further explore the conditions in which the brain 

can distinguish words vs phantoms, for instance, by manipulating the amount of exposure 

during the training phase. New insights may be provided by exploring the different cognitive 

mechanisms which underlie rejection and acceptance of novel statistically congruent tokens. 

This understanding might be important, for example, in the field of language learning, to explain 

the phenomenon of generalization, when a rule learnt on a small set of examples is generalized 

over previously unencountered cases, and the phenomenon of fossilization, when the transfer 

from known to novel situations does not happen and progress in learning is halted. 

As we argued in the introduction, statistical learning mechanisms are evolutionary 

ancient, operate across a wide variety of taxonomically divergent species, and predate the 

emergence of language. Hence, although these mechanisms are engaged in speech processing 

and language acquisition, it is very unlikely that they evolved specifically for these purposes. We 

suggest that statistical learning mechanisms evolved to detect abrupt changes in the 

environment. The structure of ecologically relevant natural states is usually relatively stable, with 

rapid transitions between longer lasting stable states60,61. For survival and reproduction (i.e., 

fitness), organisms need to monitor the environment and detect and react to rapid ecologically-

relevant changes as they suddenly occur. These fitness needs likely gave rise to the early 

emergence of statistical learning mechanisms during evolution and explain their spread across 

different taxa, domains and modalities. Detecting structural regularities is probably more 

important than detecting recurrent constituents, because any breach in ecological stability 

signals rapid and fitness-relevant environmental changes. The ability to detect statistical 

structure presumably predates and underlies the segmentation of the dynamical flow of 

experience and supports building abstract representations of segmented constituents that 

reflect the structure of the environment. As phantoms in our study were statistically congruent 

with words, the cognitive system might have confused some of them as being equally familiar as 

words at the behavioral level, because both correspond to stable states in the statistical 

structure of the acoustic environment. Nevertheless, additional support from memory 

representations (evidence for the memory support of words relative to phantoms is discussed 

below) affects confidence judgements. However, the presence of this support at the neural level 

does not override the importance of detecting breaches in statistical structure which signal 
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environmental changes. In the environment of evolutionary adaptiveness that shaped the 

functions of the statistical learning mechanisms breaches in the statistical structure rather than 

recurrent constituents had to be monitored and required a behavioral response because they 

cued sudden ecological changes. 

It may be argued that this activity contrast is related to endorsement vs. rejection, 

irrespective of underlying statistical structure. Several considerations argue against this. First, 

the BOLD response to the auditory sequence was modelled separately from that associated 

with the behavioral response in the recognition test that took place 4 seconds later. Critically, 

the BOLD activity patterns that we report are time locked to the onset of the auditory sequence. 

Second, the patterns of BOLD activity were found in putative substrates of statistical learning. 

Finally, the fact that there is a brain signal that distinguishes words (accepted) vs phantoms 

(rejected) likely reflects the contribution of memory representations derived throughout the 

training. Statistically congruent novel items (i.e., phantoms) that did not receive additional 

support from activation in the memory-related brain areas were rejected. If the level of the 

memory activation was the same for words and phantoms, then phantoms were accepted as 

constituents of the previously experienced sensory input. The role of the left intraparietal sulcus 

in memory is well established39,58. Previous studies have also found post-learning sensitivity in 

the angular gyrus to the presentation of statistically congruent sequences28,35. The angular 

gyrus also underlies discrimination of pseudo-words and real words from natural languages62. 

The relations between linguistic experience and the functionality of the left angular gyrus is 

supported by work by Mechelli et al.63, which showed that bilinguals and highly proficient L2 

leaners have stronger grey matter density in the anterior division of the angular gyrus than 

monolinguals. The important role of the angular gyrus in the recognition of artificial words may 

be facilitated by its strong connectivity with temporal cortices via the arcuate fasciculus64 and 

also with the inferior frontal gyrus, both BA 4465 and BA 4566, via the longitudinal fasciculus. 

These connections are ipsilateral, which explains the simultaneous left-lateralized activation in 

multiple cortical areas, communicating through a major connection hub of the left angular 

gyrus67. Functional connectivity studies have also revealed a broad cortical network involved in 

statistical learning, with strong functional connections between both left and right STG, which 

we also observed here, alongside the LIFG68. Overall, our recognition results are in line with the 

conclusion of Skosnik et al.35 that grammaticality and recognition judgements rely on different 

networks. Since both words and phantoms are statistically congruent, the recognition of words 

must rely on additional support from memory representations derived from the learning phase, 

which recruits additional neural networks, different from those engaged in phantom recognition.
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To conclude, we found that the neural substrates underlying online statistical learning 

processes and offline recognition of the learned patterns rely on different neural substrates, 

indicating that the neurocognitive mechanisms that support the initial formation and subsequent 

maintenance of structural representations are distinct. Also, we dissociated, at the neural level, 

recognition of discrete constituents from the sensory input vs. recognition of mere statistical 

structure that is used to build constituents, enabling recognition of novel constituents that were 

not experienced before. Mechanisms for statistical learning have been shaped by fitness needs 

in the environment of evolutionary adaptiveness. We suggest that statistical mechanisms for 

detecting breaches in statistical structure are more essential to fitness than those that detect 

structural units; they are more evolutionary ancient and prevail over those that allow us to 

recognize structural units.
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FIGURE CAPTIONS:

Figure 1. Example of a learning phase run (above), where 25.92-second pseudorandom blocks 
are interspersed with 181.44-second structured blocks; and the structure of the recognition trial 
(below).

Figure 2. Percentage of endorsed trials for words, non-words and phantoms. Error bars show 
95% CI.

Figure 3. Mean confidence rating (weighted average) assigned to the trails with accepted and 
rejected words, phantoms and non-words. Error bars show 95%CI.

Figure 4. BOLD responses during the learning phase (Z >2.3, P = 0.05 corrected). Brain 
regions showing BOLD response increases in structured vs pseudorandom chunks in the 
course of training.

Figure 5. BOLD responses during the recognition phase (Z >2.3, P = 0.05 corrected. (A) Brain 
regions showing increased response for words accepted relative to nonword rejected (w_acc > 
nonw_rej). Correctly identified words elicit larger activation in the LIFG compared to correctly 
identified non-words. (B) Brain regions showing increased activity on trials with words accepted 
compared to phantoms rejected (w_acc > ph_rej). Endorsed words, relative to rejected 
phantoms, elicit larger activation in the angular gyrus and intra-parietal sulcus, the anterior 
division of the cingulate gyrus, and the posterior division of the right STG.

Figure 6. Illustration of the brain activity maps that showed increased activity during learning 
compared to the recognition phase (Z >2.3, P = 0.05 corrected).
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Table 1. The list of words, phantoms and non-words used in the experiment

Words Phantoms Non-words

ROSENU
ROKAFA
PASETI
LEKATI
PAMONU
LEMOFA
PERIKO
MURIFO
PETASA
LUTAFO
MUNIKO
LUNISA

PASENU
LEKAFA
ROSETI
ROKATI
PAMOFA
LEMONU
MURIKO
LUTASA
PERIFO
PETAFO
MUNISA
LUNIKO

ROTIMO
SEPAKO
FALUSA
FOLERI
TAMUPE
NIKANU
NURIPE
FOLUKA
NIMUKO
MOPARO
LESATI
TASEFA
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Table 2. Location of peaks related to the increase in the activation difference between structured and random chunks

Cluster Extent 
(voxels)

Anatomical region Z max x y z

1 1008 Anterior division of cingulate gyrus, paracingulate gyrus, superior frontal gyrus 3.46 14 38 24

2 1002 Superior temporal gyrus, left (slightly extending to middle temporal gyrus) 3.97 -60 -14 -2

3 777 Superior temporal gyrus, right 3.57 64 -8 -2
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Table 3. Location of peak activation differences (with NMI coordinates of the activation peaks) for the relevant contrasts in the recognition 
phase

Contrast Cluster Extent 
(voxels)

Anatomical region Z max X y z

w_acc > 
nonw_rej

1 6207 LIFG (par opercularis extending to par triangularis), i.e., BA44 extending to 
BA45.

3.76 -38 18 22

1 297 Anterior division of the cingulate gyrus, paracingulate gyrus 3.49 -2 26 36

2 292 Posterior divisions of the right superior temporal and middle temporal gyri  3.7 64 -26 -2w_acc > 
ph_rej

3 227 Anterior division of the left intra-parietal sulcus, angular gyrus 3.73 -34 -50 34
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Table 4. Location of peak activation differences (with NMI coordinates of the activation peaks) for the learning > 
recognition contrast

Cluster Extent 
(voxels)

Anatomical region Z max x y z

1 688 The superior temporal gyrus, slightly extending to the middle 
temporal gyrus, left.

3.88 -60 -14 -2

2 699 Anterior division of the cingulate gyrus, the paracingulate gyrus, 
right, the superior frontal gyrus.

3.51 14 40 24
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